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Abstract 

Influence of Amyloid Deposition and Neuroinflammation on Brain Connectivity and 
Cognition in Alzheimer's Disease Spectrum: A Multimodal Imaging Study 

A thesis submitted to Imperial College London for Doctor of Philosophy degree (PhD) by 
Fangda Leng, May 2021. 

Background: Neuroinflammation has been recognised as an important factor in the 
pathogenesis of Alzheimer’s disease (AD). In neurodegeneration, preclinical evidence has 
suggested that activated microglia, the main cells in neuroinflammation, could damage 
neuronal circuit structures and disrupt neuronal activity. β-amyloid (Aβ) deposition is one of 
the hallmarks of AD and is associated with neuroinflammation. However, there is limited 
clinical evidence on whether neuroinflammation and amyloid deposition influence brain 
connectivity and cognition. Therefore, this project interrogated the relationship between 
neuroinflammation, Aβ deposition and brain connectivity/cognition in Alzheimer’s spectrum, 
which covers preclinical, mild cognitive impairment and dementia stage of the AD. 

Methods: Cross-sectional multimodal imaging data at baseline and neuropsychological 
assessments at both baseline and follow-up visits were obtained from the ‘Amyloid and 
Neuroinflammation’ study, including 18 healthy volunteers, 54 MCI and 21 AD patients. 11C-
PBR28, 18F-Flutemetamol and 18F-AV1451 PET were used to quantify neuroinflammation, 
amyloid and tau pathology, respectively; T1-weighted MRI, diffusion tensor imaging, resting 
state functional MRI, and arterial spin labelling MRI measured the grey matter structure, 
structural connectivity, functional connectivity and cerebral blood prefusion status. Linear 
models, including principal component analysis, linear regression, and sparse canonical 
correlation analysis were then applied to interrogate the association between PET markers of 
Alzheimer’s pathology, MRI markers of brain connectivity and cognitive impairment.  

Results: 11C-PBR28 uptake was negatively associated with fractional anisotropy of white 
matter tracts in Aβ positive cohort (standardised β=-0.51, p=0.014, in multiple regression), 
independent of 18F-Flutemetamol uptake and cortical thickness. 11C-PBR28 uptake was 
associated with increased amplitude of low frequency fluctuation of BOLD signal in multiple 
regions including medial prefrontal cortex (MPFC), while 11C-PBR28 in MPFC was 
associated with decreased MPFC connectivity with posterior cingulate and precuneus 
(suggesting impaired communication within default mode network). MPFC 18F-Flutemetamol 
uptake was associated with local connectivity alterations mainly within frontal lobe. Global 
measure of 11C-PBR28 uptake was associated with decreased local efficiency of brain’s 
functional organisation (standardised β=-0.38, p=0.001), while 18F-Flutemetamol was not. 
11C-PBR28 uptake was also negatively associated with cerebral blood perfusion in multiple 
regions including precuneus and posterior cingulate. MRI measures of neuronal damage 
performed better in predicting baseline cognitive performance, while PET markers of 
amyloid, tau pathologies and neuroinflammation outperformed MRI measures in predicting 
future cognitive decline in patients.  

Conclusions: (1) neuroinflammation is associated with both structural and functional 
connectivity disruption in Alzheimer’s spectrum, which is independent of the amount of 
amyloid deposition; (2) neuroinflammation, amyloid deposition and tau pathology markers 
together have been found to predict longitudinal cognitive decline in MCI and AD patients, 
underlining their independent contributions; (3) neuroinflammation is associated with 
abnormal neuronal hyperactivity and impaired neurovascular coupling in AD. 
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Frequently used abbreviations 
Aβ β-amyloid 

AD Alzheimer’s disease 

AIF Arterial input function 

ALFF Amplitude of low-frequency fluctuations 

APP Amyloid precursor protein 

ASL Arterial spin labelling 

BBB Blood-brain barrier 

BOLD  Blood oxygen level dependent 

CBF Cerebral blood flow 

CCA Canonical correlation analysis 

CCB Corpus callosum body 

CCG Corpus callosum genu 

CCS Corpus callosum splenium 

DA Axial diffusivity 

DTI Diffusion tensor imaging 

DMN Default mode network 

DR Radial diffusivity 

DVR Volume of distribution ratio 

EPI Echo-planar imaging 

FA Fractional anisotropy 
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ICA Independent component analysis 
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Chapter 1. Introduction 

1.1 Alzheimer’s Disease 

Alzheimer’s disease (AD) is the most prevalent form of senile dementia and accounts for 

~60% of all clinical diagnosed dementia. It is estimated that ~10% people above 65 years old 

have AD, and ~40% for those aged above 85 years("2018 Alzheimer's disease facts and 

figures," 2018). Typical AD present with gradual memory impairment, and loss of other 

cognitive functions in language, visuospatial, executive function, complex attention, 

perceptual-motor, social cognition domains emerge at later stages of the disease (G. M. 

McKhann et al., 2011). Extracellular amyloid-β (Aβ) plaques, intracellular neurofibrillary 

tangles (NFT) and neuronal loss are typical pathological hallmarks of AD. Current 

understanding of AD has established a specific spatial-temporal pattern of amyloid 

deposition, starting from the neocortex, and extending sequentially to the allocortex, 

subcortical nuclei, brain stem and cerebellum (Thal, Rub, Orantes, & Braak, 2002). Within 

the telencephalon, it has been observed that the basal frontal and temporal regions are 

involved earliest, followed by other association neocortices, hippocampus and lastly primary 

motor and sensory cortices (Braak & Braak, 1997). Similarly, tau pathology follows a 

stereotypical pattern of emergence, starting from locus coeruleus, migrating sequentially to 

transentorhinal cortex, entorhinal cortex, CA1 and CA4 sector of hippocampus, association 

isocortex and eventually precentral/postcentral gyri (Alafuzoff et al., 2008; Braak & Braak, 

1991). Along disease trajectory, it has been suggested that Aβ deposition is the earliest event 

in the pathogenesis of AD, followed by formation of tau pathologies and neuronal losses in 

telencephalon (Jack et al., 2013), though emerging evidence suggests that tau pathology may 

start at mid-30s in locus coeruleus, decades before disease onset (Braak & Del Tredici, 2011). 

The original observations lead to the amyloid cascade hypothesis, which suggests that the 
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initial accumulation of amyloid toxicity leads to subsequent events including 

hyperphosphorylation of tau, NFT formation and neuronal damage (Hardy & Selkoe, 2002). 

While the central role of Aβ deposition in AD is not questionable based on the facts that 

dominantly inherited familial AD (FAD) is caused by either mutation on amyloid precursor 

protein (APP) itself or on genes of amyloid processing proteins (presenilin 1 and presenilin 

2), it is acknowledged that amyloid deposition alone is not sufficient for full clinical 

presentation of AD syndrome (Jack et al., 2013). For instance, in late disease stages, the 

amount of amyloid deposition plateaus while there are still ongoing neuronal damage and 

cognitive decline. Further, recent clinical trials of amyloid clearance strategies in AD patients 

has proved largely disappointing, in that while the amyloid deposition was successfully 

reduced, it did not significantly slow down disease progression (Lannfelt, Relkin, & Siemers, 

2014) (Small & Duff, 2008). Moreover, the large variance of individual resilience to amyloid 

deposition and propagation of tau pathology indicates other vital processes bridging the two 

pathologies and driving neuronal dysfunction in AD pathogenesis. Indeed, recent advances in 

the field have highlighted the important role of neuroinflammation and neurovascular 

pathways in AD pathogenesis (Leng & Edison, 2021; Zlokovic, 2011b). 

Following the 1984 NINCDS-ADRDA consensus on Alzheimer’s Disease diagnosis criteria 

(G. McKhann et al., 1984), in 2011, the National Institute on Aging-Alzheimer’s Association 

(NIA-AA) have updated clinical and research guidelines for diagnosis of dementia due to 

Alzheimer’s disease, mild cognitive decline (MCI) due to Alzheimer’s disease, and 

preclinical stages of Alzheimer’s disease, based on the hypothetical model of Alzheimer’s 

spectrum/continuum (patients considered to fall within the preclinical phase—MCI—

dementia due to AD are referred to as patients within Alzheimer’s spectrum in the current 

thesis) (Albert et al., 2011; G. M. McKhann et al., 2011; Sperling et al., 2011). International 

Working Group (IWG) for New Research Criteria for the Diagnosis of Alzheimer’s Disease 
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also recommended the classification of clinical phenotypes into typical AD and atypical AD, 

with the former having predominant episodic memory impairment and the latter including the 

posterior variant, logopenic variant, frontal variant and Down’s syndrome variant (Dubois et 

al., 2014). While imaging and fluid biomarkers have been incorporated into the NIA-AA 

(2011) research guidelines as evidence of Alzheimer’s pathophysiology, the core clinical 

criteria for diagnosing MCI and AD rely purely on clinical information and 

neuropsychological assessments, and still serve as the standard for clinical practice. 

Nevertheless, with the constant advances of understanding on AD, the research criteria (IWG 

and NIA-AA) have rapidly evolved over the past decades (Dubois et al., 2021). In 2018, 

NIA-AA proposed the A/T/N framework for a better biological definition of AD, with A 

referring to evidence of Aβ deposition, T reflecting evidence of tau pathology, and N 

standing for evidence of neuronal damage (Jack et al., 2018). The A/T/N framework is well 

received by the research community, as it facilitates clinical investigation into the highly 

heterogenous MCI/dementia population by providing an unbiased classification scheme, 

however, its generalisation to clinical practice is not recommended to date (Dubois et al., 

2021).  

1.2 Neuroinflammation: concept and components 

Various pathological conditions, including infection, ischemia, haemorrhage, trauma and 

protein aggregation can initiate an inflammatory response in the CNS, which is generally 

termed neuroinflammation. The major players in the inflammatory process are activated 

microglia and astrocytes, but other cells such as infiltrating macrophages and vascular 

endothelial cells also contribute to neuroinflammation. The activated cells usually lose their 

homeostatic functions  (Liddelow et al., 2017), and could further cause damage to neuronal 

structures directly or via various pro-inflammatory cytokines, chemokines and other 

messengers including IL-1β, IL-6, IL-18, TNF, CCL1, CXCL1, NO and prostaglandins 
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(DiSabato, Quan, & Godbout, 2016; Heneka, Kummer, & Latz, 2014; S. Hong et al., 2016). 

These pro-inflammatory molecules could further cause damage to neuronal cells and inhibit 

neurogenesis (Lyman, Lloyd, Ji, Vizcaychipi, & Ma, 2014; Micheau & Tschopp, 2003; 

Mishra, Kim, Shin, & Thayer, 2012). Meanwhile, in normal circumstances anti-inflammatory 

cytokines, such as IL-10 and IL-11, are also produced as negative feedback to the pro-

inflammatory pathways (Calsolaro & Edison, 2016). However, in neurodegenerative disease, 

chronic stimuli from abnormal protein aggregations could break the balance and cause 

persistent neuroinflammation, which is considered to facilitate the disease process (Heneka et 

al., 2015). 

1.2.1 Microglia 

Microglia are resident myeloid lineage immune cells in the CNS, which originate from the 

yolk sac and later migrate to the CNS during embryonic development (Ginhoux et al., 2010; 

Kierdorf et al., 2013). Under normal physiological conditions, microglia take a highly 

ramified form and survey the surrounding environment constantly with their fine processes 

(Nimmerjahn, Kirchhoff, & Helmchen, 2005). Microglia express various surface receptors 

for damage-associated molecular patterns (DAMPs) and pathogen-associated molecular 

patterns (PAMPs), which could recognise endogenous and exogenous pathological factors 

including Aβ and tau species and induce microglial activation (Heneka et al., 2015). 

Activated microglia lose the ramified morphology but gain the capability to internalise the 

pathogenic particles via endocytosis, phagocytosis or pinocytosis, degrade them by endocytic 

pathways and activate inflammatory associated genes including the those for cytokines and 

chemokines, which play central role in neuroinflammation (Sole-Domenech, Cruz, Capetillo-

Zarate, & Maxfield, 2016) (Owens, Khorooshi, Wlodarczyk, & Asgari, 2014). Under 

temporary stimuli, microglial activation could resolve by itself via negative feedback, while 

in the context of aging and neurodegeneration where there are constant stimuli from the 
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protein deposits, microglia are prone to sustained activation which is now considered to be a 

vital part of neurodegeneration (Leng & Edison, 2021; Spittau, 2017).  

Traditional histopathology method relied on cell morphology and immunohistochemistry 

markers such as CD68, HLA-DR, Iba-1 and arginase 1 (ARG1) to probe the function of 

microglia and it was proposed that activated microglia could fall in M1-M2 phenotypes, as 

macrophages do (Heneka et al., 2015; Hopperton, Mohammad, Trepanier, Giuliano, & 

Bazinet, 2018; Minett et al., 2016). With the M1-M2 dichotomy, the M1 type was supposed 

to be a pro-inflammatory phenotype while M2 type was anti-inflammatory(Varnum & Ikezu, 

2012).  However, emerging evidence from recent transcriptomic studies has challenged the 

over-simplified model, arguing that activated microglia do not follow the binary path at all 

(Ransohoff, 2016). Moreover, there have been suspicions that the traditional 

immunohistochemistry markers such as CD68 and HLA-DR lack the specificity to identify 

pro-inflammatory and ant-inflammatory microglia (Walker & Lue, 2015),(Kim, Nakamura, & 

Hsieh, 2016). Despite the ongoing debate, the pro- and anti-inflammatory framework is still 

in wide use, reflecting the hypothesis that activated microglia could be over all either harmful 

(M1) or protective (M2) to the brain tissue.  

With rapid advance in transcriptomic studies, the transition from homeostatic microglia to 

disease-associated microglia (DAM) has been depicted at transcription level, with 

homeostatic genes downregulated while others upregulated, including apolipoprotein E 

(APOE), triggering receptor expressed on myeloid cells 2 (TREM2) and TYRO protein 

tyrosine kinase-binding protein (TYROBP), which are AD-related risk alleles (Keren-Shaul 

et al., 2017). The process of DAM activation has also been elucidated, where microglia 

undergo an initial TREM2-independent step and following TREM2-dependent activation, 

which explained the strong genomic association between TREM2 alleles and AD risk (Jay, 

von Saucken, & Landreth, 2017). In ageing brains, microglia have shifted transcriptomic 
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profile with decreased gene transcription of cytoskeleton-associated proteins, cell surface 

receptors and adhesion molecules, and upregulation of inflammation-associated genes 

including IL-15, CXCR4, VEGF4 and RUNX3 (Galatro et al., 2017). Further, in a mouse 

model of AD (CK-p25 mouse), a temporal shift of microglial transcriptomic/phenotypic 

profile has been found, with early response marked by proliferation genes expression and late 

response associated with immune-related genes (Mathys et al., 2017). However, it should be 

noted that significant heterogeneity of transcriptomes exists in late-response microglia (sub-

clusters), which is consistent with histopathology findings of diverse microglial morphology 

and immunology profiles (Mathys et al., 2017). Interestingly, analysis on microglial 

transcriptomics in different animal models including amyloid and tauopathy models revealed 

more diverse phenotypes, suggesting amyloid and tau may induce different microglial 

response at gene and molecular level (Friedman et al., 2018). Furthermore, spatial microglial 

transcriptomic heterogeneity has been observed in the brain, which might be related to the 

regional resilience to amyloid and tau pathology propagation (Masuda et al., 2019; Prokop et 

al., 2019). 

The advance of transcriptomic studies has encouraged investigation into strategies 

manipulating microglial phenotypes via key upstream molecules, such as TREM2, which 

however, led to conflicting outcomes. For example, while Lee et al. reported that enhancing  

microglial TREM2 expression upregulated phagocytosis genes and mitigated inflammation 

associated genes, conferring a neuroprotective effect(C. Y. D. Lee et al., 2018), others 

observed that microglial TREM2 activation induced APOE-dependent pathway toward loss 

of homeostatic function and expression of inflammatory molecules, which was proved to be 

detrimental for neuronal survival (Krasemann et al., 2017). Knockout of TREM2 gene has 

also led to conflicting results with regard to plaque clearance and neuroprotection (Jay et al., 

2015; Y. Wang et al., 2016). 
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The rapid advance of single cell transcriptomics and proteomics has greatly challenged our 

perception of cells in health and disease. There is an ongoing debate whether we should 

understand the states of microglia as continuous between two extremes or discontinuous. 

However, the relationship between the two theories could be just like that between 

Newtonian mechanics and quantum mechanics, with a continuous law that apply to 

macroscopic world driven by discontinuous events happening in microcosms. Thus, it might 

be a practical way to understand the function of microglia with the continuous model, though 

it is not reasonable to infer the role of a cell with a handful of microscopic markers. In 

summary, while the exact point of microglia phenotypic conversion and its impact on disease 

progression is still in debate, the spatial and temporal diversity of microglia should be 

considered in clinical and preclinical studies (Figure 1.1). 

 

Figure 1.1 The multifaceted role of microglia in neurological diseases. 
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Under certain conditions microglia play a protective role by secreting anti-inflammatory 

cytokines, performing phagocytosis, and supporting network remodelling, while under other 

conditions microglia contribute to neuroinflammation. It is believed that the phenotypic 

change to microglia underlies this phenomenon, and a pro-inflammatory/anti-inflammatory 

scheme has been proposed to categorize microglial phenotype. 

 

1.2.2 Astrocyte 

Astrocytes generally take protoplasmic form in grey matter and fibrous form in white matter 

of the brain. Structurally, the astrocyte end feet form the outer layer of the blood-brain barrier 

(BBB) and envelope synapses. Physiologically, they regulate cerebral blood flow, induce 

synaptic formation, provide metabolic and neurotrophic support for neurons, and regulate 

fluid and neurotransmitter homeostasis (Attwell et al., 2010; Eroglu & Barres, 2010; Pekny et 

al., 2016). Recent advances have also suggested they are involved in the glymphatic 

clearance of amyloid and tau species (Jessen, Munk, Lundgaard, & Nedergaard, 2015; 

Tarasoff-Conway et al., 2015). Under pathological conditions, astrocytes respond by reactive 

gliosis, which is a vital part of neuroinflammation, and is marked by upregulation of GFAP 

expression (Pekny, Wilhelmsson, & Pekna, 2014). However, diverse phenotypes have been 

observed in the activated astrocyte population, with A1 phenotype activated via NF-κB and 

A2 phenotype induced by Signal Transducers and Activators of Transcription 3 (STAT3) 

pathway (Liddelow & Barres, 2017). It has been suggested that A1 phenotype of astrocytes 

lose homeostatic functions, express pro-inflammatory molecules, and could induce neuronal 

apoptosis, while A2 astrocytes express various neurotrophic molecules and are ‘protective’ 

(Liddelow et al., 2017). However, this binary scheme of astrocyte activation is still debatable 

(Martinez & Gordon, 2014). 
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Preclinical studies have observed that reactive astrocytes could migrate to amyloid plaques 

and degrade Aβ polymers (Wyss-Coray et al., 2003), and Aβ containing granules are found in 

human brains with AD, suggesting an effort of Aβ clearance by astrocytes (Thal et al., 2000). 

On the other hand, majority of activated astrocytes in post-mortem AD brains have been 

identified as A1 astrocytes which is supposed to be toxic to neurons (Wyss-Coray et al., 

2003). In animal models of AD, A1 astrocytes have been found to induce neuronal 

excitotoxicity via excessive release of GABA and glutamate, disrupt cerebral 

microcirculation and BBB integrity(Jo et al., 2014; Kisler, Nelson, Montagne, & Zlokovic, 

2017; E. A. Winkler et al., 2015). The crosstalk between astrocytes and microglia in 

inflammatory milieu may also exaggerate the toxic effect of each cell type (Liddelow et al., 

2017) (Figure 1.2A and 1.2B).  

 

Figure 1.2A Physiological function of glial cells 
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Under physiological condition, ramified microglia survey the brain microenvironment and 

sense damage signals, make transient contact with neuronal network structures, including 

synapses and axons. These dynamic ramifired cells provide immune surveillance and trophic 

support to the CNS, remove pathogen or debris and are involved in maintenance of synaptic 

homeostasis and neuronal plasticity. The processes of astrocytes form the last layer of the 

blood-brain barrier and closely envelope synapses. Physiological roles of astrocytes include 

regulation of cerebral blood flow, maintenance of synaptic homeostasis, and neurotrophic 

support. 

 

 

Figure 1.2B Inflammatory response of glia cells 

Under pathological challenge, activated microglia, astrocytes as well as macrophages 

migrating through damaged BBB contribute to neuroinflammation. These activated cells lose 

homeostatic functions, secrete less neurotrophic factor and more pro-inflammatory 
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cytokine/chemokines, which could help pathogen/toxin clearance but also lead to neuronal 

dysfunction and damage. Activated microglia have been found to directly eliminate synaptic 

structures. 

 

1.3 Evaluation of neuroinflammation in AD in vivo 

To facilitate the investigation on the role of neuroinflammation in diseases, especially 

longitudinally, biomarkers have been developed to evaluate the level of neuroinflammation in 

vivo. These biomarkers can be classified as fluid (blood and CSF) and imaging-based 

markers. 

1.3.1 Fluid Biomarkers 

Traditional fluid biomarkers of neuroinflammation encompass various cytokines, including IL-

1β, IL-2, IL-6, IL-8, IL-10, IL-12, IL-18, interferon-γ (IFN-γ), TNF-γ and transforming growth 

factor-β (TGF-β). While several studies reported that in AD patients there was an overall 

increase of IL-1β, IL-6, IL-12, IL-18, TNF-γ and TGF-β, significant discrepancies between the 

studies questioned the specificity of these traditional inflammatory markers (Swardfager et al., 

2010). More importantly, the production of the aforementioned cytokines is associated with 

various non-specific inflammatory events, which undermines their potential as biomarkers of 

neuroinflammation. Novel glial activation markers include chitinase-3-like protein 1 (known 

as YKL-40) and monocyte chemotactic protein 1 (MCP1) (El Kadmiri, Said, Slassi, El 

Moutawakil, & Nadifi, 2018). A recent meta-analysis has confirmed that YKL-40 is 

moderately associated with AD, while the change of MCP-1 or GFAP was concluded as 

nonsignificant. Activated astrocytes and microglia have been found to be the primary source 

of YKL -40 in AD (Baldacci, Lista, Cavedo, Bonuccelli, & Hampel, 2017), which is elevated 

from preclinical stage and increases as disease progress (Alcolea et al., 2015; Sutphen et al., 
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2015). More recently, soluble TREM2 (sTREM2) have been the frontier of investigation. 

sTREM2 is produced by cleavage of TREM2 receptor on microglial membrane, and has been 

proposed as a specific marker of microglial activation and TREM2 signalling (Wunderlich et 

al., 2013). Increased concentration of sTREM2 has been reported in the CSF of AD patients, 

which further rises as disease progresses (Henjum et al., 2016) (Suarez-Calvet et al., 2016). 

More recently, studies have reported that CSF sTREM2 is positively associated with tau 

pathology (Suarez-Calvet et al., 2019), and that interestingly, higher sTREM2 level is 

associated with better cognitive outcome in patients along AD continuum (Ewers et al., 2019; 

Franzmeier, Suarez-Calvet, et al., 2020). These findings warrant further investigation into how 

sTREM2 is produced and may imply novel therapeutic targets. 

1.3.2 TSPO imaging of neuroinflammation 

The 18kDa translocator protein (TSPO), also known as peripheral benzodiazepine receptor 

(PBR) is an inner mitochondrial membrane protein expressed in various types of cells 

including microglia, astrocytes, endothelial cells, monocytes and macrophages (Edison & 

Brooks, 2018). TSPO forms part of the mitochondrial permeability transition pore, which is 

involved in mitochondrial permeability regulation, steroid synthesis and inflammatory 

response regulation (Edison & Brooks, 2018). It has been demonstrated that activated 

microglia upregulate the expression of TSPO protein under various pathological conditions, 

including ischemia, trauma and exposure to abnormal protein aggregates including Aβ 

plaques and NFT (Venneti, Lopresti, & Wiley, 2006),(Diorio, Welner, Butterworth, Meaney, 

& Suranyi-Cadotte, 1991).However, in vivo imaging using TSPO tracers could not 

distinguish different microglia phenotypes, nor could it differentiate signals from other cells 

in the CNS. Activated astrocytes also overexpress TSPO protein (Ji et al., 2008) (Rojas et al., 

2007), and albeit autoradiography studies suggest 3H-PK11195 binding correlated better with 

immunohistochemical markers of microglia as compared to astrocyte markers in vitro 
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(Venneti, Wang, Nguyen, & Wiley, 2008), there is an ongoing debate on how specific TSPO 

tracers are in terms of evaluating microglial activation in vivo. Nevertheless, as microglial 

activation and astrocyte reaction accompany each other in neurodegenerative conditions, 

TSPO is still a valuable target to probe neuroinflammation in vivo in neurodegeneration 

(Varrone & Nordberg, 2015). 

Currently TSPO ligands are the most commonly used tracers in neuroinflammation imaging 

studies, with multiple generations developed. The first generation TSPO ligand developed 

include Ro5-4864 and PK11195, with the latter outperformed the former and saw wide 

applications (Junck et al., 1989). However, 11C-PK11195 still suffers from high nonspecific 

bindings and low signal to noise ratio (SNR). Therefore, the second-generation TSPO tracers 

were developed which encompass 11C-PBR28, 11C-DAA1106, 11C-DPA713, and 18F-PBR06 

(Alam, Lee, & Lee, 2017). The second-generation tracers have better BBB permeability and 

higher affinity to TSPO, which however, is influenced by the rs6971 single-nucleotide 

polymorphism (147 Ala/Thr) of the TSPO gene, with the Ala/Ala carriers being high affinity 

binders (HAB), Ala/Thr carriers being mixed affinity binders (MAB) and Thr/Thr variant 

being low affinity binders (LAB) (D. R. Owen et al., 2012) (Kreisl, Jenko, Hines, Lyoo, 

Corona, Morse, Zoghbi, Hyde, Kleinman, Pike, McMahon, Innis, & Biomarkers Consortium, 

2013). For 11C-PBR28, LABs have approximately 50-fold lower affinity compared to HABs, 

resulting in negligible PET signals and therefore not suitable for participating imaging studies 

(D. R. J. Owen et al., 2011). Further, the affinity difference between HABs and MABs makes 

controlling for the effect of TSPO genotype essential in imaging analysis (Kreisl, Jenko, 

Hines, Lyoo, Corona, Morse, Zoghbi, Hyde, Kleinman, Pike, McMahon, Innis, & Radiolig, 

2013). 
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1.4 Interaction between neuroinflammation and Alzheimer’s pathologies 

Pathology studies have established that activated ameboid form microglia collocate with 

amyloid plaques and NFT in post-mortem AD brains (Hayes, Thaker, Iwatsubo, Pickering-

Brown, & Mann, 2002; Mcgeer, Itagaki, Tago, & Mcgeer, 1987; Tooyama, Kimura, 

Akiyama, & Mcgeer, 1990). The temporal emergence of Aβ plaques, microglial activation 

and NFT has given rise to the ‘amyloid cascade-inflammation hypothesis’, positioning 

microglial activation between amyloid deposition and further tau pathology propagation and 

neuroinflammation  (Hayes et al., 2002; Kitazawa, Yamasaki, & LaFerla, 2004; McGeer & 

McGeer, 2013).  

It has been well acknowledged that Aβ oligomers can activated glia cells which in turn 

produce neurotoxic proinflammatory cytokines, chemokines and reactive oxygen species 

(ROS) (Akiyama et al., 2000; Delbo, Angeretti, Lucca, Desimoni, & Forloni, 1995; Hanisch, 

2002). Microglia recognise Aβ species via various pattern recognition receptors (PRRs), 

including Toll-like receptors (TLR1, TLR2, TLR4, TLR6, etc.), CD14, CD47, α6β1 integrin, 

scavenger receptors (SR-As and SA-Bs, including CD36), which then activate downstream 

pathways and induce phagocytic change or expression of the pro-inflammatory modules 

(Alawieyah Syed Mortadza, Sim, Neubrand, & Jiang, 2018; S. Liu et al., 2012; Murgas, 

Godoy, & von Bernhardi, 2012; Venegas & Heneka, 2017). As examples, activation of TLR2 

can lead to IL-8 and TNF-α expression(S. Liu et al., 2012), activation of SRs upregulates IL-

1β and NO production through NF-κB, c-Jun N-terminal kinase (JNK) and mitogen-activated 

protein kinase (MAPK) pathways (Murgas et al., 2012), while  CD36-CD47-α6β1 integrin 

complex mediates phagocytic change of microglia (Koenigsknecht & Landreth, 2004). More 

recent research has revealed the pyrin domain-containing 3 (NLRP3) inflammasome 

recruitment as an important event in microglial pro-inflammatory response, which is 
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followed by subsequent expression of caspase-1 and maturation of IL-1β(Heneka et al., 2013; 

Strowig, Henao-Mejia, Elinav, & Flavell, 2012).  

The phagocytic function of microglia has also been well established, with in vitro 

experiments demonstrating that microglia could phagocytose and degrade amyloid fibrils via 

autophagy pathways (Cho et al., 2014; Paresce, Chung, & Maxfield, 1997; Plaza-Zabala, 

Sierra-Torre, & Sierra, 2017). However, the capability of microglia to handle amyloid species 

in actual AD brains is still debatable, as it has been demonstrated that more toxic Aβ 

oligomers could induce pro-inflammatory phenotype of microglia, which produce 

inflammatory cytokines but are inefficient at phagocytosing fibrillary amyloid (Pan et al., 

2011). Further, microglia in late stage of AD are often found in a morphologically dystrophic 

state, implying loss of surveillance functions (Navarro et al., 2018; Streit, Braak, Xue, & 

Bechmann, 2009).  Further, only limited proportion of TREM2- and CD68-positive microglia 

were found in microglia population around amyloid plaques in AD and Down syndrome 

patients’ brains, suggesting an incompetence of phagocytic function in majority of activated 

microglia (Raha-Chowdhury et al., 2018). It has also been suggested that the loss of 

microglial phagocytic functions is associated with ageing, which may explain the reduced 

resilience to AD pathology in the aged population (Streit, 2006; Streit, Sammons, Kuhns, & 

Sparks, 2004).  

Recently, there has been emerging evidence that activated microglia could further exaggerate 

Aβ pathology by promoting Aβ genesis and facilitate Aβ cross seeding in AD. It has been 

reported that the pro-inflammatory cytokines produced by microglia, such as IL-1β, IL-6, and 

TNF, could activate NF-κB pathway and promote beta secretase (BACE1) expression in 

neurons, which acts to cleave APP into pathogenic Aβ monomers (Chen et al., 2012; 

Hawcroft, Gardner, & Hull, 2003). More recently, Heneka and colleagues have demonstrated 

that the NLRP3 inflammasome pathway in activated microglia could lead to assembly and 
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release of apoptosis-associated speck-like protein containing a CARD (ASC) specks, which 

in extracellular space could bind to soluble Aβ species and form the core of amyloid plaques 

(Venegas et al., 2017). While the process could also be protective as the soluble Aβ species 

have been proved to be more neurotoxic compared to fibril Aβ, the same experiment showed 

an overall detrimental effect of NLRP3 pathway by showing the benefits of ASC knockout. 

Hyperphosphorylated tau oligomers and fibrils have also been proven to be potent stimuli for 

microglial activation in vitro and in vivo, marked by DAM genes’ upregulation, among 

which the CD68 and TYROBP genes are found as hubs of gene association network 

(Morales, Jimenez, Mancilla, & Maccioni, 2013; Wes et al., 2014). The classical and 

alternative complement pathways have been suggested to be critical pathways in tau induced 

microglial activation (Wes et al., 2014), and it has been observed that activated microglia in 

cell culture and healthy mice are capable of phagocytosing tau fibrils (Bolos et al., 2016).  

However, pathology studies on late-stage AD human brains have observed morphologically 

degenerated microglia to be closely associated with tau pathology, questioning the ability of 

microglial defence against tau species (Sanchez-Mejias et al., 2016; Streit et al., 2009). Based 

on the observation that the emergence of dystrophic microglia is chronologically ahead of tau 

pathology, it has been further proposed that ageing and chronic exposure to Aβ may 

undermine microglial function and pave the way for spreading of tau pathology (Streit et al., 

2018). Indeed, previous literature have suggested that the phagocytosis and exosome 

secretion of tau species by microglia may provide an intraneuronal propagation pathway in 

conjunction with trans-synaptic seeding of tau pathology (Asai et al., 2015). With coexisting 

amyloid pathology, microglia have been shown to exacerbate tau pathology in synergy with 

Aβ, with microglial NLRP3 pathway being a possible bridge between amyloid and tau 

pathologies (Felsky et al., 2019; Ising et al., 2019). 
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Efforts have been made to untangle the complex relationship among neuroinflammation, 

amyloid deposition and tau pathology. The TREM2/TYROBP pathway has been identified as 

a common pathway in both Aβ-42 and tau-induced microglial activation, with over >50% 

overlap among Aβ/TREM2 and tau/TREM2 induced gene expression, which suggest 

microglial activation as a common factor in both amyloid and tau toxicity (Sekiya et al., 

2018). Intriguingly, the same study has observed that TREM2 signalling can suppress half of 

the gene modules activated by Aβ-42 alone, with presumably protective effects, while tau and 

TREM2 induced pathways could exaggerate neuronal damage synergically. These findings 

underline the differential position of neuroinflammation in context of amyloid and tau 

pathology. Indeed, other studies manipulating microglial activation through progranulin, 

CX3CL/CXC3R pathways have reported opposing effects on development of amyloid and 

tau pathologies (Bolos et al., 2017; S. Lee et al., 2014; Takahashi et al., 2017). The different 

interactions among neuroinflammation, Aβ and tau pathologies also highlight the need to 

consider the stage of disease when interpreting the role of neuroinflammation in AD, as the 

dominant pathology might be different at early and late stages (amyloid and tau, respectively) 

(Dani et al., 2018a; Fan, Brooks, Okello, & Edison, 2017; L. Hamelin et al., 2016; Parbo et 

al., 2018). 

1.5 Impact of neuroinflammation on AD progression: current evidence 

Epidemiological studies have observed that mid-life systemic inflammatory factors such as 

diabetes and smoking, as well as CNS injury are associated with increased risk of AD (Dunn, 

Mullee, Perry, & Holmes, 2005; Johnson et al., 2013). Further, several studies have 

suggested a possible protective effect of NSAIDs against AD in the elderly, which have 

provided first evidence that neuroinflammation might be involved in initiation of AD 

(Corrada, Stewart, & Kawas, 1996; Etminan, Gill, & Samii, 2003). The systemic 

inflammation factors could induce neuroinflammation by cytokines which could enter the 
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CNS via circumventricular organs or disrupted BBB, and through vagal nerve transport 

system (Calsolaro & Edison, 2016), which have been supported by the observation of 

activated microglia in young patients who suffered from systemic inflammation premortem 

(Tischer et al., 2016). 

It has been reported that microglial activation starts even at pre-plaque stage in animal 

models and MCI patients, indicating the involvement of inflammation from the earliest stage 

of AD (Dani et al., 2019; Femminella et al., 2019; L Hamelin et al., 2016; Kreisl, Henter, & 

Innis, 2018; Kreisl et al., 2016a; Okello et al., 2009). More intriguingly, in non-human 

primates it has been observed that co-injection of LPS and Aβ, or injection of Aβ in brains 

with chronic inflammation conditioning, but not injection of Aβ alone, could lead to the 

formation of Aβ plaques (Philippens et al., 2017). Human post-mortem study has also 

observed microglial activation in all asymptomatic subjects with evidence of amyloidosis, 

which strongly suggest neuroinflammation as a necessary condition for AD pathogenesis 

(Streit et al., 2009).  Recent genome wide association studies have further substantiated the 

position of neuroinflammation in AD pathogenesis, with the finding that mutations in 

microglial/innate immune genes are strongly associated with increased risk of AD, including 

CD33, TREM2, complement receptor type 1 (Hollingworth et al., 2011; Jonsson et al., 2013; 

Lambert et al., 2013). 

Clinical PET/MRI studies using TSPO tracers have reported negative associations between 

microglial activation and hippocampal volume/metabolism in patients with AD dementia 

(Fan, Aman, et al., 2015; Femminella et al., 2016). More recent imaging studies have also 

observed that microglial activation correlates with disruption of brain’s functional 

connectivity (Passamonti et al., 2019; Yokoi et al., 2018). More importantly, negative 

relationship between neuroinflammation and cognitive performance has been reported in AD 

dementia patients (Edison et al., 2008; Kreisl, Lyoo, et al., 2013; Yokokura et al., 2011). The 
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evidence that neuroinflammation has a detrimental role in late disease trajectory is further 

supported by preclinical findings. It has been established that the proinflammatory cytokines 

secreted by activated microglia, such as IL-6, IL-1β and TNF can cause functional disruption 

and structural damage to neurons (Combs, Karlo, Kao, & Landreth, 2001; Floden, Li, & 

Combs, 2005; Martin, Boucher, Fontaine, & Delarasse, 2017; Spangenberg & Green, 2017). 

More recent studies have demonstrated the excessive synaptic pruning by microglia in animal 

models of AD, which leads to synaptic loss and impaired long-term potentiation (S. Hong et 

al., 2016; Neniskyte, Neher, & Brown, 2011). The complement system seems to play a key 

role in the excessive synaptic elimination process, as complement C3 knockout seems to 

protect against the process in APP/PS1 mice, with the presence of activated microglia and 

pro-inflammatory cytokines (Shi et al., 2017). More interestingly, there has been evidence 

that microglia may have a circuit-specific preference of pathological synaptic pruning, which 

might be related to the stereotypical pattern of neurodegeneration and NFT formation in AD 

(Braak & Del Tredici, 2015; Raj, Kuceyeski, & Weiner, 2012). 

More recent efforts have been made on investigating the dynamic of neuroinflammation 

along disease trajectory and its impact on disease progression. Previously, our group have 

observed a longitudinal increase of microglial activation in 6 out of 8 AD patients using 11C-

PK11195, but with a dynamic change of ‘hot spot’ of inflammation, which correlated with 

metabolic decline (Fan, Okello, Brooks, & Edison, 2015). Interestingly, 2 patients showed a 

longitudinal decline of neuroinflammation, which might be caused by the ‘burn out’ of 

microglia at the terminal stage (Sanchez-Mejias et al., 2016). Kreisl and colleagues have also 

reported a progressive increase of 11C-PBR28 uptake in a combined AD and MCI cohort 

(Kreisl et al., 2016a). 

Interestingly, in early stage of the disease (MCI) patients, there has been conflicting evidence 

on dynamic change of microglial activation. Hamline and colleagues have reported that there 
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was comparable longitudinal increase of microglial activation in both prodromal and demented 

AD patients, using the tracer 18F-DPA. They have further observed distinct dynamic patterns 

of neuroinflammation (lower initial level and rapid rise vs high baseline level and slow 

progression), with the latter pattern associated with better outcome (Hamelin et al., 2018). On 

the other hand, our group have found different dynamic change of neuroinflammation in AD 

and MCI patients, with MCI cohort showing a longitudinal decrease of 11C-PK11195 uptake 

and AD patients showing an increase (Fan et al., 2017). However, the power of evidence from 

both cohorts are limited by their sample sizes and coverage of disease spectrum. Recently, a 

meta-analysis has been performed to provide better understanding of the spatial and temporal 

change of neuroinflammation, and have suggested a longitudinal increase of microglial 

activation along the AD trajectory based on current evidence (Bradburn, Murgatroyd, & Ray, 

2019). Furthermore, the meta-analysis has also confirmed a negative relationship between 

parietal neuroinflammation and cognitive performance in AD patients, supporting a 

detrimental effect of microglial activation in AD dementia. The study has also suggested a 

spatial development of neuroinflammation in AD, starting from the neocortex in the MCI stage 

and spread ventrally throughout the brain, with temporal regions most heavily involved AD 

(Bradburn et al., 2019). There is still ongoing controversy on whether neuroinflammation is 

protective or harmful in MCI patients, with conflicting evidence emerging (Fan et al., 2017; 

Femminella et al., 2019; Malpetti et al., 2020). It should be noted however, that caution should 

be taken when interpreting the PET imaging studies across research centres, as various tracers 

and analytical methodologies (Leng & Edison, 2021) (Figure 1.3). 
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Figure 1.3 Dynamic of microglial activation and its impact on disease progression 

Patients with defective microglial protection (phenotype) may present with cognitive decline 

at an early pathological stage (marked by amyloid and tau load) compared to those with 

normal microglial function. Priming of microglia due to chronic systemic inflammation, 

infection or brain trauma may cause a weakened primary protective response of microglia 

under degenerative challenge. Microglial functions vary individually, and those with 

defective protective functions due to genetic or acquired factors may present with increased 

susceptibility to Alzheimer’s disease. 

 

To summarise, while there has been evidence of a detrimental influence from 

neuroinflammation in late AD stage, its role in the broader AD spectrum, especially towards 
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the earlier stages still remains to be explored and established. Further, the mechanism by which 

neuroinflammation may influence disease progression in humans still awaits to be clarified 

before novel disease modifying strategies could be developed with precision. 

1.6 Functional and Structural Connectivity Impairment in AD 

With the advance of cognitive neuroscience, the brain is now considered as a network organ, 

the functioning of which depends on information flow across local and distal functionally 

associated brain regions (Horwitz, 2003). It has been well established that in various 

neurological disorders, including stroke, multiple sclerosis and neurodegeneration, focal 

neuronal deficit could not completely explain the clinical presentations, which could result 

from disruption of brain network with regard to cortical hub or white matter connections (van 

den Heuvel & Hulshoff Pol, 2010). Over the past two decades, AD is increasingly understood 

as a network disconnection syndrome. The first line of evidence came from functional MRI 

(fMRI) studies, which have consistently observed an impairment of the default mode network 

(DMN) during resting state in AD and preclinical AD patients (Lustig et al., 2003; Seeley, 

Crawford, Zhou, Miller, & Greicius, 2009; Sorg et al., 2007). Spontaneous activity has been 

found in the DMN, which consists of the posterior cingulate, precuneus, medial prefrontal, 

lateral parietal cortices and putatively hippocampi (Buckner, Andrews-Hanna, & Schacter, 

2008). The DMN is believed to be associated with emotional processing, memory 

recollection, self-referential mental activities (M. E. Raichle, 2015). It has been further 

established that the functional connectivity within DMN is associated with the cognitive 

performance in cognitively impaired patients (Verfaillie et al., 2018). Interestingly, regions 

with increased functional association within prefrontal, parietal, occipital and temporal lobe 

have also been observed in parallel with those with decreased communication, possibly 

reflecting a compensatory mechanism (Qi et al., 2010; K. Wang et al., 2007). This 

compensating mechanism is a reminder that dementia is based on the dysfunction of the brain 
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as a functional system but not based purely on structural impairment. In light of this, it is 

interesting to consider the well observed fluctuation of cognitive status in AD patients, which 

could be rather better explained by the functional disruption of the neuronal circuit than the 

permanent structural changes of the brain (Palop, Chin, & Mucke, 2006). Thus, investigating 

the underlying pathophysiology of circuit impairment as well as compensation mechanism 

might offer a new perspective of intervention. 

Apart from the individual functional networks, the organisation of functional network at whole 

brain level has also been investigated using graph theory (details in chapter 3). It has been 

established that human brain has a small-world organisation to obtain a balance between local 

and global efficiency in information processing (Achard, Salvador, Whitcher, Suckling, & 

Bullmore, 2006). In AD, the topological organisation of brain’s functional network has been 

found to be disrupted compared to healthy brain (delEtoile & Adeli, 2017): reduced small-

worldness, as well as altered local and global efficiency have been reported.  

This functional network failure could be at least partly attributed to structural connectivity 

impairment, as diffusion tensor imaging (DTI) studies have found an early degeneration of 

susceptible white matter tracts along Alzheimer trajectory, many of which, intriguingly, are 

connected to the impaired functional hubs (Hahn et al., 2013). The white matter impairment 

has been further found to correlate with cognitive decline (Bosch et al., 2012) in AD patients. 

White matter damage has also been reported early in disease trajectory. Several studies have 

found white matter damage in MCI patients and even middle-aged asymptomatic subjects 

with family history, including the posterior cingulum bundle, uncinate fasciculus and centrum 

semiovale (Mito et al., 2018) (Douaud et al., 2011), suggesting WM damage as an early event 

in Alzheimer trajectory (Bendlin et al., 2010) and even before grey matter atrophy becomes 

evident (Y. J. Hong et al., 2016). 
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Although lesions in WM tracts have been previously presumed as secondary change due to 

grey matter atrophy or cerebrovascular diseases, accumulating evidence suggests it as an 

independent feature associated with Alzheimer’s pathology. Early pathology studies have 

found disproportionate damage of white matter tracts and corresponding grey matter atrophy, 

which could not be explained by concurrent vascular disease (Caso, Agosta, & Filippi, 2016; 

Sjobeck, Haglund, & Englund, 2006a). Further, recent imaging studies have reported positive 

correlations between impaired WM integrity and amyloid load, as well as NFT stages 

(Kantarci et al., 2017; Racine et al., 2014), suggesting a specific WM damage relating to 

Alzheimer’s pathology. More interestingly, the imaging evidence of white matter predilection 

falls in line with the retrogenesis theory of AD, which derives from pathological observation 

that damage of axons and oligodendrocytes in reverse sequence to myelin formation and 

proposes that the process independently contributes to Alzheimer pathology (Benitez et al., 

2014) (Braak & Del Tredici, 2015). This hypothesis has been further supported by the 

observation that cerebrospinal fluid AD markers correlate with WM damage in healthy 

subjects with family history of AD (Bendlin et al., 2012). 

More intriguingly, recent studies on brain connectivity and AD have suggested an important 

role of brain’s functional and structural network in the dissemination and propagation of 

amyloid and tau pathologies. In particular, the key hubs of functional brain network, 

especially within the DMN, where neuronal activities are supposed to be most frequent, are 

shown to be the earliest regions of amyloid deposition (Palmqvist et al., 2017). This 

phenomenon might be associated with the activity-dependent production of Aβ (Kamenetz et 

al., 2003b), though Iturria-Medina and colleagues have suggested that the emergence of Aβ 

deposition may also be related to brain’s structural connectome (Iturria-Medina, Sotero, 

Toussaint, Evans, & Alzheimer's Disease Neuroimaging, 2014). With regard to tau 

pathology, early preclinical studies have established the prion-like properties of 
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hyperphosphorylated misfolded tau species (Frost & Diamond, 2010), and it has been 

proposed that trans-neuronal seeding of tau species underlies stereotypical spatial-temporal 

pattern of NFT pathology (Iba et al., 2013; L. Liu et al., 2012). With the recent wide 

application of tau PET imaging, studies have found a striking overlap between cross-regional 

covariance of tau tracer uptake and structural/functional connectivity pattern (Ossenkoppele 

et al., 2019). Further epidemiological modelling has suggested that structural connectivity 

best explained tau tracer-positivity covariance pattern across population (Vogel et al., 2020). 

More specifically, structural impairment of the hippocampal cingulum has been found to be 

able predict future tau deposition in the posterior cingulate cortex, strongly supporting the 

hypothesis that tau species propagates through the brain’s connectome (Jacobs et al., 2018).  

Given the evidence that connectivity disruption is not only associated with cognitive reserve 

in Alzheimer’s disease, but is also involved in the propagation of amyloid and tau 

pathologies, understanding the factors associated with network disruption in AD is of 

paramount importance.  

1.7 Microglia and brain connectivity 

Microglia progenitors arise from primitive haematopoiesis early in the embryonic 

development. Primitive myeloid precursors arise from yolk sac.  and then migrate into the 

developing brain from embryonic day 8.5 in mice (Ginhoux et al., 2010) (Kierdorf et al., 

2013). During brain development, it has been demonstrated that microglia contribute to 

neurogenesis, migration and differentiation of neuron precursor cells (C. L. Cunningham, 

Martinez-Cerdeno, & Noctor, 2013) (Antony, Paquin, Nutt, Kaplan, & Miller, 2011), 

outgrowth of axons and positioning of interneurons (Squarzoni et al., 2014), as well as 

induction and remodelling of synapses (Lim et al., 2013) (Miyamoto et al., 2016) (Parkhurst 
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et al., 2013). Further, microglia have been suggested to be involved in myelination in 

development by providing cues for oligodendrocytes (Nave & Werner, 2014).  

Accumulating evidence suggests microglia continue to maintain effective neuronal network 

in adulthood. It has been reported that microglia play a vital role in experience-driven plastic 

change of neuronal network, as seen in hippocampal long term potentiation and ocular 

dominance plasticity (Sipe et al., 2016) (Pascual, Ben Achour, Rostaing, Triller, & Bessis, 

2012) (Pfeiffer, Avignone, & Nagerl, 2016). This process is believed to be mediated by 

activity-dependent dynamic and direct contact between microglia processes and synaptic 

structures (Posfai, Cserep, Orsolits, & Denes, 2019) and axon initial segments (AIS), where 

action potential is generated (Baalman et al., 2015). In white matter, evidence suggests a vital 

role of microglia in maintenance and repair of myelin under physiological conditions 

(Michell-Robinson et al., 2015) (Peferoen, Kipp, van der Valk, van Noort, & Amor, 2014).  

However, the morphological and immunological profile of microglia change drastically in 

condition of aging and systemic inflammation, marked by spheroidal swelling, fragmentation 

of microglia processes, decreased intracellular contact and upregulated expression of CD68 

(Streit et al., 2004) (Streit, 2006). This process is considered as microglial senescence, which 

is believed to reflect impaired homeostatic competence of microglia and indulge initiation of 

degeneration of neuronal networks (Streit et al., 2009) (Streit et al., 2018). It has been further 

demonstrated that under pathological conditions microglia undergo activation, adopting 

various phenotypes with different gene expression profiles, and consequently perform 

protective or destructive roles in diseases (Mathys et al., 2017) (Friedman et al., 2018) (Z. R. 

Yin et al., 2017).  
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1.8 Neuroinflammation may Influence Brain Connectivity in AD 

Clinical observations that elevated CSF markers of microglia activation correlate with white 

matter microstructure damage (Melah et al., 2016) suggest a role of microglia in network 

damage in AD. Indeed, increased density of activated CD45+ microglia have been found in 

white matter of AD brains (Shah et al., 2010), where they co-localise with toxic amyloid 

plaques and dystrophic axons (Masliah et al., 1991). It is also interesting to consider that 

chronic activation of microglia and ongoing white matter damage observed after traumatic 

brain injury, one of the strongest epidemiological factors associated with AD, suggesting a 

role of microglia and white matter damage in the initiation of Alzheimer’s pathology 

(Johnson et al., 2013). 

Base on knowledge from preclinical studies, microglia might lead to brain network 

impairment in AD include loss of supportive functions, causing direct structural damage and 

mediating abnormal neuronal activity. The morphological changes of activated microglia in 

AD have been well documented, which include decreased cell surface area, number of 

branches, total branch length and ramification index (defined as actual cell surface area 

divided by surface area of a hypothetical sphere which have the same volume as  the cell) 

(Plescher et al., 2018) (Davies, Ma, Jegathees, & Goldsbury, 2017), which limit the 

capability of microglia to perform homeostatic functions. For example, the contact of 

microglia with AIS is dramatically decreased during brain injury (Baalman et al., 2015). 

Moreover, microglia activated through complement pathway can engulf synapses 

inappropriately, leading to early synaptic loss and defect in long-term potentiation (S. Hong 

et al., 2016) (Neniskyte et al., 2011). Microglia mediated circuit-specific synaptic pruning has 

been reported as the major driver of familial frontotemporal dementia, which is also a 

common neurodegenerative disease (Lui et al., 2016). Consistently in AD subjects, 

neuroimaging studies found a negative relationship between cognitive function and 
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microglial activation, but not amyloid load (Edison et al., 2008) (Yokokura et al., 2011). 

With regard to white matter tracts, it has been suggested that microglia can cause direct 

damage to oligodendrocytes and axons through production of reactive oxygen species, matrix 

metalloproteinases, and pro-inflammatory cytokines (Peferoen et al., 2014). These pro-

inflammatory cytokines, including IL-1b, TNF-alpha and IL-6, could further cause 

excitotoxicity to the neurons, leading to dysregulation of the functional network (Vezzani & 

Viviani, 2015). Given the role of microglia in adult network plasticity, one could also 

suppose that they may be involved in compensating mechanisms in diseased brains. 

1.9 Hypothesis 

Given current preclinical and clinical evidence, it could be hypothesised that: 

Neuroinflammation in Alzheimer’s disease can actively and independently contribute to the 

microstructural damage of neuronal circuits and disrupt normal neuronal activity 

functionally, the consequence of which are global impairment of the brain’s macroscopic 

structural and functional network, and ultimately cognitive impairment. 

Based on the prior hypothesis, the following predictions have been tested in the study: 

(1) Neuroinflammation in Alzheimer’s disease trajectory is associated with both 

functional and structural connectivity disruption, independent of amyloid pathology. 

(2) Neuroinflammation in Alzheimer’s disease trajectory can independently predict 

cognitive decline in the patients.  

1.10 Approach of the Project 

The current project aimed to test the hypothesis using PET and MRI imaging data (already 

collected) form the ‘amyloid and neuroinflammation’ study by Dr Dani and Dr Edison. 

18F-Flutemetamol, 18F-AV1451, 11C-PBR28 PET imaging were used to quantify amyloid, tau 
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pathologies and neuroinflammation, respectively.  Resting-state fMRI and diffusion tensor 

MRI were used to evaluate the functional and structural networks of brain. 

Neuropsychological assessment records were reviewed to assess the relationship between 

imaging markers of AD and cross-sectional/longitudinal cognitive impairment. 

The aim of the project is to test the hypotheses by analysing the multimodality imaging data, 

provide evidence on whether neuroinflammation is influencing cognitive deterioration in 

Alzheimer’s disease, and investigate possible mechanisms. The challenges of the project 

reside in its multimodality nature, as robust inference relies on appropriate processing of 

imaging data and using multivariate statistical models, especially with each imaging modality 

providing high-dimensional data itself.  

Therefore, the focus of the current project is to extract biological information from 

neuroimaging data using appropriate analytical procedures, to further analyse the high-

dimensional data with appropriate statistical models to make inferences on the relations of 

pathological processes in disease, and finally to provide better understanding of 

neuroinflammation’s role in Alzheimer’s disease. 

The study cohort recruitment and data availability of MCI study (regarding T1-weighted MRI 

and PET scans are summarised in Figure 1.4. 

 

 

 



 43 

 

Figure 1.4 Participant recruitment, consents, inclusion and exclusion criteria 

This study was approved by the London Riverside Research Ethics Committee, National 

Health Research Services, Health Research Authority, UK. Administration of PET tracers 

was approved by Administration of Radioactive Substances Advisory Committee (ARSAC). 

Written informed consent was obtained from all participants in the study. 

Potential participants in the study were recruited via the following ways: 1- referral from 

memory clinics in UK, 2-through “Join dementia research” website and 3-through General 

Practitioner’s surgery and through advertisement. Interested participants undertook a 

telephone pre-screening, and eligible participants were invited to Hammersmith Hospital for 

a screening visit, where medical history and examination, blood tests, cognitive tests were 

performed, and written consent was obtained. Participants were then invited to have an MRI 
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scan, and patients with MRI findings of any significant vascular (above Fasika score >2) 

disease were excluded. The clinical diagnosis was re-confirmed before the participants were 

invited to have PET scans. The PET scans were obtained within a year from the first PET 

scan. 

Clinical diagnosis of Alzheimer’s dementia or mild cognitive impairment was made based on 

the 2011 NIA-AA (National Institute of Aging and Alzheimer’s Association) 

recommendations(Albert et al., 2011; G. M. McKhann et al., 2011). Other inclusion criteria 

include: 50-85 years-old at study entry; Mini-Mental State Examination (MMSE) score >24 

for MCI patients and > 15 for Alzheimer’s disease patients; at least 8 years of education; 

ability to give informed consent. 

Patients with (1) history or signs of other neurological diseases, including significant brain 

MRI findings; (2) contraindications for MRI scanning; (3) malignancy within the last 5 years; 

(4) major depression; (5) homozygous 147 Thr/Thr single nucleotide polymorphism of the 

18kDa translocator protein (TSPO) gene (low affinity binders of 11C-PBR28) were excluded 

from the study. 
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Chapter 2. PET Analysis and Comparison of 11C-PBR28 

Quantification methods 

2.1 Introduction  

2.1.1 A Brief overview of PET quantification methods 

PET tracer binding quantification methods could be generally summarized into several 

categories, with increasing precision on tracer kinetic behaviour but model complexity as 

well: semiquantitative standard uptake value (SUV), graphical analysis, spectral analysis and 

compartment modelling (Bertoldo, Rizzo, & Veronese, 2014).  

Compartment modelling is the very basis of PET quantification, as it explicitly describes the 

dynamic parameters of tracers inside the tissue, based on a predefined model of the 

physiological system. For a tracer that can reversibly bind to its receptor, the most commonly 

kinetic model is the 2-tissue compartment model (Figure 2.1). 

 

Figure 2.1. 2-tissue compartment model 

Where Cp, C1 and C2 are the concentration of parent tracer in plasma and tissue 

compartments, respectively and K1~k4 are the transport constant between blood and 

tissue/between tissue compartments. The relationship of tracer concentration in plasma and 

tissue compartments is given by following equations: 

𝑑𝑑𝐶𝐶1
𝑑𝑑𝑑𝑑

= 𝐾𝐾1𝐶𝐶𝑝𝑝(𝑡𝑡) − (𝑘𝑘2 + 𝑘𝑘3)𝐶𝐶1 + 𝑘𝑘4𝐶𝐶2          (2.1) 

𝑑𝑑𝐶𝐶2
𝑑𝑑𝑑𝑑

= 𝑘𝑘3𝐶𝐶1 − 𝑘𝑘4𝐶𝐶2                                        (2.2) 
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With dynamic PET and arterial plasma samples, the model micro-parameters (K1~k4) could 

then be estimated. The macro-parameters such as tissue distribution volume (VT) and non-

displaceable binding potential (BPND) could then be calculated: 

𝑉𝑉𝑇𝑇 =  𝐾𝐾1
𝑘𝑘2

(1 + 𝑘𝑘3
𝑘𝑘4

)                                           (2.3) 

𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁 = 𝑘𝑘3
𝑘𝑘4

                                                     (2.4) 

Because it can explicitly describe the mathematical details of tracers’ kinetic inside the 

system, compartment modelling is considered as the ‘gold-standard’ for PET analysis. 

However, it also requires precise understanding of the tracers’ kinetic behaviour inside the 

physiological system, reliable arterial input and dynamic PET acquisition. Further, because 

the estimation of microparameters involves non-linear least square method, compartment 

modelling is less suitable for calculating voxel-wise parametric maps due to issues such as 

high noise level at single voxel and computational costs (Bertoldo et al., 2014; Slifstein & 

Laruelle, 2001).  

 

In spectral analysis, the radioactivity in tissue is regarded as the convolution product of the 

input of system (AIF) and the impulse response function (IRF). Whereas compartment 

modelling requires explicit kinetic description of the system, spectral analysis (SA) 

decomposes the IRF into a sum of exponential functions: 

𝐶𝐶𝑑𝑑(𝑡𝑡) = ∑ 𝛼𝛼𝑗𝑗 ∙ 𝐶𝐶𝑝𝑝(𝑡𝑡)⨂𝑒𝑒−𝛽𝛽𝑗𝑗𝑑𝑑𝑀𝑀
𝑗𝑗=0  (𝛼𝛼𝑗𝑗 > 0, 0 < 𝛽𝛽1 < 𝛽𝛽2 < ⋯ < 𝛽𝛽𝑀𝑀)      (2.5) 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) = ∑ 𝛼𝛼𝑗𝑗 ∙ 𝑒𝑒−𝛽𝛽𝑗𝑗𝑑𝑑𝑀𝑀
𝑗𝑗=0                                                                         (2.6) 

In analysis of decaying data, the high frequency β component (β = 1 s-1, log (β) = 0) 

corresponds to the rapid flow of tracer in blood flow within the vasculature, the intermediate 
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frequency component(s) reflect the extravascular kinetic behaviour of the tracer, while the 

lowest frequency component (β close to the decay constant of used isotope) correspond to the 

irreversible trapping of the tracer in tissue (V. J. Cunningham & Jones, 1993).  

For reversible tracers VT can be calculated as the integral of IRF(t): 

𝑉𝑉𝑇𝑇 = ∫ 𝐼𝐼𝐼𝐼𝐼𝐼(𝜏𝜏)𝑑𝑑𝜏𝜏 = ∑ 𝛼𝛼𝑗𝑗
𝛽𝛽𝑗𝑗

𝑀𝑀
𝑗𝑗=1

∞
0                                        (2.7) 

Spectral analysis is a model-free method and could be used for model development of new 

tracers, as the components estimated is suggestive of a range of models associated with the 

kinetic spectrum. Spectral analysis is applicable for both voxel-wise and ROI level analysis, 

though it has been suggested to be sensitive to noise (F. Turkheimer et al., 1998), and an 

appropriate β grid needs to be defined (Veronese, Rizzo, Bertoldo, & Turkheimer, 2016). In 

regional analysis, the β range could be set between the decay constant of radioactive isotope 

to 1 s-1 for analysis of decaying data, as it covers the slowest and most rapid possible change 

of signal in tissue, which correspond to signal loss due to decay of the radioactive isotope and 

transient delivery of blood from vessels (V. J. Cunningham & Jones, 1993).  

 

Graphical analysis transforms AIF and ROI tracer uptake data points into a linear plot, the 

slope of which reflects the kinetics of tracer binding. For a 2-tissue compartment model with 

reversible binding (Logan graphical analysis), equation (1) and (2) could be rearranged to: 

∫ 𝑅𝑅𝑅𝑅𝑅𝑅�𝑑𝑑′�𝑑𝑑𝑑𝑑′𝑡𝑡
0
𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑)

= �𝐾𝐾1
𝑘𝑘2
�1 + 𝑘𝑘3

𝑘𝑘4
� + 𝑉𝑉𝑝𝑝�

∫ 𝐶𝐶𝑝𝑝�𝑑𝑑′�𝑑𝑑𝑑𝑑′
𝑡𝑡
0
𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑) + 𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡             (2.8) 

𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡 = − 1
𝑘𝑘2
�1 + 𝑘𝑘3

𝑘𝑘4
� − 𝐶𝐶2(𝑑𝑑)

𝑘𝑘4[𝐶𝐶1(𝑑𝑑)+𝐶𝐶2(𝑑𝑑)]   (𝑉𝑉𝑝𝑝 𝑖𝑖𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑖𝑖𝑡𝑡𝑒𝑒𝑑𝑑)       (2.9) 
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Therefore, if the intercept holds constant, there is linear relationship between ∫
𝑅𝑅𝑅𝑅𝑅𝑅�𝑑𝑑′�𝑑𝑑𝑑𝑑′𝑡𝑡

0
𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑)

 and 

∫ 𝐶𝐶𝑝𝑝�𝑑𝑑′�𝑑𝑑𝑑𝑑′
𝑡𝑡
0
𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑) , which could be obtained from imaging frames. That the intercept is 

(approximately) constant holds true after a steady-state condition is met certain time post-

injection of the tracer, that is, the tracer concentration in compartment 1 (C1) and C2 both 

follow the plasma concentration Cp, i.e., 𝐶𝐶1(𝑡𝑡) ∝ 𝐶𝐶𝑝𝑝(𝑡𝑡);𝐶𝐶2(𝑡𝑡) ∝ 𝐶𝐶𝑝𝑝(𝑡𝑡), 𝑡𝑡 > 𝑇𝑇∗. Where T* is 

the time after which the system reaches the steady state. After time T, 𝐶𝐶2(𝑑𝑑)
𝐶𝐶1(𝑑𝑑)+𝐶𝐶2(𝑑𝑑) cancels the 

function 𝐶𝐶𝑝𝑝(𝑡𝑡), thus the intercept is a constant determined by k2~k4, and the  slope is the 

tissue distribution volume (VT) (Logan, 2000). 

Graphical analysis is less computational demanding and can be applied to both voxel-wise 

and ROI level analysis. It should be noted that a good estimation depends on the appropriate 

choice of T*. Also, noise in PET data tend to lead to underestimation of VT in Logan analysis, 

especially at voxel-level when signals are not averaged to cancel zero-mean noise (as at ROI 

level) (Slifstein & Laruelle, 2000). 

SUV is the most used measurement in clinical practice, which is calculated by dividing tracer 

uptake by the injection dose and a normalizing factor. The most common normalizing factors 

are body weight, body surface area or lean body mass. SUV does not provide kinetic 

information of the tracers, but its simplicity and non-invasiveness (no arterial sampling 

required) make it ideal for clinical settings (Bertoldo et al., 2014).  

Due to the invasiveness of the methods that require arterial sampling, reference region 

methods have been developed to derive arterial input function from time-activity data from a 

reference region. An ideal reference region should have similar non-specific tracer bindings 

as target ROIs but have little/no specific binding sites (Zanderigo, Ogden, & Parsey, 2013). 

Reference regions are also used to calculate distribution volume ratios (DVR) and standard 
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uptake value ratios (SUVR) to normalize individual variability of PET scans (J. M. 

Rasmussen et al., 2012). To date, many of the most widely used tracers in clinical and 

scientific settings are analysed using the SUVR methods, such as 18F-Flutemetamol, 11C-PIB 

and 18F-AV1451, because of its simplicity and the effectiveness.  

 

2.1.2 Challenges in 11C-PBR28 quantification 

The quantification of 11C-PBR28 PET scans have been proved to be challenging, due to its 

high within-subject and more importantly, inter-subject binding variability. Test-retest 

stability analysis have found an absolute within subject VT variability of 18.3±12.7% using 

the 2-tissue compartment model in healthy volunteers. However, the coefficient of variation 

at inter-subject level was substantially higher, at 49% after accounting for TSPO genotypes 

(Collste et al., 2016). Further studies have demonstrated that the circadian rhythm, 

physiological and psychological factors such as age, gender, BMI, anxiety, could all 

influence TSPO expression, which lead to high inter and intra-subject variability (Gavish et 

al., 1999) (Tuisku et al., 2019) (Collste et al., 2016). It has been also suggested that 

introducing a vascular compartment in the kinetic model could improve the model fit (Rizzo 

et al., 2014; Veronese et al., 2018). Since VT accounts for both specific bindings and non-

specific bindings of PBR in tissues, which add up to the noise in data, efforts have also been 

made to estimate specific bindings in analysis (Guo, Owen, Rabiner, Turkheimer, & Gunn, 

2014; Schain, Zanderigo, Ogden, & Kreisl, 2018).  

Although accounting for numerous demographic factors and specifying more precise kinetic 

models could improve model fit, the complexity undermines its practicality, and the 

relatively small sample sizes in human brain imaging studies often limit the number of 

nuisances in regression. Further, from statistical point of view, too high a variance could not 
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only undermine the statistical power, but also cause high data skewness and render further 

analysis unreliable. Therefore, many clinical studies have decided to use the ratio method 

(DVR and SUVR) with reference region to ameliorate the inter-subject variability issue, 

because it could cancel most of the individual-specific physiological and psychological 

factors (Lyoo et al., 2015b). However, because there is no region in the brain that is devoid of 

TSPO expression, a pseudo-reference region could be delegated as best (F. E. Turkheimer et 

al., 2007). The choice of pseudo-reference region is often based on the knowledge of disease 

in question, for example, in epilepsy studies often the region contralateral to the lesion is 

selected (Dickstein et al., 2019), while in motor neuron diseases the cortical brain grey matter 

is selected because the diseases mainly involve primary motor cortex (Paganoni et al., 2018) 

(Alshikho et al., 2016). In Alzheimer’s disease, the whole neocortex could be involved 

depending on the pathological stage, but the cerebellum has only minimal Alzheimer’s 

pathology until the very terminal stage, which is usually beyond the scope of imaging studies 

(Braak & Braak, 1991). It has also been reported that the TSPO expression patterns in 

cerebellum is significant different compared to that found around amyloid plaques in the 

neocortex (Slifstein & Laruelle, 2001). Based on the reasoning, Kreisl and colleagues have 

tested the possibility of quantifying 11C-PBR28 uptake using SUVR with cerebellum grey 

matter as pseudo-reference region, and have reported that the method is reliable and might be 

more sensitive for detecting neuroinflammation in AD compared to compartment modelling 

(Lyoo et al., 2015b). Further test-retest stability analysis has also suggested better stability of 

SUVR over 12 weeks of time in 11C-PBR28 quantification (Nair et al., 2016). Several studies 

have since adopted the method and reported further progress with regards to the influence of 

neuroinflammation on cognition and disease progression in AD (Kreisl et al., 2016b) (Zou et 

al., 2020) (Kreisl et al., 2017). On the other hand, the SUVR method is also criticized in that 

SUVR does not correlate very well with VT values estimated by the gold standard (Albrecht 
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et al., 2018) (Matheson et al., 2017). However, as the variance introduced by individual 

factors which have significant effect on absolute quantification is normalized by ratio 

methods, one may reasonably expect the ratios to be different from VT. Of note, to date there 

has not been study investigating whether 11C-PBR28 SUVR is associated with amyloid and 

tau pathologies in vivo. One would expect that if ratio method is valid for quantification of 

neuroinflammation, the SUVR would correlate well with Alzheimer’s pathologies in vivo 

according to established pathological knowledge.  

Based on the consideration that the SUVR method could ameliorate the inter-subject 

variability issue and improve the statistical power/robustness of further analysis of my 

project, I have adopted SUVR method as the primary method of my analysis, but I also 

compared SUVR results with the output from Logan analysis, spectral analysis, and DVR 

values based on VT values. Because the imaging data for my project is already acquired, a 

test-retest stability analysis of different methods is not possible. As we have prior knowledge 

that neuroinflammation accompanies amyloid and tau pathologies in pathological 

examination, and that increased 11C-PK11195 uptake is found in the medial temporal lobe, 

inferior/middle temporal gyri, I hypothesized that if SUVR is a suitable method for detecting 

neuroinflammation in AD, I should be able to replicate the previous imaging findings, and 

the SUVR values should correlate with imaging markers of amyloid and tau pathologies. 

 

2.2 Methods 

2.2.1 11C-PBR28 PET scan acquisition 

11C-PBR28 was synthesized at London Imanova Centre for Imaging Sciences. 11C-PBR28 

PET scans were acquired with a Siemens Truepoint PET/CT scanner at the same site with the 

following parameter: axial field of view 218mm, 111 axial planes, spatial resolution 
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2.056mm × 2.056mm × 2mm. Radial artery cannulation was performed prior to scanning to 

draw arterial blood samples. 11C-PBR28 was dissolved in 20ml normal saline and a mean 

dose of 330.9 (±30) MBq was injected for imaging. 8 × 15s, 3 × 60s, 5 × 120s, 5 × 300s and 5 

× 600s frames were acquired using 3D list mode acquisition over 90 minutes. Images were 

reconstructed using filtered backward projection with 2.6× zoom and 5mm Gaussian filter. 

Arterial blood was sampled continuously for the first 15 minutes after injection and discrete 

samples were drawn at 5, 10, 20, 30, 50 ,70 and 90 minutes. Whole blood and plasma 

radioactivity were measured, and reverse-phase chromatography was performed to separate 

radioactive metabolites (Dani et al., 2018b). 

2.2.2 18F-Flutemetamol PET scan acquisition 

18F-Flutemetamol was provided by GE Healthcare and scans were acquired at Imperial 

College Clinical Imaging Facility with Siemens Biograph 6 scanner. A mean dose of 183.4 

(±5.3) MBq was injected in 8ml normal saline followed by 10 ml saline flush. Scans were 

acquired from 90-120 minute after injection with following parameters: 15cm field of view, 

2.6 × zoom, spatial resolution 1.56mm × 1.56mm × 1.92mm. 6 of 5-minute frames were 

acquired in 3D list mode. Filtered back projection was performed to reconstruct the images 

and attenuation was corrected. Post-construction smoothing was performed with 5mm 

Gaussian kernel. 

2.2.3 18F-AV1451 PET scan acquisition 

18F-AV1451 was provided by Imanova Centre for Imaging Sciences, London, where scans 

were performed with Siemens Truepoint PET/CT scanner. A mean dose of 168.3 (±7.4) MBq 

of 18F-AV1451 was injected in 20ml normal saline. 8 ×15s, 3 × 60s, 5 × 120s, 5 × 300s, 
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8 × 600s frames were acquired over 120 minutes in 3D list mode. Images were reconstructed 

using iterative reconstruction and post-construction smoothing was performed with 5mm 

Gaussian kernel. 

2.2.4 Pre-processing of PET images 

Due to the long period of PET scanning, many patients/volunteers made head movements 

that caused displacement of the frames (as noticed in visual inspection of the frames. 

Therefore, realignment was performed before further processing. Because the first 15-second 

frames contained little spatial information, the realignment was performed by aligning the 

rest of the frames to the third frame and leave the first 2 frames as were. The realignment was 

performed on statistical parametric mapping 8 package (SPM8, University College London). 

A weighted average image (Add-image) of all frames was then created for each subject as it 

may provide better spatial information compared with parametric maps and was used for 

further spatial transformation process. 

Each subject’s T1-weighted MRI image was co-registered to the Add-image, followed by 

normalization to MNI space with MNI-152 average T1 image as template. Spatial 

transformation parameters were recorded, and the inverse transformation parameters to MNI 

space were applied to Hammers Atlas to generate a subject-specific ROI map in PET space. 

The co-registered MRI image in PET space was segmented, and the ROI map was multiplied 

by the binarized grey-matter mask (>0.5 probability) using nearest neighbour interpolation to 

create a grey-matter object map in PET space for each subject respectively. 

2.2.5 11C-PBR28 PET analysis 

Arterial input function 

Arterial input function (AIF) was calculated using COMIF (in house MATLAB based 

software) by the following steps:  
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(1) Background radioactivity correction: the sensor may detect background radiation in 

the room due to inadequate shielding, so a 15s segment of arterial blood radioactivity 

readings prior to injection was extracted and the mean value is subtracted for all 

subsequent measurements (Figure 2.2). 

 

Figure 2.2. Background radioactivity 

(2) Blood time-activity curve was created by combining the continuous readings over the 

first 15 minutes and discrete blood samples’ measurements from a well-counter 

(Figure 2.3).  

 

Figure 2.3. Fitted curve of blood radioactivity 
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(3) Plasma-over-blood correction: plasma over blood concentration ratio line was fitted 

using data points from discrete samples and a simple linear model was used for 11C-

PBR28 (Figure 2.4). 

 

Figure 2.4. Plasma over blood model 

The first 15-minute continuous plasma time-activity curves were then obtained by 

multiplying the blood time-activity curve by the plasma over blood function, and the 

final total plasma time-activity curves were generated by combining the corrected 

continuous curve and discrete well-counter readings of the plasma (Figure 2.5). 

 

Figure 2.5. Total plasma time-activity curve 
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(4) Metabolite correction: Radiolabelled metabolite correction is needed to obtain plasma 

parent compound time-activity curve. To achieve this, the parent compound (11C-

PBR28) fraction in plasma curve is fitted using a sigmoidal function (Figure 2.6). 

 

Figure 2.6. Parent compound fraction in plasma 

11C-PBR28 plasma input function was calculated by multiplying total plasma time-

activity curve by parent compound fraction function and was used for further analysis 

(Figure 2.7). 

 

Figure 2.7. Parent plasma input function 
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Delay correction of 11C-PBR28 arterial input function 

Because arterial blood samples are drawn from radial artery, where it takes longer time for 

blood to travel from left ventricle compared to brain, the measurement of arterial blood 

radioactivity lags behind perfusion to the brain, and thus delay correction is needed to prevent 

bias in further analysis. Delay was detected by fitting compartment model to the data 

iteratively with time-shifted arterial input curves and choosing the time delay that result in 

best fit between AIF and imaging data (Iida et al., 1988). In the current project the delay 

detection was performed on MICK program (Dr Rainer Hinz, University of Manchester) 

using whole-brain grey matter as region of interest (ROI) and a 2-tissue compartment model 

with variable blood volume (4k-bv). Brain blood volume was estimated in the same process 

by fitting AIF with imaging data iteratively with a range of blood volumes and approximating 

the value resulting in best fit. Detected time delay was recorded for each subject and 

corrected in further analysis where AIF is used. 

Standardized uptake value ratio (SUVR) images for 11C-PBR28 

As previous studies have reported that SUVR calculated with cerebellar grey matter as a 

pseudo-reference region and late frames (60-90 minutes) of 11C-PBR28 scan could be a 

feasible method compared to absolute quantifications (Lyoo et al., 2015a), a 60-90-minute 

SUVR image was created first for each subject.  

The average image of last three 600s frames was create for each subject. The radioactivity 

concentration in bilateral cerebellar grey matter was sampled and the average image was 

divided by cerebellar grey matter concentration to obtain the SUVR image for each subject. 
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Calculation of volume of distribution (VT) image using graphical analysis (Logan) 

Logan-VT parametric map was created for each voxel using MICK-pm program (Dr Rainer 

Hinz, University of Manchester) using AIF, corrected for delay time and blood volume. Data 

points obtained from 2100s were used for estimation (Dani et al., 2018a) (Figure 2.8). 

 

Figure 2.8. Logan graphic analysis at ROI level 

Calculation of Impulse Response Function (IRF) Image Using Spectral Analysis 

At voxel level the β grid was narrowed to 0.00085-0.1 considering increased statistical noise 

at voxel level, which resulted in VT close to that calculated at ROI scale. 

Processing of parametric images 

The parametric maps of SUVR, Logan-VT, SA-VT and IRF were sampled in original PET 

space using the individualized Hammer’s atlas to acquire ROI level metrics. Normalization of 

the parametric maps to the MNI space was performed with following steps: (1) Each 

subject’s T1 weighted MRI image was co-registered to the Add-image using linear 

transformation; (2) The co-registered MRI image was then normalized to MNI-152 template 

using non-linear transformation and the same spatial transformation was applied to the PET 

parametric maps for each individual, bringing the PET images to standard space. The 

normalized images were then used in voxel-wise statistical analyses. 
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2.2.6 Processing of 18F-Flutemetamol and 18F-AV1451 PET images 

The weighted average images were created using all 60-90 minutes 18F-Flutemetamol frames 

and 80-100 minutes 18F-AV1451 frames. Same procedures as 11C-PBR28 SUVR calculation 

were performed. Cerebellum grey matter was used as reference region for both images. 

2.2.7 Statistical analysis  

Left and right medial temporal lobe (MTL) and combined middle/inferior temporal gyri were 

defined a prior as primary ROIs in statistical analysis, based on prior findings from in vivo 

TSPO imaging and post-mortem pathology studies. Analysis of covariance (ANCOVA) was 

performed to test any difference across AD, MCI and HC cohorts, with TSPO genotype and 

diagnosis included as fixed factors and age as covariate. Student’s T-test was performed to 

test difference between any two of the diagnostic groups, with false discovery rate (FDR) 

correction. Post hoc exploratory analyses were performed in larger and more general ROIs 

including bilateral frontal, temporal, parietal, occipital lobes and cingulate gyri. Correlation 

between 18F-Flutemetamol and 11C-PBR28, 11C-PBR28 and 18F-AV1451 uptake in these 

ROIs to examine if neuroinflammation is associated with amyloid and tau deposition in vivo.  

Further, regression analysis was performed with 18F-Flutemetamol and 18F-AV1451 SUVR as 

independent variables and 11C-PBR28 measurements as dependent variable in AD and 

combined amyloid positive cohorts. Age and TSPO genotype (where 11C-PBR28 was 

involved) were included as covariate of no interest in all tests. All statistical analysis at ROI 

level was performed with R. 

Voxel-wise group comparisons were performed on SPM8. Cluster-forming threshold was set 

at 0.05 at voxel-level and multiple comparison correction as performed at cluster level using 

random field theory with a threshold of 0.05. Age and TSPO genotype were included as 

covariate of no interest in the tests.  
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Further, voxel-wise regression analysis was performed on 18F-Flutemetamol, 18F-AV1451, 

and 11C-PBR28 SUVR images using the VoxelStat package (Mathotaarachchi et al., 2016). 

Images were smoothed with a 6mm Gaussian kernel before analysis, and age was included as 

a covariate. Results were corrected for multiple comparisons using random field theory with 

a p<0.01 cluster forming threshold.  

 

2.3 Results 

The study protocol and data availability are summarised in Figure 1.4. The demographic data 

and scan availability for each participant are summarised in Appendix 3. 

2.3.1 18F-Flutemetamol SUVR 

ANCOVA showed significant cross group difference of 18F-Flutemetamol SUVR across 

frontal, temporal, parietal, occipital and cingulate cortices (p<0.01, Bonferroni corrected). 

AD cohort showed significantly higher 18F-Flutemetamol SUVR across all the regions 

compared to HC and MCI cohort, while MCI cohort did not show significant increase at ROI 

level comparison (Figure 2.9).  

14 of the clinical diagnosed probable AD subjects and 26 of 55 clinical diagnosed MCI and 2 

of 19 HC subjects were defined as amyloid positive (Aβ+) based on increased amyloid 

deposition (18F-Flutemetamol SUVR>1.46) in composite region defined by Thurfjell et al. 

(Thurfjell et al., 2014). 

Voxel-wise comparison have shown that AD cohort had increased 18F-Flutemetamol uptake 

across the cortical cortex (Figure 2.10a), while MCI cohort showed clusters of increased 18F-

Flutemetamol SUVR in bilateral lateral frontal, temporal, inferior parietal, occipital lobes and 

cingulate cortices (Figure 2.10b). 
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Ant.: Anterior; Post.: Posterior; Corrected for multiple comaprisons using Bonferroni correction. 
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MTL: Medial temporal lobe; Ant.: Anterior; Corrected for multiple comparisons using Bonferroni correction.
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Voxel-wise comparison have shown that AD cohort had increased 18F-Flutemetamol uptake 

across the cortical cortex (a), while MCI cohort showed clusters of increased 18F-

Flutemetamol SUVR in bilateral lateral frontal, temporal, inferior parietal, occipital lobes and 

cingulate cortices (b). 

 

2.3.2 18F-AV1451 SUVR 

Cross group comparison showed significant difference of 18F-AV1451 SUVR in temporal, 

parietal, occipital and posterior cingulate cortices. AD cohort showed increased SUVR in 

temporal, parietal, occipital and posterior cingulate cortices compared to HC (p<0.05, 

Bonferroni corrected), while MCI cohort did not differ significantly from HC cohort in all 

ROIs (Figure 2.11).  

12 of 16 clinical diagnosed AD and 4 of 19 clinical diagnosed MCI subjects were defined as 

positive for neurofibrillary tangles (NFT+) based on increased 18F-AV1451 SUVR in the 

middle temporal lobe or at least two of the other 5 major cortical ROIs (frontal, parietal, 

occipital, anterior and posterior cingulate cortices). None of the HC subjects was found to be 

NFT+.  
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Voxel wise comparison found clusters of increased 18F-AV1451 SUVR in bilateral temporal, 

and inferior frontal cortices in AD subjects, and in bilateral hippocampi, parahippocampal 

gyri, inferior and posterior temporal gyri and inferior frontal gyri in Aβ+ MCI subjects 

(Figure 2.12). No significant cluster was found in comparison between MCI and HC cohort. 

 

Voxel wise comparison found increased 18F-AV1451 uptake in bilateral temporal, and 

inferior frontal cortices in AD, and in bilateral hippocampi, parahippocampal gyri, inferior 

and posterior temporal gyri and inferior frontal gyri in Aβ+ MCI participants 

2.3.3 11C-PBR28 spectral analysis and Logan analysis 

The number, TSPO phenotypes and demographics of participants who had analysable 

dynamic 11C-PBR28 scans (1 AD and 2 MCI patients had apparent abnormal blood data and 

therefore kinetic modelling could not be performed) are summarised in table 2.1. 
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Table 2.1. TSPO phenotypes and demographics of participants with 11C-PBR28 PET data 

 AD MCI HC 
Number 18 29 18 

HAB 11 16 11 
MAB 7 13 7 
Age 73.9 72 65.1 

Gender(M/F) 11/7 16/13 8/10 
MMSE 23.4 27.6 28.9 

HAB: high affinity binder; MAB: mixed affinity binder; MMSE: mini mental state 

examination. 

VT and IRF parametric images created using spectral analysis with β-grid from 0.00085 to 

0.1 turned out to be more robust to statistical noise compared to Logan graphic method and 

offered better quality of the images (Figure 2.13).  

 

Figure 2.13. Parametric images created by Logan graphic analysis, SUVR method and 

spectral analysis. A: VT calculated in spectral analysis; B: IRF at 90 minute in spectral 

analysis; C: SUVR using cerebellum as reference region and 60-90 minute frames; D: Logan 

VT. 

Impulse response function at 90-minute (IRF-90min) calculated using spectral analysis 

showed good agreement with Logan VT values across the ROIs (r=0.99, p<0.001, Figure 

2.14). 
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Figure 2.14. Correlation between IRF-90min and Logan VT 

In cross-group 2-way ANCOVA where TSPO genotype and diagnosis were used as grouping 

variable and age as covariant of no interest, only TSPO genotype was found to have 

significant effect on VT and IRF values in MTL and middle/inferior temporal gyri (p<0.01, 

FDR corrected), while diagnostic groups were not. 

In pairwise comparisons adjusted for TSPO genotype and controlled for age, AD patients did 

not show significantly increased Logan-VT or IRF in MTL or middle/inferior temporal gyri 

on either side (Figure 2.15. p>0.05).  
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Figure 2.15. Pairwise comparisons of Logan-VT and IRF values in the middle/inferior 

temporal gyri, grouped by TSPO genotype. 

The Logan VT values and IRF-90min did not differ across diagnostic groups in cerebellar 

grey matter (Figure 2.16). 
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Figure 2.16. Logan VT and IRF-90min in cerebellar grey matter. 

2.3.4 11C-PBR28 SUVR analysis 

AD group showed increased 11C-PBR28 SUVR in left and right middle/inferior temporal gyri 

compared to HCs (p=0.04 and 0.05, respectively), however, the results did not survive FDR 

correction (Figure 2.17). 

 

Figure 2.17. 11C-PBR28 SUVR in medial temporal lobe (MTL) and middle/inferior temporal 

gyri. *: p<0.05 in pairwise t-test. 

Post-hoc exploratory analysis did not find significantly increased 11C-PBR28 uptake in other 

cortical regions using any of the methods. 
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2.3.5 Comparison between 11C-PBR28 DVR and SUVR 

The distribution volume ratio (DVR) calculated using Logan VT with cerebellum as reference 

region was compared to SUVR, in order to examine the accordance between ratio methods. 

The SUVR and DVR showed good agreement with each other, with correlation coefficients 

of ~0.9 and p-value of Pearson’s correlation <0.001 across multiple major ROIs (Figure 

2.18). However, the correlations between ratio methods and absolute quantifications were not 

significant.  

 

Figure 2.18. Correlation between 11C-PBR28 DVR and SUVR in temporal lobe and occipital 

lobes. 

2.3.6 Voxel-wise analysis of 11C-PBR28 parametric images 

In voxel-wise comparisons of Logan-VT and IRF parametric images there was no significant 

clusters of difference between AD versus HC or MCI versus HC cohort. 

Voxel-wise comparison of SUVR images showed significant clusters of increased SUVR in 

AD cohort in bilateral superior and middle frontal gyrus, left precentral and postcentral gyrus, 
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left posterior temporal lobe, and right superior and inferolateral parietal lobe in AD subjects 

(FDR corrected p<0.05 at cluster level, Figure 2.19). 

 

Figure 2.19. Voxel-wise analysis detected increased 11C-PBR28 SUVR in AD subjects 

compared to HC cohort. 

Voxel-wise comparison of SUVR images showed significant clusters of increased SUVR in 

AD cohort in bilateral superior and middle frontal gyrus, left precentral and postcentral gyrus, 

left posterior temporal lobe, and right superior and inferolateral parietal lobe in AD subjects 

2.3.7 Relationship between 11C-PBR28 and 18F-Flutemetamol/18F-AV1451 measurements 

In cognitively impaired subjects (AD and MCI), 18F-Flutemetamol SUVR correlated with 

11C-PBR28 SUVR in temporal and occipital regions (β=0.059, 95%CI 0.0086~0.11, p=0.024; 

β=0.096, 95%CI 0.022~0.17, p=0.013, respectively), while age and TSPO genotypes where 

not significant predictors. 18F-Flutemetamol SUVR did not have significant relationship with 

11C-PBR28 Logan-VT or IRF90min across the ROIs (Figure 2.20).  
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Figure 2.20. Correlation between 11C-PBR28 and 18F-Flutemetamol measurements 

In medial temporal lobe and occipital lobe, 18F-AV1451 SUVR significantly correlated with 

11C-PBR28 SUVR (β=0.19, 95%CI 0.045~0.33, p=0.015; β=0.11, 95%CI 0.031~0.19, 

p=0.0099), but not 11C-PBR28 Logan-VT or IRF90min (Figure 2.21). Age and TSPO 

genotypes were included in all regression models as independent variables of no interest. 
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Figure 2.21. Correlation between 11C-PBR28 and 18F-AV1451 measurements in medial 

temporal lobe. 

 

2.3.8 Voxel-wise regression analysis between 18F-Flutemetamol, 18F-AV1451, and 11C-
PBR28 SUVR images 

In the regression model, 11C-PBR28 uptake was positively associated18F-Flutemetamol 

mainly in the posterior part of the brain including bilateral precentral and postcentral gyri, 

precuneus, occipital pole, lingual gyri, cuneal cortices, parahippocampal gyri and right lateral 

occipital cortex (Figure 2.22 A). While 18F-AV1451 SUVR was associated with increased 

11C-PBR28 uptake in more wide-spread areas covering bilateral hippocampi, 

parahippocampal gyri, inferior temporal gyri, posterior cingulate gyri, precuneus, superior 

parietal lobules, occipital pole, lateral occipital cortices, angular gyri, lingual gyri, 

supramarginal gyri, precentral and postcentral gyri, superior frontal gyri, frontal pole, plus 

right temporal pole and middle temporal gyrus (Figure 2.22 B). 
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Figure 2.22. Voxel wise correlation between tracer uptakes (age adjusted). A: association 

between 11C-PBR28 and 18F-Flutemetamol SUVR; B: association between 11C-PBR28 and 

18F-AV1451 SUVR 

 

2.4 Discussion and Conclusions  

11C-PBR28 has become one of the most widely applied TSPO tracers in neuroinflammation 

research (Varrone & Nordberg, 2015). One of the major challenges in interpreting 11C-

PBR28 data is the high inter-subject variability in absolute quantifications of 11C-PBR28 

bindings even after correcting for TSPO genotype and using improved models (Collste et al., 

2016). It has been shown that the absolute bindings could be influenced by numerous factors 

including demographic characteristics, psychological events and even time of the day 

(diurnal changes). Further, it has been argued that errors in arterial blood measurements may 

add up to the variation in final quantification results (Lyoo et al., 2015b). In fact, in the 

current analysis, 3 of the patients (1AD and 2MCI) were excluded because of apparent errors 
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in the arterial blood data, and it is inevitable that tolerable errors exist in any measurement 

step. Altogether, the high variability in absolute quantifications may reduce statistical power 

in analysis and requires more samples to be acquired to detect a difference in populations or 

to reliably infer an association in clinical studies, which is often costly and not always 

practical. 

Analysis of 11C-PBR28 absolute quantifications (Logan VT and IRF-90min) has shown a 

trend of increased 11C-PBR28 binding in AD and MCI patients compared to healthy 

volunteers in HAB group. However, due to the high variability in the data, the differences did 

not reach statistical significance. In MAB group, interestingly, AD patients seemed to have 

lower tracer binding compared to HCs. However, the findings in MAB group should be 

treated with caution because of limited number of cases (7 AD and 7 HC MABs). These 

findings also highlight the issue of high inter-subject variability in 11C-PBR28 bindings. And 

the single nucleotide polymorphism of TSPO gene further complicates the problem, as by 

splitting research cohorts into different groups would further reduce the available data for 

analysis in each group, which would undermine the statistical power to detect meaningful 

signals from noisy data.  

One of the approaches to reduce the inter-subject variability is to use the reference region 

method. An ideal reference region in PET kinetic modelling should have negligible 

expression of tracer binding sites and therefore an input function could be derived from the 

time-activity data in the reference region to substitute arterial sampling data (Slifstein & 

Laruelle, 2001). However, there is no region completely devoid of TSPO expression in 

human brain, and there have been efforts in extracting ‘clusters’ of reference tissue for 

derivation of input function (Zanotti-Fregonara, Kreisl, Innis, & Lyoo, 2019). Alternatively, 

in clinical research a pseudo-reference region could be putatively defined as a region that has 

similar physiological properties as the target region but is minimally affected by the disease 
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in question. For example, the contralateral region versus epileptogenic site in epilepsy 

(Dickstein et al., 2019), the rest of cerebral cortex versus precentral gyrus in motor neuron 

disease (Paganoni et al., 2018) (Alshikho et al., 2016), and normal appearing white matter 

versus lesions in multiple sclerosis (Singhal et al., 2018). This ratio method would control for 

the demographic, physiological and psychological effect in a specific subject, and reflect the 

relative change in tracer bindings associated with the disease.  

For AD, depending on the pathological stage of the disease, the whole neocortex, including 

primary motor and sensory cortex, could be affected by Alzheimer’s pathology. Although 

there have been reports that the whole brain or the occipital cortex could be used as a 

reference region in relatively early AD cohorts (Albrecht et al., 2018) (Nair et al., 2016), our 

analysis on the current cohort have shown increased 18F-Flutemetamol and 18F-AV1451 

bindings in the entire neocortex including the occipital cortex, suggesting that these choices 

are not suitable for the current cohort. The cerebellum, on the other hand, in minimally 

involved in AD until the terminal stage (Braak & Braak, 1991), and therefore was more 

commonly used as reference region in AD research (Kreisl et al., 2017; Kreisl et al., 2016b; 

Lyoo et al., 2015b; Zou et al., 2020). However, it has been criticized that the ratio methods 

may lose biological relevant variations compare to the gold standard (Matheson et al., 2017).  

To address the argument, I have tested whether I could replicate established findings of 

TSPO imaging studies using SUVR method with cerebellum as reference region for 11C-

PBR28 quantification using an independent dataset, and tested whether the variation in 11C-

PBR28 SUVR is associated with biological factors such as amyloid and tau pathologies. I 

have first validated that there is no difference of tracer bindings in the cerebellum using 

Logan graphic and spectral analysis, which permitted the use of cerebellum as a pseudo-

reference region. Further, using the SUVR method and our independent dataset, we have 

found increased 11C-PBR28 uptake in the MTL and middle/inferior temporal gyri, which is 
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consistent with the findings by Lyoo and his colleagues (Lyoo et al., 2015b). Moreover, I 

have demonstrated that 11C-PBR28 SUVR correlates with amyloid and tau pathologies, as 

evaluated by 18F-Flutemetamol and 18F-AV1451, in vivo at both ROI and voxel level, which 

is consistent with prior pathology knowledge and consistent with recent imaging findings 

using 11C-PK11195 (Ismail et al., 2020). Also, this finding has suggested the although the 

variance of SUVR is much lower compared to absolute quantifications, the variance 

remained biologically relevant. 

In conclusion, I have shown that the SUVR method using cerebellum as a pseudo-reference 

region could ameliorate the high inter-subject variability issue in 11C-PBR28 quantification 

and could produce more consistent findings across independent cohorts in Alzheimer’s 

research. Further, given the stronger association between 11C-PBR28 SUVR and imaging 

markers of amyloid and tau pathologies in cognitively impaired cohort, we can reasonably 

believe that by carefully selecting appropriate reference region, the SUVR method not only 

does not eliminate biological relevant signals, but could improve statistical power by 

cancelling variations caused by other non-disease-specific factors, which could be very 

helpful in clinical studies with moderate sample size. The simplicity and relative non-

invasiveness of SUVR method could facilitate the use of 11C-PBR28 at larger scale and 

benefit neuroimaging research of neuroinflammation. 

Based on previous reasoning, SUVR method was used in further analysis of my project. 

Because there is no significant abnormality in PET imaging data of the 3 subjects with failed 

arterial sampling, these subjects were included in further analysis using SUVR values. 
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Chapter 3. Influence of neuroinflammation on neuronal activity and 

functional connectivity  

3.1 Introduction  

3.1.1 Functional MRI and BOLD signal 

Functional MRI (fMRI) utilizes the blood oxygen level dependent (BOLD) contrast. The 

inversion recovery echo-planar imaging (EPI) sequence fMRI is sensitive to T2* relaxation 

time, which is influenced by the ratio between oxyhaemoglobin (HbO2) and deoxygenated 

haemoglobin (Hb). Hb is paramagnetic and Hb in tissues can cause inhomogeneities of 

magnetic field in the microenvironment, which will facilitate the desynchronisation process 

of protons after the excitation sequence, and hence reduce the signal. HbO2, on the other 

hand, is diamagnetic and does not interfere with the T2 relaxation process. Therefore, using a 

T2* sensitive sequence, tissues that has more Hb in its blood vessels will have lower signals, 

which is the case when there is less neuronal activity in that region (Ogawa, Lee, Nayak, & 

Glynn, 1990) (Belliveau et al., 1991).  

That regions with increased neuronal activity have higher HbO2 concentration is caused by 

the haemodynamic response (Figure 3.1). In brain, the blood supply increases in response to 

neuronal activity to meet the metabolic and oxygen demand, and the amount of compensatory 

supply after neuronal activity exceeds the initial consumption. As a result, the ratio between 

HbO2 and Hb increases after neuronal activity in that region, which in turn lead to an 

increased BOLD signal in fMRI. One should note that there is a 6~7 second delay between 

neuronal activity and the peak of haemodynamic response, followed by a lower than initial 

blood supply before returning to normal state (Iadecola, 2004). The haemodynamic response 

function should be considered in the first-level analysis of task-based fMRI scans; however, 
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it is less relevant in resting state fMRI (rs-fMRI) since there is no specific event related 

change to be modelled. 

 

Figure 3.1 Illustration of haemodynamic response function.  

The function peaks at 6~7s after the onset of the related event, followed by a lower than 

initial blood supply before returning to normal state. 

The rs-fMRI refers to fMRI acquisition when no specific task or stimulus is present for the 

brain to process, hence the brain is at “resting state”. However, the neurons in living brain are 

not exactly resting, as simultaneous fluctuations of signals have been well observed at 

“resting state” by functional brain imaging techniques (Biswal, Van Kylen, & Hyde, 1997). It 

has been demonstrated that the fluctuations in BOLD signals are related to the simultaneous 

neuronal activities (Shmuel & Leopold, 2008) (Scholvinck, Maier, Ye, Duyn, & Leopold, 

2010). Using the timeseries of rs-fMRI scans, not only the simultaneous neuronal activities at 
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an individual region can be detected, but the functional relationship between anatomically 

separated locations can be inferred from the temporal coherence of BOLD signals in these 

regions. 

3.1.2 What can be inferred from resting state fMRI 

One of the key targets of interest in neuroscience is the level of neuronal activity itself. As 

the BOLD signal reflects the haemodynamic response of neuronal activity, the amplitude of 

BOLD signal fluctuations can serve as a marker of local neuronal activity. The idea has been 

reinforced by the findings that fluctuations of BOLD signal are well correlated to 

electrophysiological recordings of neuronal activities (Nir et al., 2008) (Scholvinck et al., 

2010). To avoid contamination from noise due to movement or other physiological factors 

such as cardiac pulses and respiration, only low-frequency signals are of interest for this 

purpose, hence the amplitude of low-frequency (~0.01-0.1Hz) fluctuations (ALFF) has been 

proposed as a probe to reflect neuronal activity and assess functional connectivity (Cordes et 

al., 2001).  

Taking one step forward, as the brain relies on cooperation of multiple cortical regions in 

effective functioning, how well the key regions are functionally linked together is of interest. 

The term “functional connectivity” is coined to describe this functional association between 

brain regions. To evaluate functional connectivity between two different regions of the brain, 

the coherence or corelation between the timeseries of BOLD signal from two regions can be 

calculated, based on the assumption that if two regions are functionally connected, they will 

coactivate to work together in order to perform certain task, and therefore their BOLD 

timeseries will be temporally dependent with each other (Aertsen, Gerstein, Habib, & Palm, 

1989). 



 80 

Using rs-fMRI, a number of resting state brain networks have been observed, including the 

motor, visual, salient, dorsal attention and default mode network (Damoiseaux et al., 2006; 

van den Heuvel & Hulshoff Pol, 2010). Among these networks, the most prominent one is 

the default mode network (DMN), which shows increased activity in resting state and is 

believed to represent the default state of the brain (Marcus E Raichle et al., 2001). The key 

hubs of the DMN are posterior cingulate cortex/precuneus (PCC), medial prefrontal cortex 

and bilateral inferior parietal cortices (M. E. Raichle, 2015). The connectivity within DMN 

has been found to be associated with cognition and emotion processing, perceiving the 

outside environment and mind wandering. Because of the stability of DMN across population 

and the functional importance of DMN, it has become one of the most investigated resting 

state networks in numerous neurological and psychological disorders (M. E. Raichle, 2015). 

3.1.3 Approaches in rs-fMRI analysis 

Seed-based analysis 

The methodology of analysing connectivity of a region or a network can be generally 

categorised into the model-dependent and model-free approaches. The model-dependent 

approach is based on prior knowledge of a network or a ROI, for example, the key hubs of a 

network and their anatomical positions. By defining a ROI, or seed, the average timeseries 

form the seed region can be extracted and used to correlate with all voxels inside the brain or 

the average BOLD signals in other seed regions. The whole brain functional connectivity 

map of the seed region or the connectivity metrics between the seeds can then be produced 

for further analysis (Cordes et al., 2000). The advantages of seed-based method are its 

simplicity and easiness for interpretation, moreover, by using the same seed in analysis, data 

from different studies can be easily compared and analysed. However, the model-dependent 

nature of seed-based approach also limits its potential to find unexpected yet meaningful 
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patterns of brain connectivity that is not considered in model design (van den Heuvel & 

Hulshoff Pol, 2010). 

Independent component analysis 

The model-free approaches do not require a pre-defined set of seeds and are data-driven 

methods. The most successful and commonly used data-driven approach in fMRI analysis is 

independent component analysis (ICA). ICA functions to decompose mixed signals into 

separate components that are linearly independent of each other (McKeown & Sejnowski, 

1998). The fact that BOLD timeseries in each voxel are mixture of neuronal activities that are 

from different neuronal circuits (and noise components) makes ICA ideal for analysing the 

complex fMRI data. As ICA is completely data driven, it can often unveil unexpected 

components from fMRI data, and is useful in exploring novel patterns of connectivity, 

breaking known networks into sub-networks and separating noise components. One of the 

limitations of ICA approach, however, is that the decomposition driven by different data are 

not exactly comparable across studies, making interpretation of results more difficult 

compared to model-dependent approaches (Fox & Raichle, 2007). Another issue is that 

unlike principal component analysis which has single ‘correct’ solution, the solutions can 

vary using different algorithms (Risk, Matteson, Ruppert, Eloyan, & Caffo, 2014). Further, 

the optimal number of independent components find by the algorithm to minimize the cost 

function can vary a lot depending on input data, and too large/small a number of components 

can lead to degradation/fusion of networks of interest, adding up to difficulty to interpret the 

results.  

Graph theory 

Another way to examine brain connectivity is to treat the entire brain as a network, and to 

look at the global organisation of the entire network. In practice, the brain can be parcellated 
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into a number of ROIs, based on prior anatomical or functional knowledge, and each of the 

ROI is considered as a node of a graphical network (Rubinov & Sporns, 2010). The 

connectivity between each two of the nodes can then be computed, and if the connectivity 

between two nodes is strong enough, an edge is considered to exist between the nodes 

(Bullmore & Sporns, 2009). Therefore, a graph G= (N, E) can be established, with N being 

the collection of nodes and E being the collection of edges (Figure 3.2). Following the 

construction of graph G, its key properties can be examined, including its segregation, 

integration, and small-world property.  

 

Figure 3.2 Visual illustration of a graph consisting of edges and nodes (image adapted from 

http://mriquestions.com/networkgraphs.html) 

Network segregation refers to the ability of the brain to process information within an 

interconnected subgroup of regions. These subgroups of nodes may be specialised for certain 

tasks and with a number of segregated subgroups the brain can process various tasks 

simultaneously with high efficiency. These clusters of functional connected nodes are 

presented as triangles in the graph, i.e., the neighbours of a nodes are interconnected as well. 

Clustering coefficient of a node is defined as the fraction of triangles around that node, in 
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other words, for node A, clustering coefficient is the number of edges between A’s 

neighbours divided by all possible links between A’s neighbours (Watts & Strogatz, 1998). 

The clustering coefficient of a network is simply the average nodal clustering coefficients. 

Local efficiency, similarly, is also a measure of network segregation, but with the path length 

between A’s neighbours considered, and provides information about how well neighbouring 

nodes forms local connections and communicate locally (Latora & Marchiori, 2001).  

Network integration, on the other hand, reflects the brain network’s ability to summarise or 

combine information across segregated regions. In other words, it measures how easy it is for 

information to be passed from a node to any other node in the brain. In graph, this can be 

represented by the average shortest path length (edges that must be passed) from node A to 

any other node in the network. For a network, its characteristic path length is defined as the 

average shortest path length between all pairs of nodes (Watts & Strogatz, 1998). This simple 

measure, however, has the caveat that it cannot deal with disconnected nodes. To deal with 

the caveat, the measure global efficiency was proposed, which is related to the inverse of 

shortest path length, but for disconnected nodes the path length is considered infinite and 

therefore the global efficiency can be meaningfully computed as zero (Latora & Marchiori, 

2001). 

One would perceive that organisation of brain network has to balance the need to have both 

high local efficiency and high global efficiency. This demand cannot be met by two most 

simple and common network organisations: random network and regular network. For a 

random network, where the edges randomly connect pairs of nodes, the characteristic path 

length is low, but the clustering coefficient is also low, and therefore the network will not 

satisfy the need for local efficiency. On the other hand, a regular network has high clustering 

coefficient but large characteristic path length as well, so the need for global efficiency is not 

met. It has been established that the brain uses a small-world organisation to solve the 
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aforementioned issue (Achard et al., 2006) (Fair et al., 2009). Technically, small-world 

networks are those which have approximately same characteristic path length as random 

networks, but still have significantly higher clustering coefficient compared to random 

networks (Watts & Strogatz, 1998). This is achieved by having highly connected hubs in the 

network, the edges between which form common pathways for connections between 

members of different clusters (Figure 3.3). The metric small-worldness is coined to reflect 

how effective is the network organised in a small-world fashion and is expressed as the ratio 

between network G’s clustering coefficient and clustering coefficient of similar random 

networks, divided by the ratio between G’s characteristic path length and that of similar 

random networks (Humphries & Gurney, 2008). The exact expressions of the network 

measures are presented in method session.  

 

Figure 3.3 Illustration of common network organisations. (a) regular network; (b) small-

world network; (c) random network. (image by Arnaboldi et al. (Arnaboldi, Passarella, Conti, 

& Dunbar, 2015)) 

In addition, using graph theory, the characters of individual node can be examined by graph 

metric such as degree and betweenness centrality. The degree of a node refers to the number 

of edges connected to the node, while betweenness centrality of a node indicates how many 

shortest paths between other node pairs go through the node in question. One would expect 

nodes that have high degree and betweenness centrality to take important positions in global 
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network and facilitate network integration, and thus these nodes are considered as functional 

hubs. 

3.1.4 Rs-fMRI Studies in AD Research  

One of the earliest findings of resting state functional network alteration in AD patients is the 

decreased functional connectivity within the DMN, especially in PCC and hippocampus 

(Greicius, Srivastava, Reiss, & Menon, 2004) (L. Wang et al., 2006). The disruption of DMN 

connectivity has been later consistently found in AD, MCI and even healthy cohorts at risk of 

AD, with an anterior-posterior dissociation being the most prominent feature  (Binnewijzend 

et al., 2012; Lustig et al., 2003; Seeley et al., 2009; Sorg et al., 2007; Y. Wang et al., 2013).  

Using graph theory methods, studies have found a disruption of functional brain network 

organisation in AD patients. Decreased network segregation measures, including clustering 

coefficient and local efficiency have been found in brain networks of AD patients (Dai et al., 

2019; Reijmer et al., 2013; Supekar, Menon, Rubin, Musen, & Greicius, 2008). On the other 

hand, increased characteristic path length and decreased global efficiency have been reported, 

indicating impaired network integration (Y. Liu et al., 2014). These changes could be 

associated with a loss of small-world properties of functional architecture of the brain 

network. Indeed, studies have suggested that the brain changes towards a random network 

structure in AD (Supekar et al., 2008). Similar changes have been found in MCI patients, 

although less prominent (Dai & He, 2014). 

The integrity of DMN and network segregation/integration metrics have been further found 

to be associated with cognitive performance in AD and MCI patients (Dai & He, 2014), and 

in fact several studies have demonstrated functional connectivity as a good biomarker for 

classifying Alzheimer’s disease (de Vos et al., 2018; Khazaee, Ebrahimzadeh, & Babajani-

Feremi, 2015). These findings highlight the importance of functional brain connectivity in 
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cognition and disease. However, how the changes are associated with pathological factors of 

AD remains to be elucidated. Several studies have reported that amyloid positive patients or 

healthy elderly have disrupted functional connectivity compared to amyloid negative patients 

(Hedden et al., 2009; Sheline et al., 2010) , however, the quantitative influence of amyloid 

deposition on functional network still remains to be tested. More recently, Passamonti and 

colleagues reported that an increased load of independent component of 11C-PK11195, which 

predominately reflected inferior and medial temporal tracer uptake, was associated with 

decreased DMN intra-network connectivity in a similar combined amyloid positive cohort 

(Passamonti et al., 2019), but how an inflammation pattern influenced brain scale 

connectivity remained to be explored, as discussed in chapter 1. 

3.2 Hypothesis and aim of the chapter 

The hypothesis of current study is that neuroinflammation in Alzheimer’s disease can 

actively and independently contribute to the damage of neuronal circuit and disrupt normal 

neuronal activity, the consequence of which are global impairment of the brain and ultimately 

cognitive impairment. 

The aim of the current chapter is to test the prediction (based on the hypothesis): 

neuroinflammation is associated with the disruption of functional connectivity in AD and 

MCI patients, both at network level and global level, independent of amyloid deposition 

quantity. 

3.3 Methods  

The MRI scans were acquired with a 3 Tesla Siemens Verio scanner using a 32-channel head 

coil at the clinical imaging facility, Hammersmith Campus, Imperial College London.  
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3.3.1 T1-weighted MRI scan acquisition 

The T1-weighted scans were acquired using the MPRAGE sequence for better tissue 

segmentation performance: Sagittal orientation; Anterior to posterior phase encoding 

direction; FOV 256×240×160mm; 1×1×1mm isotropic voxels; TR=2300ms; TE=2.98ms; 

TI=900ms; Flip angle=9°; Bandwidth=240Hz/Px; Echo spacing=7.1ms; Interleaved 

acquisition. 

3.3.2 Resting state fMRI scan acquisition 

Resting state functional scans (RS-fMRI) were acquired by an EPI sequence over 10 minutes 

with the following parameters: 35 axial slices, TR=2000ms, TE=30ms, FOV=192×192mm2, 

Flip angle=80°, 3×3×3mm voxel size, anterior-posterior phase encoding direction, 

bandwidth=1906 Hz/Px, echo spacing=0.61ms. A total of 300 volumes were acquired per 

scan. 

3.3.3 Volumetric and surface-based statistics on T1-weighted scans 

Distortion corrected T1-weighted scans were processed using the automatic structural image 

analysis pipeline provided by FreeSurfer (Harvard Medical School; 

surfer.nmr.mgh.harvard.edu). The T1 images first underwent non-uniform intensity 

normalization, and then transformed in to Talairach space. Brain extraction was then 

performed using a watershed/surface deformation procedure (Segonne et al., 2004). Further 

linear and nonlinear volumetric registration was then performed using the extracted brain. 

Following that, segmentation of deep grey matter, white matter and ventricles was performed, 

giving volumetric measurements on subcortical structures including hippocampus, amygdala, 

basal ganglion and ventricles (Fischl et al., 2004). Then white matter segmentation and 

tessellation of grey matter/white matter boundary were executed, creating the original surface 

(Fischl, Liu, & Dale, 2001). The original surface was then smoothed, inflated and underwent 
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topology correction (Segonne, Pacheco, & Fischl, 2007). The final surfaces were finally 

inflated to spherical geometry, on which anatomical parcellation was performed and surface-

based metrics, including cortical thickness, surface area, surface curvature, cortical grey 

matter volumes, were measured (Fischl & Dale, 2000). 

3.3.4 Pre-processing of fMRI scans 

RS-fMRI pre-processing was performed with FEAT and MELODIC tools in FSL (Smith et 

al., 2004). Briefly, the first 5 volumes of rs-fMRI images were discarded to allow magnetic 

field stabilization. The rest 295 volumes were first realigned using rigid-body transformation 

with FSL’s FLIRT (FMRIB’s Linear Registration Tool) (Jenkinson, Bannister, Brady, & 

Smith, 2002). Next, slice timing correction was applied to each voxel’s using sinc 

interpolation to shift timeseries by the fraction of TR corresponding to the acquisition order. 

The aim of the step is to make all voxel in a 3D-volume as if they were all acquired at same 

time, which is not the case in echo planar imaging. The movement parameters were recorded 

for use in further denoising step. Volumes with framewise displacement > 0.9mm or global 

BOLD signal changes above 5 standard deviation were considered as outliers and discarded. 

FSL’s BET tool was used for brain extraction of the fMRI images. The mean image of all 

volumes was used as reference and a liberal threshold was used to prevent losing brain 

voxels. 

Following slice timing correction, spatial smoothing was performed with a 4mm full-width 

half maximum (FWHM) Gaussian kernel. The intention of smoothing is to ameliorate zero-

mean noise problem while preserving physiological signal. The 4mm FWHM was chosen to 

preserve as much spatial resolution as possible. The functional images were registered to the 

T1-weighted images and transformed to MNI space.  
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3.3.5 Denoising of rs-fMRI data 

High-pass temporal filtering was applied to remove low-frequency fluctuations in the 

timeseries (<0.01Hz), which is usually caused by the drift of scanner field. To minimise the 

influence of noise in statistical inference, a combined ICA + nuisance regression approach 

was used in denoising, with FSL’s MELODIC tool (Griffanti et al., 2014). Briefly, ICA 

decomposition was performed on each individual fMRI scan. The original 4D data are 

reshaped into a 2D time × space matrix, which is assumed to be the product of the timeseries 

of independent components and the spatial maps of components (Figure 3.4). The spatial and 

temporal properties of independent components were then inspected and labelled as noise 

components or probable valid signals with the help of FSL’s FIX toolbox (Salimi-Khorshidi 

et al., 2014) and according to recommendation “Hand classification of fMRI ICA noise 

components” (Griffanti et al., 2017). The noise components, and the effect of other nuisance 

factors including white-matter signals, cerebrospinal fluid signals, motion parameters and 

their first-order temporal derivatives were regressed out.  

 

Figure 3.4 Illustration of ICA decomposition of single subject fMRI data 

3.3.6 Spatial pre-processing of functional and structural MRI 

Spatial pre-processing of fMRI and T1-weighted scans were performed using SPM12 

embedded in CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012). T1-weighted 

structural scans were segmented and transformed into MNI space using non-linear 
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transformation, while fMRI scans were first registered to structural scans using linear 

transformation and normalised to MNI space using same parameters as the structural scans.  

3.3.7 Amplitude of low-frequency fluctuation analysis 

After denoising, the ALFF parametric map was generated for each fMRI scan using CONN 

toolbox. Briefly, a fast Fourier transform (FFT) was applied for the timeseries of each voxel, 

generating a power spectrum. Then, the square root of amplitude at each frequency in the 

power spectrum was calculated and ALFF was defined as the average square root of 

amplitude across 0.01~0.1Hz (Cordes et al., 2001). Voxel wise comparison of ALFF was 

performed between HC, MCI, AD and amyloid positive groups to find any alteration of 

neuronal activity in patients. Further, in order to explore whether amyloid deposition or 

neuroinflammation is associated with altered neuronal activity in patients, voxel-to-voxel 

regression analysis was performed using ALFF image as dependent variable and 18F-

Flutemetamol SUVR, 11C-PBR28 SUVR images as independent variables, with age and 

gender controlled as covariates of no interest. The voxel-to-voxel regression analysis was 

performed using the ‘VoxelStat’ package (Mathotaarachchi et al., 2016). Cluster forming 

threshold was set at p<0.05 and random field theory was used for FDR correction at cluster 

level. Clusters which survived FDR correction at p<0.05 were considered significant. The 

analyses were limited in grey matter regions using a grey matter mask, as one would expect 

most meaningful ALFF that is associated with neuronal activity to be within the grey matter. 

3.3.8 Seed-based connectivity analysis 

As previous literature has reported disrupted DMN connectivity consistently in different 

cohorts, the medial prefrontal cortex (MPFC) and posterior cingulate/precuneus (PCC) were 

selected as seeds in connectivity analysis. It has been established that MPFC and PCC are the 

anterior and posterior hub of DMN, respectively. The masks for MPFC and PCC were 
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provided by CONN toolbox, based on the group ICA analysis of HCP dataset (n=497) 

(Whitfield-Gabrieli & Nieto-Castanon, 2012). The main reasons for using seed-based 

analysis predefined ROI masks were to improve reproducibility across studies and avoid 

cohort specific bias, as compared to defining ROIs based on ICA of the local dataset. Voxel-

wise comparisons of MPFC and PCC connectivity maps between different diagnostic cohorts 

were performed. Further, the effects of local neuroinflammation and amyloid deposition on 

brain connectivity of MPFC and PCC were analysed using linear regression models. The 

same masks were transformed into each individual’s PET spaces where 11C-PBR28 and 18F-

Flutemetamol SUVR were sampled. Age and gender were included in both group 

comparisons and regression models as covariate of no interest. Cluster forming threshold was 

set at p<0.05 and random field theory was used for FDR correction at cluster level. Clusters 

which survived FDR correction at p<0.05 were considered significant. 

3.3.9 Graph theory analysis 

Construction of functional connectivity matrices was performed by GRETNA(J. Wang et al., 

2015) using the anatomical automatic labelling atlas (AAL-90). For each fMRI scan, the mean 

timeseries of each ROI was extracted, and the temporal correlations between each pair of ROIs 

were computed, generating a 90×90 connectivity matrix. The matrices were then Z-

transformed and binarized connectivity matrices were created with a network sparsity threshold 

of 0.2, in order to maintain the connectedness of brain network and remove spurious 

correlations. A network sparsity threshold was used instead of a Z-threshold or p-threshold was 

used because the latter approaches would result in different number of edges in different 

participants and render the networks less comparable across the cohort. The threshold of 0.2 

was chosen based on the following reasons: (1) the network metrics trend to stabilise after the 

network sparsity level of 0.2 has been reached, (2) the network metrics computed under the 
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threshold of 0.2 could better distinguish different diagnostic groups (especially between 

Alzheimer’s dementia patients and healthy controls, Figure 3.5). 

 

 Figure 3.5 Mean values of network topology metrics under different sparsity thresholds of 

functional connectivity matrix. 

Solid lines show the mean value of the whole study cohort and shaded area show the standard 

deviation of values. X-axis is value of sparsity threshold; Y-axis is the value of network metrics. 

To investigate the global functional network organisation, the following measures of the 

network were computed. These measures can provide information about network segregation, 

network integration and small-world property: 

(1) Network segregation measures: Clustering coefficient and local efficiency; (2) Network 

integration measures: characteristic path length and global efficiency; (3) Small-worldness. 

The exact formulae for computation of the metrics are as following: 

𝐶𝐶 = 1
𝑛𝑛

 ∑ 𝐶𝐶𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑁𝑁
1
𝑛𝑛

 ∑ 2𝑑𝑑𝑖𝑖
𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖−1)

 𝑖𝑖𝑖𝑖𝑁𝑁                                                 (3.1) 

𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 = 1
𝑛𝑛
∑ 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖𝑖𝑖∈𝑁𝑁 = 1

𝑛𝑛
∑ ∑ 𝑎𝑎𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖ℎ[𝑑𝑑𝑗𝑗ℎ(𝑁𝑁𝑖𝑖)]−1𝑗𝑗,ℎ∈𝑁𝑁.𝑗𝑗≠𝑖𝑖

𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖−1)𝑖𝑖∈𝑁𝑁                 (3.2) 
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𝐿𝐿 = 1
𝑛𝑛

 ∑ 𝐿𝐿𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑁𝑁
1
𝑛𝑛

 ∑
∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑗𝑗∈𝑁𝑁,𝑗𝑗≠𝑖𝑖

𝑛𝑛−1
 𝑖𝑖𝑖𝑖𝑁𝑁                                              (3.3) 

𝐸𝐸𝑔𝑔 = 1
𝑛𝑛
∑ 𝐸𝐸𝑖𝑖 = 1

𝑛𝑛
∑

∑ 𝑑𝑑𝑖𝑖𝑗𝑗
−1

𝑗𝑗∈𝑁𝑁,𝑗𝑗≠𝑖𝑖

𝑛𝑛−1𝑖𝑖∈𝑁𝑁𝑖𝑖∈𝑁𝑁                                              (3.4) 

𝑆𝑆𝑆𝑆 = 𝐶𝐶/𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐿𝐿/𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

                                                                               (3.5) 

Where C is the clustering coefficient, Eloc is the network local efficiency, L is the 

characteristic path length, Eg is the global efficiency, and SW is the small-worldness. ti is the 

number of triangles with node i being one apex, ki is the number of edges connected to node 

i, Ei is the global efficiency of node i, dij is the shortest path between node i and j. Eloc,i is the 

local efficiency of node i, djh(Ni) is the shortest path between two neighbour nodes of i, (j and 

h), and Ki is the degree of node i, which is the number of edges connected to the node.  C and 

Crand are clustering coefficients, L and Lrand are characteristic path lengths of current network 

and random networks (Rubinov & Sporns, 2010). 

These network topology metrics were compared with diagnostic groups, and linear regression 

analyses were performed using network measures as dependent variable and measures of 

amyloid deposition, neuroinflammation, as independent variables. As network topology 

measures are reflecting the organisation of brain overall, global measures of 18F-

Flutemetamol and 11C-PBR28 uptake are better fitted for the analysis. To obtain an overall 

tracer uptake, principal component analysis was performed using the tracer SUVRs in left 

and right frontal, temporal, parietal and occipital lobes, plus anterior and posterior cingulate 

cortices. The first principal components for both tracers were used in the analysis. In 

addition, the average SUVR in the cerebral grey matter was also tested in the regression 

models.  Because the limited number of cases, robust regression method was used to estimate 

the parameters (βs) and permutation tests were used to determine the significance of the 

parameters. 
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According to the NIA-AA consensus on the framework of Alzheimer’s disease 

spectrum(Jack et al., 2018), cognitively impaired participants (AD and MCI patients) who 

were amyloid-beta positive (Aβ+) in composite brain regions (N=26) were considered to be 

representative of the disease continuum, and were used as primary cohort for analyses. On 

the other hand, same analyses were also performed in AD and MCI groups separately in 

order to explore whether there are disease stage-dependent effects. 

 

3.4 Results 

3.4.1 Overview of available data and patient demographics 

A total of 93 participants in the cohort had fMRI scans, of whom 21 were AD patients, 54 

were MCI patients and 18 were healthy volunteers. Of all participants, 62 had 11C-PBR28 

scans, 84 had 18F-Flutemetamol scans, and 40 had 18F-AV1451 scans. The detailed 

demographic information, amyloid positivity and data overlap are summarized in table 3.1. 

Table 3.1 Summary of available data regarding fMRI and DTI analysis on study cohort 

Diagnosis AD MCI HC 
Amyloid status All Aβ+ Aβ- All Aβ+ Aβ- All Aβ+ Aβ- 

N 21 15 2 54 22 26 18 3 15 
Gender (M/F) 12/9 8/7 1/1 34/20 13/9 16/10 10/9 1/2 9/6 

Age 
(Mean±SD) 

74±8.0 74±7.4 55, 
78 

71±8.6 75±7.4 67±9.0 66±9.0 71±12 65±8.3 

MMSE 
(Mean±SD) 

23±4.9 23±3.9 19, 
27 

28±2.0 28±1.8 27±2.4 29±1.8 30±0.6 29±2.0 

11C-PBR28# 19 14 1 28 12 13 15 3 12 
18F-

Flutemetamol# 
17 15 2 48 22 26 18 3 15 

18F-AV1451# 16 13 1 16 7 7 7 2 5 
#: Number of available scans. 

The demographics and cognitive performance of the study cohort are summarised in the 

following table 3.2. 



 95 

 

Table 3.2. Demographics of the study cohort 

 

 AD MCI HC ANOVA 

Cases 16 25 17 - 

Age 72.8±8.64a 71.5±8.45b 64.3±9.38 0.012* 

Gender (Male/Female) 9/7 14/11 8/9 0.82 

IQ  113.3±16.35 111.3±13.42 113.4±8.66 0.91 

NART  12.4±10.0 12.8±10.1 12.8±7.28 0.99 

MMSE  23.0±3.67a 27.7±2.01 28.7±1.68 <0.0001** 

Rey Copy  27.3±10.5 31.0±4.85 34.5±2.65 0.043* 

Rey Imm 5.09±4.40a 15.4±6.15 17.5±11.1 0.14 

Rey Del 4.71±6.67a 11.4±6.00 17.8±7.11 0.0001** 

WLM Imm  17.2±10.1a 28.7±9.98b 44.4±8.67 <0.0001** 

WLM Del  5.42±7.74a 12.8±6.39b 27.6±6.71 <0.0001** 

Hopkins Imm  9.82±8.40a 20.9±6.39b 25.4±8.87 0.00026** 

Hopkins Del  1.55±1.80a 6.54±6.69b 12.7±6.94 0.00015** 

Hopkins RI  5.18±3.63a 8.33±3.49b 11.2±3.11 <0.0001** 

LNS 3.64±2.25a 7.13±4.18a 10.71±3.20 0.001** 

Semantic Fluency  11.1±3.11a 16.6±4.64b 22.8±9.08 <0.0001** 

Verbal Fluency 33.8±12.8a 40.2±15.3b 48.2±12.9 0.046* 

HADS Anxiety 6.73±3.58 7.04±4.28 5.14±3.37 0.35 

HADS Depression  6.00±4.26 4.74±3.72 3.07±3.50 0.16 

SD: standard deviation; NART: National Adult Reading Test; MMSE: Mini Mental State Examination; Rey: Rey–

Osterrieth complex figure test, Imm: immediate recall, Del: delayed recall; WLM: Wechsler Memory Scale–Logical 

Memory test; Hopkins: Hopkins Verbal Learning Test, RI: Recognition Index; LNS: Letter-Number Sequencing; HADS: 

Hospital Anxiety and Depression Scale.  

* p<0.05; ** p<0.001 in ANOVA; a: significant difference between Alzheimer’s dementia patients and healthy controls in 

post-hoc comparisons (p<0.05); b: significant difference between mild cognitive impairment patients and healthy controls 

in post-hoc comparisons (p<0.05). 

3.4.2 Demographics of Aβ+ cognitively impaired patients 

As the Alzheimer’s research community have reached the agreement that amyloid positive 

(and ideally NFT positive) cognitively impaired patients are more likely to fall within 

Alzheimer’s continuum, effort was made to classify the current study cohort into Aβ+ and 

Aβ- participants according to 18F-Flutemetamol PET scan. Since less than half of participants 

had 18F-AV1451 scans, it is not feasible to further break the groups with regard to NFT 

pathology marker status. In the current cohort, a total of 26 (12 AD and 14 MCI) patients 
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who were classified as Aβ+ also had 11C-PBR28 PET scans. These participants were 

considered to be representative of Alzheimer’s spectrum and because of the limited number 

of cases, were combined together as the primary cohort to test the hypothesis. The 

demographics and cognitive performance of Aβ+ patients are briefly summarized in table 

3.3. 

Table 3.3. Demographic information of Aβ+ cohort 

 Aβ+ Patients Healthy Controls P (t-test) 
Age 74.7±1.5 64.3±2.3 0.001* 

Gender(Male/Female) 14/12 8/9 0.66 
Education (years) 14.7±0.7 14.8±1.0 0.98 

MMSE 25.3±0.7 28.8±0.4 <0.001* 
Ray Delayed Recall 6.8±1.4 17.8±2.2 0.001* 

Hopkins Recognition 18.4±1.1 22.6±0.9 0.006* 
Semantic Fluency 13.3±0.9 22.9±2.4 0.002* 
Verbal Fluency 37.3±2.8 48.2±3.5 0.021* 

 

Data are presented as mean ± SE. MMSE: Mini-mental state examination 

3.4.3 Cortical thickness and grey matter volume 

AD subjects showed significantly reduced cortical thickness in bilateral lateral occipital lobe 

compared to HC, and decreased thickness of left precuneus, left precentral gyrus, left medial 

temporal lobe (MTL), left supramarginal cortex and right lateral occipital lobe compared to 

MCI, while no significant different cortical thickness was found between HC and MCI 

subjects (Figure 3.6).  
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Figure 3.6. Group Comparison of Cortical Thickness 

a. HC vs AD, left hemisphere; b. HC vs AD, right hemisphere; c. MCI vs AD, right 

hemisphere; d. HC vs MCI, left hemisphere; red and yellow denotes vertices that have 

significant difference between groups. 

Decreased GM volume was found in bilateral lateral occipital lobe, right supramarginal 

cortex, left fusiform and left MTL in AD subjects compared to HC. Same results were found 

except left MTL in comparison between AD and MCI. Interestingly, MCI group have higher 

GM volume in right rostral medial frontal lobe compared to HC subjects (Figure 3.7). 
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Figure 3.7. Group Comparisons of Grey Matter Volume 

a. HC vs AD, left hemisphere; b. HC vs AD, left hemisphere; c. HC vs AD, right hemisphere; 

d. HC vs MCI, right hemisphere; e. MCI vs AD, left hemisphere; f. MCI vs AD, right 

hemisphere. 

At whole brain level, AD patients had decreased average cortical thickness compared to HC 

and MCI patients (p<0.0001 and p<0.00001), and decreased cortex volume compared to HC 

and MCI (p=0.0006 and p=0.001). However, MCI patients did not have significant overall 
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change (Figure 3.8).

 

 

Figure 3.8 Group comparisons of cortical thickness and cortical volume 

**: p<0.01; ***: p<0.001; ****: p<0.0001 in t-test. 

3.4.4 Using PCC and MPFC as seeds to probe DMN connectivity  

The default mode network connectivity pattern has been successfully depicted using either 

the PCC mask or MPFC mask (Figure 3.9). The most significant regions associated with 

DMN activity are the medial prefrontal cortex (and frontal pole), posterior cingulate, 

precuneus, bilateral lateral parietal cortices, and bilateral hippocampi.  
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Figure 3.9 Default mode network pattern detected by seed-based connectivity maps. A: DMN 

detected using MPFC as seed; B: DMN detected using PCC as seed. 

3.4.5 Altered neuronal activity in Aβ+ patients  

Aβ+ cohort had significantly increased ALFF in the right frontal pole, bilateral cingulate 

gyri, bilateral paracingluate gyri, bilateral occipital pole, left fusiform gyrus and left lingual 

gyrus, while ALFF in the right superior, middle and inferior temporal gyri, right fusiform 

gyrus and parahippocampal gyrus (Figure 3.10A).  

As increased functional fluctuation in prefrontal cortex in Aβ+ cohort, a question of 

particular interest is whether increased neuronal activity in MPFC is associated with 

functional connectivity change. Interestingly, in Aβ+ cohort, MPFC showed increased 

regional connectivity with right frontal pole, but decreased distal connectivity with bilateral 

precuneus, bilateral posterior cingulate gyri, left lingual gyrus and right hippocampus (Figure 

3.10B). PCC also showed reduced connectivity with anterior cingulate and frontal pole in 2 

sample t-test, however the difference was not significant after correcting for age and gender.  

 

Figure 3.10 A: Altered ALFF in Aβ+ cohort compared to healthy controls; B: Altered MPFC 

connectivity in Aβ+ cohort compared to healthy controls 
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3.4.6 Amyloid, neuroinflammation and neuronal activity 

Voxel-wise regression analysis showed 18F-Flutemeamol uptake was associated with 

decreased ALFF in bilateral precentral and postcentral gyri, precuneus, and left lateral 

occipital gyrus and left frontal pole; while positive association between 18F-Flutemetamol 

uptake and ALFF was found in bilateral lingual gyri, posterior cingulate cortex, left superior 

frontal gyrus, and left inferior temporal gyrus (Figure 3.11A). Positive relationship between 

11C-PBR28 uptake and ALFF was found in right frontal pole, superior frontal gyrus, 

paracingulate gyrus, lingual gyrus, posterior cingulate cortex and precuneus (Figure 3.11B). 

 

Figure 3.11 Voxel-wise regression analysis using ALFF as dependent variable, 18F-

Flutemetamol and 11C-PBR28 uptake as independent variables. A. Effect of 18F-

Flutemetamol on ALFF; B. Effect of 11C-PBR28 on ALFF. 

3.4.7 Influence of neuroinflammation on brain connectivity 

In Aβ+ subjects, multiple regression model showed that 11C-PBR28 uptake in MPFC was 

found to be associated with decreased connectivity from MPFC to PCC, precuneus, bilateral 

superior frontal, middle frontal and paracingulate gyri, left planum temporale and superior 

temporal gyrus (Figure 3.12A). While 18F-Flutemetamol uptake in MPFC was associated 

with increased MPFC connectivity with anterior cingulate gyrus, bilateral superior frontal 

gyri, paracingulate gyri, and middle frontal gyri; decreased MPFC connectivity with posterior 

cingulate gyri and precuneus (Figure 3.12B). 
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Multiple regression analysis on PCC connectivity showed that 11C-PBR28 uptake in PCC 

was associated with decreased PCC connectivity with right central opercular, planum 

temporale, insular cortex, middle temporal gyrus, Heschl's gyrus and frontal operculum 

cortex; and increased PCC connectivity with precuneus, right lateral occipital cortex and 

occipital pole (Figure 3.12C). 18F-Flutemetamol uptake in PCC, on the other hand, was 

associated with increased PCC connectivity with anterior cingulate cortex and decreased PCC 

connectivity with precuneus, left superior parietal lobule and postcentral gyrus (Figure 

3.12D).  

 

Figure 3.12. Voxel-level regression analysis using regional 11C-PBR28 and 18F-Flutemetamol 

uptake to predict brain connectivity. A: Effect of MPFC 11C-PBR28 uptake on MPFC 

connectivity; B: Effect of MPFC 18F-Flutemetamol uptake on MPFC connectivity; C: Effect 

of PCC 11C-PBR28 uptake on PCC connectivity; D: Effect of PCC 18F-Flutemetamol uptake 

on PCC connectivity. 
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3.4.8 Altered simultaneous neuronal activity in AD and MCI patients  

AD patients had higher ALFF in anterior cingulate gyrus, right superior frontal gyrus, 

bilateral frontal pole, paracingulate gyri, occipital pole, occipital fusiform gyri, lingual gyri, 

intracalcarine cortices, and lateral occipital cortices compared with HC, while decreased 

ALFF was found in posterior cingulate gyrus, precuneus, right superior, middle and inferior 

temporal gyri, right hippocampus, right amygdala, right parahippocampal gyrus, and right 

temporal fusiform cortex (Figure 3.13A). 

MCI patients had increased ALFF in medial frontal cortex, anterior cingulate gyrus, right 

frontal pole, right paracingulate gyrus and right superior frontal gyrus; decreased ALFF was 

found in medial frontal cortex, left frontal orbital cortex, left inferior frontal gyrus and left 

putamen (Figure 3.13B). Aβ+ MCI patients had similar results as MCI patients (Figure 

3.13C).  

 

Figure 3.13 Altered ALFF in different diagnostic groups compared to HC. A: Altered ALFF 

in AD patients; B: Altered ALFF in MCI patients; C: Altered ALFF in Aβ+ MCI patients. 
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3.4.9 Altered MPFC and PCC connectivity in AD and MCI cohorts 

AD patients showed increased MPFC connectivity with local regions including left frontal 

pole and left orbital cortex, but decreased MPFC connectivity with right supramarginal gyrus, 

right precentral and postcentral gyrus, right central opercular cortex, right insular cortex, right 

temporal pole, right parietal operculum cortex, right superior temporal gyrus, as well as 

anterior and posterior cingulate cortices (Figure 3.14A).  

Interestingly, MCI patients had increased MPFC connectivity with bilateral occipital regions 

including occipital pole, lingual gyri, cuneal gyri and lateral occipital cortices. Decreased 

MPFC connectivity was found in precuneus cortex, posterior cingulate cortex, left temporal 

fusiform cortex, bilateral thalami and bilateral hippocampi (Figure 3.14B).  

 

Figure 3.14 Altered MPFC and PCC connectivity in AD and MCI patients. A: Altered MPFC 

connectivity in AD patients; B: Altered MPFC connectivity in MCI patients; C: Altered PCC 

connectivity in AD patients; D: Altered PCC connectivity in MCI patients. 
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Using PCC as seed, AD patients showed decreased PCC connectivity with anterior and 

posterior cingulate gyrus, bilateral precentral gyri and juxtapositional lobule, left 

paracingulate gyrus and superior temporal gyrus, right temporal pole, bilateral planum polare, 

insular cortices, superior temporal gyri, Heschl's Gyri, central opercular cortices, and middle 

temporal gyri (Figure 3.14C). 

MCI patients had decreased PCC connectivity with anterior and posterior cingulate gyrus, 

subcallosal cortex, left orbital cortex, bilateral frontal pole, paracingulate cortices, 

juxtapositional lobule, precentral gyri, accumbens, thalami, and hippocampi (Figure 3.14D). 

Age and gender were controlled in all the comparisons. 

3.4.10 Influence of amyloid deposition and neuroinflammation on MPFC and PCC 
connectivity in AD and MCI cohorts 

In MCI cohort, correlation analysis using only 18F-Flutemetamol as independent variable 

(n=48, with age and gender controlled) showed that 18F-Flutemetamol uptake in MPFC is 

associated with decreased MPFC connectivity with bilateral frontal pole, inferior frontal gyri, 

right frontal orbital cortex, right temporal pole and right insular cortex (Figure 3.15A). 

Correlation analysis using 11C-PBR28 uptake (n=28, age and gender controlled) showed that 

MPFC 11C-PBR28 uptake was associated with increased MPFC connectivity with bilateral 

frontal pole, medial frontal cortex and left superior frontal gyrus, and decreased MPFC 

connectivity with anterior cingulate, bilateral superior frontal gyrus, juxtapositional lobules, 

left middle frontal gyrus, right parietal operculum cortex, right supramarginal gyrus and right 

planum temporale (Figure3.14B). Bivariate correlation analysis did not show significant 

connectivity change associated with 11C-PBR28 or 18F-Flutemetamol uptake in PCC in MCI 

cohort. 

Multiple regression analysis including both 11C-PBR28 and 18F-Flutemetamol uptake (n=24) 

showed that in MCI patients, MPFC 11C-PBR28 uptake is associated with decreased MPFC 
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connectivity with bilateral superior frontal gyrus, anterior cingulate gyrus, left middle frontal 

gyrus, paracingulate cortex and right juxtapositional lobule (Figure 3.15C), while PCC 11C-

PBR28 uptake is associate with decrease PCC connectivity with bilateral precentral gyri, 

juxtapositional lobules, left superior frontal gyrus, and left paracingulate gyrus (Figure 

3.15D). 

In AD cohort, no significant change in connectivity was found to be associated with 11C-

PBR28 or 18F-Flutemetamol uptake in PCC or MPFC in univariate or multivariate regression 

analyses. 

 

Figure 3.15.  Influence of Amyloid Deposition and Neuroinflammation on MPFC and PCC 

Connectivity in AD and MCI Cohorts. A: bivariate correlation between 18F-Flutemetamol 

and MPFC connectivity in MCI patients (adjusted for age and gender); B:  bivariate 

correlation between 11C-PBR28 uptake and MPFC connectivity in MCI patients (adjusted for 

age and gender); C: Effect of 11C-PBR28 uptake on MPFC connectivity in multiple 
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regression model in MCI patients; D: Effect of 11C-PBR28 on PCC connectivity in multiple 

regression model in MCI patients. 

3.4.11 Connectivity, but not spontaneous neuronal activity is associated with cognition 

In MCI subgroup, MMSE scores were positively correlated with connectivity between MPFC 

and PCC, precuneus, left precentral and postcentral gyri (Figure 3.16), though the association 

was not significant in the whole Aβ+ cohort. However, ALFF was not found to be associated 

with MMSE scores in Aβ+ cohort or subgroups.  

 

Figure 3.16. Correlation between MMSE score and MPFC connectivity 

3.4.12 Network topology changes in disease cohorts 

Small-worldness, clustering coefficient and local efficiency of functional network was 

significantly decreased in AD cohort compared to HC, while global efficiency did not differ 

(p = 0.047, 0.037, 0.017, and 0.31, respectively). No significant difference was seen in the 

MCI cohort compared to HC (Figure 3.17). 
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Figure 3.17. Group Comparisons of Network Topology Metrics 

*: p<0.05 in pairwise comparisons. 

3.4.13 Nodal connectivity changes in disease cohorts 

With the global organisation change of functional network detected, the changes of nodal 

network metrics were further tested. In AD patients, decreased nodal clustering coefficient 

was found in left superior frontal gyrus (p=0.020), left Rolandic operculum (p=0.037), left 

olfactory blob (p=0.016), right cuneus (p=0.015), left fusiform cortex (p=0.0075), left 

supramarginal gyrus (p=0.019) and right superior temporal gyrus (p=0.023); decreased 

betweenness centrality was found in in left superior frontal gyrus (p=0.017), right olfactory 

bulb (p=0.023), left middle cingulate cortex (p=0.017), and right precuneus (p=0.046). 
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However, none of the nodes passes the Bonferroni correction for multiple comparisons over 

90 regions. 

In the MCI patients, decreased nodal clustering coefficient was found in left superior frontal 

gyrus (p=0.036), left and right olfactory bulbs (p=0.025 and 0.044), bilateral middle cingulate 

cortex (p=0.047 and 0.0031), left fusiform cortex (p=0.01), left angular gyrus (0.049), right 

precuneus (p=0.043), while left Rolandic operculum (p=0.029) and left Heschl’s gyrus 

(p=0.036) had increased clustering coefficients; decreased betweenness centrality was found 

in left anterior cingulate cortex (p=0.038) and left caudate nucleus (p=0.046). These results 

did not survive the Bonferroni correction for multiple comparisons either. 

3.4.14 Relationship between grey matter structural integrity and functional network integrity 

In Aβ+ cohort, average cortical thickness was positively associated with network global 

efficiency (standardised β=0.546, 95%CI: 0.176~0.916, p-perm=0.026, controlled for age), 

local efficiency (standardised β=0.575, 95%CI: 0.187~0.963, p-perm=0.019, controlled for 

age), and small-worldness (standardised β=0.602, 95%CI: 0.267~0.937, p-perm=0.006, 

controlled for age), but not clustering coefficient (standardised β=0.200, 95%CI: -0.269~0.669, 

p-perm=0.36, controlled for age). Age was included as covariate of no interest in all analysis 

(Figure 3.18).  

In clinical diagnostic groups separately, cortical thickness was positively associated with small-

worldness (standardised β=0.556, 95%CI: 0.106~1.01, p-perm=0.037, controlled for age). The 

associations between cortical thickness and functional network topology measures were not 

significant in AD and MCI groups. 
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Figure 3.18. Relationship Between Grey Matter Integrity and Functional Network Topology 

Measures in Aβ+ cohort.  

3.4.15 Relationship between functional network organisation and cognition 

In Aβ+ cohort, MMSE score was found to be positively associated with network local 

efficiency (standardised β=0.521, 95%CI: 0.218~0.824, p-perm=0.02) and cortical thickness 

(standardised β=0.605, 95%CI: 0.294~0.915, p-perm=0.001), but the association with other 

network topology measures were not significant (Figure 3.19). In separate clinical diagnostic 

groups, neither cortical thickness nor network topology measures were significantly associated 

with MMSE. 
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Figure 3.19. Network Organisation and Grey Matter Integrity Are Associated with Cognition 

in Aβ+ cohort. 

3.4.16 Influence of cortical neuroinflammation and amyloid deposition on network functional 
organisation in Alzheimer’s continuum 

In Aβ+ cohort, regression analyses considering 11C-PBR28, 18F-Flutematemol, cortical 

thickness and age showed that 11C-PBR28 SUVR was negatively associated with network 

local efficiency (standardised β=-0.508, 95%CI: -0.828~-0.188, p-perm=0.001) and 

clustering coefficient (standardised β=-0.537, 95%CI: -0.863~-0.211, p-perm=0.01), but not 

global efficiency (standardised β=0.129, 95%CI: -0.244~0.502, p-perm=1)or small-worldness 

(standardised β=-0.156, 95%CI: -0.488~0.177, p-perm=0.15). 18F-Flutematemol SUVR did 

not correlate with the network topology metrics (Figure 3.20). 

In MCI cohort, interestingly, same linear regression models found that 18F-Flutematemol 

SUVR was positively associated with clustering coefficient (standardised β=0.495, 95%CI: 

0.216~0.774, p-perm=0.002), while 11C-PBR28 SUVR was negatively associated with 

clustering coefficient (standardised β=-0.565, 95%CI: -0.834~-0.296, p-perm=0.0024) 

(Figure 3.21). Neither 11C-PBR28 SUVR nor 18F-Flutematemol SUVR was found to be 

significant predictor for network topology metrics in AD cohort. 
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Figure 3.20. Relationship between cortical 11C-PBR28 uptake and functional network 

topology measures in Aβ+ cohort. 

 

Figure 3.21. Relationship between cortical 11C-PBR28 uptake, 18F-Flutematemol uptake and 

clustering coefficient in MCI cohort. 
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3.5 Discussion and Conclusions  

In this chapter the functional brain network in AD and MCI patients was examined using 

resting state fMRI analysis. Seed-based and graph theory analysis were applied in the 

analysis and independent component analysis was used for denoising. The medial prefrontal 

cortex and posterior cingulate/precuneus cortices were used as seed region to probe the 

functional connectivity, as they have been identified as key hubs of the default mode 

network, which is impaired in AD. Altered MPFC/PCC connectivity was found in both AD 

and MCI patients, with increased local connectivity within frontal lobe and deceased anterior-

posterior connectivity reported. Consistent with previous evidence, a trend of increased 

connectivity with proximal regions and decreased connectivity with distal areas was found in 

both AD and MCI patients (K. Wang et al., 2007), leading to the suspicion that the increased 

connectivity with local areas may be a compensation mechanism in the patients’ brains. The 

most typical findings of the dissociation between anterior hub and posterior hub of the DMN 

in AD (Broyd et al., 2009), however, came from the Aβ+ cohort, which strongly suggested 

that the Aβ+ cohort are more representative of Alzheimer’s continuum.  

The increased connectivity between MPFC and proximal frontal regions including frontal 

pole is consistent with analysis on amplitude of low-frequency fluctuations of BOLD signals, 

which revealed increased ALFF within frontal lobe in AD and MCI cohorts. Decreased 

ALFF, on the other hand, was mainly found in temporal regions and PCC in AD patients. The 

ALFF is a marker of spontaneous neuronal activity in corresponding regions, considering 

frontal regions are involved in relatively late stage of the disease while temporal lobe and 

PCC are hit by NFT and amyloid pathology early on in Alzheimer’s trajectory (Braak & 

Braak, 1991), these findings may be suggestive of excitotoxicity in early involvement of a 

region, and following formation of NFT and neuronal death (Busche et al., 2019). The 

excitotoxicity may also explain the increased local connectivity, as the excitotoxicity may 
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lead to synchronistic and even epileptic activity patterns of neurons, therefore the 

sophisticated functional compartmentalisation of neuronal network may be lost (Bakker et al., 

2012). On the other hand, this increased neuronal activity and local connectivity might also 

have compensatory effect. However, this phenomenon was not found to be related to 

cognitive performance in the patients, suggesting that the elevated local neuronal activation is 

not beneficial, or at least not effective, for preserving cognitive capability of the diseased 

brains. Indeed, the dissociation between neuronal activity and functional connectivity is also 

observed in other cohorts (Mascali et al., 2015). 

The discrepancy between neuronal hyperactivity and network disruption is consistent with 

the electrophysiological findings from transgenic AD models where increased but 

unsynchronised slow-wave oscillations were recorded across multiple cortices (Busche et al., 

2015). Together, the current findings and preclinical evidence suggest an ineffective and 

dysregulated pattern of neuronal activity in AD patients. Interestingly, MMSE scores in our 

AD cohort were not correlated with MPFC connectivity, which could be due to the pseudo-

normalization phenomenon, where there is a U-shape rather than a linear relationship 

between cognitive performance and network connectivity (Jones et al., 2016) 

Taking a step forward to the organisation of entire functional network, the analysis has shown 

that the functional network in AD patients had decreased local efficiency and small-

worldness, but not global efficiency, suggesting that there is a loss of functional segregation 

of the brain. Functional segregation is important for the brain to use densely connected local 

clusters to process information in specific domains, the disruption of which could lead to 

impaired cognitive performance (Bullmore & Sporns, 2009). Indeed, further analysis has 

shown that in patients group the local efficiency and small-worldness are positively 

associated with the score in neuropsychological tests. The decreased local efficiency and loss 

of small-worldness have been well documented by previous studies, however, global 
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efficiency was not found to be impaired in patients in current analysis, which has been also 

been observed in several studies (delEtoile & Adeli, 2017). This might be attributed to 

several factors: firstly, the sample size of current cohort might not have been large enough to 

detect subtle changes of global efficiency; secondly, a network sparsity threshold was used to 

create binarized connectivity matrices, under the consideration to make the networks across 

participants more comparable (same number of nodes and edges), which in hindsight, might 

have impaired the ability to eliminate weakened links in patients; lastly the patients in current 

disease cohort were at relatively early stage of the disease (average MMSE in AD and MCI 

patients were 23.0 and 27.7, respectively), so the global connectivity might be relatively 

preserved in the patients. If this is the case, it might suggest that the network disruption in 

AD may first target links within local clusters, before the global network disruption. 

Considering the second possibility, different thresholding strategies might be tested in further 

studies to quantify how different approaches may influence the results based on same data.  

Given the findings suggesting altered spontaneous neuronal activity, disrupted functional 

connectivity of key hubs and impaired network organisation in the brains of AD patients, the 

question to be answered is which pathological factors are responsible for the change. 

Preclinical studies have suggested that amyloid species to be neurotoxic and could lead to 

neuronal dysfunction (Meyer-Luehmann et al., 2008). Interestingly, the current analysis has 

found both positive and negative relationships between Aβ and neuronal activity markers in 

different sites of the brain. This observation might be explained by the dose-dependent effect 

of Aβ oligomers on neuronal activity: It has been reported that slightly increased 

concentration of Aβ oligomers could lead to neuronal hyperactivity by activating presynaptic 

α7-nAChRs, while high concentration of Aβ oligomers directly inhibits neuronal activity at 

post-synaptic level (Palop & Mucke, 2010). Although 18F-Flutemetamol can only bind to 

fibrillary Aβ plaques, the amount of amyloid plaque can be considered to relate to the 
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progression of amyloid pathogenesis. Another possible explanation for the complex 

relationship between amyloid deposition is the activity-dependent release of Aβ peptide from 

neurons (Kamenetz et al., 2003b). As is shown by the analysis, increased neuronal activity 

can be found in early disease, which might further lead to an increase of Aβ excretion. The 

initial elevation of Aβ oligomers and monomers could then exaggerate the neuronal 

hyperactivity, resulting a vicious cycle, until irreversible damage is done to the neurons and 

negative association emerges (Zott et al., 2019). 

Meanwhile, neuroinflammation was found to be associated with only increased neuronal 

activity in several key regions with regard to brain network, namely frontal pole, posterior 

cingulate and precuneus. This could be the consequence of excitotoxic pro-inflammatory 

cytokines released by microglia, or the insufficient recycle of excitatory transmitters (such as 

glutamate) by glia cells in the neuroinflammatory milieu. Indeed, it was observed that the IL-

1β gene rs1143627 polymorphism could modulate ALFF change in MCI patients, suggesting 

a role of neuroinflammation in neuronal hyperactivity (Zhuang et al., 2012). The pre-

inflammatory cytokines such as IL-1β released by activated microglia could perturb neuronal 

activity, and further activate astrocytes, leading to disturbance of glutamate metabolism and 

cause glutamate excitotoxicity (Liddelow et al., 2017). Another possibility is that this due to 

the reorganisation of neuronal circuits and networks by microglia, considering their key role 

in neuronal plasticity management and synaptic pruning in diseases. As recent advance has 

suggested that the loss of GABA-ergic inhibitory tones in neuronal circuits (Verret et al., 

2012) (Nuriel et al., 2017) (Bi, Wen, Wu, & Shen, 2020). It is worth considering how the 

excessive pruning of synaptic structures by activated microglia might be involved in the 

excitatory/inhibitory imbalance of diseased neuronal circuits (S. Hong et al., 2016).  

As previous analyses have shown the influence of amyloid deposition and neuroinflammation 

on spontaneous neuronal activity, their association with functional connectivity have been 
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further explored. Of note, the MPFC is of special interest in the analysis, as both increased 

neuronal activity and decreased functional connectivity with PCC was found in MPFC. 

Interestingly, neuroinflammation in MPFC was found to be associated with decreased MPFC 

connectivity with distal regions, including PCC and precuneus in Aβ+ cohort, while amyloid 

deposition was associated with both increased and decreased connectivity with several 

regions, albeit not functional hubs of DMN. These findings suggest that both 

neuroinflammation and amyloid pathology are associated with functional connectivity 

disruption in AD, and that their effects, at least partially, are independent of each other. 

Further, from the current analysis, neuroinflammation seems to be related to more specific 

and typical functional connectivity changes in AD. It is possible that both amyloid species 

and neuroinflammation could cause local abnormal neuronal activities, and further influence 

connectivity patterns, but neuroinflammation is further involved in more specific circuit 

remodelling in disease process.  

The postulation that neuroinflammation is involved in disease-specific network remodelling 

and targets key functional connections, is further reinforced by the network level analysis. At 

the whole network’s perspective, neuroinflammation, but not amyloid deposition was found 

to be associated with decreased clustering coefficient and local efficiency in Aβ+ patients. 

The decreased network segregation measures suggest that the connectivity within normal 

clusters is impaired, and the impaired MPFC-PCC connectivity might be an example. The 

reason why amyloid deposition did not correlate with network topology changes in Aβ+ 

cohort might be the following: First, the PET measures fibrillary Aβ depositions, but not Aβ 

oligomer concentration, which is more toxic to neurons; Second, Aβ species may not have a 

direct quantitative effect on global network disruption in AD, in other words, it might be a 

upstream event of Alzheimer’s pathogenesis, but the damage to brain network is mediated by 

other processes, for instance neuroinflammation.  
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Interestingly, in MCI patients, amyloid deposition seemed to be associated with increased 

clustering coefficient of the functional network, which might be related to network 

reorganisation of the brain in response to amyloid pathology in early disease. However, 

neuroinflammation in the same MCI cohort was negatively associated with clustering 

coefficient, suggesting that neuroinflammation may have hindered the network reorganisation 

process. 

While the current project is going, a parallel study has observed similar findings with regard 

to neuroinflammation and functional connectivity changes. The parallel study has found one 

independent component of 11C-PK11195, with the inferior and medial temporal regions 

having high weight, was associated with decreased DMN within network connectivity in a 

similar amyloid positive cohort, but how an inflammation pattern influenced brain 

connectivity in other regions remained to be elucidated (Passamonti et al., 2019). The 

findings of current study stand in line with the findings from previous study, moreover, it 

complements the understanding between neuroinflammation and brain connectivity both at 

local and at global level. More specifically, the current study has illustrated the association 

between neuroinflammation and local neuronal activity at voxel level, specifically 

interrogated whether neuroinflammation within a region of interest is associated with 

connectivity change of the same ROI, and answered the question whether neuroinflammation 

is related to the disruption of overall organisation of the brain as a network organ. 

The current analysis is limited by the number of cases, and therefore the main focus is on the 

full Aβ positive cohort. If there had been more cases, I would have been able to further 

analyse the associations at different stages of the disease, for example, Aβ positive subjective 

cognitive decline, early MCI, late MCI and AD stages, as neuroinflammation may play 

different roles at these stages. Nevertheless, the association between neuroinflammation and 

functional connectivity seems to be similar in the current MCI and AD cohort, and the Aβ+ 
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cohort indeed exhibited most typical DMN connectivity disruption. Putatively, it can be 

assumed that the current Aβ+ cohort is representative of mid-to-late stages of the 

Alzheimer’s continuum, and it could be inferred that neuroinflammation plays a detrimental 

role in this stage of disease in terms of the brain’s functional network. 

Given the current and previous evidence of the cognitive implication of brain connectivity, 

the connectivity disruption associated with neuroinflammation might be of more clinical 

interest, as it may present as a viable target to preserve cognitive function in AD patients. 

However, further studies are needed to substantiate this hypothesis, and better understanding 

of biological basis of circuit organisation needs to be established before intervention 

strategies can be developed.  
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Chapter 4. The influence of neuroinflammation on structural 

connectivity in Alzheimer’s spectrum 

4.1 Introduction 

4.1.1 Diffusion Tensor Imaging 

Diffusion MRI utilize the thermal Brownian motion of molecules and aims to quantify the 

overall diffusion properties in certain environment. Essentially, diffusion MRI exploits the 

fact that precession frequency has a proportional relationship with magnetic field strength 

and applies a magnetic gradient field in the first spin echo pulse. Consequently, protons in 

water molecules at different locations will have different precession frequencies. If a water 

molecule has moved to another location, its protons will have a phase and frequency 

difference with those from ‘local’ molecules. When the second refocusing echo is applied, 

the ‘migrated’ protons will fail to synchronize and result in a loss of overall signal in readout. 

The attenuation effect is dependent on the gyromagnetic ratio, strength of magnetic pulse, 

duration of the pulse and diffusion coefficient, which was formulated by Stejskal and Tanner 

(EO Stejskal, 1965). By applying the ‘diffusion encoding’ gradients, the diffusion properties 

along different directions could be detected and calculated. Using these principles, diffusion 

weighted images can be produced in which the signal is attenuated depending on how freely 

water molecules can diffuse. The diffusion weighted images can be used reflect restrictions 

on water diffusion caused by cell membranes, fibres and other molecules, and is widely used 

in clinical practice to detect conditions such as cytotoxic oedema in acute ischemia (Le Bihan 

et al., 2001) (Lope-Piedrafita, 2018). However, human tissues often have anisotropic 

diffusion properties, i.e., the tissue structures have different restriction on water diffusion 

along different directions. Using a single diffusion weighted image or a parametric map of 

apparent diffusion coefficients (ADC) is not sufficient to reflect the anisotropic properties.  
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Diffusion tensor imaging takes a step forward and models the water diffusion property in 3-

dimensional space using a ‘diffusion tensor’. Assuming the diffusion property is the same 

along opposite directions, the diffusion tensor can take form as a symmetric 3-by-3 matrix. 

Basser et al. has demonstrated that the linear relationship between that logarithm if echo 

attenuation and the dot product of diffusion tensor and b factor (depend on acquisition 

parameters) (Basser, Mattiello, & LeBihan, 1994b) . Therefore, by conducting acquisitions 

using sufficient number of diffusion gradients, the diffusion tensor can be fitted using linear 

regression (Basser, Mattiello, & LeBihan, 1994a). The diffusion tensor in the form of matrix 

inherently contains more information as compared to a single scaler ADC and further 

analysis take advantage of information to better understand the underlying structures.  

In brain white matter, water diffusion is mainly influenced by the axons and surrounding 

myelin, which restrict water diffusion much more in radial directions compared to axial 

direction. This tissue structural causes significant anisotropy in diffusion profile and by 

evaluating the diffusion tensor, the direction of white matter pathways and its microstructural 

integrity can be inferred (Tournier, Mori, & Leemans, 2011). 

4.1.2 Evaluation of human brain structural network: Approaches 

On diffusion tensor imaging data, two main streams of analysis can be performed: 

microstructural analysis and tractography (Soares, Marques, Alves, & Sousa, 2013).  

The first approach is microstructural analysis. Under the assumption that there is uniform 

tissue structure within certain voxel, for each voxel a local orthogonal coordinate system can 

be constructed, such that its eigenvectors coincide with local principal directions of 

diffusivity. For each eigenvector, its related eigenvalue quantifies the diffusivity along the 

direction (Basser et al., 1994b). The first diffusivity coefficient then marks the axial 

diffusivity (DA), while the last two marks diffusivities in the orthogonal plane. From these 
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eigenvalues, scaler metrics such as fractional anisotropy (FA), mean diffusivity (MD) and 

radial diffusivity (DR) can be calculated. These metrics can be further used to evaluate the 

microstructural integrity of local tissue. 

The second approach is tractography. Tractography can be generally categorized into 

probabilistic and deterministic tractography. Both approaches have 3 main stages in tract 

construction, namely seeding, propagation and termination. The difference between the two 

algorithms is that the deterministic approach finds a fixed direction for a streamline in a 

voxel, while the probabilistic approach estimates a probabilistic distribution of streamline 

directions within a voxel. It should be noted that single or multiple streamlines can be 

estimated within a voxel with deterministic approach, but the orientation of each streamline is 

still fixed. The streamlines are generated linking seed and destination voxels based on the 

streamline orientation estimated along the way, if certain constraints are satisfied. Using 

certain seed and termination masks, pathways connecting two distal regions can be 

constructed, and can be used to evaluate the structural connectivity between the regions. If a 

number of seeds are provided, tractography can be performed between each pair of them and 

a connectivity matrix can be obtained (Soares et al., 2013). 

4.1.3 Application of Diffusion Tensor Imaging in Alzheimer’s Research 

White matter damage in AD brains has been well documented previous pathology studies in 

post-mortem examination. The changes included loss of axons, demyelination and 

neuroinflammation (Scheltens et al., 1995) (Sjobeck, Haglund, & Englund, 2006b) (Gouw et 

al., 2008). While previously it was widely presumed that the white matter damage, especially 

axonal losses is secondary to neuronal death in the cortex, known as Wallerian degeneration 

(Coleman, 2005), recently more attention has been drawn to the retrogenesis theory, based on 

the observation that late myelinated fibres are the first to degenerate in the course of disease, 

highlighting the role of white matter damage in pathogenesis of AD (Reisberg et al., 2002).  
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With the advance of diffusion tensor imaging in recent years, the structural network damage, 

or white matter damage, has been well described by a number of studies. In AD patients, 

increased DA, DR, MD and decreased FA have been found in association fibres including the 

corpus callosum, fornix, cingulum, inferior and superior longitudinal fasciculi, and uncinate 

fasciculus (Di Paola et al., 2010; Stricker et al., 2009). Similar changes have been reported in 

MCI patients, albeit the changes are not as extensive (Wai et al., 2014). More interestingly, 

the white matter damage can be observed in pre-clinical cases with family history of AD, 

when grey matter change is not evident (Bendlin et al., 2010) (Y. J. Hong et al., 2016). 

Importantly, structural network integrity was found to be related to cognition in AD and MCI 

patients (Bosch et al., 2012). Network topology analyses using tractography have also 

revealed decreased global network efficiency in AD and MCI patients (Lo et al., 2010; Shu et 

al., 2012). The early emergence of white matter alterations and its retrogenesis feature 

highlights the importance of white matter/ structural network damage in the pathogenesis of 

AD, and therefore efforts to investigate factors associated with the process are needed. 

4.2 Aim of the project 

The hypothesis of current study is that neuroinflammation in Alzheimer’s disease can 

actively and independently contribute to the damage of neuronal circuit and disrupt normal 

neuronal activity, the consequence of which are global impairment of the brain and ultimately 

cognitive impairment. 

The aim of current project is to test the prediction originated from the hypothesis: 

neuroinflammation is associated with structural network disruption in Alzheimer’s disease 

spectrum, independent of amyloid deposition. To evaluate the structural connectivity in our 

cohort, both microstructural integrity analysis and tractography analysis were used. To assess 

the global status of brain structural network, the microstructural integrity of major white 
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matter tracts was evaluated, and the network topology metrics of structural connectivity 

matrix constructed by tractography were computed. The changes of aforementioned structural 

network metrics in AD and MCI patients were first analysed, and the relationship between 

PET measurements of neuroinflammation/amyloid deposition and structural network metrics 

were analysed using linear regression models.  

4.3 Methods 

The scans were acquired by a 3 Tesla Siemens Verio scanner using a 32-channel head coil at 

the clinical imaging facility, Hammersmith Campus, Imperial College London.  

4.3.1 T1-weighted MRI scan acquisition 

The T1-weighted scans were acquired using the MPRAGE sequence for better tissue 

segmentation performance: Sagittal orientation; Anterior to posterior phase encoding 

direction; FOV 256×240×160mm; 1×1×1mm isotropic voxels; TR=2300ms; TE=2.98ms; 

TI=900ms; Flip angle=9°; Bandwidth=240Hz/Px; Echo spacing=7.1ms; Interleaved 

acquisition. 

4.3.2 Diffusion tensor MRI scan acquisition 

DTI scans were acquired with the following parameters: Transversal orientation; Anterior to 

posterior phase encoding direction; FOV 256×256×124mm; 2×2×2mm isotropic voxels; 

TR=9000ms; TE=99ms; b-value=1000s/mm2; 64 diffusion directions; 

Bandwidth=1562Hz/Px; Echo spacing=0.72ms; Interleaved acquisition. 

4.3.3 B0 field mapping 

B0 field maps were acquired for used of distortion correction of DTI images using the 

following parameters: Anterior to posterior phase encoding direction; FOV 
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192×192×105mm; 3×3×3mm isotropic voxels; TR=599ms; TE1=5.19ms; TE2=7.65ms; 

Bandwidth=260Hz/Px; Interleaved acquisition. 

4.3.4 B0 field map processing 

In the current study, echo-planar imaging method was used to acquire the DTI images, this 

method is sensitive to off-resonance fields, especially in the phase-encoding direction. Any 

non-linearity of the phase-encoding gradient could cause misinterpretation of geometric 

information, i.e., distortions. The body in scanner, due to different magnetic susceptibilities 

of various tissue types, will disrupt the homogeneous magnetic field in the scanner and lead 

to distortions was well (Hutton et al., 2002). To account for the inhomogeneity induced by 

individual patients, a B0 field maps were acquired with the patient in scanner.  

The FSL PRELUDE function was used for preparing a field map image for distortion 

correction of EPI images. The raw field mapping data from scanner contains a phase 

difference image and 2 magnitude images (for each TE). The magnitude images were used to 

provide spatial information and the B0 were inferred from the difference in 2 TEs and phase 

difference map. The magnitude image was first brain extracted to exclude any voxels outside 

the brain and a calibrated field map with the unit of rad/s was produced. The undistorted 

images were then forward warped into a distorted image to better register with distorted EPI 

images using FUGUE function.  

4.3.5 Distortion correction of DTI images 

The raw images were first converted from DICOM to NIFTI format using MRIcron tool and 

the b-vector files b-value files were generated, recording the direction and strength of 

diffusion gradient field. The first volume of the 4D images without diffusion weighting was 

extracted for use of spatial reference. Each subject’s distorted field map was then registered 

to the non-diffusion weighted image using rigid body linear transformation and the 
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transformation matrix was applied to the absolute field map image to bring it to diffusion 

space.  

4.3.6 Eddy current and motion correction of DTI images  

Eddy currents are rings of current induced by changing magnetic field in conductors, as 

described by Faraday’s law of induction. The loops of current flow in planes orthogonal to 

the changing magnetic field and generate an inducted magnetic field that counters the change 

of the former one. In diffusion tensor imaging, the diffusion encoding gradient is constantly 

changed to evaluate water diffusion in different directions, which will induce eddy currents in 

the conducting circuits in the scanner, including the coils. The eddy current induces filed 

shifts and could cause image shearing and scaling artifacts (Jezzard, Barnett, & Pierpaoli, 

1998) (Spees et al., 2011). In addition, head movement of the participant in scanner could 

cause spatial change of the susceptibility induced field in relation to the eddy current induced 

field. Therefore, eddy current correction, motion correction and distortion correction were 

performed in an integrated way using FSL’s eddy function, which combines the 

aforementioned fields together and does the correction in one step (Andersson & 

Sotiropoulos, 2016).  

During the realignment process if a rotation of the head is detected, the difference between 

the desired and actual diffusion encoding gradient is calculated and recorded. This process 

generates a corrected b-vector file and was used in further tensor fitting process. 

Quality check was performed using FSL’s eddy qc function after the eddy correction to 

ensure satisfactory quality of the images. 

4.3.7 Diffusion tensor fitting 

Following the image corrections, the diffusion tensors were fitted to individual voxels using 

FSL’s DTIFIT function. Linear regression method was used to extract the first 3 eigenvectors 
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(V1~V3) and eigenvalues (L1~L3) from diffusion tensor at voxel level. The eigenvalues of 

principle diffusion directions were then used to compute the diffusion metrics, namely 

fractional anisotropy (FA), radial diffusivity (RA), axial diffusivity (DA) and mean 

diffusivity (MD), which are given by (Le Bihan et al., 2001):  

𝑀𝑀𝑀𝑀 =  𝐿𝐿1+𝐿𝐿2+𝐿𝐿3
3

                                          (4.1) 

𝑀𝑀𝐷𝐷 = 𝐿𝐿1                                                     (4.2)         

𝑀𝑀𝐼𝐼 =  𝐿𝐿2+𝐿𝐿3
2

                                                (4.3) 

𝐼𝐼𝐷𝐷 = �3[(𝐿𝐿1−𝑀𝑀𝑁𝑁)2+(𝐿𝐿2−𝑀𝑀𝑁𝑁)2+(𝐿𝐿3−𝑀𝑀𝑁𝑁)2]
2(𝐿𝐿12+𝐿𝐿22+𝐿𝐿32)

      (4.4) 

At this point the V1 map (reflecting the principal diffusion direction) and FA maps were 

inspected to ensure the tensor fitting process went correctly. 

4.3.8 Tract-based spatial statistics for DTI images 

To be able to make statistical inference at group level, the DTI images must be brought to a 

common or standard space to make voxels from individual maps correspond to comparable 

structures. However, the standard normalization process as done for T1-weighted scans is not 

satisfactory for FA images. Therefore, FSL’s tract-based spatial statistics (TBSS) pipeline 

was used for this purpose (Smith et al., 2006).  

Briefly, the FA maps were first slightly eroded, and the end slices were zeroed to remove 

outliers. The pre-processed FA maps were then transformed into the standard MNI152 space 

using FSL’s nonlinear registration function FNIRT with b-spline interpolation, resampled 

into 1×1×1mm resolution (Rueckert et al., 1999). Next, the mean FA map of the study cohort 

is calculated, and a threshold of FA>0.2 was applied to only include major tracts that are 

anatomically stable across subjects. Then a binary white matter skeleton mask was created 
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based on the mean FA map, and a distance map was computed to project original values onto 

the group skeleton. Finally, each individual’s FA, MD, DA, and DR maps were then 

projected onto the skeleton for further analysis. 

4.3.9 Extraction of DTI Metrics from Tracts of Interest 

The Johns-Hopkins University ICBM-DTI-81 white matter labels atlas was used to sample 

DTI metrics from tracts of interest (Mori et al., 2008). 

4.3.10 Tractography 

Instead of the diffusion tensor fitting process prior to TBSS, FSL’s BEDPOSTX was run in 

each subject’s diffusion space before tractography. BEDPOST is the abbreviation of 

Bayesian estimation of diffusion parameters obtained using sampling techniques, and the X 

stands for crossing fibres. The process uses Markov Chain Monte Carlo sampling and Bayes 

theorem to estimate each voxel’s posterior distributions of diffusion parameters based on 

acquired data. This allows the process to model different numbers of crossing fibres within a 

voxel and choose the optimal number that fits the data (Behrens et al., 2003).  

After the preparation steps, tractography was performed using FSL’s PROBTRACKX 

function, which is a toolbox for probabilistic fibre tracking with crossing fibres. 

PROBTRACKX tracks streamlines from a seed voxel by drawing distribution parameters 

form the voxel’s posterior distribution function given by BEDPOSTX, stepping along the 

direction and testing whether the action is feasible according to termination criteria. The step 

is iterated through all the voxels and parameters and the resulting sample streamlines are 

produced. Streamline density maps and numbers of streamlines connecting distal seeds could 

then be produced based on the sample streamlines (Behrens et al., 2003) (Behrens, Berg, 

Jbabdi, Rushworth, & Woolrich, 2007) .  
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To evaluate the structural connectivity of entire brain, I aimed to create a ROI-to-ROI 

structural connectivity matrix for each participant using anatomical parcellation. The white 

matter surface parcellation given by FreeSurfer was used as seed masks to guide 

tractography. A total of 148 ROIs were selected for tractography and were listed in 

Appendix. As tractography is performed in original diffusion space, while the surface 

parcellation is performed in a conformed space, which is again different from the original T1 

structural space, the linear transformation matrices were estimated between DTI space ⇔ 

Structural space ⇔ FreeSurfer space using FSL’s FLIRT tool. 

To improve the accuracy of streamline tracking, the CSF segmentation was used as exclusion 

mask, and the following termination/exclusion criteria were used for streamline tracking: (1) 

the streamline enters CSF mask; (2) the streamline leaves the brain mask in diffusion space; 

(3) the streamline have travelled more than 2000 steps with step length at 0.5mm; (4) the 

curvature associated with a step is too high compared to former step, and the cosine of 

minimum allowable between two steps was limited at 0.2; (5) the streamline loops back to 

where it has already gone through. 

I should note that the resulting structural connectivity matrix is usually not exactly 

symmetric, unlike functional connectivity matrix, as starting from opposite ROIs for 

tractography could end up with different numbers due to difference in tractability. Therefore, 

the cross-diagonal average was calculated by averaging the original matrix and its transposed 

matrix. The resulting matrix was used for further analysis. 

4.3.11 Graph theory analysis on structural connectivity matrices 

The averaged structural connectivity matrix was analysed using the GRETNA toolbox, which 

is specifically designed for graph theoretical analysis. A sparsity threshold of 10% was used 

for creating both binarized and weighted connectivity matrices. For the weighted connectivity 
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matrices, the number of streamlines was used as the weight of an edge, as has been used by 

previous studies (Sun et al., 2018). Network topology metrics including clustering 

coefficient, average path length, betweenness-centrality, small-worldness, global efficiency, 

and local efficiency were computed. Nodal metrics including clustering coefficient, between-

centrality and average path length were also computed. The details of the graph theoretical 

metrics for binarized connectivity matrices have been described in Chapter 3 on functional 

connectivity analysis. For weighted structural connectivity matrices, the network topology 

measures are computed as follows: 

𝑡𝑡𝑖𝑖𝑤𝑤 = 1
2
∑ (𝑤𝑤𝑖𝑖𝑗𝑗𝑤𝑤𝑖𝑖ℎ𝑤𝑤𝑗𝑗ℎ)
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Where the superscript w denotes that the measures are weighted; ti is the number of triangles 

with node i being one apex; wij is the weight of connection between nodes i and j; dij is the 

shortest path length between node i and node j; 𝑎𝑎𝑢𝑢𝑢𝑢 ∈ 𝑛𝑛𝑖𝑖→𝑗𝑗 refers to the edge between nodes 

u and v which is part of shortest path between nodes i and j; C is the clustering coefficient; 

Eloc is the network local efficiency; L is the characteristic path length; Eg is the global 

efficiency; and SW is the small-worldness. ki is the number of edges connected to node i; 

djh(Ni) is the shortest path between two neighbour nodes of i, (j and h), and Ki is the degree of 
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node i, which is the number of edges connected to the node.  Crand is the clustering 

coefficients of random networks that have same number of nodes and edges as the current 

network, Lrand are characteristic path lengths of random networks comparable to current 

network (Rubinov & Sporns, 2010). 

4.3.12 Statistical analysis  

Group wise comparisons between diagnostic groups were first performed on the FA, MD, DR 

and DA skeletons on a voxel-wise basis using FSL’s randomize tool with threshold free 

cluster enhancement (TFCE) algorithm. The TFCE algorithm takes the raw statistic image (T 

map) and evaluate the base area of a 3D curve (extent) that surpass different height 

thresholds. The integral of a function of height that combines extent and height is then 

calculated and the value assigned to corresponding voxel. This algorithm has its advantage in 

that it does not require an initial hard cluster-forming threshold as compared to the 

‘traditional’ 2-step approach, and therefore offers better sensitivity and stability (Smith & 

Nichols, 2009).  Following TFCE algorithm, voxel-wise statistical test with multiple 

comparison correction was carried out. The randomize tool uses a permutational approach 

that randomly reassign a subject into a different group. The null hypothesis of the 

permutational approach is that the metric in two groups do not differ, and therefore swapping 

subjects across groups should not make a difference. The process runs the random swapping 

for sufficient number of times and compares the observation with the permuted results. The 

number of more extreme permutation results than the actual observation divided by the total 

number of permutations is considered as p-value. In other words, the permutation results can 

be plotted as a histogram, and the tail to the left/right of observation value is used to decide 

significance (A. M. Winkler, Ridgway, Webster, Smith, & Nichols, 2014). This 

nonparametric approach does not rely on the hypothesis that the metric in question is 

normally distributed in both groups and has an advantage over the traditional frequentist 
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approach in scenarios where the number of participants is limited, and a normal distribution 

could not be safely assumed. In the current study the p-values in voxel-wise regression on 

white matter skeletons were defined using TFCE algorithm with 5000 permutations. 

Group-wise comparisons at tract of interest (TOI) level is performed using Student’s T-test. 

Uncorrected p-values and FDR corrected P-values were recorded.  

As numerous ROIs and TOIs exist in the analysis, dimension reductions were performed for 

PET and MRI metrics. For 11C-PBR28 and 18F-Flutemetamol, an average of SUVR across the 

entire cortex (bilateral frontal, temporal, parietal, occipital, anterior and posterior cortices) is 

calculated first as a simple measure of global inflammation and amyloid deposition, further, 

principal component analysis was performed using SUVRs in bilateral frontal, temporal, 

parietal, occipital, as well as anterior and posterior cingulate cortices. Only principal 

components with eigenvalue greater than on were considered to have sufficient information 

and were considered in further analysis. Same principle was applied for FA values of all 

TOIs as a measure of structural network integrity. As there has been concern that white 

matter damage in Alzheimer’s disease is simply a reflection of Wallerian degeneration 

secondary to cortical atrophy (Coleman, 2005), average cortical thickness was included in the 

regression analyses as a covariate. The regression analyses were performed both at global 

level and at voxel level using FA skeleton as dependent variable and other metrics as 

independent variables. Because of limited number of participants in the study cohort, 

Because of the relatively small sample size, robust regression method was used to estimate 

the parameters and permutation tests were performed to confirm the significance of findings 

at ROI level, as both methods do not presume normal distributions and are robust against 

possible skewness in data. 
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Although PCA is a valid method for dimensionality deduction, it captures the principal vector 

of variance of the input variables and therefore may not be able to capture the ‘most 

interesting’ association between two set of variables. In other words, the vectors found using 

PCA on two set of variables may not be as good correlated as it is possible if different 

weights are assigned in respective vector space, and therefore we are unable to distinguish 

which variables contribute most to a correlation, were it to be found. Canonical correlation 

analysis set in here as it computes latent variates for each set of variables, such that the first 

two canonical variate are most correlated as possible, and the residuals are used to compute 

new variates that are linearly orthogonal to previous ones and same maximum correlation 

rule applies. Each canonical variate is a linear combination of the original variables in the 

corresponding set, and from the weight of each variable we could infer how important a 

variable is in terms of the correlation we found. This provides an elegant approach for the 

analysis in question since it enables us to interpret the pathological process in which brain 

region matters more in structural network damage in AD. 

However, because of the multivariate nature of canonical correlation, there is naturally 

concern on overfitting current data with the model. Further, as canonical correlation would 

inevitably assign certain weight to a variable under practical circumstances, it will lead to 

difficulties in interpreting the model when numerous variables are included. To address the 

problem, least absolute shrinkage and selection operator (LASSO) regularization was 

introduced. In linear regression the LASSO method solves the problem to minimize the cost 

function 𝐿𝐿 = ‖𝐷𝐷𝐴𝐴 − 𝑏𝑏‖2 + 𝜆𝜆‖𝐴𝐴‖1, where A is the design matrix, x is the unknown vector of 

model parameters, b is the observed value of dependent variable, λ is the weight of LASSO 

penalty (Tibshirani, 1996). In other words, the LASSO method adds a penalty term of the L1 

norm of model parameters, weighted by λ, to the ordinary least square (OLS) cost function, 

which is the L2 norm of difference between observed and predicted outcome (dependent 
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variable). This penalty term will add up to the cost function whenever a parameter is not zero, 

and with increasing λ, less relevant independent variables will be effectively excluded from 

the model to minimize L, therefore leaving us a sparse solution, which avoids overfitting and 

improves interpretability of the resulting model. The concept could be generalized to CCA 

and was integrated into R package PMA (Witten, Tibshirani, & Hastie, 2009).  

In the current study, I used the PMA package to perform sparse canonical correlation analysis 

(SCCA) between FA values of variable set of TOIs and variable set of PET ROIs, both for 

individual tracer and two tracers combined. To determine the statistical significance of the 

results from SCCA, same permutation method was used as described previously. 

4.4 Results 

4.4.1 Overview of available data and patient demographics 

A total of 93 participants in the cohort had analyzable DTI data, of whom 21 were AD 

patients, 54 were MCI patients and 18 were healthy volunteers. Of these participants, 62 had 

11C-PBR28 scans, 84 had 18F-Flutemetamol scans, and 40 had 18F-AV1451 scans. The 

detailed demographic information, amyloid positivity and data overlap are summarized in 

table 3.1. 

4.4.2 Group-wise Comparisons of DTI metrics in Tracts of Interest 

AD patients showed significantly decreased FA values in the genu and body of corpus 

callosum (CCG and CCB), the fornix, and bilateral tapetum. Increased MD values in AD 

cohort were found in the aforementioned regions plus right cingulate bundle and left superior 

longitudinal fasciculus. Similar differences were found between Aβ+ patients (AD and MCI) 

and HC. However, significant change of FA and MD was not found in MCI group compared 

to healthy volunteers. Aβ+MCI patients had lower mean FA and higher mean MD compared 

to Aβ-MCI and HC participants, but the changes were not statistically significant (Table 4.2).  
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However, as there were so many of TOIs, the results did not survive Bonferroni correction 

for multiple comparisons.
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Table 4.2 Group comparisons of fractional anisotropy and mean diffusivity across diagnostic groups 

  
AD 

(N=21) 
MCI 

(N=54) 
HC 

(N=18) 
Aβ+MCI 
(N=22) 

Aβ-MCI 
(N=26) 

Aβ+Patients 
(N=37) 

CCG FA 0.673±0.055* 0.711±0.055 0.727±0.05 0.709±0.057 0.715±0.056 0.695±0.053* 

 MD 
8.37E-04±6.47E-
05* 

7.92E-04±6.71E-
05 

7.72E-04±7.38E-
05 

8.01E-04±6.19E-
05 

7.81E-04±7.10E-
05 

8.14E-04±6.10E-
05* 

CCB FA 0.71±0.034* 0.729±0.039 0.736±0.04 0.722±0.04 0.736±0.038 0.716±0.039 

 MD 
8.14E-04±4.37E-
05* 

7.93E-04±5.40E-
05 

7.76E-04±5.47E-
05 

8.08E-04±5.06E-
05 

7.77E-04±5.87E-
05 

8.11E-04±4.80E-
05* 

CCS FA 0.789±0.041 0.805±0.039 0.813±0.022 0.8±0.041 0.809±0.042 0.793±0.043* 

 MD 
7.03E-04±5.32E-
05 

6.88E-04±4.73E-
05 

6.78E-04±3.05E-
05 

6.99E-04±3.84E-
05 

6.79E-04±5.51E-
05 

7.03E-04±4.31E-
05* 

Fornix FA 0.311±0.096* 0.364±0.102 0.396±0.095 0.357±0.114 0.382±0.099 0.342±0.102 

 MD 
2.22E-03±5.15E-
04* 

2.02E-03±4.35E-
04 

1.92E-03±3.65E-
04 

2.03E-03±4.47E-
04 

1.95E-03±4.44E-
04 

2.07E-03±4.41E-
04 

CB _R FA 0.59±0.049 0.623±0.04 0.632±0.048 0.624±0.037 0.626±0.045 0.608±0.047 

 MD 
7.18E-04±4.30E-
05* 

7.11E-04±3.34E-
05* 

6.92E-04±3.21E-
05 

7.13E-04±2.74E-
05 

7.08E-04±3.94E-
05 

7.16E-04±3.41E-
05* 

CB _L FA 0.633±0.047 0.664±0.043 0.669±0.047 0.659±0.042 0.675±0.046 0.647±0.048 

 MD 
7.25E-04±4.30E-
05 

7.24E-04±3.15E-
05 

7.07E-04±4.16E-
05 

7.30E-04±2.35E-
05 

7.20E-04±3.67E-
05 

7.29E-04±3.55E-
05* 

SLF_R FA 0.54±0.026 0.559±0.025 0.554±0.032 0.562±0.02 0.556±0.031 0.553±0.026 

 MD 
7.34E-04±3.88E-
05 

7.12E-04±3.00E-
05 

7.10E-04±3.77E-
05 

7.08E-04±2.57E-
05 

7.11E-04±3.24E-
05 

7.18E-04±3.37E-
05 

SLF_L FA 0.534±0.025 0.554±0.03 0.552±0.039 0.55±0.023 0.555±0.037 0.544±0.025 

 MD 
7.38E-04±3.58E-
05* 

7.17E-04±3.60E-
05 

7.10E-04±3.67E-
05 

7.18E-04±2.91E-
05 

7.15E-04±4.22E-
05 

7.26E-04±3.25E-
05* 

SFOF_R FA 0.597±0.076 0.6±0.052 0.597±0.055 0.606±0.054 0.598±0.053 0.603±0.063 

 MD 
6.82E-04±6.86E-
05 

6.67E-04±6.00E-
05 

6.47E-04±3.62E-
05 

6.81E-04±7.11E-
05 

6.57E-04±5.42E-
05 

6.85E-04±7.15E-
05 
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SFOF_L FA 0.612±0.059 0.627±0.061 0.626±0.066 0.621±0.057 0.638±0.067 0.618±0.057 

 MD 
6.50E-04±7.76E-
05 

6.42E-04±7.97E-
05 

6.32E-04±5.61E-
05 

6.70E-04±7.86E-
05 

6.15E-04±7.93E-
05 

6.69E-04±7.77E-
05 

UF_R FA 0.547±0.061 0.573±0.055 0.564±0.052 0.565±0.055 0.575±0.062 0.559±0.060 

 MD 
7.06E-04±7.39E-
05 

6.94E-04±6.02E-
05 

6.79E-04±4.64E-
05 

6.99E-04±5.89E-
05 

6.85E-04±6.33E-
05 

7.04E-04±6.95E-
05 

UF_L FA 0.533±0.065 0.555±0.055 0.547±0.065 0.541±0.057 0.556±0.05 0.538±0.060 

 MD 
7.17E-04±7.35E-
05 

7.13E-04±7.28E-
05 

7.17E-04±2.87E-
05 

7.35E-04±7.37E-
05 

7.01E-04±7.37E-
05 

7.27E-04±7.72E-
05 

Tap_R FA 0.469±0.082 0.5±0.092 0.525±0.085 0.501±0.089 0.504±0.096 0.479±0.086 

 MD 
1.14E-03±1.79E-
04* 

1.07E-03±1.97E-
04* 

9.80E-04±1.40E-
04 

1.06E-03±1.75E-
04 

1.07E-03±1.82E-
04 

1.10E-03±1.79E-
04* 

Tap_L FA 0.5±0.078 0.549±0.088 0.56±0.074 0.563±0.094 0.538±0.087 0.530±0.091 

 MD 
1.13E-03±2.25E-
04* 

1.07E-03±2.02E-
04* 

9.57E-04±1.29E-
04 

1.04E-03±2.03E-
04 

1.10E-03±2.07E-
04 

1.08E-03±1.99E-
04* 

CST_R FA 0.659±0.042 0.652±0.038 0.648±0.033 0.642±0.034 0.665±0.039 0.651±0.038 

 MD 
5.91E-04±4.77E-
05 

5.94E-04±4.63E-
05 

5.99E-04±3.88E-
05 

5.99E-04±5.28E-
05# 

5.88E-04±3.91E-
05 

5.95E-04±5.13E-
05 

CST_L FA 0.653±0.04 0.659±0.04 0.664±0.04 0.647±0.038 0.677±0.033 0.652±0.039 

 MD 
6.08E-04±3.91E-
05 

6.00E-04±5.03E-
05 

6.00E-04±3.32E-
05 

6.14E-04±5.71E-
05# 

5.82E-04±4.37E-
05 

6.11E-04±5.10E-
05 

 

 

*: p<0.05 in independent samples T-test compared to healthy controls, not corrected; #: p<0.05 in independent samples T-test compared to Aβ-

MCI cohort, not corrected. Numbers in cells are mean±SD. CCG: corpus callosum genu; CCB: corpus callosum body; CCS: corpus callosum 

splenium; CB: cingulum bundle; SLF: superior longitudinal fasciculus; SFOF: superior fronto-occipital fasciculus; UF: uncinate fasciculus; Tap: 

tapetum; CST: corticospinal tract; L: left; R: right; FA: fraction anisotropy; MD: mean diffusivity.  
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4.4.3 Voxel-wise comparisons of FA, MD, DA and DR skeletons 

In voxel-wise comparison on white matter skeletons between AD and HC, significant clusters 

of deceased FA were found in CCG, CCB, splenium of corpus callosum (CCS), bilateral 

cingulate part of cingulum, bilateral SLF, bilateral superior fronto-occipital fasciculi (SFOF), 

bilateral inferior fronto-occipital fasciculi (IFOF), bilateral uncinate fasciculi (UF), left 

hippocampal part of cingulum and left inferior longitudinal fasciculus (ILF); clusters of 

increased MD, DA and DR were found CCG, CCB, CCS, bilateral cingulum (both cingulate 

and hippocampal part), SLF, ILF, IFOF and UF (Figure 4.1). 

Figure 4.1 Voxel-wise Comparisons of DTI White Matter Skeletons 
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A: Decreased FA values in AD patients compared to HC; B: Increased MD values in AD 

patients; C: Increased DA in AD cohort; D: Increased DR in AD group. White matter 

skeletons are shown in green, clusters of increased values are shown in red-yellow scheme, 

and clusters of decreased values are shown in blue-light blue scheme. Clusters are corrected 

for multiple comparisons at spatial level using TFCE algorithm (p<0.05). 

 

No significant clusters of decreased FA or increased MD/DR/DA were found in MCI group 

compared to HC. However, in Aβ+MCI patients, increased DA was found in bilateral IFOF, 

bilateral SLF, left UF and left ILF (Figure 4.1).  

4.4.4 Dimensionality reduction: principal component analysis of FA values across TOIs 

Principal component analysis was performed using FA values sampled from 48 tracts of 

interest (from DTI-81 white matter label atlas). The first principal component of FA values 

(PC1) explained 40.3% variance of data, while PC2 explained 9.7% of variance. Loading 

weights of TOIs revealed that all TOIs had positive weights on PC1 while there were 

differential loadings on PC2, with long association fibres having mostly positive weights 

(Figure 4.2). By plotting data points in 2-dimentional space defined by PC1 and PC2, it can 

be visually identified that PC2 axis could differentiate AD patients and HC group with good 

separation, with HCs having positive PC2s and AD patients having negative values (Figure 

2). It is probable that the first component represents the overall integrity of white matter 

structural network, while the second component reflect a process in which association fibres 

and projection fibres are influenced differently. 
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Figure 4.2 Principal Components of FA values in all TOIs 
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Top: Loadings plot of TOIs; Bottom: Separation of participants in 2D principal component 

space. Principal component 2 axis distinguishes AD and HC participants with relatively good 

separation. 

 

4.4.5 Structural connectivity analysis using graph theory 

Graph theoretical analysis of structural connectivity matrix constructed by tractography did 

not show any difference between diagnostic groups. Global network topology metrics 

including clustering coefficient and local efficiency (network segregation), global efficiency 

and average path length (network integration), small-worldness, and nodal metrics including 

nodal betweenness centrality, nodal average path length and nodal clustering coefficient, 

were tested. Both binary and weighted (weighted by number of streamlines) approach did not 

detect any topology change in AD or MCI patient group compared to HC participants.  

4.4.6 Linking structural network integrity, functional network organisation and cognition 

PC2 of FA values had significant positive correlation with network local efficiency 

(standardised β = 0.437, 95%CI: 0.0814~0.793, p-perm=0.047, age and cortical thickness 

corrected), while cortical thickness correlated with small-worldness (standardised β = 0.371, 

95%CI: 0.001~0.741, p-perm=0.006, age and PC2 corrected). 

FA PC2 positively correlated with MMSE scores (standardised β = 0.75, 95%CI: 0.0367~0.836, 

p-perm=0.019, corrected for age). 

4.4.7 Bivariate correlations between FA values and 11C-PBR28 uptake 

To explore the relationship between neuroinflammation and white matter network integrity, I 

first explored the correlation between FA values and 11C-PBR28 uptake across multiple 

regions. Negative relationship between the two variables was found in multiple ROI-TOI 
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pairs in both MCI and AD patients. A graphic representation of the correlation in Aβ+ 

patients is shown in Figure 4.5, where the Pearson correlation coefficients of significant 

correlations are color-coded in yellow-green scheme. The significance is determined by 

permutation tests. 

 

 

Figure 4.5. Partial correlation matrix between ROIs of 11C-PBR28 and FA values in tracts of 

interest in the combined Aβ-positive cohort. 

Correlation coefficients of non-significant correlations are plotted as zeros. 

CC: corpus callosum; ILF: inferior longitudinal fasciculus; IFOF: inferior fronto-occipital 

fasciculus; SLF: superior longitudinal fasciculus; SFOF: superior fronto-occipital fasciculus; 

UF: uncinate fasciculus; L: left; R: right; A: anterior; P: posterior; Striat: striatum; Thal: 

Thalamus. 



 143 

4.4.8 Network level multiple regressions 

To evaluate the brain level relationship between neuroinflammation and structural network 

integrity, the first principal component of cortical 11C-PBR28 uptake (11C-PBR28 PC1, 

78.9% total variance explained) was extracted and its association with FA PCs was analysed.  

In MCI cohort, 11C-PBR28 PC1 had negative correlation with FA PC1 (N=25, R=-0.43, 95% 

CI: -0.71~-0.05, p=0.03) but not FA PC2 (R=-0.20, 95% CI: -0.55~0.21, p=0.34); In AD 

cohort (N=16), similar trend was found but not statistically significant: 11C-PBR28 PC1& FA 

PC1(R=-0.43, 95% CI: -0.76~0.08, p=0.10); 11C-PBR28 PC1& FA PC2(R=-0.23, 95% CI: -

0.65~0.30, p=0.39).  

To fully cover Alzheimer’s spectrum and increase statistical power, Aβ+ patients were 

grouped together (N=26). In Aβ+ patients, 11C-PBR28 PC1 correlated with both FA PC1 and 

FA PC2 (R=-0.49, 95% CI: -0.74~-0.13, p=0.01; and R=-0.40, 95% CI: -0.68~-0.02, p=0.04, 

respectively. Figure 4.6). The association remains true after considering the effect of global 

amyloid load, cortical thickness and age (standardised β=-0.44, 95% CI: -0.848~-0.032, 

p=0.014; and standardised β=-0.375, 95% CI: -0.749~-0.005, p=0.047, respectively. 

Parameter were estimated using robust regression and significance were determined using 

permutation tests).  
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Figure 4.6 Correlation between 11C-PBR28 uptake and FA value principal components 

4.4.9 Canonical correlation between FA values and 11C-PBR28/18F-flutematemol SUVR 

In the combined Aβ+ cohort, SCCA found a significant negative correlation between 11C-

PBR28 and FA (r=0.63, p=0.043, permutation test), with 11C-PBR28 uptake in bilateral frontal, 

parietal lobe and posterior cingulate having non-zero canonical weights (weights in the table 

are drawn from SCCA with LASSO penalty term λ=0.7). Canonical correlation between 18F-

flutematemol and FA values was not significant (r=0.37, p=0.7). Interestingly, when both 11C-

PBR28 and 18F-flutematemol were included, the 18F-flutematemol ROIs were quickly dropped 

out of the model with increasing λ and when λ was greater than 0.7 none of the 18F-

flutematemol ROIs remained in the model (r=0.63, p=0.06 with λ=0.7) (Table 3). 
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Table 3. Canonical correlation between PET measurements and FA 

ILF: inferior longitudinal fasciculus; IFOF: inferior fronto-occipital fasciculus; SLF: superior longitudinal fasciculus; SFOF: superior fronto-

occipital fasciculus; UF: uncinate fasciculus; L: left; R: right; Ant: anterior; Post: posterior.
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4.4.10 Voxel-wise regression models  

Voxel-wise regression analyses were performed on FA and MD skeletons using the following 

model: FA/MD ~ 11C-PBR28 uptake + 18F-flutematemol uptake + average cortical thickness 

+ age + gender + intercept. In AD patients, 11C-PBR28 uptake showed significant positive 

relationship with MD values in bilateral cingulate and hippocampal part of cingulum, genu, 

body and splenium of corpus callosum, bilateral SLF, ILF, IFOF and UF. however, the 

association between 11C-PBR28 uptake and FA values was not significant in AD patients. In 

MCI patients, 11C-PBR28 uptake had negative relationship with FA values in the entire 

corpus callosum, bilateral cingulum, ILF, ILOF, SLF and UF, and was associated with higher 

MD values in similar regions. In all Aβ+ patients, same positive relationship between 11C-

PBR28 uptake and MD, and negative association between 11C-PBR28 uptake and FA were 

found in those regions including CC, cingulum, ILF, ILOF, SLF and UF (Figure 4.5). 
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Figure 4.5 Effect of 11C-PBR28 uptake on FA and MD values in voxel-wise regression 

analysis 

A: Effect of 11C-PBR28 cortical uptake (PC1) on MD values in AD patients; B: Effect of 11C-

PBR28 PC1 on FA values in MCI patients; C: Effect of 11C-PBR28 PC1 on MD values in 

MCI patients; D: Effect of 11C-PBR28 PC1 on FA values in Aβ+ patients; E: Effect of 11C-
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PBR28 PC1 on MD values in Aβ+ patients. TBSS skeleton is rendered in green, positive 

effects are shown in red-yellow scheme and negative effects are shown in blue-light blue 

scheme. Only significant clusters that survived FDR correction at spatial level (p<0.05) using 

TFCE algorithm are shown. 

4.4.11 Mediation analysis  

Considering that neuroinflammation was associated with both network structural integrity 

and functional organization, and that structural network is the physical basis of functional 

organization, we asked whether the effect of neuroinflammation on functional network was 

mediated by network structural integrity. A linear mediation analysis with 11C-PBR28 and 

18F-Flutematemol uptake, PC2 and age as independent variables, local efficiency as 

dependent variable and PC2 as mediator showed a significant average direct effect of 11C-

PBR28 uptake on local efficiency (95% quasi-Bayesian confidence interval -0.25~-0.06, 

p=0.002) and a marginal average causal mediation effect via PC2 (95% quasi-Bayesian 

confidence interval -0.12~-0.00, p=0.07). 

 

4.5 Discussion and Conclusions 

In the current study, I have first evaluated the structural brain network integrity and structural 

connectivity in AD and MCI patients using diffusion tensor imaging analysis.  

In the current analysis, significant reduced fractional anisotropy and increased diffusion 

parameters were found mainly in association fibres in AD patients, which is consistent with 

the literature (Goveas et al., 2015). The increased MD, DA and DR reflect a loss of restriction 

on water diffusion, and could be caused by demyelination, axonal atrophy and axonal losses. 

The loss of diffusion restrictions in all directions resulted in a loss of anisotropic feature of 

white matter structures, and therefore reduced FA (Scheltens et al., 1995) (Sjobeck et al., 
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2006b) (Gouw et al., 2008). In MCI patients, we did not find significant changes of FA or 

diffusion parameters, which has been reported in other cohorts. The number of participants 

may have limited the statistical power of analysis, as a trend towards decreased FA and 

increased MD could be seen in our MCI cohort. Further, the MCI patients in the current 

cohort may be at earlier stage of disease, as the average MMSE was rather high at 28. In Aβ+ 

MCI patients, increased DA, but not other metrics was found in association fibres compared 

to HC group. Animal studies have suggested that increase in DA or DR is related more to 

axonal damage, as opposed to MD which indicates more of demyelination (S. W. Sun et al., 

2006) (Harsan et al., 2006). Therefore, the increased DA may reflect the earliest axonal 

damage among the patients, or it might be related to the disruption of crossing fibres. 

However, the exact physiological basis of the early increase of axial diffusivity in humans 

still remains to be elucidated. Nevertheless, the current analysis does support the view that 

metrics other than FA and MD, such as DA, might be more sensitive for early changes in 

disease process. Therefore, more detailed examination of diffusion parameters including DA 

and DR are recommended instead of just focusing on FA and MD whenever possible. 

Following up analysis on the relationship between structural network integrity, functional 

organization and cognition revealed the importance of an intact structural network, as better 

network integrity metrics were indeed associated with better functional network efficiency 

and better cognition. 

While there has been speculation that white matter damage in AD is simply secondary change 

of grey matter atrophy, the current analysis revealed altered axial diffusivity in Aβ+ MCI 

patients, who did not have significant grey matter changes. Moreover, in regression models, 

cortical thickness was not able to explain all the changes in FA values. These findings 

highlight structural network damage as an early event in Alzheimer’s trajectory, which may 

even precede overt cortical atrophy. Considering the association between structural network 
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integrity, functional connectivity and cognition, these early white matter changes should not 

be overlooked. Therefore, better understanding of the disease and potential treatment 

strategies may reside on finding the factors contributing to structural network damage. 

However, graph theoretical analysis of structural connectivity matrices constructed by 

tractography failed to detect any difference between AD and HC or MCI and HC groups. 

Such result was anticipated for the analysis using the binary connectivity matrices, as the 

major white matter connections of human brain, however healthy or diseased, should exist 

across the population. Therefore, with a certain sparsity threshold, very similar, if not same 

binary matrices would be extracted. This is different from functional connectivity matrices, 

because based on the same structural network, different brain regions could work in a healthy 

and harmonized way or in a disorganized pattern. In this way, functional connectivity 

analysis could detect abnormalities with good sensitivity, even when the network structures 

remain intact, whereas structural connectivity analysis could only answer whether or not two 

regions are physically connected. As the existence of basic brain ‘wiring’ is not changed by 

disease, the structural connectivity topology metrics would not be able to distinguish healthy 

and disease brains. What was unexpected was that the analysis on streamline density 

weighted connectivity matrices failed to reveal any change in diseased brains. Several factors 

may contribute to the failure of this approach:  

Firstly, the streamline density may not be a good metric for evaluating the strength of 

structural connectivity, as they are influenced by the traceability of each scan and does not 

totally reflect the number of real axons. Indeed, the number of streamlines varied a lot across 

individuals even within the HC cohort. There have been several studies that used the total 

number of streamlines to normalize the connectivity matrices before further processing, but 

this would again result in similar patterns in connectivity matrices that is defined genetically 

in all humans (Tucholka et al., 2018). A better approach might be to sample the FA or MD 
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values in each constructed pathway and use them to weight the connectivity matrices, which 

has been applied by several studies already (Shu et al., 2012). However, due to the high 

computational cost (performing tractography using each 2 pairs of ROIs in the N-by-N 

matrices and sampling the FA/MD values), it was not feasible within the time frame and 

available resources with regard to the current project.  

Secondly, the network topology metrics, even if weighted versions were used, were designed 

to reflect overall network organization, but not structural integrity. Therefore, it may not be 

as sensitive as the FA/MD values themselves to detect impaired structural network integrity.  

Based on the analysis I have performed, I believe the structural network integrity metric 

which originated from TBSS was better suitable for evaluating the structural brain network 

impairment in AD. Therefore, in the following analysis on relationship between 

neuroinflammation and brain structural network, the network integrity metrics were used. 

With the new NIA-AA consensus on the ATN framework of Alzheimer’s disease (Jack et al., 

2018), the current analysis mainly focused on investigating the relationships between 

neuroinflammation, amyloid deposition and structural network integrity in Aβ+ patients, as I 

believe they could better represent the Alzheimer’s spectrum. Nevertheless, supplementary 

voxel-wise regression analyses based on clinical diagnostic groups were also performed. 

While previous studies have reported that Aβ deposition is associated with white matter 

damage in AD and MCI patients, these studies have mostly relied on clinical diagnosis, and 

did not specifically interpret the quantitative effect of Aβ deposition on white matter integrity 

in Aβ+ cohorts (Melah et al., 2016) (Gold et al., 2014). In fact, it is possible that Aβ was a 

diagnostic marker of AD and the association was mediated by whether or not the patient has 

Alzheimer’s pathology. For example, in the current study increased DA was only found in 

Aβ+ MCI patients, but not Aβ- MCI or the whole MCI group, however, a direct relationship 
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between Aβ and white matter alteration could not be readily established, as Aβ is a marker of 

Alzheimer’s disease, which has multifaceted pathologies. In fact, a recent study on 

longitudinal DMN connectivity have reported that it is APOE genotype but not baseline Aβ 

status that could predict longitudinal DMN connectivity change (Chiesa et al., 2019). 

Therefore, I would argue that the quantitative analysis within Aβ+ patients could better 

identify the factors truly associated with structural network damage in Alzheimer’s spectrum.  

With that in mind, the current analysis has identified neuroinflammation as an independent 

factor that is strongly associated with structural network damage in Alzheimer’s spectrum, 

while the amount of Aβ+ plaques is not directly linked with white matter microstructural 

damage. Similar results have also been found in MCI and AD cohorts separately, while 

controlling for the effect of Aβ+ deposition and cortical atrophy. The fact that amyloid load, 

as quantified by 18F-Flutemetamol, did not correlate with structural network impairment in 

the study cohort, might be attributed to several factors: First, the number of participants may 

have limited the statistical power of analysis; Secondly, the PET tracers could only bind to 

fibrillary forms of Aβ species, while current evidence suggest that soluble Aβ monomer and 

oligomers are more neurotoxic, therefore the tracer uptake may not reflect the amount of 

toxic Aβ species accurately; Lastly, part of amyloid toxicity might have been mediated by 

neuroinflammation, and therefore the unique contribution from Aβ in the regression models 

is limited when neuroinflammation marker is included. 

The key finding is the association between neuroinflammation and brain structural network 

damage across Alzheimer’s spectrum, independent of Aβ and cortical thickness. It has been 

well established that glia cells contribute to the development and maintenance of neuronal 

network throughout lifespan. During brain development microglia contribute to neurogenesis, 

axon outgrowth, synapse modelling and myelination(Michell-Robinson et al., 2015). In 

adulthood, microglia have dynamic and direct interactions with neuronal network 
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structures(Baalman et al., 2015) and are involved in maintenance and repair of 

myelin(Michell-Robinson et al., 2015). In AD brains, activated microglia lose their ramified 

morphology, cease their house-keeping functions, and migrate to Aβ plaques and neurons 

containing neurofibrillary tangles(Davies et al., 2017). It has been established that the 

inflammatory cytokines could directly disrupt neuronal activities and induce neuronal death 

in experimental conditions. Activated microglia can also cause direct damage to 

oligodendrocytes and axons through production of ROS, matrix metalloproteinases and pro-

inflammatory cytokines (Peferoen et al., 2014).  Accumulation of activated microglia has also 

been reported to co-locate with damaged axonal initial segments in a mouse model of 

AD(Marin, Ziburkus, Jankowsky, & Rasband, 2016). Furthermore, an ex vivo experiment has 

demonstrated that activated microglia can induce neuritic beading of axons, inhibit 

mitochondrial function and axonal transport through N-methyl-D-aspartate (NMDA) receptor 

signalling(Takeuchi et al., 2005). The preclinical evidence above suggests that 

neuroinflammation in AD could be related to structural network breakdown in several ways: 

(1) disrupting trophic support from glia cells; (2) releasing neurotoxic inflammatory 

cytokines; (3) direct damage to axons and synapses by cellular interactions. 

In the previous analysis, the relationship between neuroinflammation and functional 

connectivity disruption has been demonstrated (Hahn et al., 2013). Therefore, it is worth 

exploring whether the influence of neuroinflammation on functional organization is mediated 

by structural network integrity. Following the line of thought, a linear mediation analysis was 

performed to find the answer. It was found that while there was a possible path from 

neuroinflammation to structural network damage and to functional disruption, the direct 

effect from neuroinflammation to functional disruption was more significant. It could be 

concluded now that neuroinflammation is directly associated with both functional 

connectivity disruption and structural network damage in Alzheimer’s spectrum. Given the 
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importance of network organization in brain functioning, neuroinflammation is a potential 

target for preserving cognitive function in AD patients. However, further investigation is still 

needed to substantiate the causal relationship and underlying biological mechanisms. 
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Chapter 5. Cerebral Perfusion, Amyloid and Neuroinflammation 

5.1 Introduction 

It has been established by autopsy studies that the cerebral vasculature undergoes 

pathological changes in Alzheimer’s disease, including endothelial cell swelling and atrophy, 

basal membrane thickening and splitting, smooth muscle cells constriction, pericyte atrophy, 

astrocyte end-feet swelling, BBB breakdown and amyloid deposition in vascular walls 

(cerebral amyloid angiopathy, CAA) (Farkas & Luiten, 2001; Sweeney, Sagare, & Zlokovic, 

2018). Further, epidemiological studies have unveiled that vascular risk factors, such as mid-

life hypertension and diabetes, are associated with increased risk for AD (Barnes & Yaffe, 

2011). These findings further highlight cerebral perfusion deficits in Alzheimer’s disease. 

Indeed, rather than being a subsequent phenomenon to brain atrophy, cerebral oligaemia and 

ischemia is now suggested as a potential driving force of AD (Ostergaard et al., 2013; 

Zlokovic, 2011b). 

5.1.1 Using Arterial Spin Labelling to Quantify Brain Perfusion in vivo 

Arterial spin labelling (ASL) is a non-invasive MRI technique to measure blood flow in vivo. 

ASL uses a selective radiofrequency (RF) sequence in the selected plane or region to invert 

the magnetization of water within the region, which will act as endogenous tracer for blood 

flow. Following the labelling step, a post-label delay (PLD) period is necessary to allow the 

labelled water molecules to flow through the vasculature and enter tissue compartment. 

Because the magnetization of labelled water is inverted, they will cancel the net 

magnetization in tissue when the images are acquired. By comparing the signals in labelled 

images with control images where the labelling sequence is not applied, the amount of 

arterial blood perfusion to tissue can be inferred (Grade et al., 2015).  
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ASL can be categorised into continuous ASL (cASL), pulsed ASL (pASL) and pseudo-

continuous ASL (pcASL) according to the labelling schemes. cASL uses a continuous RF 

field in a thin labelling ‘plane’ to invert any magnetization that flows across the plane, which 

is also known as the flow-driven adiabatic inversion; pASL, otherwise, uses a single short RF 

sequence to invert the magnetization in a ‘thick slice’ of region, creating a bolus of labelled 

water. cASL has the desirable features including high labelling efficiency, precise label 

duration, and possibility to apply long labelling durations, however, clinical scanners are 

usually not able to apply the continuous RF sequence effectively; pASL is easier to be 

performed on clinical scanners but has the problems including ill-defined labelling period and 

low signal-to-noise ratio caused by short label durations. pcASL tries to address the 

disadvantages of pASL by using a series of short repeating RF pulses to approximate the 

continuous RF field in cASL. Therefore, pcASL has the advantageous features of cASL, 

while can still be performed on clinical scanners without specialist hardware. Now pcASL is 

recommended for research use where possible (Alsop et al., 2015).  

5.1.2 Perfusion Deficit in AD 

Clinical ASL studies have observed decreased CBF in posterior cingulate, parietal, frontal 

and temporal cortices in AD patients, which are further related to cognitive performance in 

the patients (Alsop, Detre, & Grossman, 2000) (Binnewijzend et al., 2014). Recently, a meta-

analysis on clinical imaging studies has further summarised that hypoperfusion occurs in 

precuneus, posterior cingulate and inferior parietal lobule in MCI patients, and further 

involves frontal and temporal regions in AD patients (Schroeter, Stein, Maslowski, & 

Neumann, 2009). And it has been suggested that CBF dysregulation starts early in disease 

trajectory even before brain atrophy in population at high risk of AD (Ruitenberg et al., 

2005). 
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Lines of evidence have suggested that perfusion deficit may take a place in facilitating 

Alzheimer’s pathology. Preclinical study has observed that hypoxia can upregulate BACE1 

expression, which is a key enzyme in APP cleavage, and exaggerate amyloid deposition (X. 

Sun et al., 2006). Apart from amyloid genesis, hypoperfusion may also lead to insufficient 

clearance of amyloid species via the glymphatic system, as the drainage of the system 

depends on bulk flow from the vessels (Jessen et al., 2015; M. K. Rasmussen, Mestre, & 

Nedergaard, 2018). Further, hypoxia has also been found to supress the neprilysin expression, 

which can degrade Aβ (Z. Wang et al., 2011). Recent evidence has also suggested that 

hypoxia can induce tau phosphorylation at AD-associated epitope via MAPK pathway (Fang, 

Zhang, Meng, Du, & Zhou, 2010; Gordon-Krajcer, Kozniewska, Lazarewicz, & Ksiezak-

Reding, 2007; Raz et al., 2019). Conversely, Alzheimer’s pathology could in turn exaggerate 

cerebral hypoperfusion and therefore form a downward spiral. Apart from direct deposition 

on vascular wall in CAA, a recent study has demonstrated that Aβ oligomers can cause 

capillary constriction by inducing reactive oxygen species and endothelin-1 signalling to 

pericytes (Nortley et al., 2019). 

Notably, inflammatory factors are closely related to the cerebrovascular dysfunctions. It has 

been observed that brain micro-vessels produce more proinflammatory cytokines and 

chemokines including TNF, IL-1β, IL-6, CCL2, prostaglandins, and MMPs in brain samples 

of Alzheimer’s disease (Grammas, 2011; Grammas, Moore, & Weigel, 1999). Apart from 

these cytokines, disrupted blood flow is also associated with production of fibrinogen and 

thrombin, which can further induce glial activation in brain parenchyma (Davalos & 

Akassoglou, 2012; X. Yin, Wright, Wall, & Grammas, 2010). Conversely, 

neuroinflammation could also influence cerebral perfusion. It has been established that 

astrocytes directly regulate the contractability of arteries in CNS (Takano, Han, Deane, 

Zlokovic, & Nedergaard, 2007), and astrocyte dysfunction has been suggested to impair 
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neurovascular coupling in AD (Tarantini, Tran, Gordon, Ungvari, & Csiszar, 2017). Further, 

the cytokines released by pro-inflammatory microglia and astrocytes could induce 

inflammatory response of vasculature and disrupt the BBB function (L. R. Liu, Liu, Bao, Bai, 

& Wang, 2020; Tarantini et al., 2017; Zhao, Nelson, Betsholtz, & Zlokovic, 2015). 

5.2 Aim of the project 

Based on the previous reasoning, it could be hypothesised that neuroinflammation, as well as 

amyloid and tau pathologies, are associated with perfusion deficit in Alzheimer’s continuum. 

While there has been reports on association between amyloid deposition and cerebral 

perfusion in AD patients (Mattsson et al., 2014), there is still a lack of evidence on whether 

neuroinflammation or tau pathology in AD is associated with perfusion deficit in vivo. 

Therefore, the current analysis investigated on the relationship between PET markers of 

Alzheimer’s disease and CBF in the study cohort.  

5.3 Methods 

5.3.1 Arterial spin labelling scan acquisition 

A Pulsed ASL (pASL) scheme was used for the current study. The pASL scans were acquired 

using the following settings: 14 axial slices, TR=2500ms, TE=11ms, PICORE Q2T perfusion 

mode, inversion time of arterial spins (TI1) =700ms, saturation stop time = 1600ms, total 

transit time of spins (TI2)=1800ms, flow limit= 100cm/s, tag thickness 100mm, gap between 

tag and proximal slice =29.5mm, FOV=192×192mm2, Flip angle=90°, 3×3×6mm voxel size, 

anterior-posterior phase encoding direction, bandwidth=2232 Hz/Px, echo spacing=0.53ms. 

A total of 101 volumes of 3D-images were acquired for each participant: 50 pairs of tagged 

and untagged images were acquired, and a water density image acquired prior to these 50 

pairs of images as reference image. 
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5.3.2 Pre-processing of ASL scans 

Pre-processing of the ASL scans were performed using FSL’s BASIL toolbox (Woolrich et 

al., 2009). Briefly, the image series were first aligned using rigid body transformation. Next, 

for each pair of tagged-untagged images, the tagged image was subtracted from the untagged 

image, and the result is the perfusion-weighted difference image. The mean difference image 

was used for further modelling and computation of cerebral blood flow (Figure 5.1). 

 

Figure 5.1 Creating difference image from control-label pairs 

5.3.3 Spatial transformation 

The registration of ASL images to the standard MNI152 space was completed in following 

steps: first, the reference image was linearly registered to structural T1-weighted image to 

provide an initial start point. The perfusion-weighted images were then used for finer 

registration process, as it has better contrast between grey and white matter. The registration 

of perfusion weighted images to the structural images was performed using the boundary-

based registration (BBR) cost function by FSL (Jenkinson & Smith, 2001). The non-linear 

transformation from structural space to standard space was estimated using FSL_ANAT tool, 
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which also provided tissue segmentation information for calibration and partial volume effect 

correction. 

5.3.4 Perfusion Modelling and Quantification  

The perfusion-weight images are not scaled by absolute values of perfusion (ml/100 g/min). 

To obtain the cerebral blood flow (CBF) maps in quantitative units, kinetic modelling with 

Bayesian inference method was performed using BASIL (Chappell, Groves, Whitcher, & 

Woolrich, 2009). Slice timing was considered as the current study used a 2D acquisition 

method. 

The kinetic of labelled water in brain was described using the following model: 

𝐶𝐶(𝑡𝑡) = 𝑓𝑓 ∙ 𝐷𝐷𝐼𝐼𝐼𝐼(𝑡𝑡) ⊗𝑖𝑖(𝑡𝑡) = 𝑓𝑓 ∙ ∫ 𝐷𝐷𝐼𝐼𝐼𝐼(𝜉𝜉) ∙ 𝑖𝑖(𝑡𝑡 − 𝜉𝜉)𝑑𝑑𝜉𝜉𝑑𝑑
0       (5.1) 

Where C(t) is the concentration of tracer in ROI, f is the rate of delivery (perfusion), AIF(t) is 

the arterial input function, which describes the delivery of tracer to ROI as a function of time, 

r(t) is the residue function, which describes the behaviour of tracer within ROI after it has 

arrived. 

5.3.5 Calibration  

The first image (pre-saturation image) was used to estimate the brain tissue equilibrium 

magnetization, and the mean CSF magnetization was used for calibration of the image. After 

this process, the resulting images have the absolute unit of ml/100 g/min. 

5.3.6 Partial volume effect correction 

The ASL scans acquired in the current study have 3×3×6mm voxel size, which is large 

compared to the 2~4mm cortical thickness, causing the signals from different tissue types to 

mix within a voxel. The segmentation of T1 image was down sampled to ASL space and 

resolution, and the perfusion signal in each voxel was modelled as a linear combination of 
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signals from grey matter, white matter and CSF. Because the current study used a single 

delay pASL protocol, it was an underdetermined problem to solve. Therefore, it was assumed 

that the perfusion varied smoothly across the voxels and the spatial prior information was 

used to compute the partial volume correct image by BASIL (Chappell et al., 2011) . The 

resulting PV-corrected CBF images were used in further analysis.  

5.3.7 Evaluating early frames of dynamic PET as potential perfusion markers 

To test whether it is possible to use early frame PET data to infer cerebral perfusion where 

ASL data are not available, the IRF at 1 minute after injection was computed using spectral 

analysis method, as described previously in PET analysis section, and the correlation between 

IRF 1min and CBF as quantified by ASL was examined. TSPO genotype was included as 

covariate of no interest in the analysis. Further, the IRF images were normalized using 

cerebellum grey matter as reference region, and the correlation between CBF and IRF ratios 

was also examined. 

5.3.8 Statistical analysis 

The PV-corrected CBF images was sampled using individualized Hammer’s Atlas, as 

described previously in PET analysis. The CBF in frontal, temporal, parietal and occipital 

lobes, anterior and posterior cingulate cortices and media temporal lobe was compared across 

diagnostic groups using one-way ANOVA and post-hoc independent samples T-test. Voxel-

wise comparisons were performed using SPM12, with cluster-forming threshold at p<0.05 

and cluster-size FDR correction threshold at p<0.05. Because of the small FOV, the voxel-

wise comparisons were performed using a mask without cerebellum. 

A main concern on the white matter damage seen in AD is whether it is actually related to 

Alzheimer’s pathology or caused by cerebral vascular comorbidities, especially in aged 

population. To assess whether the white matter microstructural damage in the study cohort is 
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related to perfusion issues, the relationship was examined between whole brain CBF and 

principal components of FA values, as metrics for overall brain perfusion and white matter 

integrity, respectively. Age was included as a covariate of no interest in the analyses. 

Correlation analyses were also performed between CBF and PET markers (18F-AV1451, 18F-

Flutemetamol and 11C-PBR28) of Alzheimer’s disease, in different ROIs.  

Voxel-wise correlation analysis was performed between CBF and PET images/ALFF using 

VOXELSTATS package (Mathotaarachchi et al., 2016). The cluster forming threshold was 

set at p<0.01 and FDR correction was performed using random field theory with a threshold 

of p<0.05. 

 

5.4 Results 

5.4.1 Group comparisons of CBF 

Group comparisons of CBF showed a trend of decreased CBF in all ROIs in MCI and AD 

patients, but the change was not statistically significant (Table 5.1). Voxel-wise comparisons 

of CBF maps did not show significant clusters of CBF change in AD, MCI or Aβ+ patients 

compared to HC. 

Table 5.1 Cerebral Blood Flow in AD, MCI and HC groups 

 HC AD MCI 
N 19 21 59 

Frontal Lobe 47.3 (±3.90) 41.7 (±3.14) 43.2 (±1.86) 
Temporal Lobe 40.7 (±2.19) 37.9 (±1.58) 40.3 (±1.47) 
Parietal Lobe 53.0 (±3.28) 53.4 (±4.44) 53.7 (±2.15) 

Occipital Lobe 52.9 (±3.51) 44.8 (±2.76) 44.0 (±2.21) 
Ant. Cingulate 52.2 (±5.88) 45.3 (±3.22) 49.8 (±2.55) 
Post. Cingulate 65.4 (±4.08) 57.9 (±3.74) 59.7 (±2.55) 

MTL 34.5 (±1.86) 31.6 (±1.88) 36.0 (±1.60) 
Global CBF 51.9 (±3.26) 46.9 (±2.64) 48.5 (±1.76) 

Data are shown in mean (±SE) format. 
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5.4.2 Comparing 11C-PBR28 IRF-1min to CBF  

Correlation analysis showed poor linear relationship between 11C-PBR28 IRF 1min and CBF 

in the major regions (p>0.05). IRF 1min ratios did not have significant relationship with CBF 

either. Neither of the measures showed group difference between the diagnostic groups. 

5.4.3 Relationship between CBF and white matter microstructural integrity 

Significant association was not found between global CBF and PC1 or PC2 of FA in AD, 

MCI or Aβ+ cohorts. 

5.4.4 Relationship between CBF and amyloid deposition 

In AD cohort, 18F-Flutemetamol uptake was associated with decreased CBF in temporal lobe 

(N=17, standardized β=-0.55, p=0.022, Figure 5.2A). 18F-AV1451 uptake was associated 

with decreased CBF in MTL (N=15, standardized β=-0.49, p=0.040, Figure 5.2B). While 

11C-PBR28 uptake was not found to be associated with CBF in AD cohort. 

In MCI cohort, none of the PET markers was significantly associated with CBF in any ROIs. 

In Aβ+ cohort, 11C-PBR28 uptake was found to be associated with decreased CBF in MTL 

(N=26, standardized β=-0.58, p=0.003, Figure 5.2C). The relationship held true after taking 

MTL 18F-AV1451 uptake into consideration (N=16, standardized β=-0.56, p=0.018, Figure 

5.2D). In other regions there was not association between PET markers (including 11C-

PBR28, 18F-AV1451 and 18F-Flutemetamol) and CBF. 
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Figure 5.2 Partial correlation between PET markers of AD and CBF 

A: correlation between 18F-Flutemetamol and CBF in temporal lobe in AD patients (age 

controlled, N=17); B: correlation between 18F-AV1451 and CBF in MTL in medial temporal 

lobe (MTL) in AD patients (age controlled, N=15); C: correlation between 11C-PBR28 uptake 

and CBF in MTL in Aβ+ cohort (controlled for age, N=26); D: correlation between 11C-

PBR28 uptake and CBF in MTL in Aβ+ cohort (controlled for age and 18F-AV1451 uptake, 

N=16). 

5.4.5 Voxel-wise correlation analysis between PET/fMRI markers and CBF in Aβ+ cohort 

In Aβ+ cohort, voxel-wise regression analysis detected negative relationship between 11C-

PBR28 uptake and cerebral blood flow in widespread regions including left occipital fusiform 

cortex, left occipital pole, bilateral precuneus cortices, bilateral posterior cingulate gyri, left 

superior and middle frontal gyri (Figure 5.3A, age controlled). Interestingly, the clusters in 

MTL regions did not pass the random field theory correction for multiple comparisons. A 

possible explanation for the observation is that in ROI analysis the individualised GM map 
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together with partial volume correction may be more robust to regional atrophy, while in 

voxel-wise analysis certain voxel in standard space may overlap with GM or CSF depending 

on the atrophy status, which could add noise in statistical inference.  

ALFF was positively associated with CBF in widespread areas covering superior frontal 

gyrus, temporal, parietal, occipital lobe and posterior cingulate cortex (Figure 5.3B, age 

controlled). However, no significant association was found between 18F-Flutemetamol and 

CBF.  

 

Figure 5.2. Voxel-wise correlation analysis between CBF and PET/fMRI markers 

In Aβ+ cohort, voxel-wise regression analysis detected negative relationship between 11C-

PBR28 uptake and cerebral blood flow in widespread regions including left occipital fusiform 

cortex, left occipital pole, bilateral precuneus cortices, bilateral posterior cingulate gyri, left 

superior and middle frontal gyri (A); ALFF was positively associated with CBF in 

widespread areas covering superior frontal gyrus, temporal, parietal, occipital lobe and 

posterior cingulate cortex (B). 
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5.5 Discussion and Conclusions  

In the current chapter, cerebral blood perfusion in AD and MCI patients compared to healthy 

participants was evaluated using ASL. Further, the relationship between CBF and other 

markers of Alzheimer’s disease was assessed. The primary finding of the current project were 

that neuroinflammation is associated with decreased CBF in Aβ+ cognitively impaired 

patients, which suggested that neuroinflammation may be related to perfusion deficit in 

Alzheimer’s disease. 

While there has been evidence that neurovascular unit dysfunction is involved in the 

pathogenesis of AD (Zlokovic, 2011a), and that cerebral perfusion deficit can be found in AD 

patients (Schroeter et al., 2009), we did not find a significant overt reduction of cerebral 

blood flow in our AD or MCI cohort. This might be attributed to the following factors: First, 

the ASL sequence used in the study is single post labelling delay pulsed ASL, with relatively 

low resolution (3×3×6mm), which may limit the sensitivity of the current analysis; Secondly, 

the limited number of cases may have undermined the statistical power; more importantly, 

considering the multifaceted nature of dementia in clinical care, it is possible that certain 

vascular factors exist in a clinically diagnosed AD patient. However, with the exclusion 

criteria and evidence of AD pathology indicated by imaging biomarkers, the cognitive 

impairment in the current cohort may be more specifically caused Alzheimer’s pathology.  

Nevertheless, I should note that the pASL acquisition parameters used in the current study is 

far from optimal, and future studies focusing on CBF should consider optimising the 

acquisition protocol, especially on the following aspects: (1) consider using multi-PLD 

continuous ASL or pseudo-continuous ASL sequences to obtain more information for kinetic 

modelling ; (2) use finer resolution; (3) expand the FOV if possible, to cover whole brain 
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including the cerebellum; (4) use continuous slice readout rather than interleaved readout 

because it makes more sense to follow the bolus continuously upward (Alsop et al., 2015). 

The potential of using early frame dynamic PET data to infer perfusion status has also been 

tested. However, using the IRF of 11C-PBR28 1 minute after injection, the PET measures did 

not show significant association with the CBF as quantified by ASL. This is understandable 

as even though the early tracer uptake is influenced by perfusion, it is also heavily influenced 

by the tracer dynamics in tissue compartments. More precisely, with early frame PET data, 

the arterial input function (AIF) in equation (1) is a known variable, but the residual function 

for a PET tracer (other than H2
15O) is much more complicated than labelled water, which can 

be simply modelled by label decay and veinous drainage. Further, unlike water molecules 

that can simply perfuse through BBB, the tracers’ uptake in brain tissues may be influenced 

by BBB permeability as well. Therefore, the early frames PET data using other tracers (other 

than H2O15) may not be optimal for inferring cerebral blood perfusion, and H2O15 PET or 

ASL is recommended method where it is possible to be obtained. Nevertheless, tests are 

being performed to evaluate other tracers with more rapid pharmacokinetics to reflect blood 

perfusion, such as 11C-PIB and 18F-Florbetapir using PET image at ~5 minute post injection 

(Mittal et al., 2021). 

As there is no significant change of perfusion in diseased cohort in this study, it could be 

assumed that the white matter microstructural damage is unlikely to be caused by cerebral 

vascular comorbidities. Indeed, in disease cohorts, there was no correlation between CBF and 

FA values, suggesting that the structural network damage was more probably associated with 

Alzheimer’s disease. This again highlights that importance of investigating structural network 

damage in Alzheimer’s trajectory. 
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As expected, there was positive correlation between CBF and ALFF in widespread regions. 

This is likely to be the result of neurovascular coupling, which means blood perfusion will be 

upregulated where neuronal activity is more frequent (Girouard & Iadecola, 2006). However, 

the relationship is not observed in prefrontal cortex in current Aβ+ cohort, where increased 

spontaneous neuronal activity is observed. Indeed, group comparisons did not show an 

increase of CBF in frontal cortex either, suggesting that the increased neuronal activity in 

these patients was not accompanied by unregulated blood perfusion, i.e., there was an 

impaired neurovascular coupling (Kisler et al., 2017). This is an interesting observation, as 

the mismatch between energy and oxygen demand by neuronal activity and supply by 

perfusion might lead to further functional hypoxia, oxidative stress and downstream neuronal 

damage (Zlokovic, 2011b). 

Given the evidence of impaired neurovascular coupling in Aβ+ cognitively impaired patients, 

the relationship between PET markers of AD and CBF was further interrogated, with the aim 

of finding pathological events that may underly perfusion deficits. Surprisingly, in the current 

Aβ+ AD and MCI cohort, amyloid load was not found to be associated with CBF change, 

while neuroinflammation was found to have a negative relationship with CBF. As it is 

undetermined how well 18F-Flutemetamol can detect amyloid deposition in vascular basal 

membrane, this observation might be caused by different proportion of amyloid angiopathies 

in total amyloid load in these patients, which may obscure the negative influence of 

angiopathies on perfusion. As an example, animal experiment has demonstrated that CBF is 

associated with cerebral amyloid angiopathy, not related to parenchymal Aβ deposition 

(Maier et al., 2014).  

Another possibility is that there is a complex relationship between amyloid production, 

clearance, blood perfusion and neuronal activity: as is demonstrated previously, 
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neurovascular coupling result in increased CBF where there is more neuronal activity, while 

the production of Aβ is neuronal activity dependent (Kamenetz et al., 2003a), therefore from 

this perspective, there could be a positive relationship between CBF and amyloid deposition, 

mediated by neuronal activity. On the other hand, the clearance of Aβ is partly dependent on 

cerebral perfusion and subsequent glymphatic drainage (Jessen et al., 2015), and amyloid 

angiopathies could impair blood flow directly, leading to a negative relationship. Indeed, 

Mattsson and colleagues have observed both positive and negative relationship between CBF 

and amyloid deposition in a relatively large cohort from ADNI (Mattsson et al., 2014). The 

complex biological basis of both positive and negative link between amyloid 

production/clearance and CBF may have obscured the overall observation between amyloid 

pathology and perfusion in the current Aβ+ cohort. In later stage of the disease (AD group), 

amyloid and NFT load were associated with decreased CBF in temporal lobe. This may 

suggest that in later stage of the disease, the negative impact of amyloid and tau pathology on 

cerebral perfusion are more propound compared to neuroinflammation.  

One of the more interesting findings from the current study is that neuroinflammation has a 

negative relationship with cerebral perfusion, which overlaps with its positive influence on 

neuronal activity. While the exact causal relationship between neuroinflammation and hypo-

perfusion in AD is still debated, it is possible that these two events forms a deleterious spiral 

(Zlokovic, 2011b) . More specifically, it has been demonstrated that hypoxia can cause 

neuroinflammation directly via hypoxia-inducible factor-1𝛼𝛼 (HIF-1𝛼𝛼) pathways (Raz, 

Knoefel, & Bhaskar, 2016). On the other hand, the inflammatory response may influence the 

endothelial and smooth muscle cells, which may lead to impaired vascular response to 

physiological demands (Toth, Tarantini, Csiszar, & Ungvari, 2017). Moreover, it has been 

demonstrated in the previous chapters that neuroinflammation is associated with abnormally 

increased neuronal activity. This may be suggestive that neuroinflammation bridges the 
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imbalance between increased demand (neuronal activity) and deficient supply (cerebral blood 

flow). It is possible that neuroinflammation is introducing a recipe towards further oxidative 

stress, neuronal dysfunction and degeneration. Therefore, the current study provide evidence 

that management of cerebrovascular risk factors and intervention targeting 

neuroinflammation should be considered in new disease modifying strategies on AD 

prevention and treatment. 
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Chapter 6. Using Imaging Biomarkers of AD to Predict Cognitive 

Decline in MCI and AD Patients 

6.1 Introduction and aim of the project 

In the previous chapters, the complex relationship between amyloid, neuroinflammation and 

brain’s structural and functional biomarkers in AD was explored and discussed. The 

independent association between neuroinflammation and disruption of brain’s connectivity 

has been demonstrated. It could be therefore postulated, based on our clinical cross-sectional 

analysis and preclinical evidence, that neuroinflammation may contribute to brain 

dysfunction and cognitive decline in AD. However, the causal relationship between 

neuroinflammation and cognitive impairment remains to be established. To interrogate 

whether the causal relationship does exist, the available longitudinal neuropsychological 

assessments data were collected, and the baseline imaging markers were used to predict each 

individual’s cognitive trajectory. 

In the current chapter, the predictive values of imaging markers of amyloid deposition, NFT 

pathology, neuronal damage (according to the A/T/N framework), as well as 

neuroinflammation, were comprehensively analysed. The aim of the current analysis was 

firstly, evaluate these imaging markers for predicting prognosis in clinical practice; second 

but more importantly, deepen our understanding of the causal factors of disease thus sheds 

light on disease modifying avenues. 
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6.2 Methods 

6.2.1 Available Data 

8 AD and 24 MCI patients had baseline 11C-PBR28, 18F-Flutemetamol, T1-weight MRI, rs-

fMRI, DTI scans and had baseline and at least one follow-up neuropsychological 

assessments. Of these patients, 5 AD and 19 MCI patients had more than 1 year of follow-up 

period. Considering only the MCI cohort had reasonable sample size, the MCI cohort was 

defined as the main cohort for the following analyses. The combined cohort was also used for 

exploratory purposes. 

6.2.2 Neuropsychological Assessments 

The neuropsychological tests performed in the current study include: Mini-mental state 

examination (MMSE), national adult reading test (NART), Rey–Osterrieth complex figure test 

(Rey), Wechsler memory scale–logical memory (WLM); Hopkins verbal learning test 

(Hopkins), verbal fluency test, semantic fluency test, trails making test, digit-symbol coding, 

digit span, letter-number sequencing (LNS), hospital anxiety and depression scale (HADS). 

6.2.3 Model the longitudinal cognitive change 

Of all neuropsychological tests, MMSE was used as a simple measure of overall cognition 

assessment across multiple cognitive domains. The other tests were selectively used to generate 

a composite score of cognition status using PCA. The selection criteria of individual test entry 

were: (1) they are used to reflect certain domain(s) of cognition; (2) there are less than 5% data 

missing in the current cohort.  

WLM immediate recall, WLM delayed recall, Hopkins immediate recall total score, Hopkins 

delayed recall, Hopkins recognition index, semantic fluency, verbal fluency, digit span, LNS, 

trails making test A were selected for computing the composite cognition score. Other than 

NART and HADS which are not used to evaluate cognition status, the main reason for 
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excluding entries was missing data. The missing data in selected entries were imputed using 

factorial analysis which considers its relationship with other entries as well as the individual’s 

score on other entries. The imputation was completed on SPSS.  

Following the imputation, a principal component analysis was performed using the complete 

dataset and the first principal component (cognition-PC1) was used as a composite measure of 

overall cognition status. In order to improve the interpretability of PCA results, a varimax 

rotation was applied. This process rotates the coordinate system of PCs to maximise the 

variance shared among variables. This will eventually simplify the loadings of variables on 

PCs, forcing them to take either rather high or rather low loading on a PC, thus enabling us to 

tell upon which PC a variable load on. To make sure the cognition-PC1 was a reasonable 

measure of cognition, its correlation with MMSE score was examined. 

To model the longitudinal change of cognition in the patients, a linear growth model was 

applied to fit the time points of each participant. Because the follow-up intervals in the current 

cohort were not uniform, i.e., the participants were revisited at somewhat random intervals, I 

did not use existing packages for latent growth modelling such as ‘lavaan’, as they often assume 

uniform intervals between measures. Instead, for each participant, the time of baseline visit 

was defined as zero, and the actual interval in years was calculated for each subsequent visit. 

The resulting time-score series were then used to compute the analytical solution for linear 

regression, giving the intercept and slope of cognitive change for each participant, which reflect 

the initial and annual change of cognitive performance. A simple linear growth model was used 

because there were limited data points for each individual to model, and therefore introducing 

more terms may cause overfitting.  

The intercepts and slopes of MMSE and cognition-PC1were further used as dependent 

variables in further analysis. 
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6.2.4 Imaging Biomarkers to Predict Cognitive Change  

Imaging markers of β-amyloid deposition, NFT pathology, neuroinflammation, grey matter 

atrophy, structural network integrity and functional connectivity was included as candidates 

for predicting current cognitive performance and longitudinal cognitive change in the 

patients. To represent overall severity of the pathologies, the PET tracers’ uptake in left and 

right frontal, temporal, parietal, occipital lobes plus anterior and posterior cingulate cortices 

were sampled, and a PCA was performed for dimensionality reduction. For 18F-AV1451 and 

11C-PBR28, the first two principal components were used in further analysis, while for 18F-

Flutemetamol only the first PC had an eigenvalue greater than one, so only the first PC was 

included in further analysis.  

To evaluate the severity of grey matter atrophy, several metrics were included from 

volumetric and surface-based analysis on T1-weighted MRI scan using FreeSurfer: the 

average cortical thickness and cortical grey matter volume as measures of overall grey matter 

integrity, the hippocampal volume and first 2 principal components of cortical thickness in 

temporal ROIs as measures of Alzheimer’s prone region’s grey matter integrity. The 

temporal ROIs included: left and right superior, middle, and inferior temporal gyri, banks of 

the superior temporal sulcus, fusiform gyrus, transverse temporal gyrus, entorhinal cortex, 

temporal pole and parahippocampal gyrus. 

Structural network integrity was measured by the first 2 principal components of FA values of 

association fibres in ICBM-DTI-based white-matter atlas, including the genu, body and 

splenium of corpus callosum, left and right inferior longitudinal fasciculus, inferior fronto-

occipital fasciculus, superior longitudinal fasciculus, superior fronto-occipital fasciculus, 

uncinate fasciculus, fornix, cingulate and hippocampal part of cingulum bundle, and tapetum. 
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Functional connectivity measures were computed using graph theory analysis as described 

previously in chapter 3. The network’s clustering coefficient, global efficiency, local efficiency 

and small-worldness were included as independent variables in further analysis. 

6.2.5 Selection of Predictors for Current Cognitive Performance and Longitudinal Cognitive 
Change 

To evaluate the diagnostic and prognostic value of the imaging biomarkers, the imaging 

measures underwent a 2-step selection procedure.  

In the first step, the imaging markers were used as independent variables individually in 

univariate regression analysis to predict the baseline (intercepts) and longitudinal change 

(slopes) of cognitive performance measures. Age was controlled for as covariate of no 

interest in analyses on intercepts and slopes, and intercepts were also controlled in analysis 

on slopes, as there were significant correlations between slopes and intercepts.  

The imaging biomarkers found to be significant predictors of cognitive performance in the 

first step were further included in further multiple regression analyses (step 2). The aim of 

step 2 was to select the best imaging biomarkers for predicting the prognosis of a patient. 

Therefore, a backward selection procedure was applied in the step 2 multiple regression 

analysis. Briefly, all independent variables were included in the first regression model against 

the dependent variable. Next, the least significant independent variable was excluded from 

the model, and a new simpler regression model was evaluated. The adjusted R-squared values 

(with the number of IVs penalised to prevent overfitting) of the new model was compared 

against that of the previous model, and if the simpler model had better fit, the newer model 

would be considered as better model and a new iteration would be initiated. The process 

would terminate when the adjusted R-squared value of the new model was worse than that of 

the previous one, indicating the variable should not have been excluded, and the previous 

model would be the final model of the analysis. The aim of these analytical steps was to 
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select the most important (significant) markers out of all candidates that could best predict 

disease progression. 

The whole process of analysis is summarised in figure 6.1. 

 

Figure 6.1. Flow diagram of the analysis process. 

 

6.3 Results 

6.3.1 Baseline characteristics of patients 

 The MCI patients had an average age of 70.3 (SD=9.3, minimum=53, maximum=84), 

baseline MMSE of 28.2 (SD=1.8, minimum=24, maximum=30). The average follow-up 

duration was 2.8 years (SD=1.3 years, with minimum follow-up duration of 1.1 year, and 

maximum follow-up period of 4.8 years). 

The average age of AD patients was 73.2 (SD=96.2, minimum=65, maximum=79), average 

baseline MMSE was 23.5 (SD=2.2, minimum=20, maximum=26). The average follow-up 
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duration was 1.2 years (SD=1.6 year, with minimum follow-up duration of 1.2 year, and 

maximum follow-up period of 2.5 years). 

6.3.2 Principal component analysis of neuropsychological scores 

PCA on the selected neuropsychological tests identified two PCs with eigenvalues greater 

than 1. The first PC is more heavily loaded by memory test scores while the second one has 

more weights on verbal fluency, letter-number sequencing and digit span (table 6.1 and figure 

6.2), suggesting cognition PC1 might be more associated with memory domain. The PC1 

explained 39.3% of total variance, while PC2 explained 26.7% of variance. 

 

Table 6.1 Component Loadings of Composite Cognition 
(Varimax Rotated) 

Test Name 
Loadings on Components 

1 2 
WLM imm story recall .854 .312 
WLM Del story recall .888 .242 

Hopkins Imm .658 .475 
Hopkins Del .782 .221 
Hopkins RI .813 .323 

Semantic Fluency .617 .330 
Verbal Fluency .271 .717 

Digit span .160 .872 
LNS .370 .725 

Trails A -.298 -.473 
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Figure 6.2 Component Plot of PCA on Cognitive Tests 

 

 
To validate the composite cognitive scores, the correlation between the principal components 

and MMSE scores was tested. Both PC1 and PC2 had strong correlation with MMSE 

(Pearson’s R=0.561 and 0.495, P=1.8×10-13 and 2.2×10-10, Spearman’s rho=0.538 and 0.517, 

P=2.4×10-12 and 2.2×10-11, respectively) However, to simplify further analysis, and 

considering the fact that PC1 is more weighted by memory domain, only PC1 and MMSE 

were used in further modelling of cognitive trajectory and regression analyses as dependent 

variables. 

6.3.3 Longitudinal cognitive change in patients 

The longitudinal cognitive change of AD and MCI patients are demonstrated in figure 6.3. 
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Figure 6.3 Trajectory of cognitive change in cognitively impaired patients 

6.3.4 Linear growth model of cognitive change in patients 

The mean intercepts of MMSE trajectory were 28.1 in MCI patients and 23.5 in AD patients 

(mean baseline raw MMSE score were 28.2 and 23.5, respectively), and the mean slopes of 

MMSE were -0.52 year-1 and -0.74 year-1 in MCI and AD patients.  

The mean intercepts of cognition-PC1 trajectory were 0.11 in MCI patients and -0.88 in AD 

patients (mean baseline raw cognition-PC1 were 0.10 and -0.88, respectively), and the mean 

slopes of cognition-PC1 were -0.06 year-1 and -0.22 year-1 in MCI and AD patients. 

There was good correlation between measured baseline cognition scores and fitted intercepts 

(Pearson’s correlation between baseline MMSE and MMSE intercept was R=0.96, P<0.0001, 

between baseline cognition-PC1 and cognition PC1 intercept was R=0.983, P<0.0001), 

suggesting a sufficient fit using linear model. 

6.3.5 Principal component analysis of 11C-PBR28 uptake 

PCA of 11C-PBR28 uptake in main ROIs identified 2 PCs with eigenvalues >1. The first 

components had more weight on frontal, parietal and cingulate cortices, while the second PC 

is more weighted by temporal 11C-PBR28 uptake (table 6.2 and figure 6.4). PC1 explained 

65.4% of total variance, while PC2 explained 24.2% of variance. 
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Table 6.2 Component Loadings of 11C-PBR28 Uptake 

ROI 

Loadings on 
Components 

1 2 
Frontal (L) .912 .282 
Frontal (R) .944 .237 

Temporal (L) .229 .913 
Temporal (R) .114 .951 
Parietal (L) .971 .168 
Parietal (R) .955 .158 

Occipital (L) .760 .510 
Occipital (R) .761 .432 

Anterior Cingulate .900 .200 

Posterior Cingulate .964 .052 

 

 

Figure 6.4 Component Plot of PCA on 11C-PBR28 Uptake 

 

6.3.6 Principal component analysis of 18F-AV1451 uptake 

PCA of 18F-AV1451 uptake in main ROIs identified 2 PCs with eigenvalues >1. The first 

components had more loadings from frontal, parietal and occipital and posterior cingulate 
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tracer uptake, while the second PC is more weighted by temporal and anterior cingulate 

cortices (table 6.3 and figure 6.5). PC1 explained 56.9% of total variance, while PC2 

explained 34.0% of variance. 

Table 6.3 Component Loadings of 18F-AV1451 Uptake 

ROI 

Loadings on 
Components 

1 2 
Frontal (L) .783 .568 
Frontal (R) .704 .633 

Temporal (L) .527 .766 
Temporal (R) .541 .751 
Parietal (L) .856 .488 
Parietal (R) .920 .328 

Occipital (L) .912 .292 
Occipital (R) .915 .215 

Anterior Cingulate .125 .962 

Posterior Cingulate .865 .345 

 

 

Figure 6.5 Component Plot of PCA on 18F-AV1451 Uptake 
 

 



 182 

6.3.7 Principal component analysis of 18F-Flutemetamol uptake 

PCA of 18F-Flutemetamol uptake in main ROIs identified only one PC with eigenvalue >1, 

which is rather equally weighted by tracer uptake in all ROIs (table 6.4). This could be due to 

the global deposition pattern of amyloid in human cortex. This PC explained 96.3% of total 

variance. 

 
Table 6.4 Component Loadings of 18F-Flutemetamol Uptake 

ROI 

 
Loadings on 
Component 

Frontal (L) .986 
Frontal (R) .991 

Temporal (L) .976 
Temporal (R) .978 
Parietal (L) .995 
Parietal (R) .991 

Occipital (L) .955 
Occipital (R) .986 

Anterior Cingulate .967 

Posterior Cingulate .991 

 

6.3.8 Principal component analysis of FA values 

PCA of FA values in main association fibres identified 2 PCs with eigenvalues >1. The first 

components had more loadings from tapetum, cingulum, and fornix, while the second PC is 

more weighted by uncinate fasciculi and superior longitudinal fasciculi (table 6.5 and figure 

6.6). PC1 explained 28.7% of total variance, while PC2 explained 24.5% of variance. 
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Table 6.5 Component Loadings of Tract FA Values 

TOIs 
Loadings on Components 

1 2 
corpus callosum Genu .619 .541 
corpus callosum body .422 .542 

corpus callosum splenium .615 .512 
fornix .748 .066 

cingulate gyrus R .695 .406 
cingulate gyrus L .711 .511 

superior longitudinal fasciculus R .048 .687 
superior longitudinal fasciculus L .080 .753 

superior frontal-occipital fasciculus R .272 -.112 
superior frontal-occipital fasciculus L .134 .400 

Uncinate fasciculus R -.012 .799 
Uncinate fasciculus L -.051 .804 

tapetum R .663 .019 
tapetum L .758 -.061 

fornix (cres) /stria terminalis R .755 .136 
fornix (cres) /stria terminalis L .647 .338 

 

 

 

Figure 6.6 Component Plot of PCA on Tract FA Values 
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6.3.9 Principal analysis of T1 surface-based measures 

PCA of cortical thickness in temporal ROIs identified 2 PCs with eigenvalues >1. The first 

components had more loadings from entorhinal cortex, parahippocampal, inferior temporal, 

and middle temporal gyri, while the second PC is more weighted by superior temporal 

regions (table 6.6 and figure 6.7). PC1 explained 38.3% of total variance, while PC2 

explained 19.8% of variance. 

 

 
Figure 6.7 Component Plot of PCA on Temporal cortical Thickness measures 
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Table 6.6 Component Loadings of Temporal Cortical Thickness Measures 

 
Loadings on Components 

1 2 
lh_bankssts_thickness .338 .699 
lh_entorhinal_thickness .717 -.035 
lh_fusiform_thickness .790 .141 
lh_inferior temporal_thickness .709 .253 
lh_middle temporal_thickness .616 .441 
lh_parahippocampal_thickness .486 .081 
lh_superior temporal_thickness .647 .614 
lh_temporal pole_thickness .551 .333 
lh_transverse-temporal_thickness -.061 .783 
rh_bankssts_thickness .396 .629 
rh_entorhinal_thickness .831 .097 
rh_fusiform_thickness .798 .133 
rh_inferior temporal_thickness .661 .209 
rh_middle temporal_thickness .775 .396 
rh_parahippocampal_thickness .580 .292 
rh_superior temporal_thickness .668 .601 
rh_temporal pole_thickness .699 .134 
rh_transverse-temporal_thickness .009 .771 

 

6.3.10 Predicting baseline cognitive performance in MCI cohort 

Univariate analysis (controlling for age) showed that in MCI cohort, only FA PC2 had 

positive association with the MMSE intercept (standardised β=0.49, P=0.016), while the 

association between FA PC1 and MMSE intercept was marginal (standardised β=0.42, 

P=0.055, table 6.7). Backward model selection using multiple linear regression method 

confirmed that FA PC2 was the only and best predictor of MMSE intercept (table 6.11). 

Using cognition-PC1 as independent variable, univariate analysis (controlling for age) in 

MCI cohort found 18F-AV1451 PC2 was significantly associated with lower cognition PC 

score (N=11, standardised β=-0.67, P=0.014, table 6.8), while 11C-PBR28 PC2 and FA PC1 

were marginally associated with cognition-PC1 intercept (standardised β=-0.42, P=0.067 and 
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standardised β=-0.41, P=0.064, respectively, table 6.8). Backward model selection from age, 

11C-PBR28 PC2 and FA PC1 (N=19) found 11C-PBR28 PC2 to be the only and best predictor 

for cognition-PC1. Adding 18F-AV1451 PC2 to the selection (N=11), both 11C-PBR28 PC2 

and 18F-AV1451 PC2 were selected in the best prediction model for cognition-PC1. 

6.3.11 Predicting longitudinal cognitive decline in MCI cohort 

In MCI cohort, univariate regression analysis (controlled for age and intercept) found that 

18F-AV1451 PC1 (N=11, standardised β=-0.40, P=0.049), 11C-PBR28 PC2 (standardised β=-

0.48, P=0.01), 11C-PBR28 MTL (standardised β=-0.50, P=0.005), 18F-Flutemetamol PC1 

(standardised β=-0.56, P=0.001, table 6.9) were individually associated with annual decline 

of MMSE (slope). Model selection with age, MMSE intercept, 11C-PBR28 PC2, 11C-PBR28 

MTL and 18F-Flutemetamol identified 11C-PBR28 MTL and 18F-Flutemetamol PC1 in the 

best prediction model. Adding 18F-AV1451 PC1 into the selection (N=11) result in the final 

model containing only 11C-PBR28 PC2 (table 6.12). 

Using the cognition-PC1 as dependent variable, univariate regression analysis (controlled for 

age and intercept) showed that 18F-AV1451 PC1 (N=11, standardised β=-0.972, P=0.026), 

11C-PBR28 PC2 (standardised β=-0.48, P=0.008) and 11C-PBR28 MTL (standardised β=-

0.50, P=0.004, table 6.10) were individually associated with annual decline of cognition-PC1 

(slope). Model selection with age, cognition-PC1 intercept, 11C-PBR28 PC2 and 11C-PBR28 

MTL identified 11C-PBR28 PC2 in the best prediction model. Adding 18F-AV1451 PC1 into 

the selection (N=11), the final model contained both 11C-PBR28 PC2 and 18F-AV1451 PC1 

(table 6.12).
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Table 6.7 Univariate Regression Analysis on Baseline MMSE and Imaging Biomarkers 

MCI Cohort 

    
Independent 

Variable  
Dependent Variable Covariate(s) Marker Category Name Standardized β P 

MMSE Intercept Age Amyloid 18F-Flutemetamol_PC1 0.173 0.44 
  NFT 18F-AV1451_PC1 0.257 0.41 
   

18F-AV1451_PC2 0.31 0.33 
   

18F-AV1451_MTL 0.275 0.41 
  Neuroinflammation 11C-PBR28 PC1 -0.346 0.14 
   

11C-PBR28 PC2 -0.076 0.75 
   

11C-PBR28 MTL 0.219 0.36 
  Grey Matter Atrophy Hippocampal Volume 0.083 0.7 
   Cortical GM volume 0.051 0.8 

   
Average Cortical 

Thickness 0.077 0.71 

   
Temporal Thickness 

PC1 -0.131 0.53 

   
Temporal Thickness 

PC2 0.241 0.24 
  Structural Network FA Values PC1 0.422 0.055# 
   FA Values PC2 0.488 0.016* 

  
Functional 

Connectivity Global Efficiency -0.357 0.093 
   Local Efficiency 0.039 0.86 
   Small-worldness -0.27 0.19 
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Table 6.8 Univariate Regression Analysis on Baseline Composite Cognition Score and Imaging Biomarkers 

MCI Cohort 

    
Independent 

Variable  
Dependent Variable Covariate(s) Marker Category Name Standardized β P 

Cognition PC1 
Intercept Age Amyloid 18F-Flutemetamol_PC1 -0.185 0.41 

  NFT 18F-AV1451_PC1 -0.61 0.014* 
   

18F-AV1451_PC2 -0.416 0.12 
   

18F-AV1451_MTL -0.195 0.51 
  Neuroinflammation 11C-PBR28 PC1 -0.422 0.067# 
   

11C-PBR28 PC2 -0.301 0.2 
   

11C-PBR28 MTL -0.321 0.17 
  Grey Matter Atrophy Hippocampal Volume 0.226 0.29 
   Cortical GM volume 0.153 0.46 

   
Average Cortical 

Thickness -0.008 0.97 

   
Temporal Thickness 

PC1 -0.069 0.74 

   
Temporal Thickness 

PC2 0.324 0.11 
  Structural Network FA Values PC1 0.411 0.064# 
   FA Values PC2 0.309 0.15 

  
Functional 

Connectivity Global Efficiency -0.225 0.3 
   Local Efficiency 0.169 0.43 
   Small-worldness 0.102 0.64 
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Table 6.9 Univariate Regression Analysis on MMSE Annual Change and Imaging Biomarkers 

MCI Cohort 

    
Independent 

Variable  
Dependent Variable Covariate(s) Marker Category Name Standardized β P 

MMSE Slope Age Baseline cognition MMSE Intercept -0.567 0.002* 
 Age, Amyloid 18F-Flutemetamol_PC1 -0.555 0.001* 

 
MMSE 

Intercept NFT 18F-AV1451_PC1 -0.395 0.049* 
   

18F-AV1451_PC2 -0.35 0.089 
   

18F-AV1451_MTL -0.29 0.192 
  Neuroinflammation 11C-PBR28 PC1 -0.02 0.92 
   

11C-PBR28 PC2 -0.476 0.011* 
   

11C-PBR28 MTL -0.503 0.005* 
  Grey Matter Atrophy Hippocampal Volume 0.173 0.34 
   Cortical GM volume 0.135 0.43 

   
Average Cortical 

Thickness 0.254 0.13 

   
Temporal Thickness 

PC1 0.138 0.43 

   
Temporal Thickness 

PC2 0.273 0.12 
  Structural Network FA Values PC1 0.037 0.86 
   FA Values PC2 0.278 0.17 

  
Functional 

Connectivity Global Efficiency -0.109 0.58 
   Local Efficiency -0.261 0.14 
   Small-worldness -0.181 0.33 
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Table 6.10 Univariate Regression Analysis on Composite Cognition Score Annual Change and Imaging Biomarkers 

MCI Cohort 

    
Independent 

Variable  
Dependent Variable Covariate(s) Marker Category Name Standardized β P 
Cognition PC1 slope Age Baseline cognition Cognition_PC1_Intercept -0.44 0.024* 

 Age, Amyloid 18F-Flutemetamol_PC1 -0.102 0.62 
 PC1 Intercept NFT 18F-AV1451_PC1 -0.972 0.026* 
   

18F-AV1451_PC2 -0.062 0.88 
   

18F-AV1451_MTL -0.144 0.71 
  Neuroinflammation 11C-PBR28 PC1 -0.308 0.14 
   

11C-PBR28 PC2 -0.511 0.004* 
   

11C-PBR28 MTL -0.495 0.008* 
  Grey Matter Atrophy Hippocampal Volume 0.026 0.9 
   Cortical GM volume -0.022 0.91 

   
Average Cortical 

Thickness 0.166 0.37 
   Temporal Thickness PC1 0.09 0.64 
   Temporal Thickness PC2 0.169 0.4 
  Structural Network FA Values PC1 -0.352 0.104 
   FA Values PC2 0.072 0.72 

  
Functional 

Connectivity Global Efficiency 0.02 0.92 
   Local Efficiency -0.173 0.37 
   Small-worldness -0.07 0.72 
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Table 6.11 Multiple Regression on Baseline Cognition and Model Selection 

MCI Cohort 

  
Independent 

Variable  
Dependent Variable Name Standardized β P 

MMSE Intercept Age - - 
 FA Values PC2 0.457 0.022* 

Cognition PC1 Intercept Age - - 
 FA Values PC1 - - 
 11C-PBR28 PC1 -0.474 0.041* 

Cognition PC1 Intercept Age - - 
 FA Values PC1 - - 
 11C-PBR28 PC1 -0.686 0.005* 
 18F-AV1451_PC1 -0.773 0.003* 

 

Table 6.12 Multiple Regression on Longitudinal Cognition Change and Model Selection 

MCI Cohort 

  Independent Variable  
Dependent Variable Name Standardized β P 

MMSE Slope MMSE Intercept -0.373 0.022* 
 Age - - 
 18F-Flutemetamol_PC1 -0.44 0.009* 
 11C-PBR28 MTL -0.385 0.02* 
 11C-PBR28 PC2 - - 

MMSE Slope MMSE Intercept -0.809 0.001* 
 Age - - 
 18F-Flutemetamol_PC1 - - 
 11C-PBR28 MTL - - 
 11C-PBR28 PC2 -0.362 0.024* 
 18F-AV1451_PC1 - - 

Cognition_PC1_slope Cognition_PC1_Intercept -0.762 0.001* 
 Age - - 
 11C-PBR28 MTL - - 
 11C-PBR28 PC2 -0.517 0.003* 

Cognition_PC1_slope Cognition_PC1_Intercept -1.11 0.002* 
 Age - - 
 11C-PBR28 MTL - - 
 11C-PBR28 PC2 -0.523 0.019* 
 18F-AV1451_PC1 -0.854 0.002* 



 192 

Table 6.13 Univariate Regression Analysis on Baseline MMSE and Imaging Biomarkers 

Combined Cohort 

    
Independent 
Variable  

Dependent Variable Covariate(s) Marker Category Name Standardized β P 
MMSE Intercept Age, Amyloid 18F-Flutemetamol_PC1 0.081 0.62 

 Diagnosis NFT 18F-AV1451_PC1 0.297 0.2 
   

18F-AV1451_PC2 -0.103 0.68 
   

18F-AV1451_MTL 0.069 0.81 
  Neuroinflammation 11C-PBR28 PC1 -0.143 0.34 
   

11C-PBR28 PC2 -0.002 0.99 
   

11C-PBR28 MTL 0.014 0.34 
  Grey Matter Atrophy Hippocampal Volume 0.155 0.38 
   Cortical GM volume 0.13 0.4 

   
Average Cortical 

Thickness 0.03 0.86 

   
Temporal Thickness 

PC1 -0.173 0.23 

   
Temporal Thickness 

PC2 0.27 0.08# 
  Structural Network FA Values PC1 0.26 0.075# 
   FA Values PC2 0.25 0.065# 

  
Functional 

Connectivity Global Efficiency -0.2 0.13 
   Local Efficiency -0.095 0.52 
   Small-worldness -0.139 0.46 
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Table 6.14 Univariate Regression Analysis on Baseline Composite Cognition Score and Imaging Biomarkers 

Combined Cohort 

     
Independent 
Variable  

Dependent Variable Covariate(s) Marker Category Name Standardized β P 
Cognition PC1 
Intercept Age, Amyloid 18F-Flutemetamol_PC1 -0.16 0.45 

 Diagnosis NFT 18F-AV1451_PC1 -0.238 0.25 
   

18F-AV1451_PC2 -0.349 0.11 
   

18F-AV1451_MTL -0.234 0.35 
  Neuroinflammation 11C-PBR28 PC1 -0.283 0.13 
   

11C-PBR28 PC2 -0.12 0.57 
   

11C-PBR28 MTL -0.243 0.22 
  Grey Matter Atrophy Hippocampal Volume 0.353 0.103 
   Cortical GM volume 0.205 0.31 

   
Average Cortical 
Thickness 0.105 0.62 

   
Temporal Thickness 
PC1 -0.019 0.91 

   
Temporal Thickness 
PC2 0.346 0.073# 

  Structural Network FA Values PC1 0.396 0.03* 
   FA Values PC2 0.203 0.25 

  
Functional 
Connectivity Global Efficiency -0.182 0.29 

   Local Efficiency -0.128 0.49 
   Small-worldness 0.055 0.75 
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Table 6.15 Univariate Regression Analysis on MMSE Annual Change and Imaging Biomarkers 

MCI Cohort 

    
Independent 

Variable  
Dependent Variable Covariate(s) Marker Category Name Standardized β P 

MMSE Slope Age, Diagnosis Baseline cognition MMSE Intercept -0.465 0.07# 
 Age,  Amyloid 18F-Flutemetamol_PC1 -0.607 0.005* 
 MMSE Intercept, NFT 18F-AV1451_PC1 -0.363 0.2 
 Diagnosis  18F-AV1451_PC2 -0.35 0.23 
   

18F-AV1451_MTL -0.58 0.06# 
  Neuroinflammation 11C-PBR28 PC1 -0.25 0.26 
   

11C-PBR28 PC2 -0.462 0.046* 
   

11C-PBR28 MTL -0.736 <0.001* 
  Grey Matter Atrophy Hippocampal Volume 0.374 0.11 
   Cortical GM volume 0.144 0.51 

   
Average Cortical 

Thickness 0.234 0.3 

   
Temporal Thickness 

PC1 0.209 0.29 

   
Temporal Thickness 

PC2 0.196 0.39 
  Structural Network FA Values PC1 0.077 0.73 
   FA Values PC2 0.153 0.45 

  
Functional 

Connectivity Global Efficiency 0.227 0.25 
   Local Efficiency -0.287 0.16 
   Small-worldness -0.098 0.62 
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Table 6.16 Univariate Regression Analysis on Composite Cognition Score Annual Change and Imaging Biomarkers 

Combined Cohort 

    
Independent 

Variable  
Dependent Variable Covariate(s) Marker Category Name Standardized β P 
Cognition PC1 slope Age, Diagnosis Baseline cognition Cognition_PC1_Intercept -0.491 0.013* 

 Age, Amyloid 18F-Flutemetamol_PC1 0.029 0.89 

 
Cognition PC1 

Intercept NFT 18F-AV1451_PC1 -0.642 0.022* 
 Diagnosis  18F-AV1451_PC2 -0.442 0.2 
   

18F-AV1451_MTL -0.293 0.43 
  Neuroinflammation 11C-PBR28 PC1 -0.31 0.083# 
   

11C-PBR28 PC2 -0.419 0.023* 
   

11C-PBR28 MTL -0.506 0.004* 
  Grey Matter Atrophy Hippocampal Volume 0.116 0.62 
   Cortical GM volume 0.06 0.78 

   
Average Cortical 

Thickness 0.186 0.38 
   Temporal Thickness PC1 0.143 0.43 
   Temporal Thickness PC2 0.127 0.55 
  Structural Network FA Values PC1 -0.25 0.22 
   FA Values PC2 0.139 0.45 

  
Functional 

Connectivity Global Efficiency 0.145 0.42 
   Local Efficiency -0.14 0.46 
   Small-worldness -0.036 0.83 
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Table 6.17 Multiple Regression on Baseline Cognition and Model Selection 

Combined Cohort 

  Independent Variable  
Dependent Variable Name Standardized β P 

MMSE Intercept Age  - - 
 FA Values PC1 0.219 0.08# 
 FA Values PC2 0.207 0.09# 

 
Temporal Thickness 

PC2 0.242 0.09# 
 Diagnosis (AD) -0.566 <0.001* 

Cognition_PC1_Intercept Age - - 
 FA Values PC1 0.353 0.029* 

 
Temporal Thickness 

PC2 0.425 0.01* 
 Diagnosis (AD) - - 

Table 6.18 Multiple Regression on Longitudinal Cognition Change and Model Selection 

Combined Cohort 

  Independent Variable  
Dependent Variable Name Standardized β P 

MMSE Slope MMSE Intercept - - 
 Age - - 
 18F-Flutemetamol_PC1 -0.488 0.01* 
 11C-PBR28 MTL -0.645 0.001* 
 11C-PBR28 PC2 - - 
 Diagnosis (AD) 0.53 0.006* 

MMSE Slope MMSE Intercept -0.426 0.012* 
 age - - 
 18F-Flutemetamol_PC1 - - 
 11C-PBR28 MTL -0.89 <0.001* 
 11C-PBR28 PC2 - - 
 18F-AV1451_MTL - - 

Cognition_PC1_slope Cognition PC1 Intercept -0.719 <0.001* 
 Age - - 
 11C-PBR28 MTL -0.521 0.002* 
 11C-PBR28 PC2 - - 
 Diagnosis -0.5 0.005* 

Cognition_PC1_slope Cognition PC1 Intercept - - 
 age - - 
 11C-PBR28 MTL -0.578 0.024* 
 11C-PBR28 PC2 - - 
 Diagnosis - - 
 18F-AV1451_PC1 - - 
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6.3.12 Predicting baseline cognitive performance in combined AD and MCI cohort 

Univariate analysis (controlled for age and diagnosis) showed that in combined AD and MCI 

cohort, there was marginal association between MMSE intercept and temporal cortical 

thickness PC2(standardised β=0.27, P=0.08), FA PC1 (standardised β=0.26, P=0.065) and FA 

PC2 (standardised β=0.25, P=0.075, table 6.13). Backward model selection using multiple 

linear regression method selected all the aforementioned variables in the best model for 

predicting MMSE intercept, but all the variables individually had marginal significance in the 

final model (table 6.17). 

Using cognition-PC1 as independent variable, univariate analysis (controlled for age and 

diagnosis) in combined cohort found cognition-PC1 intercept was associated with FA PC1 

(standardised β=-0.40, P=0.03), while temporal cortical thickness PC2 weas marginally 

associated with cognition-PC1 intercept (standardised β=0.35, P=0.07, table 6.14). Backward 

model selection from age, T1 PC2 and FA PC1 and diagnosis resulted in the final model 

containing both T1 PC2 and FA PC1 but without age and diagnosis (table 6.17) 

6.3.13 Predicting longitudinal cognitive decline in combined AD and MCI cohort 

In combined AD and MCI cohort, univariate regression analysis (controlled for age, intercept 

and diagnosis) found that 18F-AV1451 MTL (standardised β=-0.58, P=0.06), 11C-PBR28 PC2 

(standardised β=-0.46, P=0.05), 11C-PBR28 MTL (standardised β=-0.74, P<0.001), 18F-

Flutemetamol PC1 (standardised β=-0.61, P=0.005, table 6.15) were individually associated 

with annual decline of MMSE (slope). Model selection with age, MMSE intercept, diagnosis, 

11C-PBR28 PC2, 11C-PBR28 MTL and 18F-Flutemetamol identified diagnosis, 11C-PBR28 

MTL and 18F-Flutemetamol PC1 in the best prediction model. Adding 18F-AV1451 MTL into 

the selection result in the final model containing only 11C-PBR28 MTL (table 6.18). 
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Using the cognition-PC1 as dependent variable, univariate regression analysis (controlled for 

age, intercept and diagnosis) showed that 18F-AV1451 PC1 (standardised β=-0.64, P=0.022), 

11C-PBR28 PC2 (standardised β=-0.42, P=0.02) and 11C-PBR28 MTL (standardised β=-0.51, 

P=0.004, table 6.16) were individually associated with annual decline of cognition-PC1 

(slope). Model selection with age, cognition-PC1 intercept, diagnosis, 11C-PBR28 PC2 and 

11C-PBR28 MTL identified 11C-PBR28 MTL in the best prediction model. Adding 18F-

AV1451 PC1 into the selection, the final model contained only 11C-PBR28 MTL (table 6.18). 

Overall, the results in both cohorts showed that baseline cognitive performance was most 

strongly associated with MRI biomarkers of neuronal damage, while the PET biomarkers of 

amyloid deposition, tau pathology and neuroinflammation together outperformed MRI 

markers to predict longitudinal cognitive decline. 

6.4 Discussion and Conclusions 

There has been extensive effort on identifying biomarkers that can predict cognitive decline 

in AD, MCI and population at risk of AD (Franzmeier, Koutsouleris, et al., 2020) (Betthauser 

et al., 2020). Various fluid and imaging markers of neuronal damage (including structural and 

functional markers), amyloid and tau pathologies have been reported to relate to current and 

longitudinal cognitive performance (Dickerson, Wolk, & Alzheimer's Disease Neuroimaging, 

2013; Olsson et al., 2016). However, there is still limited evidence on neuroinflammation and 

cognitive decline in AD (L. Hamelin et al., 2016; Kreisl et al., 2016a; Malpetti et al., 2020). 

Further, few studies have comprehensively evaluated the variety of imaging biomarkers head-

by-head to evaluate their performance competitively. 

In the current chapter, the predictive values of imaging biomarkers for cognitive trajectory in 

MCI and AD patients were interrogated using linear models. The primary findings have 

suggested that MRI markers of grey matter and structural network integrity (measured by T1-
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weighted and DTI scans) are better associated with cognitive performance at the time point of 

evaluation, while PET markers of amyloid deposition, tau pathology and neuroinflammation 

have better predictive value for future cognitive decline. These findings further indicate that 

current cognitive performance is best explained by the current level of neuronal damage 

(which is detected by MRI markers), and to an extent irrelevant of specific underlying 

pathologies. Conversely, it is the underlying pathology that can cause further neuronal 

damage, but the current level of neuronal damage is not good indicator of future progression, 

and therefore biomarkers of underlying pathologies are best at predicting disease progression. 

Indeed, it has been reported that MRI markers of neuronal injury is only predictive of short-

term cognition, but long-term cognitive decline is otherwise predicted by amyloid and tau 

markers (Dickerson et al., 2013).  

Interestingly, the DTI marker on white matter microstructural integrity (or structural network 

integrity) performed better in predicting current cognitive status compared to grey matter 

measures in MCI cohort (and at least as good as grey matter markers in combined cohort), 

suggesting that DTI measures might be more sensitive to subtle changes of brain structural 

network especially at early stage of the disease. This observation is supported by the findings 

that damage can be detected by DTI at early preclinical stage when grey matter atrophy is not 

yet obvious (Bendlin et al., 2010) (Y. J. Hong et al., 2016). While functional topology 

measures were associated with MMSE scores in previous Aβ positive cohort, they did not 

show good predictive value for current and future cognitive decline in the current analysis, 

suggesting that functional connectivity measures may not as a stable metric for predicting 

cognition as structural measures. Indeed, functional connectivity may be more heavily 

influenced by subject-dependent factors such as movement in scanner even with advanced 

denoising techniques. Therefore, while functional connectivity remains an interesting target 

for understanding the brain under physiological and pathological conditions, caution should 
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be taken when it is considered as single diagnostic marker without accompanying 

assessments such as structural connectivity and volumetric measures. 

The current study has reinforced the predictive value of amyloid and tau markers in AD and 

MCI patients. In addition to markers of amyloid deposition and NFT pathology, 

neuroinflammation marker remained most consistently in predictive models for longitudinal 

decline, which strongly suggest neuroinflammation as an active driver of the disease, rather 

than a bystander or subsequent (ineffective) response to amyloid deposition and NFT 

formation. In terms of the spatial properties of neuroinflammation marker, it has been 

demonstrated that in experiments, 11C-PBR28 uptake in MTL or PC2 was selected in the final 

model. Considering the fact that PC2 is specifically weighted by temporal uptake (figure 6.3), 

it can be concluded that neuroinflammation in temporal regions that have the strongest 

influence on disease progression in AD. In contrast, 18F-AV1451 PC1, which is more equally 

weighted by tracer uptake across multiple cortices, seemed to perform better compared to 18F-

AV1451 MTL uptake in regression models. This may have indicated that the emergence of 

NFT pathology in the neocortex is better predictor of rapid progression of the disease. This is 

interesting considering that NFT pathology can be found propagating from locus coeruleus to 

entorhinal cortex and limbic system in normal aging, but only in neurodegenerative diseases 

does it emerge in the neocortex (Kaufman, Del Tredici, Thomas, Braak, & Diamond, 2018). 

It should be therefore noted that NFT PET imaging has the advantage of providing spatial 

information as compared to fluid markers, which is important in staging of the disease and 

stratifying patients. 

There has been limited evidence on predictive values of neuroinflammation on cognitive 

trajectory in Alzheimer’s continuum, with only few longitudinal studies with TSPO PET 

reported (L. Hamelin et al., 2016) (Fan et al., 2017) (Hamelin et al., 2018) (Malpetti et al., 

2020). While it has been recently reported that CSF sTREM2, a marker of microglial TREM2 
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signalling, is associated with slower cognitive decline in MCI and AD patients (Ewers et al., 

2019), our result together with Malpetti and colleagues (Malpetti et al., 2020) point to a 

negative impact of neuroinflammation on cognitive decline in AD and MCI patients using 

PET imaging with 11C-PBR28 and 11C-PK11195 respectively. The reason for the discrepancy 

between studies using PET imaging and CSF markers might be due to the fact that TREM2 

pathway could modulate pro-inflammatory response of microglia and upregulate 

phagocytosis (Gratuze, Leyns, & Holtzman, 2018). In other words, while PET imaging with 

TSPO tracers cannot differentiate the phenotypes of microglia, TREM2 activation markers 

may reflect the balance between anti-inflammatory and pro-inflammatory phenotypes of 

microglia in the spectrum of microglial activation. The inability of TSPO tracers to 

distinguish microglial phenotypes (and even between activated microglia, astrocytes and 

macrophages), may have also led to conflicting findings of imaging studies on different 

cohorts (Fan et al., 2017) (Hamelin et al., 2018): while in symptomatic stage of AD the 

majority of activated microglia are on the pro-inflammatory side of cell fate, and the overall 

quantification by TSPO tracers may well reflect neuroinflammation, at early stages of 

pathogenesis where the population of proinflammatory phenotypes is not overwhelming, the 

PET quantification may be difficult to interpret. In light of this, CSF markers of sTREM2 and 

PET may supplement each other and form a good pair of biomarkers for comprehensive 

evaluation of microglial activation/neuroinflammation. Therefore, further studies with regard 

to the relationship between sTREM2 and TSPO markers at different stages of the disease, and 

whether a weighted measure of sTREM2 and TSPO can better predict cognition/neuronal 

injury are strongly encouraged. On the other hand, based on current evidence, the approach of 

intervention targeting neuroinflammation should be carefully considered as inappropriate 

manipulation of glial phenotypes may cause more destruction than protection. 
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To summarise, the current analysis has identified MRI imaging markers on neuronal damage 

to be most closely related to cognition at the point of assessment, while PET markers of 

amyloid deposition, NFT pathology and neuroinflammation are strongly predictive for 

disease deterioration in clinical diagnosed AD and MCI patients. The current study 

highlighted the value of PET markers in disease diagnosis and evaluating the risk of disease 

progression and provide evidence that neuroinflammation is indeed a causal factor of disease 

progression. 
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Chapter 7. Conclusions and Future Directions 

The current project has firstly interrogated the feasibility of using SUVR in 11C-PBR28 

quantification and more importantly, investigated: (1) the association between 

neuroinflammation and brain connectivity; (2) the association between neuroinflammation 

and cerebral blood perfusion; (3) the predictive value of imaging biomarkers regarding 

longitudinal cognitive decline in AD and MCI patients.  

I should note that the current project is based on the data from “Amyloid and 

Neuroinflammation” study, and I acknowledge Dr Dani and Dr Edison for their effort in 

patient recruitment and clinical/imaging data acquisition. The focus of current project is to 

provide biological insights into the role of neuroinflammation and amyloid deposition in AD 

by analysing multimodality imaging data. While previous studies have discovered brain 

connectivity disruption and neuroinflammation in AD patients, there is limited evidence on 

their relationship. Further, whether neuroinflammation actively contribute to disease 

progression is still under debate because of limited observations from longitudinal studies. 

The current project aimed to bridge the gap of current knowledge by multimodal imaging 

analysis. Apart from imaging processing, the current project tried to manage high-

dimensional data both at single modality level and across multiple imaging modalities using 

multivariate statistical methods such as principal component analysis, independent 

component analysis, graph theory and canonical correlation analysis with regularisation. By 

this approach, the current project has provided novel evidence suggesting that 

neuroinflammation plays an active role in cognitive impairment and that one of the possible 

mechanism is by causing brain connectivity disruption.   

The quantification of second generation TSPO tracers, in particular 11C-PBR28 has always 

been challenging in clinical imaging studies, mainly due to its high inter-subject variability 
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even after accounting for the TSPO 147 Ala/Thr polymorphism (Collste et al., 2016). This 

problem has undermined the statistical power of clinical imaging studies, which generally 

have limited number of participants due to cost and recruitment issues, and has led to practice 

of using relative measures (DVR and SUVR) to control for variability due to individual 

factors (Dickstein et al., 2019) (Paganoni et al., 2018). In Alzheimer’s research, Kreisl and 

colleagues have recently proposed to use cerebellum grey matter as a pseudo-reference region 

to calculate 11C-PBR28 SUVR (Lyoo et al., 2015b), based on the fact that cerebellum is 

generally not involved in tau pathology and only have amyloid deposition towards terminal 

stages of the disease. However, there has been criticism that the ratio methods can drastically 

reduce the variance, that they may eliminate much of the biological relevant signals (Albrecht 

et al., 2018; Matheson et al., 2017). The current study has compared the voxel-wise analytical 

methods to (semi-)quantify 11C-PBR28, including spectral analysis, Logan graphic analysis, 

distribution volume ratio, and standard uptake value ratio methods. I found that there were 

very good correlations between absolute quantification, i.e., IRF (spectral analysis) and VT 

(Logan analysis), and between reference region approaches, i.e., DVR and SUVR, but not 

between absolute measures and reference region methods. This finding is consistent with 

previous studies and in fact could be anticipated since a lot of individual variability due to 

age, BMI, circadian rhythms, systemic inflammation etc.,  has been eliminated by using 

reference region (Lyoo et al., 2015b). However, the current analysis found that 11C-PBR28 

SUVR was associated with both 18F-Flutemetamol and 18F-AV1451 uptake at both regional 

and voxel levels, which is consistent with prior pathology and imaging knowledge that 

neuroinflammation accompanies amyloid and tau pathologies. This finding suggests that 

while the ratio method has eliminated much inter-subject variability, the resultant SUVR still 

remains biologically relevant signals. Further, the SUVR measure was able to identify 

increased level of neuroinflammation in the inferior temporal gyri and medial temporal lobe 
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in AD patients, which is consistent with previous literature, while absolute quantifications 

only found a trend but not statistically significant, due to the high standard deviation 

associated with inter-subject variability. This suggests that SUVR may be indeed a more 

sensitive method considering the large inter-subject variability of 11C-PBR28 uptake.  

I should note, however, the analysis in current project is not stringent for evaluation of PET 

quantification method, which requires either test-retest stability analysis in vivo or direct 

comparison to autoradiography results in preclinical settings, which is beyond the scope of 

the current project. However, based on available data, the results from SUVR analysis were 

more consistent with our current understanding of neuroinflammation in Alzheimer’s disease, 

and therefore SUVR seemed to be a more viable measure for further analysis. Again, I should 

note that the current project mainly aimed to evaluate the association between 

neuroinflammation and brain connectivity, but not the correlation between 

neuroinflammation and amyloid/tau pathology, and I did the correlation tests only because 

this was the only way I could indirectly evaluate which quantification method may be more 

robust against random noise, based on prior knowledge in the field. And I should stress that 

the SUVR method had been chosen before the primary analysis on brain connectivity was 

conducted, and it was chosen based on the rationale, but not to present better correlations 

regarding amyloid and tau PET.  

Nevertheless, the current analysis provide evidence on the feasibility of using cerebellum as a 

reference region in 11C-PBR28 using an independent cohort form that recruited by Kreisl and 

colleagues, which add up the strength of the argument. Apart from the robustness against 

inter-subject variability, the SUVR method also have the advantage of being minimally 

invasive and cost-effective (arterial sampling not required), and our evidence may facilitate 

wider use of TSPO tracers or 11C-PBR28 in particular in larger scale clinical imaging studies, 

which deserves consideration considering accumulating evidence on the important role of 
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neuroinflammation in AD. Further test-retest stability studies and imaging-autoradiography 

studies should also be considered to substantiate the SUVR method in 11C-PBR28 

quantification. 

The key contribution of the project is that it has provided novel evidence that 

neuroinflammation in Alzheimer’s spectrum is associated with disruption of both structural 

and functional brain network. Previous studies have highlighted the key role of 

neuroinflammation in AD, the importance of intact brain connectome in cognition, and 

possible involvement if connectome in propagation of Alzheimer’s pathology. However, till 

now there is limited evidence on whether neuroinflammation is associated with connectivity 

disruption in AD (Melah et al., 2016). While a parallel study has reported the relationship 

between inflammation pattern and within/between network functional connectivity 

(Passamonti et al., 2019), the current study has further investigated their relationship at both 

regional connectivity and whole brain topology level. Further, the current project has 

interrogated the relationship between neuroinflammation and structural network integrity 

using multivariate analyses, and has established a link between neuroinflammation and 

structural network microstructural damage in AD, which to my knowledge is a novel finding 

in the field of AD research. Moreover, by investigating the Aβ+ cognitively impairment 

cohort and including both amyloid deposition and neuroinflammation in the model, the 

current study has suggested neuroinflammation is more directly associated with network 

failure in AD compared to Aβ. These findings have deepened our understanding of the 

mechanisms underlying cognitive decline in AD spectrum, and suggested the 

neuroinflammation is a potential therapeutic target for AD treatment.  

The current project has also provided novel evidence that neuroinflammation is associated 

with disrupted cerebral perfusion, more specifically neurovascular coupling, in Alzheimer’s 

spectrum. This novel finding has suggested neuroinflammation as a common factor in both 
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classical Alzheimer’s pathology cascade and emerging neurovascular pathways that 

contributes to clinical presentation of AD. This finding again suggests a key position taken by 

neuroinflammation in the multifaceted pathogenetic pathways towards Alzheimer’s disease 

dementia, again highlighting the therapeutic potential of neuroinflammation management. 

Lastly, the current project has evaluated the imaging biomarkers (PET and MRI) with regard 

to predicting longitudinal cognitive decline in MCI and AD patients. Limited by available 

data, the current analysis has mainly focused on MCI patients. Using a 2-step selection 

process, MRI markers of structural network integrity and cortical atrophy have been found to 

be more closely associated with cognitive status at the same time point, but PET markers of 

Aβ, tau pathology and neuroinflammation have been found to be predictive of future 

cognitive decline. While there have been reports on predictive values of individual biomarker 

or a few of them on cognition, few studies have comprehensively evaluated these image 

markers in a head-by-head manner (Zou et al., 2020) (L. Hamelin et al., 2016; Kreisl et al., 

2016a; Malpetti et al., 2020). The current findings underline the heterogeneity of the MCI 

population, and have suggested that neurodegeneration markers rather than AD-specific 

markers could better explain the cognitive impairment in these patients. Furthermore, the 

findings highlight the predictive value of molecular imaging markers, as they could 

specifically identify underlying pathologies. Most importantly, neuroinflammation marker 

has consistently remained in the best multiple regression models to predict cognitive decline 

in MCI or AD/MCI cohorts, together with amyloid and tau markers. This finding has stressed 

neuroinflammation as an independent factor that could drive cognitive decline in these 

patients, rather than just being associated with cognition due to its collinearity with amyloid 

and tau pathologies. To summarise, the current project has provided further evidence that 

neuroinflammation is an independent pathogenic factor in AD, and suggested that 

neuroinflammation markers to be taken more seriously in AD research and management.  
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The current findings together with previous evidence have suggested a framework of the 

systemic brain damage in Alzheimer’s spectrum: while Aβ deposition can initiate the 

downstream cascade of AD pathogenesis, the downstream events are not linearly dependent on 

the quantity of Aβ deposition; neuroinflammation is likely a key factor that mediates the 

neurotoxicity of various pathological events. In AD, Aβ is undoubtably the primary initial insult, 

but various other factors, including systemic inflammation, cerebral microcirculation 

impairment, traumatic brain injury and genetic background could modulate the inflammatory 

response in early disease, thus increase the risk of AD. Neuroinflammation could further lead 

to structural and functional brain network damage, and as suggested by other evidence, 

hyperphosphorylated tau formation and propagation. The tau pathology in turn is associated 

with network damage as well as cortical atrophy (Strain et al., 2018) (La Joie et al., 2020). 

Structural network and functional network disruption, as well as cortical atrophy, i.e., neuronal 

damage and disruption, eventually lead to global multi-domain cognitive impairment in AD 

(Figure 7.1). 

 

Figure 7.1 A hypothetical framework of pathways leading to cognitive impairment in AD 
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The hypothetical framework derived from the current project may provide insight to future AD 

research and management, while leaves open questions to be answered:  

(1) Given the evidence that tau species propagate though the brain connectome, and that 

neuroinflammation is associated with damage of structural connectivity, disruption of 

functional connectivity and neuronal hyperactivity, how neuroinflammation may 

influence tau propagation locally and distally? Is the white matter damage a collateral 

damage by an inflammation response to cut the trans-axonal propagation of tau species? 

How local neuroinflammation is influencing the local seeding of tau pathology? 

Structural equation modelling using cross-sectional data may provide some insight into 

the question, but larger dataset is needed to make a robust inference. Ultimately, to 

answer these questions, future longitudinal studies with baseline and follow-up tau 

biomarkers are encouraged.  

(2) Given the evidence of microglial phenotypical change, is it possible to combine PET 

imaging with fluid biomarkers of microglial phenotypes to gain not only spatial 

information from PET scans, but expand the information dimension on cellular 

phenotypes from fluid biomarkers such as sTREM2 and YKL-40? Further efforts are 

needed to explore the feasibility of the approach and may offer better understanding on 

neuroinflammation in AD. 

The current study is also limited by following factors: (1) the cross-sectional nature (only 

baseline images are available for association analyses among the imaging markers) have 

limited the ability of the project to infer causal relationships; (2) the data completeness, 

especially with regard to clinical/neuropsychological follow-up records, have led to loss of 

participants eligible for analysis, which should be avoided in future studies; (3) the lack of test-

retest data to validate the SUVR method for 11C-PBR28 analysis in our centre (which at the 

time was a relatively new tracer), though evidence from other studies have suggested the 
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method to be feasible; (4) the ASL acquisition parameters could have been optimised in 

hindsight, which might have a negative influence on the accuracy and power (more noise in 

data) of the analysis.  

To summarise, although the current project has the limitations, I believe the project has still 

provided vital evidence to advance our understanding of neuroinflammation in Alzheimer’s 

disease, and has opened avenues for future studies on disease mechanism and interventions.  
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Appendix 1. MRI Acquisition Parameters 
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Appendix 2. Cortical Parcellation for Graph Theory Analysis 
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Appendix 3. Brief demographics and scan availability for each 

participant 

ID Gender MMSE Age Amyloid_status AV1451 PBR 

AD01 Male 22 76 Positive Negative Y 

AD02 Female 20 74 Positive Positive Y 

AD03 Male 18 65 Negative NA N 

AD04 Female 23 77 NA NA Y 

AD05 Male 28 77 Positive NA Y 

AD06 Male 22 80 Positive Positive Y 

AD07 Female 26 77 Positive Positive N 

AD08 Female 27 55 Negative NA Y 

AD09 Female 24 65 Positive Positive Y 

AD10 Female 25 79 Positive Positive Y 

AD11 Male 10 80 NA NA N 

AD12 Male 25 76 Positive Negative Y 

AD13 Male 22 73 Positive Positive Y 

AD14 Male 19 78 Negative Negative Y 

AD15 Female 22 78 Positive Positive Y 

AD16 Male 16 85 Positive Negative Y 

AD17 Male 18 76 Positive Positive Y 

AD18 Male 30 73 Positive Positive Y 

AD19 Female 22 54 Positive Positive Y 

AD20 Male 24 75 NA Positive Y 

AD21 Female 24 66 Positive Positive Y 

AD22 Male 29 68 NA Negative Y 

HC01 Female 25 67 Negative Positive Y 

HC02 Female 25 74 Negative NA Y 

HC03 Female 28 57 Negative NA Y 

HC04 Female 30 72 Negative NA N 

HC05 Female 30 70 Positive Negative Y 

HC06 Female 30 60 Positive NA Y 

HC07 Male 30 60 Negative NA Y 

HC08 Female 30 51 Negative Negative Y 

HC09 Male 29 74 Negative NA Y 
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HC10 Male 30 64 Negative NA Y 

HC11 Male 30 55 Negative NA Y 

HC12 Female 28 54 Negative Negative Y 

HC13 Male 30 57 Negative NA Y 

HC14 Female 30 59 Negative NA Y 

HC15 Male 30 68 Negative NA N 

HC16 Male 30 70 Negative Negative N 

HC17 Male 29 58 Negative NA Y 

HC18 Male 30 74 Negative Positive Y 

HC19 Female 30 76 Negative Negative Y 

HC20 Female 30 77 NA NA Y 

HC21 Male 29 84 Positive Negative Y 

MCI01 Female 27 75 Positive NA Y 

MCI02 Female 26 56 Positive NA Y 

MCI03 Female 29 72 Positive NA Y 

MCI04 Female 28 72 Negative NA N 

MCI05 Female 30 78 Negative NA Y 

MCI06 Male 29 63 Negative NA Y 

MCI07 Male 26 71 NA NA Y 

MCI08 Female 26 77 Positive NA Y 

MCI09 Male 27 74 Negative Negative Y 

MCI10 Female 25 62 Negative Negative N 

MCI11 Male 29 79 Positive Positive Y 

MCI12 Male 30 65 Negative NA N 

MCI13 Male 28 79 Positive Positive Y 

MCI14 Male 27 63 Negative Positive Y 

MCI15 Male 30 68 Negative NA Y 

MCI16 Female 30 53 Negative NA N 

MCI17 Male 29 81 Positive Positive N 

MCI18 Female 28 79 Negative NA Y 

MCI19 Male 30 77 Positive Positive Y 

MCI20 Male 29 70 Negative NA N 

MCI21 Female 29 58 Negative NA Y 

MCI22 Male 30 55 Negative NA N 

MCI23 Female 23 64 Negative NA Y 
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MCI24 Female 30 74 Positive NA Y 

MCI25 Male 24 78 Negative Negative Y 

MCI26 Male 29 66 Negative Negative Y 

MCI27 Male 27 80 Negative NA N 

MCI28 Female 24 58 Negative Negative Y 

MCI29 Female 28 79 NA Positive Y 

MCI30 Male 30 55 Negative NA Y 

MCI31 Female 28 73 Negative NA Y 

MCI32 Female 29 86 Positive NA N 

MCI33 Male 26 85 Positive Positive Y 

MCI34 Male 25 69 Negative NA N 

MCI35 Female 26 71 Positive Positive Y 

MCI36 Male 29 84 Positive Positive Y 

MCI37 Male 27 75 Negative Negative Y 

MCI38 Male 27 59 Negative NA N 

MCI39 Male 29 78 Positive Negative N 

MCI40 Male 26 72 NA Negative Y 

MCI41 Male 27 79 Positive NA N 

MCI42 Male 26 67 Positive Positive N 

MCI43 Male 28 72 Positive Positive Y 

MCI44 Male 28 69 Negative NA Y 

MCI45 Male 28 77 Negative Positive Y 

 

NA: scan not available to determine; Y: participant has the scan available; N: scan not 

available for the participant. 
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Appendix 4. Publication 

Leng, F., Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: 
where do we go from here?. Nat Rev Neurol 17, 157–172 (2021). 
https://doi.org/10.1038/s41582-020-00435-y 
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