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An exact chiral amorphous spin liquid

G.Cassella 1, P. d’Ornellas1 , T. Hodson1,W.M.H.Natori 2 & J. Knolle 1,3,4

Topological insulator phases of non-interacting particles have been general-
ized from periodic crystals to amorphous lattices, which raises the question
whether topologically ordered quantummany-body phasesmay similarly exist
in amorphous systems? Here we construct a soluble chiral amorphous quan-
tum spin liquid by extending the Kitaev honeycombmodel to random lattices
with fixed coordination number three. The model retains its exact solubility
but the presence of plaquettes with an odd number of sides leads to a spon-
taneous breaking of time reversal symmetry. We unearth a rich phase diagram
displaying Abelian as well as a non-Abelian quantum spin liquid phases with a
remarkably simple ground state flux pattern. Furthermore, we show that the
system undergoes a finite-temperature phase transition to a conducting
thermal metal state and discuss possible experimental realisations.

Amorphous materials are condensed matter systems characterised by
short-range regularities, and an absenceof long-range crystalline order
as studied early on for amorphous semiconductors1,2. The bonds of a
wide range of covalent compounds can enforce local constraints
around each ion, e.g. a fixed coordinationnumber z, whichhas enabled
the prediction of energy gaps even in lattices without translational
symmetry3,4, the most famous example being amorphous Ge and Si
with z = 45,6. Recently, following the discovery of topological insulators
(TIs), it has been shown that similar phases can exist in amorphous
systems characterised by protected edge states and topological bulk
invariants7–13. However, research on electronic systems has been
mostly focused on non-interacting systems with few exceptions, for
example, to account for the observation of superconductivity14–18 in
amorphous materials or very recently to understand the effect of
strong electron repulsion in TIs19.

Magnetism in amorphous systems has been investigated since the
1960s, mostly through the adaptation of theoretical tools developed
for disordered systems20–23 and with numerical methods24,25. Research
has focused on classical Heisenberg and Ising models, which are able
to describe ferromagnetic, disordered antiferromagnetic and widely
observed spin glass behaviour26. However, the role of spin-anisotropic
interactions and quantum effects in amorphousmagnets has not been
addressed. It is an open question whether frustrated magnetic inter-
actions on amorphous lattices can give rise to genuine quantum pha-
ses, i.e. to long-range entangled quantum spin liquids (QSL)27–30.

The combination of a fixed local coordination number in con-
junction with magnetic frustration generated by bond-anisotropic

Ising exchanges can lead to stable QSL phases. The seminal Kitaev
model on the honeycomb lattice31 provides an exactly solvable model
whose ground state is a QSL characterised by a static Z2 gauge field
and Majorana fermion excitations. Several instances of Kitaev candi-
date materials have been synthesised in the last decade32–36 following
the suggestion that heavy-ionMott insulators formed by edge-sharing
octahedra may realise dominant Kitaev interactions32. In particular,
recently it has been shown that the Kitaev material Li2IrO3 can be
created with an amorphous structure37. In fact, with sufficiently fast
cooling, any crystalline material can be made amorphous2,38, opening
the possibility for exploring a wide variety of non-crystalline Kitaev
materials.

It is by now well known that the Kitaev model on any three-
coordinated (z = 3) graph has conserved plaquette operators and local
symmetries39,40 which allow for a mapping onto an effective free
Majorana fermion problem in a background of static Z2 fluxes41–44.
However, in general this neither means that any z = 3 lattice Kitaev
model can be straightforwardly constructed, nor that the QSL prop-
erties are obvious. Several obstacles remain. First, the labelling of
bonds necessary to create a soluble Hamiltonian can be an NP-
complete problem. Second, once the Majorana system has been con-
structed, determining the ground state out of the exponentially large
number of Z2 flux sectors is generically hard, since Lieb’s theorem –

whichdefines the ground state flux configuration for the honeycomb –

is not applicable for most lattices. Previous studies have relied on
translation and reflection symmetries to reduce the number of sectors
that must be checked43,45,46, which cannot be done in an amorphous
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system. Third, once the ground state flux sector is found, it needs to be
determined whether lattice disorder induces a gapless phase47–49 or
whether the fermionic spectrum is gapped, possibly with non-trivial
topology43.

In this article we study the Kitaev model on amorphous lattices
and establish it as an example of a topologically ordered amorphous
QSL phase. Concentrating on random networks generated via Voronoi
tessellation7,9 with z = 3,we showhowto colour the bonds consistently.
We find that the presence of plaquettes with an odd-number of sites
lead to a chiral QSL with spontaneously broken time-reversal sym-
metry (TRS)43,50–55. We establish via extensive numerics that the ground
state Z2 flux sector follows a remarkably simple counting rule con-
sistent with Lieb’s theorem56. We map out the phase diagram of the
model and show that the chiral phase around the symmetric point is
gapped and characterised by a quantised local Chern number ν7,57 as
well as protected chiral Majorana edge modes. Finally, we discuss the
effect of additional bond disorder and comment on the role of finite
temperature fluctuations, showing that the proliferation of flux exci-
tations leads to an Anderson transition to a thermal metal phase47–49.

Methods
We start with a brief review of the Kitaev model on the honeycomb
lattice31 before generalising it to amorphous systems. A spin-1/2 is
placed on every vertex and each bond is labelled by an index
α∈ {x, y, z}. The bonds are arranged such that each vertex connects to
exactly one bond of each type. The Hamiltonian is given by

H= �
X
hj,kiα

Jασα
j σ

α
k , ð5Þ

where σα
j is a Pauli matrix acting on site j,〈j, k〉α is a pair of nearest-

neighbour indices connected by an α-bond with exchange coupling Jα.
For each plaquette of the lattice, we define a flux operator
Wp =

Q
σα
j σ

α
k , where the product runs clockwise over the bonds

around the plaquette. These commute with one another and the
Hamiltonian, so correspond to an extensive number of conserved
quantities. This allows us to split the Hilbert space according to the
eigenvalues ϕp = ± 1 ( ± i for odd plaquettes) of {Wp}.

The Hamiltonian in Eq. (5) can be exactly solved by transforming
to a Majorana fermion representation31, see Fig. 1. Each spin is repre-
sented with four Majorana operators, σα

i = ib
α
i ci. We define a set of

conserved bond operators ûjk = ib
α
j b

α
k . As with the Wp operators, we

may partition theMajorana Hilbert space according to the eigenvalues
of these operators, ujk = ± 1. For a given choice of these bond variables,
Eq. (5) reduces to a quadratic Majorana Hamiltonian

H=
i
4

X
j,k

Ajkcjck , ð6Þ

where Ajk = 2Jαujk.
The matrix iA determines properties of the fermionic degrees of

freedom for a given flux configuration {ujk}. The spectrum is obtained
by rotating to a new Majorana basis consisting of pairs of operators
~c0j,~c

00
j , defined by a matrix ~cj =Rjkck containing the fermionic eigen-

states. The Hamiltonian takes the form H=
P

jεj i~c
0
j~c

00
j , and in what

follows we refer to fermionic properties of the system as those
determined by iA in a fixed flux sector.

The Kitaev Hamiltonian remains exactly solvable on any lattice in
which no site connects to more than one bond of the same type41.
Thus, we shall restrict our investigation to lattices in which every ver-
tex has coordination number z ≤ 3. Here we generate such lattices
using Voronoi tessellation58. Once a lattice has been generated, the
bonds must be labelled in such a way that no vertex touches multiple
edges of the same type, which we refer to as a three-edge colouring.
The problem of finding such a colouring is equivalent to the classical

problem of four-colouring the faces, which is always solvable on a
planar graph59,60 but can take up to seven colours on the torus61. In
practice, we reduce the colouring to a Boolean satisfiability problem62

with details described in the Supplementary Material. One example of
a coloured amorphous lattice is shown in Fig. 1a.

Once the lattice and colouring has been found, the amorphous
Hamiltonian is diagonalised using the same procedure as for the
honeycomb model. Note that the Majorana system is only strictly
equivalent to the initial spin system after a parity projection63,64, details
of which for the amorphous case are described in the Supplementary
Material. Nevertheless, one can still use Eq. (6) to evaluate the expec-
tation values of operators that conserve ûjk in the thermodynamic
limit65,66. The ground state energy of a given flux sector is the sum of
the negative eigenvalues of iA/4 in Eq. (6), and excitation energies are
given by the positive eigenvalues.

Results
We first investigate which flux patterns minimise the ground state
energy on the amorphous lattice. When represented in the Majorana
Hilbert space, flux operators Wp =

Q
σα
j σ

α
k correspond to ordered

products of link variables ûjk , and their eigenvalues describe the Z2

flux through each plaquette,

ϕp =
Y

ðj,kÞ2∂p
�iujk , ð1Þ

where the product is taken over the ujk values going clockwise around
the border ∂p of eachplaquette.We refer to a particular choice of a set
of {ϕp} as a flux sector.

The spin Hamiltonian is real, thus it has TRS. However, the fluxϕp

through any plaquette with an odd number of sides has imaginary
eigenvalues ± i. Thus, states with a fixed flux sector spontaneously
break TRS, which in the context of crystalline Kitaev models was first
described by Yao and Kivelson67. All flux sectors come in degenerate
pairs, where time reversal is equivalent to inverting the flux through
every odd plaquette43,46.

For a system with np plaquettes in periodic boundaries, there are
2np�1 possible flux sectors, and in general it is a nontrivial task to
determine which pair of flux sectors has the lowest energy. On the
honeycomb lattice, the ground state was shown by Lieb to be flux free,
ϕp = + 156, however no such proof exists for amorphous lattices, since
all lattice symmetries are broken.

To numerically determine the ground state flux sector, we first
test a large number of finite size lattices (~25,000 lattices with 16 pla-
quettes), directly enumerating all possible flux configurations to find
the lowest energy. In practice, caremust be taken to account for finite
size effects, as well as to ensure that the results hold as system size is
increased – detailed in the Supplementary Material. Remarkably, we
find that the energy is always minimised by setting the flux through
each plaquette p to

ϕg:s:
p = � ð± iÞnsides , ð2Þ

where nsides is the number of edges that form the plaquette and the
global choice of the sign of i gives the two TRS-degenerate ground
state flux sectors. The conjecture is consistent with results found on
other regular lattices for which Lieb’s theorem is not applicable42.
Having identified the ground state, any other flux sector can be
characterised by the configuration of vortices, i.e. by the plaquettes
whose flux is flipped with respect to fϕg:s:

p g.
The ground state phase diagram can then be determined by

varying the strength of each bond type, Jα while remaining in the
ground state flux sector, and we numerically calculate the ternary
phase diagram shown in Fig. 1c. The diagram contains two distinct
phases: close to the corners of the triangle, e.g. ∣Jz∣≫ ∣Jx∣, ∣Jy∣, the (A)
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phase is equivalent to the toric code on an amorphous lattice68. The
phase has a fermionic gap and supports Abelian excitations. Around
the isotropic point Jx = Jy = Jz, the (B) phase is also gapped in contrast to
the honeycomb case as a consequence of TRS breaking from the finite
density of odd plaquettes. All lattices studied in this work were gen-
erated froma voronoi lattice with completely random seed points, and
so had on average equal proportions of odd and even plaquettes. We
will confirm below that the (B) phase is indeed a chiral spin liquid.

As the values of Jα are varied, the fermionic gap closes at the
boundary between the two phases. In the honeycomb model, the
phase boundaries are located on the straight lines ∣Jα∣ = ∣Jβ∣ + ∣Jγ∣, for any
permutation of α, β, γ∈ {x, y, z}. We find that on the amorphous lattice
these boundaries exhibit an inward curvature similar to honeycomb
Kitaev models with flux69 or bond disorder.

Note, the presence of the gapped B-phase is non-trivial and rela-
ted to our choice of homogeneous couplings for each colour of the
bonds. In the SupplementaryMaterial we study the robustness of the B
phasewith respect to bonddisorder, e.g. a bond-length dependence of
the interaction strength. In general one might expect disorder to lead
to a gap closing, however we find that the gap is reduced but remains
robust up to sizeable bond disorder.

A fundamental tool for understanding the distinction between the
two phases is the Chern number. The original definition relies on
momentum space, and so cannot be used here, where the system lacks
any translational symmetry. However, recently methods have been
developed for evaluating a real-space analogueof theChern number70,71.
Here we shall use a slight modification of Kitaev’s definition7,31,57. For a
choice of flux sector, we calculate the projector P onto the negative
energy eigenstates of the matrix iA defined in Eq. (6). The local Chern
number around a point R in the bulk is given by

νðRÞ=4πIm TrBulk PθRx
PθRy

P
� �

, ð3Þ

where θRx
is a step function in the x-direction, with the step located at

x =Rx, θRy
is defined analogously. The trace is taken over a region

around R in the bulk of the material, where care must be taken not to
include any points close to the edges. Provided that the point R is
sufficiently far from the edges, this quantity will be very close to
quantised to the Chern number.

Using this localChernmarker,wedetermine that the (A) phase has
Chern number ν =0, whereas the two TRS-degenerate ground state
flux sectors in the (B) phase have Chern number ν = ± 1 respectively. In
closed boundaries, this leads to the appearance of gap-crossing pro-
tected edge modes, in accordance with the bulk-boundary
correspondence72, an example is shown in Fig. 2. The edge modes
are exponentially localised to the boundary of the system, and can be

Fig. 1 | Construction details for the amorphous lattice model. a Amorphous
lattice generated via Voronoi tessellation of a uniformly distributed random point
set on the unit square. Periodic boundary conditions are imposed by tiling the unit
square before Voronoi tessellation. b Magnified portion of the amorphous lattice.
Arrows from site j to site k indicate direction where the bond variable ujk = 1. An
arbitrary flux sector is shown, where shaded plaquettes have Z2 flux flipped with
respect to the ground state. Colours correspond to a valid assignment of the bond
colourings, αjk. The inset demonstrates the Majorana construction on a tri-

coordinatemotif, which allows for the exact solution of themodel. c Ternary phase
diagram of the amorphous Kitaev model with varying exchange coupling. The
isotropic regime ∣Jx∣ ≈ ∣Jy∣ ≈ ∣Jz∣ (B), exhibits a topologically non-trivial chiral QSL
ground state with Chern number ν = ± 1. The fermion gap of the ground state flux
sector closes at the phase boundary (solid black lines), and a transition occurs to a
ν =0 phase (A) for anisotropic couplings. The phase boundary was obtained by
averaging over 20 amorphous lattice realisations with ~ 400 sites. Dotted black
lines indicate the corresponding phase boundaries in the honeycomb model.

Fig. 2 | Ground-stateflux sectorwavefunctions andspectrum. a In-gap fermionic
wavefunction drawn from the ground state flux sector in open boundary condi-
tions. Colour indicates the local number density, showing a topological edgemode.
The number density for this state along a line of lattice sites spanning the system
(black line) is shown in the bottom subfigure on a logarithmic scale, demonstrating
the characteristic exponential decay of topological edgemodeswith distance from
the edge. b Ground-state flux sector fermionic density of states in open boundary
conditions, coloured by inverse participation ratio. The increased inverse partici-
pation ratio of the in-gap states signifies their localisation to the edges of the
system.
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qualitatively distinguished from bulk states by their large inverse
participation ratio,

IPR =
Z

d2rjψðrÞj4, ð4Þ

where ψ(r) denotes an eigenmode of the free Majorana Hamiltonian
derived in Eq. (6). Finally, we note that the closing of the fermionic gap
on the boundary between the two phases is necessary in order to
transition between states with different Chern numbers.

Anderson transition to a thermal metal
Having understood the spontaneous formation of a chiral amorphous
QSL ground state, we are now in a position to discuss the finite tem-
perature behaviour of themodel. In general, an Ising-like thermal phase
transition into thechiralQSLphase is expectedakin to theoneobserved
for the Yao–Kivelson model73 but a full Monte-Carlo sampling, which is
further complicated by the inherent disorder in the amorphous lattice,
is beyond the scope of this letter. Nevertheless, the main effect of
increasing temperature is the proliferation of fluxes which allow us to
gain a qualitative understanding of the finite temperature behaviour69.

On the honeycomb Kitaev model with explicit TRS breaking,
Majorana zero modes bind to fluxes forming Ising non-Abelian
anyons74. Their pairwise interaction decays exponentially with
separation48,49,75. As temperature is increased, the proliferation of
vortices in the system produces a finite density of anyons and their
hybridisation leads to an Anderson transition to a macroscopically
degenerate state known as a thermal metal phase47,48,76. This exotic
phase has two key signatures. Firstly, themetallic phase is defined by a
closing of the fermion gap– that is, it is drivenby vortex configurations
with a gapless fermionic spectrum. Secondly, we expect the density of
states in a thermal metal to diverge logarithmically with energy and
display characteristic low energy oscillations predicted by random
matrix theory47,77. In the SupplementaryMaterial we present numerical
evidence showing that all of the above features carry over to the
amorphous QSL with spontaneous TRS breaking, giving strong evi-
dence for the transition to the thermal metal phase.

Discussion
We have studied an extension of the Kitaev honeycomb model to
amorphous lattices with coordination number z = 3.We found that it is
able to support two quantum spin liquid phases that can be dis-
tinguished using a real-space generalisation of the Chern number. The
presence of odd-sided plaquettes results in a spontaneous breaking of
TRS, and the emergence of a chiral spin liquid phase. Furthermore we
found evidence that the amorphous system undergoes an Anderson
transition to a thermal metal phase, driven by the proliferation of
vortices with increasing temperature. Our exactly soluble chiral QSL
provides a first example of a topologically quantummany-body phase
in amorphous magnets, which raises a number of questions for future
research.

First, a numerically challenging task would be a study of the full
finite temperature phase diagram via Monte-Carlo sampling and pos-
sible violations of the Harris criterion for the Ising transition stemming
from the inherent lattice disorder78–80. Second, it would be worthwhile
to search for experimental realisations of amorphous Kitaevmaterials,
which can possibly be created from crystalline ones using standards
methodof repeated liquifying and fast cooling cycles3,21,23. The putative
QSL behaviour of the intercalated Kitaev compound H3LiIr2O6

81,82

could possibly be related to amorphous lattice disorder. Moreover,
metal organic frameworks are promising platforms forming amor-
phous lattices83 with recent proposals for realising strong Kitaev
interactions84 as well as reports of QSL behaviour85. We expect that an
experimental signature of a chiral amorphous QSL is a half-quantised
thermal Hall effect similar to magnetic field induced behaviour of

honeycomb Kitaev materials86–89. Alternatively, it could be char-
acterised by local probes such as spin-polarised STM90–92 and the
thermalmetal phasedisplays characteristic longitudinal heat transport
signatures74. Third, it would be interesting to study the stability of the
chiral amorphous Kitaev QSL with respect to perturbations93–97 and,
importantly, to investigate whether QSL may exist for spin-isotropic
Heisenberg models on amorphous lattices.

Overall, there has been surprisingly little research on amorphous
quantum many body phases albeit material candidates aplenty. We
expect our exact chiral amorphous spin liquid to find many general-
isation to realistic amorphous quantum magnets and beyond.

Data availability
The data used to produce these plots are of limited availability, due
to the ease with which they can be generated from the publicly
available code and, in the case of the evidence for the ground state
flux sector, the large file size. Access can be obtained by contacting
the authors.

Code availability
The source code used to generate these results is publicly available
online98.
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