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Abstract

Stomatal opening in plant leaves is regulated through a balance of carbon and water

exchange under different environmental conditions. Accurate estimation of stomatal

regulation is crucial for understanding how plants respond to changing environ-

mental conditions, particularly under climate change. A new generation of

optimality‐based modelling schemes determines instantaneous stomatal responses

from a balance of trade‐offs between carbon gains and hydraulic costs, but most

such schemes do not account for biochemical acclimation in response to drought.

Here, we compare the performance of six instantaneous stomatal optimisation

models with and without accounting for photosynthetic acclimation. Using

experimental data from 37 plant species, we found that accounting for

photosynthetic acclimation improves the prediction of carbon assimilation in a

majority of the tested models. Photosynthetic acclimation contributed significantly

to the reduction of photosynthesis under drought conditions in all tested models.

Drought effects on photosynthesis could not accurately be explained by the

hydraulic impairment functions embedded in the stomatal models alone, indicating

that photosynthetic acclimation must be considered to improve estimates of carbon

assimilation during drought.
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1 | INTRODUCTION

Accurate estimation of net photosynthetic rates (Anet) in terrestrial

ecosystems is crucial for understanding and predicting vegetation

dynamics, global carbon budgets, and climate change trends (Arora

et al., 2020; Fisher & Koven, 2020; Green et al., 2019; Humphrey

et al., 2021; Lombardozzi et al., 2015; Mercado et al., 2018).

However, photosynthesis modules within current Ecosystem and

Earth System models often lack accuracy and provide biased

estimates of carbon assimilation (Prentice et al., 2015; Rogers

et al., 2017; Seiler et al., 2022). This is explained, among other

factors, by the inability of large‐scale models to adequately account

for the effects of drought on the regulation of stomatal gas exchange

and leaf photosynthetic capacity (Zhou et al., 2013). Novel

hydraulically explicit stomatal optimisation models that mechanisti-

cally incorporate drought impacts have shown promise in improving

the accuracy of instantaneous gas exchange predictions, and

therefore Anet, in terrestrial models (Eller et al., 2020; Sabot

et al., 2020; Wang & Frankenberg, 2022a), while reducing their

reliance on poorly constrained empirical parameters. Previous studies

have thoroughly evaluated the performance of a variety of such

models (Sabot et al., 2022b; Wang et al., 2020), and have advocated

the testing of mid‐term and transient non‐stomatal constrains

alongside stomatal limitations to photosynthesis: particularly the

acclimation of photosynthetic capacity to drought.

Drought is a major abiotic stressor that affects plant growth and

productivity (Ahlström et al., 2015; Kannenberg et al., 2020; Ruehr

et al., 2019; Stocker et al., 2019). Under soil drought conditions and/

or significantly increased atmospheric vapour pressure deficit (VPD),

plants typically decrease their stomatal conductance (gs), thus

reducing water use and protecting their hydraulic system from

embolism. However, a decrease in gs leads to a reduction in CO2

diffusion into the leaves, which in turn results in a decrease in Anet.

Therefore, regulating gs entails a trade‐off between uptake of CO2

for photosynthesis and managing hydraulic risks. As Anet declines

during drought, maximum leaf photosynthetic capacity also declines

associated with reduced a ribulose‐1,5‐bisphosphate (RuBP) turnover

and ATP synthesis (Flexas & Medrano, 2002; Martin‐StPaul

et al., 2012; Peguero‐Pina et al., 2009; Salmon et al., 2020; Zhou

et al., 2013). Downregulation of photosynthetic capacity has also

been proposed to be associated with photochemical inhibition by

elevated sugar concentrations in mesophyll cells (Hölttä et al., 2017;

Salmon et al.,2020), as well as increased abscisic acid accumulation

and electrolyte concentrations, inhibiting stromal enzymes (Kaiser,

1987). Although the specific proximate mechanisms governing

drought‐driven photosynthetic downregulation are not fully under-

stood, it is plausible that its ultimate cause is the cost associated with

maintaining photosynthetic capacity. Therefore, exploring its impli-

cations for stomatal control should provide a basis for improving the

accuracy of photosynthetic predictions (Sabot et al., 2022b; Smith

et al., 2019; Yang et al., 2019).

Stomatal optimisation models rest on the trade‐off between the

carbon gained by photosynthesis and the risks associated with water

lost to transpiration (Cowan & Farquhar, 1977). Inspired by economic

thinking, such trade‐off optimisation is typically expressed in terms of

a carbon profit equation (i.e., carbon gain minus carbon cost), where

water loss is substituted for an equivalent carbon‐based ‘penalty’ cost

(Wang et al., 2020; Wolf et al., 2016). Thus, plants may take the

opportunity for higher carbon gain by allowing more transpiration

when water is cheap to use and forego carbon gain when it is

costly. A major appeal of optimality‐based stomatal models is that,

unlike their empirical counterparts (e.g., Ball et al., 1987;

Leuning, 1990, 1995), they avoid prescribing the sensitivities of gs

to the environment and, instead, let them emerge from the optimality

criterion. The added value in using optimisation models is robustness,

i.e., the ability to predict stomatal behaviour under new environ-

mental conditions outside of those used for model parameterisation.

A challenge, however, is in formulating the optimality criterion and

transforming water loss into a penalty cost, owing to the variety of

ways in which transpiration (and the ensuing soil water depletion) can

impede physiological function (Wang et al., 2020). Following Cowan

and Farquhar (1977), stomatal optimisation models originally con-

sidered a parametric marginal carbon cost of water use (Katul

et al., 2009; Konrad et al., 2008; Manzoni et al., 2011; Medlyn

et al., 2011). Yet it was never specified how these costs should vary

with the environment, time, and species (Mäkelä, 1996; Manzoni

et al., 2011, 2013; Schymanski et al., 2007; Wong et al., 1985). To

address this issue, subsequent stomatal optimisation models have

conceptualised the cost of water use as an impairment to hydraulic

function arising from the cavitation of xylem vascular tissues

(Anderegg et al., 2018; Buckley et al., 2023; Eller et al., 2020; Joshi

et al., 2022; Lu et al., 2020; Sperry et al., 2017; Wang et al., 2020;

Wolf et al., 2016). Note, however, that this solution does not resolve

all dynamic gas exchange regulation uncertainties (Buckley

et al., 2023).

Motivated by calls to include non‐stomatal limitations in

terrestrial models (Sun et al., 2014; Zhou et al., 2013)—constrains

on photosynthesis arising from changes in photosynthetic capacity or

mesophyll conductance, independent of stomatal function—some

studies have attempted to account for non‐stomatal limitations

within stomatal optimisation criteria (Dewar et al., 2018; Dewar et al.,

2021; Friend, 1991; Hölttä et al., 2017; Nadal‐Sala et al., 2021;

Novick et al., 2016; Yang et al., 2019). For instance, some of these

studies attempted to capture gas exchange responses to variation in

soil water availability, by maximising photosynthesis under a

prescribed linear reduction in instantaneous photosynthetic capacity

or mesophyll conductance with decreasing xylem pressure (Dewar

et al., 2018) or increasing sucrose concentrations (Hölttä et al., 2017).

However, while downregulation certainly occurs, this assumption of

linear reduction is supported by little evidence (Wang et al., 2020).

Other studies (Drake, 2017; Egea et al., 2011; Keenan et al., 2009;

Knauer et al., 2019; Yang et al., 2019; Zhou et al., 2013, 2014) have

relied on calibrated functions for prescribing the reduction in

maximum photosynthetic capacity or of the maximum mesophyll

conductance. Contrasting with the aforementioned approaches and

building upon earlier work by Wolf et al. (2016) and the
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photosynthetic coordination hypothesis (Smith & Keenan, 2020;

Smith et al., 2019; Wang et al., 2017), Joshi et al. (2022) suggested

adding metabolic impairment to hydraulic impairment within the

stomatal optimisation procedure, by accounting for a marginal

maintenance cost of photosynthetic capacity (α). How α changes

across space and through time (e.g., with environmental growing

conditions, with changes in other functional traits) is unclear, but

metabolic impairments are usually correctly represented in models

when they are allowed to vary over timescales of a few days

(Caldararu et al., 2020; Haverd et al., 2018; Jiang et al., 2020; Sabot

et al., 2022a), whereas stomatal regulation is presumed instantaneous

(but see Buckley et al., 2023; Feng et al., 2022).

In this study, we investigated the effects of including an

optimality‐based representation of photosynthetic acclimation within

six existing models. To that end, we extended their optimality criteria

to consider a marginal maintenance cost of photosynthetic capacity

α, as proposed in Joshi et al. (2022). We tested the performance of

these modified models against observational data stemming from

dry‐down experiments on >35 C3 species. Our main objective was to

assess the ability of the extended models to predict Anet and gs,

compared to the original formulations (Objective 1). We also analysed

the extent to which each model's estimates of Anet and gs could be

explained by hydraulic impairment versus photosynthetic acclimation

limitation (Objective 2). Finally, we explored the relationship between

the cost parameter α, hydraulic parameters, (sub)species‐specific

functional traits, and their environmental growth conditions (Objec-

tive 3). We expected that accounting for photosynthetic acclimation

will improve Anet estimates for all models. Based on previous findings

by Wang et al. (2020) and Sabot et al. (2022b), we also expected that,

during soil dry‐downs, hydraulic impairment would affect assimilation

to a greater extent than the acclimation of photosynthetic capacity,

albeit to varying degrees among models. Finally, we hypothesised

that species characterised by high hydraulic vulnerability (less‐

negative P50) or high specific leaf area would have higher

photosynthetic maintenance costs, and that “fast‐growing but

drought‐sensitive” species would also have higher metabolic sensi-

tivity to drought.

2 | METHODS

2.1 | Stomatal optimisation models

Hydraulics‐enabled stomatal optimisation models couple water

transport and carbon uptake through gs (see Notes 1 in the

Supporting Information Material). In these steady‐state models, gs

links to leaf water potential (ψl) through a mass‐balance of water, i.e.,

root‐to‐leaf water supply equals transpiration demand (Equation S5),

whilst controlling the rate at which CO2 diffuses within the leaf, and

thus, Anet (Equation S6). A given model's optimality criterion works to

adjust the instantaneous gs (consequently, ψl) to maximise profit, i.e.,

Anet minus a carbon‐equivalent hydraulic cost Θ (Equation 1).

Stomatal optimisation models can be algebraically rearranged such

that they differ only in the mathematical form of the Θ function (see

Sabot et al., 2022b and Wang et al., 2020 for comprehensive

reviews):

A ψ ψmax ( ( ) − Θ( )).
ψ

net l l
<0l

(1)

Adopting the nomenclature used by Sabot et al. (2022b), the

stomatal optimisation models considered here are: PMAX (Sperry

et al., 2017), PMAX2 (Wang et al., 2020), SOX (Eller et al., 2018),

SOX2 (Buckley et al., 2023), CGAIN (Lu et al., 2020), and PHYDRO

(Joshi et al., 2022).

The PMAX model was proposed by Sperry et al. (2017) to

express the stomatal cost of water loss based on plant hydraulic

theory at a minimal parameter expense. The PMAX model balances a

carbon gain function, where Anet is normalised by its maximum

potential value (Amax) specific to the instantaneous environmental

conditions, with a hydraulic risk function, also normalised, varying

with ψl and soil water potential (ψs). A unique pairing of gs and ψl

hence maximises the difference between the normalised assimilation

and risk functions. This model can also be expressed as in Equation

(1) by multiplying both the gain function and hydraulic risk function

by Amax, in which case Θ becomes

A
k k

k k
Θ =

−

−
,

ψ ψ

ψ ψ
max

s l

s crit

(2)

where kψ is the hydraulic conductance at a given water potential

(ψ) calculated using Eq. S3 (Notes 1 in Supporting Information

Material), with the double‐subscripts s, l, and crit representing

soil, leaf, and critical water potentials, respectively. The hydraulic

conductance at the critical water potential (kψcrit) represents the

point at which the plant pays the maximum cost of canopy

desiccation (Sperry et al., 2017). Here, kψcrit is assumed to be zero

for simplicity and generalisation across species (Venturas

et al., 2018). Since we are assuming a xylem without height

change or vulnerability curve segmentation, kψ can be used to

proxy canopy conductance. This assumption might impact the

sensitivity of stomatal responses to soil drought compared with

reality where different hydraulic segments are not characterised

by the same vulnerability curve (Wang & Frankenberg, 2022b).

However, this simplification is a practical necessity due to the

general lack of detailed data on segment‐specific maximum

hydraulic conductance and vulnerability curves.

The PMAX2 model was developed by Wang et al. (2020) to meet

a specific set of mathematical and biological criteria for a biologically

sensible Θ. The hydraulic impairment function of this model is based

on penalising the instantaneous transpiration (E(ψl)) by its proximity

to Ecrit, i.e., E(ψl) at the critical leaf water potential at which we

assume hydraulic conductance is null (ψl→ ‐∞). E(ψl) is weighted by

Anet in proportion to Ecrit such that

∫

∫
A

E ψ

E
A

P ψ dψ

P ψ dψ
Θ =

( )
=

( )

( )
.net

l

crit
net

ψ

ψ

ψ

−∞
s

l

s

(3)
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Here, the hydraulic impairment function is equivalent to the ratio

of two integrals of the hydraulic vulnerability curve function (P(ψ)).

The integral in the numerator ranges from ψs to ψl, and the improper

integral in the denominator ranges from ψs to minus infinity (at kψcrit).

P(ψ) is calculated using Equation S4.

The CGAIN stomatal optimisation model (Lu et al., 2020) was

motivated by the fact that gas exchange may be regulated differently

depending on soil water dry‐down length and dessication return time.

The model assumes a carbon cost (ϖ; μmol m−2 s−1) to offset carbon

gain, with the former representing an investment into recovering the

hydraulic conductance lost to embolized xylem (Sabot et al., 2022b).

While the original CGAIN model is solved over long time periods and

can consider delayed effects of xylem recovery, as in Sabot et al.

(2022b), we assume an instantaneous version with no lagged costs of

xylem recovery. However, applying Lu et al.'s (2020) model

instantaneously may be unfair because of the necessary simplifica-

tions. This simplified version of CGAIN is expressed as







ϖ

K k

K
ϖ P ψΘ =

−
= (1 − ( )),

ψ
l

max

max

l (4)

where Kmax is the maximum whole‐plant hydraulic conductance

between the roots to the leaves.

The PHYDRO model (Joshi et al., 2022) took a phenomenological

approach that relies on an impairment function proportional to the square

of the differential between the soil and leaf water potential (Δψ2)

γ ψΘ = Δ ,2 (5)

where γ (μmol m−2 s−1 MPa−2) is a calibrated empirical parameter

which determines species‐specific hydraulic sensitivity. This model

requires the use of a vulnerability curve that accounts for the

outside‐xylem hydraulic pathways in fine roots and leaves (see the

‘Parameter calibrations and simulation experiments’ section).

The SOX stomatal model (Eller et al., 2018) drew on the PMAX

model but opted to directly impair Anet by the ratio of the hydraulic

vulnerability curve evaluated at ψl to that of the vulnerability curve

evaluated at ψs







A

P ψ

P ψ
Θ = 1 −

( )

( )
.net

l

s

(6)

Finally, the SOX2 model proposed by Buckley et al. (2023) reworked

the SOX model to account for the leaf physiological kinetic factors that

affect leaf water potential dynamics. In this model the parameter ψ50 (i.e.,

the water potential at a 50% loss of hydraulic conductance) is tuned by a

species‐specific stomatal behaviour parameter, δ (dimensionless). The

parameter b (dimensionless) is the steepness of the vulnerability curve

A
ψ

δψ ψ
Θ =

| |

| | + | |
.net

l
b

b
l
b

50

(7)

2.2 | Acclimation of the photosynthetic capacity

To calculate Anet, maximum photosynthetic capacity must be known.

Following the photosynthetic model of Farquhar et al. (1980), Anet is

determined by the lesser of two biochemical assimilation rates (Aj and

Ac) that are functions of the absorbed irradiance (Iabs), leaf

intercellular CO2 concentration (Ci) and temperature (Equations S7

and S8), minus a leaf day respiration rate. The two rates Aj and Ac

depend on the maximum rate of electron transport (Jmax) and

maximum rate of carboxylation capacity (Vcmax), respectively, with

both Jmax and Vcmax differing in their sensitivities to temperature. The

parameter values that set Jmax and Vcmax are typically standardised to

25°C (Jmax,25 and Vcmax,25; Equations S14 and S15) and taken to be

species, ecosystem, or functional‐type averages, without accounting

for variation in their standardised magnitudes (i.e., the ratio of Jmax,25

to Vcmax,25 is a fixed value). However, Jmax and Vcmax co‐vary across

species and in the medium to long term, leading to a coordination

among the two photosynthetic rates (Chen et al., 1993; Maire

et al., 2012).

Assuming coordination, we can establish a single cost for

photosynthetic capacity, based on only one of the two limiting

biochemical photosynthetic rates. Specifically, we let both Jmax and

Vcmax acclimate by extending the stomatal optimisation criterion

(Equation 1) to account for the cost of maintaining electron‐transport

capacity (Joshi et al., 2022):

A ψ J ψ αJ ψmax ( ( , ) − Θ( ) − ( )),
ψ

l l l
<0

max max,25
l

(8)

where α is a marginal maintenance cost per unit of electron‐transport

capacity under standard conditions (i.e., 25°C), and αJmax,25 repre-

sents the total carbon cost required to maintain photosynthetic

capacity. Here, unlike in Joshi et al. (2022), we optimise Jmax,25

instead of Jmax, to limit the effects of temperature on α.

The optimisation problem presented in Equation (8) allows for

the estimation of the values of ψl and Jmax,25 that maximise profit,

similarly to how Equation (1) allows for the regulation of ψl and,

subsequently, gs (Equation S5) to maximise Anet. The optimisation of

Jmax,25 is instantaneous, but it uses the environmental conditions at

the time when gas exchange measurements were performed,

averaged over the previous 7 days to capture the weekly acclimation

timescale. We obtain the corresponding coordinated Vcmax,25 via the

photosynthetic coordination hypothesis (Equations S10–S13; Smith

et al., 2019; Smith & Keenan, 2020; Wang et al., 2017). The optimised

acclimated parameter values of Jmax,25 and Vcmax,25 are then adjusted

to the instantaneous temperature using an Arrhenius function

(Equations S14 and S15), and fed back as fixed parameters into the

biochemical photosynthetic model for the calculation of instanta-

neous gs, ψs, and Anet via Equation (1).

In our approach, photosynthetic capacity is acclimated not only

to the prevailing atmospheric conditions of the previous 7‐day

period, but also to ψs through the averaged hydraulic cost or

impairment factor. However, as soil moisture conditions were not

available for all 7‐day periods in the datasets used, to calculate the 7‐

day average we assumed that ψs decreased linearly between the first

and the last days of the experiment. We also assumed that the

environmental conditions were constant until the start of the

experiment.
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2.3 | Experimental data

We used published data from a series of dry‐down experiments to

evaluate the performance of the six stomatal optimisation models

with or without accounting for the photosynthetic acclimation. Some

of these experimental data were originally compiled from the

published literature by Zhou et al. (2013). We complemented them

with others found through a similar literature search on Google

Scholar—in September 2022, we used the keywords ‘“stomatal

conductance” and “photosynthesis” and “soil water potential” and

“dry‐down” or “drought” or “experiment”’, yielding 490 references.

Data were subsequently requested from the authors, collected from

open databases, or digitised from published figures using GetData

Graph Digitiser version 2.26.0.20. The data were filtered to ensure

that the experiments fulfilled the following criteria: (1) individuals of

the species were subjected to a controlled drought, (2) the growth

conditions were recorded during the study period (i.e., VPD or

relative humidity, temperature and radiation), and (3) simultaneous

measurements of gs, Anet, and soil water potential or pre‐dawn leaf

water potential were made. For one of the experiments (Salmon

et al., 2020), we also included the values of the controls where the

individuals were not exposed to drought (i.e., the soil water potential

was above −1MPa) to expand data limitations at high soil‐water

potentials. After filtering, data from 12 studies remained, for a total

of 37 species and sub‐species representing diverse plant functional

types (Table S1, Figures S1 and S2).

2.4 | Species‐specific plant traits

The stomatal optimisation models studied rely on a two‐parameter

hydraulic vulnerability curve (Equation S4) to simulate water

transport from roots to leaves. At the species‐level, values of the

water potential at 50% loss of hydraulic conductance (ψ50) were

obtained from hydraulic trait databases [preferably Martin‐StPaul

et al. (2017), otherwise Choat et al. (2012)]. The slopes of the

vulnerability curve (b) were estimated by equating Equation S4 to a

cumulative Weibull distribution representing plant vulnerability to

cavitation (Sperry et al., 2017), which depends on both ψ50 and the

water potential at 12% loss of hydraulic conductance (ψ12) or at 88%

loss of hydraulic conductance (ψ88) (with ψ12 and ψ88 obtained from

the aforementioned hydraulic databases). When species‐level ψ50,

ψ12 or ψ88 were not available (21 out of 38 species, Table S1), we

imputed the missing values using environmental, phylogenetic, and

trait correlations and covariations, following the methodology

developed by Sanchez‐Martinez et al. (2023). These correlations

and covariations derived from the entire Xylem Functional Traits

Database (Choat et al., 2012) alongside environmental data (mean

annual temperature and average annual precipitation) extracted from

the CHELSA database (Karger et al., 2017).

Further, to analyse the potential coordination between α and

other plant traits (objective 3), we collected species‐specific traits

related to water use strategies and plant form and function. These

were the species’ maximum height (Hmax; m), specific leaf area (SLA;

cm2 g−1), Huber value (Hv; i.e., sapwood area per leaf area in cmsw
2

mleaf
−2), and maximum leaf‐area specific hydraulic conductivity (KL;

mol mxylem mleaf−2 s−1 MPa−1), all of which were retrieved from the

Xylem Functional Traits Database (Choat et al., 2012). Missing

species‐specific trait values were obtained by imputation (as

described above for ψ50, ψ12 and ψ88), following Sanchez‐Martinez

et al. (2023) (see Table S2 for the root mean square error [RMSE] of

each imputed variable). In herbaceous species, hydraulic conductivi-

ties, ψ50, ψ12 or ψ88 were interpreted at the whole‐plant level.

2.5 | Parameter calibrations

Besides depending on estimates of of ψ50 and b for their

parameterisation, all the stomatal optimisation models considered

here rely on an estimate of Kmax (mol m−2 s−1 MPa−1; Equation S3) to

set the maximum possible conductance to water flow between the

roots and the leaves. Estimates of Kmax available from the literature

are seldom suitable for modelling efforts (because models require

parametrisations of Kmax at the scale of the whole plant, measured

per unit leaf area; Mencuccini et al., 2019). Therefore, in this study,

we have opted to calibrate the Kmax of the PMAX, PMAX2, and SOX

models for each species within each dry‐down experiment. The

SOX2, PHYDRO, and CGAIN models additionally rely on an estimate

of a hydraulic cost parameter (δ, γ, andϖ, respectively). Unless stated

otherwise, we calibrated these models’ hydraulic cost parameter but

not their Kmax, instead obtaining their Kmax by calibrating the PMAX

model which limits the potential for parameter un‐determination.

Three different sets of parameter calibrations (Figure 1) were

needed for us to address the objectives of this study. Although the

number of calibration sets is a match for the study's objectives, note

that Calibration 1 alone could not fully address Objective 1, nor could

Calibration 2 alone address Objective 2.

Calibration 1 aimed to assess the models’ performance without

considering photosynthetic acclimation (i.e., α, Jmax,25 and Vcmax,25

were not calibrated). To achieve this, we either calibrated Kmax of

PMAX, PMAX2, and SOX, or the hydraulic cost parameters of SOX2,

PHYDRO, and CGAIN, based on the 80th wet percentile data of each

species and dry‐down experiment. This calibration procedure utilised

a successive parabolic interpolation algorithm aiming to minimising

the normalised root mean square error (NRMSE) between predicted

and measured instantaneous rates of gs, and Anet,
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(9)

where the double‐subscript i represents the position of the paired

predicted and actual values, and N is the total number of actual

observations for a given species in an experiment.

Calibration 2 considered photosynthetic acclimation. In Calibra-

tion 2, we utilised the hydraulic parameter values obtained in

Calibration 1 and calibrated α on the 80th wet percentile data of the

3482 | FLO ET AL.

 13653040, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pce.14891 by T

est, W
iley O

nline L
ibrary on [28/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



species and dry‐down experiment (specific α). The calibration process

followed the same parameter optimisation algorithm as in Calibration

1. We accounted for photosynthetic acclimation as described in the

‘Acclimation of the photosynthetic capacity’ section (Equation 8).

Calibration 3 accounted for photosynthetic acclimation as

Calibration 2 but, this time, more model parameters were calibrated.

Using the Nelder‐Mead algorithm, we looked to fit the best {Kmax,

ψ50, b, α} parameter set for each individual model, species, and dry‐

down experiment that minimised Equation (9). In the case of the

SOX2, PHYDRO, and CGAIN models, we also calibrated their

respective hydraulic cost parameter (i.e., δ, γ and ϖ) in addition to

the {Kmax, ψ50, b, α} parameter sets. Calibration 3 was performed on

the entire dataset of each species‐experiment, and it was also

repeated without photosynthetic acclimation (i.e., α was not included;

Equation 1). Calibrating four or five parameters on small data subsets

(e.g., N = 4; Table S1) likely leads to unrealistic predictions of these

parameters. Therefore, the parameter estimates from small data

samples were given less weight in subsequent statistical analyses.

2.6 | Simulation experiments

The following simulation experiments were performed to address the

study's objectives:

Objective 1: To compare the performance of the models with

and without acclimation, we made three types of predictions for gs

and Anet. These predictions were “non‐acclimated” (using the

parameters from Calibration 1), “acclimated with specific α” (using

the parameters from Calibration 2), and “acclimated with average

α”. We extracted the average α (0.0962) of all species from

Calibration 3 by fitting a mixed‐effects linear model with crossed

random intercept for stomatal models, species, and dry‐down

experiments. Many data sources provided data for several species,

whilst some comprised only one species, and the same species

could also found across data sources. This unevenness of data

motivated our choice of a simple crossed random structure that

provides global, species population‐average intercepts while

accommodating both source and model variations. Note that both

the non‐acclimated (Equation 1) and acclimated (Equation 9) model

simulations performed for Objective 1 spanned the entire dry‐

down for a given species‐experiment and, as such, were mostly

outside their calibration samples (restricted to the 80th wet

percentile of data, see Parameter calibrations section). Finally, we

opted to use the hydraulic (or hydraulic cost) parameters obtained

for the non‐acclimated models (Calibration 1) when running their

acclimated counterparts (Calibration 2), thus reducing model‐

specific degrees of freedom, and making the simulation outcomes

as comparable as possible across models.

Objective 2: To gain insight into the relative contributions of

hydraulic (stomatal) versus photosynthetic acclimation limitations on

photosynthesis, we used the “non‐acclimated” and the “acclimated

with specific α” simulations from Objective 1.

Objective 3: To explore the co‐variation of α with hydraulic (or

hydraulic cost) parameters in different models and in relation to other

functional traits and environmental conditions, we used simulations

of gs and Anet generated by using the full model‐specific parameter

sets from Calibration 3 (i.e., obtained with and without acclimation).

2.7 | Additional parameter specifications and
forcing data

In Calibrations 1 and 2, we used species‐specific values of ψ50 and b

retrieved from the literature (Table S1). However, for the PHYDRO

F IGURE 1 Schematics of the three sets of parameter calibrations performed for PMAX, PMAX2, and SOX models, i.e., models free of a
hydraulic cost parameter. Calibration 1 focused on calibrating the Kmax of each species‐experiment and model. In Calibration 2, the α parameter
of each species‐experiment and model was calibrated, using the Kmax parameter from Calibration 1. Calibration 3 involve calibrating the Kmax,
ψ50, b, α parameters of each species‐experiment and model. Parameter calibration was achieved by minimising the error between predicted and
measured instantaneous gs and Anet, using Equation (9). The dashed box illustrates the parameters estimated in each calibration set. Calibrations
2 and 3 included photosynthetic acclimation. Because they required a slightly different calibration procedure (see Parameter calibrations
section), the models relying on a hydraulic cost parameter besides just Kmax (SOX2, PHYDRO, CGAIN) are not included in the schematic.
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model, instead of using the parameters of the xylem vulnerability

curve, we used an approximate estimate of the outside‐xylem (ox)

vulnerability curve by setting ψox50 =ψ50/3 and b = 1, based on the

findings of Joshi et al. (2022). To ensure that using a different

parameterisation of hydraulic vulnerability did not give the PHYDRO

model an unfair advantage or disadvantage compared to other

models, we repeated the first and second set of calibrations (and

associated simulations) using outside‐xylem vulnerability curve

parameters (i.e., ψox50 =ψ50/3 and b = 1) for other models and xylem

vulnerability curve parameters (i.e., ψ50 and b) for PHYDRO. This

incidentally provided us with a test of the sensitivity of the models to

the choice of vulnerability curve parameters.

In all calibrations and model simulations that did not account for

acclimation (i.e., Calibration 1, Calibration 3 without acclimation, and

“non‐acclimated” simulations), Jmax,25 and Vcmax,25 parameters were

obtained from the average values of the actual gs and Anet

measurements for the 80th wet percentile of each species‐study

(Figures S1 and S2), and assuming photosynthetic coordination via

Equations S6, S11, S12, and S13.

The model calibrations and simulations were driven by observed

soil water potential, VPD, temperature, and radiation. When

acclimation was not considered (Equation 1), we preferentially used

instantaneous data. Instantaneous soil water potential was always

available, however, in cases where instantaneous records of VPD,

temperature, and radiation were not, we used the average values of

the entire experimental period for VPD, temperature, and radiation.

The latter option was also chosen when calibrating and simulating

acclimation via Equation (8).

2.8 | Statistical analyses

The performance of the six stomatal models in predicting Anet

with and without acclimation (Objective 1) was assessed using

four statistical metrics. These metrics were applied at the species

level, for each different stomatal models, and using three

simulation scenarios—those without acclimation, with acclimation

using average α, and with acclimation using specific α. The

metrics include: (1) Pearson's correlation coefficient, where

coefficients close to 1 indicate a perfect positive correlation

between the estimated and actual Anet; values <0 indicate a

negative correlation. (2) The slope (m) of a linear relationship

between the estimated and actual Anet, which measures the

proportional bias of a model's predictions. Values of m close to 1

indicate good proportionality between the estimated and actual

Anet, whereas m much smaller/higher than 1 imply that the

predicted Anet are underestimated/overestimated as the soils dry

out. (3) The RMSE, measuring the cumulative absolute error of

Anet predictions, with a larger penalty on larger errors. (4) The bias

(Equation 10) of the Anet estimates, which evaluates the average

simulation error and its direction. A negative bias implies that the

estimated values are, on average, systematically higher than the

actual values.

Bias
A A

A
=
∑ ( − ′)

∑
.

i
N

net net i

i
N

net

=1

=1 i

(10)

For each statistical metric, we used linear mixed‐effects models

(LMMs) to further compare the performance of stomatal optimisation

models. We explain the metric variance, using the stomatal model,

the simulation scenario (i.e., “non‐acclimated”, “acclimated with

average α”, or “acclimated with specific α”) and their interactions as

fixed explanatory variables. The data source and species were used as

crossed random intercepts to account for potential systematic errors

in the experimental design or potential species‐specific biases that

could be introduced across stomatal stomatal models. All perform-

ance analyses were repeated for gs.

We used models parametrised with (Calibration 2) or without

acclimation (Calibration 1), to evaluate how each stomatal optimisa-

tion model divides its predictive capacity into the components of

hydraulic impairment versus limitations due to photosynthetic

acclimation (Objective 2). For each stomatal model, we analysed

how the explained variability (R2) of Anet was partitioned between the

hydraulic penalty (stomatal partition), the cost of maintaining

photosynthetic capacity (αJmax,25; photosynthetic acclimation parti-

tion), and species. We accounted for the explained variability by

species because species‐level ψ50 and b parameters may be

inadequate for a given population within the species. The variance

explained by stomatal partition was calculated as the marginal R2 of

the actual Anet explained by the estimated Anet without acclimation,

adjusting random intercepts for each species in an LMM. We then

applied an LMM with the same structure, but using the estimated Anet

values with acclimation as the explanatory variable instead. The

variance explained by photosynthetic acclimation was determined by

calculating the difference between the respective marginal R2 of the

latter and former statistical models. The species variance partition

was obtained as the difference between the conditional and the

marginal R2 of the LMM for the acclimated Anet simulations. To

understand whether the importance of these variance components

changes as the soil dries, we repeated the analysis on the driest 50th

percentile of data for each species within each dry‐down experiment.

Finally, we analysed the relationships between the specific α

from Calibration 3 and other species‐ and experiment‐specific traits

and growing conditions. The traits considered as possible explanatory

variables for α were the species‐level Hmax, ψ50, SLA, Hv, and KL

collected or imputed from the literature (Table S1). We selected

these traits as they stand for different axes of variation representing

different water use strategies and life forms. We also included an

estimate of the actual Jmax,25 under well‐watered conditions (80th

wet percentile; JmaxWW,25), which was inferred from the observed Anet

and gs using the one‐point method (Equations S6, S11, S12, and S13;

De Kauwe et al., 2016). The environmental conditions of interest

were average Iabs and Ca during the experimental period. During the

experiments, Iabs was strongly positively related to VPD and air

temperature (Figure S3). All explanatory variables that presented a

non‐normal distribution (Hmax, SLA, Hv, KL, and JmaxWW,25) were

transformed using the natural logarithm to minimise the leverage
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effect of large values. We performed a multivariate LMM in which

the variability of α was explained by the chosen species‐level traits,

ψ50, JmaxWW, and the growing conditions, with the stomatal models

and dry‐down experiments used as crossed random intercepts.

Because species‐level traits were taken as fixed predictors of the

LMM, it was important we used the stomatal models as random

intercepts to account for the variability in α caused by each stomatal

model for each species. Next, we identified the most significant

predictors using an Akaike Information Criterion (AIC) stepwise

algorithm. Finally, we calculated the variance inflation factor (VIF) of

each predictor to explore possible multicollinearity across explana-

tory variables. We also repeated the above model and the

identification of the most significant predictors using the product

of α and JmaxWW,25, which corresponds to a photosynthetic capacity

cost under well‐watered conditions, as an explanatory variable.

In all LMMs, we used the natural logarithm of each species'

sample size as a weighting factor to minimise the effect of a small

number of data points (see N, Table S1).

2.9 | Code

All analyses and calibrations were performed using R 4.2.0 (R Core

Team, 2022) and the code is freely available from GitHub at https://

github.com/vflo/Acclimated_gs_optimization_models. The following

specific R packages were used:

1. TrEvol (Sanchez‐Martinez et al., 2023) for the imputation of

missing species‐level trait values (see the ‘Species‐specific model

parametrisations and plant traits’ section above);

2. dEoptim (Mullen et al., 2011) to solve the instantaneous

optimality criteria presented in Equations (1) and (2), and (9)

and (10);

3. lme4 (Bates et al., 2015) for all LMM computations (see ‘Statistical

analyses’);

4. MuMIn (Bartoń, 2020) for the R2 variance partitions (‘Statistical

analyses’).

3 | RESULTS

All three calibration sets were successful for all the species and

stomatal models. Most of the model parameterisations obtained from

Calibration 3 were insensitive to acclimation (Figures S4a, S4b

and S4c), with the exception of the magnitude of ‐ψ50 and Kmax from

SOX and SOX2 which were reduced by acclimation, and the

parameter b in the PMAX model that was moderately reduced by

acclimation (p < 0.05). In Calibration 1, where Kmax was the only

calibrated parameter for PMAX, PMAX2 and SOX, the Kmax of these

three models were much lower than those from Calibration 3 in the

absence of acclimation (Figure S4a). For PMAX and PMAX2, Kmax also

substantially decreased between Calibration 3 accounting for

acclimation and Calibration 1 (Figure S4a).

3.1 | Model performance with versus without
photosynthetic acclimation

All six stomatal models generated highly and positively correlated in‐

sample Anet estimates across most species (Figure 2a, Figures S2

and S5). The mean Pearson's correlation coefficient for the stomatal

models without acclimation ranged from 0.755 in PMAX2 to 0.810 in

PHYDRO, whilst for the acclimated stomatal models using the

average α, it ranged between 0.803 and 0.825 in SOX2 and

PHYDRO, respectively, and using the specific α, it ranged from

0.794 in SOX to 0.817 in PMAX (Figure 2a). The incorporation of

acclimation, using both the average and the specific α, produced a

moderately positive effect on the estimates of PMAX2 in terms of

correlation. In the case of PMAX, this positive effect was observed

with the average α. However, for CGAIN, PHYDRO, SOX, and SOX2,

the effect was negligible (Figure 2a).

By contrast, the slope between the predicted and actual Anet

values (m) was strongly influenced by acclimation. Accounting for

acclimation led to m values closer to 1. Conversely, without

accounting for acclimation, m was significantly larger than 1

(Figure 2b), as the models were unable to accurately simulate the

downregulation of Anet as the soil dried out in the absence of

acclimation in some species (Figure S2). Upon acclimation, the

average values of m for CGAIN, PHYDRO, PMAX, SOX, and SOX2

were not likely to differ from one (H1 ≠ 1; p > 0.05), indicating that

these five models' estimates of Anet were in good proportionality to

the observations as the soil dried. The average m of PMAX2 was

greater than 1 though, most probably because it failed in a few

species‐experiments with a large N (Figure 2b).

The different models did not significantly differ from one another

in their average non‐acclimated RMSE. Acclimated models with

species‐experiment specific α (i.e., specific α acclimated from

Calibration 2), all displayed a significantly lower RMSE than those

without acclimation (Figure 2c). In addition, the average α acclimated

SOX2 had significantly lower RMSE than without acclimation. The

average α acclimated PHYDRO and CGAIN had significantly higher

RMSE than PMAX and SOX, and in the case of CGAIN, higher than

SOX2 as well (Table S3). The specific α acclimated PHYDRO

presented the lowest average RMSE for Anet at 3.07 μmolc m−2 s−1

(Figure 2c, Table S3), whereas the average α acclimated CGAIN

presented the highest average RMSE at 5.07 μmolc m−2 s−1.

All the specific α acclimated models presented biases signifi-

cantly lower than the non‐acclimated models and not significantly

different to zero. PHYDRO, CGAIN, PMAX and PMAX2 did not show

significant differences in biases between their average α acclimated

and their non‐acclimated model versions (Figure 2d). All the non‐

acclimated stomatal models presented a significant average over-

estimation (bias higher than zero; p < 0.05), with PMAX2 presenting

the larger bias (0.478) and PHYDRO the lowest one (0.380;

Figure 2d).

Unlike for Anet, the models' performance for gs in terms of

Pearson's correlation, m, RMSE, and bias was generally not affected

by the inclusion of acclimation (Figures S1 and S6). Acclimation led to
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a significant improvement of proportionality for CGAIN and PMAX2

(Figure S6b). However, m was still significantly higher than 1 for

PMAX2, pointing to these models’ failure to produce estimates of gs

in good proportionality with the observations (Figure S6b).

All models except PMAX were highly sensitive to the para-

meterisation of the species‐specific vulnerability curves (Figure S7).

Indeed, poor predictions resulted when parameters other than those

prescribed in the respective model designs were used. Using outside‐

xylem vulnerability curve (ox) parameters, both SOX and SOX2

showed enhanced sensitivity to changes in ψs, leading to strong and

rapid stomatal closure as the soil dried out (Figure S7b and S7d).

CGAIN became unstable, and for several species, the model failed to

converge. By contrast, PMAX2 showed improved performance

(Figure S7) and, thus, similar estimates to PMAX. Likewise, using

standard xylem‐based vulnerability curve parameters, PHYDRO was

unable to accurately depict the decline of Anet as the soil dried out

(Figure S7b).

3.2 | Hydraulic impairment versus limitations due
to photosynthetic acclimation

The proportion of variance in Anet explained by hydraulic (stomatal

limitation) and metabolic impairment (photosynthetic acclimation limita-

tion to photosynthesis) differed among models (Figure 3). Overall,

stomatal limitations were markedly more important than metabolic

impairment for all models across all conditions (Figure 3a), except for

PMAX2 for which stomatal limitation and metabolic impairment were

about equally important. When analysing the drier half of the data, the

variance explained by photosynthetic acclimation limitations slightly

decreased for all models (Figure 3b). The acclimated PHYDRO model

explained the greatest variability in Anet, with a marginal R2 of 0.627 for all

data points (stomatal + photosynthetic acclimation contributions),

whereas the acclimated PMAX and PMAX2 were the best models for

the drier half of the data, achieving a marginal R2 of 0.555 and 0.564,

respectively. The proportion of variance explained by species identity was

F IGURE 2 Performance comparison between acclimated and non‐acclimated stomatal optimisation models, relative to species‐specific
observations of Anet during different dry‐down experiments. All the performance metrics were calculated for estimates of Anet obtained within
their full data sample, having fitted just one hydraulic parameter per stomatal model on the 80th wet percentile of the species data samples (not
acclimated), then acclimating by setting α to 0.0962 for all the species (average α), and finally acclimating with a specific α. For all the models
except PHYDRO we used the species‐level vulnerability curve parameters ψ50 and b shown in Table S1. For PHYDRO, we used species‐level
outside‐xylem vulnerability curve parameters as ψox50 =ψ50/3 and b = 1. Small circles are the values for each species within each dry‐down
experiment, higher transparency indicates smaller data sample. Large circles are the metric averages estimated using an LMM (see Section 2).
Large closed circles indicate a significant difference in the metric averages of the model realisations with acclimation with respect to not
acclimated ones; conversely, large open circles indicate no significant difference between the acclimated and non‐acclimation realisations.
Models without acclimation are consistently represented by open circles. Statistical significance was calculated using paired t‐test comparisons.
Vertical dotted lines indicate the best achievable performance for each metric. (a) Pearson's correlation (b) slope (m) of the linear relationship
between the actual and estimated Anet (c) RMSE (d) bias of the estimation of Anet calculated as in Equation (10). [Color figure can be viewed at
wileyonlinelibrary.com]

3486 | FLO ET AL.

 13653040, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pce.14891 by T

est, W
iley O

nline L
ibrary on [28/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


greater for the drier half of the data (Figure 3a), accounting for nearly half

of the variance explained by the stomatal and photosynthetic acclimation

components taken together and indicating that drier conditions elicit a

greater diversity of responses among species.

3.3 | Relationship between α, functional traits, and
the growth environment

Calibrating {Kmax, ψ50, b, α} for each model, species, and data

source (and additionally, γ, δ or ϖ, for PHYDRO, SOX2, and

CGAIN, respectively) (Calibration 3) enabled a majority of the

models to match or exceed a R2 of 0.6 for both gs and Anet

(Table S4); PMAX2 was an exception failing to exceed 0.6 for gs.

The combination of these R2 values and the narrow confidence

interval for the average α (0.09613–0.09689), gave us confidence

in the average α obtained both across and within models. The

PHYDRO and CGAIN models, which require an additional

hydraulic cost parameter, exhibited a significantly higher average

α (>0.1035) than other models, all of which yielded average α

values significantly different from one another (α between

0.0901 and 0.0935; Figure 4). Despite these differences, none

of the model's average α was different from the average α across

models (α = 0.0962) nor different from 0.1, the value proposed by

Joshi et al., 2022 for global applications.

A multivariate LMM combined with a stepwise AIC variable

selection (Table 1) revealed three plant traits and growing

conditions to explain a moderate part of the variability in α

across species (marginal R2 = 0.47), out of the eight potential

explanatory variables originally considered. The species maximum

height and JmaxWW,25 (i.e., the Jmax,25 inferred from observations

under well‐watered conditions) were negatively related to α,

whilst the average Iabs had a positive relationship with α (Table 1

and Figure 5). Multicollinearity was low across the explanatory

variables (VIF; Table 1). The results were similar albeit explaining

a larger part of the variability (R2 = 0.55) when the relationships

between αJmaxWW,25 and the eight potential explanatory variables

were explored (Figure S8). In that latter case, six explanatory

variables were selected: the SLA and maximum height of the

species were associated with lower photosynthetic capacity cost

under well‐watered conditions, whilst Iabs, species KL, Hv, and ψ50

were positively related to αJmaxWW,25 (Figure S8).

F IGURE 3 Fractions of variance in Anet explained by stomatal, photosynthetic acclimation, and species‐level contributions for each model. (a)
Partition using all the data (b) partition using the drier 50th percentile data for each species. Grey portions represent any residual variance not
explained by stomatal, photosynthetic acclimation, or species contributions. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Average model‐specific estimate of α across species,
accounting for the random effects of the species and dry‐down
experiments. Vertical dashed line show the average α across models
(α = 0.0962). Letters represent groups with significant differences
calculated using Sidak's multiple comparison test.
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4 | DISCUSSION

We have shown that including a maintenance cost for photosynthetic

capacity, as proposed by Joshi et al. (2022), improves Anet predictions

(Figure 2) across a range of hydraulics‐enabled stomatal optimality

frameworks, particularly under drought (Figure 2b). Our approach

eliminates the need for species‐level knowledge of photosynthetic

capacity (Jmax,25 and Vcmax,25), and for empirical functions describing

the slow acclimation of photosynthetic capacity to drought

(Drake, 2017; Egea et al., 2011; Keenan et al., 2009; Knauer

et al., 2019; Yang et al., 2019; Zhou et al., 2013, 2014) or semi‐

empirical functions relating photosynthetic capacity to leaf nitrogen

(Sabot et al., 2022a). Despite these benefits, our approach requires

fitting an additional photosynthetic cost parameter α, whose variable

responses to species‐specific traits and environmental conditions

remain unclear. Nonetheless, our results suggest that the cost

parameter α could be predicted from plant functional traits and

growth conditions.

Despite variability in model‐specific α values (Figure 4), our

analysis revealed a strong relationship between α and JmaxWW,25,

implying that plants with higher photosynthetic capacity tend to

have lower relative photosynthetic costs under well‐watered

conditions. Interestingly, we found a positive relationship between

α and Iabs which suggests that species experiencing higher light

intensities have higher leaf maintenance costs per unit Jmax,25. This

result is consistent with experimentally observed lower respiration

rates in shade‐tolerant plants (Reich, 2014). There is also evidence

of more pronounced photo‐inhibition for leaves under high light

intensities exposed to moderate to severe water deficits, com-

pared to leaves under low radiation (Epron & Dreyer, 1990;

Kaiser, 1987). This suggests an enhanced photosynthetic sensitiv-

ity to drought (i.e., a higher α) for high Jmax,25 leaves, perhaps linked

to the production costs of photoprotective compounds whose

concentrations acclimate to UV radiation levels (Barnes

et al., 2023). Further, considering the strong positive correlation

between Iabs and VPD and air temperature (Figure S3), it is likely

that the increased cost associated with elevated radiation is

influenced by the confounding effect of higher atmospheric aridity.

Besides its relations to environmental drivers, α was negatively

related to species maximum height and the total cost αJmaxWW,25

was positively related to ψ50 and KL (Figure S8). This suggests a

potential link between the photosynthetic cost and the hydraulic

safety‐efficiency trade‐off. However, note that all woody plants

included in this study were seedlings, and many of them were far

from their maximum potential heights.

Note that αJmax,25 represents 60%–80% of carbon assimilation

under well‐watered conditions (Figure S9), while leaf respiration

typically represents only about 1.5% (Collatz et al., 1991). Therefore,

αJmax,25 does not merely refer to leaf respiration. αJmax,25 could

TABLE 1 Multivariate linear‐mixed effects model (LMM) best
explaining the variability of α for the fully calibrated stomatal
optimisation models (Calibration 3).

Estimate SE VIF T‐value p‐value

Intercept 2.01 × 10−1 1.07 × 10−2 18.85 <0.001

Iabs 6.06 × 10−5 3.52 × 10−6 1.04 17.24 <0.001

JmaxWW,25 −3.19 × 10−2 2.03 × 10−3 1.49 −15.76 <0.001

Hmax −8.16 × 10−3 1.09 × 10−3 1.48 −7.52 <0.001

Note: Iabs is the average absorbed photosynthetically active photon flux
density during the experiment in μmol m−2 s−1. JmaxWW,25 is the maximum
electron transport capacity at standard temperature (25°C) inferred from

observations under well‐watered conditions, in loge (JmaxWW,25/
μmolc m−2 s−1). Hmax is the species maximum height in m. The estimate,
SE, and VIF columns stand for the estimated coefficients, standard error,
and variance inflation factor.

(a) (b) (c)

F IGURE 5 Partial effects from a multivariate linear‐mixed model (LMM) explaining the variability of α. The LMM was fitted using the dry‐
down experiments and stomatal models as crossed random intercepts and the LMM coefficients are shown inTable 1. Grey scatter open points
show all the model‐specific contributions to α, across all species. Black plain lines are partial regressions and dashed lines represent the partial
regressions plus or minus their standard error. Size of the points represent the weight applied to each data point, which is equal to the natural
logarithm of the sample size (Table S1).
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additionally encompass the carbon costs associated with maintaining

the efficiency and activity of chlorophyll, the rate of RuBP

regeneration, and potentially the costs of nitrogen acquisition,

including allocations to fine roots, mycorrhizae, and the rhizosphere.

Moreover, were αJmax,25 encompassing the real carbon costs arising

from respiration, it would include the respiration of all supporting

organs (such as stem and roots) relative to the given leaf area.

Alternatively, αJmax,25 and hydraulic costs could be viewed as

apparent fitness costs, linked to future mortality risks and caused

by either overly risky hydraulic behaviour or excessive investment in

Jmax at the expense of other functions. In summary, the exact

meaning of the parameter α remains undetermined.

Our approach diverges from the original work of Joshi et al.

(2022), as we employ αJmax,25 instead of αJmax within our optimality

criterion. This raises the question of what plants are actually

acclimating to. Using Jmax,25 should reflect the actual tissue‐level

carbon investment, as the temperature effects on photosynthetic

capacity are corrected. This, in turn facilitates the comparative

analyses between experiments conducted under varying growth

temperatures. Another perspective suggest that plants may prioritise

metabolic costs, which are temperature‐dependent, over tissue

investment, thus optimising the realised Jmax. Temperature signifi-

cantly influences Jmax,25 which decreases as growth temperature

increases (Crous et al., 2022; Fürstenau Togashi et al., 2018). This

suggests that the cost term could be αJmax as proposed in Joshi et al.

(2022). However, an increase in temperature also decreases the ratio

of Jmax,25 to Vcmax,25, albeit at a different pace than it does Jmax,25

alone (Crous et al., 2022). This suggests that α might need its own

temperature response function to accommodate the varying rates of

change, thus requiring a temperature‐normalised α and allowing the

use of Jmax,25. Whether the photosynthetic costs parameter α

changes through time or increases during dry‐downs is not resolved

by our analysis, but the magnitude of α might also depend on

hydraulic impairment. Given these considerations, the choice of the

cost term (i.e., αJmax,25 or αJmax) warrants further investigation.

With the caveat that performance evaluation of the models

presented here only accounts for model predictions of Anet and gs,

PMAX performed best when photosynthetic acclimation was

included (Figures 2 and 3). Previous studies have shown this stomatal

optimisation model to perform as well or better than empirical

stomatal models in the absence of photosynthetic acclimation (Sabot

et al., 2020; Sabot et al., 2022b; Venturas et al., 2018; Wang

et al., 2020), and it has also been shown to make robust predictions

when accounting for it (Sabot et al., 2022a). The SOX, SOX2,

PHYDRO, and CGAIN also showed reasonably good performance

(Figures 2 and 3), especially in terms of improvement to proportion-

ality when acclimation was considered (Figure 2b), but note that

these four models were more sensitive to the choice of vulnerability

curve parameters than PMAX (cf. Figure 2 and Figure S7). In stark

contrast, even though the inclusion of photosynthetic acclimation

improved the performance of PMAX2 in terms of correlation, RMSE,

and bias, it did not improve the proportionality of their Anet

predictions (Figure 2b), except when outside‐xylem vulnerability

curve (ox) parameters were used (Figure S7). Overall, and in line with

the findings of Sabot et al. (2022b), our simulations’ performance

without acclimation did not support the assertion by Wang et al.

(2020) that PMAX2 (neither a variation of PMAX2; see Notes 2 in the

Supporting Information Material) outperforms other stomatal opti-

misation models. Compared to other existing models that relate non‐

stomatal limitations to hydraulic function (e.g., Novick et al., 2016;

Dewar et al., 2018; Dewar et al., 2021; Hölttä et al., 2017; Nadal‐Sala

et al., 2021; Yang et al., 2019), the acclimated models presented in

this study (and Joshi et al., 2022) solely account for changes in

photosynthetic capacity. Consequently, our models assume a less

conservative stomatal behaviour because they do not account for the

full feedback effect of a change in ψl on Vcmax and Jmax and of a

marginal change in Vcmax and Jmax on the optimal behaviour.

Stomatal optimisation models, particularly when incorporating

photosynthetic acclimation and calibrated hydraulic parameters,

exhibit sufficient flexibility to reasonably predict Anet and gs under

varying soil moisture conditions, which is essential in forecasting

global carbon and water cycles. Although effective for several species

and models, the time‐intensive optimisation required by large

parameter calibrations (e.g., Calibration 3) limits its feasibility for

large‐scale databases. This limitation can be addressed by using

hydraulic parameters at the species or ecosystem level, thus reducing

the number of parameters requiring calibration (e.g., Calibration 1).

However, these models might not perform so well when directly

parameterised based on both hydraulic vulnerability curves and

estimates of Kmax for a given plant organ (e.g., leaf, branch, stem,

root), especially if taken in isolation from photosynthetic acclimation

parameters. This is important as it is still not fully understood how the

scaling of organ‐level vulnerability curves represents the entire

hydraulic system (Wang and Frankenberg, 2022b) and how all traits

coordinate at the plant level (McCulloh et al., 2019). Nonetheless,

ongoing research is advancing our knowledge of global plant traits

and their coordination (Sanchez‐Martinez et al., 2023; Xu et al., 2021),

presenting opportunities for improved and generalised utilisation of

stomatal optimisation models.
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