
Algorithm 1044: PyGenStability, a Multiscale Community
Detection with Generalized Markov Stability

ALEXIS ARNAUDON and DOMINIK J. SCHINDLER, Department of Mathematics,
Imperial College London, London, United Kingdom
ROBERT L. PEACH, Department of Neurology, University Hospital Würzburg, Würzburg, Germany
ADAM GOSZTOLAI, Signal Processing Laboratory (LTS2), EPFL, Lausanne, Switzerland
MAXWELL HODGES, Spotify, London, United Kingdom
MICHAEL T. SCHAUB, Computational Network Science Group, RWTH Aachen University,
Aachen, Germany
MAURICIO BARAHONA, Department of Mathematics, Imperial College London, London,
United Kingdom

We present PyGenStability, a general-use Python software package that provides a suite of analysis and
visualization tools for unsupervised multiscale community detection in graphs. PyGenStability finds optimized
partitions of a graph at different levels of resolution by maximizing the generalized Markov Stability quality
function with the Louvain or Leiden algorithm. The package includes automatic detection of robust graph
partitions and allows the flexibility to choose quality functions for weighted undirected, directed, and signed
graphs and to include other user-defined quality functions.

CCS Concepts: •Mathematics of computing→ Graph algorithms; Solvers; • Networks→ Topology
analysis and generation; • Applied computing →Mathematics and statistics; Bioinformatics;

Additional Key Words and Phrases: Multiscale community detection, unsupervised learning, graphs, network
science, generalized Markov Stability, modularity, graph clustering, Louvain algorithm, Leiden algorithm,
Python

Alexis Arnaudon and Dominik J. Schindler contributed equally to this paper.
Alexis Arnaudon, Robert L. Peach, and Mauricio Barahona acknowledge funding through the EPSRC award EP/N014529/1
supporting the EPSRC Centre for Mathematics of Precision Healthcare at Imperial College London. Robert L. Peach
acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; Project-ID
424778381-TRR 295). Dominik J. Schindler acknowledges support from the EPSRC (PhD studentship through the Department
of Mathematics at Imperial College London). Adam Gosztolai acknowledges support from an HFSP Cross-disciplinary
Postdoctoral Fellowship (LT000669/2020-C).
Authors’ Contact Information: Alexis Arnaudon (Corresponding author), Department of Mathematics, Imperial College
London, London, United Kingdom; e-mail: alexis.arnaudon@imperial.ac.uk; Dominik J. Schindler, Department of
Mathematics, Imperial College London, London, United Kingdom; e-mail: dominik.schindler19@imperial.ac.uk; Robert L.
Peach, Department of Neurology, University Hospital Würzburg, Würzburg, Germany; e-mail: r.peach13@imperial.ac.uk;
Adam Gosztolai, AI Institute, Medical University of Vienna, Vienna; e-mail: a.gosztolai@gmail.com; Maxwell Hodges,
Spotify, London, United Kingdom; e-mail: maxwellhodges@gmail.com; Michael T. Schaub, Computational Network Science
Group, RWTH Aachen University, Aachen, Germany; e-mail: schaub@cs.rwth-aachen.de; Mauricio Barahona, Department
of Mathematics, Imperial College London, London, United Kingdom; e-mail: m.barahona@imperial.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1557-7295/2024/6-ART15
https://doi.org/10.1145/3651225

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 15. Publication date: June 2024.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://orcid.org/0000-0001-9486-1458
https://orcid.org/0000-0002-8728-9286
https://orcid.org/0000-0002-8738-5825
https://orcid.org/0000-0002-0699-5825
https://orcid.org/0000-0003-1655-6305
https://orcid.org/0000-0003-2426-6404
https://orcid.org/0000-0002-1089-5675
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3651225
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3651225&domain=pdf&date_stamp=2024-06-28

15:2 A. Arnaudon et al.

ACM Reference format:
Alexis Arnaudon, Dominik J. Schindler, Robert L. Peach, Adam Gosztolai, Maxwell Hodges, Michael T. Schaub,
and Mauricio Barahona. 2024. Algorithm 1044: PyGenStability, a Multiscale Community Detection with
Generalized Markov Stability. ACM Trans. Math. Softw. 50, 2, Article 15 (June 2024), 8 pages.
https://doi.org/10.1145/3651225

1 Introduction
Unsupervised community detection, or graph clustering, can be traced back to early work in social
network analysis in the 1950s [25] and has become a fundamental data analysis tool in the physical
and life sciences, as well as in quantitative social science [10]. Various notions of communities (with
associated algorithms) have been developed stemming from different mathematical concepts [22],
including normalized cut [26], non-negative matrix factorization [9], or modularity maximization
[11], among others. Furthermore, in many cases of theoretical and practical interest, graphs have
relevant structure at multiple scales (or levels of resolution) [23]; hence, extensions that can deal
with multiscale graphs have been proposed based on, e.g., the dynamics of random walks and
diffusion processes on graphs [8, 15], graph signal processing [28], or discrete geometry [12].
Indeed, recent work has emphasized that, as for other problems in data clustering, a universally
best algorithm for community detection cannot exist [20] and that different partitions may thus be
needed to describe various aspects of the structure of a graph [22].
In this spirit, we introduce PyGenStability, a publicly available software package for multi-

scale community detection based on the optimization of the generalizedMarkov Stability (MS)
multiscale quality function. The MS framework, which was developed in a series of papers [7, 8,
15, 16, 21, 23], exploits graph diffusion processes to uncover graph partitions at different levels of
resolution and has the flexibility to accommodate different notions of graph communities through
the modification of a quality function. However, MS has been missing efficient software to boost
its adoption by practitioners in data science and in different academic domains. PyGenStability
fills this gap and provides a versatile Python package that encompasses several useful variants of
the generalized MS quality function to allow for the analysis of undirected, directed, and signed
graphs, as well as including fast approximations for large graphs.

The multiscale community detection problem is defined as the following optimization problem.
Given a graph G with # vertices, PyGenStability finds a series of optimized graph partitions at
different values of a scale parameter C by maximizing the generalized MS function [21]:

� ∗ (C) = argmax
�

&64= (C, �) := argmax
�

Tr

[
�)

(
� (C) −

<∑
:=1

E2:−1E
)
2:

)
�

]
, (1)

where the output is a series of # × 2 indicator matrices � ∗ (C) describing the optimized (hard)
partitions of the # nodes into 2 communities for different values of the scale parameter C . Here
� (C) is an # × # node similarity matrix that measures the similarity between the nodes of the
graph as a function of C , and {E: }2<:=1 is a set of # dimensional node vector pairs that encode a null
model of rank<. The null model provides the reference against which the quality of the partition
is compared. The scale parameter C , sometimes referred to as the Markov time or Markov scale,
regulates the coarseness of the partition � ∗ (C), and the optimization is solved across all scales, i.e.,
for a range of values C > 0 that spans from the finest to the coarsest resolution.
Our package implements constructors to design various quality matrices � (C) and null models

{E: }, each of which yields different notions of quality and balance for the graph partitions and
ensuing communities. For example, we can use the graph heat kernel � (C) = Π exp(−!C) with

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 15. Publication date: June 2024.

https://doi.org/10.1145/3651225

PyGenStability, a Multiscale Community Detection Framework 15:3

a null model of rank< = 1 defined by E1 = E2 = c , where ! is a graph Laplacian, the vector c
is the stationary distribution of the associated Markov process, and Π = diag(c) [7, 16]. In this
case, � (C) = Π exp(−!C) corresponds to the transition probabilities of a Markov process over time
C > 0, and Equation (1) can be viewed as optimizing the partition of the graph into subgraphs
where the Markov process is more likely to remain contained over time C , as compared to the
expected behavior at stationarity. Therefore, this dynamic viewpoint allows for scanning across
different levels of coarseness through C . In Section 2.2, we describe the implementation of various
constructors for different graph types such as weighted, directed, and even signed graphs.

To carry out the combinatorial optimization of the generalized MS quality function of Equation
(1), PyGenStability provides a Python wrapper around the C++ implementation of two efficient
greedy algorithms: the Louvain [4] and Leiden [27] optimizers. Further, it is easy to implement
other graph clustering algorithms that can be written as a maximization of a generalized function
&64= (C, �) [21], making the package easily extendable. PyGenStability also includes a suite of
analysis and visualization tools to process and analyze multiscale graph partitions and to facilitate
the automatic detection of robust partitions at different scales [24]. As its output, PyGenStability
provides a description of the graph in terms of a sequence of robust partitions � ∗ (C8) at scales C8 of
increasing coarseness, yet not necessarily hierarchical.

2 Implementation
2.1 Overall Organization
The Python package PyGenStability consists of four parts:
(1) Quality function and null model constructors: This module inputs the node similarity matrix

function � (C) and a null model described by vectors {E: }. To maintain the flexibility of the
package, we provide an object-oriented module to write user-defined constructors for these
objects. To facilitate usage, we also provide several constructors already implemented that
can be chosen by the user (see Section 2.2).

(2) Generalized MS maximizers: The combinatorial optimization of the generalized MS function
(Equation (1)) is carried out by interfacing with two fast algorithms, Louvain [4] or Leiden
[27], both implemented in C++. The choice of the optimizer is left to the user: Louvain is
widely and successfully used in many fields; Leiden is a recent refinement of Louvain, which
introduces several improvements, e.g., ensuring connected communities.

(3) Post-processing tools: We provide several steps to facilitate the detection of robust optimized
partitions and to ease the analysis of multiscale clusterings (see Section 2.3).

(4) Plotting: We provide a module to plot the multiscale clustering results, as illustrated in
Figure 2.

These four components are tied together via a single, configurable entry point or can be used
independently, depending on user needs.

2.2 Quality Function Constructors
To aid users, we have already implemented several constructors for different versions of the
generalized MS quality function based on graph Laplacians. For weighted, undirected graphs, we
have included [7, 8, 16] (1) MS based on the continuous-time random-walk (normalized) graph
Laplacian; (2) MS based on the continuous-time combinatorial graph Laplacian; (3) linearized MS
based on the normalized graph Laplacian (also referred to as ‘modularity with resolution parameter’)
for a more computationally efficient analysis of larger graphs (see Figure 1). For weighted, directed
graphs, we have included [16, 21] (4) MS based on the continuous-time random-walk Laplacian
with teleportation; (5) linearized MS for the random-walk Laplacian with teleportation (more

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 15. Publication date: June 2024.

15:4 A. Arnaudon et al.

103
Graph size [# nodes, N]

103 104 105

Graph size [# edges, E]

102

Full MS (comb Laplacian)

apply_postprocessing

compute_NVI get_constructor_data

Louvain (500 runs per graph size)

103

Graph size [# nodes, N]

C
o
m

p
u
ta

ti
o
n
a
l
ti
m

e
[s

]

100

101

102

10 1

103 104 105

Graph size [# edges, E]

102

Linearized MS

100

101

102

10 1

(a) (b)

Fig. 1. Code benchmarking. To assess the computational efficiency and scalability of each component of the
code, we analyzed stochastic block model (SBM) graphs of increasing size. An example of these graphs
with # = 270 nodes is shown in Figure 2. We show benchmarking results for (a) ‘modularity with resolution
parameter,’ equivalent to linearized Markov Stability (MS) and (b) MS with combinatorial graph Laplacian.
The computations were performed on a single CPU and involved 500 Louvain optimizations for each graph
size (i.e., 50 Louvain runs computed at 10 scales C). The cost of the ‘Louvain optimization’ and ‘post-processing’
steps increase with graph size more sharply for full MS in (b) as compared to linearized MS in (a). This is due
to the decreased sparsity of the quality matrix, and the computational cost scales approximately as $ (�)
(black line), where � is the number of edges of the graph.

efficient for larger graphs). For weighted, signed graphs, we have included (6) MS based on the
signed Laplacian as given in [21]; and (7) a version of signed modularity with resolution [13]
(more efficient for larger graphs). More detailed information about these constructors can be found
in our code documentation hosted on GitHub. Our object-oriented module facilitates the simple
implementation of further custom constructors.

2.3 Post-Processing Tools
Quantifying the robustness of partitions through the Normalized Variation of Information (NVI).

Louvain and Leiden are greedy algorithms that provide local maxima to the combinatorial opti-
mization problem (1) without guarantees of global optimality. The optimization can thus produce
different maxima depending on the starting point of the iterations. Louvain/Leiden is run a large
number of times for each C starting from different random initializations to obtain an ensemble of
optimized solutions.

To evaluate the consistency of this ensemble of solutions, we use the NVI [14], which measures
the distance between partitions. We thus compute the average NVI(C) between all pairs of partitions
(or a random subset thereof to reduce computational cost) obtained at scale C . A low value of the
average NVI(C) indicates a reproducible (robust) solution for the optimization (1), suggesting a
well-defined maximum and hence increased confidence in the optimal partition found.

This quantitative notion of robustness is also applied to compare the partitions obtained across
scales by computing NVI(C, C ′), i.e., the distance between the optimal partitions at scales C and C ′.
In this case, persistently low NVI(C, C ′) across a long stretch of C indicates that a partition (or a set
of similar partitions) is found robustly across graph scales.

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 15. Publication date: June 2024.

PyGenStability, a Multiscale Community Detection Framework 15:5

Post-processing of optimal partitions. Given the greedy nature of the Louvain/Leiden optimizers,
it is possible that the optimal partition found at scale C ′ could in fact be a better partition for scale C
than the partition found by Louvain/Leiden at C . We run a post-processing step that checks for and
selects any such improved partition for scale C even if found at any other C ′.

Automated scale selection.We aim to find relevant scales at which partitions are robust both with
respect to the optimization (low NVI(C)) and across scales (extended blocks of low NVI(C, C ′)). The
partitions found at such scales give a good description of the graph structure at a level of coarseness
(or resolution). The selection of scales can be done by visual inspection of the result summary plot
(see Figure 2) or using the automated scale selection criterion introduced by [24], which combines
the robustness to the optimization and the persistence across scales.

2.4 Main Parameters and Default Values
To make PyGenStability easier to use for non-experts, we have set default values for several
parameters (default values in parentheses). The chosen quality function is optimized over n_scale
(= 20) scales, chosen equidistantly between min_scale (= −2.0) and max_scale (= 0.5) on a log
scale. Hence, min_scale and max_scale determine the minimal and maximal coarseness of the
partitions, respectively, and n_scale increases the resolution of the analysis. Operationally, we
recommend starting with the default n_scale and increasing it for more fine-grained results.
To quantify the robustness of the partitions with respect to the optimization of the quality

function, an ensemble of n_tries (= 100) solutions is computed using Louvain or Leiden, and the
similarity of the solutions is estimated by computing the average pairwise NVI(C) of a random
subset of n_NVI (= 20) partitions. Increasing n_tries leads to a better estimation of the robustness,
at a computational cost since the total number of Louvain/Leiden optimizations performed is
n_scale × n_tries.
The scale selection follows a sequential algorithm developed by Schindler et al. [24]. To detect

intervals over which partitions remain similar, we apply average pooling to NVI(C, C ′) with kernel
size, kernel_size (= 0.1× n_scale), followed by smoothing of its diagonal with a triangularmoving
mean, where the smoothness is controlled by the window size, window_size (= 0.1 × n_scale).
This gives the curve Block NVI(C). Increasing kernel_size enlarges the interval over which scales
need to be persistent and increasing window_size further smoothes out random variability across
scales. We then define basins with radius basin_radius (= 0.01 × n_scale) around all the local
minima of Block NVI(C). From each basin, we select a scale, given by the solution with minimal
NVI(C) within the basin. This procedure selects scales that are both persistent across C and robust
to the combinatorial optimization.

3 Benchmarking
To assess computational efficiency as a function of graph size, we timed the core functions called
during a computation with Louvain for (1) linearized MS and (2) MS with combinatorial graph
Laplacian (Figure 1). We find that the rate-limiting function for larger graphs is the Louvain
optimization, followed by the growing computational cost of obtaining the matrix exponential,
whereas the other computations have a near-constant computational cost. Hence, for large graphs,
we provide the linearized MS quality function to avoid the loss of sparsity induced by the matrix
exponential.

4 Example and Applications
As a simple illustration of the use of the package, we provide an example of the multiscale analysis
of a toy graph: a multiscale SBM with planted partitions at three scales. Figure 2 shows that
PyGenStability is able to accurately recover the expected partitions at the three scales.

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 15. Publication date: June 2024.

15:6 A. Arnaudon et al.

(a) (b) (c)

Fig. 2. Example of multiscale community detection. (a) Summary plot for a multiscale SBM graph. The
top row shows the value of the optimized generalized MS function &64= (�∗ (C)) together with the number
of communities in the optimal partition �∗ (C) as a function of the scale C . The second row shows the two
robustness measures for the obtained partitions: NVI(C) for each scale and NVI(C, C ′) across scales. The bottom
row shows the automated scale selection criterion, with basins corresponding to blocks in NVI(C, C ′) and
robust scales identified as local minima of NVI(C) within each basin (purple dots). (b) Adjacency matrix of
the graph in this toy example: a multiscale SBM graph with # = 270 nodes and ground truth of 3 planted
scales with 27, 9, and 3 clusters. (c) The communities determined by the scale selection criterion in (a) are
indicated by different colors for the three detected scales and correspond to the ground truth.

The MS framework, which is now made available through PyGenStability, has already been
used extensively to analyze multiscale community structures in real-world graphs, also called
networks in the literature, from diverse domains facilitating a range of applications. These include
detecting functional and anatomical constituents in the directed neuronal network of C. elegans [2],
interest communities in the Twitter network of the 2011 UK riots [3], spatial and dynamical subunits
in protein structures [6, 18], hospital catchment areas in surgical admission networks [5], learning
behaviors among online students [19], multiscale human mobility patterns under lockdown [24]
and in hospitals [17] during COVID-19, topic modeling with semantic networks derived from free
text [1], and quantifying information flow and bottlenecks using discrete network geometry [12].
Detailed illustrations and examples of applications to several synthetic and real-world networks
are provided as examples in the code, including an analysis of a power grid network and protein
structural graphs.

5 Conclusion and Outlook
The Python package PyGenStability is primarily designed for multiscale community detection
within the MS framework but can be extended for the optimization of a range of graph clustering
quality functions. PyGenStability allows researchers to identify robust graph partitions at different
resolutions in graphs of different types and has been already applied widely to unsupervised learning
tasks for real-world networks from various domains. In future work, we plan to further improve
the automatic scale selection functionality, extend the range of constructors for different quality
functions, and perform a quantitative comparison of the multiscale optimization using the Louvain
and Leiden algorithms.

Acknowledgment
We thank Vincent Traag for help with the implementation of the Leiden optimizer in PyGenStability.

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 15. Publication date: June 2024.

PyGenStability, a Multiscale Community Detection Framework 15:7

References
[1] M. Tarik Altuncu, Erik Mayer, Sophia N. Yaliraki, and Mauricio Barahona. 2019. From free text to clusters of content

in health records: An unsupervised graph partitioning approach. Applied Network Science 4, 2 (2019), 1–23. Retrieved
from https://appliednetsci.springeropen.com/articles/10.1007/s41109-018-0109-9

[2] Karol A. Bacik, Michael T. Schaub, Mariano Beguerisse-Díaz, Yazan N. Billeh, and Mauricio Barahona. 2016. Flow-
based network analysis of the Caenorhabditis elegans connectome. PLoS Computational Biology 12, 8 (2016), e1005055.
Retrieved from https://dx.plos.org/10.1371/journal.pcbi.1005055

[3] Mariano Beguerisse-Díaz, Guillermo Garduño-Hernández, Borislav Vangelov, Sophia N. Yaliraki, and Mauricio
Barahona. 2014. Interest communities and flow roles in directed networks: The Twitter network of the UK riots.
Journal of The Royal Society Interface 11, 101 (2014), 20140940. Retrieved from https://royalsocietypublishing.org/doi/
10.1098/rsif.2014.0940

[4] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 10 (Oct. 2008).
DOI: https://doi.org/10.1088/1742-5468/2008/10/p10008

[5] Jonathan M. Clarke, Mauricio Barahona, and Ara W. Darzi. 2019. Defining hospital catchment areas using multiscale
community detection: A case study for planned orthopaedic care in England. Retrieved from https://www.biorxiv.
org/content/10.1101/619692v1

[6] Antoine Delmotte, Edward W. Tate, Sophia N. Yaliraki, and Mauricio Barahona. 2011. Protein multi-scale organization
through graph partitioning and robustness analysis: Application to the myosin–myosin light chain interaction.
Physical Biology 8, 5 (2011), 055010.

[7] Jean-Charles Delvenne, Michael T. Schaub, Sophia N. Yaliraki, and Mauricio Barahona. 2013. The stability of a
graph partition: A dynamics-based framework for community detection. In Dynamics on and of Complex Networks.
A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, and B. Mitra (Eds.), Vol. 2. Springer, New York, NY 221–242.
DOI: https://doi.org/10.1007/978-1-4614-6729-8_11

[8] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona. 2010. Stability of graph communities across time scales. Proceedings of
the National Academy of Sciences 107, 29 (Jul. 2010), 12755–12760. DOI: https://doi.org/10.1073/pnas.0903215107

[9] Rundong Du, Da Kuang, Barry Drake, and Haesun Park. 2017. Hierarchical community detection via rank-2 symmetric
nonnegative matrix factorization. Computational Social Networks 4, 1 (2017), 7.

[10] Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3–5 (Feb. 2010), 75–174.
DOI: https://doi.org/10.1016/j.physrep.2009.11.002

[11] M. Girvan and M. E. J. Newman. 2002. Community structure in social and biological networks. Proceedings of the
National Academy of Sciences 99, 12 (Jun. 2002), 7821–7826. DOI: https://doi.org/10.1073/pnas.122653799

[12] Adam Gosztolai and Alexis Arnaudon. 2021. Unfolding the multiscale structure of networks with dynamical Ollivier-
Ricci curvature. Nature Communications 12, 1 (2021), 4561. DOI: https://doi.org/10.1038/s41467-021-24884-1

[13] Sergio Gómez, Pablo Jensen, and Alex Arenas. 2009. Analysis of community structure in networks of correlated data.
Physical Review E 80, 1 (2009), 016114. Retrieved from https://link.aps.org/doi/10.1103/PhysRevE.80.016114

[14] Alexander Kraskov, Harald Stögbauer, Ralph G. Andrzejak, and Peter Grassberger. 2003. Hierarchical clustering based
on mutual information. arXiv:q-bio/0311039. Retrieved from http://arxiv.org/abs/q-bio/0311039

[15] R. Lambiotte, J. C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks.
arXiv:0812.1770. Retrieved from https://doi.org/10.48550/arXiv.0812.1770 [physics.soc-ph]

[16] Renaud Lambiotte, Jean-Charles Delvenne, and Mauricio Barahona. 2014. Random walks, Markov processes and the
multiscale modular organization of complex networks. IEEE Transactions on Network Science and Engineering 1, 2
(Jul. 2014), 76–90. DOI: https://doi.org/10.1109/TNSE.2015.2391998

[17] Ashleigh C. Myall, Robert L. Peach, Andrea Y. Weiße, Siddharth Mookerjee, Frances Davies, Alison Holmes, and
Mauricio Barahona. 2021. Network memory in the movement of hospital patients carrying antimicrobial-resistant
bacteria. Applied Network Science 6, 1 (2021), 1–23.

[18] Robert L. Peach, Dominik Saman, Sophia N. Yaliraki, David R. Klug, Liming Ying, Keith R. Willison, and Mauricio
Barahona. 2019a. Unsupervised graph-based learning predicts mutations that alter protein dynamics. bioRxiv: 847426.
DOI: https://doi.org/10.1101/847426

[19] Robert L. Peach, Sophia N. Yaliraki, David Lefevre, and Mauricio Barahona. 2019b. Data-driven unsupervised clustering
of online learner behaviour. npj Science of Learning 4, 1 (2019), 1–11.

[20] Leto Peel, Daniel B. Larremore, and Aaron Clauset. 2017. The ground truth about metadata and community detection
in networks. Science Advances 3, 5 (May 2017), e1602548. DOI: https://doi.org/10.1126/sciadv.1602548

[21] Michael T. Schaub, Jean-Charles Delvenne, Renaud Lambiotte, and Mauricio Barahona. 2019. Multiscale dynamical
embeddings of complex networks. Physical Review E 99, 6 (2019), 062308.

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 15. Publication date: June 2024.

https://appliednetsci.springeropen.com/articles/10.1007/s41109-018-0109-9
https://dx.plos.org/10.1371/journal.pcbi.1005055
https://royalsocietypublishing.org/doi/10.1098/rsif.2014.0940
https://royalsocietypublishing.org/doi/10.1098/rsif.2014.0940
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://www.biorxiv.org/content/10.1101/619692v1
https://www.biorxiv.org/content/10.1101/619692v1
https://doi.org/10.1073/pnas.0903215107
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1038/s41467-021-24884-1
https://link.aps.org/doi/10.1103/PhysRevE.80.016114
http://arxiv.org/abs/q-bio/0311039
https://doi.org/10.48550/arXiv.0812.1770
https://doi.org/10.1109/TNSE.2015.2391998
https://doi.org/10.1101/847426
https://doi.org/10.1126/sciadv.1602548

15:8 A. Arnaudon et al.

[22] Michael T. Schaub, Jean-Charles Delvenne, Martin Rosvall, and Renaud Lambiotte. 2017.Themany facets of community
detection in complex networks. Applied Network Science 2, 1 (Dec. 2017), 1–13. DOI: https://doi.org/10.1007/s41109-
017-0023-6

[23] Michael T. Schaub, Jean-Charles Delvenne, Sophia N. Yaliraki, and Mauricio Barahona. 2012. Markov dynamics as a
zooming lens for multiscale community detection: Non clique-like communities and the field-of-view limit. PLoS One
7, 2 (Feb. 2012). e32210. DOI: https://doi.org/10.1371/journal.pone.0032210

[24] Dominik J. Schindler, Jonathan Clarke, and Mauricio Barahona. 2023. Multiscale mobility patterns and the restriction
of human movement. Royal Society Open Science 10, 10 (2023), 230405. Retrieved from https://royalsocietypublishing.
org/doi/10.1098/rsos.230405

[25] Dominik J. Schindler and Matthew Fuller. 2023. Community as a vague operator: Epistemological questions for
a critical heuristics of community detection algorithms. Computational Culture 9 (2023). Retrieved from http://
computationalculture.net/community-as-vague-operator/

[26] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 22, 8 (2000), 888–905.

[27] V. A. Traag, L. Waltman, and N. J. van Eck. 2019. From Louvain to Leiden: Guaranteeing well-connected communities.
Scientific Reports 9, 1 (Mar. 2019), 5233. DOI: https://doi.org/10.1038/s41598-019-41695-z

[28] Nicolas Tremblay and Pierre Borgnat. 2014. Graph wavelets for multiscale community mining. IEEE Transactions on
Signal Processing 62, 20 (2014), 5227–5239. DOI: https://doi.org/10.1109/TSP.2014.2345355

Received 5 May 2023; revised 6 November 2023; accepted 23 February 2024

ACM Transactions on Mathematical Software, Vol. 50, No. 2, Article 15. Publication date: June 2024.

https://doi.org/10.1007/s41109-017-0023-6
https://doi.org/10.1007/s41109-017-0023-6
https://doi.org/10.1371/journal.pone.0032210
https://royalsocietypublishing.org/doi/10.1098/rsos.230405
https://royalsocietypublishing.org/doi/10.1098/rsos.230405
http://computationalculture.net/community-as-vague-operator/
http://computationalculture.net/community-as-vague-operator/
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1109/TSP.2014.2345355

	Abstract
	1 Introduction
	2 Implementation
	2.1 Overall Organization
	2.2 Quality Function Constructors
	2.3 Post-Processing Tools
	2.4 Main Parameters and Default Values

	3 Benchmarking
	4 Example and Applications
	5 Conclusion and Outlook
	References

