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Abstract

This thesis describes the development of a new model for viscosity, the

Enskog-2σ model. The model is based on Enskog theory in which the viscos-

ity of a hard sphere fluid is computed from the hard sphere interactions on

the molecular level. The idea of the Enskog-2σ model is to introduce two ef-

fective weakly temperature dependent diameters in Enskog’s approach. One

of the diameters is linked to the collision rate between the fluid molecules,

the other diameter to the molecule size.

The optimisation of the two effective temperature dependent diameters al-

lows the Enskog-2σ model to reproduce the viscosity data of simple fluids,

i.e. fluids with non-polar, fairly spherical molecules, very well over a wide

range of pressures and temperatures. For argon, for example, the model

covers a pressure range from 0 to 400 MPa and temperatures from 0.6Tc to

4.6Tc (Tc = critical temperature of argon) and correlates the experimental

reference correlation within ±10%. Making use of the universal behavior of

the diameters for various simple fluids, the number of free parameters can

be reduced to one or two constant scaling parameters that can be predicted

well from viscosity data along one isotherm.

The Enskog-2σ approach has been extended to model n-alkanes from ethane

to octane. The molecules of n-alkanes are described as chains of equally

sized hard spheres and a collision between two chains is modelled as colli-

sion between two spherical segments of the colliding chains. The Enskog-2σ

model for n-alkanes contains two effective weakly temperature dependent

chain lengths. The number of free parameters can be reduced by relating

the chain lengths to the carbon number or to the chain lengths of a refer-

ence n-alkane. The remaining free parameters can usually be determined

satisfactorily from viscosity data along one isotherm.
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Introduction

The main aim of this work is to develop a new model for viscosity that provides us

with a realistic and fairly accurate viscosity model for dense fluids. In more detail, the

new viscosity model has been derived from Enskog’s theory for hard sphere fluids and

validated for simple fluids with fairly spherical, non-polar molecules as well as n-alkanes

over a wide range of pressures and temperatures in the supercritical as well as liquid

phase.

1.1 Petroleum Engineering

Petroleum engineering is a field of engineering related to the production of hydrocar-

bons. Hydrocarbons have played a vital role in satisfying the global energy demands

in the 20th century and will continue to do so for the coming decades. Thus, the ef-

ficient production of hydrocarbons from reservoirs is an important task in petroleum

engineering and leads increasingly to the application of enhanced oil recovery methods.

Important enhanced oil recovery methods are chemical flooding, hydrocarbon as well

as gas injection and thermal recovery methods (Lyons & Plisga, 2004). To select an ap-

propriate recovery method for a given reservoir and adjust the process parameters like

the injection and production rates optimally, the properties of the reservoir rocks, the

reservoir fluids and the injected fluids have to be determined fairly accurately. A crucial

fluid parameter is the viscosity of the fluids involved, i.e., the viscosity of the reservoir

fluids, that usually consist mainly of n-alkanes, and the viscosity of the injected fluids

such as nitrogen, oxygen, carbon dioxide, water and polymers. The viscosity of these
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1. INTRODUCTION

fluids is also of great interest for other petroleum engineering applications like flow

through pipelines and carbon capture storage.

1.2 Viscosity

Viscosity or more precisely shear viscosity measures the resistance of fluids to defor-

mation by shear stress. Deformation by shear stress is found relevant in many kinds

of fluid flow, e.g., flow through a pipe, flow within a porous medium or flow around an

obstacle. Thus, viscosity determines often crucially how a fluid flows and appears as

one of the key parameters in fluid dynamics. Moreover, models to describe fluid flows

are ubiquitous in science as well as industry and are often sensitive to the viscosity

values. Especially, as outlined above, in the petroleum industry an accurate knowledge

of viscosity can be of enormous value. For the fluids considered in this work, i.e., pure

Newtonian fluids such as nitrogen, oxygen, carbon dioxide and n-alkanes up to octane,

viscosity can be described fully as function of temperature and fluid density. We do not

deal with fluid mixtures, in which viscosity depends also on the concentration of the

mixture components, or non-Newtonian fluids like certain polymers, for which viscosity

changes with the shear rate. For the fluids under investigation, viscosity is independent

of the shear rate such that the velocity gradient in the fluid changes linearly with the

applied shear stress, i.e.,

τ = η
∂u

∂y
, (1.1)

where τ is the shear stress, η the shear viscosity and ∂u
∂y the local shear velocity. In

addition to shear viscosity, there is bulk viscosity, also called volume viscosity or second

viscosity. The bulk viscosity describes the internal friction encountered when a fluid

is compressed or expanded. The bulk viscosity becomes important only when the

compression or expansion is fast, such as in sound and shock waves. In this work, we

will deal only with shear viscosity.

1.3 Measuring viscosity

Experimental measurements are hitherto the most accurate way to determine viscosity

of dense fluids. Traditional measurement instruments for viscosity include capillary

2
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viscometers, falling-body viscometers, rolling ball viscometers, oscillating-body vis-

cometers and vibrating wire viscometers (Wakeham et al., 1991; Ciotta, 2010). Under

favourable conditions, these viscometers allow to measure the viscosity with a relative

accuracy of a few percent. For example, in (Vogel et al., 2000), the viscosity of methane

has been determined with a vibrating wire viscometer over a temperature range from

260K to 360K and a pressure range from 0.3 MPa to 29 Mpa with an estimated ac-

curacy of ±0.3%. Another recent example are the viscosity measurements for argon

with a oscillating-body viscometer by (Evers et al., 2002). There, the viscosity has been

measured from 233K to 523K and from 0.1 MPa to 28 MPa with an estimated accuracy

of better than ±1%. (Wakeham et al., 1991) and (Ciotta, 2010) give a detailed review

of experimental viscosity measurements.

1.4 Experimental reference correlations for viscosity

Based on the most accurate experimental measurements available, experimental ref-

erence correlations for viscosity have been developed for a number of fluids. These

correlations reproduce viscosity with estimated uncertainties of a few percent over a

wide range of pressures and temperatures. Some examples are the correlation by (Lem-

mon & Jacobson, 2004) for argon, oxygen, nitrogen and air, the correlation by (Vogel

et al., 2000) for methane and the correlation by (Huber et al., 2004) for n-octane,

n-nonane and n-decane. The drawback of these correlations is that they are merely

empirical and do not possess a theoretical background. Viscosity models with a theo-

retical background, however, are desirable as they are often superior in extrapolating

viscosity data and because they can serve as basis for viscosity models of fluid mixtures.

1.5 Viscosity models with theoretical background

Theoretically based viscosity models assume a certain intermolecular potential and

strive to compute the viscosity from this potential. Traditionally, viscosity models

distinguish between three different contributions to viscosity η,

η = η0 +∆ηc +∆η, (1.2)
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the viscosity η0 in the dilute gas limit, the critical enhancement ∆ηc of viscosity close

to the critical point and the excess viscosity ∆η. The critical enhancement ∆ηc con-

tributes significantly to viscosity only in a small temperature and density region close

to the critical point and can be neglected outside this region (Millat et al., 1996). The

critical enhancement has been measured experimentally and predicted for many fluids

fairly well by theoretical models (Sengers, 1985; Millat et al., 1996).

In recent years, great advances have been made in the ability to calculate the viscosity

η0 in the dilute gas limit from an intermolecular potential by means of classical trajec-

tory calculations (Bock et al., 2002; Hellmann et al., 2008, 2009, 2011). The starting

point for classical trajectory calculations is Boltzmann’s equation which has first been

derived in 1872 by Boltzmann (Ferziger & Kaper, 1972). Boltzmann’s equation de-

scribes the statistics of gas particles in terms of a particle distribution function and, in

principle, allows to derive the viscosity of a fluid for a given intermolecular potential.

In (Bock et al., 2002; Hellmann et al., 2008, 2009, 2011), classical trajectory computa-

tions have been carried out for carbon dioxide, methane, water and hydrogen sulfide

and the calculations predict the bulk of the dilute gas viscosity data over wide range

of temperatures very well within ±1%. These calculations, however, are restricted to

the dilute gas limit and cannot be used to compute the excess viscosity ∆η for dense

fluids.

Boltzmann’s equation in combination with kinetic theory offers a possible formal way

of linking the viscosity of dense fluids to the intermolecular potential (McCourt et al.,

1991; Chapman & Cowling, 1970) and thus utilizing the molecular approach that has

been so successful for dilute gases (Bock et al., 2002; Hellmann et al., 2008, 2009, 2011;

McCourt et al., 1991; Chapman & Cowling, 1970). However, a general solution to

Boltzmann’s equation is still lacking and hence no rigorous kinetic theory is available

(Chapman & Cowling, 1970). One has therefore to rely on approximate solutions.

One of the historically earliest attempts was that by Enskog (Chapman & Cowling,

1970; Enskog, 1922), who solved Boltzmann’s equation by assuming that molecules

in a fluid can be replaced by hard spheres and by making further assumptions about

their interaction. In Enskog’s approach, fluid molecules interact only via the infinitely

steep, repulsive hard sphere potential. A slightly more realistic potential that also

considers attractive forces between fluid molecules is the square well potential which

is characterised by three potential parameters. In (Davis et al., 1961), an equation
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for viscosity of square well fluids has been derived from Boltzmann’s equation. Based

on this equation, a large body of work has been devoted to approximate the viscosity

of real fluids with the one of a square well fluid (Monnery et al., 1996, 1997, 1998).

Another popular and fairly realistic intermolecular potential for simple molecules is the

Lennard-Jones potential which contains both attraction and repulsion as a continuous

function of distance between the molecules. A viscosity expression for Lennard-Jones

fluids has been derived from Boltzmann’s integro-differential equation only after further

simplifications have been introduced (Karkheck et al., 1988). Alternatively, the viscos-

ity of a Lennard-Jones fluid has been calculated within ±5% by molecular dynamics

(MD) simulations (Meier et al., 2004; Galliéro et al., 2005, 2006) and approximated

by a number of analytical approaches that are not based on kinetic theory. The best-

known of these approaches are the stochastic theory by (Polewczak & Stell, 2002), the

renormalized Kirkwood theory (Kirkwood et al., 1949) and the mode-coupling theory

by (Egorov, 2008). All approaches introduce a series of further simplifications before

an expression for viscosity is derived and the resulting viscosity expression often in-

volves integrals that have to be solved by numerical integration. The intermolecular

potentials used for the classical trajectory calculations in (Bock et al., 2002; Hellmann

et al., 2008, 2009, 2011) constitute a very good approximation for the intermolecular

potential of the respective real fluid under investigation. These potentials however are

more complicated than the Lennard-Jones potential and it is to be expected that one

has to make strong simplifications in order to derive transport properties for dense

fluids from these potentials. Thus, although the chosen intermolecular potential might

be quite realistic, the accuracy of the approach as a whole is expected to reduce greatly

due to the simplifications necessary to derive an expression for viscosity. Also, MD

simulations for more complicated fluid potentials are still in their infancy, for some

examples see (Bordat & Müller-Plathe, 2002; Hess, 2002; Galliéro & Boned, 2009).

1.6 Enskog theory

Enskog theory has become a cornerstone for developing molecular-based viscosity mod-

els (Dymond, 1985; Millat et al., 1996). The wide-spread use of Enskog theory (Barker

& Henderson, 1967; Weeks et al., 1971; Andersen et al., 1971; Hanley et al., 1972; An-

drews, 1976; Lado, 1984; Speedy et al., 1989; Silva & Liu, 2008; Vesovic & Wakeham,
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1989b,a) follows from the fact that the hard sphere potential captures the major effects

in a dense gas (Silva & Liu, 2008) and that Enskog theory leads to easy to use, explicit

expressions for viscosity, thermal conductivity and mass diffusion. One of the underly-

ing drawbacks of the model is that it cannot be used to directly predict the viscosity of

real fluids, as the assumptions made are sufficiently drastic to preclude this possibility.

In particular, the attractive potential part of a real fluid is neglected and the repulsive

potential part is modelled as infinitely steep which are rather crude approximations.

However, if the size of the hard sphere is used as an effective parameter, the Enskog

model can be shown to describe the viscosity of real fluids reasonably well (Millat

et al., 1996; Silva & Liu, 2008). Hence, most models based on the original Enskog

model make use of a single effective diameter, usually weakly temperature and possi-

bly density dependent, to ensure good agreement between experiments and prediction

(Barker & Henderson, 1967; Weeks et al., 1971; Andersen et al., 1971; Hanley et al.,

1972; Andrews, 1976; Lado, 1984; Speedy et al., 1989). In essence, the deficiencies of

the Enskog hard sphere model are absorbed by the use of an effective sphere diameter

for the real fluid molecules.

1.7 The Enskog-2σ model

In this work, we argue that the predictions of the Enskog model can be greatly im-

proved if we make a more physically based choice of the effective parameters. Enskog’s

assumptions broadly address the simplification of collisional dynamics and the estima-

tion of the excluded volume of a molecule. Although the excluded volume of a molecule

contributes to the increased probability of collision, there is no reason to believe that

the effective sizes of a molecule contributing to the dynamics and the geometry of

molecular interactions in a dense fluid are the same. Hence, we propose the Enskog-2σ

model, where we base our choice of the effective parameters on the physical effects

corrected in Enskogs treatment; namely, the excluded volume of a molecule and the

increased probability of collision in comparison to the dilute gas. We further show that

the Enskog-2σ describes the viscosity of real fluids more accurately than the standard

Enskog model and illustrate that the Enskog-2σ model can be generalized to predict

the viscosity of one fluid from the knowledge of another. The developed Enskog-2σ
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model provides us with a realistic and fairly accurate viscosity model for dense fluids.

1.8 Structure of this work

The present work is structured as follows:

• In chapter 2, the theoretical foundations are established upon which the Enskog-

2σ model will be based.

• In chapter 3, the Enskog-2σ model is derived for simple fluids with fairly spher-

ical, non-polar molecules.

• In chapter 4, the Enskog-2σ model is modified to deal with n-alkanes.

• In chapter 5, the results of the Enskog-2σ model for simple fluids are discussed.

• In chapter 6, the results of the Enskog-2σ model for n-alkanes are presented.

• In chapter 7, the results of this work are summarised.
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2

Theoretical foundations

In the present chapter, the theory is established upon which we will develop the Enskog-

2σ model. First, Boltzmann’s kinetic theory is introduced leading to viscosity results

applicable to dilute gases. Next, we discuss Enskog’s theory which is an extension of

Boltzmann’s approach to moderately dense gases and which will serve as basis for the

Enskog-2σ model. To extend the Enskog-2σ model to high densities, Enskog’s theory

is corrected by molecular dynamics simulations which are discussed next. Enskog’s

theory describes a hard sphere fluid and hence it is a suitable approximation for fluids

with fairly spherical molecules. For fluids with chain like molecules like n-alkanes, a

modification of Enskog’s viscosity expression has been proposed in (de Wijn et al.,

2008). This modification is the theoretical foundation of the Enskog-2σ model for n-

alkanes and hence is also described in this chapter. Finally, we review the VW method

(Vesovic & Wakeham, 1989b,a). The VW method allows to predict the viscosity of fluid

mixtures from the viscosities of the pure mixture components and is closely related to

the Enskog-2σ model. The description of Boltzmann’s approach and Enskog theory,

given in the first two sections, follows (Ferziger & Kaper, 1972; Maitland et al., 1981).

2.1 Boltzmann’s Kinetic Theory of Gases

Kinetic theory aims at modelling transport properties of gases (e.g. viscosity, thermal

conductivity and self diffusion) starting from a description on the molecular scale. On

the molecular scale, a gas is represented by a large number of particles (atoms or

molecules). How these particles behave statistically determines the properties of a gas
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on the macroscopic scale.

In Boltzmann’s approach, the statistics of the gas particles are described by the particle

distribution function f(r,v, t). The particle distribution function is defined by setting

f(r,v, t)drdv (2.1)

equal to the number of particles which, at time t, are located in the volume element

d3r about r and have a velocity in d3v about v. To derive an equation which allows to

compute how f changes in time from a given initial state, Boltzmann introduced the

following assumptions:

(i) only binary collisions are taken into account,

(ii) external forces have negligible influence on the outcome of a collision,

(iii) the expected number of collisions in a given volume element between particles that

belong to different velocity ranges can be calculated statistically. This assumption

is called the molecular chaos assumption or Stosszahlansatz which means collision

number assumption in German.

Making use of these assumptions, Boltzmann derived the Boltzmann equation that can

be written as (Ferziger & Kaper, 1972)(
∂

∂t
+ v · ∇r + F(r, t) · ∇v

)
f(r,v, t) =

(
∂f

∂t

)
coll

. (2.2)

The quantity F(r, t) is the external force per unit mass on a particle at position r

at time t. The term on the right hand side denotes the rate at which the particle

distribution function f changes by particle collisions. The collisions are assumed to be

elastic in Boltzmann’s approach. The collision rate can be expressed in terms of f by

J(ff) =

∫ ∫ (
f(r,v′, t)f(r,v′

1, t)− f(r,v, t)f(r,v1, t)
)
gdΩ̃d3v1 (2.3)

with the velocities v,v1 and v′,v′
1 before and after the collision of the two particles

and the absolute value g of the relative velocities before and after collision,

g = |v− v1| =
∣∣v′ − v′

1

∣∣ . (2.4)

The latter equality holds true as the collisions are assumed to be elastic. The term dΩ̃

indicates the integration over all possible relative orientations of the colliding particles,
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which can be specified by two scattering angles. The velocities v′,v′
1 after collision

can be expressed in terms of the scattering angles as well as the velocities v,v1 be-

fore collision via the conversation equations for momentum and kinetic energy. To

obtain macroscopic transport equations from the Boltzmann equation, the distribution

function is related to the macroscopic fluxes through appropriate averages, e.g., to the

momentum flux through a velocity average. The most popular approach in which this

link is worked out in detail is the Chapman–Enskog theory. Starting point is a gas in the

absence of an external force, i.e., F = 0, that is described by the macroscopic observ-

ables number density n(r, t), hydrodynamic velocity u(r, t) and temperature T (r, t).

The macroscopic quantities are assumed to change on a much longer time scale than

the time between collisions of the gas particles which is a reasonable assumption for

most real gas systems. As f(r,v, t) changes with every particle collision, the particle

distribution function will adjust itself rapidly to the macroscopic observables n(r, t),

u(r, t) and T (r, t). Consequently, on the macroscopic time scale, the time dependence

of f can be fully described through the time dependence of the macroscopic observables

n, u and T such that one can write (Maitland et al., 1981)

∂f(r,v, t)

∂t
=

∂f

∂n
· ∂n
∂t

+
∂f

∂u
· ∂u
∂t

+
∂f

∂T
· ∂T
∂t

. (2.5)

Next, the particle distribution function is decomposed in terms of successive approxi-

mations which describe increasingly large departures from thermal equilibrium,

f = f0 + ζf1 + ζ2f2 + ..., (2.6)

where 1/ζ measures the collision frequency in the gas. Due to the introduction of the

varying collision frequency ζ, the Boltzmann equation, Eq. (2.2), is modified to

∂f

∂t
+ v · ∂f

∂r
=

1

ζ
J(ff). (2.7)

After substitution of the expansion (2.6) for f into Eq. (2.7), the right hand side of

Eq. (2.7) can be written as

1

ζ
J(f0f0) + {J(f1f0) + J(f0f1)}+ ... (2.8)

To find a similar expansion for the left hand side of Eq. (2.7), the derivatives ∂n/∂t,

∂u/∂t and ∂T/∂t are expressed more explicitly through the conversation equations of
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molecular number, momentum and energy in the gas. These conversation equations can

be obtained by multiplying both sides of Eq. (2.7) by 1,mv, andmv2/2 respectively and

integrating with respect to v. Taking additionally into account that the collision term

on the right hand side of Eq. (2.7) conserves the number of particles, their momentum

and energy, the conversation equations can be written in the form (Maitland et al.,

1981):

∂n

∂t
= −

3∑
j=1

uj
∂n

∂xj
− n

3∑
j=1

∂uj
∂xj

, (2.9)

nm
∂ui
∂t

= −nm

3∑
j=1

uj
∂ui
∂xj

−
3∑

j=1

∂pij
∂xj

, i = 1, 2, 3, (2.10)

3/2nkB
∂T

∂t
= −3

2
nkB

3∑
j=1

uj
∂T

∂xj
−

3∑
i=1

∂qi
∂xi

−
3∑

i=1

3∑
j=1

pij
∂ui
∂xj

(2.11)

with the stress tensor

pij =

∫
f(m(ViVj))d

3v i, j = 1, 2, 3, (2.12)

and the heat vector

qi =

∫
f(

1

2
mV 2)Vid

3v i = 1, 2, 3. (2.13)

The quantity kB is the Boltzmann constant,m the particle mass, V the peculiar velocity

v−u and the xi’s are the Cartesian coordinates. Using the expansion for f , Eq. (2.6),

the conversation equations (2.9) to (2.11) can also be expanded in terms of the reciprocal

collision frequency ζ (Maitland et al., 1981):

∂n

∂t
=

(
∂n

∂t

)(0)

, (2.14)

∂ui
∂t

=

(
∂ui
∂t

)(0)

+ ζ

(
∂ui
∂t

)(1)

+ ζ2
(
∂ui
∂t

)(2)

+ ..., (2.15)

∂T

∂t
=

(
∂T

∂t

)(0)

+ ζ

(
∂T

∂t

)(1)

+ ζ2
(
∂T

∂t

)(2)

+ ..., (2.16)
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where (
∂n

∂t

)(0)

= −
3∑

j=1

uj
∂n

∂xj
− n

3∑
j=1

∂uj
∂xj

, (2.17)

(
∂ui
∂t

)(0)

= −
3∑

j=1

uj
∂ui
∂xj

− 1

nm

3∑
j=1

∂p0ij
∂xj

, i = 1, 2, 3, (2.18)

(
∂ui
∂t

)(1)

= − 1

nm

3∑
j=1

∂p1ij
∂xj

, i = 1, 2, 3, (2.19)

(
∂T

∂t

)(0)

= −
3∑

i=1

uj
∂T

∂xj
− 2

3nkB


3∑

i=1

∂q
(0)
i

∂xi
+

3∑
i=1

3∑
j=1

p
(0)
ij

∂ui
∂xj

 , (2.20)

(
∂T

∂t

)(1)

= − 2

3nkB


3∑

i=1

∂q
(1)
i

∂xi
+

3∑
i=1

3∑
j=1

p
(1)
ij

∂ui
∂xj

 . (2.21)

Substituting Eqs. (2.14) to (2.16) for ∂f/∂t in Eq. (2.7) and ordering the terms in ζ

yields the following equation for the zeroth-order approximation f0,

J(f0f0) = 0, (2.22)

and for the first order approximation f1,(
∂f0
∂n

)(
∂n

∂t

)(0)

+

(
∂f0
∂u

)(
∂u

∂t

)(0)

+

(
∂f0
∂T

)(
∂T

∂t

)(0)

+v · ∂f0
∂r

= J(f0f1)+J(f1f0).

(2.23)

The solution of Eq. (2.22) is the Maxwell-Boltzmann distribution (Maitland et al.,

1981)

f0 = n

(
m

2πkBT

)3/2

e−V 2
. (2.24)

When the Maxwell-Boltzmann distribution, Eq. (2.24), is used in Eq. (2.15) and only

the zeroth-order term in ζ is considered, we obtain the Euler equations of hydrodynam-

ics with an equation of state which is the ideal gas law. Since the gas is modelled as

inviscid at this level, the zero-order approximation is not sufficient for our means. To

derive the first-order approximation, f0 is substituted in Eq. (2.23) and the equation

is solved which gives an expression for f1. Then, if f1 is used in Eq. (2.15) and only

the terms up to first order in ζ are considered, we obtain the Navier–Stokes equations

which are on the relevant level of approximation for this work. The next higher ap-

proximation yields the Burnett equations. The Burnett equations have the potential to
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be more accurate than the Navier–Stokes equations in special situations only such as

hypersonic flows or the description of boundary layers. The viscosity at the first order

level of approximation is related to the stress tensor by

p
(1)
12 = −η

(
∂u1
∂x2

+
∂u2
∂x1

)
(2.25)

where the components of u are considered up to first order in ζ. By means of variational

calculus, the viscosity can be expressed as (Maitland et al., 1981)

η =
5

16

√
πmkBT

Ω̄(2,2)(T )
(2.26)

with the collision integral Ω̄(2,2) which depends on the intermolecular forces between

the particles. Higher order corrections to the viscosity expression above are usually

negligible, as can be seen for example in (Bock et al., 2002) or (Hellmann et al., 2008).

An important example for which the collision integral Ω̄(2,2) can be calculated analyt-

ically is the case in which the intermolecular potential φ is given by the hard sphere

potential, i.e., by

φ(r) =

{
∞, for r ≤ σ,

0, for r > σ.
(2.27)

For the hard sphere potential, the result for viscosity reads (Ferziger & Kaper, 1972)

η =
5

16

√
mkBTπ

πσ2
. (2.28)

Next, to understand the range of applicability of the Boltzmann equation, we discuss

the main assumptions inherent in Boltzmann’s approach. An important assumption

is that only binary collisions of molecules are considered while collision events are

neglected in which more than two particles are involved. In addition, the molecular

chaos assumption is applied. This assumption states that the positions or velocities of

the particles are not correlated prior to a collision. The previous two assumptions are

reasonable as long as the mean free path (i.e. the average distance covered by a particle

between two successive collisions) is large in comparison to the diameter of the particles.

Such a situation prevails in gases at low densities. At higher densities, multiple collisions

and correlations between particles become important and Boltzmann’s equation will

result in poor predictions.
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2.2 Enskog Theory

2.2 Enskog Theory

In order to obtain a theory for dense gases, Enskog modified Boltzmann’s approach.

His modifications resulted in the Enskog theory. In Enskog theory, gas particles are

represented by hard spheres which interact via the hard sphere potential as written in

Eq. (2.27). To account for the fact that a sphere occupies a volume which is excluded

for any other sphere, Enskog included a factor χ in the collision integral of Boltzmann’s

equation (2.2) which considers an increase in the probability of a collision. In addition,

he reformulated the equation in order to consider that spheres are at different positions

in the event of a collision. For comparison, the Boltzmann equation (2.2) is formulated

in a way which implies that the particles are at the same position in a collision event

(this follows from the assumption in Boltzmann’s approach that spatial correlations

are completely neglected prior to a collision). As a result of the modifications outlined

above, Enskog arrived at a new equation for the particle distribution function, Enskog’s

equation. Enskog’s equation has the same form as the Boltzmann equation (2.2) but it

possesses a modified collision term which reads (Enskog, 1922; Ferziger & Kaper, 1972)

J(ff) =

∫ ∫
(χ(r+

1

2
σk)f(r,v′, t)f(r+ σk,v′

1, t)−

χ(r− 1

2
σk)f(r,v, t)f(r− σk,v1, t))gdΩ̃d

3c1 (2.29)

where k is the unit vector along the line through the centres of the two colliding spheres.

2.2.1 Enskog theory for viscosity

To obtain a viscosity expression from Enskog’s equation (2.29), the terms χ(r+ 1
2σk),

f(r + σk,v′
1, t) and f(r − σk,v1, t) are expanded in a Taylor series near r and terms

higher than third order are neglected. From the resulting equation, macroscopic trans-

port equations can be deduced in a similar fashion as done for the Boltzmann equation

in section 2.1. On the first-order approximation level, the Navier–Stokes equations are

obtained with the following expression for viscosity (Ferziger & Kaper, 1972):

η = η0

(
1

χ
+ αρ+

1

β
χα2ρ2

)
(2.30)

with the molar density ρ and β = (1/4 + 3/π)−1 = 0.8299. The quantity α is propor-

tional to the excluded volume Vexcl = 4/3πσ3 of a sphere and is given by

α =
8NA

15
πσ3 =

2NA

5
Vexcl. (2.31)
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NA is Avogadro’s constant, σ the hard sphere diameter and η0 the dilute gas viscosity

viscosity of a hard sphere fluid, Eq. (2.28). χ is the factor which Enskog included in

Boltzmann’s equation in order to consider the increased collision probability. Enskog

approximated χ by the equilibrium radial distribution function g at contact, i.e., g

evaluated at a distance of σ. χ converges in the thermodynamic limit to the radial

distribution function at contact which can be shown by making use of the Clausius

virial expression for pressure, see (Chapman & Cowling, 1970). The radial distribution

function at contact is linked to the compressibility factor Z via

χ =
Z − 1

4y
, (2.32)

see for example (Hansen & McDonald, 2006). The compressibility factor Z can be

computed from the equation of state (EOS) of a hard sphere fluid via its definition

Z =
PVm

RT
(2.33)

with the universal gas constant R and the molar volume Vm. A number of EOS have

been suggested for the hard sphere fluid (Thiele, 1963; Wertheim, 1963; Reiss et al.,

1959; Wertheim, 1964; Ree & Hoover, 1964; Guggenheim, 1965; Yelash et al., 1999) and

an overview about various hard sphere EOS can be found in (Miandehy & Modarress,

2003). In this work, we make use of Carnahan and Starling’s EOS (Carnahan & Star-

ling, 1969), that describes the compressibility factor and hence χ very well up to high

densities, as can be shown by the aid of computer simulations (Miandehy & Modarress,

2003). The radial distribution function in Carnahan and Starling’s approach is given

by

χ =
(1− 0.5y)

(1− y)3
(2.34)

in terms of the packing fraction y (Carnahan & Starling, 1969). The packing fraction

y is defined as ratio between the volume Vspheres occupied by the spheres and the total

volume Vtot available to the fluid, i.e.,

y =
Vspheres

Vtot
=

NA
4
3π
(
σ
2

)3
1/ρ

=
πNA

6
ρσ3. (2.35)

Altogether, knowing only the hard sphere diameter, it is possible to calculate the vis-

cosity of a hard sphere fluid at any temperature and density by means of Eqs. (2.30),

(2.31), (2.34) and (2.35). In this work, we refer to the traditional Enskog model also

as Enskog-1σ model since it requires knowledge of a single hard-sphere diameter.
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2.2 Enskog Theory

2.2.2 Shortcomings of Enskog theory

The main assumptions inherent in Enskog’s approach are as follows:

(i) as in Boltzmann’s approach, only binary collisions are considered.

(ii) while spatial correlations are treated at least approximately by including the

radial distribution function, velocity correlations are still neglected.

(iii) the intermolecular potential is described by the hard sphere potential.

The first two assumptions cause Enskog theory to deviate with increasing density from

the true behaviour of a hard sphere system. The effect of these deviations on the

viscosity are quantified in section 2.3 where we compare Eq. (2.30) with molecular

dynamics simulation (MD) results for hard sphere fluids. Apart from MD simulations,

there have been several analytical approaches that aim at abandoning assumptions (i)

and (ii) for the sake of obtaining a theory which is valid for high densities. Interesting

analytical approaches in this direction are, for instance, the solution of a generalized

Boltzmann equation (Ferziger & Kaper, 1972) and mode coupling theories (Leutheuser,

1982; Egorov, 2008). The analytical approaches contain a series of approximations and,

compared to MD simulations, describe the viscosity of a hard sphere fluid less accu-

rately. Thus, we focus on the correction of Enskog theory with MD simulation results.

Assumption (iii) is a simplification for real gases. First, particles in real gases do not

interact only by repulsive forces but also by an attractive potential part. Secondly, the

repulsive potential part in real gases is not infinitely steep. To correct Enskog theory

for the simplifications inherent in assumption (iii) when a real fluid is modelled, the

hard sphere diameter is treated as an effective parameter; this will be discussed in more

detail in section 2.2.3.

2.2.3 Estimation of the hard sphere diameter

To compute the viscosity of a real fluid from the Enskog’s viscosity expression, the

hard sphere diameter σ needs to be estimated. To improve the ability of the Enskog

model to reproduce the viscosity of real fluids, the hard sphere diameter is assumed to

be an effective parameter that depends weakly on temperature and possibly weakly on

density, see (Silva & Liu, 2008). First, we discuss approaches in which σ depends on
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2. THEORETICAL FOUNDATIONS

temperature only. In (Hanley et al., 1972), the hard sphere diameter σ is obtained from

the modified Enskog theory (MET). The basic idea of MET is to account for attractive

forces by replacing the pressure P in the equation of state of a hard sphere fluid by

the thermal pressure Pt = T (∂P/∂T )V of the real gas (Chapman & Cowling, 1970).

After this substitution, a virial expansion is carried out which allows to relate the hard

sphere diameter σ to the second order virial coefficient of the real gas. As a result,

one obtains a weakly temperature dependent sigma with which the viscosity equation

(2.30) can be evaluated. Hanley and co-workers (Hanley et al., 1972) have shown that

the modified Enskog theory can reproduce experimental viscosity data of simple fluids

like argon and oxygen with deviations less than 15% up to the critical density.

In (Kirkwood & Boggs, 1942), it has been noted that that the form of the radial

distribution function for dense fluids is primarily determined by repulsive forces, while

attractive interactions play a secondary role. This observation has lead to the develop-

ment of several perturbation approaches, which usually combine the Enskog model as

an appealing and tractable first approximation for the major excluded volume effects

with an effective diameter, to account for the softness of the repulsive potential. One

such approach is the Boltzmann criterion (Andrews, 1976; Speedy et al., 1989). The

Boltzmann criterion approximates σ by the distance of closest approach of a colliding

pair of molecules with average kinetic energy, Ekin = 3/2kBT , subjected to a soft re-

pulsive interaction potential. Another perturbation approach is the one by Barker and

Henderson published first in (Barker & Henderson, 1967). Here, the LJ-potential,

φLJ(r) = 4ε

[(σLJ
r

)12
−
(σLJ

r

)6]
, (2.36)

is assumed to be the perturbation potential to the unperturbed hard sphere potential.

The Lennard–Jones potential is shown in figure 2.1. As can be seen, σLJ corresponds to

the distance r between the particles at which the potential vanishes and ε to the depth

of the potential well. The effective σ in Barker and Henderson’s approach is obtained

from integration over the repulsive potential part as

σ =

∫ σLJ

0
[1− exp(−φLJ(r)/kBT )] dr. (2.37)

A popular approach that yields a weakly temperature and density dependent effective

diameter is the Weeks, Chandler and Andersen (WCA) theory, see (Weeks et al., 1971;

Andersen et al., 1971). In WCA theory, the LJ potential is splitt up into a reference
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Figure 2.1: Plot of the Lennard–Jones potential.

part containing all repulsive forces, and a perturbing part containing all forces of at-

traction. In (Lado, 1984), Lado has proposed a modification of the WCA approach

which is known as LWCA theory. LWCA theory corrects the WCA for thermodynamic

inconsistencies and leads as well to a weakly temperature and density dependent effec-

tive diameter. (Silva & Liu, 2008) is recommended as overview about effective hard

sphere expressions in Enskog theory.

2.3 Molecular dynamics corrections of Enskog theory

The predictions based on Enskog theory deviate from the true behaviour of a hard

sphere system as the density increases since only binary collisions are considered and

velocity correlations are neglected. The importance of velocity correlations at high

densities can be illustrated by the following generic example which describes the back

scattering effect, see also (Dymond & Alder, 1966). In a dense fluid, a sphere is sur-

rounded closely by a shell of other spheres. The back scattering effect refers to the fact

that the velocity of a sphere in the shell is likely to be reversed in a collision. This first

back scattering collision is dominant since the correlation between the velocity of the

sphere and its velocity before the first collision decreases fast in subsequent collision
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events. As a result, one might expect that momentum in a hard sphere fluid is trans-

ported more slowly than stated by Enskog theory or, in other words, that the viscosity

is larger (this is indeed true as we will see below).

To extend Enskog theory to high densities, molecular dynamics (MD) simulations can

be used. In MD simulations, the time evolution of an ensemble of particles is simu-

lated from a given initial state based on the equations of motion. After computing the

positions and velocities of the particles as a function of time t, the viscosity can be

determined by the generalized Einstein relation:

η =
kBTm

2

V
lim
t→∞

1

2t

〈(
N∑
i=1

[vix(t)riy(t)− vix(0)riy(0)]

)2〉
, (2.38)

where the limit is taken at a sufficiently large time in practice. N is the particle number,

V the volume of the simulation box, vix the x-component of the velocity of particle

i, riy the y-component of the position of particle i and the remaining quantities are

defined as before. The brackets 〈·〉 denote the canonical ensemble average, which is

defined by

〈F 〉 =
∫
F (r,v)e−E(r,v)/kBTdr3Ndv3N∫

e−E(r,v)/kBTdr3Ndv3N
, (2.39)

where E(r,v) is the total energy of the system with particle positions r1, ..., rN and

velocities v1, ...,vN . The generalized Einstein relation has been used to obtain the

results which are presented in the following. Alternative formulae to the generalized

Einstein relation and more details about MD simulations can be found in (Millat et al.,

1996), (Rapaport, 2004) and (Smith et al., 1997).

The MD corrections of Enskog’s result for viscosity are often expressed in form of a

correction factor f ,

ηMD(ρ, T ) = η(ρ, T )f(V0/V ), (2.40)

with the close-packing volume V0 of spheres, V0/V =
[
NA/

√
2
]
ρσ3 =

[
6/(π

√
2)
]
y and

with η referring to the viscosity in Enskog theory, Eq. (2.30), as well as ηMD to the

MD corrected viscosity. The correction factor stated in (van der Gulik & Trappeniers,

1986) based on the calculations (Dymond, 1974) and (Michels & Trappeniers, 1980)
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2.3 Molecular dynamics corrections of Enskog theory

reads

f(V0/V ) =


1.02 if V0/V < 0.42,

1.02 + 15(V0/V − 0.35)3 if 0.42 ≤ V0/V ≤ 0.575,

1.02 + 15(V0/V − 0.35)3 + 350(V0/V − 0.575)3 if 0.575 < V0/V.

(2.41)

In (Michels & Trappeniers, 1980), the accuracy of the calculations leading to this factor

is estimated to be between 5% and 7% from the zero density limit up to the packing

fraction ys ≈ 0.494 at which the hard sphere system still represents a stable fluid, see,

for example, (Sigurgeirsson & Heyes, 2003). If the packing fraction increases beyond

this value, fluid states become metastable and for high enough packing fractions a

transition to the solid state occurs.

The factor in Eq. (2.41) has been obtained from simulations with 108 spheres. The

more recent computations by (Sigurgeirsson & Heyes, 2003) with systems consisting of

4000 spheres lead to the factor

f(V0/V ) =


1.02 if V0/V < 0.42,

1.02 + 18(V0/V − 0.35)3 if 0.42 ≤ V0/V ≤ 0.575,

1.02 + 18(V0/V − 0.35)3 + 575(V0/V − 0.575)3 if 0.575 < V0/V.

(2.42)

In figure 2.2, both factors are plotted against the packing fraction. The deviations

of the molecular dynamics simulations from Enskog theory remain within 5% up to

V0/V ≈ 0.468 (y ≈ 0.345). With increasing packing fractions, the deviations become

larger until the correction factor of (Sigurgeirsson & Heyes, 2003) reaches a value close

to 2 at y = ys. Enskog theory underestimates the viscosity of a true hard sphere system

which might be partially explained by the back scattering effect discussed above. The

two correction factors depart from each other with increasing packing fraction. At

y = ys, both factors deviate about 14%. These deviation are not discussed in the

original work by (Sigurgeirsson & Heyes, 2003) but might be caused mainly by finite-

size effects in a system consisting only of 108 spheres. Both correction factors are

defined such that a discontinuity occurs at V0/V = 0.42, y ≈ 0.311, see also Fig. 2.2.

However, this discontinuity is smaller than 0.0062 and plays a negligible role for the

results in this work.
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Figure 2.2: MD correction factors are shown against the packing fraction y. The black

line depicts the factor by (van der Gulik & Trappeniers, 1986), the red one the factor by

(Sigurgeirsson & Heyes, 2003). The blue line indicates the highest packing fraction ys up

to which a hard sphere fluid is in a stable fluid state.

2.4 Modification of Enskog theory for chain fluids

In (de Wijn et al., 2008), Enskog theory has been extended to model fluid molecules

as chains formed from equally sized hard spheres. Within this approach, the viscosity

of a fluid consisting of N chains, each made up of m segments, is approximated by

that of a fluid consisting of Nm hard spheres. In (de Wijn et al., 2012), this fluid

is also referred to as a segment fluid. In the segment fluid, the collision dynamics is

governed principally by collisions between the spherical segments and one can make

use of Enskog theory for hard spheres. In doing so, Enskog’s viscosity expression is

modified for the presence of the other segments in the chain and reads

η = η̃0

(
1

χ̃
+ α̃ρ̃+

1

β
χ̃α̃2ρ̃2

)
. (2.43)

The quantities with tilde refer to the segments instead of free hard spheres as in Enskog’s

original viscosity expression, Eq. (2.30). ρ̃ denotes the molar segment density and, as
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in Eq. (2.30), β = (1/4 + 3/π)−1 = 0.8299. The quantity α̃ is proportional to the

excluded volume Ṽexcl of a segment and has been derived in (de Wijn et al., 2008) from

geometric considerations as

α̃ =
2NA

5
Ṽexcl =

2NA

5
Vexcl

[
1 +

11

8
(m− 1) +

3

40π

(
11π − 18arctan

√
2− 2

√
2
)
(m− 1)2

]
(2.44)

with the excluded volume Vexcl = 4/3πσ3 of a free spherical segment with diameter

σ. In the thermodynamic limit, χ̃ converges to the radial distribution function of the

segments at contact and can be approximated according to (de Wijn et al., 2008) by

χ̃ = χ− χcorr =
(1− 0.5y)

(1− y)3
− m− 1

m

5
8 − 1

4y

(1− 1
2y)(1− y)

(2.45)

in terms of the packing fraction y, Eq. (2.35). In this expression, the radial distribution

at contact χ of free spherical segments is corrected by the term χcorr for the change

in collision rate due to the presence of neighbouring segments in the chain. The zero-

density viscosity η̃0 of the segments is related to the zero-density viscosity η0 of the

fluid via

η̃0 = η0χ̃(y = 0) = η0

(
1− 5

8

(
m− 1

m

))
. (2.46)

Eqs. (2.43) to (2.46) define the viscosity of the segment fluid within the Enskog frame-

work. The approach describes a real chain fluid best at moderate densities. At low

densities, after a collision, a chain segment will transfer momentum through the entire

chain before any of its segments collide again. Thus, the segments are strongly corre-

lated at low densities and the segment fluid approach, in which those correlations are

not considered, does not describe a chain fluid well. At large enough densities, on the

contrary, the collision rate is sufficiently high for the segments in the chain to collide

before they transfer momentum to their neighbours in the chain and a chain fluid can

be approximated well by the segment fluid approach. In the regime of very high den-

sities, the neglect of binary collisions and velocity correlations between the segments,

which are inherent in Enskog’s approach, see section 2.2.2, become important and lead

to larger deviations from the true behaviour of a chain fluid.

2.5 The VW method

The VW method is a predictive scheme for the viscosity of fluid mixtures. As input, the

viscosity of the pure mixture components are used without the use of any adjustable
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parameter. As we will see in section 3.4, the VW approach is closely related to the

Enskog-2σ model and hence is introduced here. Following (Royal et al., 2005), we

summarise the mixing rules of the latest version of the VW method based on Enskog’s

hard sphere theory. We demonstrate next how these mixing rules are used to compute

the viscosity of the fluid mixture. The VW method has been validated for a wide range

of fluid mixtures, see (Vesovic & Wakeham, 1989b,a; Vesovic et al., 1998; Assael et al.,

2001; Royal et al., 2003, 2005; de Wijn et al., 2012). A brief overview about these

results is given in the last section.

2.5.1 The VW mixing rules

The latest version of the VW method based on Enskog’s hard sphere theory is described

in (Royal et al., 2005). The approach expresses the viscosity η of an N -component

mixture in the form

η = −

∣∣∣∣∣∣∣∣∣
H11 · · · H1N Y1
...

...
...

HN1 · · · HNN YN
Y1 · · · YN 0

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣

H11 · · · H1N
...

...
HN1 · · · HNN

∣∣∣∣∣∣∣ + kmix, (2.47)

Yi = xi

1 + N∑
j=1

Mj

Mi +Mj
xjᾱijχ̄ijρ

 , (2.48)

Hii =
x2i χ̄ii

η0i
+
∑
j 6=i

xixjχ̄ij

2A∗
ijη

(0)
ij

MiMj

(Mi +Mj)2

[
20

3
+

4Mj

Mi
A∗

ij

]
, (2.49)

Hij = − xixjχ̄ij

2A∗
ijη

(0)
ij

MiMj

(Mi +Mj)2

[
20

3
− 4A∗

ij

]
, (2.50)

kmix =
3

π
ρ2

N∑
i=1

N∑
j=1

xixjχ̄ijᾱ
2
ijη

(0)
ij . (2.51)

Table 2.1 summarises the definition of all quantities appearing in the mixing rules

above. The interaction functions, χ̄ij and ᾱij , are computed from the following mixing

rules:

χ̄ij =
1

1−
∑N

k=1 xkwk

+
3w

1/3
i w

1/3
j

∑N
k=1 xkw

2/3
k

(w
1/3
i + w

1/3
j )

(
1−

∑N
k=1 xkwk

)2 , (2.52)
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wi =

[
N∑
l=1

xl
(f

1/3
i + f

1/3
l )

2

]3
, fi =

4χ̄i + 1− (24χ̄i + 1)1/2

4χ̄i
(2.53)

and

ᾱ
1/3
ij =

1

2
(ᾱ

1/3
ii + ᾱ

1/3
jj ) with ᾱ

1/3
ii =

N∑
l=1

xl

(
ᾱ
1/3
i + ᾱ

1/3
j

2

)
. (2.54)

The mixing rules for χ̄ij and ᾱij are based on the Lebowitz’s solution of the Percus-

Yevick integral equation for the radial distribution function of a multicomponent mix-

ture (Reed & Gubbins, 1973) and on the assumption (Royal et al., 2003) that the

presence of molecules of type j in a mixture influences the interaction between like

species i. The reasoning for preferring this set of mixing rules is explained in detail

in (Royal et al., 2003), where the set is named RVW/LPY scheme. The zero-density

binary interaction parameters η0ij and A∗
ij are available for only a few mixtures, primar-

ily, due to lack of experimental data. As standard, see (Vesovic & Wakeham, 1989b,a;

Vesovic et al., 1998; Assael et al., 2001; Royal et al., 2003, 2005), the two interaction

parameters are calculated from empirical mixing rules which have been obtained by

analysing the transport property data of several gases (Maitland et al., 1981).
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Table 2.1: Definition of the quantities appearing in the mixing rules of the VW method,

Eqs. (2.47) to (2.51). In order to distinguish between the molecular interactions in the

pure fluid and in the mixture, a single subscript i is used to indicate an i-i pair interaction

in the pure fluid and a double subscript ii to indicate an i-i pair interaction in the presence

of all other species in the mixture. The bar above a symbol indicates that it represents a

pseudo or effective quantity.

Quantity Definition

ρ Molar density of the mixture

xi Molar fraction of species i

Mi Molar weight of species i

η0i Viscosity of species i in the zero density limit

χ̄i Pseudo-radial distribution function of species i

η0ij Interaction viscosity of i-j pair in the zero density limit

A∗
ij Weakly temperature-dependent for an i-j pair interaction

ᾱij Temperature dependent function taking into account

the mean free path shortening for an i-j collision in the dense fluid

χ̄ij Pseudo-radial distribution function at contact for the species i and j

2.5.2 Evaluation of the VW mixing rules

To evaluate the VW mixing rules in section 2.5.1, the pure species parameters χ̄i, ᾱi are

computed from the viscosity ηi of species i. According to (Chapman & Cowling, 1970;

Vesovic & Wakeham, 1989b), the pseudo-radial distribution for species i is related to

ηi via

χ̄i(T, ρ) =
β

2

(ηi − ρᾱiη
(0)
i )

ρ2ᾱ2
i η

(0)
i

± β

((ηi − ρᾱiη
(0)
i )

2ρ2ᾱ2
i η

(0)
i

)2

− 1

βρ2ᾱ2
i

1/2

(2.55)

with β = (1/4 + 3/π)−1 = 0.8299. The pure species viscosity ηi on the right hand

side of Eq. (2.55) is evaluated at the same temperature T and density ρ as χ̄i and the

temperature-dependent quantities ᾱi, η
(0)
i at the same temperature. Eq. (2.55) yields

two solutions which we denote by χ̄+
i , χ̄

−
i corresponding to the positive and negative

sign before the bracketed term. As the collision frequency of the fluid molecules is
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expected to increase monotonically with increasing density, one has to insure that χ̄i

grows monotonically with ρ. This is achieved by switching from the solution χ̄−
i to χ̄+

i

at the density ρ∗i at which both solutions are equal (Sandler & Fiszdon, 1979; Vesovic

& Wakeham, 1989b). The density ρ∗i is called switch-over density, depends only on the

temperature T and is obtained, as shown in (Vesovic & Wakeham, 1989b), at each T

from the equation (
∂ηi
∂ρ

)
=

ηi
ρ
. (2.56)

If ρ∗i is computed from Eq. (2.56), the quantity ᾱi at temperature T follows from

ᾱi(T ) =
1

1 + 2
β

ηi(T, ρ
∗
i )

η0i (T )ρ
∗
i

. (2.57)

Substituting ᾱi into Eq. (2.55) allows to calculate the pseudo-radial distribution func-

tion χ̄i for species i and hence to evaluate the VW mixing rules in section 2.5.1.

It should be noted that, if T is smaller than the critical temperature of species i , it

is possible that the switch-over density ρ∗i lies in the two-phase region of species i. In

this case, the viscosity η∗i (T, ρ
∗
i ) is not uniquely defined. This problem is usually solved

by obtaining η∗i (T, ρ
∗
i ) as an appropriately interpolated value of the viscosities at the

saturated vapour and saturated liquid density at temperature T .

2.5.3 Application of the VW method

The VW method has been applied to a wide range of fluid mixtures. Mixtures in-

vestigated include gas mixtures (Vesovic & Wakeham, 1989b,a; Vesovic et al., 1998),

hydrocarbon mixtures (Assael et al., 2001; Royal et al., 2003) and mixtures of refriger-

ants (Assael et al., 2001; Royal et al., 2005). The accuracy of the VW method is found

to be satisfactory to very good in general. The accuracy decreases when accurate pure

species viscosity data is lacking which is needed as input. The VW approach works

best for mixtures consisting of pure species with similar features. For asymmetric mix-

tures consisting of components with largely different molecular masses, the accuracy of

the VW method is found to diminish (Assael et al., 2001). In (de Wijn et al., 2012),

the VW method has recently been extended to mixtures of chain like fluids based on

the theory outlined in section 2.4. The approach shows good predictive power for the

viscosity of n-alkane mixtures and even predicts the viscosity of a highly asymmetric

mixture, consisting of methane and n-decane, well within 14%.
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3

Theory of the Enskog-2σ model

for simple fluids

This chapter introduces the theory of the Enskog-2σ model for simple fluids. First, we

explain the idea behind the Enskog-2σ model. Then, the methodology of the approach

up to moderate densities is outlined and the model equations are summarised. The

extension of the Enskog-2σ model to high densities is discussed next. The next section

compares the Enskog-2σ model with the VWmethod, introduced in section 2.5. Finally,

we summarise the experimental reference correlations with which we will validate the

Enskog-2σ model for simple fluids.

3.1 Model idea

As discussed in section 2.2.1, Enskog modified Boltzmann’s approach by assuming that

(a) the spheres possess an excluded volume and hence are at a different position at

collision and (b) that the probability of a collision is increased in comparison to the

dilute gas. Assumption (a) and (b) appear via the terms α and χ in Enskog’s viscosity

expression, Eq. (2.30). If a hard sphere is modelled, it is sensible to assume that α and

χ are computed using the hard sphere diameter σ. For a real fluid, on the contrary,

there is no reason to believe that a single diameter can correctly account for both the

geometry of the molecules and the dynamics of the molecular interactions. Thus, we

modify the Enskog’s approach by rewriting Eqs. (2.31) and (2.35) in terms of two
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3. THEORY OF THE ENSKOG-2σ MODEL FOR SIMPLE FLUIDS

effective diameters,

α =
8πNA

15
σ3
α, (3.1)

y =
πNA

6
ρσ3

χ, (3.2)

such that the effective diameter σα is used to calculate the parameter α, while the

effective diameter σχ is used to calculate the packing fraction y, and consequently the

radial distribution function at contact, χ. In principle there are a number of ways

one can introduce the two effective diameters. For instance, one can use one effective

diameter to account for the low-density behaviour, described by the first two terms of

Enskog’s viscosity expression, Eq. (2.30), and another effective diameter to account

for the high-density behaviour, described by the last term of Eq. (2.30). In this work,

we ascribe the different effective parameters to two different physical effects corrected

in Enskogs treatment; namely, the excluded volume of a molecule and the increased

probability of collision in comparison to the dilute gas. Thus, with this choice we have

separated the geometric effects from the collisional ones.

3.2 Methodology up to moderate densities

In section 2.3, we have illustrated that the Enskog model needs to be corrected to re-

produce the behaviour of viscosity at high packing fractions. Hence, in order to avoid

these high packing fractions, we limit our investigation first to supercritical tempera-

tures and moderate densities. To obtain the effective σ for the Enskog-1σ model and

the effective σα and σχ for the Enskog-2σ model, we minimise the maximum deviation

between model and the experimental viscosity reference correlations. The fitting is

limited to densities up to

ρMD =
0.31

π
6NAσ3

α

(3.3)

or the maximum pressure at which a given correlation is valid, whichever range is

smaller. The factor 0.31 in Eq. (3.3) refers to the packing fraction y up to which

Enskog’s theory describes a hard sphere fluid without MD corrections, see section 2.3.

The maximum pressures are stated in Table 3.1 and the corresponding densities are

estimated using the NIST webbook (McLinden et al., 2010). The non-linear optimi-

sation problem associated with obtaining the optimal effective σ’s is solved using the
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3.3 Extension to high densities

LMDIF routine in the MINPACK library (Moré et al., 1984). As we are interested in

the viscosity behaviour as a function of density, we use the zero-density viscosity values

obtained directly from correlations, rather than making use of the zero-density viscos-

ity of a hard sphere fluid, Eq. (2.28). The expression for the maximum density, Eq.

(3.3), and the following equations define the Enskog-2σ model proposed at supercritical

conditions up to moderate densities:

η = η0

(
1

χ
+ αρ+

1

β
χα2ρ2

)
, (3.4)

α =
8πNA

15
σ3
α, (3.5)

χ =
(1− 0.5y)

(1− y)3
, (3.6)

y =
πNA

6
ρσ3

χ. (3.7)

3.3 Extension to high densities

In order to extend the Enskog-2σ model to high densities, we correct Enskog theory for

its deficiencies at high packing fractions. As explained in section 2.3, this correction

is achieved by multiplying Enskog’s viscosity expression, Eq. (2.30), by the molecular-

dynamics factor fMD by (Sigurgeirsson & Heyes, 2003), see Eq. (2.42). The correction

factor is a function of the packing fraction only and thus depends on the effective

diameter σ chosen through y. We denote the corresponding σ as σMD. The diameter

σMD corresponds to the diameter of the spheres when the correction factor is used in

the Enskog-1σ model. In the Enskog-2σ model, there is no such clear correspondence

between σMD and the effective diameters σα and σχ. The diameter σMD is neither

directly related to the excluded volume nor to the collision rate. In fact, the relations

chosen between σMD and the effective diameters σα and σχ is arbitrary and purely

empirical. In this work, we propose and analyse the following generic choices for σMD:

• σMD = σα,

• σMD = σχ,

• σMD = (σα + σχ)/2,
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• σMD =
√
σασχ.

For a given choice of σMD, the maximum density ρmax is consistently defined by

ρmax = min (ρys , ρexp) where ρys =
0.494

NAπ/6σ3
MD

. (3.8)

The factor 0.494 in Eq. (3.8) is equal to the packing fraction ys up to which a hard

sphere system still represents a stable fluid (see section 2.3) and hence represents the

packing fraction up to which the MD correction factor has a physical foundation. At

supercritical conditions, the effective temperature-dependent diameters σα and σχ are

computed by minimising the maximum deviation between the model with MD cor-

rections and experimental reference correlation from the dilute gas limit to ρmax at

each given temperature. The same is done in the liquid phase but the optimisation

is carried out from the saturated liquid density to ρmax. Altogether, the Enskog-2σ

model proposed for high densities in the supercritical and liquid phase is defined by the

expression for the maximum density, Eq. (3.8), the choice of σMD, Eqs. (3.5) to (3.7)

and Enskog’s viscosity expression corrected by the MD correction factor fMD,

η = η0

(
1

χ
+ αρ+

1

β
χα2ρ2

)
fMD(ρσ

3
MD), (3.9)

fMD(V0/V ) =


1.0 if V0/V < 0.42,

1.0 + 18
1.02(V0/V − 0.35)3 if 0.42 ≤ V0/V ≤ 0.575,

1.0 + 18
1.02(V0/V − 0.35)3 + 575

1.02(V0/V − 0.575)3 if 0.575 < V0/V,

(3.10)

V0/V =
[
NA/

√
2
]
ρσ3

MD =
[
6/(π

√
2)
]
yMD. (3.11)

Note that the MD correction factor, Eq. (2.42), has been divided by 1.02 to model

the zero-density viscosity η0 correctly. Furthermore, it is interesting to notice that

including the MD correction factor in the optimisation of σα and σχ weakens the link

of the diameters to the excluded volume and the collision rate. Therefore, we will also

look at alternatives that do not include the MD correction factor in the optimisation of

σα and σχ and thus keep a full link between the effective diameters and the excluded

volume as well as the collision rate. This is done by optimising the effective diameters

σα and σχ up to

ρ∗ =
0.31

NAπ/6σ3
mean

with σmean =
σα + σχ

2
(3.12)
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to minimise the maximum deviation between model and the experimental reference

correlations at each temperature. The factor 0.31 corresponds to the packing fraction

up to which Enskog’s theory is a correct description of a hard sphere fluid (see section

2.3). Here, up to ρ∗, no MD correction factor is used such that the link between the

effective diameters and the excluded volume as well as the collision rate is kept fully.

In section 5.2.5, we will investigate two alternatives for the calculation of σMD:

(i) σMD is obtained from

σMD = σmean =: σMD,mean, (3.13)

(ii) σMD is optimised at each temperature by minimising the maximum deviation

between model and experimental reference correlation

σMD =: σMD,opti. (3.14)

In both cases, we define the maximum density by

ρmax = min
(
ρys,mean , ρexp

)
where ρys,mean =

0.494

NAπ/6σ3
mean

. (3.15)

3.4 Comparison with the VW method

It is interesting to compare the Enskog-2σ methodology to how a pure fluid is treated

within the VW method. As outlined in section 2.5.2, the pure species parameters χ̄, ᾱ

in the VW approach are computed from the viscosity η of the pure component. Using

Eq. (2.34) for χ̄ and Eq. (2.31) for ᾱ, the parameters χ̄, ᾱ can be related to effective

diameters σ̄χ, σ̄α. Just as σα in the Enskog-2σ model, the effective diameter σ̄α depends

on the temperature only whereas σ̄χ depends in general on the temperature and weakly

on density. The density dependence in σ̄χ guarantees that the experimental reference

correlation of the pure species is reproduced exactly. This is done however at the

expense that a density and temperature depending diameter appears in Carnahan and

Starling’s expression, Eq. (2.34), which weakens the link to Enskog’s original theory.

In the Enskog-2σ model, σχ depends on the temperature only such that the density

dependence in χ is fully captured by Carnahan and Starling’s expression and the link

to Enskog theory is not impaired.
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3.5 Reference correlations for simple fluids

In order to evaluate the Enskog-2σ model, we investigate the viscosity of seven simple

fluids. As both Enskog theory and Carnahan-Starling expression are strictly valid for

hard spheres, we have, in the first instance, limited our investigation to fluids made

of relatively spherical molecules. The choice of fluids was also guided by the existence

of accurate viscosity correlations that span a large temperature and pressure range.

Table 3.1 lists the fluids together with the respective temperature and pressure ranges.

It can be inferred from table 3.1 that the viscosity correlation for sulphur hexafluoride

(SF6) covers a much smaller range in the reduced temperature and pressure than for

the other six fluids. Nevertheless, the SF6 molecule is by far the largest of the seven

considered and it will thus provide a test on the applicability of the proposed model

as the molecular size increases. Over the pressure and temperature ranges depicted in

table 3.1, the estimated uncertainties of the reference correlation is ±2% for sulphur

hexafluoride, ±3% for ethane and ±5% for argon, methane, nitrogen, carbon dioxide

and oxygen. In the critical region, the estimated uncertainties of the reference corre-

lation for argon, nitrogen and oxygen are larger. As the uncertainties inherent in the

reference correlations are only estimated, we will validate the accuracy of the Enskog-2σ

model also directly against primary experimental viscosity measurements.

Table 3.1: Summary of experimental reference correlations used for simple fluids.

Fluid P-range (MPa) T-range (K) Viscosity correlation

Ar 0-400 90-700 (Lemmon & Jacobson, 2004)

CH4 0-100 115-600 (Vogel et al., 2000)

C2H6 0-60 250-500 (Hendl et al., 1994)

N2 0-100 85-600 (Lemmon & Jacobson, 2004)

CO2 0-300 270-700 (Vesovic et al., 1990; Fenghour et al., 1998)

O2 0-80 85-700 (Lemmon & Jacobson, 2004)

SF6 0-50 325-500 (Quiñones-Cisneros et al., 2012)
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4

Theory of the Enskog-2σ model

for alkanes

The theory of the Enskog-2σ model for alkanes is introduced in this chapter. First,

the methodology up to moderate densities at supercritical conditions is described and

the corresponding model equations are formulated. Then, we discuss extensions of the

model to high densities and to the liquid phase. Finally, we summarise the experimental

reference correlations with which we will validate the Enskog-2σ model for alkanes.

4.1 Methodology up to moderate densities

The theoretical foundation of the Enskog-2σ model for alkanes is the modification of

Enskog theory for chain fluids described in section 2.4. The chain fluid is modelled as

a segment fluid with an Enskog-like expression for viscosity, Eq. (2.43). Analogously

to section 3.1, we introduce two effective temperature-dependent diameters σα and σχ.

The diameter σα is related to the geometry of the segments and is used to calculate

α̃ via Eq. (2.44), while the diameter σχ is related to the collision dynamics between

the segments and is used to compute χ̃ via Eq. (2.45). In the chain fluid approach,

the fluid molecules are characterised as well by the chain length m. Consistently to

using two effective diameters, we introduce two effective temperature-dependent chain

lengths, mα and mχ. The chain length mα is related to the geometry of the molecules

and is used to calculate α̃ via Eq. (2.44) as well as the segment density ρ̃ = mαρ where

ρ is the molar density of the chain fluid. The chain length mχ is related to the collision
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4. THEORY OF THE ENSKOG-2σ MODEL FOR ALKANES

dynamics between the segments and is used to calculate χ̃ via Eq. (2.45).

Altogether, the Enskog-2σ model for alkanes contains four effective parameters, σα, σχ,

mα, mχ. To reduce the number of free parameters, we make use the following chain

length constraint

σα(mα − 1) = σχ(mχ − 1). (4.1)

This constraint has been introduced in (de Wijn et al., 2012) and ensures that the

distance between the end segments using σα as well as mα, and σχ as well as mχ are

equal. In order to reduce the number of free parameters further on, we assume that

the diameter of a chain segment is approximately equal to the diameter of a methane

molecule at the same temperature. Thus, we set σα equal to the σα of methane at the

same temperature where σα is obtained from the methodology outlined in section 3.2

and will be calculated in section 5.1.

There are no molecular dynamics simulations available that indicate in which packing

fraction range the viscosity expression of the segment fluid, Eq. (2.43), is a good

approximation for the viscosity of a chain fluid. From the theoretical considerations in

section 2.4, we know that the segment fluid approach describes a chain fluid best at

moderate densities. The issue that the segment fluid is a rather crude approximation for

a chain fluid at low densities can be circumvented when we are modelling the viscosity

of alkanes. This is done by using the experimental dilute gas viscosity of the respective

alkane in Eq. (2.46). By doing so, the Enskog-2σ model reproduces the viscosity of the

alkane accurately in the zero-density limit and presents a promising model approach

for the viscosity of alkanes from the dilute gas limit up to moderate densities. To

avoid further complications, we restrict the Enskog-2σ model to moderate densities by

choosing the following maximum density

ρmax = min(ρexp, ρ
∗) (4.2)

where ρexp is the maximum density of the experimental reference correlation and ρ∗ is

given by

ρ∗ = ρmax,C1

ρc,Cn

ρc,C1

(4.3)

where the maximum density of methane, ρmax,C1 , is evaluated at the same reduced

temperature T/Tc as ρmax. The densities ρc,C1 and ρc,Cn are the critical densities of

methane and the respective alkane. The maximum density of methane, ρmax,C1 , is
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4.2 Extension to high densities

computed from the methodology in section 3.2 and is depicted in Fig. 6.1 in section

6.1.1.

Altogether, the Enskog-2σ model for alkanes up to moderate densities is represented

by the chain length constraint, Eq. (4.1), the expression for the maximum density, Eq.

(4.2), and the equations

η = η̃0

(
1

χ̃
+ α̃ρ̃+

1

β
χ̃α̃2ρ̃2

)
, (4.4)

α̃ =
2NA

5
Ṽexcl =

2NA

5
Vexcl

[
1 +

11

8
(mα − 1) +

3

40π

(
11π − 18arctan

√
2− 2

√
2
)
(mα − 1)2

]
,

(4.5)

Vexcl = 4/3πσ3
α, ρ̃ = mαρ, (4.6)

χ̃ = χ− χcorr =
(1− 0.5y)

(1− y)3
− mχ − 1

mχ

5
8 − 1

4y

(1− 1
2y)(1− y)

, (4.7)

η̃0 = η0χ̃(y = 0) = η0

(
1− 5

8

(
mχ − 1

mχ

))
, (4.8)

y =
πNA

6
ρσ3

χ, (4.9)

with the molar density of the alkane, ρ, the experimental dilute gas viscosity of the

alkane, η0, and the effective diameter σα from methane as described above. Using these

model equations, we compute at each temperature optimised effective chain lengthsmα,

mχ, by minimising the maximum deviation between model and experimental reference

correlation for the respective alkane from the dilute gas limit up to ρmax. The non-

linear optimisation problem associated with obtaining the optimal m’s is solved using

the LMDIF routine in the MINPACK library (Moré et al., 1984).

4.2 Extension to high densities

As discussed in section 2.4, the segment viscosity expression, Eq. (2.43), is expected to

deviate with increasing density from the viscosity of a chain fluid owing to the neglect

of binary collisions and velocity correlations between the segments. For simple fluids,

we corrected Enskog’s viscosity expression for hard spheres by an MD correction factor

to improve the description at high densities, see section 3.3. For the segment fluid,

there is no such correction factor available. As first approximation, however, we can

correct the segment fluid by the hard sphere MD correction factor, Eq. (2.42), with an
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appropriate definition of the packing fraction in the MD correction factor, yMD. The

packing fraction yMD is given as

yMD =
πNA

6
ρ̃MDσ

3
MD =

πNA

6
ρmMDσ

3
MD (4.10)

with an effective chain length mMD and an effective diameter σMD. Analogously to the

approach for simple fluids in section 3.3, we relate both effective parameters mMD and

σMD to the model parameters σα, σχ, mα, mχ. The following purely empirical relations

are investigated

σMD =
σα + σχ

2
, mMD =

mα +mχ

2
and (4.11)

σMD = σχ, mMD = mχ. (4.12)

Choosing one of these relations, we can write the corrected segment fluid viscosity

expression as

η = η̃0

(
1

χ̃
+ α̃ρ̃+

1

β
χ̃α̃2ρ̃2

)
fMD(ρmMDσ

3
MD), (4.13)

fMD(V0/V ) =


1.0 if V0/V < 0.42,

1.0 + 18
1.02(V0/V − 0.35)3 if 0.42 ≤ V0/V ≤ 0.575,

1.0 + 18
1.02(V0/V − 0.35)3 + 575

1.02(V0/V − 0.575)3 if 0.575 < V0/V,

(4.14)

V0/V =
[
NA/

√
2
]
ρmMDσ

3
MD =

[
6/(π

√
2)
]
yMD. (4.15)

Note that the MD correction factor, Eq. (2.42), has been divided by 1.02 to model the

zero-density viscosity η̃0 correctly. The corrected segment fluid viscosity expression,

Eq. (4.13), the chain length constraint, Eq. (4.1), and Eqs. (4.5) to (4.9) are the

defining equations of the Enskog-2σ model for alkanes with hard sphere MD correction

factor. The effective diameter σα is set to σα of methane at the same temperature and

will be depicted in Fig. 6.12. The effective chain lengths mα, mχ are optimised by

minimising the maximum deviation between model and experimental reference corre-

lation for the respective alkane from the dilute gas limit up to the maximum density of

the experimental reference correlation.

4.3 Extension to the liquid phase

The Enskog-2σ model for alkanes in the liquid range is based on the same equations

as the model for alkanes at supercritical conditions up to high densities described in
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section 4.2. The only major difference is that σα is set equal to σα of methane at the

same reduced temperature which will be depicted in Fig. 6.17. We do not derive σα

from the same temperature as it was done in section 4.2. This would mean that, at

most temperatures under investigation, the diameter σα in the liquid phase is computed

from the σα of methane at supercritical conditions. We will avoid this since we will

see in section 5.4.2 that the behaviour of σα of methane changes qualitatively at the

transition from subcritical to supercritical conditions.

4.4 Reference correlations for alkanes

The Enskog-2σ model is applied to alkanes from ethane up to octane. Table 4.1 lists the

correlations used. The estimated uncertainties of the reference correlations of ethane,

propane, butane and octane are ±5%, ±4%, ±6%, ±5%. For the correlations of pen-

tane, hexane and heptane, there are no estimated uncertainties available. Note also

that the correlations of pentane and heptane are only used at liquid conditions since

they are valid only for densities larger than the critical density.

Table 4.1: Summary of experimental reference correlations used for alkanes. Pvap denotes

the vapour pressure.

Fluid P-range (MPa) T-range (K) Viscosity correlation

C2 0-60 250-500 (Hendl et al., 1994)

C3 0-100 100-475 (Vogel et al., 1998)

C4 0-70 150-500 (Vogel et al., 1999)

C5 Pvap-100 195-465 (Assael et al., 1992)

C6 0-100 245-600 (McLinden et al., 2010)

C7 Pvap-100 245-540 (Assael et al., 1992)

C8 0-100 295-600 (Huber et al., 2004)
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5

Results for simple fluids

In this chapter, the Enskog-2σ model is applied to simple fluids. First, we focus on

the results at supercritical conditions up to moderate densities. Then, we extend the

density range to high densities and pressures by making use of molecular dynamics

corrections. The application of the model to the liquid phase is discussed next. After

that, we investigate a variant of the Enskog-2σ model over the full temperature range

which extends from low temperatures in the liquid range up to high temperatures at

supercritical conditions.

5.1 Supercritical temperature range

This section represents an analysis of the Enskog-2σ model at supercritical conditions

up to moderate densities. The results are based on the work by (Umla et al., 2012).

First, the correlative power of the Enskog-2σ model and Enskog-1σ model are com-

pared with each other. Then, the temperature dependence of the effective diameters

is described and the model sensitivity to those effective diameters is analysed. The

magnitude of the model terms is computed exemplarily for some cases. A comparison

between the Enskog-2σ model and the VW method follows. After that, the application

of the Enskog-2σ model to other transport properties, in particular, to thermal con-

ductivity is discussed. Different definitions of the maximum density of the Enskog-2σ

model are investigated next. Finally, we test if the effective diameter exhibit a univer-

sal behaviour as a function of reduced temperature which could allow to predict the

viscosity of one fluid from the knowledge of the viscosity of a reference fluid.
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5.1.1 Correlative power

We first discuss the ability of the Enskog-1σ model and the Enskog-2σ model to cor-

relate the viscosity of the five fluids given in Table 5.1. For each model, the optimal

σ’s for a given temperature have been computed by the procedure described in section

3.2.

Table 5.1: Summary of the experimental reference correlations used for simple fluids at

supercritical temperatures.

Fluid P-range (MPa) T-range (K) Viscosity correlation

Ar 0-400 165-700 (Lemmon & Jacobson, 2004)

CH4 0-100 200-500 (Vogel et al., 2000)

N2 0-100 165-600 (Lemmon & Jacobson, 2004)

CO2 0-300 330-700 (Vesovic et al., 1990; Fenghour et al., 1998)

SF6 0-50 325-500 (Quiñones-Cisneros et al., 2012)

Fig. 5.1 (a) compares the fitting of the two methods in their ability to reproduce the

viscosity of methane at a temperature of 350K. The Enskog-1σ model underestimates

the viscosity of methane at medium densities up to 10% and overestimates the viscosity

at high densities up to 15%. The Enskog-2σ model, however, reproduces the viscosity

within 1% over the whole density interval. The behaviour illustrated in Fig. 5.1 (a) is

typical for other temperatures and fluids studied. Further examples are shown in Fig.

5.1 (b) for carbon dioxide at T = 600K, Fig. 5.1 (c) for argon at T = 300K and Fig.

5.1 (d) for nitrogen at T = 250. For argon at T = 300K for instance, the correlated

viscosity deviates less than 2µPa s from the experimental one. Fig. 5.2 (a) summarizes

the deviations observed for methane between the experimental reference correlations

and the two models as a function of temperature. Although the fitting capability of

the Enskog-1σ model improves with increasing temperature, the maximum deviation

and absolute average deviation (AAD) observed are always higher than 5.5% and 2.5%,

respectively. The Enskog-2σ model, on the other hand, is capable of reproducing the

viscosity of methane with deviations of less than 2%. As a further illustration of the

fitting capability of the Enskog-2σ model, Fig. 5.2 (b) shows the results for CO2.
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5.1 Supercritical temperature range
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Figure 5.1: Viscosity as a function of density along one isotherm for (a) methane at

T = 350K, (b) carbon dioxide at T = 600K, (c) argon at T = 300K, (d) nitrogen

T = 250K. The black line is the Enskog-2σ model, the blue line is the Enskog-1σ model

and the red dashed line is the reference correlation by (a) (Vogel et al., 2000), (b) (Vesovic

et al., 1990; Fenghour et al., 1998), (c) and (d) (Lemmon & Jacobson, 2004).

Although the deviations are larger than those observed for methane, it is clear that the

Enskog-2σ model is superior to the Enskog-1σ model in correlating the viscosity of a

dense fluid. Fig. 5.3 shows the results for argon and nitrogen. At low temperatures,

the Enskog-1σ model reaches its largest maximum deviations of 12.6% for argon and

8.6% for nitrogen while the Enskog-2σ model deviates there less than 0.96% for argon

and 2.0% for nitrogen. For other temperatures, the difference between the models is

less pronounced, however, the Enskog-2σ model outperforms the Enskog-1σ model in

correlative power for all temperatures.

All results so far have been obtained by optimizing the effective diameters to min-

imise the maximum deviation between model and experimental reference correlation

for a given temperature T . An alternative procedure to obtain the effective diame-

ters consists in minimising the absolute average deviation (AAD) between model and
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experimental reference correlation at each temperature, i.e., minimising∑
ρi

|ηmodel(T, ρi)− ηcorr(T, ρi)|
ηcorr(T, ρi)

. (5.1)

The densities ρi are chosen to lie on an equidistant mesh from 0 to the maximum den-

sity at T with a small mesh width of 0.01 mol/l. According to further computations,

we have found that both optimisation procedures result in almost identical effective

diameters such that both optimisation procedures can be considered as equivalent.
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Figure 5.2: Percentage viscosity deviations, 100(ηcorr − ηmodel)/ηcorr, obtained with the

Enskog-1σ and Enskog-2σ model from the reference correlation for methane (Vogel et al.,

2000) and carbon dioxide (Vesovic et al., 1990; Fenghour et al., 1998); the solid lines

illustrate maximum deviations, the dashed lines AADs, the black lines the Enskog-1σ

model and the red lines depict the Enskog-2σ model. (a) methane, (b) carbon dioxide.
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Figure 5.3: Percentage viscosity deviations, 100(ηcorr − ηmodel)/ηcorr, obtained with the

Enskog-1σ and Enskog-2σ model from the reference correlation for argon and nitrogen by

(Lemmon & Jacobson, 2004); the solid lines illustrate maximum deviations, the dashed

lines AADs, the black lines the Enskog-1σ model and the red lines depict the Enskog-2σ

model. (a) argon, (b) nitrogen.

5.1.2 Comparison with primary experimental data

It is interesting to compare the Enskog-2σ model to the primary experimental data sets

on which the experimental reference correlations in table 5.1 are based. The deviations

between the Enskog-2σ model and the primary experimental data sets for methane

are shown in Fig. 5.4. All experimental data are reproduced with an accuracy better

than 3.6%. In Fig. 5.5, we carry out the comparison for argon. The Enskog-2σ model

reproduces the experimental data of argon well within 3.8%.

45



5. RESULTS FOR SIMPLE FLUIDS

200 300 400 500 600
T (K)

-3

-2

-1

0

1

2

3

4

10
0(

η m
od

el
-η

ex
p)/η

ex
p (%

) 

Meshcheryakov and Golubev (1954)
Iwasaki and Takahashi (1959)
Kestin and Leidenfrost (1959)
Barua et al. (1964)
Giddings et al. (1966)
Kestin and Yata (1968)
Hongo et al. (1988) 
Schley et al. (2004) 

Figure 5.4: Percentage viscosity deviations, 100(ηmodel−ηexp)/ηexp, between the Enskog-

2σ model and the primary experimental data sets for methane listed in table 5.2.
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Figure 5.5: Percentage viscosity deviations, 100(ηmodel−ηexp)/ηexp, between the Enskog-

2σ model and the primary experimental data sets for argon listed in table 5.3.
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Table 5.2: Primary viscosity data sets of methane based on (Vogel et al., 2000).

Data set P-range (MPa) T-range (K)

(Meshcheryakov & Golubev, 1954) 1.0-81.1 258-523

(Iwasaki & Takahashi, 1959) 1.7-51.1 298-348

(Kestin & Leidenfrost, 1959) 0.8-7.9 294-296

(Barua et al., 1964) 1.0-17.8 223-423

(Giddings et al., 1966) 0.7-55.2 283-411

(Huang et al., 1966) 4.1-34.5 103-153

(Kestin & Yata, 1968) 0.5-2.6 293-303

(Haynes, 1973b) vapour pressure 95-185

(Slyusar et al., 1974) vapour pressure 91-185

(Diller, 1980) 0.6-32.2 100-180

(Hongo et al., 1988) 0.3-5.0 298-373

(Schley et al., 2004) 0.3-29.2 260-360

Table 5.3: Primary viscosity data sets of argon based on (Lemmon & Jacobson, 2004).

Data set P-range (MPa) T-range (K) ρ-range (mol/l)

(Michels et al., 1954) 0.92-202 273-348 0.41-28.9

(Makita, 1957) 0.1-78.5 298-423 0.02-22

(Kestin & Nagashima, 1964) 0.1-5.18 293-303 0.04-2.18

(Van Itterbeek et al., 1966) 0.1-9.79 84.3-89.9 34.5-35.3

(DiPippo et al., 1967) 0.1-5.18 293-303 0.04-0.96

(Gracki et al., 1969) 0.1-2.34 173-298 0.25-21

(Haynes, 1973a) 0.07-34.5 85-298 0.06-35.3

(Kurin & Golubev, 1974) 9.81-380 273-423 2.76-34.9

(van der Gulik & Trappeniers, 1986) 16.1-471 174 20.7-42

(Wilhelm & Vogel, 2000) 0.09-20.1 298-423 0.02-8.49

(Evers et al., 2002) 0.09-28.1 233-523 0.02-6.07
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5.1.3 Model sensitivity to the effective diameters

The sensitivity of the Enskog-2σ model to the values of the effective diameters σα and

σχ is illustrated in Fig. 5.6. As can be observed, the Enskog-2σ model is much more

sensitive to the choice of σα than to the value of σχ. In fact, if the optimum σα is

chosen, one can vary σχ by 7% on average from its optimum value and still correlate

the viscosity within 4%. However, if the optimum σχ is chosen, σα can be only varied

by 0.6% on average in order to reproduce the viscosity within 4%. This is interesting

as it indicates that, for the Enskog-2σ model to predict the viscosity accurately, it is

much more important to get the correct geometric effects (excluded volume) than to

get the correct collision frequency.

Figure 5.6: Maximum percentage viscosity deviations, at T = 350K, of the Enskog-2σ

model from the experimental reference correlation for methane (Vogel et al., 2000) and

carbon dioxide (Vesovic et al., 1990; Fenghour et al., 1998) for different values of the two

effective diameters σα and σχ. The colour represents the value of the maximum deviation.

Maximum deviations larger than 15% are depicted uniformly in dark red. (a) methane,

(b) carbon dioxide.

5.1.4 Behaviour of the effective diameters

Next, we examine the behaviour of σα, σχ as a function of temperature for the five

fluids studied. In order to allow for an easier comparison, we show in Fig. 5.7 the

behaviour of the effective diameters as a function of the reduced temperature. For the

five fluids studied, σα exhibits a monotonic decrease with increasing temperature. This

decrease with temperature is expected since, at higher temperatures, the fluid particles
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have larger thermal energies and hence penetrate the repulsive potential deeper which

leads to a smaller collisional diameter σα. The slope of each curve is nearly independent

of the fluid in question. Furthermore, at each temperature the effective size follows the

sequence σSF6 > σCH4 > σCO2 > σN2 > σAr which is the same as obtained from the

Enskog-1σ model and similar to the one obtained from the analysis of the zero-density

viscosity (see section 5.1.9), where, however, σCO2 is slightly larger than σCH4 . The

effective diameter σχ, illustrated also in Fig. 5.7, is for a given fluid at a particular

temperature always smaller than σα. In order to understand this observation, we carried

out a number of simulations to ascertain how sensitive the two effective diameters are

to the density range used in fitting, by progressively including viscosities at larger

densities in the fitting procedure. Fig. 5.8 indicates that for a given density range the

effective diameter σχ is influenced more by the values of the viscosity at higher density

than the effective diameter σα. This implies that for a given temperature the effective

diameter σχ samples further up the repulsive wall of the intermolecular potential. As

the repulsive wall for a real fluid is not infinitely steep, but has a negative slope, we

observe smaller values of the effective diameter σχ compared with those of σα.

Although σχ also, in general, decreases with temperature, the rate of change is less

uniform and σχ exhibits a more varied behaviour. The non-uniformity observed can be

attributed to the larger uncertainty associated with determining σχ. The relative lack

of sensitivity of viscosity to σχ implies that the uncertainty of the viscosity correlations

used will enhance the uncertainty in σχ. In order to test this assertion, the viscosity

values for all five fluids studied has been computed by assuming a constant, temperature

independent value of σχ. The overall goodness of fit decreased slightly, but the ability of

Enskog-2σ model to correlate the viscosity data remains still very good. For instance,

for CH4 the maximum deviation increased from 2.3% to 3% and the AAD increased

from 0.2% to 0.6% while for CO2 the maximum deviation increased from 2.4% to 2.6%

and the AAD increased from 0.8% to 0.9% (for more details, see Fig. 5.9). We conclude

that the tests carried out indicate that our knowledge of viscosity is not precise enough

to define the exact shape of the effective diameter σχ as a function of temperature.
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Figure 5.7: Optimised effective diameters as a function of reduced temperature T/Tc.

The solid lines depict σα and the dashed lines σχ.
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Figure 5.8: Optimised effective diameters as a function of ρmax, where the diameters
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corresponds to methane at T = 250K, the lower plot to argon at = 400K. The solid lines

depict σα, the dashed lines σχ.
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Figure 5.9: Upper plot: Optimised σα’s (solid lines) for the temperature independent

choice of σχ’s (dashed lines). Lower plot: Corresponding maximum deviations between

model and experimental reference correlations.

5.1.5 Magnitude of the model terms

In Fig. 5.10, the magnitude of the viscosity terms in Eq. (3.4) is compared for the

Enskog-1σ model (upper plot) and the Enskog-2σ model (lower plot). As an example,

the terms are illustrated for carbon dioxide at T = 600K. The term αρ increases linearly

with the density ρ, (χ/β)(αρ)2 grows over-proportionally with ρ and 1/χ decreases

almost linearly with ρ. For small densities ρ, the term 1/χ is dominant. Due to the

density dependence of the terms, (χ/β)(αρ)2 and αρ become larger than 1/χ at ρ = 11.9

mol/l and ρ = 12.7 mol/l for the Enskog-1σ model and at ρ = 13.0 mol/l and ρ = 13.9

mol/l for the Enskog-2σ model. At high densities, the term (χ/β)(αρ)2 is dominant

and very sensitive to the density. The optimised effective diameters corresponding to

Fig. 5.10 are σα = 3.58Å, σχ = 3.32Å and σ = 3.6Å. The sequence σχ < σα < σ is

typical for high temperatures while the sequence σχ < σ < σα is typical at moderate
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and low temperatures (see Fig. 5.12 for methane and carbon dioxide). Consequently,

the term 1/χ is smaller in the Enskog-1σ model than in the Enskog-2σ model while αρ

is larger in the Enskog-1σ model than in the Enskog-2σ model at high temperatures

(as in Fig. 5.10) and smaller at low temperatures. The term (χ/β)(αρ)2 is larger in

the Enskog-1σ model than in the Enskog-2σ model which holds true for all five fluids

according to further computations.

Another example for the magnitude of the model terms is given in Fig. 5.11 for

argon at T = 300K. The corresponding optimised effective diameters are σα = 3.37Å,

σχ = 2.88Å and σ = 3.32Å. Consequently, the sequence σχ < σ < σα holds true and

the term αρ is smaller in the Enskog-1σ model than in the Enskog-2σ model here.

The remaining results are qualitatively the same as in Fig. 5.10 for carbon dioxide at

T = 600K.
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Figure 5.10: Density dependence of the terms in the Enskog-1σ model (upper plot) and

Enskog-2σ model (lower plot) for carbon dioxide at T = 600K.
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Figure 5.11: Density dependence of the terms in the Enskog-1σ model (upper plot) and

Enskog-2σ model (lower plot) for argon at T = 300K.
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Figure 5.12: Optimised effective diameter σα (solid lines), σχ (dashed lines) and σ (dash-

dotted lines) versus temperature T for argon (black lines) and carbon dioxide (red lines).
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5.1.6 Comparison with the VW method

The VW method developed by (Vesovic & Wakeham, 1989b,a) described in section 2.5

has many parallels to the Enskog-2σ model. The VW approach is based as well on

Enskog theory and uses a temperature dependent effective diameter σα as well as a

density and temperature dependent representation of the radial distribution function χ

at contact. It is interesting to compare the model parameters of the VW method and

the Enskog-2σ model with one another which we will do in this section. According to

Fig. 5.13, σα obtained from the VW method at the switch-over density is similar to the

effective diameter σα in the Enskog-2σ model. In particular, both effective diameters

σα’s decrease monotonically with the temperature. The maximum deviation between

the σα’s occurs at T/Tc = 4.76 for nitrogen and is about 1.28%. The reason for this

deviation can be explained by the fact that the switch-over density, at which the VW

σα is obtained, is 17.1 mol/l and distinctively exceeds the maximum density of 12.9

mol/l up to which the σα of the Enskog-2σ model is computed. The switch-over density

decreases with decreasing temperature such that, for nitrogen below T/Tc = 3.45, the

switch-over density lies within the density interval of the Enskog-2σ model and the

deviations between the σα’s reduces to 0.46%.
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Figure 5.13: σα from the Enskog-2σ model (solid lines) and σα from the VW method

(dashed lines) versus the reduced temperature.
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As the σα obtained from the VW method at the switch-over density is similar to

the σα of the Enskog-2σ model, the question arises how well the Enskog-2σ model

reproduces the experimental correlations when we set σα equal to the VW σα. This is

done in Fig. 5.14. σχ has been obtained by minimising the maximum deviation between

model and experimental correlation up to ρmax, defined in section 3.2, and is shown

in the upper plot in the figure. According to the lower plot, the model reproduces

the experimental reference correlation well within 2.2%, 2.5%, 2.9%, 3.0% for methane,

argon, carbon dioxide and nitrogen. We conclude that the VW σα gives a good estimate

for the σα in the Enskog-2σ model.

The χ’s obtained from the VW method and the Enskog-2σ model are compared in

Fig. 5.15 for a couple of isotherms for methane and argon. By definition, χ increases

monotonically with the density. The slope of the Enskog-2σ χ grows by definition with

the density while the VW χ is more complex and can have several inflection points as,

for example, for the isotherms of methane or argon at T = 200K. The largest deviation

between the χ’s is 4.7% for methane at T = 500K, ρ = 15.3mol/l, and 11.3% for argon

at T = 200K, ρ = 17.5mol/l. Like the Enskog-2σ model, the VW method uses as input

all experimental viscosity data for a given temperature. Thus, although the σα’s and

χ’s of both approaches have similar values, one cannot predict the σ’s in the Enskog-2σ

model from the VW method without knowing the viscosity itself. The prediction of

the effective diameters is discussed in section 5.1.9.
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Figure 5.14: Enskog-2σ model with σα from the VW method and optimised σχ. Upper

plot: optimised σχ. Lower plot: maximum deviation between model and the experimental

reference correlations.
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Figure 5.15: χ in the Enskog-2σ model (solid lines) and χ in the VW method (dashed

line) versus density for a couple of isotherms of methane and argon.
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5.1.7 Application to other transport properties

One cannot envisage that the effective diameters σα and σχ can be used to evaluate

other transport properties of the same fluids. There is evidence, primarily from studies

of dilute gases (Hirschfelder et al., 1954; Maitland et al., 1985, 1986), that, in general,

the effective parameters which are based on some kinetic theory model are not transfer-

able and that the different transport properties require different effective parameters.

The effective diameters do not only account for the difference between the real and

hard sphere potential, but also for the deficiencies in Enskog’s theory in describing

each transport property. As the molecular collisions have a different weighting for dif-

ferent transport properties, Enskog’s theory does not describe each transport property

with the same accuracy. The assertion of non-transferability of effective diameters has

been tested by calculating the background thermal conductivity of methane and carbon

dioxide by means of the Enskog-2σ model using the effective diameters obtained from

viscosity. To calculate the background thermal conductivity, we make use of of the fact

that Enskog’s theory is applicable as well to heat transport and gives on the first-order

approximation level the heat equation with the following expression for the thermal

conductivity

λ = λ0

(
1

χ
+

3

2
αρ+

1

β∗χα
2ρ2
)

(5.2)

with the thermal conductivity in the zero density limit λ0, the numerical constant

β∗ = 0.845 and all other quantities as defined in section 2.2.1. The maximum devia-

tions for a given temperature are of the order of 15-40%, see Fig. 5.16. These large

deviations might be caused by the fact that the internal degrees of freedom of the fluid

molecules contribute to the value of thermal conductivity while they do not play a role

for viscosity. Furthermore, this supports the general insight that the effective parame-

ters based on kinetic theory are transport property specific. It was not possible to carry

out similar tests for the self-diffusion coefficient due to a lack of accurate experimental

data covering large temperature and pressure ranges. However, such large deviations

as those observed for thermal conductivity are not expected. Nevertheless, it is worth

pointing out that if the effective parameters are used purely as scaling parameters there

is plentiful evidence (Assael et al., 1992; Galliéro et al., 2006) that different transport

properties can be described by the same effective parameters, albeit with some loss of

accuracy.
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In Fig. 5.17, the Enskog-2σ model is applied to correlate the thermal conductivity of

methane and carbon dioxide. The effective diameters have been optimised to reproduce

the thermal conductivity analogously to the optimisation of viscosity. The thermal

conductivity can be correlated within 8.3% for methane and within 1.3% for carbon

dioxide. The optimised effective diameters are compared to the ones obtained from

viscosity in Fig. 5.18 for methane and in Fig. 5.19 for carbon dioxide. The optimised

σα’s for thermal conductivity decrease monotonically with temperature as found for the

optimised σα’s for viscosity. Additionally, we observe that σα for thermal conductivity

is, except for carbon dioxide at temperatures close to the critical temperature, larger

than σα for viscosity. The effective diameter σχ for thermal conductivity exhibits again

a more varied behaviour. The reason is analogous to the one pointed out in section

5.1.4 for viscosity. The effective diameter σχ is relatively insensitive to the thermal

conductivity λ such that our knowledge of λ is not precise enough to define the exact

shape of σχ as a function of temperature.
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Figure 5.16: Maximum deviation (solid lines) and AAD (dashed lines) of the thermal

conductivity between the Enskog-2σ model and the experimental reference correlations

(Younglove & Ely, 1987; Vesovic et al., 1990) for methane (black lines) and carbon dioxide

(red lines). The effective diameters have been obtained from viscosity and are the same as

in Fig. 5.7 for the respective fluid.
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Figure 5.17: Maximum deviation (solid lines) and AAD (dashed lines) of the thermal

conductivity between the Enskog-2σ model and the experimental reference correlations

(Younglove & Ely, 1987; Vesovic et al., 1990) for methane (black lines) and carbon dioxide

(red lines). The effective diameters have been obtained from the correlations for thermal

conductivity as described in the text.
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Figure 5.18: Optimised effective diameters for methane. The black lines are obtained

from thermal conducivity, the red ones from viscosity. The σα’s are depicted by the solid

lines, the σχ’s by the dashed ones.
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Figure 5.19: Optimised effective diameters for carbon dioxide. The black lines are ob-

tained from thermal conducivity, the red ones from viscosity.The σα’s are depicted by the

solid lines, the σχ’s by the dashed ones.

5.1.8 Alternative definitions of the maximum density

It is interesting to compare how the choice of the maximum density defined in section

3.2 in the Enskog-2σ model performs compared to alternative choices for the maximum

density ρmax. We investigate the following alternative definitions:

• Set ρmax = min (1.5ρc, ρexp) where ρc is the critical density of the respective fluid

and ρexp the maximum density of the experimental reference correlation at a given

temperature.

• Set ρmax = min (2.0ρc, ρexp).

• Set ρmax = min (ρ50MPa, ρexp) where ρ50MPa is the density at 50MPa for the

respective fluid and temperature.
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• Set ρmax = min (ρMD,mean, ρexp) where

ρMD,mean =
0.31

NAπ/6(σα + σχ)/2
(5.3)

for the respective fluid and temperature.

The advantage of the first three alternatives is that the maximum densities can be

determined directly. In the Enskog-2σ model with the usual choice for ρmax defined in

section 3.2 or the choice under the fourth bullet point, ρmax depends on the effective

diameters and has to be determined iteratively. The results for all approaches are

presented in Fig. 5.20 for argon and in Fig. 5.21 for carbon dioxide. Large deviations

for the effective diameter σα are found at high temperatures between the approach

with constant maximum pressure and all other approaches. For argon, the relative

deviation reaches a value of 3.7% and, for carbon dioxide, a value of 2.5%. These

deviations are caused by the fact that, at high temperatures, the maximum density of

the approach with constant maximum pressures is distinctively smaller than for the

approaches under bullet point one, two and four (for argon, at least 12.8 mol/l smaller

at the highest temperature and, for carbon dioxide, at least 8.1 mol/l smaller at the

highest temperature). In Fig. 5.8, we see that such a big difference in the maximum

density can lead to the deviations in the effective diameters σα of the order of a few

percent. The σα’s of all other approaches deviate less than 0.67% from each other. The

behaviour and values of the diameter σχ, on the contrary, are again much more varied.

This is consistent with Fig. 5.8; σχ varies more than σα with the maximum density,

in particular, at high maximum densities at which σα becomes almost independent of

the maximum density. The maximum deviation between model and experiment occurs

at the smallest temperature for the approaches with a constant maximum density.

The Enskog-2σ model with the usual choice for ρmax or the choice under the fourth

bullet point have the beneficial feature to yield a maximum density which decreases

with temperature at the lower range of temperatures. This has the effect that the

increase in the maximum deviation between model and experiment is diminished with

decreasing temperature and even reversed eventually. In particular, for argon, the

maximum deviation decreases with decreasing temperature for T ≤ 280K as it occurs

at the maximum density. For the approach with constant maximum pressure, on the

contrary, the maximum density increases with decreasing T thus yielding a relatively

61



5. RESULTS FOR SIMPLE FLUIDS

large maximum deviation of 4.7% for argon at T = 160K and 3.4% for carbon dioxide

at T = 305K. Altogether, the Enskog-2σ model with the usual choice for ρmax or the

choice under the fourth bullet point have an advantageous behaviour of the maximum

density (small maximum densities at low temperatures, large maximum densities at

high temperatures) but the effective diameters have to be determined iteratively. We

have focused section 5.1 on the Enskog-2σ model with the usual choice for ρmax as the

maximum deviations are smaller than for the choice of ρmax under the fourth bullet

point. The latter model, however, will play a role in later sections and its larger

maximum density will be found especially beneficial.
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Figure 5.20: Enskog-2σ model with alternative definitions of the maximum density for

argon. Plotted versus the temperature, we show σα in the upper left plot, σχ in the

upper right plot, the maximum density in the lower left plot and the maximum deviation

between model and experiment in the lower right plot. The Enskog-2σ model corresponds

to the black lines, the model with maximum density 1.5ρc to the red lines, the model

with maximum density 2.0ρc to the green lines, the model with maximum pressure 50MPa

to the blue lines and the Enskog-2σ model with σmax = (σα + σχ)/2 under bullet point

four to the orange lines. The cyan line denotes the maximum density of the experimental

correlation by (Lemmon & Jacobson, 2004).
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Figure 5.21: Enskog-2σ model with alternative definitions of the maximum density for

carbon dioxide. Plotted versus the temperature, we show σα in the upper left plot, σχ in the

upper right plot, the maximum density in the lower left plot and the maximum deviation

between model and experimental reference correlation in the lower right plot. The Enskog-

2σ model corresponds to the black lines, the model with maximum density 1.5ρc to the red

lines, the model with maximum density 2.0ρc to the green lines, the model with maximum

pressure 50MPa to the blue lines and the Enskog-2σ model with σmax = (σα+σχ)/2 under

bullet point four to the orange lines. The cyan line denotes the maximum density of the

experimental reference correlation by (Vesovic et al., 1990; Fenghour et al., 1998).

5.1.9 Universal behaviour

A closer inspection of Fig. 5.7 indicates that the temperature trend of σα is very similar

for all five fluids studied. It is thus possible, by judicious choice of a scaling parameter,

to superimpose all five σα curves onto one universal curve by simply shifting each curve

in the y-direction. We have chosen argon as a reference fluid and have scaled the

effective diameter σα for the other four fluids by using a constant scaling parameter, L,

σα,x(T/Tc,x) = Lσα,Ar(T/Tc,Ar). (5.4)
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Figure 5.22: Scaled effective diameters as a function of reduced temperature T/Tc. The

solid lines depict the scaled σα and the dashed lines the scaled σχ.

Fig. 5.22 illustrates that using a constant value of the scaling parameter L allows

for superimposition of all the σα curves on to that of argon. The existence of a universal

representation for the effective diameter, σα, is not only interesting but also allows for

the possibility of predicting the viscosity of one fluid from the knowledge of another,

should some relation be found for L. The slightly stronger temperature dependence of

the σα of methane indicates that methane has a less steep repulsive potential part than

the other fluids. Also, as the σα of sulphur hexafluoride depends less strongly on the

temperature, its repulsive potential seems to be relatively steep. We have used the

same parameter L to scale the effective diameter, σχ. Fig. 5.22 illustrates that for σχ

the universal behaviour was not observed and the resulting scaled diameters differ by,

at most, 10% from the σχ of argon. As the Enskog-2σ model is less sensitive to the

choice of σχ, it remains to be seen how this choice influences the viscosity prediction.

We have made use of the observed universal behaviour of the effective diameter σα to
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5.1 Supercritical temperature range

calculate the viscosity of methane, nitrogen, carbon dioxide and sulphur hexafluoride

from the knowledge of the viscosity of argon and a single scaling parameter L. For

this purpose, we obtain the effective diameters σα and σχ for a fluid of interest by

multiplying the corresponding effective diameters of argon by the scaling parameter

L and then making use of the Enskog-2σ model to calculate the viscosity. There are

several ways of choosing the scaling parameter L for a given fluid:

(i) by making use of all the available viscosity data and by minimising the maximum

deviation between the data and the values predicted by the Enskog-2σ model.

This would be equivalent to graphically superimposing σα for a chosen fluid to

that of argon. As this approach makes use of all the available data, it has no

predictive power but rather acts as a base case since it indicates if the universal

curve with a single scaling parameter can adequately represent the viscosity data.

(ii) by making use of viscosity data along a single isotherm.

(iii) by making use of a single viscosity value at a given temperature and density.

Table 5.4 presents the values of the scaling parameter L obtained in each case together

with how well the viscosity of each fluid is predicted as measured by the AAD and the

maximum deviation.

Fig. 5.23 illustrates the deviations observed for all four fluids as a function of the

reduced temperature. If all the viscosity data for each fluid are used, the model with a

single scaling parameter L is capable of correlating the viscosity of nitrogen and methane

almost within their quoted uncertainty. For CO2 and SF6 the deviations are larger,

reaching a maximum of 6.3% and 7.5%, respectively. For CO2, these deviations should

be seen in the context of the accuracy of the CO2 correlation, which at supercritical

temperatures is of the order of 4%. Fig. 5.24 gives a more detailed illustration of the

deviations observed for CO2 along a number of selected isotherms. For SF6 the AAD

increase rapidly as the temperature approaches the critical temperature, mimicking the

weak non-universality displayed by σα at these temperatures. In Fig. 5.25, we compare

the model directly to experimental primary data of methane. The primary viscosity

data is reproduced very well within 4.4%.
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Table 5.4: Length scaling parameter L obtained by minimizing the maximum deviation

between the Enskog-2σ model and the experimental correlations.

Fluid Model L Max. deviation (%) AAD (%)

CH4 all T 1.0686 3.3 0.9

CH4 T = 2Tc 1.0676 3.7 1.0

CH4 T = 2Tc, ρ = 1.5ρc 1.0687 3.3 0.9

N2 all T 1.0553 3.1 1.0

N2 T = 2Tc 1.0560 3.2 1.1

N2 T = 2Tc, ρ = 1.5ρc 1.0533 4.2 0.8

CO2 all T 1.0750 6.3 3.5

CO2 T = 2Tc 1.0745 6.5 3.4

CO2 T = 2Tc, ρ = 1.5ρc 1.0682 9.9 2.8

SF6 all T 1.4476 7.5 2.4

SF6 T = 400K ∼ 1.3Tc 1.4450 8.5 2.2

SF6 T = 400K, ρ = ρc 1.4397 10.5 2.1

Table 5.4 also presents the results when the model with a single scaling parameter

L is used in a predictive mode. In the first instance, we focus on the results obtained by

evaluating the parameter L from viscosity data along a single isotherm. As an example,

we choose for each fluid the isotherm at T = 2Tc in order to evaluate L. For SF6, this

choice would result in a temperature outside the range of validity of the correlation.

Instead, we have chosen the 400 K isotherm as it is just below the highest temperature

(425 K) where the primary experimental data were available. The deviations quoted in

Table 5.4 indicate that calculating L in this fashion gives as good results as in our base

case scenario for all four fluids tested. Making use of different isotherms, within the

range of validity of the original correlations, would give equally good estimates. For

instance, choosing other isotherms to evaluate L, for nitrogen and methane, result in

a variation in AAD in the range of 0.8 − 1.1%, while for CO2 and SF6 the AAD will

vary from 2.8% to 3.5% and from 2.2% to 3.5%, respectively. Choosing a single value

of viscosity to evaluate L, not surprisingly, leads to a higher overall uncertainty in the

predicted viscosity. We have investigated a number of choices. In general, choosing the
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Figure 5.23: Percentage viscosity deviations, 100(ηcorr − ηmodel)/ηcorr, obtained with the

Enskog-2σ model from the experimental reference correlations in Table 1. The effective

diameters for each fluid were obtained by means of Eq. (5.4) using the values of L obtained

from the data at all temperatures. The solid lines are the maximum deviations, while the

dashed lines are the AAD.

viscosity value at a density higher than the critical leads to more accurate predictions.

Table 5.4 presents the maximum deviation and AAD if the choice of L for the four fluids

was based on a value of viscosity at 2Tc and 1.5ρc. For SF6, we had to choose a lower

density as the choice of 1.5ρc would lead to densities larger than ρMD. Although the

accuracy with which the viscosity of methane, nitrogen and even sulphur heaxafluoride

are predicted has been maintained, there is some decrease in the prediction of the

viscosity of CO2 with the maximum deviation now reaching 9.9%. Choosing other

values of viscosity in the range 1.3ρc < ρ < ρMD to evaluate L leads to the following

variation in AAD: 0.8 − 2.0%, 0.6 − 1.3% and 2.8 − 6.6% for methane, nitrogen and

carbon dioxide, respectively.

Next, we have explored a number of approaches to obtain an estimate of L from ei-

ther dilute gas viscosity or thermodynamic data. In particular, the following approaches
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Figure 5.24: Percentage viscosity deviations, 100(ηcorr − ηmodel)/corr, obtained with the

Enskog-2σ model from the experimental reference correlation for carbon dioxide (Vesovic

et al., 1990; Fenghour et al., 1998) as a function of density along a number of isotherms.

The effective diameter for carbon dioxide was obtained by means of Eq. (8) using the value

of L obtained from the data along the isotherm at T = 2Tc.

have been tested:

• Set L = σ0,x/σ0,Ar, where σ0,x is length scaling parameter obtained from the

dilute gas viscosity by means of a universal correlation (Maitland et al., 1981).

• Set L = (Vc,x/Vc,Ar)
1/3, where Vc,x is the critical volume of the respective fluid

and Vc,Ar is the critical volume of argon.

• Set L = σCS-vdW,x/σCS-vdW,Ar where σCS-vdW,x is the effective diameter of fluid x

obtained from the CS-vdW EOS (Ben-Amotz & Herschbach, 1990). The effective

diameter σCS-vdW is obtained by fitting supercritical pressure-density isotherms.

This choice was not possible for SF6 as no CS-vdW parameters are available for

SF6 (Ben-Amotz & Herschbach, 1990).
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5.1 Supercritical temperature range

• Set L = σSAFT-SW,x/σSAFT-SW,Ar where σSAFT-SW,x is the effective diameter of

fluid x obtained with the SAFT-VR SW EOS (Dufal & Haslam, 2012; Gil-Villegas

et al., 1997) by fitting vapour-pressures and saturated liquid densities.

• Set L = σSAFT-LJ,x/σSAFT-LJ,Ar where σSAFT-LJ,x is the effective diameter of fluid

x obtained with the LJ SAFT-VR Mie EOS (Dufal & Haslam, 2012) by fitting

vapour-pressures and saturated liquid densities.

The results summarized in Table 5.5 indicate that, in general, choosing a scaling

parameter L in this fashion will lead to large uncertainties in viscosity predictions. We

also observe that, whereas for methane the estimated values of parameter L agree to

within 4%, for carbon dioxide (the least spherical of the molecules considered here), the

agreement is only 7%, while for SF6, by far the largest molecule studied, the agreement

between the largest and the smallest value of L is 14%. It is worth noting that the

smallest values of the parameter L correspond to LJ SAFT-VR Mie and the Enskog-2σ

model, whereas the largest values were obtained with SAFT-VR SW and from zero-

density viscosities for all fluids studied. In future work, it will be interesting to explore

other approaches to get good estimates for L.
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Figure 5.25: Percentage viscosity deviations, 100(ηmodel−ηexp)/ηexp, between the Enskog-

2σ model and the primary experimental data sets for methane listed in table 5.2. The

effective diameter of methane was obtained by means of Eq. (5.4) using the values of L

obtained from the data at all temperatures.
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5.2 Molecular dynamics corrections

Table 5.5: Length scaling parameter L obtained by the models described in the text. The

fourth and fifth column show the maximum deviation and AAD evaluated over the full

supercritical range, as described in subsection 5.1.9.

Fluid Model L Max. deviation (%) AAD (%)

CH4 σ0,x/σ0,Ar 1.1106 21.7 7.0

CH4 (Vc,x/Vc,Ar)
1/3 1.0975 15.1 4.7

CH4 σCS-vdW,x/σCS-vdW,Ar 1.1058 19.3 6.2

CH4 σSAFT-SW,x/σSAFT-SW,Ar 1.1105 21.7 7.0

CH4 σSAFT-LJ,x/σSAFT-LJ,Ar 1.0971 14.9 4.6

N2 σ0,x/σ0,Ar 1.0842 13.4 5.1

N2 (Vc,x/Vc,Ar)
1/3 1.0652 5.9 2.4

N2 σCS-vdW,x/σCS-vdW,Ar 1.0645 5.6 2.3

N2 σSAFT-SW,x/σSAFT-SW,Ar 1.0803 11.6 4.5

N2 σSAFT-LJ,x/σSAFT-LJ,Ar 1.0519 4.9 0.7

CO2 σ0,x/σ0,Ar 1.1252 24.2 13.7

CO2 (Vc,x/Vc,Ar)
1/3 1.0804 6.9 4.5

CO2 σCS-vdW,x/σCS-vdW,Ar 1.1252 24.2 13.8

CO2 σSAFT-SW,x/σSAFT-SW,Ar 1.1504 37.6 18.5

CO2 σSAFT-LJ,x/σSAFT-LJ,Ar 1.0721 18.5 4.0

SF6 σ0,x/σ0,Ar 1.5679 42.9 18.9

SF6 (Vc,x/Vc,Ar)
1/3 1.3740 33.1 10.2

SF6 σSAFT-SW,x/σSAFT-SW,Ar 1.4750 12.3 6.0

SF6 σSAFT-LJ,x/σSAFT-LJ,Ar 1.3819 30.7 9.0

5.2 Molecular dynamics corrections

The aim of this section is to find and compare ways to extend the Enskog-2σ model

to higher densities. We will focus on the extension of the Enskog-2σ model to higher

densities at supercritical conditions, while, in the section 5.3, the focus will be on

the liquid range. Throughout the section, argon will serve as model fluid since the

experimental reference correlation for argon by (Lemmon & Jacobson, 2004) extends
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to very high densities and pressures.
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Figure 5.26: Enskog-2σ model without MD corrections up to ys with σmax = σα (black

lines) and σmax = σmean (red lines). In the upper plot, the maximum density ρmax is shown

versus the temperature T , in the lower plot, the maximum deviation between model and

experimental reference correlation for argon by (Lemmon & Jacobson, 2004). The blue

line in the upper plot denotes the experimental maximum density.

5.2.1 Extension to higher densities without MD corrections

We first apply the Enskog-2σ model without MD corrections to illustrate the short-

comings in doing so. We distinguish two cases. In the first case, the maximum density

is defined as

ρmax,ys,α = min
(
ρys,α , ρexp

)
where ρys,α =

0.494

NAπ/6σ3
α

, (5.5)

in the second case, as

ρmax,ys,mean = min
(
ρys,mean , ρexp

)
where ρys,mean =

0.494

NAπ/6σ3
mean

. (5.6)
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5.2 Molecular dynamics corrections

The diameter σmean is defined as the mean value (σα + σχ)/2 of the effective di-

ameters. The factor 0.494 in Eqs. (5.5) and (5.6) is equal to the packing fraction

ys up to which a hard sphere system represents still a stable fluid, see section 2.3.

According to Fig. 5.26, choosing the maximum density ρmax,ys,mean yields maximum

deviations up to 18.5% with a peak at T = 200K. Choosing the maximum density

ρmax,ys,α yields smaller deviations with a peak of the maximum deviation of 13.5% at

T = 245K, however, the density range covered becomes markedly smaller than for the

choice ρmax,ys,mean . In section 5.2.2, we will see that, by making use of MD corrections,

we can describe the experimental viscosity over a larger density range with smaller

deviations than it has been possible without MD corrections.

5.2.2 Extension to higher densities with MD corrections

As molecular dynamics simulations show, Enskog’s viscosity expression describes a hard

sphere fluid up to a packing fraction of y = 0.31. Beyond this packing fraction, Enskog’s

formula deviates from the simulation results and does not describe the hard sphere

model fluid correctly. These deviations can be corrected by the use of a multiplicative

factor fMD as already discussed in section 2.3. The factor fMD is a function of the

packing fraction only and thus depends on the effective diameter σ chosen through y.

We denote the corresponding σ as σMD and investigate the following choices:

• σMD = σα =: σMD,α,

• σMD = σχ =: σMD,χ,

• σMD = (σα + σχ)/2 =: σMD,mean,

• σMD =
√
σασχ =: σMD,geo.

For a given choice of σMD, we define the maximum density ρmax consistently by

ρmax = min (ρys , ρexp) where ρys =
0.494

NAπ/6σ3
MD

. (5.7)

The maximum densities for the different choices of σMD are shown in the upper plot

in Fig. 5.27. For σMD,χ, the density range extends to the maximum density of the

experimental reference correlation by (Lemmon & Jacobson, 2004). For σMD,geo and

σMD,mean, the maximum density is equal to the maximum density ρexp of the experi-

mental correlation for T/Tc ≥ 1.16 and up to 0.5 mol/l (0.8 mol/l) smaller than ρexp
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for T/Tc < 1.16 and σMD,geo (σMD,mean). If we choose σMD,α, the maximum density

becomes, at low temperatures, clearly smaller than the maximum densities for the other

choices and reaches only a value of 36.5 mol/l for T close to Tc whereas the maximum

density of the experimental correlation is 40.9 mol/l at this temperature.
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Figure 5.27: Enskog-2σ model with MD corrections applied to argon. In the upper plot,

the maximum density is depicted versus the reduced temperature. The black, red, green,

blue lines correspond to the Enskog-2σ model with σMD,α, σMD,χ, σMD,mean, σMD,geo. The

effective diameters are shown in the middle plot; σα is denoted by the solid lines, σχ by

the dashed lines, σMD,mean by the green dash-dotted line and σMD,geo by the blue dash-

dotted lined. The lower plot depicts the maximum deviation between the models and the

experimental reference correlation by (Lemmon & Jacobson, 2004). The maximum density

of the experimental reference correlation is equivalent to the red line in the upper plot.

The optimised effective diameter for the approaches with σMD,mean and σMD,geo

are found to be almost identical and differ less than 0.61% from one another. For

T/Tc ≥ 2.89, the density range does not extend into the region where MD corrections

are relevant such that all approaches become equivalent to each other and the effective
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5.2 Molecular dynamics corrections

diameters take the same value for all approaches. For lower temperatures, on the con-

trary, the effective diameters depend clearly on the approach chosen. For the lowest

temperature, for example, σα for σMD,α (σMD,χ) is about 6% (1.9%) smaller than for

the model with σMD,mean. Those deviations are relatively large considering how sensi-

tive the viscosity depends on σα (compare with section 5.1.3 for example).

According to the lower plot in Fig. 5.27, the approach with σMD,α leads to large

deviations up to 36%. The other approaches reproduce the viscosity distinctively bet-

ter within 11.2%. The models with σMD,mean and σMD,geo result in almost identical

maximum deviations which reach their peak value at the lowest temperature close to

T = Tc. The approach with σMD,χ performs better than the approach with σMD,mean

at low temperatures but results in larger deviations at intermediate temperatures: at

T/Tc = 1.3 for instance, the maximum deviation between model and experimental cor-

relation is 3.2% for σMD,mean and 9.8% for σMD,χ. The correlative power of the models

with σMD,mean and σMD,χ will be compared to each other in greater detail in section

5.2.3 where we test the models directly against primary experimental data.

5.2.3 Comparison with primary experimental data

In the upper plots of Fig. 5.28, we compare the Enskog-2σ model with σMD,χ from the

previous section to primary experimental data for argon. In Fig. 5.29, we do the same

for the model with σMD,mean. In the lower plots of the figures, we depict for comparison

the deviations between the experimental reference correlation for argon by (Lemmon

& Jacobson, 2004) and the primary experimental data.

Both of the models reproduce the bulk of the data within 5% and all data points

with densities less than 30mol/l are obtained within 6%. Only for the data sets by

(Kurin & Golubev, 1974) and (van der Gulik & Trappeniers, 1986) which extend to

densities larger than 30mol/l, deviations larger than 6% are observed. The data points

by (Kurin & Golubev, 1974) with deviations larger than 6% appear at pressures larger

than 300 MPa and deviate generally in the order of 5% from the viscosity correlation

by (Lemmon & Jacobson, 2004) itself. Thus, the data points by (Kurin & Golubev,

1974) might not be as accurate as the other measurements and, consequently, in terms

of reliable primary data, the model with σMD,χ performs as well as the model with

σMD,mean at temperatures above 200K.
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Figure 5.28: Upper plots: Percentage viscosity deviations, 100(ηmodel − ηexp)/ηexp, be-

tween the Enskog-2σ model with σMD,χ and the primary experimental data sets for argon

listed in table 5.3. Lower plots: Percentage viscosity deviations, 100(ηcorr − ηexp)/ηexp,

between the experimental reference correlation for argon by (Lemmon & Jacobson, 2004)

and the primary experimental data sets for argon listed in table 5.3. On the left hand

side, the deviations are depicted versus the temperature, on the right hand side, versus the

density. The black dots refer to the primary experimental data by (Michels et al., 1954),

the red squares to the data by (Makita, 1957), the green diamonds to the data by (Kestin

& Nagashima, 1964), the blue triangles to the data by (DiPippo et al., 1967), the violet

pluses to the data by (Gracki et al., 1969), the cyan stars to the data by (Haynes, 1973a),

the orange triangles to the data by (Kurin & Golubev, 1974), the black crosses to the data

by (van der Gulik & Trappeniers, 1986), the dark green triangles to the data by (Wilhelm

& Vogel, 2000) and the yellow triangles to the data by (Evers et al., 2002).

The measurements by (van der Gulik & Trappeniers, 1986) are performed at T =

175K. The model with σMD,mean reproduces the data points by (van der Gulik &

Trappeniers, 1986) within 8.1% and performs slightly better than the model with σMD,χ

which correlates the measurements within 10.4%. Thus, in terms of the primary data,

the model with σMD,mean seems to perform marginally better than the model with
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σMD,χ. This result reverses the observation in the last section where it appeared that the

model with σMD,χ reproduces the experimental correlation by (Lemmon & Jacobson,

2004) at lower temperatures better than the model with σMD,mean. Altogether, in

terms of the primary data sets available, the models with σMD,χ and σMD,mean perform

similarly well and one should not attempt to ascribe one of the models better correlative

power based on the results in the previous section.
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Figure 5.29: Upper plots: Percentage viscosity deviations, 100(ηmodel − ηexp)/ηexp, be-

tween the Enskog-2σ model with σMD,mean and the primary experimental data sets for ar-

gon listed in table 5.3. Lower plots: Percentage viscosity deviations, 100(ηcorr−ηexp)/ηexp,

between the experimental reference correlation for argon by (Lemmon & Jacobson, 2004)

and the primary experimental data sets for argon listed in table 5.3. On the left hand

side, the deviations are depicted versus the temperature, on the right hand side, versus the

density. The black dots refer to the primary experimental data by (Michels et al., 1954),

the red squares to the data by (Makita, 1957), the green diamonds to the data by (Kestin

& Nagashima, 1964), the blue triangles to the data by (DiPippo et al., 1967), the violet

pluses to the data by (Gracki et al., 1969), the cyan stars to the data by (Haynes, 1973a),

the orange triangles to the data by (Kurin & Golubev, 1974), the black crosses to the data

by (van der Gulik & Trappeniers, 1986), the dark green triangles to the data by (Wilhelm

& Vogel, 2000) and the yellow triangles to the data by (Evers et al., 2002).
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5.2.4 Magnitude of the MD correction factor

The magnitude of the MD correction factor is investigated in Fig. 5.30. The Enskog-

2σ model with σMD,mean is applied to argon and the MD correction factor is plotted

for several isotherms versus the density. The results obtained are very similar for the

model with σMD,geo. Up to moderate densities, the Enskog model reproduces correctly

a hard sphere fluid, no MD corrections are needed and the MD correction factor has

a value of 1. Above 25.1 mol/l for T = 155K, 26.4 mol/l for T = 200K, 28.2 mol/l

for T = 250K, 30.0 mol/l for T = 300K, the MD correction factors deviates from 1

and starts correcting Enskog’s viscosity expression for high density effects. The corre-

sponding pressures for the kick in of the MD corrections are 16MPa, 56MPa, 117MPa

and 192MPa at the temperatures 155K, 200K, 250K and 300K. With increasing den-

sity, the MD correction factor grows monotonically until it reaches a value of 2.06 at

T = 155K, 1.51 at T = 200K, 1.17 at T = 250K, 1.07 at T = 300K. With increasing

temperature, the experimental maximum density ρexp increases until, for T > 400K,

ρexp becomes so small that no MD corrections are needed and the correction factor is

equal to 1 over the whole density range. Moreover, since σMD decreases in general with

the temperature, cf. Fig. 5.27, the MD correction factor at a given density decreases

as well (unless its value is already 1). Thus, while MD corrections are important at low

temperatures, they play a minor role at high temperatures.

5.2.5 Use of MD corrections with optimisation of the effective diam-

eters up to moderate densities

The σ in the MD correction factor Eq. (2.42) corresponds to the diameter of the

spheres when the correction factor is used in the Enskog-1σ model. In the Enskog-2σ

model, there is no such clear correspondence between σMD and the effective diameters

σα and σχ. The diameter σMD is neither directly related to the excluded volume nor

to the collision rate. In fact, the relations chosen in section 5.2.2 between σMD and

the effective diameters σα and σχ is arbitrary and purely empirical. Hence, including

the MD correction factor in the optimisation of σα and σχ, as done in section 5.2.2,

weakens the link of the diameters to the excluded volume and the collision rate. In

this section, we look at alternatives that do not include the MD correction factor in

the optimisation of σα and σχ and thus keep a full link between the effective diameters
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Figure 5.30: Magnitude of the MD correction factor for several isotherms versus the

density ρ. The Enskog-2σ model with σMD,mean is applied to argon.

and the excluded volume as well as the collision rate.

In Fig. 5.31, the effective diameters σα and σχ have been optimised up to

ρ∗ =
0.31

NAπ/6σ3
mean

with σmean =
σα + σχ

2
(5.8)

to minimise the maximum deviation between model and the experimental reference

correlation by (Lemmon & Jacobson, 2004) for argon. Up to ρ∗, no MD correction

factor is used such that the link between the effective diameters and the excluded

volume as well as the collision rate is kept fully. Furthermore, two alternatives are

investigated in Fig. 5.31:

(i) σMD is obtained from

σMD = σmean =: σMD,mean, (5.9)

(ii) σMD is optimised at each temperature by minimising the maximum deviation

between model and experimental reference correlation

σMD =: σMD,opti. (5.10)
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In both cases, we define the maximum density by

ρmax = min
(
ρys,mean , ρexp

)
where ρys,mean =

0.494

NAπ/6σ3
mean

. (5.11)

We find that ρexp ≤ ρys,mean such that the maximum density is actually given by the

maximum density of the experimental reference correlation. As the lower plot in Fig.

5.31 shows, the maximum deviation between model and experimental reference cor-

relation reaches a value of 22.7% for the choice σMD,mean. This deviation is relatively

large, so the approach with σMD,mean is deemed to lack correlative power for the density

range chosen. For the choice σMD,opti, the deviations between model and experimental

reference correlation remains below 10% for temperatures above 190K and reach their

peak value of 15.4% at the lowest temperature. The second approach provides more

correlative power but, with σMD,opti, an additional effective diameter has to be opti-

mised such that the approach requires the optimisation of three temperature dependent

diameters.

5.3 Liquid range

Up to now, we have applied the Enskog-2σ model to supercritical conditions. In this

section, we discuss how one can extend the model into the liquid range. Several simple

fluids are investigated over the temperature and pressure ranges shown in table 5.6.

As no data for sulphur fluoride was available, we included ethane and oxygen in our

analysis that are as well simple fluids with non-polar and fairly spherical molecules.

First, we investigate the extension of the Enskog-2σ model into the liquid range without

MD corrections. Then, we show that it is beneficial to make use of MD corrections

and describe ways how this can be done effectively. Finally, we investigate whether

the effective diameters exhibit a universal behaviour which could allow to predict the

viscosity of one fluid from the knowledge of the viscosity of a reference fluid.

5.3.1 Liquid range without MD corrections

We first apply the Enskog-2σ model without MD corrections to argon in the liquid

range. We distinguish three cases with a different choice for the maximum density:

ρmax,ys,α = min
(
ρys,α , ρexp

)
where ρys,α =

0.494

NAπ/6σ3
α

, (5.12)
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Figure 5.31: Extension of the Enskog-2σ model to high densities with optimisation of

σα and σχ up to moderate densities given by ρ∗ in Eq. (5.8). Upper plot: σα (solid black

line), σχ (dashed black line), σMD,mean (dash-dotted black line) and σMD,opti (dash-dotted

red line). Lower plot: Maximum deviation of the model with σMD,mean (black line) and the

model with σMD,opti (red line) from the experimental reference correlation by (Lemmon &

Jacobson, 2004).

ρmax,ys,χ = min
(
ρys,χ , ρexp

)
where ρys,α =

0.494

NAπ/6σ3
χ

, (5.13)

ρmax,ys,mean = min
(
ρys,mean , ρexp

)
where ρys,mean =

0.494

NAπ/6σ3
mean

. (5.14)

All approaches reproduce the experimental correlation within 10% (see the lower plot

in Fig. 5.32). Thus, the accuracy of the models is satisfactory, in particular, for the

approach with ρmax,ys,α which reproduces the experimental correlation within 2.6%.

The shortcoming of the models without MD corrections can be seen in the upper

plot of Fig. 5.32. The maximum densities of the models are clearly smaller than

the maximum density of the experimental correlation such that the density ranges

covered are relatively small. The reason for the small maximum densities is as follows:

neglecting the MD correction factor leads to a viscosity expression which underpredicts
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Table 5.6: Summary of the experimental reference correlations for simple fluids used in

the liquid range. The pressure range of the correlations extends from the vapour pressure

to the maximum pressure stated in the table.

Fluid Max. pressure (MPa) T-range (K) Viscosity correlation

Ar 400 90-150 (Lemmon & Jacobson, 2004)

CH4 100 115-190 (Vogel et al., 2000)

C2H6 60 250-305 (Hendl et al., 1994)

N2 100 85-125 (Lemmon & Jacobson, 2004)

CO2 300 270-300 (Vesovic et al., 1990; Fenghour et al., 1998)

O2 80 85-144 (Lemmon & Jacobson, 2004)

the viscosity of a hard sphere fluid. This results in comparatively large values of the

effective diameters (compare middle plot of Fig. 5.32 with the effective diameters

calculated in section 5.3.2) and leads according to Eqs. (5.12), (5.13), (5.14) to small

maximum densities.
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Figure 5.32: Application of the Enskog-2σ model without MD corrections to the liquid

range of argon. The model with maximum density ρmax,ys,χ , ρmax,ys,mean , ρmax,ys,α is

denoted by the black, red, green lines. The maximum density (upper plot), optimised

effective diameters (middle plot) and maximum deviation between model and experimental

reference correlation (lower plot) are plotted versus the reduced temperature. The cyan line

in the upper plot depicts the maximum density of the experimental reference correlation

for argon by (Lemmon & Jacobson, 2004).

5.3.2 Liquid range with MD corrections

The densities of the fluids under investigation are in general large in the liquid range.

In section 5.2.2, we have shown that, for the supercritical range, it is beneficial to

incorporate MD corrections in the Enskog-2σ model when the model is extended to

high densities. We will test now if the incorporation of MD corrections will also improve

the results in the liquid range. To do so, we make again use of the factor fMD, Eq.

(2.42), which is a function of the packing fraction only and thus depends on the effective

diameter σ chosen through y. Analogously to section 5.2.2, we denote the corresponding

σ as σMD and investigate the following choices:

• σMD = σχ =: σMD,χ,

• σMD = (σα + σχ)/2 =: σMD,mean.
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For a given choice of σMD, we define the maximum density ρmax consistently by

ρmax = min (ρys , ρexp) , where ρys =
0.494

NAπ/6σ3
MD

. (5.15)

The effective diameters σα and σχ are optimised by minimising the maximum deviation

between model and experimental reference correlation from the saturated liquid density

obtained from the correlations in table 5.6 to ρmax.
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Figure 5.33: Application of the Enskog-2σ model with σMD,mean to the liquid range of

argon. The maximum density (upper plot), optimised effective diameters (middle plot) and

maximum deviation between model and experimental reference correlation (lower plot) are

depicted versus the reduced temperature. In the middle plot, σα is denoted by the solid

lines and σχ by the dashed lines. The orange the upper plot shows the maximum density

of the experimental reference correlation for argon by (Lemmon & Jacobson, 2004).

In Fig. 5.33, we depict the results for argon and the choice σMD,mean. In comparison

to the results in the previous section, the maximum density for argon increases from 37.8

mol/l to 39.6 mol/l at T/Tc = 0.99 and from 32.4 mol/l to 36.1 mol/l at T/Tc = 0.7. The

increase in the maximum density leads in particular to an extension of the temperature

range from a minimum temperature of T/Tc = 0.7 to T/Tc = 0.6. According to the
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middle plot, σα decreases monotonically with the temperature (this behaviour is the

same as found before for the supercritical range; see, for example, Fig. 5.7) while

σχ increases monotonically with T . As the lower plot of the figure shows, the model

reproduces the liquid viscosity of argon with a maximum deviation of 6.6%. Fig. 5.34

presents the results of the model with σMD,mean for carbon dioxide, nitrogen, ethane and

oxygen. As the upper plot of the figure shows, the density range of the model extends

to the maximum density of the experimental correlation for methane if T/Tc ≥ 0.7

and, for the other four fluids, at all subcritical temperatures. According to the lower

plot in Fig. 5.34, the Enskog-2σ model with σMD,mean reproduces the liquid viscosity

of ethane, methane, oxygen, nitrogen and carbon dioxide with maximum deviations of

1.4%, 2.1%, 5.3%, 5.7% and 6.7%, respectively. The temperature dependence of the

corresponding effective diameters is shown in the middle plot of Fig. 5.34. For all

five fluids, σα decreases again monotonically with the temperature while σχ increases

monotonically with T except for oxygen for which σχ decreases monotonically with T .

The results of the Enskog-2σ model with the choice σMD,χ are shown in Fig. 5.35. The

density range of the model for argon increases in comparison to the choice σMD,mean

and extends now to the maximum density ρexp of the experimental correlation over the

whole temperature range. Furthermore, ρexp is reached for carbon dioxide, nitrogen,

oxygen and ethane over the whole temperature range and, for methane, for T/Tc ≥
0.63. According to the lower plot in Fig. 5.35, the Enskog-2σ model with σMD,χ

reproduces the viscosity of carbon dioxide, ethane, nitrogen, oxygen, methane and

argon within 2.1%, 2.5%, 2.7%, 3.9%, 4.1% and 4.6%, respectively. As the middle plot

of Fig. 5.35 shows, the effective diameters decrease with the temperature in general.

The exceptions are σα for methane, which increases with T from T/Tc = 0.78 to

T/Tc = 0.85, σχ for carbon dioxide, which increases with T from T/Tc = 0.89 to

T/Tc = 0.94, as well as σχ for oxygen from T/Tc = 0.55 to T/Tc = 0.62. All those

exceptions are found to be insignificant though. This has been tested as follows: in

the temperature interval in which the respective diameter increases with temperature,

we set the diameter constant and optimize the other diameter. This approach leads to

only marginally larger deviations between model and experimental reference correlation

which increase less than 0.5%. Consequently, the liquid viscosity of all fluids can be

modelled well within 5% by the Enskog-2σ model with the choice σMD,χ and effective

diameters that decrease monotonically with the temperature.
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Figure 5.34: Application of the Enskog-2σ model with σMD,mean to the liquid range of

carbon dioxide, nitrogen, methane, ethane and oxygen. The maximum density (upper

plot), optimised effective diameters (middle plot) and maximum deviation between model

and experimental reference correlation (lower plot) are depicted versus the reduced tem-

perature. In the middle plot, σα is denoted by the solid lines and σχ by the dashed lines.

The yellow line in the upper plot shows the maximum density of the experimental reference

correlation for methane by (Vogel et al., 2000).

Altogether, both approaches with MD corrections extend to larger densities than the

approaches without MD corrections. Moreover, we find that the Enskog-2σ model with

σMD,χ performs better than the model with σMD,mean because it (a) extends to higher

maximum densities and (b) reproduces the experimental correlation in general more

accurately. A further comparison of the accuracy of the models will be given in section

5.3.3 where the models are tested directly against primary experimental data.

The model with the choice σMD = σα has also been investigated. The main drawback

is that the model extends to relatively small maximum densities. For example, for

argon at T/Tc = 0.86, the maximum density is only 27.9 mol/l while it is 38.9 mol/l

and 39.3 mol/l for the models with σMD,mean and σMD,χ. Consequently, the model with

86



5.3 Liquid range

20

30

40
ρ m

ax
 (

m
ol

/l)

3.5

4

4.5

5

σ 
(Å

)

0.5 0.6 0.7 0.8 0.9 1
T/T

c

0

1

2

3

4

5

m
ax

. d
ev

ia
tio

n 
(%

)

Ar
CO

2

N
2

CH
4

C
2
H

6

O
2

Figure 5.35: Application of the Enskog-2σ model with σMD,χ to the liquid range of

argon, carbon dioxide, nitrogen, methane, ethane and oxygen. The maximum density

(upper plot), optimised effective diameters (middle plot) and maximum deviation between

model and experimental reference correlation (lower plot) are depicted versus the reduced

temperature. In the middle plot, σα is denoted by the solid lines and σχ by the dashed

lines. The yellow line in the upper plot shows the maximum density of the experimental

reference correlation for methane by (Vogel et al., 2000).

σMD = σα is also restricted to relatively large temperatures, for instance, T/Tc ≥ 0.86

for argon and T/Tc ≥ 0.79 for methane.

5.3.3 Comparison with primary experimental data

The Enskog-2σ model with the choice σMD,mean and the model with the choice σMD,χ

are applied to the primary experimental liquid data of argon in Fig. 5.36. The data

is reproduced within 5% except for three data points by (Haynes, 1973a) when the

model with σMD,χ is used. These data points, however, also deviate more than 4%

from the experimental reference correlation by (Lemmon & Jacobson, 2004) such that

the significance of those points is questionable. If we ignore the three data points, the
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model with the choices σMD,mean and σMD,χ perform similarly well. In Fig. 5.37, both

models are tested against the primary experimental liquid data of methane. Again,

both approaches perform similarly well except for two points by (Slyusar et al., 1974)

for which the deviations are larger than 5% when the model with σMD,χ is used. The

measured viscosity value at T = 138K by (Slyusar et al., 1974) where the largest

deviation of 5.9% occurs deviates also about 3.7% from the experimental reference

correlation by (Vogel et al., 2000) and hence its significance is questionable. Finally,

Fig. 5.38 shows the deviations between the two models and the primary experimental

liquid data of carbon dioxide. At temperatures above 295K, the model show about the

same accuracy in reproducing the primary data. This is despite the fact that the model

σMD,χ deviates from two points more than 6% because these measurements deviate also

more than 4.4% from the experimental reference correlations by (Vesovic et al., 1990;

Fenghour et al., 1998). At T = 280K, the model with σMD,χ correlates the data

by (Van der Gulik, 1997) clearly better than the model σMD,mean. This observation

agrees with the fact that, at lower temperatures, the model with σMD,χ reproduces the

experimental reference correlation better than the model with σMD,mean (compare Figs.

5.34 and 5.35).
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Figure 5.36: Application of the Enskog-2σ model to liquid primary experimental data of

argon by (Van Itterbeek et al., 1966) and (Haynes, 1973a). Plot (a) is for the model with

the choice σMD,mean, plot (b) for the choice σMD,χ.
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Figure 5.37: Application of the Enskog-2σ model to liquid primary experimental data

of methane by (Huang et al., 1966), (Haynes, 1973b), (Slyusar et al., 1974) and (Diller,

1980). Plot (a) is for the model with the choice σMD,mean, plot (b) for the choice σMD,χ.
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Figure 5.38: Application of the Enskog-2σ model to liquid primary experimental data of

carbon dioxide by (Michels et al., 1957), (Padua et al., 1994) and (Van der Gulik, 1997).

Plot (a) is for the model with the choice σMD,mean, plot (b) for the choice σMD,χ.
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5.3.4 Model sensitivity to the effective diameters

Next, we investigate the sensitivity of the models introduced in section 5.3.2 to the

effective diameters σα and σχ. The Enskog-2σ model with the choice σMD,mean is

analysed in Fig. 5.39. The best choices for the effective diameters lie on an almost

straight line. If one of the diameters is chosen with a reasonable value, the other

diameter has to be determined quite accurately to reproduce the experimental reference

correlation well. For argon, if σχ is chosen between 2.6Å and 2.85Å, σα can be varied

less than 0.9% to obtain deviations smaller than 7.5%, and if σα is chosen between 3.6Å

and 3.85Å, σχ can be varied less than 1.5% to obtain deviations smaller than 7.5%.

Analogously for methane, if σχ is chosen between 3.25Å and 3.6Å, σα can be varied

less than 0.8% to obtain deviations smaller than 7.5%, and if σα is chosen between 4.0Å

and 4.35Å, σχ can be varied less than 1.1% to obtain deviations smaller than 7.5%.

This situation is different to the one encountered in section 5.1.3 where the Enskog-2σ

model was applied without MD corrections to supercritical conditions up to moderate

densities and where the model was clearly more sensitive to σα than to σχ. That the

Enskog-2σ model with σMD,mean is sensitive to both effective diameters can be explained

as follows: at the highest density, the MD correction factor equals approximately 1.8

for methane at T/Tc = 0.75 and 2.0 for argon at T/Tc = 0.75. Thus, a good prediction

of the MD correction factor is important to reproduce the viscosity well. Both σ’s

appear to the power of 9 in the MD correction factor, Eq. (2.42). Consequently, the

value of the MD correction factor is equally sensitive to both effective diameters and

hence the Enskog-2σ model with σMD,mean is sensitive to both diameters.

The Enskog-2σ model with the choice σMD,χ is analysed in Fig. 5.40. Due to the

fact that the value of the MD correction factor depends here on σχ but not on σα,

the model is more sensitive to σχ than to σα. Both effective diameters have to be

determined fairly accurate though to correlate the viscosity within 5% as can be seen

from the rather small blue to dark-blue region in the figure.

In Fig. 5.41, we depict the sensitivity plots for argon at two further temperatures.

In the plot on the left hand side, we set T/Tc = 0.65, in the plot on the right hand

side, T/Tc = 0.9. The maximum deviation is shown between the Enskog-2σ model

with σMD,mean and the experimental reference correlation by (Lemmon & Jacobson,

2004). In both cases, the best choices of the effective diameters lie again on an almost
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5.3 Liquid range

Figure 5.39: Maximum deviation between the Enskog-2σ model with σMD,mean and

the experimental reference correlations at T/Tc = 0.75 for different values of the two

effective diameters σα and σχ. The colour represents the value of the maximum deviation.

Maximum deviations larger than 15% are depicted uniformly in dark red. (a) argon, (b)

methane.

straight line as in Fig. 5.39. Moreover, we find that the model sensitivity to the choice

of the effective diameters increases with increasing temperature. The reason being for

this observation is that, with increasing temperature, the density interval in which

we model the viscosity increases. For T/Tc = 0.65, the liquid densities extend from

33.2 mol/l to 36.9 mol/l, while for T/Tc = 0.9, the liquid densities range from 25.3

mol/l to 39.1 mol/l. For the same reason, the sensitivity Enskog-2σ model with σMD,χ

to the choice of the effective diameters increases with increasing temperature. The

corresponding results are shown in Fig. 5.42.
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Figure 5.40: Maximum deviation between the Enskog-2σ model with σMD,χ and the

experimental reference correlations at T/Tc = 0.75 for different values of the two effec-

tive diameters σα and σχ. The colour represents the value of the maximum deviation.

Maximum deviations larger than 15% are depicted uniformly in dark red. (a) argon, (b)

methane.

Figure 5.41: Maximum deviation between the Enskog-2σ model with σMD,mean and the

experimental reference correlation for argon and different values of the two effective diam-

eters σα and σχ. The colour represents the value of the maximum deviation. Maximum

deviations larger than 15% are depicted uniformly in dark red. (a) T/Tc = 0.65, (b)

T/Tc = 0.9.
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Figure 5.42: Maximum deviation between the Enskog-2σ model with σMD,χ and experi-

mental reference correlation for argon and different values of the two effective diameters σα

and σχ. The colour represents the value of the maximum deviation. Maximum deviations

larger than 15% are depicted uniformly in dark red. (a) T/Tc = 0.65, (b) T/Tc = 0.9.

5.3.5 Universal behaviour in the liquid range

In section 5.1.9, we have observed a universal behaviour of the effective diameters

for the Enskog-2σ model in the supercritical range up to moderate densities. This

allowed for the possibility of predicting the viscosity of one fluid from the knowledge of

another. In this section, we will investigate whether we can find a universal behaviour

for the effective diameters in the liquid range. We focus the analysis on the Enskog-2σ

model with σMD,χ which, according section 5.3.2, has performed best in correlating the

viscosity in the liquid range and has reproduced the experimental correlations of all six

fluids within 4.6% (see Fig. 5.35). As reference fluid, we choose argon again for which

the Enskog-2σ model covers a large temperature and pressure range (from T/Tc = 0.6

to T/Tc = 1.0 and from the vapour pressure to 400MPa). In the upper plot in Fig. 5.43,

we scale the σχ’s of carbon dioxide, nitrogen, methane, ethane and oxygen such that

they superimpose the one of argon and scale the σα’s with the same constant factor.

This approach is motivated by the fact that the model is more sensitive to σχ than

to σα (see section 5.3.4). Choosing the same length scaling factor for both effective

diameters leads to deviations up to 5.2% between the optimised σα of argon and the

scaled σα for methane. According to section 5.3.4, the Enskog-2σ model with σMD,χ is
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fairly sensitive to the choice of σα. Therefore, the deviations in σα are expected to lead

to larger deviations between model and experimental reference correlation for methane.
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Figure 5.43: Scaled effective diameters in the Enskog-2σ model with σMD,χ versus reduced

temperature T/Tc. The solid lines depict the scaled σα and the dashed lines the scaled

σχ. In the upper plot, both effective diameters are scaled with the same length scaling

parameter for a given fluid, in the lower plot, the effective diameters are scaled with two

different length scaling parameters for a given fluid.

As further computations show, independent of the choice of the scaling parameter,

we encounter indeed deviations up to at least 30% for methane. To obtain better

viscosity predictions, we allow for a second constant length scaling parameter with

which σα is scaled independently of σχ. We denote the length scaling parameters as

Lα as well as Lχ and scale the effective diameters as follows:

σα,x(T/Tc,x) = Lασα,Ar(T/Tc,Ar), (5.16)

σχ,x(T/Tc,x) = Lχσχ,Ar(T/Tc,Ar). (5.17)

By using two different length scaling parameters, the effective diameters of methane,
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5.3 Liquid range

nitrogen, carbon dioxide, ethane and oxygen can be superimposed with the ones of

argon with deviations less than 2% as the lower plot in Fig. 5.43 shows and we can

expect to reproduce the experimental viscosity reasonably well.
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Figure 5.44: Application of the Enskog-2σ model with σMD,χ to the liquid range of carbon

dioxide, nitrogen, methane, ethane and oxygen. The effective diameters in the upper plot

have been calculated by scaling the effective diameters of argon with the length scaling

parameters obtained by minimising the AAD over all subcritical conditions (see table 5.7

for the scaling parameters). σα is denoted by the solid lines and σχ by the dashed lines.

The lower plot shows the maximum deviation (solid lines) and AAD (dashed lines) between

model and experimental reference correlations versus the reduced temperature T/Tc.

We investigate two ways to obtain the length scaling parameters:

(i) choose the length scaling parameters to minimise the AAD between model and

the experimental reference correlation for all subcritical conditions, i.e., minimise

AAD =
∑

all data

|ηmodel − ηexp|
ηexp

. (5.18)

(ii) choose the length scaling parameters to minimise the AAD between model and

the experimental reference correlation along the isotherm at T ∗ = (Tc − Tlow)/2
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where Tlow is the lower bound of the temperature range stated in table 5.6 for

a given fluid. Note that, if Tlow/Tc < 0.6, i.e., if Tlow/Tc lies outside the range

of the reference correlation of argon, we set Tlowest = 0.6Tc (this is the case for

methane here).

Table 5.7: Length scaling parameters Lα and Lχ obtained by minimizing the AAD be-

tween the Enskog-2σ model and the experimental reference correlations. The maximum

deviations and AADs have been computed over the liquid range stated in table 5.6 for

T/Tc ≥ 0.6.

Fluid Model Lα Lχ Max. deviation (%) AAD (%)

CH4 all T 1.0545 1.0967 10.9 2.5

CH4 T = T ∗ 1.0478 1.1016 6.0 3.0

C2H6 all T 1.2531 1.2254 4.9 0.6

C2H6 T = T ∗ 1.2515 1.2285 5.3 0.6

N2 all T 1.0601 1.0537 8.5 1.1

N2 T = T ∗ 1.0625 1.0521 6.4 1.2

CO2 all T 1.0727 1.0823 6.8 2.0

CO2 T = T ∗ 1.0765 1.0794 9.0 2.0

O2 all T 0.9758 0.9768 5.7 0.8

O2 T = T ∗ 0.9680 0.9829 8.4 2.0

Table 5.7 presents the values of the scaling parameters obtained in each case together

with how well the viscosity of each fluid is predicted as measured by the AAD and the

maximum deviation. Fig. 5.44 and Fig. 5.45 illustrate the deviations for case (i) and

(ii) observed for carbon dioxide, nitrogen, methane, ethane and oxygen as a function

of the reduced temperature. In both cases, the density range covered by the model

reaches for all fluids from the saturated liquid density to the maximum density ρexp of

the experimental reference correlations given in table 5.6. As summarised in table 5.7,

the experimental viscosity correlations are reproduced fairly well with AADs smaller

than 3% (as computed from Eq. (5.18)) and maximum deviations smaller than 10.9%.

Case (ii) leads to larger AADs than case (i) as the AAD is minimised just along one

isotherm, however, in terms of the maximum deviations, both approaches perform

96



5.3 Liquid range

similarly well. For case (ii), we validate the model against primary viscosity data in

the next section.
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Figure 5.45: Maximum deviation (solid lines) and AAD (dashed lines) between Enskog-2σ

model with σMD,χ and experimental reference correlations versus the reduced temperature

T/Tc for carbon dioxide, nitrogen, methane, ethane and oxygen. The effective diameters

have been calculated by scaling the effective diameters of argon with the length scaling

parameters obtained from the isotherm along T ∗ (see table 5.7 for the scaling parameters).

5.3.6 Comparison with primary experimental data

The Enskog-2σ model from section 5.3.5 with scaling parameters obtained from one

isotherm (case (ii)) is compared to primary experimental data of methane, ethane

and carbon dioxide. The results for methane are shown in Fig. 5.46. The model

reproduces the primary experimental data of methane within 11%. In general, the

model overestimates the viscosity at low temperatures as well as high densities and

underestimates the viscosity at high temperatures as well as low densities. The same

trends are found for ethane according to Fig. 5.47. The primary data of ethane is
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reproduced within 7.8%. As shown in Fig. 5.48, the model correlates the data of

carbon dioxide within 6.4%. As for methane and ethane, the model underestimates the

experimental viscosity at low densities for the data set by (Van der Gulik, 1997).

-10

-5

0

5

10
0(

η m
od

el
-η

ex
p)/

η ex
p (

%
) 

100 120 140 160 180
T (K)

-4

-3

-2

-1

0

1

2

10
0(

η co
rr
-η

ex
p)/

η ex
p (

%
)

15 20 25 30
ρ (mol/l)

Figure 5.46: Upper plots: Percentage viscosity deviations, 100(ηmodel − ηexp)/ηexp, be-

tween the Enskog-2σ model with length scaling parameters from case (ii) in section 5.3.5

summarised in table 5.7 to liquid primary experimental data of methane. Lower plots:

Percentage viscosity deviations, 100(ηcorr− ηexp)/ηexp, between the experimental reference

correlation for methane by (Vogel et al., 2000) and the primary experimental data sets. On

the left hand side, the deviations are depicted versus the temperature, on the right hand

side, versus the density. The black dots refer to the primary experimental data by (Huang

et al., 1966), the red squares to the data by (Haynes, 1973a), the green diamonds to the

data by (Slyusar et al., 1974), the blue triangles to the data by (Diller, 1980).
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Figure 5.47: Upper plots: Percentage viscosity deviations, 100(ηmodel − ηexp)/ηexp, be-

tween the Enskog-2σ model with length scaling parameters from case (ii) in section 5.3.5

summarised in table 5.7 to liquid primary experimental data of ethane. Lower plots: Per-

centage viscosity deviations, 100(ηcorr − ηexp)/ηexp, between the experimental reference

correlation for ethane by (Hendl et al., 1994) and the primary experimental data sets. On

the left hand side, the deviations are depicted versus the temperature, on the right hand

side, versus the density. The black dots refer to the primary experimental data by (Baron

et al., 1959), the red squares to the data by (Swift et al., 1960), the green diamonds to the

data by (Eakin et al., 1962), the blue triangles to the data by (Carmichael & Sage, 1963a),

the violet pluses the data by (Diller & Saber, 1981), the cyan stars the data by (Diller &

Ely, 1989).
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Figure 5.48: Upper plots: Percentage viscosity deviations, 100(ηmodel − ηexp)/ηexp, be-

tween the Enskog-2σ model with length scaling parameters from case (ii) in section 5.3.5

summarised in table 5.7 to liquid primary experimental data of carbon dioxide. Lower plots:

Percentage viscosity deviations, 100(ηcorr− ηexp)/ηexp, between the experimental reference

correlation for carbon dioxide by (Fenghour et al., 1998) and the primary experimental

data sets. On the left hand side, the deviations are depicted versus the temperature, on

the right hand side, versus the density. The black dots refer to the primary experimental

data by (Michels et al., 1957), the red squares to the data by (Padua et al., 1994), the

green diamonds to the data by (Van der Gulik, 1997).

5.4 Full temperature range

The Enskog-2σ model has been applied to supercritical conditions in section 5.1 and

to liquid conditions in section 5.3. In this section, we will discuss the application of

the Enskog-2σ model over the full temperature range shown in table 5.8 which extends

from low temperatures in the liquid range up to high temperatures in the supercritical

range. For example, the temperature range covered for argon extends from T/Tc = 0.6

to T/Tc = 4.6 and, for nitrogen, from T/Tc = 0.67 to T/Tc = 4.8. We will also
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5.4 Full temperature range

investigate whether one can observe a conformal behaviour of the effective diameters

over the whole temperature range.

Table 5.8: Summary of viscosity correlations used for the full temperature range.

Fluid P-range (MPa) T-range (K) Viscosity correlation

Ar 0-400 90-700 (Lemmon & Jacobson, 2004)

CH4 0-100 115-600 (Vogel et al., 2000)

C2H6 0-60 250-500 (Hendl et al., 1994)

N2 0-100 85-600 (Lemmon & Jacobson, 2004)

CO2 0-300 270-700 (Vesovic et al., 1990; Fenghour et al., 1998)

O2 0-80 85-700 (Lemmon & Jacobson, 2004)

5.4.1 Viscosity correlation over the full temperature range

The Enskog-2σ model with σMD,χ from section 5.3.2 has successfully correlated the

viscosity of argon, methane, ethane, nitrogen, carbon dioxide and oxygen within 5%

in the liquid range and will serve as model of choice to be applied over the full tem-

perature range. To achieve this, the model has to be extended in the supercritical

range. Hitherto, the effective diameters are optimised at supercritical temperatures by

minimising the maximum deviation between model and experimental correlation from

the zero density limit up to the maximum density given by

ρmax = min (ρys , ρexp) , where ρys =
0.494

NAπ/6σ3
χ

. (5.19)

As the upper plot of Fig. 5.49 shows, the maximum density is for all fluids and temper-

atures equal to the maximum density ρexp of the experimental correlation. The only

exception is ρmax of methane for T/Tc ≤ 0.63 (see also Fig. 5.35). The maximum

deviations between model and experimental reference correlations are depicted in the

lower plot. The Enskog-2σ model with σMD,χ succeeds in correlating the viscosity fairly

well over the whole temperature range with maximum deviations of 4.7%, 6.2%, 6.3%,

6.4%, 6.6%, 9.7% for nitrogen, methane, carbon dioxide, ethane, oxygen and argon.

The corresponding effective diameters will be investigated in more detail in section

5.4.2.
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Figure 5.49: Application of the Enskog-2σ model with σMD,χ to the full temperature

range of argon, carbon dioxide, nitrogen methane, ethane and oxygen. The maximum

density (upper plot) and maximum deviation between model and experimental reference

correlation (lower plot) are plotted versus the reduced temperature T/Tc.

5.4.2 Behaviour of the effective diameters

As we can see in Fig. 5.50, the effective diameters change their behavior around the

critical temperature Tc. The diameter σα decreases steeply at the transition from the

supercritical to the subcritical range, while σχ increases rapidly. Also, the curvature

of the effective diameters changes markedly from the supercritical to the subcritical

regime. Nevertheless, in Fig. 5.51, we attempt to superimpose the effective diameters

in Fig. 5.50 with the ones of argon. Although the diameters of a given fluid have

been scaled with two different length scaling parameters, larger deviations between the

diameters of argon and the scaled diameters of the other fluids are observed: for σα,

the deviations extend up to 4.2% for methane, for σχ, deviations up to 7.3%, 8.0%,

10.2% are encountered for nitrogen, oxygen and methane. Considering the sensitivity

of the Enskog-2σ model with σMD,χ investigated in section 5.3.4 for the liquid range,
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these deviations are expected to lead to large deviations in viscosity. Indeed, according

to further computations, obtaining the effective diameters over the whole temperature

range for a given fluid by scaling the effective diameters of argon with two different

length scaling parameters leads to deviations up to 11.2%, 12.5%, 30.1% for ethane,

oxygen and methane.
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Figure 5.50: Effective diameters of the Enskog-2σ model with σMD,χ versus the reduced

temperature T/Tc. The solid lines depict the optimised σα’s and the dashed lines the

optimised σχ’s.
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Figure 5.51: Scaled effective diameters of the Enskog-2σ model with σMD,χ versus the

reduced temperature T/Tc. The solid lines depict the scaled σα’s and the dashed lines the

scaled σχ’s. The effective diameters are scaled with two different length scaling parameters

for a given fluid to superimpose the effective diameters of argon.

5.4.3 Choice of the length scaling parameters

Instead of using one set of scaling parameters for the whole temperature range, we

recommend to use two different sets of scaling parameters, one for the liquid range and

another one at supercritical conditions. The length scaling parameters for the liquid

range are given in table 5.7 and the parameters for the supercritical range in table 5.9.

The latter have been calculated by minimising the maximum deviation between the

Enskog-2σ model with σMD,χ and the experimental reference correlations in table 5.8

for temperatures T ≥ Tc. According to table 5.9, the Enskog-2σ model with σMD,χ and

scaled diameters reproduces the viscosity of all fluids within 8.1% in the supercritical

range from the dilute gas limit to the maximum density of the experimental reference

correlations. In addition, Figures 5.52 and 5.53 show that the model reproduces the
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primary experimental data of methane within 6% and the ethane data within 8.6%.

The data points of ethane that deviate more than 7% from the model deviate also more

than 3.5% from the experimental correlation by (Hendl et al., 1994).

Table 5.9: Length scaling parameters Lα and Lχ obtained by minimising the maximum

deviation between the Enskog-2σ model with σMD,χ and the experimental correlations in

table 5.8 for supercritical temperatures T ≥ Tc.

Fluid Lα Lχ Max. deviation (%) AAD (%)

CH4 1.0831 1.0266 8.1 2.0

C2H6 1.1614 1.2745 5.9 2.0

CO2 1.0793 1.0723 6.3 2.7

N2 1.0577 1.0401 3.7 1.4

O2 0.9814 0.9680 4.4 2.0
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Figure 5.52: Upper plots: Percentage viscosity deviations, 100(ηmodel − ηexp)/ηexp, be-

tween the Enskog-2σ model with σMD,χ and scaled σ’s by the scaling parameters from table

5.9 with primary experimental data of methane. Lower plots: Percentage viscosity devia-

tions, 100(ηcorr − ηexp)/ηexp, between the experimental reference correlation for methane

by (Vogel et al., 2000) and the primary experimental data sets. On the left hand side, the

deviations are depicted versus the temperature, on the right hand side, versus the density.

The black dots refer to the primary experimental data by (Meshcheryakov & Golubev,

1954), the red squares to the data by (Iwasaki & Takahashi, 1959), the green diamonds to

the data by (Kestin & Leidenfrost, 1959), the blue triangles to the data by (Barua et al.,

1964), the violet pluses to the data by (Giddings et al., 1966), the cyan stars to the data

by (Kestin & Yata, 1968), the orange triangles to the data by (Hongo et al., 1988), the

dark green triangles to the data by (Schley et al., 2004).
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Figure 5.53: Upper plots: Percentage viscosity deviations, 100(ηmodel − ηexp)/ηexp, be-

tween the Enskog-2σ model with σMD,χ and scaled σ’s by the scaling parameters from

table 5.9 with primary experimental data of ethane. Lower plots: Percentage viscosity de-

viations, 100(ηcorr − ηexp)/ηexp, between the experimental reference correlation for ethane

by (Hendl et al., 1994) and the primary experimental data sets. On the left hand side, the

deviations are depicted versus the temperature, on the right hand side, versus the density.

The black dots refer to the primary experimental data by (Baron et al., 1959), the red

squares to the data by (Eakin et al., 1962), the green diamonds to the data by (Carmichael

& Sage, 1963a), the blue triangles to the data by (Diller & Saber, 1981), the violet pluses

to the data by (Diller & Ely, 1989).
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5.5 Conclusions

In this chapter, we have applied the Enskog-2σ model by analysing the viscosity of

seven simple fluids (Ar, CH4, C2H6, N2, CO2, O2, SF6). First, we limited our analysis

to the supercritical region from the dilute gas limit up to moderate densities. The

Enskog-2σ model correlates the viscosity of Ar, CH4, N2, CO2 and SF6 within the ac-

curacy of the experimental reference correlations. Thus, in terms of correlative power,

the Enskog-2σ model is superior to other approaches based on Enskog theory. This is

not simply a result of using two rather than one fitting parameter, but primarily a re-

sult of correcting for two independent assumptions made in deriving Enskogs equation.

The ability of the Enskog-2σ model to reproduce viscosity within the accuracy of an

experimental correlation for each fluid studied is an important confirmation that our

choice of effective diameters correctly describes the underlying physics. The success of

the VW method (Vesovic & Wakeham, 1989b; Royal et al., 2003; de Wijn et al., 2008)

for predicting the viscosity of mixtures, that implicitly uses the same two effective di-

ameters, gives further support to their physical significance. It is found that the σα

obtained from the VW method at the switch-over density deviates less than 1.3% from

the σα in the Enskog-2σ model and hence gives a good estimate for σα. The effective

diameter σα exhibits a monotonic decrease with temperature for all fluids studied. If

plotted as a function of reduced temperature, σα exhibits a universal behaviour, which

can be made conformal by use of a single, length-scaling parameter. The effective di-

ameter σχ exhibits less regular behaviour, although the real behaviour is masked by

the uncertainty in obtaining σχ from current viscosity correlations. Based on the uni-

versal behaviour of the effective diameter σα, we have developed a general model that

allows the prediction of the viscosity of one fluid from the knowledge of viscosity of

a reference fluid. Using argon as our reference fluid and obtaining the length scaling

parameter from the knowledge of the viscosity along a single isotherm, the accuracy of

the viscosity prediction is similar to the uncertainty of the original correlation over its

entire supercritical range. Estimating the scaling parameter from thermodynamic or

zero-density viscosity formulations in most cases leads to poor predictions of viscosity.

The Enskog-2σ model was also successfully applied to thermal conductivity. The effec-

tive diameter σα decreased as for viscosity monotonically with the temperature while

σχ exhibited a more varied behaviour.
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Next, we have demonstrated that the use of the correction factor by (Sigurgeirsson

& Heyes, 2003) obtained from molecular dynamics (MD) simulations allows to extend

the Enskog-2σ model to higher densities. For this analysis, the experimental reference

correlation of argon by (Lemmon & Jacobson, 2004) is used which extends to very high

pressures of 400 MPa. The MD correction factor is a function of the packing fraction y

only and hence depends on the effective diameter σMD chosen through y. The choices

(σα + σχ)/2,
√
σασχ, σχ for σMD lead all to similar results and allow to correlate the

viscosity of argon within 11.2% up to very high pressures and densities. An alternative

approach which consists in optimising σMD independently of σα and σχ reproduces the

viscosity of argon within 15.4%. The advantage of the approach is that σα and σχ are

optimised without the use of an empirical correlation of the two diameters in the MD

correction factor such that the link between the effective diameters and the excluded

volume as well as the collision rate is kept fully. The disadvantage is that with σMD a

third temperature dependent diameter needs to be optimised.

The Enskog-2σ has been extended to the liquid range and validated against the refer-

ence correlations for Ar, CH4, C2H6, N2, CO2 and O2. As the densities in the liquid

range are generally high, the use of MD corrections is found to be beneficial. The

MD corrections were successfully incorporated with the choices (σα + σχ)/2 and σχ

for σMD reproducing the experimental reference correlations with maximum deviations

less than 6.7% and hence almost within the accuracy of the correlations. The effective

diameter σα decreases monotonically with the temperature, while the behaviour of σχ

is again more complex and depends on the choice σMD and the fluid. We have further

demonstrated that, in the liquid range, the effective diameters of CH4, C2H6, N2, CO2

and O2 plotted versus the reduced temperature can be superimposed reasonably well

with the diameters of argon when for each effective diameter a different constant length

scaling parameter is used. The length scaling parameters can be obtained from a single

isotherm such that the experimental correlations of CH4, C2H6, N2, O2 and CO2 are

reproduced with maximum deviations less than 9.0%.

Finally, we have applied the Enskog-2σ with the choice σMD = σχ over the full temper-

ature range which extends from low temperatures in the liquid phase to high tempera-

tures in the supercritical phase. The model correlates the viscosity of Ar, CH4, C2H6,

N2, CO2 and O2 within 9.7% at all conditions. We have not been able to find a univer-

sal behaviour of the effective diameters over the full temperature range though. The
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5. RESULTS FOR SIMPLE FLUIDS

diameters change in general their behaviour at the transition of liquid and supercritical

phase. However, in each phase separately, the effective diameters exhibit a universal

behaviour. Hence, we recommend two sets of length scaling parameters, one for the

liquid phase and one for the supercritical phase. When the effective diameters in the

supercritical phase are obtained via two constant length scaling parameters from the

diameters of argon, the model correlates the experimental correlations of N2, O2, C2H6,

CO2 and CH4 with maximum deviations less than 8.1%.
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6

Results for alkanes

Flow processes involving alkanes are ubiquitous in nature and industrial processes,

especially, within the petroleum industry. Examples are oil and gas recovery from

reservoir rocks and transport of alkane rich fluids through pipelines. In those flow

processes, the viscosity of the alkanes is one of key properties and hence modelling

this property is of great interest. By extending the Enskog-2σ model to alkanes in this

chapter, we introduce a new model for the viscosity of alkanes. Being based on Enskog’s

theory, the Enskog-2σ model possesses a theoretical foundation. First, the Enskog-2σ

model is applied to alkanes at supercritical conditions up to moderate densities. Then,

we discuss how the model can be extended to high densities and into the liquid range.

6.1 Supercritical temperature range

The Enskog-2σ model based on the modification of Enskog’s viscosity expression for

chain fluids by (de Wijn et al., 2008) has been introduced in chapter 4. As for simple

fluids, we apply the model at supercritical conditions up to moderate densities first.

We investigate how well the Enskog-2σ model correlates the experimental reference

correlations stated in table 6.1 and discuss how the number of free parameters can be

reduced. Next, we evaluate the model directly against primary experimental viscosity

data. Extensions of the model to higher densities are analysed in the last section.
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6. RESULTS FOR ALKANES

Table 6.1: Summary of experimental reference correlations for alkanes at supercritical

conditions.

Fluid P-range (MPa) T-range (K) Viscosity correlation

C2 0-60 310-500 (Hendl et al., 1994)

C3 0-100 370-475 (Vogel et al., 1998)

C4 0-70 425-500 (Vogel et al., 1999)

C6 0-100 510-600 (McLinden et al., 2010)

C8 0-100 570-600 (Huber et al., 2004)

6.1.1 Correlative power and behaviour of the model parameters

In this section, we apply the Enskog-2σ model to alkanes at supercritical temperatures

up to moderate densities. As outlined in section 4.1, the free parameters in the model

are the two effective temperature-dependent chain lengths mα and mχ. The effective

diameter σα is set equal to the σα of methane at the same temperature. The corre-

sponding σα has been depicted in Fig. 5.7. The effective diameter σχ is obtained from

the other effective parameters via the chain length constraint equation:

σχ = σα
mα − 1

mχ − 1
. (6.1)

The maximum density ρmax is defined via

ρmax = min(ρexp, ρ
∗) (6.2)

where ρ∗ is given by

ρ∗ = ρmax,C1

ρc,Cn

ρc,C1

(6.3)

with the maximum density ρmax,C1 of methane shown in Fig. 6.1 evaluated at the

same reduced temperature T/Tc as ρmax. ρc,C1 and ρc,Cn depict the critical densities of

methane and the respective alkane. We compute ρ∗ from Eq. (6.3) to limit the model

to moderate densities such that MD corrections can be neglected in the first instance.

At a given temperature, both effective chain lengths are optimised to minimise the

maximum deviation between model and the experimental reference correlation from

the dilute gas limit up to ρmax shown in the upper plot of Fig. 6.2. The optimised m’s
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6.1 Supercritical temperature range

are shown in the middle plot of the figure. With increasing carbon number, the chain

lengths increase.
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Figure 6.1: Maximum density ρmax,C1 of methane versus reduced temperature.

The exception is the mχ of butane which is smaller than mχ of propane for T/Tc ≥
1.15. Moreover, for a given alkane and reduced temperature mχ is larger than mα.

Again, butane is the exception for T/Tc ≥ 1.09. We will see in section 6.1.2 that we

can choose the chain lengths of butane such that the relation mχ > mα holds true, no

crossover with the m’s of propane occurs, and the viscosity of butane is reproduced well

within 6.5%. Thus, the anomalous behaviour of the chain lengths of butane in Fig. 6.2 is

deemed irrelevant in practice. Another important observation is that the m’s of ethane,

propane, pentane and hexane depend only slightly on the temperature. This result will

be used in section 6.1.2 to reduce the number of free model parameters. According

to the lower plot of Fig. 6.2 the viscosity of ethane, propane, butane and hexane is

correlated within 4% and the viscosity of octane within 6%. The corresponding AAD’s

averaged over all supercritical temperatures are 0.72%, 0.54%, 0.51%, 0.39%, 2.1% for

ethane, propane, butane, hexane and octane. Taking into account that the uncertainty

113



6. RESULTS FOR ALKANES

of the experimental reference correlations is ±5%, these deviations are relatively small.

The upper plot in Fig. 6.3 shows the effective diameter σχ as obtained from the chain

length constraint equation (6.1) from σα and the effective chain lengths. The behaviour

of σχ is varied and does not follow any systematic trend. The same has been observed

for simple fluids in section 5.1.4. As for simple fluids, the varied behaviour of σχ can

be attributed to the fact that the model is fairly insensitive to the value of σχ. It is

worth noting that the product σχmχ, as depicted in the lower plot in Fig. 6.3, shows

physically reasonable behaviour. It decreases slightly with temperature and increases

as expected with increasing carbon number.
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Figure 6.2: Application of the Enskog-2σ model to alkanes up to moderate densities at

supercritical temperatures. The upper plot shows ρmax versus the reduced temperature

T/Tc, the middle plot the effective chain lengths (mα by the solid lines, mχ by the dashed

ones) and the lower plot the maximum deviation between model and the experimental

reference correlations given in table 6.1.
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Figure 6.3: Upper plot: Effective diameter σχ corresponding to Fig. 6.2 versus the

reduced temperature T/Tc. Lower plot: the product σχmχ versus T/Tc.

6.1.2 Results for constant chain lengths

As observed in section 6.1.1, the chain lengths of ethane, propane, pentane and hexane

vary only slightly with the temperature. In this section, we will assume that the chain

lengths are temperature independent and test the correlative power of the resulting

approach. This approach has the advantage that the number of free model parameters

reduces to only two constant chain lengths. We obtain the constant chain lengths by

minimising the maximum deviation between model and experimental reference corre-

lation along the isotherm at the temperature Tmean. The temperature Tmean is equal to

the temperature in the middle of the supercritical T -range of the experimental corre-

lations for a given alkane. The temperature ranges of the correlations can be found in

table 6.1. The optimised chain lengths are depicted in the upper plot of Fig. 6.4. The

chain length mχ is found to be larger than mα for all alkanes. This holds true as well

for butane, although both chain lengths have almost the same value here. As expected,

the chain lengths increase with increasing carbon number. According to the lower plot

of the figure, the model reproduces the experimental correlation of ethane, propane, bu-

tane, hexane, octane within 6.4%, 2.8%, 6.3%, 5.8%, 6.4%. The corresponding AAD’s

averaged over all supercritical temperatures are 1.2%, 0.7%, 1.9%, 1.3%, 2.7%.
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6. RESULTS FOR ALKANES

Table 6.2: Chain length mχ for a series of alkanes when mα is obtained from Eq. (6.4).

Fluid mχ

C2 1.69

C3 1.85

C4 2.28

C6 2.65

C8 4.09

2

3

4

m

C
2

C
3

C
4

C
6

C
8

1 1.2 1.4 1.6 1.8
T/T

c

0

2

4

6

m
ax

. d
ev

ia
tio

n 
(%

) 

Figure 6.4: Application of the Enskog-2σ model to alkanes up to moderate densities at

supercritical temperatures. The temperature-independent chain lengths are shown in the

upper plot. mα is given by the solid lines, mχ by the dashed ones. The lower plot depicts

the maximum deviation between model and the experimental reference correlations given

in table 6.1.
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6.1 Supercritical temperature range

In Fig. 6.5, the chain length mα is plotted against the carbon number N . We

find that mα depends almost linearly on the carbon number. A linear fit results in the

straight black line in Fig. 6.5. The linear relationship between N andmα corresponding

is given by

mα = 0.93 + 0.29N. (6.4)

If we computemα from this relationship and obtainmχ by minimising the maximum

deviation between model and experimental reference correlation along the isotherm at

Tmean, we get the results in Fig. 6.6. According to the lower plot of the figure, the

model reproduces the experimental correlation of ethane, propane, butane, hexane,

octane within 7.2%, 2.8%, 9.3%, 6.2%, 6.4%. The corresponding AAD’s averaged over

all supercritical temperatures are 1.4%, 1.1%, 3.0%, 2.2%, 2.9%. Overall, the accuracy

of the model seems to be satisfactory. A more detailed test of the model accuracy will

be given in section 6.1.3 where we evaluate the approach directly against the primary

experimental data. The chain length mχ, shown in the upper plot of Fig. 6.6, does not

follow a simple relationship with the carbon number. Table 6.2 summarises the values

of mχ.

For methane where N = 1, Eq. (6.4) yieldsmα = 1.22, i.e., methane is not modelled

as sphere and hence Eq. (6.4) is not physically meaningful in the limit N = 1. This can

be explained as follows: n-alkanes are not composed of CH4 molecules for n > 1 but of

CH2 and CH3 groups. This discrepancy leads to values of mα that do not extrapolate

to 1 in the limit N = 1. If we impose the physically meaningful limit mα = 1 for

N = 1, the best linear fit for mα is represented by the dashed line in Fig. 6.5 which

follows the expression

mα = 0.665 + 0.335N. (6.5)

If we compute mα from this relationship and calculate mχ as before by minimising the

maximum deviation between model and experimental reference correlation along the

isotherm at Tmean, we obtain the results in Fig. 6.7. The imposition of the physically

meaningful limit mα = 1 for N = 1, has the disadvantage that the model reproduces

the viscosity of the short alkanes ethane and propane rather poorly. The maximum

deviations between model and experimental reference correlations extend up to 17.2%

and 13.1% for ethane and propane with corresponding AAD’s of 9.8% and 7.2%.
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Figure 6.5: Chain length mα versus the carbon number. The red dots depict mα from

Fig. 6.4, the black solid line the best linear fit for mα and the black dashed line the best

linear fit when mα = 1 for a carbon number of 1.

Butane, hexane and octane, on the contrary, are reproduced satisfactorily well with

maximum deviations of 7.7%, 6.1% and 8.1% and corresponding AAD’s of 2.0%, 2.1%

and 3.4%. Eq. (6.5) resembles closely the chain length expression

m = 2/3 + 1/3N (6.6)

which is obtained within the SAFT-HS approach, when the critical properties of alkanes

are modelled (Jackson & Gubbins, 1989), and from viscosity data in the work by

(de Wijn et al., 2008). Moreover, the slope of approximately 1/3 in Eq. (6.5) can

be rationalized by the fact that the carbon-carbon bond length in n-alkanes is roughly

a third of the diameter of a methane molecule, see again (de Wijn et al., 2008).
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Figure 6.6: Application of the Enskog-2σ model to alkanes up to moderate densities

at supercritical temperatures with mα from Eq. 6.4. The chain length mχ is shown in

the upper plot. The lower plot depicts the maximum deviation between model and the

experimental reference correlations given in table 6.1.
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Figure 6.7: Application of the Enskog-2σ model to alkanes up to moderate densities

at supercritical temperatures with mα from Eq. 6.5. The chain length mχ is shown in

the upper plot. The lower plot depicts the maximum deviation between model and the

experimental reference correlations given in table 6.1.
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6.1.3 Comparison with primary experimental data

In section 6.1.2, we have found that the Enskog-2σ model with mα from Eq. (6.4) and

the optimised mχ from table 6.2 correlates the experimental viscosity correlations from

ethane up to octane reasonable well within 10%. Here, we validate the model directly

against the primary viscosity data. Fig. 6.8 shows the results for ethane. The bulk

of the data is reproduced with deviations less than 5%. A couple of data points by

(Diller & Saber, 1981) deviate more than 5% from the model. These measurements

show also larger deviations (from 2.4% to 5.8%) from the experimental reference cor-

relation by (Hendl et al., 1994). It is interesting to compare these data points with the

newer viscosity measurements by (Diller & Ely, 1989) which are measured at the same

temperature.

120



6.1 Supercritical temperature range

Table 6.3: Primary viscosity data sets of ethane, propane and butane based on (Hendl

et al., 1994), (Vogel et al., 1998) and (Vogel et al., 1999), respectively.

Fluid Data set P-range (MPa) T-range (K)

C2 (Baron et al., 1959) 0.7-55.1 325-408

C2 (Eakin et al., 1962) 0.7-55.1 311-444

C2 (Carmichael & Sage, 1963a) 0.1-36 311-478

C2 (Diller & Saber, 1981) 0.6-10 320

C2 (Diller & Ely, 1989) 1.7-55 319-500

C3 (Starling et al., 1960) 0.7-55.1 298-411

C3 (Carmichael et al., 1964) 0.24-34.4 278-478

C3 (Giddings et al., 1966) 0.7-55.2 278-378

C4 (Dolan et al., 1963) 0.7-55.2 311-444

C4 (Carmichael & Sage, 1963b) 0.23-35.3 278-433

The data points lie in the pressure range from 0.6 to 3.2 MPa and the density range

from 0.23 to 1.6 mol/l. The data set by (Diller & Ely, 1989) contains a measurement

at 0.7 mol/l which is reproduced by the model with a deviation of only −0.2%. Thus,

the significance of the data points by (Diller & Saber, 1981) with larger deviations is

questionable. The only other point which deviates more than 5% from the model is

the measurement by (Eakin et al., 1962) at 477.6K and 12.2 mol/l with a deviation of

−6.4%. The point occurs near the maximum density of the model at which, according

to Fig. 6.6, the deviation between model and the experimental correlation by (Hendl

et al., 1994) also extends to about 6%. As the upper right plot of Fig. 6.8 shows, the

model underestimates the primary experimental viscosity data at high densities ρ and

the errors increase with increasing ρ.

As Fig. 6.9 shows, the primary experimental data for propane is described very well

with deviations less 3.5% by the model. Fig. 6.10 depicts the results for butane. Most

of the data is reproduced within 5% by the model. The exception are the three data

points by (Carmichael & Sage, 1963b) all of which have been measured at 433.15K and

4.6 mol/l.
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Figure 6.8: Upper plots: Percentage viscosity deviations, 100(ηmodel−ηexp)/ηexp, between

the Enskog-2σ model with mα from Eq. (6.4) and optimised mχ from table 6.2 and the

primary experimental data sets for ethane listed in table 6.3. Lower plots: Percentage

viscosity deviations, 100(ηcorr − ηexp)/ηexp, between the experimental reference correlation

for ethane by (Hendl et al., 1994) and the primary experimental data sets. On the left hand

side, the deviations are depicted versus the temperature, on the right hand side, versus the

density. The black dots refer to the primary experimental data by (Baron et al., 1959),

the red squares to the data by (Eakin et al., 1962), the green diamonds to the data by

(Carmichael & Sage, 1963a), the blue triangles to the data by (Diller & Saber, 1981), the

violet pluses to the data by (Diller & Ely, 1989).

The measurements differ from each other up to 2% and the point with the largest

deviation of −7.3% from the model deviates as well by −5.1% from the experimental

correlation by (Vogel et al., 1999). Consequently, the significance of these three data

points appears questionable.
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Figure 6.9: Upper plots: Percentage viscosity deviations, 100(ηmodel−ηexp)/ηexp, between

the Enskog-2σ model with mα from Eq. (6.4) and optimised mχ from table 6.2 and the

primary experimental data sets for propane listed in table 6.3. Lower plots: Percentage

viscosity deviations, 100(ηcorr − ηexp)/ηexp, between the experimental reference correlation

for propane by (Vogel et al., 1998) and the primary experimental data sets. On the left

hand side, the deviations are depicted versus the temperature, on the right hand side,

versus the density. The black dots refer to the primary experimental data by (Starling

et al., 1960), the red squares to the data by citepcarmichael64, the green diamonds to the

data by (Giddings et al., 1966).

For hexane, we are using the experimental reference correlation by (McLinden et al.,

2010). It is unpublished and not clear which primary experimental viscosity data have

been used as basis for this correlation. As we could not find any reliable viscosity

data sets for hexane at supercritical conditions, we have not included hexane in the

discussion here. The experimental reference correlation for octane by (Huber et al.,

2004) classifies only a few measurements as primary experimental data in the super-

critical range and the correlation at supercritical conditions has been obtained mainly

as extrapolation of the fit to primary viscosity data at subcritical conditions. Up to

the maximum density ρmax of our model, Eq. (6.2), only two data points by (Badalyan

123



6. RESULTS FOR ALKANES

& Rodchenko, 1986) belong to the primary experimental viscosity data of octane. The

measurement at T = 573K, ρ = 3.0 mol/l is reproduced with a deviation of 5.4% and

the measurement at T = 598K, ρ = 2.6 mol/l is reproduced with a deviation of 2.8%.

Altogether, the Enskog-2σ model with mα from Eq. (6.4) and the optimised mχ from

table 6.2 represents a satisfactorily accurate approach to model the viscosity of alkanes

at supercritical temperatures up to moderate densities.
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Figure 6.10: Upper plot: Percentage viscosity deviations, 100(ηmodel − ηexp)/ηexp, be-

tween the Enskog-2σ model with mα from Eq. (6.4) and optimised mχ from table 6.2 and

the primary experimental data sets for butane listed in table 6.3. Lower plot: Percentage

viscosity deviations, 100(ηcorr − ηexp)/ηexp, between the experimental reference correlation

for butane by (Vogel et al., 1999) and the primary experimental data sets. The black dots

refer to the primary experimental data by (Dolan et al., 1963) at T = 444.3K, the red

squares to the data by (Carmichael & Sage, 1963b) at T = 433K.
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6.1 Supercritical temperature range

6.1.4 Extension up to high densities

So far, the Enskog-2σ model has been applied to alkanes up to moderate densities

defined by Eq. (6.2). In this section, we will investigate several variants of the model

that extend to the experimental maximum density ρexp corresponding to the maximum

pressures of the reference correlations stated in table 6.1.
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Figure 6.11: Comparison between the experimental maximum density ρexp (solid lines)

and the maximum density ρmax (dashed lines) defined in Eq. (6.2) to limit the model to

moderate densities.

The experimental maximum density ρexp is compared to the maximum density used

in the previous sections in Fig. 6.11. Especially, for hexane and octane the increase in

the maximum density of the model is substantial and amounts to about 61% and 72%.

The increase in the corresponding maximum pressure is even more pronounced. For

hexane, the maximum pressure increases from 4.1MPa at T = 510K and 15.4MPa at

T = 600K to 100MPa, for octane, from 3.3MPa at T = 570K and 5.7MPa at T = 600K

to 100MPa.

125
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The variants discussed are as follows:

(i) The Enskog-2σ model of section 6.1.1 for alkanes without MD corrections up to

ρexp.

(ii) The Enskog-2σ model based on Eq. (4.13) which consists of the modification of

Enskog’s viscosity expression for chain fluids by (de Wijn et al., 2008) multiplied

with the MD correction factor for a hard sphere fluid. The effective diameter σMD

and the effective chain length mMD in the MD correction factor are set equal to

(σα + σχ)/2 =: σMD,mean and (mα +mχ)/2 =: mMD,mean. The effective diameter

σα is obtained again from methane at the same temperature. Consistently, the

σα of methane is computed by applying the Enskog-2σ model for simple fluids

of section 5.2.2 with σMD,mean to methane. For all temperatures, the model for

methane extends to the maximum density of the experimental reference correla-

tion by (Vogel et al., 2000). The corresponding σα is depicted in Fig. 6.12.

(iii) The same model as the model under point (ii) but with σMD = σχ =: σMD,χ,

mMD = mχ =: mMD,χ and σα obtained by applying the Enskog-2σ model for

simple fluids of section 5.2.2 with σMD,χ to methane. The model for methane

extends again to the maximum density of the experimental reference correlation

by (Vogel et al., 2000) and the corresponding diameter σα is shown as well in Fig.

6.12.

In all approaches, the effective chain lengths mα and mχ are optimised at each

temperature to minimise the maximum deviation between model and the experimental

reference correlations in table 6.1. Furthermore, the chain length constraint Eq. (6.1)

is used to obtain the effective diameter σχ. As Fig. 6.12 shows, the σα of all approaches

are identical to each other above a temperature of 250K and, at lower temperatures,

deviate only marginally from each other with a maximum deviation of 0.37%. The

critical temperature of ethane is approximately 305K and longer alkanes have larger

critical temperatures. Thus, all models use the same effective diameter σα at the

supercritical temperatures investigated here.

Fig. 6.13 illustrates the results for the model in case (i). The effective chain lengths

increase with the carbon number. The variation of the chain lengths with temperature

is rather irregular.

126



6.1 Supercritical temperature range

200 300 400 500 600
T (K)

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

σ 
(Å

)
σ

MD
 = σ

MD,χ
σ

MD
 = σ

MD,mean

no MD correction

Figure 6.12: Effective diameter σα versus temperature T . The black, red, blue line depict

σα in model case (i), (ii), (iii).
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Figure 6.13: Application of the Enskog-2σ model without MD corrections as in case (i).

The optimised effective chain lengths are shown in the upper plot. mα is given by the solid

lines, mχ by the dashed ones. The lower plot depicts the maximum deviation between

model and the experimental reference correlations given in table 6.1.

127



6. RESULTS FOR ALKANES

1.5

2

2.5

3

3.5

m

1 1.2 1.4 1.6
T/T

c

0

5

10

15

20

25

m
ax

. d
ev

ia
tio

n 
(%

) C
2

C
3

C
4

C
6

C
8

Figure 6.14: Application of the Enskog-2σ model with MD corrections as in case (ii).

The optimised effective chain lengths are shown in the upper plot. mα is given by the solid

lines, mχ by the dashed ones. The lower plot depicts the maximum deviation between

model and the experimental reference correlations given in table 6.1.

Dependent on the fluid, the chain lengths are almost independent of the temper-

ature T (as for propane), increase with T (as for hexane) or decrease with T (as for

octane). According to the lower plot of Fig. 6.13, the model reproduces the exper-

imental reference correlations of ethane, propane, butane, hexane and octane within

6.9%, 8.4%, 10.1%, 6.3% and 23.8%. As Fig. 6.14 shows, the results of the model

in case (ii) are very similar. The chain lengths are barely distinguishable from the

ones in Fig. 6.13. The maximum deviations between the model and the experimental

reference correlations for ethane, propane, butane, hexane and octane are 6.6%, 9.8%,

10.1%, 6.3% and 23.8%. As an example, Fig. 6.15 shows the deviations between model

and experimental reference correlation for butane and octane along several isotherms.

The maximum deviation between model and experimental reference correlation occures

always at the largest density.
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Figure 6.15: Precentage deviations, 100(ηmodel − ηcorr)/ηcorr), between the Enskog-2σ

model with MD corrections as in case (ii) and the experimental reference correlations

along several isotherms versus density. Upper plot: butane. Lower plot: octane. The

black vertical lines indicate approximately the maximum densities defined by Eq. (6.2).

Furthermore, if we restrict the density to the maximum density, Eq. (6.2), used in

the previous sections, the deviations remain less than 4.4% and 9.0% for butane and

octane.

According to further computations, the model in case (iii) performs again very similar

to the other two cases and reproduces the experimental reference correlations of ethane,

propane, butane, hexane and octane within 6.9%, 8.2%, 10.1%, 6.3% and 23.8%. The

reason for the fact that all models lead to almost identical results can be understood

with the aid of Fig. 6.16. The packing fraction ymax at the maximum density ρexp is

plotted versus the reduced temperature T/Tc for model case (ii) and (iii). If ymax is

smaller than 0.311, no MD correction is used and the model is identical to the model

case (i). This holds true for almost all cases. For model case (ii), the exceptions are

for ethane at T/Tc ≤ 1.02 and propane at T/Tc ≤ 1.08 as well as, for model case (iii),

for propane at T/Tc ≤ 1.07 and butane at T/Tc ≥ 1.08. For all those exceptions, the
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6. RESULTS FOR ALKANES

MD correction factor is found to be smaller than 1.02 and hence presents only a slight

correction to model case (i).
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Figure 6.16: Packing fraction ymax at the maximum density ρexp versus the reduced

temperature T/Tc. The black, red, green, cyan, orange lines refer to ethane, propane,

butane, hexane, octane. The solid lines correspond to model case (ii), the dashed ones to

case (iii). The horizontal blue line indicates a packing fraction of 0.311 above which MD

corrections become relevant.

Overall, for the shorter alkanes ethane and propane, using the MD correction factor

for a hard sphere fluid as in model case (ii) leads to slightly smaller deviations than in

the model case (i), where no MD correction are used. However, for longer alkanes, the

correction factor for a hard sphere fluid does not represent a satisfactory correction at

high densities. In particular, for octane, the model cases (ii) and (iii) predict that no MD

correction factor is needed but all models deviate up to 23.8% from the experimental

reference correlation by (Huber et al., 2004). As the correct MD correction factor for

the modification of Enskog’s viscosity expression for chain fluids by (de Wijn et al.,

130



6.2 Liquid range

2008) was not available, it could not be tested if MD corrections are relevant for octane

and if those corrections lead to smaller deviations from the reference correlation.

6.2 Liquid range

In many petroleum reservoir and petroleum engineering processes, the main fraction of

alkanes is in the liquid phase. To model the viscosity of liquid alkanes, we apply the

Enskog-2σ model based on the modification of Enskog’s viscosity expression for chain

fluids by (de Wijn et al., 2008) to ethane up to octane as summarised in table 6.4. First,

the model is used without MD corrections. Then, we incorporate MD corrections for a

hard sphere fluid and discuss how the number of free model parameters can be reduced.

As the correct MD correction factor for chain fluids is unknown, the following analysis

presents preliminary results. Our preliminary results allow in particular to estimate

how well the model with correct MD corrections will work.

Table 6.4: Summary of experimental reference correlations for alkanes at liquid conditions.

Fluid Max. pressure (MPa) T-range (K) Viscosity correlation

C2 60 250-305 (Hendl et al., 1994)

C3 100 100-365 (Vogel et al., 1998)

C4 70 150-425 (Vogel et al., 1999)

C5 100 195-465 (Assael et al., 1992)

C6 100 240-505 (McLinden et al., 2010)

C7 100 245-540 (Assael et al., 1992)

C8 100 295-565 (Huber et al., 2004)

6.2.1 Liquid range without MD corrections

We test two variants of the Enskog-2σ model without MD corrections. As the liquid

range covers mainly high densities at which one can expect MD corrections to be impor-

tant, the neglect of MD corrections is a rather crude approximation. Both approaches

use the viscosity expression for chain fluids by (de Wijn et al., 2008), Eq. (4.13).
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Figure 6.17: Maximum density ρ(max,mean,C1) (upper plot) and effective diameter σα

(lower plot) in the base model for methane versus reduced temperature T/Tc. The black

lines refer to the model with σMD,mean, the red ones to σMD,χ. Both models have been

investigated in section 5.3.2.

The difference between both alternatives consists in which base model for the ref-

erence fluid methane is used.

(i) The first variant uses as base model for methane the model from section 5.3.2

with σMD,mean. From this model, we derive the effective diameter σα and the

maximum density ρmax. The diameter σα for the respective alkane is set equal to

σα of the base model at the same reduced temperature T/Tc. We do not derive σα

from the same temperature as it was done in section 6.1. This would mean that,

at most temperatures under investigation, the diameter σα in the liquid phase is

computed from the σα of methane at supercritical conditions. We would like to

avoid this since we have seen in section 5.4.2 that the behaviour of σα changes

qualitatively at the transition from subcritical to supercritical conditions. The
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maximum density is derived from

ρmax = min(ρexp, ρ
∗
mean) (6.7)

where ρexp is the maximum density of the experimental reference correlation for

the respective alkane and ρ∗mean is defined via

ρ∗mean = ρ(max,mean,C1)
ρc,Cn

ρc,C1

. (6.8)

The density ρ(max,mean,C1) is the maximum density of methane in the model from

section 5.3.2 with σMD,mean. The effective diameter σα as well as the maximum

density ρ(max,mean,C1) of methane are plotted in Fig. 6.17 versus the reduced

temperature.

(ii) The second variant uses as base model for methane the model from section 5.3.2

with σMD,χ. The effective diameter σα as well as the maximum density ρ(max,χ,C1)

of methane are shown in Fig. 6.17. From those quantities, the effective diameter

σα and the maximum density ρmax are calculated analogously to case (i).

In the following we will refer to these approaches as model (i) and (ii). For both models,

we obtain the temperature dependent effective chain lengths mα and mχ by minimising

the maximum deviation between model and experimental reference correlation from the

saturated liquid density up to ρmax at a given temperature. The effective diameter σχ

for each alkane is computed from the chain length constraint Eq. (6.1). The exper-

imental reference correlations of the alkanes, their temperature range and maximum

pressures are listed in table 6.4. The table contains in particular the correlations by

(Assael et al., 1992) for pentane and heptane. These correlations have not been used

in the supercritical range as they are valid only at subcritical temperatures and above

the critical density. The latter fact does not constitute a problem here as the saturated

liquid density of a pure fluid is larger than its critical density.
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Figure 6.18: Application of Enskog-2σ model without MD corrections to the liquid range

of alkanes. Effective optimised chain lengths (upper plots) and maximum deviation between

models and experimental reference correlations (lower plots) are plotted versus the reduced

temperature T/Tc. The chain length mα is denoted by the solid lines in the upper plots,

mχ by the dashed lines. The plots on the left hand side refer to model case (i), the ones

on the right hand side to (ii).

Fig. 6.18 summarises the results of both models. Both approaches lead to qualita-

tively similar results. The chain lengths increase in general with increasing temperature.

At temperatures above T/Tc = 0.75, the chain lengths follow the physically reasonable

trend of increasing with the carbon number. The only exception is that the chain

length mχ,C7 of heptane is slightly larger than mχ,C8 of octane for T/Tc ≥ 0.8. At

low temperatures, the chain lengths of butane, pentane and hexane crossover and we

observe the sequences mχ,C6 ≤ mχ,C5 ≤ mχ,C4 and mα,C6 ≤ mα,C5 ≤ mα,C4 . As the

lower plot of Fig. 6.18 shows, the maximum deviation between the models and the

experimental reference correlations is just of the order of 1% for low temperatures.

This indicates that the crossover might be avoided by a physically meaningful choice

of the chain lengths that still reproduces the experimental reference correlations satis-
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factorily. We will address this point in section 6.2.3. According to the lower plots of

Fig. 6.18, model (i) and (ii) reproduce the experimental reference correlation of ethane,

propane, butane, pentane, hexane, heptane, octane with maximum deviations less than

3.3%, 4.0%, 6.2%, 2.4%, 2.2%, 8.4%, 9.6% and 3.3%, 4.4%, 6.2%, 2.6%, 2.3%, 8.9%,

10.4%. The correlative power of both approaches is better than 5% for T/Tc ≤ 0.93

and can be deemed overall satisfactory considering the crude approximation inherent

in neglecting MD corrections in a density regime where MD corrections can expected

to be important.

6.2.2 Liquid range with MD corrections

The liquid range covers mainly high densities at which one can expect MD corrections

to be important. As the correct MD correction factor for the modification of Enskog’s

viscosity expression for chain fluids by (de Wijn et al., 2008) is not available presently,

we study the use of the MD correction factor for a hard sphere fluid, Eq. (2.42). We

distinguish two model cases with different implementations of the MD correction factor:

(i) The effective diameter σMD and the effective chain length mMD in the MD cor-

rection factor are set equal to (σα + σχ)/2 =: σMD,mean and (mα + mχ)/2 =:

mMD,mean.

(ii) The effective diameter σMD and the effective chain length mMD in the MD cor-

rection factor are set equal to σχ =: σMD,χ and mχ =: mMD,χ.

In both cases, the modification of Enskog’s viscosity expression for chain fluids by

(de Wijn et al., 2008) is multiplied by the respective MD correction factor, see Eq.

(4.13). The effective diameter σα and maximum density ρmax in model case (i) are

defined as in case (i) in section 6.2.1 for the model without MD corrections. Analo-

gously, σα and ρmax in model case (ii) are defined as in case (ii) in section 6.2.1. In

both approaches, the effective diameter σχ is computed via the chain length constraint

Eq. (6.1) from σα and the effective chain lengths. The effective chain lengths mα and

mχ are calculated by minimising the maximum deviation between model and exper-

imental reference correlation from the saturated liquid density up to ρmax at a given

temperature.
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Figure 6.19: Application of Enskog-2σ model with MD corrections for a hard sphere

fluid to the liquid range of alkanes. Effective optimised chain lengths (upper plots) and

maximum deviation between models and experimental reference correlations (lower plots)

are plotted versus the reduced temperature T/Tc. The chain length mα is denoted by the

solid lines in the upper plots, mχ by the dashed lines. The plots on the left hand side refer

to model case (i), the ones on the right hand side to (ii).

According to the lower plots in Fig. 6.19, model (i) and (ii) reproduce the exper-

imental reference correlation of ethane, propane, butane, pentane, hexane, heptane,

octane within 3.3%, 2.4%, 6.0%, 2.0%, 2.2%, 8.4%, 9.6% and 3.3%, 2.6%, 6.2%, 1.5%,

2.3%, 8.9%, 9.8%. The chain lengths in both approaches vary irregularly with the tem-

perature. For T/Tc ≥ 0.8, we find that the effective chain length mχ,C7 of pentane is

larger than the chain length mχ,C8 of octane while, from a physical point of view, one

would expect mχ,C8 > mχ,C7 . Moreover, in model case (i), the chain lengths exhibit

unphysical behavior at low temperatures: for example, at T/Tc = 0.6, we obtain the

sequences mα,C6 ≤ mα,C5 ≈ mα,C3 ≤ mα,C4 and mχ,C6 ≤ mχ,C5 ≤ mχ,C4 ≤ mχ,C3 .

It remains to be seen whether the chain lengths can be chosen in a physical mean-

ingful way, i.e., increasing chain lengths with increasing carbon number and regular
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dependence on temperature. In particular, at lower temperatures where the maximum

deviations are less than 2%, there seems to be sufficient flexibility in obtaining a more

physical behaviour of the chain lengths. We will test this assertion in section 6.2.3.

6.2.3 Results for constant chain length mα

The chain lengths obtained for the model cases (i) and (ii) in section 6.2.2 exhibit

irregular temperature dependence and partially unphysical dependence on the carbon

number. In this section, we will discuss a modification of the approaches that will lead

to a sensible behaviour of the chain lengths. The modification consists in setting the

chain length mα to a constant value and only optimising the chain length mχ at each

temperature to minimise the maximum deviation between model and the experimental

reference correlations stated in table 6.4. The constant values for mα are obtained from

the following linear relationships in terms of the carbon number N

for model case (i): mα = 0.997 + 0.15N, (6.9)

for model case (ii): mα = 0.992 + 0.17N. (6.10)

The relationships have been calculated from a linear best fit of the optimised chain

length mα at T/Tc = 0.85 in section 6.2.2 listed in table 6.5. The mα values together

with the linear best fits are shown in Fig. 6.20. The chain length of heptane has

been excluded in obtaining the linear best fits as it does not follow the linear trend of

the other chain lengths. Furthermore, we selected the temperature T/Tc = 0.85 since,

at this temperature, the optimised mα’s lie almost on a straight line and hence show

physically sensible behavior. Both linear fits have approximately half the slope as the

linear fit of mα, Eq. (6.6), obtained from the SAFT-HS approach when the critical

properties of n-alkanes are modelled.

Fig. 6.21 summarises the results for both model cases with mα from the linear best

fits. As the upper plots of Fig. 6.21 show, the optimised chain length mχ increase with

the carbon number and exhibit a regular temperature dependence; in model case (i),

mχ increases with decreasing temperature, while in model case (ii), mχ decreases first

with decreasing temperature before it increases with decreasing temperature for about

T/Tc ≤ 0.72. We will make use of the universal behaviour of mχ in section 6.2.5 to

reduce the number of free model parameters further on.
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Table 6.5: Chain length mα optimised at T/Tc = 0.85 for the models in section 6.2.2 for

propane up to octane.

Fluid mα, case (i) mα, case (ii)

C2 1.27 1.29

C3 1.47 1.52

C4 1.61 1.70

C5 1.74 1.86

C6 1.89 2.02

C7 2.16 2.27

C8 2.19 2.33

According to the lower plots in Fig. 6.21, model case (i) and (ii) reproduce the

experimental reference correlation of ethane, propane, butane, pentane, hexane, hep-

tane, octane up to T/Tc = 0.97 within 1.9%, 6.2%, 6.2%, 5.3%, 9.5%, 11.5%, 14.9%

and 4.8%, 6.9%, 7.6%, 4.7%, 5.5%, 11.3%, 6.2%. Overall, the results show that, in

both model cases, physically reasonable choices for the chain length parameters exist

that succeed in reproducing the experimental reference correlations fairly accurately.

The accuracy of the approaches in this section is further on evaluated directly against

primary experimental viscosity data in section 6.2.4.
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Figure 6.20: Best linear fits (black lines) of the optimised chain length mα (red dots) at

T/Tc = 0.85 for the models in section 6.2.2. The plot on the left hand side refer to model

case (i), the one on the right hand side to (ii).
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Figure 6.21: Application of Enskog-2σ model with MD corrections for a hard sphere fluid

and mα from the linear relationships Eq. (6.9) and (6.10) to the liquid range of alkanes.

Effective optimised chain length mχ (upper plots) and maximum deviation between mod-

els and experimental reference correlations (lower plots) are depicted versus the reduced

temperature T/Tc. The plots on the left hand side refer to model case (i), the ones on the

right hand side to (ii).
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6.2.4 Comparison with primary experimental data

In this section, the accuracy of the models of section 6.2.3 is evaluated against the

primary experimental data of ethane, propane and octane listed in table 6.6. Fig. 6.22

shows the results for ethane. Both models reproduce the experimental data sets very

well within 4.5%. According to Fig. 6.23, the data sets of propane are correlated

within 6.7% in model case (i) and 7.5% in model case (ii). The two data points by

(Huang et al., 1966) with deviations larger than 7% in model case (ii) deviate also

more than 4.2% from the experimental reference correlation by (Vogel et al., 1998).

As Fig. 6.24 illustrates, model case (i) and (ii) reproduce the experimental primary

data of octane within 7.7% and 4.0%. The point with the largest deviation occurs at a

temperature close to the critical temperature of octane in the lower range of densities.

Both models reproduce the primary experimental data satisfactorily. This supports the

assertion that, in both model cases, physically reasonable choices for the chain length

parameters exist that describe the liquid viscosity of alkanes fairly accurate. Overall,

the Enskog-2σ models with MD correction factor for a hard sphere fluid perform fairly

well in reproducing the liquid viscosity of alkanes. In future work, when MD corrections

for chain fluids are used, we expect to obtain similarly good or even better results.
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Table 6.6: Primary viscosity data sets of ethane, propane and octane based on (Hendl

et al., 1994), (Vogel et al., 1998) and (Huber et al., 2004).

Fluid Data set P-range (MPa) T-range (K)

C2 (Swift et al., 1960) 0.2-4.8 193-303

C2 (Eakin et al., 1962) 0.7-55.1 298

C2 (Carmichael & Sage, 1963a) 4.4-35.8 300-305

C2 (Diller & Saber, 1981) 1.3-32.1 95-290

C2 (Diller & Ely, 1989) 7.6-51.9 295

C3 (Eakin & Ellington, 1959) 0.7-62.1 298

C3 (Starling et al., 1960) 0.7-55.1 298-411

C3 (Carmichael et al., 1964) 0.24-34.4 278-478

C3 (Giddings et al., 1966) 0.7-55.2 278-378

C3 (Huang et al., 1966) 6.9-34.5 173-273

C3 (Strumpf et al., 1974) 3.2-7.2 311

C3 (Diller, 1982) 1.7-35.1 90-300

C8 (Dymond & Young, 1980) vapour pressure 283-393

C8 (Badalyan & Rodchenko, 1986) 0.159 218-623

C8 (Knapstad et al., 1989) vapour pressure 293-370

C8 (Keramidi & Badalyan, 1982) vapour pressure 398-569

C8 (Oliveira & Wakeham, 1992) 0.1253 303-348

C8 (Harris et al., 1997) 0.1373 283-353

C8 (Caudwell, 2009) 0.1202 298-473
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Figure 6.22: Application of the Enskog-2σ model to liquid primary experimental data

of ethane. The upper plots are for model case (i), the middle plots for model case (ii)

and the lower plots for the comparison between the experimental reference correlation for

ethane by (Hendl et al., 1994) and the primary experimental data sets. On the left hand

side, the deviations between models and primary experimental data are depicted versus

the temperature, on the right hand side, versus the density. The data set by (Baron et al.,

1959) is denoted by the black dots, the set by (Carmichael & Sage, 1963a) by red squares,

the set by (Diller & Saber, 1981) by green diamonds, the set by (Diller & Ely, 1989) by

blue triangles, the set by (Swift et al., 1960) by violet pluses.
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Figure 6.23: Application of the Enskog-2σ model to liquid primary experimental data

of propane. The upper plots are for model case (i), the middle plots for model case (ii)

and the lower plots for the comparison between the experimental reference correlation for

propane by (Vogel et al., 1998) and the primary experimental data sets. On the left hand

side, the deviations between models and primary experimental data are depicted versus

the temperature, on the right hand side, versus the density. The data set by (Eakin &

Ellington, 1959) is denoted by the black dots, the set by (Starling et al., 1960) by red

squares, the set by (Carmichael et al., 1964) by green diamonds, the set by (Giddings

et al., 1966) by blue triangles, the set by (Huang et al., 1966) by violet pluses, the set by

(Strumpf et al., 1974) by cyan stars, the set by (Diller, 1982) by orange triangles.
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Figure 6.24: Application of the Enskog-2σ model to liquid primary experimental data of

octane. The upper plots are for model case (i), the middle plots for model case (ii) and the

lower plots for the comparison between the experimental reference correlation for octane by

(Quiñones-Cisneros et al., 2012) and the primary experimental data sets. On the left hand

side, the deviations between models and primary experimental data are depicted versus

the temperature, on the right hand side, versus the density. The data set by (Dymond &

Young, 1980) is denoted by the black dots, the set by (Badalyan & Rodchenko, 1986) by

red squares, the set by (Knapstad et al., 1989) by green diamonds, the set by (Keramidi

& Badalyan, 1982) by blue triangles, the set by (Oliveira & Wakeham, 1992) by violet

pluses, the set by (Harris et al., 1997) by cyan stars, the set by (Caudwell, 2009) by orange

triangles.
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6.2.5 Universal behaviour of mχ

In section 6.2.3, we have found that the effective chain length mχ exhibits a regular

temperature dependence if mα is obtained from a linear fit against the carbon number.

In the following, we assume that, for model case (i), mα is obtained from Eq. (6.9),

and that, for model case (ii), mα is obtained from Eq. (6.10). Then, mχ is computed

from scaling the mχ of butane, mχ,C4 , with a constant length scaling parameter Lmχ

at the same reduced temperature, i.e.:

mχ(T/Tc) = Lmχmχ,C4(T/Tc). (6.11)

The effective chain length mχ,C4 of butane is plotted against the reduced temperature

for both model cases in Fig. 6.21. Butane is chosen as reference fluid since it has an

intermediate carbon number and since the experimental viscosity correlation of butane

extends over a wide range of subcritical temperatures. The scaling parameter Lmχ

is calculated by minimising the maximum deviation between model and experimental

reference correlation for all subcritical conditions.

Table 6.7: Optimised scaling parameter Lmχ for propane up to octane.

Fluid Lmχ , case (i) Lmχ , case (ii)

C2 0.87 0.84

C3 0.92 0.92

C4 1.0 1.0

C5 1.08 1.08

C6 1.16 1.16

C7 1.24 1.23

C8 1.32 1.32
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Figure 6.25: Application of the Enskog-2σ model with MD corrections for a hard sphere

fluid, mα from the linear relationships Eq. (6.9) and (6.10) and mχ from Eq. (6.11) to

the liquid range of alkanes. The scaling parameter Lmχ (upper plots), maximum deviation

between models and experimental reference correlations (middle plots) and AAD between

models and experimental reference correlations (lower plots) are plotted versus the reduced

temperature T/Tc. The plots on the left hand side refer to model case (i), the ones on the

right hand side to (ii).

The resulting Lmχ ’s are summarised in table 6.7 and depicted in the upper plots

of Fig. 6.25. According to the middle plots of Fig. 6.25, for model case (i), the

experimental reference correlations of ethane, propane, pentane, hexane, heptane and

octane are reproduced with maximum deviations less than 3.7%, 6.9%, 13.9%, 12.3%,

22.3% and 14.9%. The largest maximum deviations of alkanes longer than butane

occur here for small temperatures. Model case (ii) gives better results for the longer

alkanes and results in maximum deviations of 5.6%, 13.4%, 9.2%, 7.7%, 12.4% and

10.8% for ethane, propane, pentane, hexane, heptane and octane. Both model cases

possess relatively large AAD’s from the experimental reference correlations as can been

in the lower plots of Fig. 6.25.
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Figure 6.26: Percentage viscosity deviations, 100(ηmodel−ηexp)/ηexp, between the Enskog-

2σ model and the experimental reference correlation for octane by (Huber et al., 2004) along

several isotherms. The Enskog-2σ model is applied with MD corrections for a hard sphere

fluid, mα from the linear relationships Eq. (6.10) and mχ from Eq. (6.11) with Lmχ = 1.32

as denoted in table 6.7.

For example, in model case (ii), the AAD from the correlation for octane exceeds 9%

for T/Tc ≤ 0.74. Several isotherms for this case are shown in Fig. 6.26. For T ≤ 450K,

i.e. T/Tc ≤ 0.8, the model overestimates the viscosity systematically resulting in the

large AAD’s at low temperatures observed in Fig. 6.25.

As model case (ii), gives overall better results we focus on this case for the following

investigations. As Fig. 6.27 shows, the length scaling parameter Lmχ plotted versus

the carbon number gives an almost straight line. The best linear fit results in the black

line in Fig. 6.27 and reads

Lmχ = 0.68 + 0.079N. (6.12)
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Figure 6.27: Best linear fits (black lines) of the optimised length scaling parameter Lmχ

(red dots) in model case (ii).

When Lmχ is obtained from Eq. (6.12), mχ from Eq. (6.11) and mα from Eq.

(6.10), all free parameters in the Enskog-2σ model are determined. The predictive

power of the model is illustrated in Fig. 6.28. The experimental reference correlations

are reproduced with maximum deviations less than 6.7%, 16.8%, 9.6%, 8.4%, 14.8% and

11.3% for ethane, propane, pentane, hexane, heptane and octane. The AAD’s between

model and the experimental reference correlations, denoted by the dashed lines in Fig.

6.28, are again relatively large. It is interesting to test in future work whether the

results improve when the correct MD correction factor for the modification of Enskog’s

viscosity expression for chain fluids by (de Wijn et al., 2008) is used.
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Figure 6.28: Application of Enskog-2σ model with MD corrections for a hard sphere fluid,

mα from Eq. (6.10) and mχ from Eq. (6.11) with length scaling parameter Lmχ from Eq.

(6.12). The solid lines depict the maximum deviations between model and experimental

reference correlations, the dashed lines the AADs.

6.3 Conclusions

In this chapter, we have applied the Enskog-2σ model, introduced in chapter 4, to alka-

nes. The model showed good correlative power up to moderate densities at supercritical

conditions: when the two effective chain lengths mα, mχ were optimised, the approach

reproduced the viscosity of ethane, propane, butane, hexane and octane within 6%.

When mα was obtained from a linear fit versus the carbon number and mχ was opti-

mised along one isotherm, the model correlated the viscosity of the five alkanes with

deviations less than 9.3%. Next, we investigated an extension of the Enskog-2σ model

for alkanes to high densities in the supercritical range. Using the MD correction factor

for a hard sphere fluid and optimising both effective chain lengths at each temperature,

the maximum deviations between the Enskog-2σ model and the experimental reference
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correlations for ethane, propane, butane, hexane were found to increase up to 10% and

for octane up to 23%. It is interesting to test in future work whether the results can

be improved by using the correct MD correction factor for the modification of Enskog’s

viscosity expression for chain fluids by (de Wijn et al., 2008).

The MD correction factor for a hard sphere fluid was also used to extend the model into

the liquid range. When the chain length mα was obtained from a linear fit versus the

carbon number and mχ is optimised at each temperature, the model reproduced the

experimental reference correlations for of all alkanes from ethane to octane satisfacto-

rily within 11%. Furthermore, the optimised mχ exhibited a universal behaviour versus

the reduced temperature T/Tc. When we made use of this observation and obtained

mχ from mχ of butane by multiplication with a constant length scaling parameter,

the model reproduced the experimental reference correlations for of all alkanes from

ethane to octane within 13.4%. For some fluids and temperatures, however, this ap-

proach systematically overestimated or underestimated the experimental viscosity and

resulted in relatively large AAD’s from the experimental reference correlations along a

given isotherm. Again, it is interesting to see in the future whether the results can be

improved by using the correct MD correction factor for chain fluids.
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7

Conclusion

The main aim of this work was to develop a new model for viscosity based on Enskog’s

hard sphere theory that provides us with a realistic and fairly viscosity model for dense

fluids. The new viscosity model was derived from Enskog’s theory and validated for

simple fluids and n-alkanes over a wide range of pressures and temperatures in the

supercritical as well as liquid phase.

The new viscosity model was obtained by introducing two effective weakly tem-

perature dependent diameters in Enskog’s viscosity expression. Accordingly, the new

approach was named Enskog-2σ model. One of the diameters was linked to the collision

rate between the fluid molecules, the other diameter to the molecule size.

The Enskog-2σ model was able to reproduce the experimental data of a series

of simple fluids (Ar, CH4, C2H6, N2, CO2, O2, SF6) within the uncertainty of the

experimental data at supercritical conditions up to moderate densities. To extend

the model to higher densities and pressures, the correction factor by (Sigurgeirsson &

Heyes, 2003) obtained from molecular dynamics (MD) simulations was incorporated

into the model. For the the effective diameter σMD appearing through the packing

fraction in the MD correction factor, several empirical choices were investigated. The

choices (σα+σχ)/2,
√
σασχ, σχ for σMD led all to similar results and allow to correlate

the viscosity of Ar, CH4, C2H6, N2, CO2 and O2 fairly well with deviations less than

11% up to very high pressures and densities. In addition, the Enskog-2σ model with

MD correction factor reproduced the liquid viscosity data of these simple fluids with

deviations less than 10%. Altogether, the correlative power of the Enskog-2σ model for
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simple fluids was found to be very good to satisfying over a wide range of temperatures

and pressures.

The effective diameters were found to exhibit a universal temperature dependence

in several cases. This allowed to derive the σ’s of simple fluids following a corresponding

states principle from the optimised effective diameters of argon which was chosen as ref-

erence fluid. At supercritical conditions up to moderate densities, the diameter related

to the molecule size showed conformal behaviour which allowed to reduce the number

of free parameters to a single, length-scaling parameter. When this length scaling was

obtained from the knowledge of the viscosity along a single isotherm, the accuracy of

the viscosity prediction was similar to the uncertainty of the original correlation over its

entire supercritical range. At liquid and supercritical conditions up to high densities,

the number of free parameters was reduced to two constant length scaling parameters

with which the two effective diameters are scaled independently. When the two length

scaling parameters are obtained from a single isotherm, the model predicted the viscos-

ity of CH4, C2H6, N2, CO2 and O2 at supercritical and liquid conditions with deviations

less than about 9%. As the effective diameters changed their behaviour qualitatively at

the transition from the liquid to the supercritical regime, the length scaling parameters

at supercritical conditions differed from the ones at the liquid conditions.

Based on the modification of Enskog theory for chain fluids (de Wijn et al., 2008),

the Enskog-2σ model was extended to n-alkanes. The model showed good correlative

power up to moderate densities at supercritical conditions: when the two effective

chain lengths mα, mχ were optimised, the approach reproduced the viscosity of ethane,

propane, butane, hexane and octane with deviations less than 6%. When mα was

obtained from a linear fit versus the carbon number and mχ was optimised along one

isotherm, the model correlates the viscosity of the five alkanes with deviations less

than 9.3%. Using the MD correction factor for a hard sphere fluid and optimising both

effective chain lengths at each temperature the model was extended to high densities

at supercritical conditions. The maximum deviations between the Enskog-2σ model

and the experimental reference correlations for ethane, propane, butane, hexane were

found to increase up to 10% and for octane up to 23%.

The MD correction factor for a hard sphere fluid was also used to extend the model

into the liquid range. When the chain length mα was obtained from a linear fit versus

the carbon number and mχ was optimised at each temperature, the model reproduced
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the viscosity of all alkanes from ethane to octane satisfactorily with deviations less

than 11%. Furthermore, the optimised mχ exhibited a universal behaviour versus the

reduced temperature T/Tc. When mχ was obtained from the one of butane by multi-

plication with a constant length scaling parameter, the model reproduced the viscosity

of all alkanes from ethane to octane deviations less than 13.4%. For some fluids and

temperature, however, this approach systematically overestimated or underestimated

the experimental viscosity and resulted in relatively large AAD’s from the experimental

viscosity along a given isotherm.

7.1 Future work

Attractive proposals for future work are:

• In this work, the Enskog-2σ model has been applied to n-alkanes up to octane. It

would be interesting to extend the model to longer alkanes and test if the model

parameters can be expressed in terms of the carbon number.

• The Enskog-2σ model for alkanes has been extended to high densities by the use

of the MD correction factor for hard spheres. With the aid of MD simulations, the

correct MD correction factor for a chain fluids could be derived and subsequently

incorporated in the Enskog-2σ model which might improve the results at high

densities distinctively.

• The Enskog-2σ model has been restricted to n-alkanes and simple fluids, i.e., fluids

with fairly spherical, non-polar molecules. In practice, the viscosity of many non-

simple fluids is of great importance and hence it is of interest to extend and

validate the Enskog-2σ model for such fluids. Non-simple fluids that play an

important role in petroleum industry include water, brines, hydrogen sulfide and

methanol.

• The Enskog-2σ model could be used to derive a new model for the viscosity of

fluid mixtures. This could be done by developing suitable mixing rules between

the model parameters.

• For a given fluid, the Enskog-2σ model relies on viscosity data along at least

one isotherm as input to predict the viscosity with good accuracy at other phase
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conditions. We tested a series of approaches to predict the viscosity of simple

fluids from thermodynamic data or other transport properties but the predictions

generally lacked in accuracy. More future work could be devoted to link viscosity

of simple fluids to other thermodynamic properties in order to obtain a fully

predictive model.

154



References

Andersen, H., Weeks, J.D. & Chandler, D. (1971). Relationship between the

hard-sphere fluid and fluids with realistic repulsive forces. Phys. Rev. A, 4, 15971607.

Andrews, F. (1976). A simple approach to the equilibrium statistical mechanics of

Lennard-Jones fluids. J. Chem. Phys., 64, 1948–1951.

Assael, M., Dymond, J., Papadaki, M. & Patterson, P. (1992). Correlation and

prediction of dense fluid transport coefficients. I. n-alkanes. Int. J. Thermophys., 13,

269 – 281.

Assael, M.J., Dalaouti, N.K. & Wakeham, W.A. (2001). Prediction of the vis-

cosity of liquid mixtures. Int. J. Thermophys., 22, 1727–1737.

Badalyan, A. & Rodchenko, S. (1986). Izv. Vyssh. Uchebn. Zaved., Neft i Gaz , 3,

61–64.

Barker, J.A. & Henderson, D. (1967). Perturbation Theory and Equation of State

for Fluids. II. A Successful Theory of Liquids. J. Chem. Phys., 47, 4714–4721.

Baron, J.D., Roof, J.G. & Wells, F.W. (1959). Viscosity of Nitrogen, Methane,

Ethane, and Propane at Elevated Temperature and Pressure. J. Chem. Eng. Data,

4, 283288.

Barua, A.K., Afzal, M., Flynn, G.P. & Ross, J. (1964). Viscosity of Hydrogen,

Deuterium, Methane, and Carbon Monoxide from -50◦ to 150◦C below 200 Atmo-

spheres. J. Chem. Phys., 41, 374–399.

Ben-Amotz, D. & Herschbach, D.R. (1990). Estimation of effective diameters for

molecular fluids. J. Chem. Phys., 94, 1038–1047.

155



REFERENCES

Bock, S., Bich, E., Vogel, E., Dickinson, A.S. & Vesovic, V. (2002). Calcula-

tion of the transport properties of carbon dioxide. I. Shear viscosity, viscomagnetic

effects, and self-diffusion. J. Chem. Phys., 117, 2151–2160.

Bordat, P. & Müller-Plathe, F. (2002). The shear viscosity of molecular fluids:

A calculation by reverse nonequilibrium molecular dynamics. J. Chem. Phys., 116,

3362–3369.

Carmichael, L.T. & Sage, B.H. (1963a). Viscosity of Ethane at High Pressures. J.

Chem. Eng. Data, 8, 9498.

Carmichael, L.T. & Sage, B.H. (1963b). Viscosity of Hydrocarbons, n-Butane. J.

Chem. Eng. Data, 8, 612616.

Carmichael, L.T., Berry, V.M. & Sage, B.H. (1964). Viscosity of Hydrocarbons.

Propane. J. Chem. Eng. Data, 9, 411415.

Carnahan, N.F. & Starling, K.E. (1969). Equation of state for nonattracting rigid

spheres. J. Chem. Phys., 51, 635–636.

Caudwell, D. (2009). Viscosity Measurements on Dense Fluid Mixtures. PhD disser-

tation, Imperial College London.

Chapman, S. & Cowling, T. (1970). The Mathematical Theory of Non-uniform

Gases. Cambridge University Press, Cambridge.

Ciotta, F. (2010). Viscosity of asymmetric liquid mixtures under extreme conditions.

PhD dissertation, Imperial College London.

Davis, H.T., Rice, S.A. & Senger, J.V. (1961). On the Kinetic Theory of Dense

Fluids. IX. The Fluid of Rigid Spheres with a Square-well Attraction . J. Chem.

Phys., 35, 2210–2233.

de Wijn, A.S., Vesovic, V., Jackson, G. & Trusler, J.P.M. (2008). A kinetic

theory description of the viscosity of dense fluids consisting of chain molecules. J.

Chem. Phys., 128, 204901.

156



REFERENCES

de Wijn, A.S., Riesco, N., Jackson, G., Trusler, J.P.M. & Vesovic, V. (2012).

Viscosity of liquid mixtures: The Vesovic-Wakeham method for chain molecules . J.

Chem. Phys., 136, 074514.

Diller, D.E. (1980). Measurements of the viscosity of compressed gaseous and liquid

methane. Physica A, 104, 417–426.

Diller, D.E. (1982). Measurements of the viscosity of saturated and compressed liquid

propane. J. Chem. Eng. Data, 27, 240243.

Diller, D.E. & Ely, J.F. (1989). High Temperatures - High Pressures, 21, 631.

Diller, D.E. & Saber, J.M. (1981). Measurements of the viscosity of compressed

gaseous and liquid ethane. Physica A, 108, 143152.

DiPippo, R., Kestin, J. & Oguchi, K. (1967). Viscosity of three binary gaseous

mixtures. J. Chem. Phys., 46, 4758–4765.

Dolan, J.P., Starling, K.E., Lee, A.L., Eakin, B.E. & Ellington, R.T. (1963).

Liquid, Gas and Dense Fluid Viscosity of n-Butane. J. Chem. Eng. Data, 8, 396399.

Dufal, S. & Haslam, A. (2012). private communication.

Dymond, J.H. (1974). Corrected Enskog theory and the transport coefficients of liq-

uids. J. Chem. Phys., 60, 969–973.

Dymond, J.H. (1985). Hard-sphere theories of transport properties. Chem. Soc. Rev.,

14, 317356.

Dymond, J.H. & Alder, B.J. (1966). Van der Waals Theory of Transport in Dense

Fluids. J. Chem. Phys., 45, 2061–2068.

Dymond, J.H. & Young, K.J. (1980). Transport properties of nonelectrolyte liquid

mixtures I. Viscosity coefficients for n-alkane mixtures at saturation pressure from

283 to 378 K. Int. J. Thermophys., 1, 331–344.

Eakin, B.E. & Ellington, R.T. (1959). Trans. Am. Inst. Min. Metall. Pet. Eng.,

216, 85.

157



REFERENCES

Eakin, B.E., Starling, K.E., Dolan, J.P. & Ellington, R.T. (1962). Liquid,

Gas, and Dense Fluid Viscosity of Ethane. J. Chem. Eng. Data, 7, 3336.

Egorov, S.A. (2008). A mode-coupling theory treatment of the transport coefficients

of the Lennard-Jones fluid. J. Chem. Phys., 128, 144508.

Enskog, D. (1922). Kinetic theory of heat conductivity, viscosity, and diffusion in

certain condensed gases and liquids. K. Sven. Vetenskapsakad. Handl , 63.
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