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ABSTRACT 
  The high mitigation cost of clean innovations, 

warrants policy support for increased uptake. This study 
applies optimization techniques to investigate the 
impact of market-based policies in generating sufficient 
demand pull to trigger cost reduction under uncertainty. 
A novel Stochastic Market Potential Optimization model 
(SMPOM) is developed to maximize the cost difference 
between the initial cost of a technology and the new cost 
using a market-based policy. The model is applied to a 
case study of carbon capture and storage (CCS) in 32 
integrated steel plants in Europe. Results show policy 
induced demand pull can reduce the mitigation cost of 
CCS. 
 
Keywords: Clean technology uptake modelling, market-
based policy design, carbon capture and storage, Carbon 
tax, uncertainties using stochastic programming, Market 
Potential assessment  

NONMENCLATURE 
 

Abbreviations  

CCS Carbon capture and storage 
GHGs Greenhouse gases 
EIIs Energy intensive industries 
IAM Integrated assessment models 
MPA Market potential analysis 
EU ETS EU emissions trading system 

SMPOM 
Stochastic market potential 
optimisation model 

Symbols  

n Year  
𝐿𝑟 Learning rate 
𝜀 CO2 emission (t/yr) 

𝜔 CO2 tax ($/t)   
𝐴 Cumulative CO2 capture (t/yr) 
𝜑 Market share    
𝛾 CO2 capture rate 
𝛽 Market occupancy 
UC0 Initial cost of capture ($/t) 
A0 Initial CO2 captured (t/yr) 
𝜎 Standard deviation 
𝑥 Mean 
UC New cost of capture 

 

1. INTRODUCTION 

1.1 Background 

There is a strong consensus that interventions in 
form of policies, especially market-based 
instruments/fiscal instruments have supported the 
uptake of clean technologies by addressing the highest 
ranked barriers (high initial capital costs/large upfront 
investment). Examples of policy support are carbon 
taxation, feed-in schemes, and the EU Emissions Trading 
Scheme (EU ETS). In 2022, carbon tax in the UK was 
$23.65 per ton, while Sweden was $129.89 per ton 
making it the highest among European countries [1]. 
Even though carbon taxes have risen year-on-year from 
2020, uptake of clean technologies especially CCS is still 
very low, and there is still no way to quantify their impact 
on generating demand-pull for CCS in heavy industry. 
Effective policy instruments achieve technology uptake 
by lowering financial barriers to a point where demand 
pull for the technology is created. Uncertainties in key 
elements required to formulate adequate policy support 
for clean technology uptake would be a critical challenge 
for their development [2]. Key elements of uncertainties 
are the technology learning rate (measures reduction in 
cost for every doubling of capacity), performance, value 
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of policy support for example carbon tax, and technology 
cost. Learning rates for CCS range from 3% to 14%, and 
the performance (capture rate) of commercially 
available post-combustion CCS technologies range from 
63% to 73%.  

Globally, the iron and steel sector are responsible for 
11% of carbon dioxide emissions and 7-9% of GHGs 
emissions. The iron and steel sector also provides 
primary raw materials for the manufacture of clean 
technologies to decarbonize the entire economy; hence 
decarbonising the iron and steel sector is important.  
Post-combustion Carbon Capture and Storage (CCS) has 
been identified as a key technology to decarbonize steel 
production and is the most suitable due to ease of 
retrofitting into existing integrated steel plants [3]. 
Hence the focus of this study. There is no existing 
methodology to quantify the impact of policy support in 
generating sufficient demand for CCS in integrated steel 
plants to trigger reduction in capture cost under several 
uncertainties. Existing models for clean technology 
policy assessment and uptake are not sufficient. 

1.2 Literature Review 

A cleantech like CCS has been considered as the most 
suitable mitigation technology for integrated iron and 
steel plants [3]. As CCS plays an important role in 
decarbonizing iron and steel plants, reducing the 
mitigation cost to accelerate CCS adoption becomes 
necessitated. Modelling Carbon Capture and Storage 
(CCS) technology for techno-economic analysis [3], 
developing advanced configurations [4], analyzing 
different solvents [5], and carbon dioxide condensation 
[6] have been the main focus of current research on CCS 
integration in iron and steel plants. The financial barrier 
of CCS adoption, the necessity of business model and 
policies frameworks are constantly emphasized to 
increase uptake of CCS in most of existing studies. Yet, no 
studies have quantified the impact of policies to reduce 
CCS cost, and generate sufficient market pull to sustain 
cost reduction based on the technology learning from a 
market perspective, all under uncertainty. The field of 
clean technology uptake modelling under uncertainty is 
still new. 

When it comes to uncertainty, the focus of previous 
studies has been the technology characteristics. For 
example, Lee et al. [7] conclude that major challenges in 
designing CCS networks are variability of construction, 
operation cost, unpredictable events, permeability and 
porosity of reservoir, and fluctuation of carbon dioxide 
emission level of each source, which are technological 
uncertainties in CCS. In addition, porosity and 

permeability are the key parameters as the available 
capacity of reservoir may change orders of magnitude 
compared to the predicted one [8]. Han et al. [9] 
investigated the uncertainty in estimating carbon dioxide 
emissions as it is released from multiple sources from 
changing environments using stochastic programming. 
Stochastic programming is an optimization model where 
some of parameters are uncertain and can be illustrated 
by probability distribution. Bistline et al. [10] examined 
the influence of heat rate in CCS plants which affects 
carbon dioxide emissions. In addition to technological 
uncertainties, Vrijmoed et al. [11] studied the influence 
of policies by performing sensitivity analysis. A model 
was built to evaluate various policy scenarios such as 
carbon prices, CCS subsidies, and feed-in tariffs. 
However, their work did not quantify the impact of 
policies in creating a demand pull as it was done for a 
single plant. Koelbl et al. [12] investigated impacts of 
uncertainties in techno-economic parameters. Again, the 
impact of policies in generating sufficient demand to 
drive down costs was still not considered. The study of 
learning rate effects sheds light on how quickly a 
technology can improve and how it develops based on 
market developments. The carbon dioxide capture rate 
has a significant impact on electricity and carbon dioxide 
mitigation cost, it is necessary to gain insight into the 
future trends of carbon dioxide capture rate.  

The aim of this research is to develop a novel 
stochastic technology uptake optimization model which 
provides insight into the impact of policies in reducing 
the cost of clean technologies by generating sufficient 
demand, and the model will be applied to CCS uptake in 
32 integrated steel plants in Europe. With stochastic 
optimization, the uncertain parameters are illustrated by 
probability distribution. The aim is not to design the CCS 
plant; hence a generic model is used. The novel 
stochastic optimization model maximizes the cost 
difference between the initial carbon capture cost and 
new carbon capture cost due to policy implementation. 
This research can help in quantifying the impact of policy 
intervention, to increase industry’s confidence in 
adopting clean technologies like CCS. This study is the 
first to demonstrate how policies reduce cost and 
generate sufficient demand for CCS to trigger further 
cost reduction under uncertainty. 

2. METHODS 
The multi-layer methodology involves a sensitivity 

analysis in Section 2.1 to define which uncertain 
parameters have larger impact on the objective function, 
a probability distribution acquisition in Section 2.2 to 
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replace the certain parameters in the deterministic 
model with normally distributed uncertain parameters, 
and this is then used to build the stochastic optimization 
model in Section 2.3. The number of scenarios can be 
further determined (Section 2.4) by a trade-off between 
tractability issues and problem representation issues in 
the stochastic model. 

2.1 Sensitivity Analysis 

The uncertain parameters such as initial carbon 
dioxide captured, learning rate, initial capture cost, 
carbon dioxide capture rate, and carbon dioxide 
emissions per plant, etc. are allowed to vary by 0~20%, 
etc. to illustrate which parameter has larger effect on the 
objective function based on the deterministic 
representation of the problem. Results show the CCS 
learning rate and carbon dioxide capture rate have the 
highest impact. As a result, uncertainty to learning rate 
and capture rate are conducted in this study. 

2.2 Probability distribution acquisition 

As mentioned, stochastic programming requires 
probability distributions of the uncertain variables. 
Normal distribution plays an important role in 
engineering, genetics, statistics, social and natural 
sciences, etc. often used to describe real-value random 
variables whose distributions are not known. The central 
limit theorem from probability theory may explain why 
the independent random variables tend to be normally 
distributed, which establishes that a random variable, Y, 
the sum of independent random variables will also be 
normally distributed. As a result, probability distribution 
of learning rate and carbon dioxide capture rate are 
assumed to be normally distributed. Normal distribution 
contains two key parameters: mean and standard 
deviation. After acquisition of learning rate and capture 
rate samples, mean and standard deviation are obtained 
from the normal distribution calculator. 

2.3 Novel Stochastic Market Potential Optimisation 
Model  

The stochastic programming model is built in Pyomo 
which is a Python-based open-source optimisation 
model. The SMPOM optimisation model is provided in 
Equation (1)-(5). The objective function is to maximize 
the cost difference between initial CO2 capture cost and 
the cost after uptake of CCS from increased demand (Eq. 
1). New cost of capture is obtained by cumulative CO2 
capture (A) and learning parameter (B) shown in Eq. (2) 
to Eq. (4), respectively. In our model, initial CO2 capture 
cost and initial CO2 captured is set to be 55.4085 ($/t) and 

10000000 (t/yr.), respectively. The cumulative CO2 
capture is due to increased demand. After combining Eq. 
(1) to Eq. (4), the formulation of the objection function is 
represented by Eq. (5). Equation (6) makes sure carbon 
tax impact on cost is smaller than zero to incentivize 
uptake of CCS. Carbon tax impact on cost is equal to 
carbon capture cost at 63% capture rate minus tax to pay 
for each plant shown in Equation (7). Currently, the 
highest carbon tax is $129.89 in Sweden [1]. Therefore, 
the highest carbon tax is set to be $130 in Equation (8). 
In addition, the carbon tax is the degree of 
freedom/operational variable in our model. Equation (9) 
ensures market share (Eq. 11) obtained from the model 
does not exceed market occupancy (Eq. 10). By 
reformulating Eq. (3), market share for each plant can be 
shown in Eq. (11) and it only exists when Eq. (6) is 
satisfied. The stochastic model is built by replacing the 
fixed parameters with random variables which 
probability distributions are obtained in Section 3.1. The 
equations below (Eq. 12 and Eq.13) show the stochastic 
model. To generate 200 scenarios, “for i in range (200)” 
is written at the first line of the stochastic model where i 
represents the number of iterations. 

𝑚𝑎𝑥  𝑈𝐶0 − 𝑈𝐶                 (1) 

𝑈𝐶 = 𝑈𝐶0(
𝐴

𝐴0
)−𝐵                          (2) 

𝐴 = 𝐴0 + 𝛾 ∑ 𝜑𝑖 ∑ 𝜀𝑖
32
𝑖=1

32
𝑖=1               (3) 

𝐵 =
𝑙𝑜𝑔 (1−𝐿𝑟)

𝑙𝑜𝑔 (2)
                          (4) 

𝑚𝑖𝑛 𝑈𝐶0 [1 − (
𝐴0+𝛾 ∑ 𝜑𝑖 ∑ 𝜀𝑖

32
𝑖=1

32
𝑖=1

𝐴0
)

𝑙𝑜𝑔 (1−𝐿𝑟)

𝑙𝑜𝑔 (2)
]     (5) 

𝜀𝑖(𝑈𝐶0 − 𝛾 𝜔𝑖) ≤ 0   𝑖 = 1, … ,32      (6) 

𝑈𝐶0𝜀𝑖 − 0.63𝜀𝑖𝜔 ≤ 0   𝑖 = 1, … ,32              (7) 

𝜔𝑖 − 130 ≤ 0 𝑖 = 1, … ,32                (8) 

𝜑𝑖 − 𝛽𝑖 ≤ 0 𝑖 = 1, … ,32                       (9) 

𝛽𝑖 =
𝜀𝑖

∑ 𝜀𝑖
32
𝑖=1

 𝑖 = 1, … ,32                        (10) 

∑ 𝜑𝑖
32
𝑖=1 =

𝐴−𝐴0

𝛾 ∑ 𝜀𝑖
32
𝑖=1

                             (11)         

𝛾 = 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑛𝑜𝑟𝑚𝑎𝑙(𝑥𝛾 , 𝜎𝛾)         (12) 

𝐿𝑟 = 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑛𝑜𝑟𝑚𝑎𝑙(𝑥𝐿𝑟
, 𝜎𝐿𝑟

)        (13) 

 

2.4 Scenarios determination 

    The number of scenarios is determined to stabilize 
the objective function. Each scenario represents a real 
circumstance with a random learning rate and a random 
capture rate. Then, for each scenario, the model provides 
one optimal value and a carbon tax. the objective value 
becomes stable at 200 scenarios making it a suitable and 
acceptable number. Thus, the number of scenarios is set 
to be 200 in this research.  
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3. RESULTS AND DISCUSSION 

The data collected for this research includes the cost 
of capture for CCS technologies applicable to integrated 
steel plants, the emissions reduction potential of these 
technologies, the number of integrated steel plants in 
the EU, the location of each plant, the steel production 
capacity of the plants, and the carbon intensity of steel. 
The model is applied to investigate the adoption of 30% 
MEA Post Combustion Capture with 63% capture rate 
from blast furnace in 32 iron and steel plants across the 
EU (Table A.1 in the Appendix). Another novelty of this 
work is the application of the stochastic model to 32 
integrated steel plants in Europe. Results from the 
stochastic optimization are compared with the 
deterministic equivalent, as accounting for uncertainty 
could lead to better outcomes. 

 
The demand for CCS in integrated steel plants is 

denoted by the market share; hence with increased 
market share, the new capture cost decreases showing 
the impact of technology learning (Figure 1). The carbon 
tax is necessary to generate and sustain demand. The 
deterministic model shows the carbon tax remains the 
same (Figure 1). Initial cost of carbon capture is 55.4 
($/t), reducing to an optimal value of 27.8 ($/t) at 100% 
market share for the deterministic model (Figure 2). The 
reduction from increased demand is validated by the 
learning rate effect where cost reduces when technology 
providers accumulate experience. 

In the stochastic model in Eq. (12) and Eq. (13), 
randomized parameters replace the fixed parameters in 
the deterministic model. 200 scenarios are generated 
with various market shares, an optimal objective value 
and associated policy (carbon tax) are determined. 
Figure 1 shows the carbon tax required to achieve 
increased uptake of CCS; which is dependent on the 
demand pull. The carbon tax reduces the cost of capture 
and generates sufficient demand to sustain the cost 
reduction; hence the increase in the objective function 
(Figure 1).  At 100% market uptake, the cost of capture 
reduces by 72.7%, and the carbon tax is 102.6 $/t – only 
9.3 $/t higher than the carbon tax at the lowest market 
share. 
 

The new cost of capture is lower for the stochastic 
model (Figure 2) showing that considering uncertainty 
leads to better outcomes. A lower new cost of capture 
due to demand-pull from the carbon tax is obtained from 
the stochastic model. the new cost of capture is as low 
as 15.1 ($/t) at 100% market share for the stochastic 
model. Results also show that once the market share 
increases to 75%, it brings a significant cost reduction 
due to a carbon tax of 106.04 ($/t). Therefore, 
accounting for uncertainties in the learning rate and 
capture rate results in better decisions.  The model 
applied 200 scenarios to represent a real circumstance 
with a random learning rate and a random capture rate. 
Then, for each scenario, the model provides one optimal 
value (Figure 3), one carbon tax (Figure 4) and new cost 
of capture (Figure 5) from a spread of value per market 
share. The distribution of the plants for selected market 
shares is shown in Figure 6 – 17 plants adopt CCS when 
the market share is 25% (carbon tax of 108.9 $/t) and 
50% (Carbon tax of 111.3 $/t), and all plants adopt with 
a market share from 75% (resulting in carbon tax of 102.6 
$/t at 100% market uptake). The value of the carbon tax 
also reduces as demand pull increases. 

Whilst Stochastic programming is applied to 
integrate uncertainty in our optimisation model by 

 
Fig. 1. Impact of market uptake on objective value for 

stochastic and deterministic model  
 

 
Fig. 2. New cost of capture for the stochastic and 

deterministic model 
 

 
Fig. 3. Objective value spread for 200 scenarios. MS is 

market share 
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solving the problem for the number of scenarios, setting 

the number of scenarios requires making a trade-off 
between problem representation issues and tractability 
issues. The problem might be intractable if the number 
of scenarios used to approximate it is too large. On the 
contrary, if only a few scenarios are used, then the 
problem would not be represented appropriately. In our 
work, the number of scenarios is determined by 
investigating the relation between the optimal objective 
value and the number of scenarios. To further increase 
the robustness, the future work can define the number 
of scenarios by using sample average approach method. 
This model capability is in quantifying the cost reduction 
potential from demand-pull created by market-based 
policy support, the macro-economic impacts of 
decarbonising the end use sector is not within scope. 

4. CONCLUSIONS 
This study developed and applied a novel Stochastic 

Market Potential Optimisation Model to quantify the 
impact of policy support (carbon tax) in reducing cost and 
generating sufficient demand for a clean technology 
(CCS) in 32 integrated steel plants in the EU to reduce 
capture cost under uncertainty. The objective of the 
optimisation model is to maximise the difference 
between the initial cost of capture and new cost of 
capture, where the latter is determined from increased 
demand (i.e., market share).  This study also compares 
the results of the novel stochastic model with its 
deterministic counterpart.  Sensitivity analysis shows 

the learning rate and carbon capture rate have the 
highest impact on the outcome. Hence, they are 
assumed to be normally distributed. Results obtained 
validate the impact of increased demand on cost 
reduction via learning effects due to having a carbon tax. 
Results also show the stochastic model’s outcome is 
34.2% better than the deterministic model for the same 
market share (market demand).  A single policy (carbon 
tax) is investigated in our study, future work can apply 
the model to other policy support schemes.  The model 
shows that the range of carbon tax to generate sufficient 
demand in CCS is between 93 ($/t) and 121 ($/t), 
significantly lower than the current carbon tax published 
among European countries. Which means more can be 
done with less taxes if the decision process is optimised.  
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APPENDIX 
Table A.1 Data set for all plants 

 

Country PLANT CO2 

Emissions per 

plant (t/yr) 

Cost at 63% 

Capture rate 

($/yr) 

CO2 

emissions 

captured 

(t/yr) 

Poland ArcelorMittal Dąbrowa 

Górnicza  

6,840,000 378,994,140 5,171,040 

Poland ArcelorMittal Kraków  1,862,000 103,170,627 1,407,672 

Belgium Duferco La Louvière steel 

plant  

2,793,000 154,755,941 2,111,508 

Belgium ArcelorMittal Ghent  6,650,000 368,466,525 5,027,400 

Italy ILVA Taranto  8,170,000 452,687,445 6,176,520 

Romania Liberty Galati  3,990,000 221,079,915 3,016,440 

Czech Republic Liberty Ostrava a.s 3,990,000 221,079,915 3,016,440 

Czech Republic Třinecké železárny (TŽ)  4,765,200 264,032,584 3,602,491 

Slovakia U. S. Steel Košice, s.r.o  5,985,000 331,619,873 4,524,660 

Austria Voestalpine Stahl Donawitz 

Gmbh  

1,995,000 110,539,958 1,508,220 

Austria Voestalpine Stahl GmbH  7,980,000 442,159,830 6,032,880 

Hungary ISD Dunaferr Zrt.  2,128,000 117,909,288 1,608,768 

Serbia Hesteel Smederevo steel plant  2,926,000 162,125,271 2,212,056 

Germany Hüttenwerke Krupp 

Mannesmann GmbH  

2,090,000 115,803,765 1,580,040 

Germany Dillinger Hüttenwerke  3,724,000 206,341,254 2,815,344 

Germany ArcelorMittal Bremen  5,320,000 294,773,220 4,021,920 

Germany ArcelorMittal Duisburg  1,634,000 90,537,489 1,235,304 

Germany ArcelorMittal Eisenhüttenstadt  3,800,000 210,552,300 2,872,800 

Germany Saarstahl Völklingen 

Steelmaking Plant  

3,591,000 198,971,924 2,714,796 

Germany Salzgitter Flachstahl GmbH  8,740,000 484,270,290 6,607,440 

Germany ThyssenKrupp Steel Duisburg  15,960,000 884,319,660 12,065,760 

France ArcelorMittal Dunkerque  8,911,000 493,745,144 6,736,716 

France ArcelorMittal Florange steel 

plant  

4,256,000 235,818,576 3,217,536 

France ArcelorMittal Méditerranée - 

Fos sur Mer  

7,049,000 390,574,517 5,329,044 

Spain ArcelorMittal Asturias  6,650,000 368,466,525 5,027,400 


