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ABSTRACT

Irregular terrain has a pronounced effect on the propagation of seismic and acous-

tic wavefields but is not straightforwardly reconciled with structured finite-difference

(FD) methods used to model such phenomena. Accurate wavefield simulation is

paramount in subsurface imaging applications such as reverse-time migration (RTM)

and full-waveform inversion (FWI), requiring suitable topography handling. Meth-

ods currently detailed in the literature are generally limited in scope application-

wise or non-trivial to apply to real-world geometries. A general immersed bound-

ary treatment capable of imposing a range of boundary conditions in a relatively
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equation-agnostic manner has been developed, alongside a framework implementing

this approach to complement emerging code-generation paradigms. The approach is

distinguished by the use of N-dimensional Taylor-series extrapolants constrained by

boundary conditions imposed at some suitably distributed set of surface points. The

extrapolation process is encapsulated in modified derivative stencils applied in the

vicinity of the boundary, utilizing hyperspherical support regions. This method en-

sures boundary representation is consistent with the FD discretization. Furthermore,

high-dimensional and vector boundary conditions can be applied without approxima-

tion prior to discretization. A consistent methodology can thus be applied across free

and rigid surfaces with first and second-order acoustic wave equation formulations.

Application to both equations is demonstrated, and numerical examples based on

analytic and real-world topography implementing free and rigid surfaces in 2D and

3D are presented. Numerical examples and convergence tests demonstrate the accu-

racy of boundary treatments devised by the prescribed approach, their suitability to

practical applications, and the feasibility of automatically generating treatments to

suit each case.

2



INTRODUCTION

Irregular topography introduces considerable complexity to geophysical wavefield

models, creating complex path effects which turn clean, defined reflections into cas-

cades of overlapping arrivals. Interactions with topography cause waves to diffract

and scatter, focus and defocus (Takemura et al., 2015; Reinoso et al., 1996; Boore,

1972; Griffiths and Bollinger, 1979): effects that must be encapsulated by wave-

field simulations (Borisov et al., 2018). Whilst early numerical experiments demon-

strated topography’s marked effect upon recorded data (Boore, 1973), the prolifera-

tion of wave-equation-based workflows, most notably full-waveform inversion (FWI)

and reverse-time migration (RTM), has placed a sharpened focus on understanding

topographic effects.

Topographic effects have been explored in contexts including FWI (Bleibinhaus

and Rondenay, 2009), understanding seismic wave scattering (Takemura et al., 2015),

infrasound propagation problems (Kim and Lees, 2014; Fee et al., 2021), and is cru-

cial for the emerging field of teleseismic FWI (Monteiller et al., 2013, 2015). It is

recognised that poor topography implementation adversely affects model accuracy

(Monteiller et al., 2013; Li and Yao, 2020; Borisov et al., 2018), often severely (Nuber

et al., 2016) although this may be acceptable in some applications (Bleibinhaus and

Rondenay, 2009). When applied to imaging problems, unrealistic propagation paths

result in artefacts in the processed image (Bleibinhaus and Rondenay, 2009; Nuber

et al., 2016; Borisov et al., 2018) which risk being mistaken for geological features,

whilst models of ground motion have been found to significantly underestimate local
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amplification factors if topography is omitted (Reinoso et al., 1996).

Unstructured meshes suitably conformed to the topography offer an immediate

solution. Finite-element methods (FEMs) have been demonstrated as effective for

modelling wave propagation in the presence of variable topography (Zhebel et al.,

2014; Dupros et al., 2010; Borisov et al., 2018; Liu et al., 2014; Mulder and Shamasun-

dar, 2016), and have been applied to include complex terrain in models of earthquake

peak ground acceleration (Galis et al., 2008), in shallow structure characterization

applications (Romdhane et al., 2011), and to imaging problems such as full waveform

inversion (FWI) (Roberts et al., 2021b; Shin et al., 2013; Monteiller et al., 2015).

Unstructured finite-difference methods (FDMs) have also been developed (Takekawa

et al., 2015; Martin et al., 2015), and successfully used to perform FWI on synthetic

datasets (Wu et al., 2021).

However, structured FD methods dominate in geophysical wavefield modelling and

processing applications, including seismic reverse-time migration (RTM) (Fletcher

et al., 2009), full-waveform inversion (FWI) (Warner et al., 2013), and source local-

isation (Mckee et al., 2014). They eschew potentially cumbersome grid-generation

algorithms (Brehm and Fasel, 2013), which become increasingly problematic at large

scales (Slotnick et al., 2014) and require a priori knowledge of seismic velocities

(Roberts et al., 2021a,b). This information is potentially unavailable in practice or

is iteratively updated in outer-loop problems, necessitating repeated mesh adapta-

tion. Furthermore, the geometry of geological structures is prone to generating ill-

conditioned sliver elements as units get pinched out resulting in an unreasonably small

4



timestep (Roberts et al., 2021b). Automated mesh generation for seismic wave prop-

agation in models containing arbitrary horizons remains an open problem; unstruc-

tured approaches are rarely used in production. Structured FD methods are simple

to implement, with relatively-low computational footprints (Liu and Sen, 2009), even

before considering the suite of known optimizations (Luporini et al., 2020; Louboutin

et al., 2019). However, in the presence of irregular topography, accurately repre-

senting the sharp, uneven material discontinuity on regular grids can be problematic

(Zeng et al., 2012; Mulder, 2017; Gao et al., 2015). Ideally, one would want to accu-

rately represent complex, curvilinear topography as a sharp interface whilst retaining

the advantages of structured grids.

Air- or vacuum-layer approaches, achieved through a low-impedence layer at the

surface (Schultz, 1997; Zeng et al., 2012) trade accuracy for simplicity in mimicking

the free surface. Satisfactory results can be obtained with careful implementation

(Zeng et al., 2012), although error analyses and numerical experiments indicate sub-

second-order convergence in space, regardless of interior discretization (Zhebel et al.,

2014; Symes and Vdovina, 2009) and potentially egregious (Graves, 1996; Zahrad-

nik et al., 1993) error when applied to complex geometries. Suppression of spurious

scattering requires heavy oversampling (Bohlen and Saenger, 2006), and smoothing

or stabilisation routines are often required to stabilise the surface treatment (Bar-

tel et al., 2000; Zeng et al., 2012; Vieira et al., 2018). Staircased image methods

marginally improve on this (Robertsson, 1996): numerous variations have been ex-

plored (Robertsson, 1996; Boore, 1972; Hayashi et al., 2001; Ohminato and Chouet,
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1997; Ripperger et al., 2003), with practical applications including macro-scale topo-

graphic scattering effects (Takemura et al., 2015; Nakamura et al., 2012) and volcanic

source location (Kim and Lees, 2014; Fee et al., 2021). The stepped boundary still

generates diffractions (Muir et al., 1992; Hu, 2016), and a time shift proportional to

the difference between the interface and computational grids (Symes and Vdovina,

2009). Whilst staircased representations can be improved with locally-refined sub-

grids (Oprsal and Zahradnik, 1999; Tavelli et al., 2019), such refinement is non-trivial

(Lai and Peskin, 2000; Goldstein et al., 1993), often requiring careful filtering and

interpolation routines (Zhang et al., 2013b). A more accurate image method can be

achieved via coordinate transform (Petersson and Sjögreen, 2015) such that the sur-

face is a horizontal plane in the iteration space (Zhang and Chen, 2006; Hestholm and

Ruud, 2002). This approach is widely adaptable, and various wave equations have

been solved with such schemes (Zhang and Chen, 2006; Zhang et al., 2012; Hestholm

and Ruud, 1994; Hestholm et al., 1999; Hestholm and Street, 2000; Sun et al., 2017;

de la Puente et al., 2014), demonstrating a high degree of accuracy, on par with FEMs

(Zhang et al., 2012). However, a smooth conformal mapping may be challenging to

obtain with grid skewness and roughness potentially introducing errors and instability

(Shragge and Konuk, 2020). This can be addressed with the use of mimetic FDMs

(de la Puente et al., 2014; Shragge and Tapley, 2017; Shragge and Konuk, 2020), which

have the additional advantage of enabling accurate and stable imposition of the free

surface condition (de la Puente et al., 2014; Shragge and Tapley, 2017; Shragge and

Konuk, 2020). However, such approaches do introduce considerable computational

overhead and the presence of locally small cells remains an issue, potentially limiting
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the maximum timestep (de la Puente et al., 2014; Shragge, 2014; Shragge and Konuk,

2020), similar to the aforementioned sliver elements in FEM.

An alternative approach, popular in computational fluid dynamics (CFD) contexts

(Mittal et al., 2008; Seo and Mittal, 2011; Dong et al., 2010; Vargas et al., 2008),

is the immersed boundary method. This approach embeds a curvilinear interface

within a Cartesian grid by locally modifying the FD operators in the vicinity of

the boundary (Brehm and Fasel, 2013; Brehm et al., 2015; Mulder, 2017). Several

immersed boundary variations for second-order acoustic wave equation formulations

(Zhang et al., 2013a; Mulder, 2017; Li and Yao, 2020) have been proposed, with

some extending to first-order formulations (Mulder and Huiskes, 2017; Hu, 2016),

and even the isotropic elastic wave equation with some success (Lombard et al., 2008;

Almuhaidib and Toksoz, 2015; Gao et al., 2015). The standard Cartesian grid and

equations are retained and complex geometries including sharp edges and concavities

can be represented.

To date, most applications of immersed boundary schemes in geophysical wave

modelling scenarios have made use of problem-specific approximations prior to dis-

cretization to impose boundary conditions, typically considering a 1D version of the

condition normal to the boundary. Such approximations yield satisfactory results (Hu,

2016; Mulder, 2017; Almuhaidib and Toksoz, 2015; Li et al., 2022) and their usage is

widespread. Whilst these approximations offer intuitive parallels with conventional

image methods, the condition imposed may not equal the true boundary condition as

resolution goes to zero. This is particularly apparent for vector boundary conditions
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such as those applied to the velocity fields at the free surface. Hu (2016) addressed

this by decomposing velocity field components into tangential and radial components

in a local cylindrical coordinate system, whilst Mulder and Huiskes (2017) assumed

locally vertical or horizontal boundaries, incurring numerical error.

Such approximations are reliant upon domain knowledge and do not necessarily

generalise straightforwardly; it is not immediately clear as to their applicability across

multiple wave equations. Indeed, these approximations may be inherently limiting,

precluding adaption to more complex physics (wave equations featuring transverse

isotropy or elastic wave equations for example). Given the trajectory towards increas-

ingly complex physics and geometries, this paper sets out to develop a generalised

immersed boundary approach, such that a consistent methodology can be applied in

a relatively problem-agnostic manner.

This approach aligns with current trends in geophysical modelling: domain-specific

languages (DSLs) and automatic code generation are increasingly prevalent, with

projects such as Devito (Luporini et al., 2020; Louboutin et al., 2019) and Fire-

drake (Rathgeber et al., 2016) leveraging high-level abstractions to generate low-level

FDM and FEM solver kernels from symbolic partial differential equations (PDEs).

Abstracting low-level aspects of implementation achieves a separation of concerns be-

tween the overarching problem and its underlying implementation (Rathgeber et al.,

2016), enabling domain specialists to focus on the application level. High-level inter-

faces substantially reduce development time (Louboutin et al., 2019), whilst sophisti-

cated optimization routines in the lowering process yield high-performance, portable
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code (Luporini et al., 2020; Louboutin et al., 2019). The ability to generate a low-level

implementation from a high-level specification hinges on a general method for solv-

ing a given problem so that suitable abstractions can be developed. This cannot be

easily achieved with the application-specific immersed boundary implementations de-

veloped to date, as they are generally not designed with generalisation across multiple

problems in mind.

Developing a generalised mathematical approach enables abstraction, which in

turn lends itself to automation and thus code generation. Furthermore, direct gener-

alisation to other wave equations widens potential application, spanning a range of

geophysical problems. The generalised nature of the method presented greatly simpli-

fies inclusion of immersed boundaries in geophysical models, as a suitable treatment

can be devised according to the prescribed formula to suit the physical problem at

hand.

An immersed boundary approach supporting the imposition of multidimensional

and vector boundary conditions is outlined, followed by its application to a selec-

tion of equations and boundary conditions of interest. This mathematical approach

forms the backbone of Schism: a plugin for Devito used to implement the exam-

ples shown in this paper (Caunt, 2024). The numerical accuracy of the approach

proposed is explored through convergence testing of the resultant treatment, and sev-

eral geophysically-relevant test cases based on the first and second-order formulations

of the acoustic wave equation are explored. Note that whilst the demonstrations

within this paper focus solely on variants of the acoustic wave equation, the method
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is nominally equally suited to pseudoacoustic wave equations featuring vertical and

tilted transverse isotropy (VTI and TTI), alongside elastic wave equations. Further

exploration of these areas is planned in subsequent publications.

THEORY

Constructing finite-difference approximations

FD methods approximate the evolution of PDE solutions by calculating derivatives of

a basis function fitted to discrete function values, using these to estimate the updated

values at these discrete points at the next timestep. These derivative approximations

contain some error relative to their true value, diminishing as resolution increases.

To outline how these approximations are made in the typical case, consider some

function f in a 1D space; approximating with an Mth-order Taylor series expansion

at some point x0 yields

f(x) =
M∑

m=0

(x− x0)
m

m!

∂mf(x0)

∂xm
+O((x− x0)

M+1), (1)

concisely represented as

a · δ = f(x), (2)

where

aT =

(
1, (x− x0), ...,

(x− x0)
M

M !

)
, (3)

and

δT =

(
f(x0),

∂f

∂x
(x0), ...,

∂Mf

∂xM
(x0)

)
. (4)
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For some even M , expansions at M +1 discrete points, labelled x−M/2 through xM/2,

enable the formation of the linear system

Aδ =


f(x−M/2)

...

f(xM/2)

 . (5)

To illustrate, for M = 2, the system is as follows
1 x−1 − x0

(x−1−x0)2

2

1 0 0

1 x1 − x0
(x1−x0)2

2




f(x0)

∂f
∂x
(x0)

∂2f
∂x2 (x0)

 =


f(x−1)

f(x0)

f(x1)

 , (6)

which can be rearranged in the form

A−1


f(x−M/2)

...

f(xM/2)

 = δ, (7)

thereby obtaining derivatives as some weighted sum of discrete function values: a

stencil. With the assumption of a regular grid, relative positions of points become

fixed regardless of where the derivative is being taken, yielding
1 −1 1

2

1 0 0

1 1 1
2




f(x0)

∆x∂f
∂x
(x0)

∆x2 ∂2f
∂x2 (x0)

 =


f(x−1)

f(x0)

f(x1)

 , (8)

for the above case, the inverse being
0 1 0

−1
2

0 1
2

1 −2 1




f(x−1)

f(x0)

f(x1)

 =


f(x0)

∆x∂f
∂x
(x0)

∆x2 ∂2f
∂x2 (x0)

 . (9)
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The leftmost matrix contains weights for FD stencils of every derivative order up to

that of the basis.

For higher dimensions, a suitably higher-dimensional polynomial is required, formed

as a product of per-dimension 1D series of the form

f(x) =
∑
m=0

amx
m, (10)

in 3D yielding

f(x) =
∑
m=0

∑
n=0

∑
l=0

amnlx
mynzl. (11)

Given this, the process outlined above is extensible to higher dimensions as in Takekawa

et al. (2015). In the pursuit of consistency and accuracy, it is crucial to maintain con-

sistent error throughout any numerical scheme; polynomials used in such schemes

must be of an order matching the spatial discretization employed. For an order M

spatial discretization, the 3D expansion is truncated as follows:

f(x) =
Mx∑
m=0

My∑
n=0

Mz∑
l=0

amnlx
mynzl +O(|∆x|(M+1)), (12)

subject to

Mx +My +Mz = M, (13)

removing any terms with order greater than M .

An N-dimensional Taylor series is a robust candidate for such applications, retain-

ing similarities to the aforementioned 1D case and being suitably problem-agnostic.

In 3D, this is given by

f(x) =
∑
m=0

∑
n=0

∑
l=0

(x− x0)
m(y − y0)

n(z − z0)
l

m!n!l!
δm,n,l, (14)
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where

δm,n,l =
∂m+n+l

∂xm∂yn∂zl
f(x0). (15)

Truncating this expansion as in Equation 13, the polynomial expansion at points

within the support region can be represented as a matrix-vector multiplication, as in

Equation 2. Reflecting the higher dimensionality and corresponding increased number

of terms, a is given by

aT =

(
1, (x− x0), ..., (z − z0),

(x− x0)
2

2
, (x− x0)(y − y0), ...,

(z − z0)
2

2
, ...,

(x− x0)
M

M !
, ...,

(z − z0)
M

M !

)
,

(16)

whilst

δT =

(
1,

∂

∂x
, ...,

∂

∂z
,
∂2

∂x2
,

∂2

∂x∂y
, ...,

∂2

∂z2
, ...,

∂M

∂xM
, ...,

∂M

∂zM

)
f(x0). (17)

As in the 1D case, expansions taken at some set of points are used to form a

linear system. However, there is increased flexibility regarding the distribution of

these points. Considering some arbitrarily-distributed set of function values, in 1D

it is straightforward to construct a polynomial expansion of any desired order to fit

this data, provided the number of linearly-independent data points equals or exceeds

the coefficients in the truncated expansion. However, when constraining the higher-

dimensional basis, this linear independence requires suitable point distribution.

A hyperspherical support region footprint, similar to that used by Takekawa et al.

(2015), is proposed as a suitable choice for a large range of boundary conditions.

Extensible to any number of dimensions, this choice of support region has a defined

centre and can be straightforwardly expanded and contracted without introducing
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drastic behavioural changes. Furthermore, any given number of points within the

support region will be located as close to the stencil centre as possible. Whilst this

work limits itself to Cartesian structured grids, such support regions are nominally

equally suited to structured and unstructured data as no assumption is required

regarding the underlying data structure. In the structured case, points can be located

by index, removing the need for nearest-neighbour searches to to construct the support

region. Support regions of various radii are shown in Figure 1: a radius of (M+1)/2∆x

ensures sufficient information to constrain a polynomial basis on a regular, structured

grid.

Whilst extensible to any number of dimensions, the proceeding example considers

the 2D case for clarity and brevity. Correspondence between a 2D support region for

a 4th-order discretization and A is shown in Figure 2. The linear system

Aδ = f(X), (18)

where

δT =

(
1,∆x

∂

∂x
,∆y

∂

∂y
,∆x2 ∂2

∂x2
,∆x∆y

∂2

∂x∂y
,∆y2

∂2

∂y2
,

∆x3 ∂3

∂x3
,∆x2∆y

∂3

∂x2∂y
,∆x∆y2

∂3

∂x∂y2
,∆y3

∂3

∂y3
,

∆x4 ∂4

∂x4
,∆x3∆y

∂4

∂x3∂y
,∆x2∆y2

∂4

∂x2∂y2
,

∆x∆y3
∂4

∂x∂y3
,∆y4

∂4

∂y4

)
f(x0).

(19)

is overdetermined. Inverting this system using a Moore-Penrose pseudoinverse yields

expressions for FD stencils using the aforementioned 2D basis.
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Introducing boundaries

The evolution of a continuous scalar function, potentially pressure, a component of the

particle velocity vector, or even some stress tensor component, is dictated not only by

the governing PDE, but boundary conditions imposed. In seismology, these typically

demark a half-space, bounded at the top by the ground-air interface. This boundary

may truncate derivative operators, leaving requisite stencil points on the exterior,

necessitating incorporation of additional constraints to form FD approximations. By

imposing suitable conditions on this interface, these constraints can be introduced

and the wavefield made to interact with topography in a realistic manner.

Note that the points removed from the stencil correspond to rows removed from

A.

Figure 3 shows the effect of a boundary cutting through the support region shown

in Figure 2 on the linear system: A is underdetermined without additional constraints.

Applying boundary constraints to the basis can be used to introduce additional rows

to A, reducing the number of interior points required and imposing the appropriate

behaviour. The process of forming these rows given boundary conditions and the

points at which they are imposed follows that of forming polynomial approximations

of interior function values.
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Approximating boundary conditions

In 3D, linear boundary conditions imposed upon a single field which do not yield the

trivial expression 0 = g(xb) when approximated with the basis have the form

Mx∑
m=0

My∑
n=0

Mz∑
l=0

αmnl(xb)
∂m+n+lf

∂xm∂yn∂zl
(xb) = g(xb) (20)

where Mx, My, and Mz are as in Equation 13. For applications considered in this

paper, coefficients αmnl(xb) are constant.

Substituting f for its Taylor-series approximation yields

Mx∑
m=0

My∑
n=0

Mz∑
l=0

Mx∑
i=0

My∑
j=0

Mz∑
k=0

βmnlijk
∂i+j+kf

∂xi∂yj∂zk
(x0) = g(xb), (21)

where

βmnlijk = αmnl(xb)
∂m+n+l

∂xm∂yn∂zl
(x− x0)

i(y − y0)
j(z − z0)

k

i!j!k!
. (22)

As is the case with Taylor-series approximations at interior points, this is expressible

as a dot product:(
Mx∑
m=0

My∑
n=0

Mz∑
l=0

αmnl(xb)
∂m+n+l

∂xm∂yn∂zl
a

)
· δ = g(xb). (23)

Note that the derivative vector is identical to that used for Taylor-series expansion

at interior points, and thus some set of interior and boundary constraints can be

encapsulated as the multiplication of the derivative vector and a matrix of coefficients.

There is no distinction between interior and boundary constraints: it is apparent that

interior constraints can be formed from Equation 20, and both can be represented as

rows of the linear system.
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This linear system is used to fit the basis, as in Equation 5. Figure 4 shows the

effect of adding free-surface boundary conditions to the truncated stencil shown in

Figure 3; the matrix is once again overdetermined, and thus nominally has sufficient

information to constrain the derivatives. Note however, that it may be the case that

such a matrix is still not full-rank. For example, particular boundary constraints may

contain redundant information, seen in the lowermost rows of the matrix shown in

Figure 4, or lack information regarding particular derivatives.

With interior function values and some J boundary conditions imposed at the

boundary points Xb, the linear system

Aδ =



f(X)

g1(Xb)

...

gJ(Xb)


, (24)

can be formed, with rows of the form given in Equations 2 and 23, as shown in Figure

4. X is the set of interior points used to construct the extrapolant and vectors g1(Xb)

through gJ(Xb) contain forcing values corresponding to each boundary condition and

forcing point.

As a tangible example, consider constructing a second-order extrapolant in 1D

from two interior points (labelled x1 and x2) and a boundary point upon which the

boundary conditions f(xb) = 0 and ∂2f
∂x2 (xb) = 0 are imposed. This particular case
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yields the linear system

1 (x1 − x0)
(x1−x0)2

2

1 (x2 − x0)
(x2−x0)2

2

1 (xb − x0)
(xb−x0)2

2

0 0 1




f(x0)

∂f
∂x
(x0)

∂f2

∂x2 (x0)

 =



f(x1)

f(x2)

0

0


. (25)

Whilst higher-order accuracy and higher dimensionality increase the size of this sys-

tem, the process of constructing this system remains the same. Note that removing a

single interior point from this example gives the approach detailed in Mulder (2017)

and Mulder and Huiskes (2017) in which all boundary constraints are selected then

supplemented with interior constraints to obtain a square system for which an inverse

is found. The process of selecting a suitable set of interior and boundary conditions

is worth considering. Whilst the method used by Mulder (2017); Mulder and Huiskes

(2017) yields easily inverted systems and is intuitive in 1D, more choices are available

in higher dimensions.

To preserve the Cartesian topology of the grid, allowing points to be directly

indexed, boundary points are taken as the intersection of the boundary normal at a

grid point and the boundary, assuming this lies within a point-centred hyperrectangle

whose sides correspond to a single grid increment in each dimension. Such a support

region is shown in Figure 5. Interior points where a boundary point lies within a

gridpoint-centred hyperrectangle with sides of length 2η∆xn where ∆xn is the grid

increment in the nth dimension and η is a cutoff parameter are excluded for the

purposes of constructing the extrapolant to ensure stability. Suitable values of η are
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empirically determined in this work. Rigorous analysis would be preferable, although

Mulder and Huiskes (2017) notes the challenge of carrying this out in practice.

An initial support region radius of (M +1)/2 is selected, expanded incrementally

if insufficient information to constrain the extrapolation is contained therein. If the

basis is sufficiently constrained, rank(A) will equal the number of expansion terms.

The required rank is M+1 in 1D, (M+1)(M+2)/2 in 2D, and (M+1)(M+2)(M+

3)/6 in 3D respectively, the latter two corresponding to the (M + 1)th triangular

and tetrahedral numbers respectively. If one does not intend to be so strict about

maintaining formal order, the order of the polynomial basis can be reduced instead,

as in Mulder (2017); Mulder and Huiskes (2017). It is anticipated that this may be

advisable with some boundary conditions and geometries to avoid stencil footprints

becoming excessively large in edge cases.

Reconciliation with interior numerical scheme

Whilst the method described above can be used to directly obtain FD stencils, sud-

den switches in derivative approximation may cause instability. It is thus desirable

to retain the interior discretization throughout the computational domain. Func-

tion values at stencil points lying outside the boundary are approximated with the

boundary-constrained N-dimensional polynomial basis. The process of projecting this

basis onto some set of points Xe can be represented by the matrix-vector multiplica-

tion

Bδ = f̃(Xe), (26)
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where B contains the terms associated with each derivative in the Taylor series eval-

uated at the respective points in Xe. Derivatives are approximated as

δ = A+



f(X)

g1(Xb)

...

gJ(Xb)


, (27)

where A+ is the Moore-Penrose pseudoinverse of A. Note that this is the inverse of

Equation 24.

Using the 1D example in Equation 25, assume two exterior points, designated x3

and x4 are required to complete the stencil operator applied at the specified position.

B is of the form

B =

1 (x3 − x0)
(x3−x0)2

2

1 (x4 − x0)
(x4−x0)2

2

 , (28)

and thus Equation 26 will yield approximations of f(x3) and f(x4) as functions of

f(x1) and f(x2) (remaining entries in the right-hand side vector of Equation 25 are

zero). More generally, this process yields exterior function values as functions of

interior values and boundary conditions.

Substituting these into the interior stencil, a modified operator is obtained. This

operator has a support region consisting of the unity of interior points in the original

stencil (Xi), those in the extrapolation stencil, and boundary points where conditions

are enforced.
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A stencil expression approximating some derivative of f can be expressed as

w · f(X) = d, (29)

where d is some arbitrary derivative and w contains the stencil weights corresponding

to each function value in the vector f(X). Separating the corresponding vector of

stencil weights w into two subvectors wi containing weights for points on the interior

and we for points on the exterior, the expression for the modified stencil d can be

obtained via wi

we

 ·

f(Xi)

f̃(Xe)

 = d. (30)

By constructing modified operators in this manner, extrapolated values are used

without being explicitly calculated, with the extrapolation process encapsulated by

the stencil coefficients. Furthermore, derivative stencils centred at different gridpoints

will have independent extrapolations. This independence and the local nature of these

extrapolation operators ensures that the linear systems constructed remain relatively

small and simplifies the process of obtaining a solution to the system: both criterion

prioritised by Hu (2016).

APPLICATION (2ND-ORDER ACOUSTIC WAVE

EQUATION)

The 2nd-order acoustic wave equation is the first target for which boundary treat-

ments are derived. Containing only a single time-variant field and equation, it has

reduced computational cost and implementation complexity compared to other formu-
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lations and wave equations; simple equations also yield simple boundary conditions.

Whilst only P-wave components can be propagated and more complex physics such

as anisotropy and viscoelasticity commonly desired for seismic imaging are omitted,

applications remain in medical imaging (Guasch et al., 2020) and infrasound studies

(Kim and Lees, 2014). Furthermore, it offers a platform to test the applicability of the

method to various boundary conditions, paving the way for more complex physics.

The equation itself is given as

∂2p

∂t2
= c2∇2p+ f, (31)

containing pressure p and wavespeed c. An additional forcing term f is commonly

included, typically some point source or set thereof in seismological contexts.

In seismic applications, this equation is typically discretized with an explicit

timestepping scheme, replacing the time derivative with a second-order centred-

difference approximation:

pt+1 − 2pt + pt−1

∆t2
= c2∇2p+ f. (32)

Rearranging for pressure at the forward timestep,

pt+1 = 2pt − pt−1 +∆t2c2∇2p+ f̃ , (33)

is obtained, where f̃ = f∆t2. This update equation approximates the field at the

next iteration.

Spatial derivatives are all contained within the Laplacian; for the purposes of an

immersed boundary, modified 2nd-derivative operators with respect to each dimension

will need to be generated.
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The reflection coefficient is near 1 for waves approaching topography from above

and -1 when approaching from below. Considering the latter case, the surface can be

approximated as an irregular free surface, upon which the condition

p(t,xb) = 0, (34)

holds. Using Equation 31, incrementally higher-order boundary conditions are de-

rived, these being ∇2p(t,xb) = 0, ∇4p(t,xb) = 0, and so forth.

Free-surface boundary constraints

These boundary conditions are approximated by substituting the polynomial basis

into these boundary conditions in the place of pressure. Conditions of higher order

than the spatial discretization will yield the trivial expression 0 = 0, and are thus

discarded.

Considering a fourth-order discretization in 2D, substituting the corresponding

basis into the zeroth-order boundary condition yields the equation

p(x0, y0) + (xb − x0)
∂p

∂x
(x0, y0) + (yb − y0)

∂p

∂y
(x0, y0) +

(xb − x0)
2

2

∂2p

∂x2
(x0, y0)

+ (xb − x0)(yb − y0)
∂2p

∂x∂y
(x0, y0) +

(yb − y0)
2

2

∂2p

∂y2
(x0, y0) +

(xb − x0)
3

6

∂3p

∂x3
(x0, y0)

+
(xb − x0)

2(yb − y0)

2

∂3p

∂x2∂y
(x0, y0) +

(xb − x0)(yb − y0)
2

2

∂3p

∂x∂y2
(x0, y0)

+
(yb − y0)

3

6

∂3p

∂y3
(x0, y0) +

(xb − x0)
4

24

∂4p

∂x4
(x0, y0) +

(xb − x0)
3(yb − y0)

6

∂4p

∂x3∂y
(x0, y0)

+
(xb − x0)

2(yb − y0)
2

4

∂4p

∂x2∂y2
(x0, y0) +

(xb − x0)(yb − y0)
3

6

∂4p

∂x∂y3
(x0, y0)

+
(yb − y0)

4

24

∂4p

∂y4
(x0, y0) = 0,

(35)

23



and similarly, the zero Laplacian and Biharmonic boundary conditions yield

∂2p

∂x2
(x0, y0) +

∂2p

∂y2
(x0, y0) + (xb − x0)

∂3p

∂x3
(x0, y0) + (yb − y0)

∂3p

∂x2∂y
(x0, y0)

+ (xb − x0)
∂3p

∂x∂y2
(x0, y0) + (yb − y0)

∂3p

∂y3
(x0, y0) +

(xb − x0)
2

2

∂4p

∂x4
(x0, y0)

+ (xb − x0)(yb − y0)
∂4p

∂x3∂y
(x0, y0) + ((xb − x0)

2 + (yb − y0)
2)

∂4p

∂x2∂y2
(x0, y0)

+ (xb − x0)(yb − y0)
∂4p

∂x∂y3
(x0, y0) +

(yb − y0)
2

2

∂4p

∂y4
(x0, y0) = 0,

(36)

and

∂4p

∂x4
(x0, y0) + 2

∂4p

∂x2∂y2
(x0, y0) +

∂4p

∂y4
(x0, y0) = 0, (37)

respectively. Each of these equations can be expressed as in Equation 2, with δ given

by

δT =

(
p(x0, y0),

∂p

∂x
(x0, y0),

∂p

∂y
(x0, y0),

∂2p

∂x∂y
(x0, y0),

∂2p

∂y2
(x0, y0),

∂3p

∂x3
(x0, y0),

∂3p

∂x2∂y
(x0, y0),

∂3p

∂x∂y2
(x0, y0),

∂3p

∂y3
(x0, y0),

∂4p

∂x4
(x0, y0),

∂4p

∂x3∂y
(x0, y0),

∂4p

∂x2∂y2
(x0, y0),

∂4p

∂x∂y3
(x0, y0),

∂4p

∂y4
(x0, y0)

)
.

(38)

For the zeroth-order condition,

aT =

(
1, (xb − x0), (yb − y0),

(xb − x0)
2

2
, (xb − x0)(yb − y0),

(yb − y0)
2

2
,
(xb − x0)

3

6
,

(xb − x0)
2(yb − y0)

2
,
(xb − x0)(yb − y0)

2

2
,
(yb − y0)

3

6
,
(xb − x0)

4

24
,

(xb − x0)
3(yb − y0)

6
,
(xb − x0)

2(yb − y0)
2

4
,
(xb − x0)(yb − y0)

3

6
,
(yb − y0)

4

24
,

(39)

whilst the Laplacian and Biharmonic conditions similarly correspond to

aT =

(
0, 0, 0, 1, 0, 1, (xb − x0), (yb − y0), (xb − x0), (yb − y0),

(xb − x0)
2

2
, (xb − x0)(yb − y0),

(xb − x0)
2 + (yb − y0)

2), (xb − x0)(yb − y0),
(yb − y0)

2

2

)
(40)
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and

aT = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1) (41)

respectively. The right-hand side in each case is zero.

With Equations 39-41, three matrix rows can be constructed for each boundary

point used to constrain the basis. Note that the fourth-order condition is invariant

in space, and the corresponding row contains identical information irrespective of

boundary point location.

Application to example geometry

To illustrate the process of constructing modified stencils for these conditions, consider

the case of a fourth-order stencil approximating ∂2p
∂y2

, truncated by an arc-shaped

boundary, as shown in Figure 6. It is clear that it will not be possible to form this

stencil as one would in free space since two of the requisite points lie outside the

physical domain.

To rectify this, a circular support region of radius 2.5∆x is extended from the

stencil centre, as in Figure 7. This support radius encircles 5 boundary points, de-

termined via the previously-discussed criteria. A cutoff of η = 0.5 for the pressure

field was found to be necessary to prevent instability related to the boundary forcing

when imposing free surface boundary conditions, as in Mulder (2017). Consequently,

11 interior points are available to construct the 2D extrapolant. Each boundary point

has three matrix rows associated with it, one for each boundary condition imposed,
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whilst each interior point corresponds to a single row of A.

The set of interior points used to fit the basis is shown in Figure 8a alongside the

resultant submatrix containing the constraints applied at this set of points. Boundary

points and corresponding matrix rows are shown in Figures 9a and 9b respectively.

For this case, the rank is equal to the number of columns and the Moore-Penrose

pseudoinverse was used to invert this overdetermined system. A weighted least-

squares approach was explored to prioritise particular boundary conditions or points

but was prone to generating ill-conditioned linear systems whilst having minimal

discernible benefit.

Continuing the pressure field onto the pair of required exterior points requires the

construction of B as in Equation 26, constructing the expansion at exterior points

and constructing matrix rows accordingly. Note that as all boundary forcing values

are zero, columns of BA+ corresponding to boundary points can be ignored for the

purpose of constructing the stencil. Applying weights for the interior stencil, the

modified boundary operator for this particular point is obtained, shown in Figure 10

Reduction to 1D

Through particular choices made when applying the method, other, equally feasible

stencils can be obtained, including the 1D approximation detailed in Mulder (2017).

Considering the 1D case, the aforementioned free-surface boundary conditions reduce
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to

p(xb) = 0,
∂2p

∂x2
(xb) = 0,

∂4p

∂x4
(xb) = 0, ... (42)

and so forth. Suppose some case is encountered where a boundary truncates a stencil

as in Figure 6. Selecting the M/2 closest points to the boundary (at distance greater

than η∆x), A can be constructed such that it is square, enabling derivatives to be

obtained by inverting this matrix. Thus the method described by Mulder (2017) can

be considered a special case of the overarching method described in this paper, albeit

distinct from the specific approach taken for the examples shown.

Figure 11 compares the proposed approach based on an N-dimensional basis with

circular support to to an immersed boundary implementation based on per-dimension

1D extrapolations and a vacuum layer approach for a 2D second-order acoustic ex-

ample featuring a sinusoidal free surface. The vacuum layer is far noisier than either

immersed boundary approach with clear spurious diffactions and artefacts trailing

the reflected wavefront. The immersed boundary based on axially-aligned 1D extrap-

olants performs better, although some artefacts remain as a result of this approxi-

mation. These are most visible immediately following the reflected wavefront. By

contrast, the immersed boundary approach based on N-dimensional extrapolations

yields a very smooth reflected wave with no visible unevenness. It is apparent that

the use of N-dimensional extrapolations enables improved representation of the sur-

face geometry and boundary conditions, yielding visibly superior results to approaches

which rely on 1D approximations.
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Convergence testing

To examine the convergence behaviour of the proposed approach, a setup initially

presented by Mulder (2017) and subsequently used in Mulder and Huiskes (2017) (the

second example in both) was replicated, as shown in Figure 12a. An exact solution

exists for this example, allowing error in the numerical solution to be evaluated.

Details of this solution are provided in Appendix B. Figure 12b shows the convergence

behaviour of a scheme based on N-dimensional extrapolations, compared against a

scheme based on axially-aligned 1D extrapolations.

For a fourth-order spatial discretization, the reduction in observed error with

respect to grid increment was found to be initially just short of fourth-order, flatten-

ing around a grid increment of 0.02 as the spatial error is eclipsed by second-order

timestepping error for finer grids. The timestep was set at 10% of the critical value,

implying error introduced by the immersed boundary was minimal in all cases and

that in many cases, topography implementation will cease to be the accuracy bot-

tleneck when this immersed boundary treatment is applied. Reducing the timestep

enabled the continuation of the fourth-order trend to finer grids, with accumulation

of floating-point error resulting in a similar flattening at a smaller grid increment.

The immersed boundary approach based on N-dimensional extrapolations was found

to yield reduced error versus that based on 1D extrapolations for all grid increments

tested, particularly at finer resolutions, albeit with similar convergence behaviour.

28



APPLICATION (1ST-ORDER ACOUSTIC WAVE

EQUATION)

The method outlined in this paper yields accurate results for equations concerning

a single field, whilst enabling higher-dimensional conditions to be imposed on the

boundary. Another appeal of this approach is the readiness with which it is ex-

tended to cases where multiple fields are present. The acoustic wave equation can

be formulated as a coupled system of pressure and particle velocity, introducing a

spatially-variant density parameter. These equations take the form

∂p

∂t
= ρc2∇ · v + f,

∂v

∂t
=

1

ρ
∇p, (43)

where v is particle velocity and ρ is density. This formulation introduces additional

fields in the form of components of the particle velocity vector. Given the afore-

mentioned free-surface condition imposed on the pressure field, it is apparent from

Equation 43 that the condition

∇ · v(t,xb) = 0 (44)

must also be imposed. Whilst boundary conditions considered prior to now have

concerned some property of a single field at the boundary, when multiple fields are

present in a model, boundary conditions specifying some relationship between these

may be present. Each vector component can be approximated by an independent

polynomial basis in free space, but at the edge of the domain, they will require

construction such that this relationship is respected. As will be highlighted - this

extension can be naturally handled by the method described.
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The proceeding section considers boundary conditions of this type more generally,

before honing in on the application of this approach to the particle velocity free

surface.

Boundary conditions containing multiple fields

Where multiple fields are present, individual Taylor Series are used to approximate

each. Supposing K separate fields, labelled f1 through fK are present: ignoring

boundary conditions for now, the polynomial fitting process can be expressed as
A1

. . .

AK




δ1

...

δK

 =


f1(X1)

...

fK(XK)

 , (45)

where Ak is the matrix containing coefficients associated with each derivative in the

polynomial expansion approximating field fk at the set of points Xk. The vector δk

contains the various derivatives of fk, analogous to the single-field case. The left-

hand matrix is block-diagonal, and thus the linear system can be split into K smaller

systems, each to be solved individually. In the case that boundary conditions concern

only a single field apiece, this remains true, and one can still separate the system

in this manner. The intuitive implication of this is the independence of polynomial

expansions approximating each field in the absence of any constraints which would

otherwise link them.

However, if boundary conditions impose some particular relationship between

fields, then it is apparent that the resultant polynomial approximations of one of
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these fields will require information regarding the other fields present in the bound-

ary condition for the condition to be respected. As in the single-field case, each

boundary condition will be approximated with Taylor-series expansions. Each field

present within the constraint will have its own expansion. Each of these series con-

tains derivatives of its respective function, contained within the corresponding δk as

in Equation 45. As such, the Taylor-series approximation of a constraint specifying

some relationship between multiple fields will contain derivatives of multiple fields,

and thus when represented in the previously-detailed dot-product form, the vector δ

will consist of multiple δk.

In the context of the linear system shown in Equation 45, rows corresponding to

such boundary conditions will span multiple previously-separate blocks, linking them.

As the extrapolant-fitting process relies on the inversion of the left-hand-side matrix,

it follows that these linked blocks will need to be inverted in tandem as they can

no longer be separated. As a boundary condition row in such cases maps multiple

δk onto a single boundary forcing value, and each of the previously-separate blocks

maps its respective δk onto the corresponding fk(Xk), the inverse of the resultant

block will consequently map all fk(Xk) present onto any given derivative.

As a simple example, consider some pair of 1D functions f and h upon which the

condition

f(xb) + h(xb) = 0, (46)

is to be applied at the boundary. Approximating this constraint with 2nd-order Taylor
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series expanded around some x0 yields

f(xb) + (xb − x0)
∂f

∂x
(xb) +

(xb − x0)2

2

∂2f

∂x2
(xb)

+ h(xb) + (xb − x0)
∂h

∂x
(xb) +

(xb − x0)2

2

∂2h

∂x2
(xb) = 0.

(47)

Representing this as a dot product of two vectorsaf

ah

 ·

δf

δh

 = 0 (48)

where

af
T = ah

T =

(
1, (xb − x0),

(xb − x0)2

2

)
, (49)

δf
T =

(
f(xb),

∂f

∂x
(xb),

∂2f

∂x2

)
, (50)

and

δh
T =

(
h(xb),

∂h

∂x
(xb),

∂2h

∂x2

)
. (51)

To avoid confusion, note that af = ah results from the boundary condition applied

and will generally not be the case, depending upon on constraints applied. A single

point of f in this form is given asaf

0

 ·

δf

δh

 = 0. (52)

Approximations of h at interior points can be formed in a similar manner. Assem-

bling values of f and h at some set of points into a linear system using the above

methodology, it is apparent that the row corresponding to the boundary condition

links two otherwise separate blocks pertaining to interior points of f and h. A more

thorough discussion on the effect of such boundary conditions on the structure of the

linear system can be found in Appendix A.
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Solving the resultant linear system gives derivatives of the basis (now multiple

bases) at the expansion point as in the single-field case. Given these derivatives,

the function can be continued beyond the boundary to obtain values at exterior

points required by boundary-adjacent stencils. This is achieved in the same manner

as the single-field case. Extrapolated function values are given as a weighted sum

of boundary forcing values and interior values of all fields linked to the function

of interest via boundary constraints. Consequently, any stencil formed using these

approximated values will span all of these fields as well.

The particle velocity free surface

Returning to the zero-divergence boundary condition to be imposed on the particle

velocity vector, approximating this with a second-order basis gives

∂vx
∂x

(x0, y0) + (xb − x0)
∂2vx
∂x2

(x0, y0) + (yb − y0)
∂2vx
∂x∂y

+
∂vy
∂y

(x0, y0)

+ (xb − x0)
∂2vy
∂x∂y

+ (yb − y0)
∂2vy
∂y2

(x0, y0) = 0,

(53)

yielding the characteristic row of A:

aT =

(
0, 1, 0, (xb − x0), (yb − y0), 0, 0, 0, 1, 0, (xb − x0), (yb − y0)

)
. (54)

There will be one such row for every boundary point. Returning to the geometry

shown in Figure 7, boundary conditions are imposed at a single set of points for

all fields to ensure consistency. For this particular geometry, there is insufficient

information within the initially-selected radius of 1.5∆x, and the support region must

be expanded to that shown in Figure 7 to constrain the basis.
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Setting η = 0.5 for the velocity field extrapolations was found to produce errors

and nonphysical effects (although these did not result in instability). It is postulated

that these resulted from overextension of the velocity field extrapolations. Setting

η = 0 for both velocity fields was found to rectify this. The support region for each

particle velocity component is as shown in Figure 13 alongside the corresponding

A. The structure of A+ is shown in Figure 14: it is apparent that this matrix is

dense. Given A+ maps values of velocity components and boundary forcing values

onto derivatives of both basis functions, each of these derivatives will be approximated

as a weighted sum of values of both components. Consequently, any extrapolations

using these bases will also be in terms of both vx and vy and thus stencils completed

using these extrapolations will span both these fields too.

Note that a staggered scheme is used to prevent the emergence of checkerboard

instability when solving this particular formulation. As such the base stencil used to

construct the modified FD operators applied to the velocity fields will be backward-

staggered.

The necessity of expanding the support region in this case is worth revisiting.

The particle velocity free-surface and accompanying higher-order conditions ∇2(∇ ·

v(xb)) = 0, ∇4(∇ · v(xb)) = 0, and so forth concern multiple fields. Consequently,

the number of boundary constraints within a support region of some given radius is

likely to be low relative to the number of fields, requiring larger support regions in

some cases.
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Convergence testing

To explore the convergence behaviour of the boundary treatment devised, the previous

setup was replicated for testing with the 1st-order acoustic wave equation. As before,

a 4th-order spatial discretization was used and the timestep was set to 10% of the

critical timestep. Results are shown in Figure 15.

As in the previous test, initial convergence is just short of 4th-order, before gradu-

ally flattening around a grid increment of 0.01, at which point convergence is around

2nd-order as timestepping error saturates the solution. A handful of blackspots where

error is anomalously high compared to the prevailing trend are present at fine res-

olutions. Investigation of these anomalies was inconclusive, although they appear

associated with specific resolutions; adding or removing a single node from the grid

was sufficient to avoid these increases in error. Maximum error broadly continues

to fall as the discretization is refined. Error introduced by the boundary is rapidly

eclipsed by other sources as the discretization is refined, implying that the boundary

treatment is unlikely to be a significant source of error in practical applications.

IMPLEMENTATION

Given a set of symbolic equations that hold on the boundary surface and a discretized

signed-distance function (SDF) encapsulating the boundary position, a corresponding

immersed boundary scheme and modified stencils implementing this boundary can be

automatically devised via the method outlined. A framework to do so, Schism, was
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developed as a plugin for Devito. This was done not only to expediate and simplify

the implementation of the following test cases but to explore synergies between this

generalised immersed boundary method and code generation. Due to the high-level

nature of the abstractions created, the introduction of an immersed boundary to a

numerical model written in Devito can be achieved with only a handful of additional

lines of code and a qualitative understanding of the low-level mathematics.

This enabled all the examples shown in this paper to be implemented with a com-

mon codebase - only the top-level model specification is changed between examples.

The unprecedented flexibility of this approach enables a wide range of geophysical

scenarios to be condensed into an understandable, repurposable form, enabling max-

imum code reuse. Whilst a comprehensive overview of the mechanisms by which this

was achieved is beyond the scope of this paper, the proceeding examples all leverage

this functionality.

NUMERICAL EXAMPLES

Reflecting the wide range of relevant geophysical applications, a suite of examples

showcasing our approach is presented. These examples are designed to resemble

problems of interest and are based on real-world topography.
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2D 2nd-order acoustic free-surface

The first example is based on an East-West profile across the summit of Mount St

Helens, Washington, USA. With near-vertical crater walls, a mixture of concavity

and convexity on the crater floor, and steep, uneven flanks rising over a kilometre

from the surrounding landscape, it represents an ideal test for the method proposed.

The topographic surface was represented as an SDF discretised onto the FD grid.

This representation has several advantages; its mathematical properties lend them-

selves to straightforward geometry handling, and it ensures that the resolution of

the surface and resultant accuracy of the surface representation within the numerical

scheme are consistent with the interior discretization. The surface can be located

with much finer precision than the FD discretization, despite its discretization on the

same grids, and the SDF can be constructed from high-resolution digital elevation

models (DEMs) without the requirement to downsample or alias the raw data to

match the FD grid. This is beneficial for real-world applications where such data

may be structured or unstructured, or more finely resolved than the discretization

required for numerical-dispersion-free wavefield propagation.

Material properties are homogeneous throughout the model domain, such that all

topographic interactions observed are a product of the boundary treatment rather

than any material discontinuity. Inclusion of a material contrast at the surface is

unnecessary. Furthermore, care must be taken to avoid inconsistency between implicit

interfaces represented by material parameters and the explicit interface encapsulated
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by the immersed boundary. Variable material parameters are a separable concern

and are trivially included.

The free-surface boundary condition is imposed on the pressure field on the topo-

graphic surface. The remaining edges of the computational domain have zero Dirichlet

boundary conditions imposed for simplicity. Damping boundary conditions would be

applied along these edges in practice. These are straightforwardly combined with the

method presented in this paper.

A Ricker wavelet with a peak frequency of 8Hz is injected below the lava dome,

at an elevation of 1250m. Placing the source close to the surface maximises the

observed interaction between wavefield and topography. ∆x = ∆y = 30m and the

Courant number is set to 0.5. The spatial discretization used is fourth-order accurate:

a precedent continued to all other examples shown. The temporal discretization is

second-order accurate, as used in all examples presented in this work.

The uneven topography results in several distinct reflections, with further minor

reverberations trailing the main wavefront, shown in Figure 16. Also apparent is the

focusing and defocusing effect of concave and convex topography respectively, and the

diffraction of the wavefront around obstructions. This yields a much more complex

series of arrivals than would be observed for a flat surface, although first arrivals are

only mildly distorted, in agreement with previously published findings.
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2D 2nd-order acoustic rigid-surface

The free surface is not the only boundary condition of geophysical interest in the

context of wavefield propagation. For acoustic waves propagating in the air, the

Earth represents an extremely dense and essentially immobile surface: zero particle

velocity at the interface corresponds to a rigid surface. The Mount St Helens profile

used in the previous example once again features, although the surface now forms the

lower bound of the domain.

A 1Hz Ricker source is placed at an elevation of 2600m above the lava dome.

Located only slightly above the crater rim, this location was chosen to capture rever-

beration within the crater without trapping the majority of the wave.

Figure 17 shows the propagating wavefield, including the multiple distinct reflected

wavefronts. Note the reversed polarity of these wavefronts versus those found in the

previous example. Considerable reverberation within the crater is observed, alongside

the wavefront diffracting over obstacles (most notably the crater rim).

3D 2nd-order acoustic free-surface

Whilst in many cases, wave propagation within a 3D physical domain can be ad-

equately approximated along a suitable transect, this requires homogeneity in the

omitted dimension. Where strong topographic variation in all directions is present,

full 3D modelling is necessary to achieve realistic wavefield propagation.

This example was parameterised as in the prior 2D free surface example. Figure
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18 shows the results of wavefield interaction with the volcanic topography. The first

arrivals radiate outwards with minimal interruption, diffracting around obstacles in

their path, with complex trains of reflected wavefronts from larger-scale surfaces form-

ing a layered series of distinct arrivals. With only first arrivals remaining relatively

unaffected, it is apparent that a flat surface will not adequately reproduce wavefield

behaviour observed in rough terrain.

Wavefield slices shown in Figure 19 are superficially similar to the 2D approxi-

mations shown in Figure 16: the position, shape, and relative amplitude of major

wavefronts are the same. On closer inspection however, greater complexity emerges:

the main wavefronts contain additional reflections and smaller-scale differences are

visible, particularly around the crater rim where some out-of-plane reverberations

are visible.

3D 2nd-order acoustic rigid-surface

The previous rigid surface example is extended to 3D, the results of which are shown

in Figure 20. Pronounced out-of-plane reflections are observed, particularly within

the confines of the caldera where complex and protracted reverberations can be seen.

Reflected wavefronts become more confused in 3D, exhibiting less coherency and

continuity due to the wide range of paths taken by its constituent reflections.

These effects are particularly apparent when comparing Figure 21 to Figure 17,

demonstrating the strongly 3D nature of wavefield propagation in this test case.
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2D 1st-order acoustic free-surface

The immersed boundary approach presented in this paper is equally applicable to the

1st-order formulation of the acoustic wave equation, and to this end, the parameter-

isation and geometry from the prior 2D 2nd-order acoustic free-surface example are

revisited, the results of which are shown in Figure 22.

Reflection geometries are as in the 2nd-order example, with particle velocity fields

highlighting the partitioning of energy between horizontal and vertical particle mo-

tion, dependent on the orientation of the reflector. Clean, artefact-free reflections

imply the accuracy of the vector boundary condition implementation.

3D 1st-order acoustic free-surface

Results of 3D test case featuring the 1st-order acoustic wave equation are shown

in Figure 23. The pattern of radiation is identical to that in the equivalent 2nd-

order test case (note that the wavefields differ between the two as the same time

series was injected). Figure 24 shows wavefield snapshots. The y particle velocity

field exemplifies the strongly 3D nature of interaction with topography, with reflected

energy into the page strongly apparent. As with the 2nd-order formulation, reflections

become more complex and confused in 3D due to the nature of the topography.

In this test case, it was found that undesirably large particle velocity stencils were

required at a small number of of points, highlighting limitations of the Taylor series

as a basis. It is anticipated that this could be avoided by improvements to the choice
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of basis, linear system construction, and solver used. Alternatively, the construction

of a more targeted support region may aid in alleviating this issue. For this test case,

a basis-order-reduction strategy (as used by Mulder, 2017) was used at points where

insufficient information was present to construct the extrapolant to limit stencil size.

1994 Canadian Foothills Model

To demonstrate the capacity of the immersed boundary approach described in this

paper to handle the complexities of imaging applications, combining sharply vary-

ing topography with inhomogeneous material parameters, sources and receivers, and

absorbing boundary conditions, a test case based on the 1994 BP Migration from To-

pography synthetic is presented. The 2nd-order acoustic wave equation is solved, with

free surface conditions imposed on the topography. Sochacki sponge layers (Sochacki

et al., 1987) are applied on all remaining edges to damp outgoing waves. A 20Hz

Ricker source was injected and the model ran for 3000ms, the results of which are

shown in Figure 25, with the corresponding shot gather shown in Figure 26.

The immersed boundary is demonstrably effective in this capacity, producing ac-

curate results, evidenced by the clean shot gathers and lack of artefacts in the prop-

agating wavefield. The separability of the boundary treatment from other aspects of

the model including the velocity model, absorbing boundary conditions, sources, and

receivers made it straightforward to integrate into the model, avoiding the need for

any notable reworking.
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CONCLUSIONS

A general immersed boundary treatment is presented, enabling a consistent method-

ology to be applied across multiple wave equations and boundary conditions. The

boundary is encapsulated by modified FD stencils with a circular support region

and spatially-variant coefficients, using an N-dimensional Taylor-series extrapolation

scheme to continue the field beyond the edge of the domain. As the approach pro-

posed naturally accommodates the implementation of higher-dimensional and vector

boundary conditions, and it is not necessary to make any application-specific approx-

imations to the boundary. The efficacy of this approach was demonstrated via con-

vergence tests and a range of numerical examples featuring real-world topography,

implementing both free and rigid surfaces with the first and second-order acoustic

wave equations in 2D and 3D. The generality of the method presented enabled the

development of a high-level framework, Schism, allowing all of these examples to be

implemented via a broadly common codebase. This approach to immersed boundary

implementation synergises with emerging code-generation approaches to FD kernel

implementation, which was leveraged throughout this paper.

CODE AVAILABILITY AND REPRODUCIBILITY

Schism is an open-source codebase and can be found at https://github.com/devitocodes/

schism. This repository contains all examples shown in this paper (excluding the 1994

BP Migration from Topography example), and a suite of unit tests. Schism can be

installed from this repository as a Python module using Pip, or alternatively, a Dock-
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erfile to run the code is also included. The codebase at the time of publication is

archived on Zenodo at https://zenodo.org/records/10726479.
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APPENDIX A

BOUNDARY EFFECT ON MATRIX STRUCTURE

The boundary serves both to truncate the support region (as no gridpoints lie beyond

it) and to introduce additional constraints to the polynomial fitting. This profoundly

alters the linear system that must be solved to fit the polynomial, particularly where

boundary conditions linking fields are present: the case of the particle velocity bound-

ary condition for the free surface is one such example.

In free space, the stencil has an uninterrupted circular footprint comprising en-

tirely of interior points. The corresponding matrix has a block-diagonal structure, as

shown in Figure A-1b, with each block corresponding to one of the fields. Each block

can be inverted separately, meaning that the resultant polynomial extrapolations have

no impact on one another. Note that splitting the matrix up in this manner consid-
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erably reduces the computational cost of finding the matrix inverse (or pseudoinverse

as required), and it is thus desirable to do so where possible.

Inserting a 45°free-surface boundary truncating the support region, both the inter-

nal structure of the blocks and the overarching structure of the matrix are altered as

shown in Figure A-2b. Inclusion of particle velocity boundary conditions merges the

corresponding blocks, requiring them to be inverted in tandem. Resulting polynomial

extrapolations will be dependent on both fields. As the pressure boundary conditions

only concern the pressure field, this block retains its independence.

Whilst the matrices corresponding to these hyperspherical support regions will

have consistently overdetermined blocks in free space, this may not be the case when

boundaries are introduced. If a block becomes underdetermined, the radius of the

support regions for functions contained therein can be expanded, introducing addi-

tional rows to the block until sufficient information is present.

APPENDIX B

EXACT SOLUTION USED FOR CONVERGENCE TESTS

The convergence tests detailed in this paper are based on an exact solution introduced

by Mulder (2017). The pressure field is given as

p(t, x, y) = cos(mx1 − αt)cos
(πy1

2

)
, (B-1)
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where

x1 = x− Asin(x)cosh(y), (B-2)

and

y1 = y − Acos(x)sinh(y). (B-3)

The parameter α is given by

α = c0

√
m2 +

(π
2

)2
, (B-4)

whilst the celerity field is given as

c(x, y) = c0
(
(1− Acos(c)cosh(y))2 + (Asin(x)sinh(y))2

) 1
2 . (B-5)

In the convergence tests shown, this solution was parameterised with c0 = 1, m = 8,

and A = 1
4
. For the first-order convergence test, density was set to 1. The particle

velocity solutions are

vx =− m

α
(1− Acos(x)cosh(y)) cos(mx1 − αt)cos

(πy1
2

)
+

π

2α
Asin(x)sinh(y)sin(mx1 − αt)sin

(πy1
2

)
,

(B-6)

and

vy =
m

α
Asin(x)sinh(y)cos(mx1 − αt)cos

(πy1
2

)
+

π

2α
(1− Acos(x)cosh(y)) sin(mx1 − αt)sin

(πy1
2

)
.

(B-7)

The free surface is defined by y1 = −1 and the solution is periodic in x ∈ [0, 2π).

Zero pressure and zero particle velocity flux are imposed at y = 0.
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Š. Ivan, L. Guasch, C. Win, G. Conroy, and A. Bertrand, 2013, Anisotropic 3D

full-waveform inversion: Geophysics, 78, 59–80.

Wu, H., C. Sun, S. Li, J. Tang, and N. Xu, 2021, Mesh-free radial-basis-function-

generated finite differences and their application in reverse time migration: Geo-

physics, 86, S91–S101.

Zahradnik, J., P. Moczo, and F. Hron, 1993, Testing four elastic finite-difference

schemes for behaviour at discontinuities: Bulletin of the Seismological Society of

55



America, 83, 107–129.

Zeng, C., J. Xia, R. D. Miller, and G. P. Tsoflias, 2012, An improved vacuum formu-

lation for 2D finite-difference modeling of Rayleigh waves including surface topog-

raphy and internal discontinuities: Geophysics, 77, 1–9.

Zhang, D., G. Zhan, G. T. Schuster, and K. Abdullah, 2013a, Multi-source least-

squares reverse time migration with topography: SEG Technical Program Extended

Abstracts, 3736–3740.

Zhang, W., and X. Chen, 2006, Traction image method for irregular free surface

boundaries in finite difference seismic wave simulation: Geophysical Journal Inter-

national, 167, 337–353.

Zhang, W., Z. Zhang, and X. Chen, 2012, Three-dimensional elastic wave numerical

modelling in the presence of surface topography by a collocated-grid finite-difference

method on curvilinear grids: Geophysical Journal International, 190, 358–378.

Zhang, Z., W. Zhang, H. Li, and X. Chen, 2013b, Stable discontinuous finite-difference

seismic wave modelling: Geophysical Journal International, 1179–1188.

Zhebel, E., S. Minisini, A. Kononov, and W. A. Mulder, 2014, A comparison of contin-

uous mass-lumped finite elements with finite differences for 3-D wave propagation:

Geophysical Prospecting, 63, 1111–1125.

56



LIST OF FIGURES

1 A selection of 2D support region footprints with radii of 1.5, 2.5, and 3.5

respectively. The vertical black cross designates the stencil centre (the position at

which the stencil is applied), green crosses are interior points, and the dotted black

line shows the extent of the support region.

2 A 2D support region footprint for a 4th-order basis consisting of points X

and its correspondence to the matrix A (the structure of which is shown on the right).

The support region radius is marked by a dashed grey line. The stencil points in each

box correspond to the matrix rows in the connected box, containing coefficients of

the polynomial expansion at that point. The order of derivatives to which coefficients

correspond increases from left to right. Colours within the matrix plot correspond to

the values of those elements, with yellows and blues representing positive and neg-

ative values respectively. The vertical black cross designates the stencil centre: the

position at which the stencil is applied and expansion point for the polynomial.

3 The effect of truncation of the stencil footprint shown in Figure 2 by a

45°boundary. The support region radius is marked as a dashed grey line, whilst the

boundary is denoted with a solid grey line.

4 The effect of adding boundary constraints to the truncated support region

shown in Figure 3. The support region radius is marked as a dashed grey line, whilst

the boundary is denoted with a solid grey line. Boundary points where conditions

are imposed are shown as hollow green crosses. Solid green dots show the centre of

FD cells containing a boundary point; the normal from this point to the boundary is
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shown as a green line. Boundary conditions increase in order towards the bottom of

the matrix. Note that the highest-order boundary conditions here are invariant with

position and thus redundant. Where multiple boundary conditions are imposed, a

single boundary point will correspond to multiple constraints.

5 Construction of the support region in the vicinity of the boundary. Symbols

are as in Figures 1 and 4. The solid black line represents the boundary surface. Hol-

low black crosses are considered to be outside or too close to the boundary for the

purposes of constructing the extrapolant (as defined in the proceeding section).

6 The stencil footprint of a 4th-order-accurate ∂2p
∂y2

stencil truncated by an

arc-shaped boundary. The bold black cross is the stencil position, whilst pale green

crosses are other interior points within the stencil. Values at both hollow black crosses

are required by the stencil but are located outside the computational domain.

7 Support region for a 2D polynomial fitted with a combination of available

interior points and boundary points.

8 Interior points within the support region and structure of the corresponding

submatrix. Rows in the matrix from top to bottom correspond to points within the

support region working downwards from left to right.

9 Boundary points within the support region and structure of the correspond-

ing submatrix. Grey arrows indicate the vector xb−x0 for these points. Rows in the

matrix from top to bottom correspond to points from left to right.

10 Comparison of the standard stencil footprint and weights to that of the modi-

fied boundary operator for the case illustrated in Figure 6. Colours indicate the values

of stencil weights at each point.
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11 Snapshots at 700ms of a wavefront reflecting off a sinusoidal hill. The left-

most example implements the free surface as a vacuum layer, whilst the remaining

subfigures impose this condition as an immersed boundary. The centre subfigure

shows the results of an immersed boundary treatment based on axially-aligned 1D ex-

trapolations as in Mulder (2017), whilst the rightmost subfigure shows the interaction

of the wavefield with an immersed free surface based on N-dimensional extrapolants

with circular support regions. Resolution and discretization is identical for all runs;

only the boundary treatment is altered. The location of the Ricker source is marked

with a red star. Wavefield amplitudes are normalised against the maximum absolute

value in each subfigure. This convention is continued henceforth.

12 The exact solution at t = 0 is shown in the left subfigure. The solid black

line is the free surface, the left and right sides of the domain have periodic bound-

ary conditions applied, and the wavefield is mirrored across the lower boundary. A

comparison of the convergence behaviour of the method proposed to one using 1D

approximations is shown on the right.

13 Assembling A for the particle velocity fields. Horizontal arrows correspond

with vx points used to construct the extrapolant, whilst vertical arrows are the re-

spective vy points. The black cross designates the expansion point. Note that only

the subgrids of concern are shown for clarity. Note how the interior points of each

field correspond with an independent block, whilst the boundary condition rows span

both.

14 The structure of the Moore-Penrose pseudoinverse of A shown in Figure

13.
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15 Convergence of the numerical scheme for the 1st-order formulation of the

acoustic wave equation using the same setup shown in Figure 12a. Note that scales

are slightly different in this figure.

16 Snapshots of the 2D 2nd-order acoustic wavefield interacting with a free

surface at 375ms, 750ms, 1125ms, and 1500ms. Celerity is 2.5km/s throughout the

model. The black line designates the isosurface s(x, y) = 0 on the SDF, coinciding

with the surface. The wavefield shown in each snapshot is normalised for clarity.

17 Snapshots of the 2D 2nd-order acoustic wavefield interacting with a rigid

surface at 2.5s, 5s, 7.5s, and 10s. Celerity is 350m/s throughout the model. Parame-

ters are altered in this example to better reflect infrasound propagation problems to

which this boundary condition is applicable. The wavefield shown in each snapshot

is normalised for clarity.

18 Render of the 3D 2nd-order acoustic wavefield at 1125ms, showing the free

surface topography. Slices of the wavefield are shown aligned and diagonal to each

compass direction for clarity. Wavefield transparency is scaled with amplitude to

emphasise the wavefronts.

19 Slices through the 3D 2nd-order acoustic wavefield interacting with the free

surface on the profile used for the 2D examples. Snapshots are at 375ms, 750ms,

1125ms, and 1500ms respectively. Celerity is 2.5km/s throughout the model. The

black line designates the isosurface s(x, y, z) = 0 on the SDF, coinciding with the

surface. The wavefield shown in each snapshot is normalised for clarity.

20 Render of the 3D 2nd-order acoustic wavefield at 7.5s, interacting with the

topographic rigid surface. Slices of the wavefield are shown aligned and diagonal to
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each compass direction for clarity. Wavefield transparency is scaled with amplitude

as before.

21 Snapshots of the 3D 2nd-order acoustic wavefield interacting with the rigid

surface at 2.5s, 5s, 7.5s, and 10s. The transect is chosen to match that used for the

2D examples. Celerity is 350m/s throughout the model. The wavefield shown in each

snapshot is normalised for clarity.

22 An irregular free surface implemented for the 1st-order acoustic wave equa-

tion in 2D. Snapshots of the pressure (left), x particle velocity (middle), and y particle

velocity (right) wavefields at 375ms, 750ms, 1125ms, and 1500ms. Celerity is 2.5km/s

throughout the model, density is homogeneous throughout. The black line designates

the isosurface s(x, y) = 0 on the SDF, coinciding with the surface. The wavefields

shown in each snapshot are normalised for clarity.

23 Render of the pressure wavefield at 1125ms when solving the 3D 1st-order

acoustic wave equation in the presence of free surface topography. Slices of the wave-

field are shown aligned and diagonal to each compass direction for clarity. Wavefield

transparency is scaled with amplitude to emphasise the wavefronts.

24 Snapshots of the pressure (left), x particle velocity (middle left), y particle

velocity (middle right), and z particle velocity (right) wavefields at 375ms, 750ms,

1125ms, and 1500ms. The ty-axis is oriented into the page. Celerity is 2.5km/s

throughout the model, density is homogeneous throughout. The black line designates

the isosurface s(x, y, z) = 0 on the SDF, coinciding with the surface. The wavefields

shown in each snapshot are normalised for clarity.

25 A snapshot of the wavefield propagating through the 1994 BP Migration
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from Topography synthetic at 3000ms. The free surface, shown as a black line, is im-

plemented using the same immersed boundary treatment as demonstrated in Figure

16. The source location is shown as a red star, whilst decimated receivers used to

generate Figure 26 are shown in orange.

26 The shot gather for the geometry shown in Figure 25. The minimal noise,

smoothness of the reflectors, and clearly defined diffractions demonstrate the accu-

racy achieved by the immersed boundary approach.

A-1 A circular support region in free space and its corresponding matrix structure

for the first-order acoustic wave equation. Nonzero elements are black, zero elements

are white. Staggered particle velocity subgrids are omitted to prevent excessive clut-

tering. Individual blocks are highlighted in green, and from top-left to bottom-right

correspond to pressure, horizontal particle velocity, and vertical particle velocity. It

is clear that this matrix can be split into three smaller systems which can be solved

individually; each polynomial can be fitted independently of the others.

A-2 A circular support region cut by a diagonal boundary and its corresponding

matrix structure for the first-order acoustic wave equation. Nonzero elements are

black, zero elements are white. Staggered particle velocity subgrids are omitted to

prevent excessive cluttering. Blocks are highlighted with solid green boxes, with the

dashed green lines separating rows corresponding to interior points and those corre-

sponding to boundary conditions. Note that the previously separate particle velocity

blocks have become merged, as the zero-divergence boundary condition and corre-

sponding higher-order conditions span both particle velocity fields.
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Figure 1: A selection of 2D support region footprints with radii of 1.5, 2.5, and 3.5

respectively. The vertical black cross designates the stencil centre (the position at

which the stencil is applied), green crosses are interior points, and the dotted black

line shows the extent of the support region.

Caunt et al. –
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Figure 2: A 2D support region footprint for a 4th-order basis consisting of points X

and its correspondence to the matrix A (the structure of which is shown on the right).

The support region radius is marked by a dashed grey line. The stencil points in each

box correspond to the matrix rows in the connected box, containing coefficients of

the polynomial expansion at that point. The order of derivatives to which coefficients

correspond increases from left to right. Colours within the matrix plot correspond to

the values of those elements, with yellows and blues representing positive and negative

values respectively. The vertical black cross designates the stencil centre: the position

at which the stencil is applied and expansion point for the polynomial.

Caunt et al. –
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Figure 3: The effect of truncation of the stencil footprint shown in Figure 2 by a

45°boundary. The support region radius is marked as a dashed grey line, whilst the

boundary is denoted with a solid grey line.

Caunt et al. –
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Figure 4: The effect of adding boundary constraints to the truncated support region

shown in Figure 3. The support region radius is marked as a dashed grey line, whilst

the boundary is denoted with a solid grey line. Boundary points where conditions

are imposed are shown as hollow green crosses. Solid green dots show the centre of

FD cells containing a boundary point; the normal from this point to the boundary is

shown as a green line. Boundary conditions increase in order towards the bottom of

the matrix. Note that the highest-order boundary conditions here are invariant with

position and thus redundant. Where multiple boundary conditions are imposed, a

single boundary point will correspond to multiple constraints.

Caunt et al. –
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Figure 5: Construction of the support region in the vicinity of the boundary. Symbols

are as in Figures 1 and 4. The solid black line represents the boundary surface. Hollow

black crosses are considered to be outside or too close to the boundary for the purposes

of constructing the extrapolant (as defined in the proceeding section).

Caunt et al. –
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Figure 6: The stencil footprint of a 4th-order-accurate ∂2p
∂y2

stencil truncated by an

arc-shaped boundary. The bold black cross is the stencil position, whilst pale green

crosses are other interior points within the stencil. Values at both hollow black crosses

are required by the stencil but are located outside the computational domain.

Caunt et al. –
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Figure 7: Support region for a 2D polynomial fitted with a combination of available

interior points and boundary points.

Caunt et al. –
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(a) (b)

Figure 8: Interior points within the support region and structure of the corresponding

submatrix. Rows in the matrix from top to bottom correspond to points within the

support region working downwards from left to right.

Caunt et al. –
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(a) (b)

Figure 9: Boundary points within the support region and structure of the correspond-

ing submatrix. Grey arrows indicate the vector xb−x0 for these points. Rows in the

matrix from top to bottom correspond to points from left to right.

Caunt et al. –
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Figure 10: Comparison of the standard stencil footprint and weights to that of the

modified boundary operator for the case illustrated in Figure 6. Colours indicate the

values of stencil weights at each point.

Caunt et al. –
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Figure 11: Snapshots at 700ms of a wavefront reflecting off a sinusoidal hill. The

leftmost example implements the free surface as a vacuum layer, whilst the remain-

ing subfigures impose this condition as an immersed boundary. The centre subfigure

shows the results of an immersed boundary treatment based on axially-aligned 1D ex-

trapolations as in Mulder (2017), whilst the rightmost subfigure shows the interaction

of the wavefield with an immersed free surface based on N-dimensional extrapolants

with circular support regions. Resolution and discretization is identical for all runs;

only the boundary treatment is altered. The location of the Ricker source is marked

with a red star. Wavefield amplitudes are normalised against the maximum absolute

value in each subfigure. This convention is continued henceforth.

Caunt et al. –
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(a) (b)

Figure 12: The exact solution at t = 0 is shown in the left subfigure. The solid

black line is the free surface, the left and right sides of the domain have periodic

boundary conditions applied, and the wavefield is mirrored across the lower boundary.

A comparison of the convergence behaviour of the method proposed to one using 1D

approximations is shown on the right.

Caunt et al. –
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Figure 13: Assembling A for the particle velocity fields. Horizontal arrows corre-

spond with vx points used to construct the extrapolant, whilst vertical arrows are the

respective vy points. The black cross designates the expansion point. Note that only

the subgrids of concern are shown for clarity. Note how the interior points of each

field correspond with an independent block, whilst the boundary condition rows span

both.

Caunt et al. –
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Figure 14: The structure of the Moore-Penrose pseudoinverse of A shown in Figure

13.

Caunt et al. –
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Figure 15: Convergence of the numerical scheme for the 1st-order formulation of the

acoustic wave equation using the same setup shown in Figure 12a. Note that scales

are slightly different in this figure.

Caunt et al. –
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Figure 16: Snapshots of the 2D 2nd-order acoustic wavefield interacting with a free

surface at 375ms, 750ms, 1125ms, and 1500ms. Celerity is 2.5km/s throughout the

model. The black line designates the isosurface s(x, y) = 0 on the SDF, coinciding

with the surface. The wavefield shown in each snapshot is normalised for clarity.

Caunt et al. –
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Figure 17: Snapshots of the 2D 2nd-order acoustic wavefield interacting with a rigid

surface at 2.5s, 5s, 7.5s, and 10s. Celerity is 350m/s throughout the model. Parame-

ters are altered in this example to better reflect infrasound propagation problems to

which this boundary condition is applicable. The wavefield shown in each snapshot

is normalised for clarity.

Caunt et al. –
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Figure 18: Render of the 3D 2nd-order acoustic wavefield at 1125ms, showing the

free surface topography. Slices of the wavefield are shown aligned and diagonal to

each compass direction for clarity. Wavefield transparency is scaled with amplitude

to emphasise the wavefronts.

Caunt et al. –
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Figure 19: Slices through the 3D 2nd-order acoustic wavefield interacting with the

free surface on the profile used for the 2D examples. Snapshots are at 375ms, 750ms,

1125ms, and 1500ms respectively. Celerity is 2.5km/s throughout the model. The

black line designates the isosurface s(x, y, z) = 0 on the SDF, coinciding with the

surface. The wavefield shown in each snapshot is normalised for clarity.

Caunt et al. –
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Figure 20: Render of the 3D 2nd-order acoustic wavefield at 7.5s, interacting with the

topographic rigid surface. Slices of the wavefield are shown aligned and diagonal to

each compass direction for clarity. Wavefield transparency is scaled with amplitude

as before.

Caunt et al. –
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Figure 21: Snapshots of the 3D 2nd-order acoustic wavefield interacting with the rigid

surface at 2.5s, 5s, 7.5s, and 10s. The transect is chosen to match that used for the

2D examples. Celerity is 350m/s throughout the model. The wavefield shown in each

snapshot is normalised for clarity.

Caunt et al. –
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Figure 22: An irregular free surface implemented for the 1st-order acoustic wave

equation in 2D. Snapshots of the pressure (left), x particle velocity (middle), and y

particle velocity (right) wavefields at 375ms, 750ms, 1125ms, and 1500ms. Celerity is

2.5km/s throughout the model, density is homogeneous throughout. The black line

designates the isosurface s(x, y) = 0 on the SDF, coinciding with the surface. The

wavefields shown in each snapshot are normalised for clarity.

Caunt et al. –
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Figure 23: Render of the pressure wavefield at 1125ms when solving the 3D 1st-

order acoustic wave equation in the presence of free surface topography. Slices of

the wavefield are shown aligned and diagonal to each compass direction for clarity.

Wavefield transparency is scaled with amplitude to emphasise the wavefronts.

Caunt et al. –
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Figure 24: Snapshots of the pressure (left), x particle velocity (middle left), y particle

velocity (middle right), and z particle velocity (right) wavefields at 375ms, 750ms,

1125ms, and 1500ms. The ty-axis is oriented into the page. Celerity is 2.5km/s

throughout the model, density is homogeneous throughout. The black line designates

the isosurface s(x, y, z) = 0 on the SDF, coinciding with the surface. The wavefields

shown in each snapshot are normalised for clarity.

Caunt et al. –
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Figure 25: A snapshot of the wavefield propagating through the 1994 BP Migration

from Topography synthetic at 3000ms. The free surface, shown as a black line, is

implemented using the same immersed boundary treatment as demonstrated in Figure

16. The source location is shown as a red star, whilst decimated receivers used to

generate Figure 26 are shown in orange.

Caunt et al. –
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Figure 26: The shot gather for the geometry shown in Figure 25. The minimal noise,

smoothness of the reflectors, and clearly defined diffractions demonstrate the accuracy

achieved by the immersed boundary approach.

Caunt et al. –
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(a) (b)

Figure A-1: A circular support region in free space and its corresponding matrix

structure for the first-order acoustic wave equation. Nonzero elements are black,

zero elements are white. Staggered particle velocity subgrids are omitted to prevent

excessive cluttering. Individual blocks are highlighted in green, and from top-left to

bottom-right correspond to pressure, horizontal particle velocity, and vertical particle

velocity. It is clear that this matrix can be split into three smaller systems which can

be solved individually; each polynomial can be fitted independently of the others.

Caunt et al. –
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(a) (b)

Figure A-2: A circular support region cut by a diagonal boundary and its correspond-

ing matrix structure for the first-order acoustic wave equation. Nonzero elements are

black, zero elements are white. Staggered particle velocity subgrids are omitted to

prevent excessive cluttering. Blocks are highlighted with solid green boxes, with the

dashed green lines separating rows corresponding to interior points and those corre-

sponding to boundary conditions. Note that the previously separate particle velocity

blocks have become merged, as the zero-divergence boundary condition and corre-

sponding higher-order conditions span both particle velocity fields.
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