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Ultrasonic wave propagation and scattering involving both solids and fluids underpins many key configurations 
in non-destructive testing and underwater acoustics. The resulting interactions are highly dependent on both 
material parameters and geometries and are difficult and expensive to investigate experimentally. Modelling 
capabilities are often used to overcome this, but these are also complex and computationally expensive due to 
the complexity of the fluid-solid interactions. We introduce a novel explicit time-domain finite element method 
for simulating ultrasonic waves interacting with fluid-solid interfaces. The method is displacement-based, and 
relies on classical hourglassing control, in addition to a modified time-stepping scheme to damping out shear 
motion in an inviscid fluid. One of the key benefits of the displacement-based approach is that nodes in the fluid 
have the same number of degrees of freedom as those in the solid. Therefore defining a fluid-solid model is as 
easy as defining an all-fluid or all-solid model, avoiding the need for any special treatments at the interfaces. 
It is thus compatible with typical elastodynamic finite element formulations and ready for implementation on a 
graphical processing unit. We verified the method across a range of problems involving millions of degrees of 
freedom in fields such as non-destructive testing and underwater acoustics.
1. Introduction

Ultrasonic propagation in domains composed of both solids and flu-
ids is a key area of interest in diverse subject areas such as: medical [1], 
geophysics [2], non-destructive testing, engineering [3] or underwater 
acoustics [4]. Key use cases are those of immersion testing [5], pipe 
inspection [6], and scattering from underwater objects [7]. Numerical 
models are needed to accurately simulate ultrasonic wave phenomena 
in coupled solid-fluid interactions for a range of complex geometries 
and materials in such real-world applications, as analytical or experi-
mental methods can be restricted to simple configurations or limited 
to a small subset of parameters. Numerical methods, such as the Fi-
nite Element (FE) method, are often used to handle complex geometries 
by coupling solid and fluid domains using a pressure-based formula-
tion within the fluid [8], linked to the conventional displacement-based 
formulation in the solid However, this typically requires more com-
plex matrix processing which can be computationally expensive and 
not always feasible. In addition, such computations are rarely able to 
take advantage of the acceleration capability of highly-parallel comput-
ing hardware such as GPUs (Graphical Processing Units) due to their 
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implicit nature, relying on matrix inversions. Explicit methods are pre-
ferred to implicit methods for GPU calculations, as the variables at one 
time-step can be computed from their known values at previous time-
steps. The reason for this preference is the large number of processors 
which allow many threads to run in parallel as well as the GPUs high 
memory bandwidth for loading in data. This is well known in the litera-
ture, as can be seen in [9], where it is stated that “explicit methods map 
well to the GPU architecture as the output elements can be computed 
independently of each other, thus making full use of the high comput-
ing throughput of a GPU” or in [10], where an in-depth explanation of 
the GPU architecture and how this maps to explicit-in-time finite ele-
ments methods is given and the reader is referred to these for further 
information about the GPU architecture.

Due to the complexities and prominence of the problem, significant 
research work has been carried out to improve modelling capabilities 
for ultrasonic wave propagation and scattering, using both analytical 
and numerical methods. In the analytical framework, mathematical so-
lutions exist for some geometries. For example, Faran [11] investigated 
sound scattering from solid cylinders and spheres in liquid. At the time, 
this work was limited by the numerical evaluation of the Bessel func-
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tions, but this poses no problems with modern computing capabilities. 
In [7] by Skelton and James, results are presented for scattering pat-
terns for layered media in cylindrical and spherical domains. Analytical 
results are generally limited to simple geometries, which are not able to 
represent realistic practical scenarios often involving complex configu-
rations.

Despite invaluable physical insights offered by the analytical mod-
els, only numerical methods enable a full range of complex, industry-
relevant configurations to be simulated. Numerical experiments allow 
both researchers and practitioners to perform multiple simulations in 
order to develop new approaches or methods and to validate processing 
of results before carrying out more complex and expensive experimen-
tal tests. The numerical models can further be used to model physical 
phenomena and to evaluate different types of defect in parametric stud-
ies, which are not possible to do in a consistent manner experimentally, 
or to assist with sensor design and placement [12].

A multitude of numerical techniques have been used to accurately 
predict some of the properties of ultrasound wave characteristics in 
solid and fluid materials. The finite-difference (FD) method has fre-
quently been used throughout the literature, due to its comparative ease 
of use and low computational power required. Unfortunately, without 
significant modification, it can not accurately model complex domains 
because it is restricted to modelling on a uniformly spaced grid. Impor-
tant contributions to the application of the FD method to wave propa-
gation in solid-fluid media can be found in [13] where they accurately 
modelled the Scholte wave [14] or [15] who modelled elastic wave 
propagation in submerged solids. In [4], an FD method in polar coordi-
nates was used to calculate the response from submerged cylinders with 
an arbitrary amount of filling, which is not possible using conventional 
axisymmetric techniques. However, the difficulty in handling complex 
geometries or configurations remains a fundamental drawback.

Other techniques used in the literature are the transfer matrix 
method (TMM) [16] with associated disadvantages at smaller frequen-
cies [17], the distributed point source method (DPSM) [18] or the 
boundary element method (BEM) [19]. Extensive work has also been 
undertaken on combining different methods, such as in [20] where a 
boundary element method is used to model the fluid which is then cou-
pled with a finite element (FE) method for the solid or in [21] where 
an analytical solution for the fluid is combined with an FE method for 
the solid.

In the FE literature for the fluid-structure interaction (FSI), various 
formulations have been proposed to model the acoustic wave prop-
agation. Most common are the pressure formulation or the velocity 
potential formulation [22], which have the benefit of only requiring one 
degree of freedom (DoF) per node. There have also been attempts with 
non-standard elements, such as the Raviart-Thomas elements which are 
edge-based and do not seem to suffer from hourglassing [23]. Hour-
glassing is the phenomenon where certain non-physical modes remain 
stressless and they quickly dominate and cause instability in the so-
lution [24]. Despite showing much promise, the Raviart-Thomas ele-
ments are not compatible with existing FE software or procedures such 
as meshing. Coupling solid and fluid domains using a pressure-based 
formulation in FE results in a matrix inversion, which is computation-
ally expensive. This matrix operation is not always feasible, especially 
for large problems. Such industry-relevant cases involving only solid 
media can be solved using highly-efficient displacement-based elasto-
dynamic FE solvers benefiting from graphical computing cards [10]. 
Unfortunately, the pressure-based formulation cannot be used in that 
framework because of the aforementioned matrix inversion and the re-
quired special treatment as the solid-fluid boundary.

The displacement-based formulation for fluids may be the way for-
ward but it was troubled by its own challenges in the past. Most 
reported problems include added computational requirements when 
compared to pressure-based formulations, as it is a vector-based quan-
tity compared to the scalar pressure, and the presence of spurious cir-
2

culation modes [25]. These spurious circulation modes can be found 
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throughout the numerical method literature and extensive research has 
been carried out to control these instabilities, such as by Hamdi [26]
who applied a penalty method, by Belytschko who used mesh sta-
bilisation techniques [24] or Bathe [27] who used a mixed method. 
Unfortunately, these are often not suitable for GPU calculations due to 
the added mathematical terms, which result in non-symmetric or non-
sparse matrices.

To improve the versatility of time-domain finite element modelling 
in coupled fluid-solid media, we propose developing a displacement-
based FE formulation designed for use on a GPU. This means the method 
is explicit-in-time and relies on a modified damping matrix to min-
imise any non-physical shear motion in the fluid. In addressing the 
concerns mentioned above, we have relied on the classical hourglass 
control. Our development draws from the work done by Chen [25] on 
reduced integration techniques for four-noded quadrilateral elements 
to reduce hourglassing, and Everstine [28] who configures an isotropic 
elastic solid to represent a compressible inviscid fluid. Our proposed 
formulation enables applying the time domain finite element method in 
coupled media to problems of industrial scale. The method’s versatility 
for time-domain problems, which allow us to extract data for multi-
ple frequencies from one simulation and its ability to handle arbitrary 
and complex geometries, is crucial to the problems we are consider-
ing. Furthermore, it can handle problems from diverse domains, which 
often have very different scales of interest. For example, in [29], ob-
jects of 1 mm radius with frequencies up to 3 MHz were investigated, 
whereas in [4] objects of 1 m radius with frequencies of 1 kHz were 
investigated. Designing the formulation with the hardware in mind is 
essential for enabling simulation of realistic configurations. The GPU 
acceleration enables models to be set up and solved at extremely high 
speed. This allows for executing simulations involving hundreds of mil-
lions of degrees of freedom in a relatively short time, enabling fine 
mesh refinement or performing parametric studies efficiently. While the 
displacement-based formulation adds 1 (in 2D) or 2 (in 3D) extra de-
grees of freedom to the nodes in the fluid domain compared to a scalar 
(e.g. pressure-based) formulation the displacement-based methods re-
sult in symmetric, sparse matrices, whereas pressure based formulations 
after treatment at the boundary can result in non-symmetric and dense 
matrices. The non-symmetry and need for matrix inversion also pose 
significant challenges to GPU implementation. We are no longer guar-
anteed a sparse matrix; this results in a significant amount of increased 
memory and storage, and as we are often bandwidth limited, as dis-
cussed in [10], this can drastically slow down calculations, introducing 
additional bottlenecks. A displacement-based formulation ensures com-
patibility with existing solid solvers, alongside a non-diagonal damping 
matrix that is suitable for GPU calculations and does not produce (sig-
nificant) hourglassing. Thus due the increased performance of the GPUs 
means we can solve similarly sized problems faster for a required ac-
curacy. The results we present throughout this paper are in 2D and for 
inviscid fluids, although we expect the method to generalise well to 
both 3D simulations and viscous fluids, although these should be prop-
erly validated before use.

The structure of the remainder of the paper is as follows. Challenges 
of the fluid-solid interaction problem will be described in Section 2. 
The FE formulation of both solid and fluid will be given in Section 2.1. 
Numerical results, such as scattering patterns, dispersion curves, atten-
uation and wave velocity, will be compared with existing solutions and 
methods and will be provided in Section 4 with a brief conclusion in 
Section 5.

2. Problem formulation

The first challenge when modelling the FSI using conventional 
pressure-based methods is the continuity on the boundary between the 
solid and the fluid. By describing the fluid using the same variable as 

we use in the solid, i.e. displacement, continuity (of the variable) across 
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the boundary is automatically achieved as we do not need to convert to 
a different variable.

2.1. Finite element formulation

We begin by introducing the basics of the finite element method but 
do not cover these in detail as FE is a classical and established numerical 
method and the reader is referred to works such as [30–32] for full 
details. The majority of finite element software implementations such 
as [10,32] have the following structure. First we create and discretise 
the area of interest into finite elements, using a meshing algorithm. 
Then, we assemble local matrices on each element and use a local-to-
global mapping to assemble the matrices. Finally, we solve the resulting 
system of equations.

The linear wave equation has the following spatial FE formulation 
[33]

𝑲𝒖+𝑪�̇�+𝑴�̈� = 𝒇 , (1)

where 𝒖 is the displacement vector and �̇�, �̈� are the first and second 
derivatives with respect to time respectively, 𝑲 , 𝑪 , 𝑴 are the stiffness, 
damping and mass matrices respectively and 𝒇 is the forcing vector.

2.1.1. Finite element formulation for solid materials

FE formulations for displacement-based solid elements are well-
known [34] and are briefly discussed below so that we can introduce 
the necessary changes made for fluid materials. The element stiffness 
matrix 𝑲𝑒, where the superscript is to denote “local element”, of an 
element is given as [34]

𝑲𝑒 = ∫ 𝑩𝑇𝑬𝑩 d𝑉 . (2)

The matrix 𝑩 in Equation (2) is the strain-displacement matrix which 
comes from the strain-displacement formula

𝝐 =𝑩𝒖. (3)

These can be found in the literature [35] and depend on the choice 
of the element, for which further information will be provided in Sec-
tion 2.1.2. The matrix 𝑬 is the stress-strain matrix which depends on the 
material parameters. For convenience for the development of the fluid 
element the stress-strain matrix 𝑬 for a 2D isotropic solid is shown, al-
though due to the displacement-based nature of our approach, the fluid 
formulation will work with solids that are isotropic or anisotropic of 
any symmetry. Furthermore, this derivation should also hold true for 
3D modelling since no specific simplifications were assumed for the 2D 
case, although verification and validation studies should be carried out 
in the 3D case to confirm this. The matrix 𝑬 is given as [34]

𝑬 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝐸

1 − 𝑣2

𝑣𝐸

1 − 𝑣2
0

𝑣𝐸

1 − 𝑣2

𝐸

1 − 𝑣2
0

0 0
𝐸

2(1 + 𝑣)

⎤⎥⎥⎥⎥⎥⎥⎦
, (4)

where 𝐸 is the Young’s modulus and 𝑣 is Poisson’s ratio.
For the mass matrix 𝑴 , we consider a diagonal lumped mass matrix 

[36] of the form

𝑴 =
⎡⎢⎢⎣
𝑚1

⋱
𝑚𝑁

⎤⎥⎥⎦ , (5)

which is purely diagonal and where 𝑚𝑖 corresponds to the element re-
gion (area in 2D, volume in 3D) multiplied by the density.

For the damping matrix, we assume mass proportional damping (this 
is equivalent to Rayleigh damping [37] with the appropriate choice of 
3

constants) of the form
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𝑪 = 𝛼𝑴 . (6)

Using the diagonal forms of the mass and damping matrices has the 
computational advantages of being easy to compute, store and invert.

For the time derivative, we use the central finite difference method 
[38] to arrive at

𝑴
𝒖𝒕+𝟏 − 2𝒖𝒕 + 𝒖𝒕−𝟏

𝛿𝑡2
+𝑪

𝒖𝒕+𝟏 − 𝒖𝒕−𝟏
2𝛿𝑡

+𝑲𝒖𝒕 = 𝒇 , (7)

which has an error of (𝛿𝑡2). The terms 𝒖𝒕−𝟏, 𝒖𝒕 and 𝒖𝒕+𝟏 are the dis-
placement vector values at the previous, current and next time steps. 
By re-arranging equation (7) we arrive at(
𝑴

1
𝛿𝑡2

+𝑪
1
2𝛿𝑡

)
𝒖𝒕+𝟏 = 𝒇+

(
𝑴

2
𝛿𝑡2

−𝑲

)
𝒖𝒕+

(
𝑪

1
2𝛿𝑡

−𝑴
1
𝛿𝑡2

)
𝒖𝒕−𝟏.

(8)

Due to the choice of the diagonal damping matrix 𝑪 and the diagonal 
mass matrix 𝑴 , the expression 

(
𝑴

1
𝛿𝑡2

+𝑪
1
2𝛿𝑡

)
that appears in equa-

tion (8) can easily be inverted. The matrices 𝑲 , 𝑴 , 𝑪 and vector 𝒇 can 
be calculated and stored before the time-marching begins and do not 
need to be recomputed at each time step.

2.1.2. Finite element formulation for fluid materials

We proceed with deriving the finite element matrices for fluid ma-
terials. We do this directly from the constitutive equation for a com-
pressible fluid. The constitutive equation for a compressible Stokesian 
fluid with Newtonian viscosity alongside a full derivation can be found 
in [3]. Although the full derivation is out of scope for this paper, some 
necessary equations and their context are provided in what follows. The 
constitutive equation for a compressible fluid is given as [3]

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 −
2
3
�̇��̇�𝑘𝑘𝛿𝑖𝑗 + 2�̇��̇�𝑖𝑗 , (9)

where 𝜎𝑖𝑗 is the stress tensor, 𝑝 is the equilibrium pressure, �̇� is the 
dynamic viscosity of the fluid, �̇� is the strain rate and 𝛿𝑖𝑗 the Kronecker 
delta. It follows that 𝜖 is the strain. Considering the static part of the 
equation we arrive at

𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = −𝑝 = 𝜆(𝜖𝑥𝑥 + 𝜖𝑦𝑦 + 𝜖𝑧𝑧). (10)

Here, 𝜆 is the bulk modulus of the fluid, which is related to the acoustic 
speed of the fluid, 𝑐, and its density, 𝜌, as

𝜆 = 𝜌𝑐2. (11)

Thus, without loss of generality, over a 2-dimensional 𝑥 − 𝑦 plane, the 
stress-strain and stress-strain rate relationships in matrix form are

⎡⎢⎢⎣
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝜆 𝜆 0
𝜆 𝜆 0
0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑥𝑦

⎤⎥⎥⎦+
⎡⎢⎢⎢⎣
−4

3 �̇�
2
3 �̇� 0

2
3 �̇� −4

3 �̇� 0
0 0 −𝜇

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
�̇�𝑥𝑥
�̇�𝑦𝑦
�̇�𝑥𝑦

⎤⎥⎥⎦ . (12)

The matrices defined in Equation (12) are then used to calculate 𝑫 and 
�̇� and which are needed in the stiffness and element damping matrices 
used in the finite element assembly for the fluid material. These are

𝑫 =
⎡⎢⎢⎣
𝜆 𝜆 0
𝜆 𝜆 0
0 0 0

⎤⎥⎥⎦ , �̇� =
⎡⎢⎢⎢⎣
−4

3 �̇�
2
3 �̇� 0

2
3 �̇� −4

3 �̇� 0
0 0 −�̇�

⎤⎥⎥⎥⎦
. (13)

For inviscid fluids, where we only want to damp out the shear motion, 
we can use a simplified version of the matrix �̇�, by setting all entries 
to 0, apart from the value at position �̇�3,3. The damping coefficient 
should be set as small as possible to aid with numerical efficiency. The 
local element stiffness and local element damping matrices can then be 
assembled (in parallel, without needing to recalculate the matrix 𝑩 for 

both 𝑲 and 𝑪) as follows
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𝑲𝑒 =𝑩𝑇𝑫𝑩, (14)

𝑪𝑒 =𝑩𝑇 �̇�𝑩. (15)

The mass matrix retains its form from the solid case, i.e. proportional to 
element mass on the diagonal. Matrix 𝑩 in Equation (14) is the strain-
displacement matrix introduced in Equation (3). These are well-known 
in the literature [35] and depend on the choice of element and the 
numerical quadrature scheme. We show the formulation for the under-
integrated or reduced integration quadrilateral element, i.e. the element 
with one point of integration in the centre. This has been demonstrated 
in [25] to reduce, alongside irrotational constraints or damping, spuri-
ous modes which are a particular issue for displacement-based fluid 
formulation [39]. For a quadrilateral with diagonal nodes at points 
[−1, −1] and [1, 1] with shape functions

𝑵𝑒 = 1
4

⎡⎢⎢⎢⎣
(1 + 𝑥)(1 − 𝑦)
(1 − 𝑥)(1 − 𝑦)
(1 + 𝑥)(1 + 𝑦)
(1 − 𝑥)(1 + 𝑦)

⎤⎥⎥⎥⎦
, (16)

the strain-displacement matrix 𝑩 is given as

𝑩 =

⎡⎢⎢⎢⎢⎢⎣

𝜕𝑵𝑒
1

𝜕𝑥
0

𝜕𝑵𝑒
2

𝜕𝑥
0

𝜕𝑵𝑒
3

𝜕𝑥
0

𝜕𝑵𝑒
4

𝜕𝑥
0

0
𝜕𝑵𝑒

1
𝜕𝑦

0
𝜕𝑵𝑒

2
𝜕𝑦

0
𝜕𝑵𝑒

3
𝜕𝑦

0
𝜕𝑵𝑒

4
𝜕𝑦

𝜕𝑵𝑒
1

𝜕𝑦

𝜕𝑵𝑒
1

𝜕𝑥

𝜕𝑵𝑒
2

𝜕𝑦

𝜕𝑵𝑒
2

𝜕𝑥

𝜕𝑵𝑒
3

𝜕𝑦

𝜕𝑵𝑒
3

𝜕𝑥

𝜕𝑵𝑒
4

𝜕𝑦

𝜕𝑵𝑒
4

𝜕𝑥

⎤⎥⎥⎥⎥⎥⎦
. (17)

If we consider the single integration point to be from the first order 
Gaussian quadrature scheme [40] which is commonly used for bilinear 
quadrilateral elements with reduced integration, at point [0, 0] we have

𝑩 = 1
4

⎡⎢⎢⎣
−1 0 1 0 1 0 −1 0
0 −1 0 −1 0 1 0 1
−1 −1 −1 1 1 1 1 −1

⎤⎥⎥⎦ . (18)

Having derived the formulae for assembling the necessary matrices, 
we now recall the spatial FE formulation from Equation (1) and its fi-
nite difference in time formulation from Equation (8). One challenging 
step becomes immediately apparent - Equation (8) requires inverting (
𝑴

1
𝛿𝑡2

+𝑪
1
2𝛿𝑡

)
. It is no longer possible to execute this efficiently ow-

ing to the non-diagonal structure of the damping matrix 𝑪 used for the 
fluid elements. Since the GPU FE method works best for explicit time 
domain methods [41], a new approach must be developed. We thus 
propose and implement the following novel modification of the central 
finite difference scheme:

𝑴
𝒖𝒕+𝟏 − 2𝒖𝒕 + 𝒖𝒕−𝟏

𝛿𝑡2
+𝑪

𝒖𝒕 − 𝒖𝒕−𝟏
𝛿𝑡

+𝑲𝒖𝒕 = 𝒇 . (19)

The difference in Equation (19) compared to Equation (7) and thus 
other numerical formulations found in the literature such as [25,39]
is that the first order time derivative multiplied by 𝑪 is changed to de-
pend purely on values at 𝒖𝒕 and 𝒖𝒕−𝟏 which are known. Thus 𝒖𝑡+1 can 
be rearranged to

𝒖𝒕+𝟏 = 𝛿𝑡2𝑴−1(𝒇 −𝑲𝒖𝒕)+ 2𝒖𝒕 − 𝒖𝒕−𝟏 + 𝛿𝑡𝑴−1𝑪(𝒖𝒕−𝟏 − 𝒖𝒕). (20)

As in [10], we can compute this as

𝒖𝒕+𝟏 = 𝒇 ′ +𝑪 ′𝒖𝒕−𝟏 +𝑲 ′𝒖𝒕, (21)

where we have introduced the modified matrices

𝑲 ′ = −𝛿𝑡2𝑴−1𝑲 + 2𝑰 − 𝛿𝑡𝑴−1𝑪 , (22)

𝑪 ′ = −𝑰 + 𝛿𝑡𝑴−1𝑪 , (23)

and the vector
4

𝒇 ′ = 𝛿𝑡2𝑴−1𝒇 . (24)
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Now, as in [10], 𝑲 ′ and 𝑪 ′ remain constant and 𝒇 ′ can be precomputed 
as it does not change based on the time-stepping during the simulation. 
Hence they can be assembled, stored and used for all time steps. The 
modified numerical scheme we have introduced and described above 
in Equation (19) has the advantage that it is explicit in time, without 
relying on inversion of the matrix 𝑪 , and is better suited for GPU calcu-
lations. The stability of the method remains the same as it occupies the 
same stencil in time [42], requiring the same number of nodal points. 
Thus, it has the same Courant-Friedrichs-Lewy condition [38] as the 
standard central difference scheme i.e.

𝑐
Δ𝑡

Δ𝑥
< 1. (25)

The numerical error of this method for the calculation of the ac-
celeration is (𝛿𝑡2). The error of this method related to the modified 
numerical calculation of the velocity increases from (𝛿𝑡2) to (𝛿𝑡) due 
to the use of the current time step instead of the future one. As the total 
error of this method is bounded by the highest error present, the total 
error is (𝛿𝑡), implying we will need higher refinement than the con-
ventional finite difference method to achieve the same accuracy. We 
note that higher order implies lower error in numerical methods.

To summarise, we have introduced and derived a finite element 
formulation for fluid materials which damps out the shearing motion 
through the use of a non-diagonal damping matrix alongside the use of 
a reduced-integration Gaussian quadrature scheme and is displacement 
based. It is thus compatible with existing software designed for solid 
materials and explicit in time and suitable for GPU calculations.

3. Computational performance of the method

Direct timing comparisons between the formulation and implemen-
tation of the method on a GPU described in this paper and existing finite 
element (FE) software for fluid-solid interaction are not straightfor-
ward, hence, they are not presented in this paper. The primary reason 
for this is the significant differences in speed, memory, and cost char-
acteristics between GPUs and CPUs. Consequently, we cannot provide 
directly comparable results between a GPU and a CPU implementation 
that would fairly represent the advantages and disadvantages of this 
method. FE software packages are also often heavily dependent on not 
just the formulation used. The choice of programming language and 
compiler optimisations [43] also significantly impact the performance 
of the algorithms. Furthermore, there is frequent improvement in all 
aspects of computational mathematics [44] and hardware, which can 
complicate direct timing comparisons. The formulation in this paper 
and others found in the literature will benefit from such computational 
improvements.

Despite the above, it is appreciated that timing comparisons can 
help validate the proposed performance improvements claimed by this 
method. Therefore, as we know the timing ratio of Pogo Solid to conven-
tional CPU-based FE software, if we calculate the ratio of the fluid-solid 
implementation to the solid implementation in Pogo (the method pre-
sented and implemented in this paper), we can compare the GPU-based 
method presented in this paper to CPU-based methods via the method 
described below. A mathematical description of this can be as follows,

Pogo Fluid-Solid GPU

Conventional CPU
=

Pogo Fluid-Solid GPU

Pogo Solid GPU
×

Pogo Solid GPU

Conventional CPU
.

(26)

This way of calculating the performance difference also has the benefit 
of being run on the same underlying hardware for a more accurate 
comparison.

We setup a pair of simulations as follows: We define a square grid 
of rectangular elements. For the first simulation, this is fully solid and 
for the second simulation we set the right-half to be fluid. We progres-
sively increase the size of the square grid to obtain measurements across 

a wide-range of total number of degrees of freedom. We run the sim-
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Fig. 1. Ratio of solid-fluid vs fluid executable in Pogo.

ulation at grid size three times and take the average, to mitigate any 
anomalous results inherent in timing computing processes.

The results of the two measurements are depicted in Fig. 1, where 
the ratio of Pogo-Fluid-Solid to Pogo-Solid is plotted. A marginal slow-
down of approximately 2% is observed when comparing the solid-fluid 
executable to the solid executable, even though some deviations appear 
even when averaging. Despite the extra computation required by the 
method presented in this paper, it does not significantly increase the 
slowdown compared to the GPU FE method for solid materials intro-
duced in [10]. This method has proven to be more efficient than similar 
CPU-based methods. Running GPU FE software has been demonstrated 
to offer significant improvements, even when accounting for the change 
in hardware, and the author refers the reader to such implementations 
for further reference [10]. For the examples that follow, we use the 
method described in this paper, implemented in Pogo [10], although 
the proposed method is sufficiently generic to be implemented in any 
other FE software.

4. Numerical results

In this section, we verify the theoretical fluid formulation proposed 
in Section 2.1.2 with numerical simulations. We compare our results 
with those of known methods and previously published results. These 
are scattering patterns from Faran for solid cylinders [11], Doolittle for 
solid annuli [45] and Tamarkin for fluid inclusions [46]. We also com-
pare against velocity, attenuation and existence of guided-wave wave 
modes from a commercially-available software Disperse [3]. Of partic-
ular importance to the validation is capturing the Scholte-wave [14], 
which propagates along the interface of an elastic solid and an ideal 
fluid, using our formulation. We have chosen these use cases as they 
capture a wide range of properties of the fluid and solid and represent 
physical scenarios which are of interest to both practitioners and re-
searchers. Furthermore, they allow us to test all properties of the wave 
equation simulated, both at low frequencies, of interest to the under-
water acoustic community and high frequencies, of interest to the NDT 
community. We initially show results for inviscid fluids, although we 
believe this method will generalise well to viscous fluid also, as our 
derivation in Section 2.1.2 allows us to incorporate viscous damping, 
by using the full version of matrix �̇� given in Equation (13), this needs 
to be properly validated.

The damping parameter to handle hourglassing is set to 0.05%, al-
though no full analytical solution has been found for the efficient choos-
ing of this parameter. We have also observed for very high refinements 
that the damping parameter is not necessary (i.e. can be set to zero) al-
5

though this increases the computational requirements of the problem. 
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Fig. 2. Radial displacement.

It’s also worth noting that excessively high damping parameters can 
lead to the degradation of the solution. In practice, it is recommended 
to conduct convergence testing using a simple problem with a known 
analytical solution. Once an accurate solution is achieved, the same 
damping parameter can be applied to more complex problems. Addi-
tionally, visual inspection of the field can help to spot any immediate 
problems in the deterioration of the solution, which assuming the nec-
essary refinement, indicates hourglassing issues. An analytical solution 
to the damping parameter is a good avenue for further research. All the 
simulations presented in this paper have further relied on the (elastic) 
orthogonal hourglass control method described in [24] which relies on 
using an additional artificial stiffness to reduce this phenomenon.

4.1. Scattering from cylindrical structures

We now proceed to compute and compare scattering results across 
three separate related physical cases of underwater objects. We define 
the radial displacement as

𝒖𝒓 = 𝒖𝒙 cos𝜃 + 𝒖𝒚 sin𝜃, (27)

and our results in Section 4.1 will be given in radial displacement. To 
achieve scattered results numerically, we use the following relation

𝒖𝑡𝑜𝑡
𝒓

= 𝒖𝑖𝑛𝑐
𝒓

+ 𝒖𝑠𝑐𝑎𝑡𝑡
𝒓

, (28)

where 𝒖𝑡𝑜𝑡
𝒓

is the total displacement, 𝒖𝑖𝑛𝑐
𝒓

is the displacement of a homo-
geneous field (i.e. no scatterer) and 𝒖𝑠𝑐𝑎𝑡𝑡

𝒓
is the scattered displacement. 

We compute two FE simulations, one with the scatterer, and one with 
a homogeneous field, giving us 𝒖𝑡𝑜𝑡

𝒓
and 𝒖𝑖𝑛𝑐

𝒓
, allowing us to calculate 

𝒖𝑠𝑐𝑎𝑡𝑡
𝒓

as

𝒖𝑠𝑐𝑎𝑡𝑡
𝒓

= 𝒖𝑡𝑜𝑡
𝒓

− 𝒖𝑖𝑛𝑐
𝒓

. (29)

As we are in a displacement-based setting, the responses for the dis-
placements 𝒖𝒙 and 𝒖𝒚 are readily available. An illustration of this can 
be found in Fig. 2.

In all simulations in Section 4.1, the excited plane wave travels from 
the right and we place response nodes at a distance which is given 
below for each scatterer, from the centre of the scatterer. For the sim-
ulation in Section 4.1.1 these are at a distance of 2.5 m and for the 
simulations in Section 4.1.2 these are at a distance of 10 m. We have 
360 of these at the measurement radius, spaced apart by 1◦, covering 
the range of 0◦−359◦. Due to the nature of the FE method, we can either 
compute the response in the far field (arbitrary distances can be mea-
sured given appropriate computational power and storage) or these can 
be calculated straightforwardly from the near field results. In all cases, 
we use a Courant-Friedrichs-Lewy [38] number of 0.8 with respect to 
the highest velocity in the simulation (usually the solid longitudinal 
wave speed) to determine the time step

d𝑡 = d𝑥
𝑐𝐿

× Courant (30)

and we allow enough time for the wave to pass across the domain 

and back with reference to the fluid wave speed. We process the time-
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Fig. 3. A schematic showing a (a) solid cylinder and (b) annulus in water insonified by a plane wave, the red dashed lines show the receiver points.
domain signals from our FE method using an FFT and extract a discrete 
frequency (closest to the excitation frequency) to compare with the ana-
lytical solution in the frequency domain. For a quantitative comparison, 
we calculate the relative error norm defined as||𝒖𝑡𝑟𝑢𝑒 − 𝒖𝐹𝐸 ||1||𝒖𝑡𝑟𝑢𝑒||1 (31)

of our measured FE scattering in the frequency domain as detailed 
above, versus the analytical solution, where ||𝒖||1 is the 𝓁1 vector norm 
of 𝒖.

The analytical expression for the scattered pressure field in infinitely 
long cylindrical structures in inviscid fluids can be found in [45], and 
is given for a single frequency as

𝑝𝑠𝑐𝑎𝑡𝑡
𝑟

(𝑟, 𝜃) =
∞∑
𝑛=0

𝑖𝑛𝜖𝑛𝑏𝑛𝐻
(1)
𝑛

(𝑘𝑒𝑥𝑡𝑟) cos𝑛𝜃, (32)

and from this, we can calculate the radial derivative to give us the 
scattered displacement as

𝑢𝑠𝑐𝑎𝑡𝑡
𝑟

(𝑟, 𝜃) =
∞∑
𝑛=0

𝑖𝑛𝜖𝑛𝑏𝑛𝑘𝑒𝑥𝑡𝐻
′ (1)
𝑛

(𝑘𝑒𝑥𝑡𝑟) cos𝑛𝜃, (33)

where 𝜖𝑛 is the Neumann factor defined as 𝜖0 = 1, 𝜖𝑛 = 2, for 𝑛 > 0, 
𝑏𝑛 are the coefficients which define the scattered fields for each scat-
terer which must be evaluated in each case and are well-known in the 
literature, 𝐻 (1)

𝑛 , 𝐻 ′ (1)
𝑛 are Hankel functions of the first kind and their 

respective derivatives, 𝑘𝑒𝑥𝑡 is the radial wavenumber in the exterior in-
viscid fluid, 𝑟 is the distance from the centre of the cylindrical scatterer 
and 𝜃 is the angular position.

4.1.1. Solid cylinder

The analytical expression for the radial displacement in a solid-fluid 
scattering problem for an infinitely long solid cylinder submerged in 
fluid can be found in [11] but can also be calculated from Equation 
(33) with 𝑏𝑛 given as

𝑏𝑛 =
1
𝐷

|||||||
𝛽1 𝛼12 𝛼14
𝛽2 𝛼22 𝛼24
0 𝛼32 𝛼34

||||||| , (34)

where 𝐷 is

𝐷 =
|||||||
𝛼11 𝛼12 𝛼14
𝛼21 𝛼22 𝛼24
0 𝛼32 𝛼34

||||||| . (35)

We have used |𝐴| to represent the determinant of the matrix 𝐴. Full 
details of the coefficients 𝛼𝑖𝑗 , 𝑏𝑖 found in Equations (34)-(35) can be 
found in [45]. The considered setup of this is schematically depicted in 
Fig. 3a. The domain is −10 m < 𝑥 < 10 m, −10 m < 𝑦 < 10 m with a 
grid spacing of 12.5 mm corresponding to 1601 × 1601 grid points. Our 
forcing vector is a three-cycle Hann-windowed toneburst. The frequen-
6

cies investigated ranged from 200 Hz to 1 kHz. We placed absorbing 
Table 1

Material properties used in numerical examples.

Material Longitudinal wave speed 
(m/s)

Shear wave speed 
(m/s)

Density 
(kg/m3)

Steel 5960 3260 7932
Perspex 2730 1430 1180
Water 1500 - 1000
Air 350 - 1.125
Glycerine 1860 - 1258

layers [47] on the boundaries of the numerical model to satisfy the 
Sommerfeld radiation condition [48], as we are representing an infinite 
continuous space using a finite discrete space in our numerical method.

We consider different materials for the solid, such as steel and per-
spex, whose parameters can be found in Table 1, to demonstrate ca-
pabilities in low and high impedance situations. Furthermore, perspex 
has the interesting property that it has a shear wave speed less than the 
acoustic wavespeed of the surrounding fluid, confirming the accuracy 
of the model in different use-cases.

We first consider scattering from a steel cylinder for 𝑘𝑒𝑥𝑡𝑎 between 
0.84 and 4.19. Here 𝑎 is the radius of the scatterer. These correspond to 
frequencies ranging from 200 Hz to 1000 Hz with a fixed radius of 1 m. 
In the simulations, we fixed the radius and modified the frequency, so 
we can keep the geometry fixed and eliminate the need for remeshing.

The results are shown in Fig. 4. There is good agreement throughout 
the considered range, with the exception of scattered angles perpendic-
ular to the propagation direction, which show some deviation. This can 
be attributed to low plane wave transmission at grazing incidence and a 
greater effect of structured mesh staircasing, which might be improved 
by the use of a conforming mesh, although this does introduce addi-
tional complexities during pre-processing as we must carefully define 
the object boundaries, the sources and receivers and accurately mesh 
around these. In [49], it is shown that both approaches are equally 
good for waves in polycrystals, which suffer from the same error re-
garding staircasing, and thus structured grids are normally used due to 
the comparative ease of use. The relative errors or the scattering field at 
the frequencies shown computed with Equation (31) are 1.05%, 1.03%, 
1.51%, and 2.17% respectively. At a lower mesh refinement (25 mm), 
the errors increased to 1.12%, 1.16%, 2.68%, and 4.37% respectively. 
This clearly shows a reduction in error as we use a finer mesh, and 
therefore the convergence of the method. It should be noted that there 
will always be a trade-off in the additional computational power and 
storage required to run calculations on a finer mesh for higher accuracy, 
and it is left to the reader to decide what error-rate is suitable for their 
simulations. The discrepancy at higher frequencies is to be expected 
as we have comparatively less resolution per wavelength compared to 
lower frequencies, as we kept the element sizes fixed for each set of 

simulations.
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Fig. 4. Scattering results for steel cylinder submerged in water compared to analytical results. Plane wave travelling from right to left.
We repeat the simulations for a perspex cylinder. The geometrical 
setup remains the same as described above, and we use a central fre-
quency of 1 kHz with a cylinder radius of 1 m. Results for this can be 
found in Fig. 5 with the equivalent-sized steel cylinder present for com-
parison. This has a relative error of 3.36% for the same mesh discretisa-
tion as the steel cylinder. While this may appear initially surprising, the 
explanation for this is two-fold. Perspex has a lower longitudinal and 
shear wavespeed than steel, and thus needs further refinement to main-
tain the same number of elements per wavelength. Furthermore, as we 
can see in Fig. 6, the perspex scattering pattern is much more suscep-
tible to small changes in frequency compared to the steel pattern. For 
a ±1% shift in frequency at 1 kHz, the relative error of the analytical 
solution of the steel cylinder scattering is 1.3% (both downwards and 
upwards), whereas for a ±1% shift in frequency at 1 kHz, the relative er-
ror of the analytical solution of the perspex cylinder scattering is 3.26%
for the downward shift and 4.20% for the upward shift, indicating that 
errors are not linear in frequency change.

4.1.2. Layered cylindrical media

For the second scattering example, we consider solid cylindrically 
layered media submerged in fluid and enclosing another fluid. Analyt-
ical results for this case can be calculated from Equation (33) with 𝑏𝑛
7

given as
𝑏𝑛 =
1
𝐷

|||||||||||||

𝛽1 𝛼12 𝛼13 𝛼14 𝛼15 0
𝛽2 𝛼22 𝛼23 𝛼24 𝛼25 0
0 𝛼32 𝛼33 𝛼34 𝛼35 0
0 𝛼42 𝛼43 𝛼44 𝛼45 𝛼46
0 𝛼52 𝛼53 𝛼54 𝛼55 𝛼56
0 𝛼62 𝛼63 𝛼64 𝛼65 0

|||||||||||||
, (36)

where D is given by

𝐷 =

|||||||||||||

𝛼11 𝛼12 𝛼13 𝛼14 𝛼15 0
𝛼21 𝛼22 𝛼23 𝛼24 𝛼25 0
0 𝛼32 𝛼33 𝛼34 𝛼35 0
0 𝛼42 𝛼43 𝛼44 𝛼45 𝛼46
0 𝛼52 𝛼53 𝛼54 𝛼55 𝛼56
0 𝛼62 𝛼63 𝛼64 𝛼65 0

|||||||||||||
, (37)

and for full details of the coefficients 𝛼𝑖𝑗 , 𝛽𝑖 found in Equations (36)-(37)
see [45].

A schematical diagram of the setup can be found in Fig. 3b. We con-
sider the same solid materials as those in Section 4.1.1 to demonstrate 
capabilities in low and high impedance situations. The exterior and in-
terior layers are of fluid, not necessarily of the same material, which 
surround a solid layer. The interior fluid layer and solid layer both have 
a radius of 1 m for a total radius of 2 m. The domain is −40 m < 𝑥 <
40 m, −40 m < 𝑦 < 40 m with a grid spacing of 50 mm correspond-

ing to 1601 × 1601 grid points. The forcing vector was a three-cycle 
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Fig. 5. Scattering patterns from (a) steel cylinder and (b) perspex cylinder submerged in water at 1 kHz. Plane wave travelling from right to left.

Fig. 6. Analytical and frequency-shifted scattering patterns from (a) steel cylinder and (b) perspex cylinder submerged in water at 1 kHz and 0.99 kHz respectively. 
Plane wave travelling from right to left.
Hann-windowed toneburst with a central frequency of 500 Hz. Absorb-
ing boundaries are also placed on the boundaries of the setup as detailed 
in Section 4.1.1.

In this configuration, we used steel and perspex for solid layers, wa-
ter as the exterior fluid and both water and air as the interior layer, 
giving a total of four computed cases. In Fig. 7, which shows the steel 
layer, we have very little change in the scattering pattern between the 
air and water interior layers. This is governed by the high density of the 
solid material compared to that of the interior fluid, so much of the en-
ergy is reflected regardless of the filling material. For the perspex layer, 
the scattering pattern between the two different materials in the interior 
layer is clearly different as can be seen in Fig. 8. Good agreement can 
be observed in all cases when comparing with analytical results from 
[45], with a relative error norm of 2.68%, 3.00% for the steel layer with 
water and air interiors respectively and 3.73%, 3.19% for the perspex 
layer with water and air interiors respectively.

The next set of scattering simulations address ultrasonic scattering 
from liquid cylindrical obstacles. An experimental investigation of this 
setup was first performed by Tamarkin in [46]. Analytical results for 
8

this case can be calculated from Equation (33) with 𝑏𝑛 given as
𝑏𝑛 =

|||||
𝛽1 𝛼12
𝛽2 𝛼22

||||||||||
𝛼11 𝛼12
𝛼21 𝛼22

|||||
(38)

and for full details of the coefficients found in Equation (38) see [45]. 
The considered setup is very similar to that in Fig. 3a, with an exception 
that the solid cylinder is replaced with a fluid one.

We consider a circular fluid inclusion of radius 2 m. The incident 
plane wave has a central frequency of 500 Hz and we measure at a 
distance of 10 m from the centre of the cylindrical inclusion. The ge-
ometrical aspect of the domain is identical to that above. The circular 
inclusion material in this case is glycerine. We are using the velocity 
and density material parameters for glycerine found in Table 1 and we 
are treating it as inviscid for the purpose of this study. The glycerine 
inclusion is then surrounded by an infinite water layer and absorbing 
layers are also placed on the boundaries of the setup as detailed in Sec-
tion 4.1.1 so we can computationally solve this.

The comparison with analytical results shows excellent agreement 
at all angles as seen in Fig. 9. Results for this simulation are expected 

to be more accurate due to the comparable wavespeeds of both glyc-
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Fig. 7. Scattering patterns from a steel annulus submerged in water with a (a) water interior and (b) air interior. Plane wave travelling from right to left.

Fig. 8. Scattering patterns from a perspex annulus submerged in water with a (a) water interior and (b) air interior. Plane wave travelling from right to left.
Fig. 9. Scattering pattern for normalised displacement from a cylindrical glyc-
erine inclusion. Plane wave travelling from right to left.

erine and water which allow the Courant-Friedrichs-Lewy number to 
be closer to 1, as described in [50]. The relative error norm for this 
9

example is 1.12%. The fluid inclusion setup addresses the ability to ac-
curately model the interaction between two fluids which is necessary 
when modelling objects on the sediment interface or buried below it. 
This computational setup is extremely useful in underwater acoustics. 
The current state of the art research frequently models the sediment as 
a fluid, as in [51,52].

4.2. Guided waves in plates

In this section we consider the guided wave context, essential to nu-
merous NDE applications. We investigate three characteristics of guided 
waves, with further detail given in each corresponding section. These 
are: the existence of wave modes, phase velocity and attenuation of 
the A0 mode. The considered setup can be found in Fig. 10. This cor-
responds to us considering the 2D representation of the cross-section 
through the solid steel plate, which is 1 mm thick and surrounded by 
an infinite fluid (water in our case) on either side. The wave propa-
gates in the direction of the plane of the cross-section, left to right in 
Fig. 10. The domain is 0 mm < 𝑥 < 150 mm, 0 mm < 𝑦 < 22 mm with 
a grid spacing of 0.05 mm corresponding to 3001 × 441 grid points. We 
use a Courant number of 0.8 as detailed in Equation (30) and allow 
for enough time for the wave to travel the domain in the horizontal di-

rection and back. The stiffness reduction method by [47] is once again 
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Fig. 10. Schematic of an immersed steel plate alongside cartesian axes.

used and absorbing layers are placed on the vertical boundaries of the 
setup as detailed in Section 4.1.1. This is to be able to model the infinite 
fluid in finite space in our finite-element simulations.

4.2.1. Existence of wavemodes

A Hann-windowed three-cycled sinusoidal source of 1 MHz excited 
the 2nd DoF of the node corresponding to the y-direction along the 
midpoint of the steel plate at 𝑦 = 11 mm. This is expected to excite the 
antisymmetric modes and not excite the symmetric modes. A series of 
receivers were placed along the middle of the plate’s thickness in the 
far field. The distance was far enough to allow the wave to propagate 
and form, so that the guided wave response can be recorded at specific 
intervals.

To demonstrate the existence of the wave modes, we relied on the 
two-dimensional Fourier transform method described in [53]. Signal 
traces are taken from the simulated receivers and converted to the 
frequency-wavenumber domain using a zero-padded 2D fast Fourier 
transform.

We then overlaid the result from the 2D fast Fourier transform with 
theoretical dispersion curves from Disperse [3]. Fig. 11 clearly shows 
that both A0, A1, A2 and the Scholte wave are captured in the FE solu-
tion. The presence of the Scholte wave is particularly encouraging as it 
is an interface wave, governed by the interaction between the two me-
dia at the interface. It also confirms our expectations that our source 
excitation has excited the antisymmetric modes but not the symmetric 
ones.

To demonstrate that our model can handle higher frequencies and 
excite other antisymmetric modes, we repeat the simulation with a cen-
tral frequency of 5 MHz. We keep the rest of the setup unchanged. 
Dispersion curves calculated with the 2D fast Fourier transform method 
(left) are again overlaid with dispersion curves from Disperse (right) 
and presented in Fig. 12. In this case, we can see that the higher-order 
A2, A3 and A4 antisymmetric modes are also present.

4.2.2. Phase velocity

For the evaluation of the phase velocity, we used a Hann-windowed 
three-cycled sinusoidal source of 2 MHz applied to the 2nd DoF of the 
node at the midpoint. We relied on the amplitude spectrum method 
developed in [54], where we take two signal traces containing the A0 
mode in the far field and add them together. We then obtain the ampli-
tude spectrum of the result via a Fourier transform and find the minima 
from the resulting graph. Phase velocity can be calculated using the 
following formula

𝑐 = 2𝑙𝑓
𝑚

, (39)

where 𝑐 is the guided-wave velocity, 𝑙 is the distance between the two 
signals, 𝑓 is the frequency and 𝑚 is the index of the minima. The 
distance between the two response points was 0.01 m. Minima were cal-
culated numerically via Matlab routines and are highlighted on Fig. 13. 
Fig. 13 also shows the combined signal traces and the FFT of the re-
sponse. Some ringing and low frequency component is visible in the 
combined signal traces, but as this is far away from the central fre-
quency it does not affect the results. Due to the nature of the method, 
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the results are given for discrete frequencies, and changing the receiver 
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placement can change these frequencies. In Table 2, we can see that the 
velocity matches that of Disperse with high accuracy, with relative er-
rors of less than 1%. For the frequency closest to the central frequency, 
our results are even better, with a near exact match to those calculated 
using semi-analytical results.

4.2.3. Attenuation

Guided waves attenuate due to absorption, scattering and leakage. 
Absorption and scattering do not contribute to attenuation in this case. 
We do not have attenuation due to absorption as we are considering an 
elastic material with no damping, and we have no scattering attenuation 
as we have no roughness or inhomogeneities in the steel plate.

Leakage in particular occurs in guided waves when the waveguide 
(in our case the steel plate) is in contact with another medium (the 
surrounding fluid). The correct prediction of this leakage and therefore 
the attenuation characteristics are of great importance as they are part 
of the modal properties of the plate-water system [55].

Modelling attenuation is very sensitive to the contributions of mul-
tiple modes present in a signal (it is rarely possible to achieve single 
mode excitation). Hence, it required careful generation and window-
ing of signals to achieve accurate results. For excitation, we relied on 
“mode matching”, where the source perfectly matches the displacement 
and phase characteristics of the desired A0 wave mode. Displacement 
and phase information for this is readily available from Disperse and 
can be seen in Fig. 14 and ensures that our simulated wave does not 
excite any additional modes. We use this information as an input to 
our forcing vector in our simulations. We then take measurements ar-
bitrarily at two points where we have placed receivers, as can be seen 
in Fig. 10. In Fig. 15, we can clearly see that the second signal has less 
amplitude than the first signal, giving a qualitative view of the attenu-
ation. Attenuation is then calculated by computing a Fourier transform 
of the received signals as shown in Fig. 15, dividing these and we then 
scale this based on the distance travelled.

The most accurate results for attenuation are achieved around the 
central frequency of the source. FFT spectra of the signals used in the 1
MHz simulation are shown in Fig. 15. We repeat the attenuation simu-
lation for frequencies of 100 kHz and 200 kHz either side of the original 
1 MHz excitation for a total of 5 simulations. In Table 3, we compare 
the attenuation calculated from FE results to those coming from Dis-
perse. The values computed from the FE simulations agree well with 
those extracted from Disperse [3], with relative errors of less than 1%. 
This indicates our fluid formulation can accurately model the leakage 
phenomenon in guided wave propagation.

5. Conclusions

We derived a novel finite element formulation for modelling ultra-
sound propagation and scattering in fluid-solid interactions. This uses 
a displacement-based formulation making it compatible with existing 
efficient solid FE software suited for solving problems of hundreds of 
millions of degrees of freedom. A modified finite difference method 
for the time discretisation has enabled an explicit in-time formulation, 
without the need of matrix inversion of 𝑪 necessary for damping out 
the shearing motion. Due to this explicit in-time formulation, compati-
bility with explicit time-domain GPU packages such as Pogo is achieved 
and our formulation is also GPU-accelerated. We have shown valida-
tion results for a wide range of use cases, including scattering from 
solid cylinders, solid cylindrically layered media and fluid inclusions 
and leaky guided waves scenario. We achieved good agreement with 
analytical scattering solutions available in the literature. The errors for 
guided wave phase velocity and attenuation were less than 1%, while 
capturing the Scholte wave correctly gave us confidence in the imple-
mentation of the coupling. For the different cases considered above 
we consistently get good results for both low frequencies common in 

underwater acoustics and high frequencies common in NDT settings, 
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Fig. 11. Dispersion curves for a 1 mm thick steel plate submerged in water (a) calculated by processing results from an FE simulation, (b) overlaid with Disperse 
curves (dotted-lines) at 1 MHz.

Fig. 12. Dispersion curves for a 1 mm thick steel plate submerged in water (a) calculated by processing results from an FE simulation, (b) overlaid with Disperse 
curves (dotted-lines) at 5 MHz.

Table 2

Comparison of phase velocities between Disperse and FE simulations.

Simulation frequency 
(MHz)

Disperse frequency (MHz) Phase velocity from 
FE (m/ms)

Phase velocity from 
Disperse (m/ms)

Relative error 
difference (%)

1.266 1.267 2.532 2.519 0.515
1.589 1.589 2.648 2.643 0.189
1.912 1.912 2.731 2.732 0.0366
2.235 2.235 2.794 2.797 0.108
2.558 2.558 2.842 2.845 0.106

Table 3

Comparison of attenuation between Disperse and FE simulations.

Frequency (kHz) Attenuation from FE 
(dB/m)

Attenuation from Disperse 
(dB/m)

Relative error difference (%)

800 556.1 555.1 0.18
900 530.9 530.7 0.2
1000 511.2 514.2 0.583
1100 498.2 502.6 0.875
1200 496.6 494.6 0.404
11
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Fig. 13. (a) Combined signal traces of the A0 propagating wave measured at two points as described in Section 4.2.2 alongside (b) their amplitude spectrum. Red 
stars in (b) indicated local minima on the graph, found through use of Matlab routines.

Fig. 14. A0 mode shape data from Disperse for a 1 mm thick steel plate at 1 MHz submerged in water with (a) displacement (b) and phase.

confirming the accuracy of the method for capturing fluid-solid wave 
interactions.
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