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Abstract
Due to the high cost of specially customised presses and dies and the advance of machine learning technology, there is
some emerging research attempting free-form sheet metal stamping processes which use several common tools to produce
products of various shapes. However, tool path planning strategies for the free forming process, such as reinforcement
learning technique, derived from previous path planning experience are not generalisable for an arbitrary new sheet metal
workpiece. Thus, in this paper, a generalisable tool path planning strategy is proposed for the first time to realise the tool path
prediction for an arbitrary sheet metal part in 2-D space with nometal forming knowledge in prior, through deep reinforcement
(implemented with 2 heuristics) and supervised learning technologies. Conferred by deep learning, the tool path planning
process is corroborated to have self-learning characteristics. This method has been instantiated and verified by a successful
application to a case study, of which the workpiece shape deformed by the predicted tool path has been compared with its
target shape. The proposed method significantly improves the generalisation of tool path planning of free-form sheet metal
stamping process, compared to strategies using pure reinforcement learning technologies. The successful instantiation of this
method also implies the potential of the development of intelligent free-form sheet metal stamping process.

Keywords Deep learning · Deep reinforcement learning · Deep supervised learning · Sheet metal forming · Intelligent
manufacturing · Tool path planning

Introduction

Sheet metal components are nowadays ubiquitous in vari-
ous industrial products, such as automobile, aircrafts and
high-speed trains. Benefit from the short forming cycle of
contemporary advanced sheet metal stamping techniques,
whichmake it feasible for themass production of lightweight
sheet metals, the manufacturing budgets are constantly
reduced, and a burgeoning era of industrialisation arises.
However, the formed products from sheet metal stamping
technology are subject to the unalterable shapes of punch
and dies, for which the limited forming flexibility impedes
the applicability of the off-the-shelf stamping equipment
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to new sheet metal components. In addition, the extraor-
dinarily high capital cost for specialised punches and dies,
especially for large-scale stamping, leads to expensive pro-
totyping and arduous research and development of novel
sheet metal designs. Thus, to extricate sheet metal manufac-
ture from these constraints and to fulfill the requirement of
high-volume personalised production in sheet metal forming
industry nowadays (Bowen et al., 2022), flexible forming
processes, which can change workpiece geometry with-
out requiring different tool sets, were developed (Allwood
& Utsunomiya, 2006). An emerging free-form sheet metal
stamping technique was brought up (Liu et al., 2022), which
consecutively deforms a sheet metal to its target shape from
blank using several small-scale punch and dies of different
shapes. In this regard, of particular concern is the generation
and optimisation of the forming tool path which could yield
the forming result comparable to the forming target.

Due to the forming characteristics of the traditional sheet
metal stampingprocess, the sheetmetal part is usually formed
within a few or just one forming step, for which no research
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on tool path for stamping can be found. In sheet metal form-
ing industry, most studies involving tool path generation and
optimisation were performed for incremental sheet metal
forming (ISF) process,which deforms sheetmetal to its target
shape with a sequence of incremental deformations. Attana-
sio et al. (2006) manually designed several tool paths for a
two point ISF to manufacture an automotive part, by varying
the step depth and scallop height. They found that setting
low values of both these parameters can improve the final
dimensional accuracy and surface quality. Similarly, Tanaka
et al. (2005)manually generated tool paths for an incremental
sheet punching (ISP) process based on the target workpiece
CAD, tool shape, crossfeed, depth and tool path mode, of
which the deformed workpiece had a maximum length of
76 mm. Azaouzi and Lebaal (2012) proposed a tool path
optimisation strategy for single point ISF using the response
surface method and sequential quadratic programming algo-
rithm, which was tested for a spiral tool path and realised
through finite element analysis (FEA). This method was
reported to reduce the manufacturing time and improve the
homogeneity of thickness distribution of asymmetric parts.
Malhotra et al. (2011) proposed a tool path generation strat-
egy to alleviate the unintentionally formed stepped features
on the component base occurring in a multi-pass single point
ISF process, by combining in-to-out and out-to-in tool paths
for each intermediate shape. It was found that this strategy
effectively reduced the occurrence of stepped features com-
pared to pure out-to-in tool paths.

Over the past decade, machine learning technology has
seen its unprecedented development in image recognition
and natural language processing thanks to the remarkably
increased computation power of central processing units
(CPUs). Impressed by its extraordinary learning capability,
researchers started to harnessmachine learning or deep learn-
ing technologies in sheet metal forming industry, such as ISF
(Nagargoje et al., 2021). Most of them focused on process
monitoring (Kubik et al., 2022), surrogate model for forming
results prediction (Low et al., 2022) and process parame-
ters prediction (Liu et al., 2021). Machine learning is well
known through three categories of techniques (Monostori
et al., 1996): supervised learning (SL), unsupervised learn-
ing, and reinforcement learning (RL).With regard to forming
tool path planning, most applications exploited supervised
and reinforcement learning techniques. Opritescu and Volk
(2015) and Hartmann et al. (2019) utilised supervised learn-
ing neural networks for optimal tool path prediction for 2-D
and 3-Dautomated driving processes (Kraftforming), respec-
tively. Curvature distribution on targetworkpiece surfacewas
computed as inputs, and they reported that the careful work-
piece digitisation was of great importance to achieve good
learning efficiency. The tool path for automated wheeling
process was predicted by Rossi and Nicholas (2018) using
fully convolutional network (FCN), with 75% prediction

accuracy. Störkle et al. (2019) used linear regressor, deci-
sion tree, random decision forest, support vector machine
and Gaussian process regressor to predict the optimal local
support force and support angle distribution along a tool path
in an ISF process. Liu et al. (2022) developed a recursive tool
path prediction framework for a rubber-tool forming pro-
cess, which embedded a deep supervised learning model for
tool path planning. They compared the performance of three
series of state-of-the-art models, including single CNNs,
cascaded networks and convolutional long short-term mem-
ory (LSTM) models in tool path learning, from which the
convolutional LSTM was reported to be the most superior.
Compared to supervised learning, reinforcement learning
applications to tool path planning of sheet metal forming
process have been significantly ignored. This could be due to
the expensive acquisition of computational or experimental
data for RL algorithms training. Störkle et al. (2016) pro-
posed a RL-based approach for the tool path planning and
adjustment of an ISF process, which increased the geometric
accuracy of the formedpart. Liu et al. (2020) used a reinforce-
ment learning algorithm, namelydeepQ-learning, for the tool
path learning of a simple free-form sheetmetal stamping pro-
cess. The FE computation was interfaced to the Q-learning
algorithm as the RL environment, which provided real-time
forming data for algorithm training.

Although there have been numerous studies of tool path
planning for various sheet metal forming processes, they all
have a common issue in generalising the methods to com-
pletely different target workpiece shapes, which hinders the
widespread applications of machine learning based tool path
planning strategies. In other words, new data have to be
acquired to train the machine learning models or algorithms
again to have a good prediction accuracy for different target,
especially for approaches exploiting reinforcement learning.
Generalisation gap is a common issue in RL applications
(Kirk et al., 2021), which is a challenge under constant
research. An evident reason leading to its inferior generali-
sation is that the data collected during RL training are mostly
lying on the path towards a certain optimisation target. With
a completely different target, the model would fail in gener-
alisation since it was trained without useful data towards the
new target.

Table 1 briefly compares the methods introduced above
in tool path planning and summarises their deficiency in
terms of real-world application. “Curse of dimensionality”
indicates that the method can be error-prone once the target
workpiece shape becomes complex, since the available data
would become sparse and exponentially increased training
data is required to obtain a reliable prediction result.

The aim of this research is to explore the generalisation
of deep learning technologies in forming tool path planning
for a 2-D free-form sheet metal stamping process. A gen-
eralisable tool path planning strategy, through the design
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Table 1 Comparison between different tool path planning meth-
ods/algorithms

References Tool path planning
methods/algorithms
description

Deficiency

Attanasio et al.
(2006)
Tanaka et al.
(2005)

Manually generate tool
path for ISF and ISP
process

Labour intensive

Azaouzi and
Lebaal (2012)

Use optimisation
algorithm to iteratively
solve the optimal tool
path

Not generalisable

Malhotra et al.
(2011)

Improve tool path
through analytical
modelling and
experimental analysis

Not generalisable

Opritescu and
Volk (2015)
Hartmann et al.
(2019)

Use nerual network to
predict tool path for a
Kraftforming process

“Curse of
dimensionality”

Rossi and
Nicholas (2018)

Use FCN to predict tool
path for an automated
wheeling process

“Curse of
dimensionality”

Störkle et al.
(2019)

Use traditional machine
learning to predict
forming parameter
sequence in an ISF
process

“Curse of
dimensionality”

Liu et al. (2022) Use deep neural
networks to predict
tool path for a
rubber-tool forming
process

“Curse of
dimensionality”

Störkle
et al. (2016)

Use RL to optimise the
tool path for an ISF
process

Not generalisable

Liu et al. (2020) Use RL to learn the
optimal tool path for a
free-form sheet metal
stamping process

Not generalisable

of deep reinforcement and deep supervised learning tech-
nologies at different stages, was proposed in this paper.
In this strategy, RL was used to explore the optimal tool
paths for the target workpiece, with which the efficient tool
path for a certain group of workpieces was learned using
SL. With no metal forming knowledge in prior, the path
planning process was corroborated to possess self-learning
characteristics, from which the path planning results can be
self-improved over time. The generalisation of this strategy
was realised by factorising the entire target workpiece into
several segments, which were classified into three groups.
The optimal tool paths for several typical workpiece seg-
ments from each group were learned from scratch through
deep reinforcement learning, and deep supervised learning

models were used to generalise the intrinsic forming pattern
of each group of segments. Six deep RL algorithms, from
two different categories, were compared regarding their tool
path learning performance for the free-form stamping pro-
cess. The RL process was enhanced with the introduction of
two forming heuristics. Three deep SL models were trained
with two tool path datasets consist of different data amount
and their performance were evaluated in terms of forming
goal achievement and the dimension error of the deformed
workpiece, and the forming results from a pure reinforce-
ment learning method were also presented as comparisons.
At last, a case study was performed to verify the generalis-
able tool path planning strategy with a completely new target
workpiece.

The main contributions of this work are as following: 1)
developing a generalisable tool path planning strategy for
arbitrary 2-D free-formed sheet metal components for the
first time, which successfully integrated deep RL and SL
algorithms to learn and generalise efficient forming paths,
and validating through a case study; 2) analysing a free-form
rubber-tool forming process and discovering 2 close punch
effects; 3) quantitatively analysing the performance of 6 deep
RL algorithms and 3 deep SL models on tool path learning
and generalisation, respectively. In addition, two heuristics
were derived from real-world empirical experience and have
been demonstrated to significantly facilitate the tool path
learning process.

Methodology

In this section, the application of the proposed tool path
planning strategy was first introduced in "Free-form stamp-
ing test and digitisation of forming process" section, fol-
lowed by the detailed illustration of the generalisable tool
path planning strategy in "Generalisable tool path planning
strategy" section. "Forming goal and forming parameters
design" section presents the forming goal that the strat-
egy needs to achieve and the forming parameters to be
selected. "Deep reinforcement learning algorithms and learn-
ing parameters" section and 2.5 illustrate the designation
details of the RL and SL algorithms, respectively.

Free-form stamping test and digitisation of forming
process

A rubber-tool forming process proposed in the Authors’ pre-
vious research (Liu et al., 2022)was adopted to consecutively
deform a sheet metal while retaining a sound surface condi-
tion during the forming process. From the test setup and FE
model shown in Fig. 1, the workpiece was deformed by a
rubber-wrapped punch on a workbench rubber. The specifi-
cation of the setup is summarised in Table 2. The deformation
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Fig. 1 Test setup and FEmodel for the rubber-tool forming. The lengths
of the deformation and trim zones are 30 and 10 mm, respectively

was accomplished by translating the punch towards thework-
piece along Y-axis and lifting it up, considering springback.
Theworkpiece was consecutively deformed at different loca-
tions towards its target shape. At each step of the free forming
process, theworkpiecewas repositioned through rotation and
translation to relocate the punch location, the details of which
can be found in (Liu et al., 2022). The deformation process
was set up, for simplicity, in 2-D space and computationally
performed with Abaqus 2019. The FE plain strain model was
configured with the material of AA6082 for the workpiece
and natural rubber for the punch rubber and workbench rub-
ber, with details in (Liu et al., 2022). Mesh for the workpiece
was of size 0.1 mm, with 17,164 elements in total.

To realise the free forming process in FE simulations,
the forming process was digitised and standardised for pre-
cise process control. As shown in Fig. 1, the workpiece was
divided into two zones, namely deformation zone and trim
zone, with lengths of 30 and 10 mm, respectively. The punch
could only work on the deformation zone, and the trim zone
would be trimmed after the deformation had completed. The
trim zone was reserved without deformation due to that the
significant shear force from the edge of the workpiece could
easily penetrate the workbench rubber, which would cause
non-convergence issue in FE computation. The deformation
zone was marked by 301 node locations, numbered from left
to right, which are consistent with the mesh node locations.

To quantitatively observe and analyse the workpiece
shape, a curvature distribution (K ) graph was generated to
represent the shape of the workpiece deformation zone, as
shown in Fig. 2. The local curvature K of a point on the
workpiece was calculated byMenger curvature, which is the
reciprocal of the radius of the circle passing through this point
and its two adjacent points. Thus, a total of 303 mesh nodes
on the top surface of the workpiece were used to generate
the K -graph, including 301 nodes in the deformation zone
and one additional node next to each end of the deforma-
tion zone. Using 0.1 mm of interval distance between each

two contiguous node locations, the workpiece shape can be
regenerated from its K -graph.

Generalisable tool path planning strategy

Theproposed generalisable tool path planning strategyworks
by segmenting the target workpiece, based on the shape
of three groups of segments classified in prior, into a few
segments whose subpaths are generated through deep learn-
ing approach. The entire tool path for the target workpiece
would be acquired by aggregating the subpaths for all work-
piece segments. By classifying common groups of segments
with the same shape features, any arbitrary workpiece can be
regarded as assembled by segments from these groups. From
the theoretical perspective, through dynamic programming,
the tool path learning complexity for a complete workpiece
was reduced to simpler subproblems of path learning for
each group of workpiece segments. As the segments in each
group are highly correlated in shape, the tool path learning for
each segment group is significantly more generalisable than
that for arbitrary workpieces. From the empirical perspec-
tive, representative groups of workpiece segments are finite,
while there are infinite number of possible target workpiece
shapes. After studying the efficient forming path for each
segment group, the tool path for any arbitrary workpiece can
be obtained by aggregating the tool path for all its segments,
which yields the superior generalisability of this strategy.

To quantitatively measure the shape difference between
the target and current workpiece, a curvature difference dis-
tribution graph (�K -graph)was generated by subtracting the
current KC -graph from the target K T -graph to represent the
workpiece state, as shown in Fig. 3. The current workpiece
was considered to be close to its target shape if the value
of �K approaches zero at any point along the longitudinal
length. From the example in Fig. 3, the �K -graph was split
into 6 segments, A-F. Through the segmental analysis of the
�K -graphs of real-world components (e.g. aerofoil), three
groups of segments were classified, of which any arbitrary
�K -graph can be composed. Groups 1 and 2 consist of half-
wave shaped and quarter-wave shaped segments, and Group
3 includes constant-value segments representing circular arcs
or flat sheet.

There are two phases in the generalisable tool path plan-
ning strategy, learning phase and inference phase, as shown
in Fig. 4. At the learning phase, for each group of segments,
m variants of �K -graphs, �K i , j , were created as shown in
Fig. 4a, where i is the group number and j is the variant num-
ber. The tool path, P i , j , for each of the variant of segment in
each group was then learned and planned through deep rein-
forcement learning, without any path planning experience in
prior. After the tool paths for all segments were obtained,
a deep supervised learning model was trained with the tool
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Table 2 Test setup details for the
rubber-tool forming Features Workpiece

length, l
Workpiece
thickness, t

Punch
radius, rP

Punch
rubber
radius,
rPR

Workbench
rubber
length, LR

Workbench
rubber
height, HR

Value
(mm)

50 1 5 6 58 56

Fig. 2 Example of workpiece shape (left) and its curvature K distribution along node locations (right). The region highlighted in red in the drawing
denotes the deformation zone, and the �K -graph is generated from the workpiece top surface of this zone

Fig. 3 Schematic digitisation procedure for workpiece state representa-
tion �K -graph and the classification of three groups of segments. The
drawings for target and current workpieces depict their top surfaces.

The dashed lines in Group 2 signify other segments having the same
shape features as the solid line, which are also counted in this group.
L-length denotes longitudinal length

path data, P i , j , for each group to generalise the efficient tool
path patterns for segments from each group.

At the inference phase, as shown in Fig. 4b, a new work-
piece was firstly digitised to the�K -graph and segmented in
accordance with the three groups. Five segments, A-E, were
obtained in this example, and their tool paths were predicted
using the deep supervised learning model trained for their
particular groups at the learning phase, respectively. At last,
the entire tool path for the workpiece was obtained by aggre-
gating all the tool path for each segment. To sum up, the RL
and SL algorithms were utilised for different purposes in this
strategy. The RL model explored the optimal tool path for

each single target workpiece, which was used as the training
data of the SL models to learn the efficient forming pattern
for a group of workpieces with common features. In appli-
cation, only SL models were used to infer the tool path of a
new workpiece.

In the segmental analysis of the �K -graphs, taking the
workpiece in Fig. 4b as an example, one can easily find that
most segments are from Group 1. The segments from Group
2 can only be seen at the two ends of the components, and
the segments from Group 3 only exist in workpiece with
circular arc. Thus, Group 1 was used for instantiation of the
generalisable tool path planning strategy, and a total of 25
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Fig. 4 The generalisable tool path planning strategy through deep reinforcement and supervised learning

variants of segments in this group were arbitrarily created
through the method in Appendix A.

Forming goal and forming parameters design

In the context of the free-form sheetmetal stamping test setup
presented in Fig. 1, at each step of the forming process, the
stamping outcome is determined by the punch location and
punch stroke. However, the large amount of punch location
options, 301 in total, would incur considerably vast search

space for the tool path planning problem. Thus, to simplify
the problem, a forming heuristic (Heuristic 1) was applied
to this forming process, which is in conformity with practi-
cal forming scenario, to allow the node location that had the
most salient shape difference from the target workpiece to
be selected at each forming step. In a word, the node loca-
tion where the value of �K is highest in the �K -graph was
selected at each step.

As the workpiece shape is close to its target when the�K
approaches zero at any point along the longitudinal length,
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the goal of the free forming in this research was consid-
ered to be achieved if max(|�K |) ≤ 0.01 mm−1. Thus,
in order to determine an appropriate range of punch stroke
values to select during deformation, by which the forming
goal is possible to achieve within a relatively small search
space, a preliminary study was performed to investigate the
free forming characteristics. Two phenomena, namely close
punch effect 1 and 2 (CPE1 and CPE2), were discovered in
this study, which are shown in Fig. 5 and Fig. 6.

From Fig. 5, the �K -graphs of three workpieces before
and after the same punchwith stroke of 3.0mmat the location
of 151 are shown. The three workpieces had been consecu-
tively deformed by 2, 3 and 4 punches in the vicinity of
this node location, as shown respectively in Fig. 5a, b and c.
It can be seen that more prior deformation underwent near
the node location of interest, less deformation was resulted
in, i.e., larger punch stroke was required to accomplish a
certain change of shape at this location. This phenomenon
was named CPE1, which barely escalated with more than 4
punches in prior.

Figure 6 shows the �K -graphs of two workpieces before
and after 1 punch and 50 punches, respectively. From Fig. 6a,
it can be seen that the �K values around node location of
118 was decreased by about 0.002 mm−1 after deformation
applied to location of 132, although the punch at the latter
location had less effect on the �K value than that at the
former location did. From Fig. 6b, it can be seen that the
workpiece had been deformed at location of 118 since the
2nd step, and the �K value at this location was affected by
the punches nearby in the following 50 steps and decreased
by about 0.008 mm−1. This phenomenon was named CPE2,
whose area of influence covers approximately 5 mm (about
50 node locations) around the node location.

From the analysis above, it was found that a stroke of 2.1
mm can reach the forming goal at the 1st punch (with no
CPE), and that of at least 3.6 mm was needed to overcome
CPE2 and reach the forming goal. Thus, 19 options of punch
strokes, ranging from 2.1 to 3.9 mm in 0.1 mm increments,
were determined.

Deep reinforcement learning algorithms
and learning parameters

Reinforcement learning is a technologywhich learns the opti-
mal control strategy through active trial-and-error interaction
with the problem environment. A reward is delivered by the
environment as feedback for each interaction, and the goal
of reinforcement learning is to maximise the total rewards.
Almost all RL problems can be framed as aMarkov Decision
Process (MDP), which is defined as (Sutton & Barto, 2017):

M =< S, A, R, P , γ >, (1)

where S is a set of possible states, A is a set of possible
actions, R is the reward function, P is the transition prob-
ability function and γ is the discounting ratio (γ ∈ [0,1]).
In this research, S includes the workpiece state representa-
tion �K and A includes the options of punch stroke. P is
unknown in this research problem, for which model-free RL
algorithms are to be applied. The bold capital characters here
are used to distinguish them from scalar values in the subse-
quent equations, such as state or action at a single step.

With the terms introduced above, the RL process can be
briefly illustrated with a loop: from the state st at time t, an
action at is based on the current policy, which leads to the
next state st+1 and a reward rt for this step. To measure the
goodness of a state, state-value and action-value (also called
Q-value) are commonly used, which are respectively defined
as follows (Sutton & Barto, 2017):

V π (st ) = E

[ ∞∑
t=0

γ t rt |st , π

]
, (2)

Qπ (st , at ) = E

[ ∞∑
t=0

γ t rt |st , at , π

]
, (3)

where E denotes expectation and π denotes policy. The term∑∞
t=0 γ t rt |st , π is the cumulative future rewards under pol-

icy π from t, known as return, of which the superscript and
subscript denote exponent and time step, respectively. Thus,
the optimal policy π∗ is achieved when the value functions
produce the maximum return, V ∗(st ) and Q∗(st , at ).

Using Bellman’s Equation (Sutton & Barto, 2017), which
decompose the value functions to immediate reward plus the
discounted future rewards, the optimal value functions can
be iteratively computed for every state to obtain the optimal
policy:

V ∗(st ) = max
at∈A

Est+1

[
r(st , at ) + γ V ∗(st+1)

]
, (4)

Q∗(st , at ) = Est+1

[
r(st , at ) + γ max

at+1∈A
Q∗(st+1, at+1)

]
.

(5)

Algorithms

Two categories of RL algorithms were investigated in this
research, namely value-based and policy-based approaches.
When value functions, Eqs. (2) and (3), are approximated
with neural network, traditional RL becomes deep rein-
forcement learning (DRL). For the value-based approaches,
three Q-learning algorithms, namely deep Q-learning, dou-
ble deep Q-learning and dueling deep Q-learning, were
implemented. For the policy-based approaches, three policy
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Fig. 5 Close punch effect 1 on the punch with stroke of 3.0 mm at the location of 151. a, b and c present the �K -graphs before and after this punch
on the workpiece which has been consecutively deformed, in prior, by 2, 3 and 4 punches, respectively

Fig. 6 Close punch effect 2 from the punches near location of 118. a and b present the �K -graphs before and after 1 punch and 50 punches,
respectively. The area highlighted by dashed circle is where CPE2 was found

gradient algorithms, namely Advantage Actor-Critic (A2C),
Deep Deterministic Policy Gradient (DDPG) and Proximal
Policy Optimisation (PPO), were implemented.

As shown in Eq. (5), the optimal policy is obtained by iter-
atively updating the Q-value function for each state-action
pair. However, it is computationally infeasible to compute
them all when the entire state and action space becomes enor-
mous. Thus, Q-learning algorithm (Mnih et al., 2015) was
brought up to estimate the Q-value function using a function
approximator. Three function approximators were investi-
gated in this study: Deep Q-Network (DQN), Double Deep
Q-Network (Double-DQN) and Dueling Deep Q-Network
(Dueling-DQN), whose objective functions can be found
in existing works (Mnih et al., 2015; van Hasselt et al.,
2016; Wang et al., 2015). It is noted that Double-DQN
alleviates the Q-value overestimation problem for DQN by
decomposing the max operation in the target Q-value into
two operations of action selection and action evaluation.
The Dueling-DQN specifically models the advantage-value,
which measures the goodness of an action at a certain state

and is arithmetically related to state-value and action-value
by Q(s, a) = V (s) + A(s, a).

UnlikeQ-learningwhich achieves optimal policy by learn-
ing the optimal value functions, policy gradient algorithms
parameterise the policy with a model and directly learn the
policy. The objective function of policy gradient algorithms
is configured to be the expected total return as shown by
Eqs. (2) and (3), and the goal of the optimisation is to max-
imise the objective function. Through gradient ascent, the
policy model which produces the highest return yields the
optimal policy. Most of the policy gradient algorithms have
the same theoretical foundation, Policy Gradient Theorem,
which is defined in (Sutton & Barto, 2017).

The three policy gradient algorithms investigated in this
research, A2C, DDPG and PPO, all use an Actor-Critic
method (Sutton & Barto, 2017) for policy update, of which
the critic model is used for value functions evaluation to
assist the policy update and the actor model is used for pol-
icy evaluation which is updated in the direction suggested by
the critic. The objective functions can be found in existing
works (Mnih et al., 2016; Lillicrap et al., 2015; Schulman
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et al., 2017), of which DDPG was specially developed for
problems with continuous action space. The A2C algorithm
used an advantage term to assist the policy update, while
DDPG using the gradient of Q-value with respect to the
action and PPOusesGeneralisedAdvantage Estimate (GAE)
(Schulman, Moritz, et al., 2015). For A2C, the temporal dif-
ference was selected for the advantage estimate through a
preliminary study compared with the Monte Carlo (MC)
method. The PPO algorithm is a simplified version of Trust
RegionPolicyOptimisation (TRPO) (Schulman et al., 2015a,
2015b) by using a clipped objective function to prevent from
extremely largeonline policyupdates and learning instability.
The hyperparameters in the PPO algorithm, future advantage
discounting ratio and clip ratio,were set as 0.95 and 0.2 in this
study following the original work (Schulman et al., 2017).

Learning setup and hyperparameters

For RL environment, Abaqus 2019 was interfaced with the
RL algorithms to supply computation results during learning.
The transient (st , at , rt , st+1) was formulated as follow:

• The state/next state was in the form of workpiece state
representation �K -graph and a one-hot vector of size 1
× 301 indicating the punch location. Thus, it represents
the shape difference between the current workpiece shape
and its target shape, which can be easily used to construct
the reward function. The one-hot vector was generated
following Heuristic 1.

• The action was the punch stroke, ranging from 2.1 to 3.9
mm (19 in total for discrete action space).

• The reward was defined to measure the goodness of the
selected action at given state, whose evaluation is shown
in Fig. 7. After each action at a given state, the reward was
determined by the punch effectiveness ratio, which was
defined as the ratio of the punch effect on �K at given
location at time step t (pt ) to the expected effect at this
location (po), with the function rt = 2(pt/po)2−3 (except
for PPO: rt = 2(pt/po)2). An exponential function was
used to discourage non-effective punch, since the reward
hardly changed at a low punch effectiveness ratio. If the
workpiece was overpunched, the �K at the punch loca-
tion below the lower threshold −0.01mm−1, rt = −100
(PPO: rt = −1 and DDPG: rt = −3); if the forming
goal was achieved, i.e. max(|�K |) ≤ 0.01mm−1, rt = 0
(PPO: rt = 500 − 2.5× episode step). Negative rewards
were used for each step to penalise unnecessary steps,
except for PPOwhere unnecessary stepswere penalised by
rewarding early termination. A reward of -3 was assigned
for overpunch in DDPG learning rather than -100 since it
was found that sparse rewards can cause failures in DDPG
training (Matheron et al., 2019).

Figure 8 presents the reinforcement learning process
configured for the tool path learning purpose, using FE simu-
lations as the RL environment. The RL process collected data
in a loop, starting from digitising the workpiece geometry to
the state st and feeding it to the learning agent. The learning
agent predicted the stroke at based on the current policy and
exploration scheme. The FE simulation was configured by
repositioning the current workpiece about the punch location
and setting up the selected punch stroke, and the deformed
workpiece geometry was extracted and stored. The deformed
geometry was also digitised to obtain the next state st+1, with
which the reward rt was evaluated through the reward func-
tion. The collected transient (st , at , rt , st+1) at this time step
was then used to optimise the objective function J and update
the agent policy. The RL loop ended by re-inputting the next
state to the agent as the state in the next loop.

The learning methods for the six RL algorithms, which
are all model-free algorithms, are shown in Table 3. The off-
policy algorithms were trained with experience replay, of
which all learning histories were stored to be uniformly sam-
pled inminibatch for training, while the on-policy algorithms
were trained with the immediate experience. Target net-
work was used for action evaluation, which was updated by
the online network periodically for stable learning progress.
For exploration and exploitation, the Q-learning algorithms
adopted ε-greedy policy, while A2C used an additional
entropy term from (Williams & Peng, 1991) in the loss func-
tion and DDPG used a Gaussian distributed action noise. In
addition to above, a formingheuristic (Heuristic 2)was devel-
oped to facilitate the learning process, which was defined as
follows: the choice of the stroke at the current node location,
if applicable, cannot be less than previous choices at the same
location in one run, otherwise a larger value of stroke was
randomly selected for this location. This heuristic was only
applied in addition to ε-greedy policy as they have the same
exploration mode, which would not disturb the training data
structure.

The learning hyperparameters for RL are summarised in
Table 4. The maximum step per episode signifies the maxi-
mum forming step allowed for each run of the free forming
trial. The episode would end if any of the following condi-
tions was met: 1) forming goal achieved, 2) overpunch and
3) maximum step per episode (step/ep) attained. It is noted
that the target network for Q-learning was updated every 20
learning steps, while that for DDPG is softly updated with
τ = 0.01 and that for PPO is updated every rollout (512 steps
in this research) of the online policy. For ε-greedy policy, the
value of ε decays from 1.0 to 0.1.

With regard to the models used for value function and pol-
icy function approximations in all six algorithms, the learning
performance of a shallow multilayer perceptron (MLP) and
a convolutional neural network (CNN) were compared as
in (Lillicrap et al., 2015). Rectified linear unit (ReLU) was
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Fig. 7 Reward function and its evaluation for each action. a shows the reward evaluation method for punch stroke of 2.2 mm at location of 162, and
the two lines denote the initial and current �K -graph; b shows the reward function for evaluation

Fig. 8 The reinforcement learning process for the tool path learning of the rubber-tool forming process, of which the FE simulation (FE sim) was
used as the RL environment to provide real-time deformation results. The vertical line in the �K -graph denotes the punch location

Table 3 Learning methods for
the six reinforcement learning
algorithms (Y—True, N—False)

Algorithm On/off-policy Target network Explore/exploit Heuristic 2

DQN Off-policy Y ε-greedy Y

Double-DQN Off-policy Y ε-greedy Y

Dueling-DQN Off-policy Y ε-greedy Y

A2C On-policy N Loss entropy N

DDPG Off-policy Y Action noise N

PPO On-policy Y (old policy) – N
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Table 4 The learning
hyperparameters for training the
six RL algorithms. step/ep
denotes step per episode and freq
denotes frequency

Hyperparameter Value Hyperparameter Value

Learning rate
[
10−4, 10−1

]
Discounting ratio γ 0.9

Batch size 16 Target net update freq. Every 20 step

Maximum step/ep 100 εdecay step (ε-greedy) 400

used for all hidden layers. There was no activation function
for the output layer of the value network, while softmax and
tanh were used for that of the policy network, respectively.
TheMLP had 2 hidden layers with 400 and 200 units, respec-
tively (164,819 parameters). The network had 2 inputs, the
�K -graph and the one-hot vector for punch location, each
followed by a half layer of neurons in the 1st layer before
they were added together and fed into the 2nd layer. The
CNN had the same architecture with the one used in (Mnih
et al., 2015), with an additional hidden layer with 512 units,
for the 2nd input, parallel to the last layer of the convolutional
layers (1,299,891 parameters).

Virtual environment for RL algorithms comparison

Subject to the FE computational speed, it is considerably
time-consumptive to test the feasibility of tool path learning
for the free forming process using RL. Thus, a virtual envi-
ronment was developed to imitate the rubber-tool forming
behaviour by having similar punch effects on the �K -graph
to those computed by FE simulations, with which the perfor-
mances of the six RL algorithms in tool path learning were
compared. The virtual environment was composed to also
manifest CPE1 and CPE2 as presented in "Forming goal and
forming parameters design" section, and the effect of stroke
value on the�K -graph was also imitated by the virtual envi-
ronment through a parametric study. The detailed setting of
the virtual environment is presented in Appendix B.

Deep supervised learningmodels and training
methods

After the optimal tool paths for the 25 variants of workpiece
segments in Group 1 were acquired from deep reinforcement
learning, they were used to train deep supervised learning
models to learn the efficient tool path patterns for this group.

Deep neural networks

Three deep neural networks (DNNs), namely single CNN,
cascaded networks and CNN LSTM, had been compared in
predicting the tool path through a recursive prediction frame-
work in the Authors’ previous research (Liu et al., 2022).
Since the results revealed that the performance of CNN
LSTM preceded that of the other two models, CNN LSTM

was adopted in this research, with VGG16 (Simonyan & Zis-
serman, 2015), ResNet34 and ResNet50 (He et al., 2016) as
the feature extractor, respectively. The model architectures
for these models were the same as those used in (Liu et al.,
2022), with a simple substitution of feature extractor with
ResNet34 and ResNet50. The input to the LSTM was the
partial forming sequencemade up of the concatenation of the
�K -graph and the punch location vector for each time step,
and the output from the model was the punch stroke predic-
tion for the coming step. As the target workpiece information
is already contained in the �K -graph, it was not fed into the
model as a 2nd input, different from (Liu et al., 2022).

Training method and hyperparameters

The DNNs were compiled in Python and trained using Keras
with TensorFlow v2.2.0 as backend, and the computing facil-
ity had a NVIDIA Quadro RTX 6000 GPU with 24 GB
of RAM memory. The training data for DNNs were all the
tool paths learned from the RL algorithm, which were pre-
processed to conform to the LSTM models and the labels
(output features) were standardised to comparable scales.
The tool path prediction with DNNs was configured to be a
regression problem, forwhich theMean Square Error (MSE)
(Goodfellow et al., 2016)was the objective function forDNN
training. Adam algorithm (Kingma&Ba, 2015), with default
values of hyperparameters (β1, β2, ε) in Keras, was used for
optimisation. In addition, the learning rate η was set to expo-
nentially decaying, from the initial learning rate η0, along
with training process, with the same decaying rate and decay-
ing steps as in (Liu et al., 2022). The key training parameters
are shown in Table 5, in which two amounts of training data
are presented.

Learning results and discussions

Selection of reinforcement learning algorithm

Two categories of reinforcement learning algorithm, namely
Q-learning and policy gradient algorithms, were compared
in terms of their performances in tool path learning for
the rubber-tool forming process. Subjected to the pro-
hibitively expensive FE computation, a virtual environment
was developed to imitate the rubber-tool forming behaviour
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Table 5 Key parameters for
DNN training Number of

variants
Total
data

Training
data

Test
data

Total time
steps

Batch
size

Initial learning
rate η0

25 1315 1184 131 63 32
[
10−6, 10−2

]
20 1012 910 102 55 32

[
10−6, 10−2

]

as introduced in "Virtual environment for RL algorithms
comparison" section.A total of sixRLalgorithmswere inves-
tigated with the data generated by the virtual environment,
half of which belong to Q-learning and the other half belong
to policy gradient method. Themost superior one determined
in this study is to be implemented with FE environment and
learn the optimal tool path using FE computational data. The
same target workpiece, as shown in Fig. 2, was used for tool
path learning in this study.

The learning setups for all algorithms, including the
transient (st , at , rt , st+1), learning method and hyperpa-
rameters, are summarised in Section 2.4.2. An additional
exploration rule, namelyHeuristic 2, was implemented along
with the ε-greedy policy for Q-learning algorithms. Figure 9
shows the performances ofDQN,Double-DQNandDueling-
DQN trained under the exploration scheme with and without
Heuristic 2, of which the termination step signifies the total
punch steps spent to achieve the forming goal. The same
learning rate (1 × 10−2) and value function approximator
(CNN) were applied to each training. It can be seen that the
average termination stepwas reduced by approximately 40%,
from 62 to 37, after introducing Heuristic 2 for exploration
in the training of each algorithm. In addition, with Heuristic
2, the first applicable tool path was found more quickly in
each case than those without Heuristic 2 by 9K, 2K and 3K
training steps, respectively. Thus, because of the consistent
improvement of learning efficiency from Heuristic 2 in each
case, it was implemented for the training of all the Q-learning
algorithms for the following results.

To comprehensively evaluate and compare the perfor-
mance of the six RL algorithms in tool path learning, four
performance factors were raised, namely first termination
step (1st Term. step), converge speed (Cvg. speed), aver-
age converge termination step (Avg. Cvg. Term. step) and
average termination frequency (Avg. Term. Freq.). The first
factor was quantified by the punch steps spent at the first time
achieving the forming goal, which was used to evaluate the
learning efficiency of each algorithm under the circumstance
that no prior complete tool path planning experience was
available and the agent learned the tool path from scratch.
The 2nd and 3rd factors evaluated the learning progress and
the learning results, and they were quantified by the first con-
verged training step and the average termination step after

convergence. The last factor described the learning steadi-
ness in finding the tool path, which was computed as follow:

Avg.T erm.Freq. = Ttotal/
(
S f inal − S f irst

)
, (9)

where Ttotal denotes the total times of termination during
training, and S f irst and S f inal denote the training step where
the first and final terminations occur, respectively. For this
research, the first termination needs to be reached as soon
as possible due to the high computational expense. Thus,
the importance of 1st Term. Step, Cvg. speed and Avg. Cvg.
Term. step is regarded as the same and is greater than that of
Avg. Term. Freq.

The six algorithms were trained at four different learning
rates using two action/policy function approximators, respec-
tively, as described in Section 2.4.2 on the RL learning setup.
The learning performance of each algorithmquantified by the
four performance factors is summarised in Tables 6 and 7.
The learning results where no termination was found were
omitted from the tables, except for Dueling-DQNwhich was
designed to be a CNN with shared convolutional layers and
separate fully connected layers. For example, DDPG only
managed to learn the tool path at the learning rate of 10−2

with MLP function approximator. The best tweaking results
for the learning rate and function approximator for each algo-
rithm are highlighted in bold.

For Q-learning algorithms, the CNN function approxima-
tor was found to outperform the MLP one. Although they
had close values of the first three performance factors, the
average termination frequencies from the training of DQN
and Double-DQN with CNN approximator were, in general,
notably higher than those fromalgorithm trainingswithMLP.
It was seen that, withMLP, bothDQNandDouble-DQN can-
not attain mere 0.3 terminations per thousand steps at 10−4

learning rate, and the latter terminated only once through the
whole learning process at the learning rate of 10−1. How-
ever, with CNN approximator, these two algorithms can both
terminate steadily over one time per thousand steps at all
learning rates. In regard to learning rate, 10−2, 10−1 and
10−3 were respectively selected for the threeQ-learning algo-
rithms because of the evidently better results for the first three
performance factors than the other choices of learning rate.

For policy gradient algorithms, MLP was selected as the
function approximator for A2C and DDPG while CNN was
selected for PPO, and the best learning results were found at
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Fig. 9 Comparison of the performances of three Q-learning algorithms
trained at 10−2 learning rate, with and without heuristic, for tool path
learning in terms of termination step. The upper and lower dashed lines
denote the average termination step (total punch steps spent to achieve

the forming goal), estimated fromGaussian process regression, through
the training process of the algorithms implemented with and without
Heuristic 2, respectively. The shaded regions denote 95% confidence
interval. The unit for training steps, K, denotes 103

Table 6 Performance
comparison of the Q-learning
algorithms for tool path learning

Algorithm Approximator Learn
rate

1st Term.
step

Cvg. speed
(unit: 103

steps)

Avg. Cvg.
Term. step

Avg. Term.
Freq.
(unit: /103

steps)

DQN MLP 10−1 54 ~ 23 53 0.14

10−2 28 ~ 2.5 32 1.24

10−3 38 ~ 25 35 2.18

10−4 52 ~ 150 49 0.27

CNN 10−1 47 ~ 20 35 1.35

10−2 34 ~ 4 35 1.09

10−3 50 ~ 22 34 2.08

10−4 52 ~ 80 35 2.60

Double-DQN MLP 10−1 78 ~ 43 78 –

10−2 32 ~ 3 34 1.28

10−3 35 ~ 80 38 2.23

10−4 71 ~ 140 42 0.31

CNN 10−1 37 ~ 7 33 3.08

10−2 33 ~ 8 37 1.10

10−3 49 ~ 80 36 2.77

10−4 50 ~ 140 33 3.39

Dueling-DQN CNN 10−1 42 ~ 25 42 –

10−2 45 ~ 17 35 0.88

10−3 41 ~ 10 35 1.15

10−4 51 ~ 95 35 2.21

Term. denotes termination. Cvg. denotes converge. Freq. denotes frequency. Avg. denotes average
“-” denotes less than 3 terminations occur in the training
Numbers in bold font denote the best tweaking results for each algorithm
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Table 7 Performance
comparison of the policy gradient
algorithms for tool path learning

Algorithm Approximator Learn
rate

1st Term.
step

Cvg. speed
(unit: 103

steps)

Avg. Cvg.
Term. step

Avg. Term.
Freq.
(unit: /103

steps)

A2C MLP 10−1 78 ~ 9 78 –

10−2 89 ~ 15 35 27.89

10−3 92 ~ 320 50 9.12

10−4 83 ~ 36 90 0.82

CNN 10−2 98 ~ 100 62 16.25

10−3 93 ~ 95 69 14.08

10−4 100 ~ 260 70 8.88

DDPG MLP 10−2 49 ~ 60 29 23.21

PPO MLP 10−1 80 ~ 133 80 –

10−2 67 ~ 700 41 21.98

10−3 92 ~ 450 54 0.005

10−4 64 ~ 260 52 0.01

CNN 10−1 53 ~ 55 62 0.05

10−2 51 ~ 200 35 28.25

10−3 75 ~ 3500 37 0.67

10−4 54 ~ 2300 37 9.39

Term. denotes termination. Cvg. denotes converge. Freq. denotes frequency. Avg. denotes average
“-” denotes less than 3 terminations occur in the training
Numbers in bold font denote the best tweaking results for each algorithm

learning rate of 10−2 for all three of them. It can be found that,
compared to the Q-learning algorithms, the policy gradient
algorithms tended to have a remarkably higher 1st termina-
tion step, of which those from A2C were approaching the
maximum steps per episode (100). Although they converged
to a comparable amount of average termination step to the Q-
learning, they spent considerably more time in convergence,
especially PPO which used over 200 thousand training steps
(over 20 times longer than the Q-learning). In addition, the
learning steadiness of the three policy gradient algorithms
was poor, especially DDPG and PPO, although the best aver-
age termination frequency from them was over 9 times the
best from the Q-learning. Trained with two different approx-
imators and at four learning rates, DDPG only managed to
learn the tool path once, which could be due to the reason that
DDPGwas developed for continuous action space problems.

Figure 10 shows the training process of the six RL algo-
rithms, which were trained with the best hyperparameters
from above. It can be seen that, unlike the Q-learning
algorithms which almost instantly converged after a few ter-
minations, the policy gradient ones had more discernible
converging process. Although the tool paths learned from
the policy gradient algorithms were about 1–3 times longer
than those from the Q-learning at the start of training, they
eventually converged to a comparable level of length. DDPG
converged to the minimum average termination step of 29,

however, its learning steadinesswas theworst among all from
Table 7. The Q-learning algorithms outperformed the pol-
icy gradient ones in general in terms of the first termination
step and convergence speed. This could be due to that A2C
and PPO are on-policy learning which is less data-efficient
than off-policy, and DDPG is created for learning problems
with continuous action space which needs careful tuning for
problems with discrete space. For Q-learning algorithms, the
Double-DQNprecededDQNandDueling-DQN for its lower
average converge termination step and marginally faster first
termination. The reason could be thatDouble-DQNalleviates
the Q-value over-estimation problem in DQN learning, and
Dueling-DQN is only particularly useful when the relevance
of actions to the goal canbedifferentiated by separately learn-
ing state-value and advantage-value. However, each action
in free-form deformation is highly relevant to the goal, for
which the structure ofDueling-DQN, in turn, increases learn-
ing complexity and slows down learning speed. Thus, for the
following results, Double-DQNwas used to learn the optimal
tool path.

To assess the credibility of the algorithm selection study,
the tool path learning processes and results of the Double-
DQN, implemented with virtual environment (VE) and FE
simulations, for the same target workpiece were compared in
Fig. 11. From Fig. 11a and b, the history of forming step and
total rewards per episode from the learning usingVEhave the
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Fig. 10 Comparison of the performances of 6 reinforcement learning
algorithms studied in this research in terms of termination step. The
solid and dashed lines denote the average termination step, estimated

from Gaussian process regression, through the training process of the
algorithms. The shaded regions denote 95% confidence interval

patternwhich highly resembled those from the learning using
FE simulations. The average episode step over the training
process from VE was marginally higher than that from FE
simulations by about 6 steps, while the average episode total
rewards from the former was less than the latter by about 15.
This phenomenon indicates that, with FE, the agent is more
predisposed to overpunch (episode ends) with less efficient
tool path at each episode than with VE. In addition, the first
termination was about 1200 episodes slower and the total
reward was about 30 less than those with VE. The practical
rubber-tool forming behaviour is more complex and nonlin-
ear than the VE imitates. From Fig. 11c, both tool paths had
similar forming pattern of alternatingly selecting small and
large stroke values which have, on average, slight increased
throughout the tool path. Thus, in general, the virtual envi-
ronment managed to imitate most of the forming behaviours
in FE simulations, and the results from the pre-study on algo-
rithm selection performed with the virtual environment are
convincing regarding their learning efficiency in tool path
learning.

Tool path learning results for 25 workpieces using
double-DQN

From Section 3.1, Double-DQN was selected to learn the
optimal tool paths for 25 variants of workpiece segments in
Group 1, whose K -graphs and real-scale shapes are shown
in Fig. 12. The workpieces were deformed through the
rubber-tool forming process, which was simulated through
FEcomputations. The K -graphswere arbitrarily createdwith
the method shown in Appendix A, and the real-scale shapes

in Fig. 12b were reconstructed from the K -graphs using con-
stant initial interval between two contiguous node locations
(0.1 mm).

An exemplary Double-DQN learning process is shown
in Fig. 11a and b, where the termination occurs at around
episode 1500. It can be seen that the first 150 episodes ended
with remarkably fewer forming steps than those thereafter,
which is due to the effect of ε-greedy policy. Under this pol-
icy, the agent was more likely to randomly explore the search
space than following the online policy learned from exist-
ing forming experiences before the ε value decayed to 0.5,
which led to quicker overpunch thus less steps per episode.
To analyse the learning process in the light of effective form-
ing progress, an exemplary learning process concerning the
maximum �K value at the end of each episode is shown in
Fig. 13. As the forming goal is to achieve a workpiece state
where its max(|�K |) ≤ 0.01 mm−1, the learning history of
episode end maximum �K can reflect the learning progress
of effective tool path. From Fig. 13, there is a clear trend
that the maximum value of �K at the end of each episode
gradually decreased from 0.05 mm−1 at the start of learning
to below 0.01 mm−1 at about episode 1350, where the termi-
nation occurred. This learning curve demonstrates both the
effectiveness of the Double-DQN algorithm and the reward
function in searching the tool path. With progressing, the
deformed sheet metal was more and more approaching its
target shape, which was demonstrated by the troughs of the
max (�K ) graph along the arrow marker.

In addition to the learning progress captured from maxi-
mum �K curves, extra two self-learning characteristics of
the tool path learning, which were measured from a more
micro perspective than the former, were observed. Figure 14
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Fig. 11 Comparison between RL using virtual environment (VE) and FE simulation environment (FE) in terms of a the history of steps in each
episode, b the history of total rewards in each episode and c the tool path predictions

Fig. 12 The K -graphs and workpiece shapes for all the generated target workpieces

Fig. 13 The history of the maximum �K value at the end of each
episode (Ep) throughout the learning process. The arrow shows the
learning progress of effective tool path

shows two examples where the self-learning characteristics
of tool path efficiency improvement and overpunch circum-
vention were captured, respectively. The three �K -graphs
were collected from the workpiece deformed by the same

number of punches at different episodes during a learning
process. In Fig. 14a, the shaded hatch denotes the total advan-
tage from the workpiece state at episode 527 over that at
episode 245 in terms of the shape difference from the tar-
get shape, which is measured by the area of hatch. In turn,
the unshaded hatch represents the opposite. Thus, it is clear
that the tool path planned at the recent episode was more
efficient than the one at previous time by about 1.21 with ref-
erence to the net area of hatch (shaded area minus unshaded
area), accounting for 11.8% of the initial �K -graph area. In
Fig. 14b, the shaded regions indicate two overpunch-prone
locations at episode 527, where the �K values were only
within about 0.002 mm−1 away from the lower threshold (−
0.01mm−1). Due to CPE2, the workpiece can be easily over-
punched by deformation near the two locations. It was found
that the agent selected smaller punch strokes at these two
locations at episode 687, which circumvented the overpunch
occurred in previous episodes.

To evaluate the performance of the Double-DQN algo-
rithm in extracting and learning abstract information during
tool path learning, the representations in the last hidden
layer of the Double-DQN model to the workpiece states,
which the agent experienced throughout the learning process,
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Fig. 14 Examples showing self-learning characteristics of a improving tool path efficiency and b circumvention of overpunch. The results were
from step 31 at three different episodes of the tool path learning process for a workpiece

Fig. 15 The two-dimensional embedding, generated through t-SNE, of
the representations in the last hidden layer of the Double-DQN to work-
piece states (�K -graphs) experienced during tool path learning. The
points are coloured according to stroke values selected by the agent.

The graph at the top left corner shows the initial �K -graph, and the
axis labels of the other �K -graphs (numbered from ➀ to ©11 ) are omit-
ted for brevity. The vertical lines in the �K -graphs denote the punch
locations
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were retrieved and reduced to two-dimensional embeddings
through t-SNE technique (Maaten&Hinton, 2008).Thevisu-
alisation of these embeddings is shown in Fig. 15, in which
the embeddings are coloured according to selected stroke
values by the agent. It can be seen that the CPE1, namely
more prior deformation undergoes near the node location of
interest results in larger punch stroke required to accomplish
a certain change of shape at this location, was learned by the
agent.

From Fig. 15, the �K -graphs ➂, ➃ and ➄ were assigned
relatively low value of stroke as there was no prior deforma-
tion to at least one side of the punch locations. In addition,
larger stroke was assigned if the punch location was closer
to the initial punch location 66, which is due to the higher
amount of local shape difference. As the CPE1 escalated,
higher stroke values were selected by the agent as shown by
the rest of the �K -graphs except for ➀ and ➁. It was also
captured that, from ➅ and ➆, the CPE1 became more severe
with larger nearby prior punches. Apart from CPE1, CPE2
was also captured by the �K -graphs ➀ and ➁, where the
effect was significantly more obvious than the one shown in
Fig. 6a. As indicated by the regions highlighted with circles
in ➀ and ➁, the �K values in these regions were very close
to the lower forming threshold, for which small strokes were
assigned for them to prevent from overpunch. The punch
effect at this region was reproduced as shown in Appendix
C, where a mere increase of 0.1 mm of stroke can deteri-
orate the �K values to the left of the punch location by
about 0.007 mm−1 and caused overpunch in this context.
Overall, the similar workpiece states were clustered together
and assigned by reasonable stroke values. The agent had a
good understanding in tool path planning through learning
the abstract representations.

Figure 16 shows an example of the tool path learned by the
Double-DQN. In Fig. 16a, the initial �K -graph between the
blank sheet and the target workpiece was transformed to the
final one (enclosed by a rectangle), where the �K values at
all node locations were within the forming thresholds, by 47
forming steps. Due to the Heuristic 1 that the location with
the highest �K value was selected as the punch location,
the punch started from the location where the initial �K
value was the highest (about 65) and diverged to both ends
of the workpiece, as shown by the top view of Fig. 16b.
Lower values of stroke were assigned to diverging punches
than those inside the divergence area due to the CPE1, which
led to the repeatedly alternating selection of small and large
strokes along the formingprogress inFig. 16a.As the forming
progressed, the CPE1 escalated thus the larger stroke values
were selected at later steps (after step 15) of the tool path than
those at start. It is also worth noting that, from the side view
in Fig. 16b, large strokes were concentratedly assigned to
punch locations with high initial �K values and descended
to those with low ones.

Figure 17 presents the deformation process of aworkpiece
from blank sheet to its target shape following the tool path
learned from the Double-DQN and the dimension error (the
geometry difference in Y-direction) between the target work-
piece and the one after all punches. The target shape in the
real-scale graph was reconstructed from the target K -graph,
of which the same interval of 0.1 mm between two contigu-
ous node locations along the deformed workpiece was used
for reconstruction. It can be seen that the final shape of this
deformed workpiece was in a good agreement with its target
shape, with a maximum dimension error of just above 0.2
mm. The dimension error was at its minimum in the mid-
dle of the workpiece, from which the error increased to both
ends due to the accumulation of shape difference. The aver-
age maximum dimension error for the 25 variants using the
tool paths learned by the Double-DQN algorithm was 0.26
mm.

Tool path learning generalisation using supervised
learning

Through Double-DQN algorithm, the tool paths for the 25
variants of workpiece (shown in Fig. 12) segment were
learned, whose length (total punch steps) for each variant
is shown in Fig. 18. The tool path lengths varied from 44 to
63, with most lying around 52.

To learn the intrinsic efficient forming pattern for these
workpiece variants (Group 1), the supervised learning model
was used for training with the tool path data for the 25
variants. As introduced in "Deep neural networks" section,
three LSTMs, which respectively used VGG16, ResNet34
and ResNet50 as the feature extractor, were investigated.
The training data were the 25 tool paths pre-processed to
the data format consistent with the input and output of the
CNNLSTMs, with a total of 1315 data. These data were split
into 90% for training and 10% for testing, and the other key
training parameters are presented in Table 5. The training
processes of the three models are shown in Fig. 19 by gen-
eralisation loss (test loss) history, which would end early if
the generalisation loss tended to increase (Goodfellow et al.,
2016). In addition to training models using the total amount
of 25 tool paths, theVGG16LSTMwas also trainedwith only
20 tool paths to study the effect of trainingdata on the learning
performance. The 20 tool paths were evenly sampled from
the original 25 paths to avoid massive data missing, and the
maximum tool path length among the 20 paths was 55. The
generalisation loss has been de-standardised to stroke unit
(mm), and the losses from the three models all converged to a
comparable level of 0.25 mm, except for the VGG16 LSTM
trained with 20 tool paths whose loss converged to about
0.33 mm. Thus, more training data was seen to improve the
generalisation, which could be due to that more exhaustive
data help to generalise the forming pattern during training.
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Fig. 16 An example of a tool path learned by RL and b its top view and side view. The height of the bars in (a) were proportionally decreased for
better visualisation

It is also noted that the loss from LSTMs with both ResNets
sharply decreased before convergence, which could be due
to the decaying learning rate during training. Before learning
rate decreased to a certain level, the parameter update at each
learning step could be so large that parameter value was jig-
gling around its suboptimum. Once the learning rate became
smaller than this level, the model parameters could be closer

to their optimal values and the loss would encounter a sharp
drop.

Figure 20 shows the prediction results for the same test
workpiece from the three models trained with 25 tool paths
and the VGG16 LSTM trained with 20 tool paths. The total
time steps of the LSTMswere themaximum forming steps in
the training data, namely 63 and 55 steps for models trained
with 25 and 20 tool paths, respectively. It can be seen that the
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Fig. 17 An example of workpiece deformed by the tool path predicted
by the Double-DQN. Top: the dimension error between the target work-
piece and the final workpiece deformed along the predicted tool path.
Bottom: the workpiece shape at each forming step (dotted line) com-
pared to its target shape (solid line). Forming step of 0 denotes blank
sheet

Fig. 18 The length of the tool path learned through Double-DQN for
each variant of workpiece segment

tool path predictions for the workpiece from the three super-
vised learning models trained with different amount of data
all agreed well with the tool path learned through reinforce-
ment learning. The punch started from small values of stroke
and alternatingly selected small and large strokes along the
forming progress, and the values of large strokes gradually
increased as theCPE1 escalated in the forming process.How-
ever, it is worth noting that the ResNet50 LSTM tended to
predict successive lower values of strokes, near the end of
forming (from step 46 to 57), than those predicted by the
other models.

With regard to the final �K -graph of the test workpiece
deformed through the tool path predicted by the LSTMs,

Fig. 19 The generalisation loss curves along the training processes of
the LSTMmodels with VGG16, ResNet34 and ResNet50 as the feature
extractor, respectively. The number 25 and 20 in the parenthesis denote
the amount of tool paths used for training

the VGG16 LSTM trained with 25 tool paths was the most
superior among all models, whose level of forming goal
achievement (G = 1 − �K out T HLD

f inal /�K out T HLD
initial , THLD

denotes threshold) was up to 99.9%. However, the level of
goal achievement of the other two models trained with 25
tool paths just reached 97%, and the LSTM trained with 20
tool paths only achieved 95%. From the final �K -graphs
from models trained with 25 tool paths in Fig. 20, the one
from the VGG16 LSTM was seen to have only two negli-
gible overpunch at location 66 and 161, of which location
66 was the first punch location in the tool path and the over-
punchwas due to the accumulation ofCPE2near this location
through the rest of the tool path. However, multiple evident
overpunches and short (insufficient) punches were found in
the �K -graph from the ResNet34 LSTM and short punches
in that from the ResNet50 LSTM. This is due to the over-
and under-estimation of stroke values in the tool path, from
the models, at the locations where overpunches and short
punches occurred, and the short punches from ResNet50
LSTM could be caused by the massive punch steps of low
stroke values near the end of forming. As for the �K -graph
from the VGG16 LSTM trained with 20 tool paths, the result
was even worse than those trained with 25 tool paths. It was
seen to have the worst overpunch at node location 213 among
the four cases, and there was a continuous short punch region
from location 72 to 122, indicating a consistent underestima-
tion of stroke values for punches in this region. The consistent
underestimation could be caused by the less training data,
which led to the lack of useful tool path data for this region.

In terms of the final geometry difference between the
deformed workpiece and its target shape, the tool path pre-
dicted by the VGG16 LSTM preceded those from the other
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Fig. 20 The learning performance of LSTMs trained with 25 tool paths
data (solid squares) and 20 tool paths data (dashed squares) on a test
workpiece. For the former, the prediction results from LSTMs with
a VGG16, b ResNet34 and c ResNet50 are presented, while for the lat-
ter, that from d VGG16 LSTM are presented. The prediction results

include three parts as followed. Top: the tool path prediction from
LSTMs (SL) and its comparison to the tool path from reinforcement
learning (RL); Mid: the final �K -graph after deformation; Bottom: the
dimension error and the comparison between the deformed workpiece
shape and its target
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models, through which the maximum dimension error was
about 0.37mm. However, the dimension errors resulted from
other models were much higher, especially for ResNet50
LSTM and the one trained with less data whose predictions
led to over 0.6 mm and 0.8 mm of dimension error, respec-
tively. In addition, the final workpiece shapes from these two
models had much more visible deviation from their targets
than those fromVGG16- andResNet34- LSTMs trainedwith
25 tool paths.

It is worth noting that, although the �K -graph from the
ResNet34 LSTMwas not as good as the one from theVGG16
LSTM according to the level of forming goal achievement
G, the tool paths from both models resulted in compara-
ble results of the final dimension error. On the other hand,
good goal achievement does not entail good dimensional
accuracy. For example, the right half of workpiece shape
from ResNet50 LSTM remarkably differed from its tar-
get although its corresponding �K -graph had a good goal
achievement, which is due to the excessively more area of
�K -graph above theX-axis than that below it. The fourmod-
els, the VGG16-, ResNet34- and ResNet50 LSTM trained
with 25 tool paths and the VGG16 LSTM trained with 20
tool paths, were re-evaluated on 10 arbitrary variants, and

the average level of forming goal achievement
−
G from them

was 99.54%, 96.86%, 97.15% and 97.19%, respectively.
With regard to the maximum dimension error, the average
value from the four models was 0.45, 0.40, 0.63 and 0.58
mm, respectively. It was seen that, although VGG16 LSTM
had remarkably better goal achievement than the ResNet34
LSTM, it yielded slightly larger dimension error. This indi-
cates that the overpunch and short punch in terms of the �K
thresholds can, to some extent, contribute to the final form-
ing results. The results entail that moderate compromise of
workpiece curvature smoothness could bring more effective
tool path planning behaviour in terms of dimensional accu-
racy. Multi-objective optimisation could be considered in the
future for learning the optimal trade-off between the final
curvature smoothness and the dimensional accuracy. Thus,
attaining the best level of goal achievement and leading to a
high dimensional accuracy, the VGG16 LSTM trained with
larger amount of data had the most superior performance in
tool path learning generalisation.

To compare the tool path planning performance of the pro-
posed generalisable strategy and the method exploiting pure
reinforcement learning technology, a well-trained Double-
DQNmodel was used for stroke prediction of the first punch
for variants of workpiece with different initial �K -graphs
(i.e., different target shapes), including the target shape it
was trained for.

Figure 21 shows the �K -graphs after the first punch of
theseworkpieces with the stroke prediction from theDouble-
DQN, of which the node locations where the troughs reside

Fig. 21 Evaluation of the pure RL strategy by assessing the tool path
prediction results from the trained Double-DQN model for new vari-
ants of workpiece. The �K -graphs were acquired after the first punch,
predicted by the RL model, for the variant used for tool path learning
through RL (solid line) and new variants that were never seen in the
learning process (dashed line)

indicate the punch locations. It can be seen that most of the
stroke predictions for new variants were uncharacteristically
large, which caused significant overpunch at the very first
forming step. This indicates that theDouble-DQN trained for
the tool path learning of a certain target shape cannot be used
to predict the tool path for different target workpieces, and
the reinforcement learning process has to be gone through
again for new applications.

Case study verifying the generalisable tool path
planning strategy

To evaluate the generalisable tool path planning strategy pre-
sented in Fig. 4, a new target workpiece of length 90.2 mm
was arbitrarily generated as shown in Fig. 22. The target
workpiece was first digitised to its initial �K -graph using
0.1mm interval between two contiguous node locations, with
903 node locations in total. The�K -graph can be segmented
to 3 Group 1 segments, A, B and C, which were never seen in
the training process of the proposed strategy.With the trained
supervised learningmodel (VGG16LSTM), the forming tool
path for each of the segment was predicted and aggregated
to the entire tool path for the target workpiece. It can be
seen that the deformation took place segment-wise, and the
final �K -graph resided well in the threshold region with the
level of forming goal achievement of 99.87%. Thus, the case
study verifies the generalisation of the proposed strategy that
an arbitrarily selected workpiece can be formed by solving
its tool path in a dynamic programming way. By factorising
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Fig. 22 The entire tool path for a new workpiece, which is aggregated by the subpaths predicted by the VGG16 LSTM for each segment of the
workpiece. The three segments were never seen in the LSTM training

the forming process of an entire workpiece into that of typ-
ical types of segments, the entire workpiece can be formed
by consecutively forming each segment.

Figure 23 presents the workpiece shape after deformation,
computed by FE, through the generalisable tool path plan-
ning strategy and its target shape. From Fig. 23a, due to the
accumulation of �K -graph area above the X-axis near the
junction location (location 301 and 602) between two seg-
ments, there was a visible deviation between the deformed
workpiece shape and its target, with a maximum dimension
error of about 1.8 mm. With two supplementary punches at
the two junction locations, the deformed workpiece shape
had a clear approaching to the target shape, with a maximum
dimension error of about 1 mm. Since the punch location is
at the end of each segment where CPE1 was not escalated,
small stroke values were selected for the two supplementary
punches, which did not cause overpunch. Thus, the gener-
alisable tool path planning strategy successfully yielded the
final workpiece shape within a dimension error of 2%. Due
to the error accumulation brought in by the junction area, the
deformed workpiece shape can be further improved by a few
supplementary punches in this area.

Conclusions

In this research, a generalisable tool path planning strategy
for free-form sheet metal stamping was proposed through
deep reinforcement and supervised learning technologies.

By factorising the forming process of an entire workpiece
into that of typical types of segments, the tool path plan-
ning problem was solved in a dynamic programming way,
which yielded a generalisable tool path planning strategy for
a curved component for the first time. RL algorithms and
SL models were exploited in tool path learning and gen-
eralisation, and six deep RL algorithms and three deep SL
models were investigated for performance comparison. The
proposed strategy was verified through an application to a
case study where the forming tool path for a completely
different target workpiece from training data was predicted.
From this study, it can be concluded that:

(1) Q-learning algorithms are superior to policy gradient
algorithms in tool path planning of free-form sheet
metal stamping process, in which Double-DQN pre-
cedes DQN and Dueling-DQN. The forming heuristic
is also corroborated to further improve the Q-learning
performance.

(2) Conferred by deep reinforcement learning, the gen-
eralisable tool path planning strategy manifests self-
learning characteristics. Over the learning process, the
tool path plan becomes more efficient and learns to
circumvent overpunch-prone behaviours. With Double-
DQN, the tool path for a free-form sheet metal stamping
process can be successfully acquired, with the dimen-
sion error of the deformed workpiece below 0.26 mm
(0.87%).
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Fig. 23 The comparison between the workpiece shape deformed
through thegeneralisable tool path planning strategy and its target shape.
a deformed workpiece shape yielded by the strategy and b workpiece

shape after two supplementary punches near the junctions of the three
workpiece segments

(3) The efficient forming pattern for a group of workpiece
segments have been successfully generalised using deep
supervised learning models. The VGG16 LSTM pre-
cedes ResNet34- and ResNet50 LSTMs in the tool path
learning generalisation, although they have comparable
average generalisation loss. The VGG16 LSTM man-
ages to predict the tool path for 10 test variants, with an
average level of forming goal achievement of 99.54%
and a dimension error of the deformed workpiece below
0.45 mm (1.5%). However, the pure reinforcement
learning method cannot generalise plausible tool paths
for completely new workpieces.

(4) The generalisable tool path planning strategy success-
fully predicts the tool path for a completely new work-
piece, which has never been seen in its previous learning
experience. The level of goal achievement reached
99.87% and the dimension error of the deformed work-
piece was 2%. The dimension error could be reduced to
about 1.1%with two small supplementary punches near
the junctions of the workpiece segments.

Through the proposed method, the tool path planning for
an arbitrary sheetmetal component is attemptedwith a gener-
alisable strategy for the first time, and the poor generalisation
issue of pure reinforcement learning approach for tool path
planning is addressed. However, the efficiency of this strat-
egy is subject to the design of forming the pattern and reward
function. In future work, a multi-objective forming goal for
tool path planning could be used for a trade-off between the

final curvature smoothness and the dimensional accuracy.
With moderate compromise of curvature smoothness, more
efficient tool path in terms of dimensional accuracy might
be yielded. CPE1 and CPE2 can also be embedded into the
reward function design to facilitate the tool path learning
process.

Appendix A: arbitrary generation
of workpiece segments

The �K -graph of each variant in Group 1 shown in Fig. 24,
which is composed of two parabolas �K a−b and �K b−c, is
determined by five variables (ha , hc, lb, wab and wbc) and
two constants (hb and lc). Theworkpiece segmentswere arbi-
trarily generated by randomly sampling the values of these
variables.

Appendix B. virtual environment
configuration

The virtual environment (VE) is developed to imitate the
rubber-tool forming behaviour in FE simulations, in which
the DRL algorithms are trained to reduce computational
expense. Since the forming process is extremely nonlinear,
VE is only tweaked to qualitatively resemble FE simulation
results, which, however, is sufficient for RL algorithms com-
parison. The VE is configured following the rules below,
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Fig. 24 The variables and
functions for creating the variants
of segments in Group 1.wab and
wbc can be derived once ha , hb,
hc and l b are generated

whose formulation and parameter selection were based on
FE simulation results.

1. A single punch operation only affects the �K values at
50 node locations (5 mm) around the punch location and
the punch location itself in the �K -graph.

2. If a node location has been punchedwith a stroke and this
location is selected again for punching, the �K -graph
will only change if the new stroke is greater than the
previous one.

3. The change of K value (cK ) at the punch location by
stroke (ds) without CPE1 and CPE2 is defined as: cK0 =
(ds − 2.1) × 0.05 + 0.045.

4. With CPE1:

i. only one side of the punch location is pre-deformed:
cK1 = cK0/2;

ii. both sides of the punch location are pre-deformed
by 1 punch: cK2 = (cK0 + 0.035)/2;

iii. one side of the punch location is pre-deformed by
1 punch and the other side is pre-deformed by 2
punches: cK3 = (cK0 + 0.005)/2;

iv. two sides of the punch locations are pre-deformed
by 4 and over 4 punches in total: cK4 =
(cK0 − 0.01)/2.

5. The change of K value gradually decreases from cKi

(i ∈ [0,4], Z) at the punch location to 0 at two ends of
the 51 node locations in rule 1.

6. With CPE2: if the �K -graph is changed by the punch,
�K values at the 51 node locations in rule 1 are reduced
by 0.0005 mm−1.

Appendix C: extraordinarily large CPE2

A phenomenon of extraordinarily large CPE2 is shown in
Fig. 25. It can be seen that, after a punch with stroke of 3.6
mm was applied to location 76, there is an evident effect of
curvature at about location 70. When the applied stroke was
increased by 0.1 mm, the CPE2 at location 70 increased by
about 0.007 mm−1.

Fig. 25 Extraordinarily large CPE2 occurring near punch location of 80. The vertical line denotes the punch location at the current workpiece state
(original �K -graph). The dotted line and dashed line denote the �K -graphs after punches with stroke of 3.6 mm and 3.7 mm, respectively
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