
A thesis submitted for the degree of Doctor of Philosophy 
 
 

Imperial College London 
Department of Life Sciences 

 
 
 
 
 
 
 
 
 
 
 

Evaluating camera trap data for studying spatiotemporal 
avoidance and predation between mammal species 

across a gradient of habitat degradation 
 

By 
 

Danielle Lisa Norman 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

Statement of Originality and Copyright 

Statement of Originality 

I declare that the research contained in this thesis is my own work. Ideas and/or research from 

others have been duly acknowledged following standard referencing procedure. Research 

carried out for this thesis has led to the following peer-reviewed publication: 

Norman, D.L., Bischoff, P.H., Wearn, O.R., Ewers, R.M., Rowcliffe, J.M., Evans, B., Sethi, S., 

Chapman, P.M. and Freeman, R., 2022. Can CNN‐based species classification generalise 

across variation in habitat within a camera trap survey?. Methods in Ecology and Evolution, 

14(1), pp.242-251. 

This publication is included as Chapter 2 in this thesis, therefore uses ‘we/our’, while I/my is 

used in all other chapters. This chapter underwent multiple rounds of comments from 

reviewers before being published. 

Marcus Rowcliffe, Robert Ewers and Robin Freeman provided detailed comments on earlier 

versions of each chapter. 

Copyright 

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are 

licensed under a Creative Commons Attribution – Non Commercial 4.0 International Licence 

(CC BY-NC). Under this licence, you may copy and redistribute the material in any medium or 

format. You may also create and distribute modified versions of the work. This is on the 

condition that: you credit the author and do not use it, or any derivative works, for a commercial 

purpose. When reusing or sharing this work, ensure you make the licence terms clear to others 

by naming the licence and linking to the licence text. Where a work has been adapted, you 

should indicate that the work has been changed and describe those changes. Please seek 

permission from the copyright holder for uses of this work that are not included in this licence 

or permitted under UK Copyright Law.  



2 
 

Abstract 

Ongoing climate change and anthropogenic disturbance negatively impact biodiversity. We 

must be able to capture, monitor and understand how ecosystem processes, such as, species 

interactions, are impacted so that we are better positioned to protect against further 

biodiversity loss. 

One inherent challenge is data collection. Camera  traps enable us to remotely capture large 

volumes of data with minimal disturbance to behaviour, but current automated classification 

methods are unable to generalise well across locations. I investigate the ability of convolutional 

neural networks to generalise across a gradient of habitat degradation within a camera trap 

dataset collected in tropical forest. I found generalisability was poor, but was helped by using 

a detector-classifier combination. 

Methods are needed to detect interaction signals from the large volume of camera trap data. 

Here, I apply statistical methods to test for spatiotemporal avoidance across land-use and 

disturbance gradients, using the hypothesised avoidance of humans by bearded pigs as a 

case study. The results did not support the hypothesis, but highlighted the need to understand 

the data requirements to power the method. 

Using an agent-based model to simulate animal movement and generate a camera trap 

dataset, I test our ability to detect species interactions at varying population and camera trap 

densities, and interaction strengths. The results showed the difficulty in discerning the type of 

interaction, and in detecting avoidance behaviour across a range of parameters, despite the 

large volume of simulated data. 

The use of camera trap data for ecological analyses is a growing field, with the potential for 

transformative analysis, including in our understanding of species interactions. Reliable rapid 

processing of the images, as well as sensitive methods to detect interactions, are, however, 

still lacking, and further development is needed to better quantify species’ responses to 

anthropogenic disturbance in order to identify the species most impacted. 
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Chapter 1 

1 Introduction 

1.1 Background 

Changes in land use and climate affect the distribution, abundance and behaviour of species 

globally (Wearn et al., 2017; Gaynor et al., 2018; WWF, 2022). To mitigate negative effects of 

anthropogenic activity on biodiversity, and to protect vulnerable ecosystems, a good 

understanding of how species respond to environmental change is required. In particular, 

species interactions have been identified as a potential mediator of impacts and are therefore 

vital to monitor (Rahman & Candolin, 2022). 

Detailed, observational studies can provide important insight on a small-scale, but effective 

monitoring over large areas and long time periods is necessary to allow patterns, and any 

changes in them, to be captured. With their increasing affordability, camera traps provide the 

opportunity to continuously survey large areas remotely. In addition, they are able to capture 

mammal species that are often scarce, shy, elusive or nocturnal, so are difficult to observe 

directly. Analytical techniques have been developed for estimating key community, population 

and behavioural parameters from camera trap imagery, yielding insight into distribution and 

abundance, as well as activity patterns, movement and interactions between species 

(Caravaggi et al., 2017; Frey et al., 2017; Kellner et al., 2022).  

One obstacle to the use of camera trap data, however, is in labelling the huge number of 

images produced. Recent advances in machine learning have opened up methods for 

automating the time-consuming tagging process (Norouzzadeh et al., 2018), but obstacles 

remain in having sufficient data to train reliable, transferable classifiers (Beery et al., 2018). 

With more accessible automated image analysis in the future, the widespread, long term use 

of these techniques could catalyse a step-change in our understanding of the status of 

mammal populations and the processes driving change. 

In the following sections of this chapter, I will therefore outline the literature pertaining to: 

• the importance of species interactions; 

• methodologies, including: 

o camera trap surveys and the analytical methods used to infer or to model 

species interactions; 

o automated classification of camera trap imagery; and 

• the dataset used throughout this thesis. 
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1.1.1 Importance of species interactions 

Biodiversity is declining, with more species at risk of global extinction than ever before (IPBES, 

2019). The driving forces behind the degradation of ecosystems and decline in biodiversity 

include the overexploitation of plants and animals, climate change, pollution and invasive 

species (WWF, 2022). The most important driver of biodiversity loss has been identified as 

land-use change (WWF, 2022). The effects of anthropogenic activity, such as land-use 

change, on biodiversity can be monitored via ecological parameters including changes in 

abundance, species richness and range (Gido et al., 2019; Jetz et al., 2019). Underlying these 

more readily measurable quantities, are the processes causing them, which are more difficult 

to observe and quantify (Frey et al., 2017). Anthropogenic activity can trigger changes in 

animal behaviour, such as changes to daily activity patterns and the occurrence and frequency 

of species interactions (Frey et al., 2017). Shifts in behaviour, such as in species interactions, 

can thus be considered “an early-warning system” (Caravaggi et al., 2017) by signifying 

changes at the process level before they can be seen at the population level. Monitoring 

changes in behaviour, therefore, may be vital to our understanding of how ecological 

communities respond and adapt to environmental stressors, and thus how anthropogenic 

activity results in reduced biodiversity.  

Species interactions have been identified as a potential mediator of how species respond to 

environmental change. Environmental change alters species interactions, species ranges and, 

consequently, co-occurrence (Morales-Castilla et al., 2015; Rahman & Candolin, 2022). A 

recent study of terrestrial mammals situated in tropical forests worldwide found that 

interactions between species were found to mediate distributional dynamics, with ecological 

similarity being linked to colonisation and extinction dynamics (Beaudrot et al., 2019). In a 

study of African mammals, Buschke et al. (2015) found that while climate may determine local 

persistence of species, species interactions drive more general patterns of co-occurrence. 

This is in agreement with a global study that found predator-prey interactions, in conjunction 

with environmental effects, to be an important driver of large-scale diversity gradients 

(Sandom et al., 2013). In particular, predator richness variance in their model was most 

explained by prey bottom-up effects, while prey richness was most strongly associated with 

productivity and climate, with predator top-down effects significant (Sandom et al., 2013). 

Conversely, Greenville et al.(2017) found that under future climate change scenarios, while 

vegetation cover and productivity are likely to decline, top-down suppression from introduced 

predators is predicted to have the strongest negative impact on prey populations (Greenville 

et al., 2017). While it is clear that both environmental effects and species interactions influence 

the persistence and range of species, as well as diversity gradients, understanding the effect 
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of habitat composition on species interactions and ecosystem functioning is needed to inform 

ecosystem management (Casula et al., 2017). 

In areas of land use change, species must respond to changes in their habitat and resource 

availability, which can cause or reduce competition. Studies have found increased nocturnality 

in animal species in response to human activity and along land-use gradients, including a 

switch from diurnal to nocturnal activity patterns (Gaynor et al., 2018; Davison et al., 2019). 

One US study established that avian nest predation was increased in areas of habitat loss; as 

natural gas development intensity increased, rodent predator abundance and/or activity 

increased, causing higher nest predation (Hethcoat & Chalfoun, 2015). Human-induced 

environmental change was therefore shown to be altering the nest predator assemblage, 

which impacted the demography of local prey communities through predation. Species 

interactions and forest fragmentation were both found to be important determinants of 

carnivore occupancy in a recent study into carnivore distribution along an urban gradient 

(Parsons et al., 2019). The mixture of positive and negative interactions seen, with some 

dependency on green space availability, led the authors to suggest that fragmentation leads 

to higher levels of spatial interaction (Parsons et al., 2019). Since species interactions appear 

to be an important mechanism through which species respond to environmental change, 

monitoring changes in interactions in response to disturbance could be crucial for our 

understanding of the wider ecological impacts. 

Invasions of non-native species, which are often caused or facilitated by anthropogenic activity 

(Simberloff et al., 2013), are another threat to biodiversity that acts by altering species 

interactions, including predation, competition and disease transmission. In particular, invasive 

mammalian predators can be very destructive, and often endanger island species that are 

evolutionarily distinct (Doherty et al., 2016; Spatz et al., 2017). It is vitally important to 

understand and mitigate the impact of these predators to conserve diversity and slow 

biodiversity decline (Doherty et al., 2016).  

Interactions between species have been described as the “architecture of biodiversity” 

(Bascompte & Jordano, 2007). Communities are made up of populations of species co-

existing, so any change to the behaviour of one species can have a knock-on effect on the 

rest of the community. Similarly, extinction of a species can cause unpredictable secondary 

extinctions that cascade throughout an entire ecosystem (Ebenman & Jonsson, 2005). This 

highlights the importance of understanding the interactions between species so as to be in the 

best position to mitigate further loss of species in the face of current threats to biodiversity. 

In mammals in particular, community structure is predominantly shaped by antagonistic 

interactions, such as competition, harassment and predation (Palomares & Caro, 1999; 
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Sinclair et al., 2003). Where habitat is fragmented, and populations confined, competitive 

interactions among species that were previously spatially segregated can be observed 

(Durant, 1998). Species might then change their behaviour in order to minimise or avoid 

competitive encounters through altering their diet, daily activity patterns or their use of the 

habitat (Carothers et al., 1984; Palomares & Caro, 1999; Vanak et al., 2013). Predation can 

be a critical component of an ecosystem, with apex predators acting as a keystone species 

that regulates the abundance and distribution of its prey species. In temperate ecosystems, 

loss of predators has been shown to lead to trophic release, whereby the abundances of prey 

species subsequently increase (Ripple & Beschta, 2012). In contrast, no evidence of trophic 

release was found in tropical forest, with predator-prey relationships appearing to be weak or 

positive (Brodie & Giordano, 2013). 

Understanding how and why interactions between species occur will enable us to build a better 

picture of how they are impacted by other ecological processes and inform mechanism-based 

predictive models (Poisot et al., 2015). Given the important role mammals play in ecosystems 

and how influential antagonistic interactions between them are in shaping communities, our 

ability to capture spatiotemporal avoidance and predation between mammal species is the 

focus of this thesis. For this, we require robust methods that enable us to identify and quantify 

interactions. 

1.1.2 Methodologies 

Survey methods for capturing species interactions include, for example, direct observation, 

DNA metabarcoding or the use of tagging with GPS collars. DNA metabarcoding to analyse 

the diets of species can provide important information on predation (Rytkönen et al., 2019), 

but this approach is limited by the necessity to locate and collect samples. Direct observation 

can be useful for recording pollination or other frequent, short-term interactions that occur over 

a small survey area. GPS devices have opened up the ability to capture fine-scale movement 

data for species that were previously difficult to study, such as aquatic species, migratory 

songbirds and wide-ranging migratory mammals (Hebblewhite & Haydon, 2010). The cost of 

collars, the necessity to capture and/or sedate individuals to tag them, and difficulties in 

retrieving the devices can, however, result in weaker study design and small sample sizes 

(Hebblewhite & Haydon, 2010), as well as short-term effects on activity, behaviour and stress 

of the animals (Stabach et al., 2020).    

1.1.2.1 Camera trap surveys 

With advancements in technology and reduction in price, camera traps have become a popular 

tool for monitoring global biodiversity (Burton et al., 2015; Caravaggi et al., 2017). Camera 

trap surveys have the advantage of being non-invasive, they can provide measurements at 
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high resolution (Rowcliffe et al., 2016), and produce vast quantities of data. They have also 

been identified as a potential tool for creating a global monitoring network (Steenweg et al., 

2017). Camera traps have been used in a variety of studies, including wildlife distribution, 

abundance and community structure (Burton et al., 2015). They can also help quantify animal 

behaviour, such as foraging, scent marking, daily activity patterns and interactions (Caravaggi 

et al., 2017). Techniques have been developed to estimate behavioural metrics, such as travel 

speed and day range, from camera trap data, which inform our understanding of processes 

such as energy use, foraging success, and disease transmission (Rowcliffe et al., 2016).  

Methods that rely on indirectly observed or passive collection of data (e.g. camera traps) to 

infer species interactions face analytical difficulties. Until recently, camera trap surveys have 

generally been used to explore hypotheses in a spatial context, with spatial analysis of species 

interactions involving examining species co-occurrence patterns (Frey et al., 2017). Inference 

of species interactions from co-occurrence analyses has been criticised by Blanchet et al. 

(2020) who argue that the complexity of ecosystems blurs the link such that spatial 

associations alone are poor proxies for interactions; among the challenges outlined, they note 

the importance of accounting for temporal variations and its impact on species and their 

interactions (Blanchet et al., 2020). 

The use of time-stamped camera trap images to inform temporal analyses, such as variation 

in activity patterns and partitioning along the temporal niche axis, has been highlighted as 

critical to developing our understanding of population and community dynamics (Frey et al., 

2017). To date, few studies have empirically quantified how external factors may influence 

temporal niche partitioning (Frey et al., 2017). In their review, Frey et al. (2017) suggest that 

to investigate how interacting variables influence species segregation along the temporal 

niche axis, coordinated experiments distributed across a range of stressors and community 

compositions are needed.  

Analyses using combined spatiotemporal data could offer further insight (Cusack et al., 2017). 

Spatiotemporal analyses assessing coexistence of felids in tropical forest using camera traps 

have found evidence of temporal partitioning, with spatial habitat use mostly determined by 

prey availability (Haidir et al., 2018; Santos et al., 2019). Others have identified avoidance 

behaviour (Ross et al., 2013; Ramesh et al., 2017) or discovered adaptability in behaviour 

across gradients of resource availability (Karanth et al., 2017). Two recent studies have 

combined occupancy models with a continuous-time detection process  to detect spatial and 

temporal interactions between predator and prey species (Kellner et al., 2022), and between 

two competing carnivores along an urbanisation gradient (Parsons et al., 2022). 
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A framework for exploring spatiotemporal interactions in camera trap data has recently been 

proposed, alongside a comparison of methods for detecting interactions in camera trap data; 

linear models were identified as the most suitable approach for detecting spatiotemporal 

avoidance and a permutation test performed on daily activity patterns for assessing temporal 

segregation (Niedballa et al., 2019). The application of this framework to real-world data has 

yet to be explored. 

1.1.2.2 Species identification in camera trap images 

The increased uptake of camera trap surveys and their voluminous output has resulted in 

bottlenecks in image processing. It can take many hours for researchers to label each 

individual image with the species present. Thus citizen scientists have been recruited to ease 

the burden, with a reported accuracy of 96.6% compared with experts (Swanson et al., 2015). 

Researchers have also turned to machine learning techniques to improve the speed with 

which camera trap images can be processed. In a comparison of convolutional neural network 

architectures in the task of identifying species from the 3.2 million-image Snapshot Serengeti 

dataset, an overall accuracy of >93.8% was achieved (Norouzzadeh et al., 2018). When 

restricted to only images the network was confident of having categorised correctly, this rose 

to 99.3%, which was calculated to equate to a saving of >8.4 years of manual human labelling 

time (Norouzzadeh et al., 2018). A more recent study has since achieved an accuracy of 

97.6% (Tabak et al., 2019). The number of tools available, and their application to species 

identification tasks, is predicted to continue to increase (Wäldchen & Mäder, 2018). 

One current issue with the applicability and impact of these machine learning techniques is 

their lack of ability to generalise well across background scenes. Previous studies have 

highlighted a drop in performance when the network is used to classify images from camera 

trap locations unseen during training (Beery et al., 2018; Tabak et al., 2019). Variation in 

background scenery and vegetation, lighting, camera position or average distance of subject 

from camera, for example, can all impact on performance of trained classifiers (Beery et al., 

2018). Many applications of machine learning to classification thus far have had a particular 

geographic focus (Weinstein, 2018), but in order for these techniques to be widely applicable 

and impactful, we require architectures that can be used by multiple researchers on different 

datasets, ideally without having to perform the time-consuming training on each new dataset.  

Proposed methods for improving generalisability include the use of object detectors to locate 

animals within images and therefore provide cropped, targeted images to pass to the network 

(Beery et al., 2018). Another study found that generating artificial images for rare species can 

improve generalisability for these species, but this approach is not practical for most ecologists 

since it requires the assistance of a graphic artist (Beery, Liu, et al., 2019). More generally, 
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incorporating metadata alongside images into a multi-input network has demonstrated 

improved overall accuracy, and it is suggested this could improve generalisability (Terry et al., 

2020).  

The impact of habitat degradation on network generalisability has not been considered to date. 

With ongoing anthropogenic activity leading to habitat loss, fragmentation, and degradation, it 

is important to understand how these classifiers perform on camera trap datasets from habitats 

undergoing change. Classifiers need to be robust to changes in image background to facilitate 

long-term monitoring of these habitats. Otherwise, misclassifications as a result of poor 

generalisability have the potential to impact on the conclusions drawn from any subsequent 

ecological analyses. 

1.1.2.3 Agent-based models 

Species interactions are often difficult to directly study due to logistical difficulty in achieving 

direct observations and experimental challenges (Smith et al., 2020). The use of 

computational models to simulate interacting species therefore allows us to generate data that 

is otherwise challenging to capture. These models also provide the ability to perform in-silico 

experiments and to test scenarios before they are applied to the real world such that 

management practices can be optimised, and the potential impacts of disturbances can be 

best mitigated. 

Agent-based models (ABMs) are a popular tool in ecology for modelling the movement and 

behaviour of individual ‘agents’ around a study space. They have been used to model 

ecosystem processes such as seed dispersal distance and the impact of human-induced 

reductions on mammal movement in tropical forest (Tucker et al., 2021), and the relationship 

between habitat features and performance on predator-prey event outcomes (Wheatley et al., 

2020). ABMs have also been used to study the marine environment including the impact of 

acoustic disturbance on swimming trajectories, bioenergetics and population size of marine 

species (Mortensen et al., 2021). 

Using ABMs, we can perform experiments in a controlled environment to gain insight into the 

processes at play, and to generate data that we can use to reliably test methods.  

1.2 Dataset 

1.2.1 SAFE Project 

The data used throughout this thesis is taken from the Stability of Altered Forest Ecosystems 

(SAFE) Project situated in Sabah, Malaysian Borneo (Ewers et al., 2011). The project was 

established to generate a broad understanding of the ecological impacts of tropical forest 
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modification (Ewers et al., 2011). To this aim, the SAFE project study area comprises forest 

fragments in old-growth forest within the Maliau Basin Conservation Area, logged forest within 

the Kalabakan Forest Reserve, as well as oil palm plantations straddling the Kalabakan Forest 

Reserve boundary.  

As a result of repeated logging in the study area, there are a variety of habitat types within the 

logged forest fragments, ranging from grassy open areas or low scrub vegetation to lightly 

logged forest (Wearn et al., 2013).  

1.2.2 Sampling design 

For the camera trap surveys at SAFE (Figure 1.1), a clustered hierarchical nested sampling 

design was used (Wearn et al., 2016). Individual sampling points were clustered into 

rectangular sampling plots of 48 (4 x 12) points separated by 23 m, each covering an area of 

1.75 ha (Wearn et al., 2016). Three to six plots were then clustered into blocks (approximately 

25 ha), with three to four blocks per land use category: 13 plots (in 4 blocks) were situated in 

old-growth forest, 24 plots (in 4 blocks) in logged forest and 9 plots (in 3 blocks) in oil palm 

plantations (Wearn et al., 2017). Separation distances between plots (170-290 m) and blocks 

(0.6-3 km) was similar across land uses, although the arrangement of blocks differed in logged 

forest compared with old-growth forest and oil palm (Wearn et al., 2016).  

 

Figure 1.1: SAFE camera trap sampling design. Sampling points are shown across (a) logged forest, (b) oil palm and (c) old-
growth forest. Shaded areas (in (a)) lie outside the forest reserve. Taken from (Wearn et al., 2019). 
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The majority of the camera trap images were collected between May 2011 and April 2014, 

with most plots (40 of 46) being sampled in multiple years (Wearn et al., 2017). Following April 

2014, plots were surveyed once per year, but not all plots were sampled in all years (Davison 

et al., 2019). Within each plot, a random subset of the 48 sampling points was selected for 

camera-trapping, giving 681 points sampled in total. Remotely operated digital cameras 

(Reconyx HC500) were deployed within 5 m of each of these selected points, usually set at a 

height of 30 cm, with some set higher where the location demanded (Wearn et al., 2013). 

During each survey, the camera traps were deployed for at least 30 days, culminating in a 

total of 32, 542 camera trap nights (Davison et al., 2019). The cameras captured 10 photos in 

quick succession when triggered (Wearn et al., 2013). No lure or bait was used, and 

disturbance to vegetation was minimised. The survey collected 753, 442 images in total. 

For their assessment of mammal abundance within the study area, Wearn et al. (2017) 

recorded a habitat disturbance score for a 5 m radius around each sampling point. The habitat 

disturbance was scored on a scale from low to high disturbance, with five categorical levels 

(Table 1.1). These levels correspond to environmental variation due to the effects of logging 

and subsequent regeneration. 

Table 1.1: Definitions of disturbance levels within the SAFE project camera trap dataset (Wearn et al., 2017). 
Disturbance level Definition 
Undisturbed forest Dominated by old-growth dipterocarps. High, continuous canopy with 

sparsely-vegetated understorey. Unlogged, with little recent 

disturbance evident. 

Disturbed forest Mostly pioneer tree species (typically Macaranga species), but some 

old-growth dipterocarp species may be present. Discontinuous 

canopy. Lower intensity of logging or natural disturbance. 

Heavily disturbed 

forest 

High scrub or dense understorey layer (typically with vines and 

Dinochloa climbing bamboo species), with a low, heavily-broken 

canopy layer (< 20 m). Possibly some large, isolated trees (> 20 m). 

Intensively-logged area or large gap disturbance. 

Herbaceous scrub Dominated by herbs (typically Zingiberaceae), vines and shrubs, with 

no trees > 3 m in height (except oil palm Elaeis guineensis). Typically 

representing secondary re-growth from clear-felling, or large gaps 

due to landslides. 

Open area Open area. Dominated by grasses and small shrubs (< 1 m in height). 

Typically on logging roads or old log landing areas. 
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1.2.3 Image processing 

Images were reviewed in Adobe Photoshop Lightroom (Adobe Inc., San Jose, California, 

USA), with keyword tags added to record the species, as well as the capture of a new 

individual (Wearn et al., 2017). For bearded pigs, tags to denote individual or group, as well 

as the number and age class of the individuals present were added (Davison et al., 2019). 

Metadata was extracted using ExifTool (Harvey, 2017). 

1.2.4 Key findings to date 

Results from SAFE to date highlight the importance of remnant forest patches among 

agricultural landscapes to native mammal species (Daniel et al., 2022). Some mammals are 

able to persist in logged forest, increasing in relative abundance by 28% from primary forest, 

but the opposite is seen in oil palm plantations with a 47% decrease compared to forest 

(Wearn et al., 2017). Responses among mammal species vary, however, with small mammals 

shown to increase much more proportionately (169%) than large mammals (13%) from old-

growth to logged forest, as well as omnivores and insectivores increasing more than other 

trophic guilds (Wearn et al., 2017). Similarly, responses to logging in terms of species richness 

have been shown to vary, with an increase in richness in small mammals at all spatial grains 

in logged forest compared with old-growth forest, while large mammals showed reduced 

richness in logged forest at the grain of individual sampling points, but no change at the land-

use level (Wearn et al., 2016). Within mammal communities, large mammal communities were 

found to be more heterogenous at coarse spatial grains in old-growth forest, while small 

mammal communities were more homogenous, with the reverse being observed in logged 

forest (Wearn et al., 2016).  

In terms of species interactions, Wearn et al. (2019) found that the prevalence of spatial 

avoidance decreased along the land-use gradient; their co-occurrence analysis detected only 

a few instances of spatial avoidance in any land-use, however, with 13 instances detected in 

old-growth forest. Of these, three were among congeneric pairs: Maxomys rats (M. surifer and 

M. rajah), the greater and lesser (T. kanchil) mouse-deer, and the thick-spined and Malay 

porcupines (Hystrix crassispinis and H. brachyura) (Wearn et al., 2019). The authors 

concluded competition may be occurring, but it is unlikely to be a dominant assembly process 

in the study system. It was suggested that since the study site consists of a  trophically diverse 

mammal assemblage, species are able to avoid competition through resource-partitioning. 

The species could also be segregated vertically in space, or temporally, such that the co-

occurrence analyses would be unable to detect such avoidance (Wearn et al., 2019).  

In a separate investigation of mammal behaviour at SAFE using camera trap data, shifts in 

activity pattern between primary and logged forest were observed in six species (Chapman et 
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al., 2018). Sambar deer and beaded pigs were found to shift from diurnal in old growth forest 

to more nocturnal in logged forest. The long-tailed porcupine showed a significant shift in 

activity peak from the early hours of the morning in primary forest to late evening in logged 

forest (Chapman et al., 2018). Activity in greater mouse-deer was strongly crepuscular in old 

growth forest, but more constant throughout the day in logged forest. An earlier decline in 

activity during dusk in logged than in old growth forest was seen in red muntjac, while a slightly 

increased activity level before dawn, which increased more slowly after dawn in logged forest 

was seen in yellow muntjac (Chapman et al., 2018).  

Bearded pig behaviour between old-growth and logged forest, and oil palm plantations, was 

further analysed by Davison et al. (2019). In a study of activity patterns using camera trap 

data, the authors found bearded pigs shift from diurnal in old-growth forest, to crepuscular in 

logged forest and nocturnal in oil palm plantations. The shift to crepuscular in logged forest 

was attributed to both an avoidance of humans and the higher midday temperatures in the low 

canopy cover, less sheltered logged forests (Davison et al., 2019). The nocturnal activity in oil 

palm probably represented foraging raids from nearby forests (Davison et al., 2019). The lack 

of early morning activity was suggested to be likely avoidance of human workers in oil palm 

plantations, who are consistently active in the mornings. Bearded pigs could also be avoiding 

free-roaming dogs, whose core activity patterns overlapped minimally with bearded pigs 

(Davison et al., 2019). 

The SAFE Project provides valuable insight into the impact of ongoing human-mediated 

disturbance in tropical forests. Comprising communities that are particularly vulnerable to 

extinction, it is especially important to understand the processes underlying the biodiversity 

changes in these areas.  

1.3 Research Objectives 

1. To assess the performance of established convolutional neural network architectures, 

identifying the best network for classifying images within the SAFE camera trap dataset, and 

to investigate the generalisability of the chosen network within the dataset. 

2. To test our ability to detect spatiotemporal avoidance of one species by another in a real-

world camera trap dataset used for long-term monitoring, and to assess whether this 

behaviour varies across land-use categories and disturbance levels. The hypothesised 

avoidance of humans by bearded pigs in oil palm plantations will be used as a case study. 

3. To investigate the impact of interaction strength, population density and camera trap density 

on our ability to detect spatiotemporal avoidance and predatory stalking, with the aim of 
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identifying thresholds in these parameters, beyond which competitive avoidance and/or 

predation can be captured. 

1.4 Thesis Outline 

In Chapter 2, I focus on one of the ongoing issues with the application of automated 

classification for species identification in camera trap images: generalisability. I train and 

evaluate performance of three convolutional neural networks (CNNs) on the SAFE camera 

trap dataset, then assess the ability of the best-performing CNN to generalise across the 

habitat disturbance levels within the dataset. 

In Chapter 3, I move to considering mammalian species interactions, specifically whether I 

can detect suspected spatiotemporal avoidance of humans by bearded pigs. I apply a method 

that was tested on simulated data and identified as optimal for detecting spatiotemporal 

avoidance of one species by another within camera trap data. I use the results to both test my 

hypotheses and to assess the application of this method to real-world, as opposed to 

simulated, data. 

In Chapter 4, I construct an agent-based model comprising individuals from two species. The 

model allows me to simulate different interaction behaviours: competitive or predator 

avoidance, as well as stalking of prey. A camera trap survey is then simulated by modelling 

camera traps placed at random within the study area such that they are trigged by nearby 

agents. Using a control simulation, I evaluate our ability to detect the species interactions 

using the method applied in Chapter 2. 

Chapter 5 contains a discussion of the key findings in context, suggestions for future research 

and final conclusions. 
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Chapter 2 

2 Can CNN-based species classification generalise across 
variation in habitat within a camera trap survey? 

Note: this work has been published as: Norman, D.L., Bischoff, P.H., Wearn, O.R., Ewers, 

R.M., Rowcliffe, J.M., Evans, B., Sethi, S., Chapman, P.M. and Freeman, R., 2022. Can CNN‐

based species classification generalise across variation in habitat within a camera trap 

survey?. Methods in Ecology and Evolution, 14(1), pp.242-251. 

2.1 Abstract 

Camera trap surveys are a popular ecological monitoring tool that produce vast numbers of 

images making their annotation extremely time-consuming. Advances in machine learning, in 

the form of convolutional neural networks, have demonstrated potential for automated image 

classification, reducing processing time. These networks often have a poor ability to 

generalise, however, which could impact assessments of species in habitats undergoing 

change.  

Here, we: (i) compare the performance of three network architectures in identifying species in 

camera trap images taken from tropical forest of varying disturbance intensities; (ii) explore 

the impacts of training dataset configuration; (iii) use habitat disturbance categories to 

investigate network generalisability; and (iv) test whether classification performance and 

generalisability improve when using images cropped to bounding boxes.  

Overall accuracy (72.8%) was improved by excluding the rarest species and by adding extra 

training images (76.3% and 82.8%, respectively). Generalisability to new camera locations 

within a disturbance level was poor (mean F1-score: 0.32). Performance across unseen 

habitat disturbance levels was worse (mean F1-score: 0.27). Training the network on multiple 

disturbance levels improved generalisability (mean F1-score on unseen disturbance levels: 

0.41). Cropping images to bounding boxes improved overall performance (F1-score: 0.77 vs 

0.47) and generalisability (mean F1-score on unseen disturbance levels: 0.73), but at a cost 

of losing images that contained animals which the detector failed to detect. 

These results suggest researchers should consider using an object detector before passing 

images to a classifier, and an improvement in classification might be seen if labelled images 

from other studies are added to their training data. Composition of training data was shown to 

be influential, but including rarer classes did not compromise performance on common 

classes, providing support for the inclusion of rare species to inform conservation efforts. 
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These findings have important implications for use of these methods for long-term monitoring 

of habitats undergoing change, as they highlight the potential for misclassifications due to poor 

generalisability to impact subsequent ecological analyses. These methods therefore need to 

be considered as dynamic, in that changes to the study site would need to be reflected in the 

updated training of the network. 

2.2 Introduction 

Camera traps have become an increasingly popular survey tool among ecologists and 

conservationists, being used in a variety of studies, including of wildlife distribution, 

abundance, occupancy, behaviour and community structure (Burton et al., 2015). Their two 

biggest advantages are that they sample a relatively broad-spectrum of wildlife, making them 

effective for monitoring species richness, and that they can operate night-and-day for months 

at a time, meaning that they can produce useful data on even the rarest species (Wearn et al. 

2019). They also produce thousands, or in some cases, millions, of images for analysis.  

Sifting out empty images and tagging images of animals can be a very time-consuming task 

for researchers. Although workflow efficiency and task complexity are probably hugely variable 

in ‘real-world’ settings, our experience is that an operator can process on the order of 1,000-

5,000 images per day (assuming a basic task of tagging species and counting individuals). 

Recent advances in machine learning have seen the application of neural networks to this 

task to reduce the burden on researchers and reduce processing time (Swanson et al., 2015; 

Beery et al., 2018; Norouzzadeh et al., 2018; Tabak et al., 2019; Willi et al., 2019). In the 

largest comparison of machine learning architectures for the task of identifying species to date 

– based on the 3.2 million-image Snapshot Serengeti dataset – an overall accuracy of 93.8 % 

was achieved (Norouzzadeh et al., 2018). When restricted to only images the network was 

confident of having categorised correctly, this rose to 99.3%. Overall, automating the task of 

identifying species could have saved over 8.4 years of manual human labelling time if 

implemented from the outset (Norouzzadeh et al., 2018). More recent studies have achieved 

even higher accuracies of 95.6% (Schneider et al., 2020) and 97.6% (Tabak et al., 2019). In 

their review, Waldchen and Mader (2018) predicted that the number of tools available, and 

their application to species identification tasks, will continue to increase in the future. 

These high accuracy results are impressive, but do not provide the full picture since they 

represent performance when the network is trained and tested on images from the same 

camera trap locations. When networks are tested on images from camera locations unseen 

during training, performance invariably drops; the networks do not generalise well. Previous 

studies have reported varying accuracies in this case: 68.7% (Schneider et al., 2020) and 59% 

(Beery et al., 2018) when tested on unseen camera locations from within the camera trap 
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dataset, and 82% (Tabak et al., 2019) when tested on camera locations from an alternative 

dataset. This drop in performance could be due to variables such as changes to the 

background scenery, lighting, camera position or average distance of subject from camera. 

Performance can also be impacted by variation in the distribution and density of species 

recorded by each camera (Wei Koh et al., 2021). The issue of poor generalisability is not 

unique to automated classification of camera trap images, however. In the related context of 

acoustic detection in birds, networks generalised poorly to new conditions including differing 

species balances, noise conditions, or recording equipment (Stowell et al., 2019). Similarly, a 

14.4 % drop in marine mammal classifier accuracy occurred when testing on whistle data from 

a different region than that trained on (Erbs et al., 2017).  

Many applications of machine learning to classification thus far have had a particular 

geographic focus (Weinstein, 2018), but in order for these techniques to be widely applicable 

and impactful, architectures are required that can be used by multiple researchers on different 

datasets, ideally without having to perform the time-consuming network training at each new 

location (Wearn et al., 2019). In a world increasingly impacted by anthropogenic activity 

resulting in habitat degradation and fragmentation, it is also important that we have classifiers 

that are robust to changes in image background to facilitate long-term monitoring of habitats 

undergoing change. Otherwise, when conducting analyses using images classified by a 

network trained on images from pristine habitat, we risk drawing wrong conclusions if the new 

habitat has been altered to such an extent that the image backgrounds have changed. The 

impact of habitat degradation on network generalisability has not been considered to date. 

Here, we compare the performance of three established architectures to identify species in 

camera trap images taken from undisturbed and disturbed tropical forests in Borneo. We 

specifically aim to explore the extent to which a network is able to generalise, which we 

achieve by splitting the dataset into an environmental gradient of varying levels of habitat 

disturbance generated by historical logging. Our goals are to: (1) Assess the performance of 

established architectures and identify the best network for classifying images within our 

dataset; (2) Explore the impacts of training dataset configuration on overall performance, 

specifically restricting the data to common species only or increasing the number of images 

per species class included; (3) Use the disturbance level categories attributed to the camera 

trap locations to investigate the generalisability of the chosen network within our dataset; and 

(4) Compare generalisablity performance when images are cropped to bounding boxes. The 

results of this study will inform the robust application of automated image classification for 

monitoring biodiversity in habitats undergoing change. 
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2.3  Materials and Methods 

The dataset comprises camera trap images taken from the Stability of Altered Forest 

Ecosystem (SAFE) Project (Ewers et al., 2011) in Malaysian Borneo, a subset of which form 

the open access BorneoCam dataset. Camera trapping took place between May 2011 and 

March 2018, following the sampling procedure laid out in Wearn et al., 2013. Data was 

originally collected under approval from the Government of Malaysia, with the following permit 

numbers: Economic Planning Unit 40/200/19/2656; Maliau Basin Management Committee 

MBMC/2010/15, and Sabah Biodiversity Council JKM/MBS.1000-2/3 (84), JKM/MBS.1000-

2/2 JLD.7 (51), JKM/MBS.1000-2/2 JLD.5 (142), JKM/MBS.1000-2/2 JLD.4 (192) and 

JKM/MBS.1000-2/2 JLD.3 (125). This dataset makes an ideal case study since it represents 

a realistic ecological dataset, in terms of size and in level of imbalance between classes, and 

it comprises a variety of habitat disturbance levels. These images have previously been used 

to inform analyses of mammalian species abundance (Wearn et al., 2017), diversity (Wearn 

et al., 2016) and behaviour (Davison et al., 2019) across a gradient of land-use comprising 

unlogged forest, logged forest and oil palm plantations. Forest quality at the locations of 

individual camera traps has been quantified into a five-step disturbance scale: 1: undisturbed 

forest; 2: disturbed forest; 3: heavily-disturbed forest; 4: herbaceous scrub; and 5: open area 

(Wearn et al., 2017). (Full descriptions of disturbance categories are provided in Table 1.1.)  

The total raw data consisted of 753,442 images from 681 camera deployments. To construct 

a dataset of labelled images, untagged images were removed, as well as images captured 

during the setup process or a camera malfunction, or containing non-target (reptile or 

invertebrate) or multiple species. Empty images were also removed since we were interested 

in classification of species and so made the explicit assumption that the step of separating 

images into empty and non-empty had previously taken place. Camera traps (Reconyx 

HC500) were programmed to take a rapid burst of 10 images, termed a capture event. Image 

labelling for this dataset is at the level of images, rather than events. All non-empty images 

from a given event were allocated together to either the training or test dataset. A small 

proportion (0.05 % of images), where the event grouping was not recorded in the metadata, 

were discarded. This reduced the dataset to 378,000 images from 640 deployments. Both day 

and night images were included since previous studies have found this had little effect on 

performance (Norouzzadeh et al., 2018; Tabak et al., 2019). 

A minimum of 40 images or four capture events, per species class was imposed. To include 

as many species as possible, species that fell below this threshold were grouped together with 

related species, e.g. Hose’s civet Diplogale hosei images were included within the banded 

civet Hemigalus derbyanus class. These group classes comprised between 2 and 15 species 
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(detail provided in Table 6.2). To limit imbalance within the dataset, and to reduce computation 

time and resources required, the maximum number of images per class was restricted to 

5,000. We investigated an increased maximum per class (Figure 2.1) and found that it 

improved Top-1 accuracy while having a small impact on mean F1-score, suggesting that it 

resulted in more bias towards common classes. A 90:5:5 split for training, validation and test 

sets was used following Willi et al. (2019), and to ensure matching distributions across classes 

within the three sets (Appendix 1: Table 6.4, Figure 6.1: Number of (a) events, (b) cameras 

and (c) images in the training, validation, and test sets for the baseline dataset.Figure 6.1). 

This resulted in training, validation and test sets consisting of 76,637, 4,290 and 4,309 images, 

respectively, each containing images from 51 classes. Images were resized to 256 x 256 

pixels before passing to the neural networks. Data augmentation was also performed, 

consisting of random shearing, horizontal flipping, cropping and brightness modification 

(Appendix 1: Table 6.5). This is commonly carried out in image classification problems to 

bolster training data and prevent overfitting (Krizhevsky et al., 2012; Beery et al., 2018). 

To identify the best network for our dataset we compared performance of three architectures: 

VGG16 (Simonyan & Zisserman, 2015), Inceptionv3 (Szegedy et al., 2016) and ResNet50 (He 

et al., 2016). In each case, the network was pre-trained on ImageNet, which is a large 

database of quality-controlled, human-annotated images, including animal classes, and is 

commonly used to pre-train networks for image classification tasks (Deng et al., 2009). Our 

baseline hyperparameter settings were based on those used by Norouzzadeh et al. (2018). 

All models were trained for 40 epochs – more epochs and early stopping were also assessed 

with small changes in validation loss as the stopping criteria, but no difference was found in 

resulting models. 

As well as optimising hyperparameter settings for our dataset, we also investigated the impact 

of altered dataset configurations. We created a second dataset consisting of only the most 

common species by restricting the baseline dataset to classes that had a minimum number of 

1,000 images (rather than 40), which left 21 of the original 51 classes. We also created a third 

dataset in which the cap on the number of images per class was increased from 5,000 to 

10,000, which affected 11 of the 51 classes. In each case, performance was evaluated on the 

baseline and common-only test sets. 

2.3.1 Generalisability 

To form the datasets for comparing performance across individual habitat disturbance levels, 

we removed all images from locations without a disturbance score (26,546 images). We then 

formed two datasets: one following the same procedure as above, where all images from a 

single event were allocated to either the training or test set following a 90-10 split (event-level), 
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and one where 10 % of the cameras within each disturbance level were withheld to form a 

pool for the test set, with the remaining 90 % forming the pool of images for the training set 

(camera-level). For the event-level dataset, we imposed a minimum of four capture events per 

class per habitat type, leaving 14 classes. For the camera-level dataset, we restricted the data 

to classes which were captured on at least two cameras in all five disturbance levels, leaving 

14 classes. In both cases, we imposed a cap of 5,000 images per class. Only the best 

performing network, Inceptionv3, as identified from the initial network comparison, was used 

for the generalisability analysis. 

To assess the effect of increasing the number of disturbance levels included in the training set 

on generalisability, we trained the network on images from every possible combination of 

disturbance level. To negate the impact of varying numbers of images across the disturbance 

level combinations, for each dataset configuration we fixed the total number of training images 

per combination to the smallest individual disturbance level training set size, and randomly 

sampled images evenly across the included disturbance levels to meet this, ensuring all 

classes were captured. A test set was similarly formed for each individual disturbance level, 

ensuring consistent size and all classes included, and used to assess the performance of each 

combination on images from disturbance levels both seen and unseen during training.  

2.3.2 Bounding boxes 

One suggested method for improving generalisability is to use an object detector to locate 

animals within the image and pass the image cropped to the resulting bounding box to the 

network for training (Beery et al., 2018). Here, we passed the images used for the disturbance 

level combinations datasets through the Microsoft ‘MegaDetector’v3 (Beery, Morris, & Yang, 

2019). In most cases, a single object was identified, and the image was cropped to this 

bounding box and resized to 256 x 256 as above. Where more than one object was detected, 

we used the bounding box with highest confidence. In some cases, no object was detected 

despite being manually labelled as containing an animal. This was caused overwhelmingly by 

false negatives on the part of the MegaDetector, especially when animals were entering or 

exiting the field of view and were only partially visible (e.g. only parts of the legs or tail visible). 

These images were excluded from the generalisability analysis to create a fair comparison. 

To replicate performance in a ‘real-world’ scenario, however, a comparison of accuracy with 

and without these images included in the test sets is provided in Appendix 1 (Figure 6.7). 

The combined disturbance level datasets were then replicated using these bounding boxes in 

place of the whole images and the networks trained. We tested the networks on both the 

original test set for the disturbance level combinations, and the corresponding test set with 

images cropped to bounding boxes, for comparison. 
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2.3.3  Metrics 

Model performance was assessed against a test dataset which contained images distinct from 

those used to train the classifier. The performance metrics used are in line with those used in 

similar studies (Norouzzadeh et al., 2017; Beery et al., 2018; Tabak et al., 2019): (1) Top-1 

and Top-5 accuracy: the proportion of all individual images in the test set that were correctly 

classified within the top 1 or 5 predictions, respectively; (2) F1-score: the harmonic mean of 

precision and recall, where (a) Precision is the proportion of predictions per class that were 

correct, i.e. an indication of how reliable the predictions are for a given class; and (b) Recall is 

the proportion of images per class that were correctly identified, i.e. how fully detected a given 

class is; and (3) Top-1 accuracy on an event basis: the proportion of capture events that 

contain at least one correctly classified image. 

All metrics were evaluated for the initial network comparison, but generalisability was 

assessed using F1-score only. Since Top-1 accuracy is heavily influenced by the most 

common species, we consider F1-score to be a better metric to assess overall performance 

on an imbalanced dataset. 

2.4  Results 

2.4.1 Network and dataset comparison 

Performance of the three network architectures was comparable (Table 2.1), with the same 

pattern seen across the four metrics. All networks achieve higher Top-5 accuracy (mean 87%) 

and Top-1 event accuracy (mean 81%) than Top-1 accuracy on individual images (mean 

73%). F1-score is consistently lowest (mean 0.62). Following optimisation (Appendix 1, Figure 

6.3), we chose to proceed with the Inceptionv3 network on the basis of F1-score.  

Table 2.1: All metrics for the best configurations of VGG16, ResNet50 and Inceptionv3 evaluated on the baseline dataset. 

Architecture 
Top-1 

accuracy 
Top-5 

accuracy 
Top-1/event F1-score 

Inceptionv3 72.8% 86.5% 79.8% 0.63 

ResNet50 73.5% 88.6% 81.2% 0.62 

VGG16 73.2% 87.1% 80.8% 0.61 
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Figure 2.1: Summary metrics for the Inceptionv3 network. (a): Top-1 accuracy and F1-score for the Inceptionv3 network 
trained on the baseline dataset (max. 5,000 images per class, black), common species only dataset (white) and increased cap 
dataset (max. 10,000 images per class, grey) when tested on common species only (bars) and when tested on the baseline 
test dataset (x). Note: it is not possible to calculate F1-score for the network trained on the common species only and 
evaluated on the full baseline test set due to model structure. (b): F1-score per species class when evaluated on the baseline 
test set for the network trained on the dataset with an increased cap against trained on the baseline dataset, with a 1:1 line 
for reference. 
 

When evaluated on only the common classes, overall performance was comparable for the 

network trained on only the common species and the network trained on all species in the 

baseline dataset (Top-1: 76% and F1: 0.76 in both cases) (Figure 2.1(a)). Overall Top-1 

accuracy and F1-score were improved by  increasing the cap on the number of images per 

class in the training data (Top-1: 89%, F1: 0.84) (Figure 2.1(a)). Including the rarer species in 

the test set, that is, evaluating performance on the full baseline dataset, saw lower scores for 

both networks trained on the baseline dataset and on the increased cap dataset (Top-1: 73% 

and 83%, F1: 0.63 and 0.67, respectively). There was a bigger loss of performance in terms 

of F1-score than Top-1 accuracy with the inclusion of the rarer species (Figure 2.1(a)), 

reflecting the bias towards common species in the Top-1 accuracy metric. Including all of the 

rarer species' test images in the evaluation of the network trained on common species only 

results in an absolute reduction in Top-1 accuracy of 27% (Figure 2.1(a)). Species-level F1-

score and recall tended to increase with a greater number of training images available in the 

baseline dataset (Appendix 1: Figure 6.5). This was again demonstrated in the increased cap 
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dataset where all classes that benefitted from extra images saw an increase in F1-score, 

although the overall mean was  only slightly higher than that trained on the baseline dataset 

(mean F1: 0.67 and 0.63, respectively) (Figure 2.1(b)). This highlights the trade-off with 

increasing the imbalance within the training data, where some of the classes that did not have 

any additional training images saw a decrease in F1-score. 

2.4.2  Generalisability 

For the dataset split at event-level only, peaks in F1-score occurred where the network was 

trained and tested on images from the same habitat disturbance level (mean 0.76), while 

performance dropped substantially on disturbance levels not present in the training data 

(mean: 0.30) (Figure 2.2(a)). Although the distribution across classes for each disturbance 

level was roughly even, heavily disturbed forest had the greatest number of cameras and 

images (Appendix 1: Figure 6.2), which may have contributed to it achieving the highest F1-

score (0.46) on an unseen disturbance level. 
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Figure 2.2: Network generalisability. (a) Disturbance level comparison: F1-score per individual disturbance levels. White bars 
denote F1-score for the same disturbance level used in both training and testing. Filled bars denote F1-score for disturbance 
levels not seen during training. Results for the dataset split at event level are shown in black and at camera level in grey. (b) 
and (d):  Disturbance level combinations for the dataset split at event-level (circles) and camera-level (diamonds): F1-score 
for each disturbance level tested following training on a combination of disturbance levels. Every combination of disturbance 
level was included. Disturbance levels seen during training are denoted by a white marker, while those unseen are denoted 
by a black marker. The mean F1-score for each number of combinations is also marked. (c) and (e) Disturbance level 
combinations using bounding boxes: as for (b) and (d), respectively, but training was performed on images cropped to 
bounding boxes. Black symbols denote testing on images cropped to bounding boxes, while grey represent performance when 
tested on whole images. 
 

As the number of disturbance levels included within the training dataset was increased from 

one to four, the mean F1-score on the unseen habitats also increased (0.32, 0.41, 0.45, 0.49, 

respectively), that is, the network generalised better (Figure 2.2(b)). Conversely, F1-score for 

the disturbance levels seen during training tended to decrease (0.77, 0.76, 0.75, 0.74, 

respectively) (Figure 2.2(b)). Performance on unseen habitats was still relatively poor, 

however, when only one disturbance level was omitted from the training dataset (Figure 

2.2(b)). 

Using images cropped to bounding boxes in both the training and test sets improved both the 

overall mean F1-score (0.87) and generalisability (mean F1 score on unseen disturbance 

levels when trained on a combination of 1, 2, 3 and 4 disturbance levels, respectively: 0.72, 

0.80, 0.81, 0.84) (Figure 2.2(c)). Training on bounding boxes and testing on whole images 

showed a large drop in performance (Figure 2.2(c)). 

For the dataset split at camera-level, and network trained on whole images, performance on 

seen disturbance levels was slightly better than on unseen disturbance levels (Figure 2.2(d)). 

As with the event-level dataset, an improvement was seen when the number of disturbance 

levels included within the training data was increased (mean F1-score on seen disturbance 

level combinations of one, two, three and four levels, respectively: 0.32, 0.40, 0.42, 0.44; 

unseen: 0.27, 0.36, 0.41, 0.41, Figure 2.2(d)). Performance was best when the network was 

trained on all disturbance levels (mean F1-score: 0.47). 

Using bounding boxes on this dataset again improved performance, but overall F1-score was 

lower than that achieved with the event-level dataset (mean F1 on all five disturbance levels 

when trained and tested on cropped images: 0.77 vs 0.87, Figure 2.2(e)).  

In a ‘real-world’ scenario, in which the images containing an animal undetected by the 

MegaDetector are included in the test set, we can see that Top-1 accuracy drops by 5 % for 

the network trained on cropped images, since all of these images are deemed to be wrongly 

classified (Appendix 1: Figure 6.7(d)). For the network trained on whole images, performance 

does decrease, but to a lesser extent (1%) since the network has the opportunity to classify 

these images (Appendix 1: Figure 6.7(c)). 
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2.5  Discussion 

This is the first study to assess the application of automated image classification methods and, 

more specifically, the implications of poor generalisability of CNNs, when considered across 

a gradient of habitat disturbance in tropical rainforest. Our results highlight the ongoing issues 

with poor generalisability to unseen camera locations in camera trap image classification, as 

well as the additional problem of generalisability to changes in background associated with 

varying levels of habitat disturbance within a single camera trap dataset (Figure 2.2). Training 

across multiple disturbance levels improved generalisability, suggesting that these differences 

can be mitigated. Our results demonstrate that an awareness of variation in habitat 

backgrounds is required when planning a camera trap survey intended for automated 

classification, and when training the classifier. 

We found that in addition to classification accuracy being lower at unseen camera locations 

within a disturbance level, performance was worse in unseen disturbance levels. One 

important implication of a lack of generalisability across levels of habitat disturbance, 

particularly in the context of increasing levels of habitat change, is that classifiers should not 

be considered ‘static’. If a habitat changes over time, naturally or through anthropogenic 

impacts, new data and additional computer power may be needed to ensure derived 

classifications and ecological estimates are correct. Alternatively, a dataset comprising 

images from across the range of possible disturbances should be sought for training at the 

outset. Field ecologists wanting to use automated classification should therefore consider the 

generalisability issue when designing future camera trap surveys by stratifying their sites, a 

priori, by broad background types. 

Although we fixed the overall number of training images per disturbance level combination, 

the number of images per class was allowed to vary – by sampling in this way we aimed to 

replicate the abundance distribution of species within each habitat. Our analysis evaluated 

performance across all possible combinations of disturbance levels, which should mitigate the 

impacts of particularly distinct distributions of species in some disturbance levels. We 

additionally explored how our results changed when we only applied our classifier to the most 

abundant species within our study (Figure 2.1(a), Appendix 1: Figure 6.6), and found little 

difference. We also ensured that every class included occurred in both training and test sets 

to avoid differences in class distribution. Our results suggest that researchers working on 

smaller camera trap studies might see an improvement in classification performance if labelled 

images from other studies from similar habitat were to be added to their training data. Further, 

these results support the aggregation of images from across studies on platforms such as 
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Wildlife Insights (Ahumada et al., 2020) to enhance available training data and improve 

classification. 

Other researchers have found that a detector-classifier combination was more generalisable 

than a classifier alone when applied to their dataset (Beery et al., 2018). Our results from the 

bounding box analysis support this, showing that by focussing images on the animals present 

and reducing the amount of background, the network was better able to identify species across 

all disturbance levels (Figure 2.2(c) and (e)). The results also highlight the need to test on 

bounding boxes rather than the whole image (Figure 2.2(c) and (e)). This is important from a 

practical perspective, since all images would need to be passed through a detector before 

being classified, including any new test images from ongoing projects; this adds computational 

time. We note, however, that even with images cropped to bounding boxes, the impact of 

background differences across disturbance levels is still evident, with mean F1-score on 

unseen disturbance levels rising from 0.62, when a classifier is trained on a single disturbance 

level, to 0.73 for a classifier trained on four levels (Figure 2.2(e)). 

The use of an object detector highlighted some discrepancy between the expert labellers and 

the detector in identifying images as being empty. As a result, object detection may miss 

subjects that could have been classified correctly. In our data, the missed detections equated 

to a 5 % reduction in Top-1 accuracy (Appendix 1: Figure 6.7(d)). Although not the focus of 

this study, a review highlighted that in cases where only a very small part of the animal is 

visible, or the animal is mostly obscured by vegetation, a human has been able to identify that 

an animal is present using the visual aid of the whole event sequence, whereas a detector, 

without that context, could not. Image metadata has been found to improve both automated 

classification (Terry et al., 2020) and per-species detection performance (Beery et al., 2020) 

thus could similarly improve detection here.  

Since classification performance could have a significant impact on the outcomes of ecological 

studies, the choice of metric used is important. Our Top-1 accuracy scores (overall: 73%; 

generalisability analysis: 68%) were slightly lower than one other similar sized study (79% on 

seen locations (Beery et al., 2018)), but much lower than reported by others (>93.8% 

(Norouzzadeh et al., 2018), 98% (Tabak et al., 2019). Part of these differences might be due 

to the difficulty of the classification in different datasets, for example caused by the extent of 

the background noise that needs to be overcome in order to detect animals. Images from 

dense forest environments, as used here, might be expected to present a harder task than 

open grassland environments (e.g. Snapshot Serengeti as used in Norouzzadeh et al. (2017)). 

In addition, Top-1 accuracy is naturally dominated by the more common species and can 

therefore be a misleading metric. We chose to mostly report results as F1-scores here as this 
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combines precision and recall, and can more accurately reflect classification performance 

across classes. In practice, Top-5 accuracy can be useful for shortlisting possible species for 

manual classification, and Top-1 event accuracy can identify events for manual review, both 

resulting in time-savings. Future work might look into how  network performance is assessed 

in the context of the ecological questions we wish to ask with the data. In particular, an 

important extension could explore the impact of biases arising from poor generalisability 

across disturbance levels on resulting ecological studies (e.g. on bias and precision of state 

variable estimates, such as animal density and occupancy, or on the statistical power to detect 

differences between experimental treatments). 

Although the composition of training data was shown to influence image classification 

accuracy, including rarer classes did not compromise performance on more common classes, 

which is important for the continued inclusion of data on rare species to inform conservation 

efforts. The increased performance achieved through additional training images supports 

existing studies that have concluded that, although good results can be achieved on smaller 

training datasets, classification accuracy is generally improved by a larger training dataset 

(Willi et al., 2019). Here, we saw increased classification performance when the cap on 

common species was increased, which, through the use of the F1-score metric, we can 

confidently say was not driven by a simple numerical increase of correctly identified common 

species.  

Class imbalance is common within camera trap datasets, and has been shown to impair the 

performance of neural networks (Buda et al., 2018). The resulting difficulty in training neural 

networks on rare species is a known problem (Beery, Liu, et al., 2019). In practice, if a network 

is able to satisfactorily classify and remove common species such that manual classification 

is reduced to the rare species, this would still result in substantial time savings. For 

conservation projects, however, where rare species are the main interest, we might require 

better performance, especially in recall (since false negatives likely have a higher conservation 

cost than false positives). Specifically improving classification on rare species was not the 

focus of this study, but oversampling and weighted loss methods have been tried elsewhere 

with some success (Norouzzadeh et al., 2018; Terry et al., 2020). Others have tried generating 

artificial images containing the rare species or incorporating images from other datasets 

(Schneider et al., 2018; Beery, Liu, et al., 2019). Future work could therefore include applying 

these methods to this dataset and assessing performance.  

Despite the inherent difficulties with training on rarer species, and the general trend seen for 

increased F1-score with number of training images, we did see instances of high F1-score for 

relatively rare species (Appendix 1: Figure 6.5). There was also variation in performance on 
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the most common species. Future work will need to consider the degree of morphological 

variation within and among species as a possible contributing factor as to why networks are 

able to learn some species better than others. 

2.5.1 Conclusions 

This study highlights the ongoing issue of poor performance of automated species classifiers 

across unseen locations in camera trap studies. Importantly, it also demonstrates that unseen 

backgrounds (here disturbance levels) can further impair classification performance. Unseen 

locations in novel habitat disturbance-levels had poorer classification performance than those 

from unseen locations in habitat levels seen during training. Generalisability can be improved 

by the use of bounding-box object detection prior to species classification, but the use of 

bounding boxes did not completely eliminate the problem. As camera trap datasets become 

more abundant, and the use of machine learning for automated classification becomes more 

commonplace, it will be critically important to ensure that estimation of changes in ecosystem 

function and composition are not biased by methodological choices in detection and 

identification of species. This is particularly important in the context of current global 

biodiversity loss, for monitoring the impacts of anthropogenic activities on ecosystems and 

mitigating further declines. 
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Chapter 3 

3 How are spatiotemporal interactions between mammals 
in tropical forest impacted by land-use change and 

disturbance? 

3.1 Abstract 

Species interactions provide a link between biodiversity and ecosystem functioning, and have 

been identified as a potential mediator of species responses to environmental change. The 

impact of disturbance on species interactions is difficult to capture and has been poorly studied 

to date. 

Here, bearded pigs and humans are used as a case study to test for spatiotemporal avoidance 

in disturbed tropical forest using camera trap data. It has previously been shown that bearded 

pigs shift from diurnal activity in old-growth forest, to crepuscular in logged forest and to 

nocturnal in oil palm plantations (Davison et al., 2019). It was hypothesised that this could be 

due to avoidance of oil palm plantation workers, who are mostly active in the morning, or of 

the higher midday temperatures that occur in oil palm plantations. 

Linear mixed-effect models were constructed to model the duration between captures of the 

two species as a function of which species is recorded first. A separate model was constructed 

for each of two measures of environmental variation: land-use categories (old-growth forest, 

logged forest and oil palm) and habitat degradation due to logging, ranging from undisturbed 

forest to open area, to test for spatiotemporal avoidance across categories. 

No evidence of spatiotemporal avoidance of humans by bearded pigs was found. It was not 

possible to conclude whether this was due to the absence of the interaction occurring, or the 

inability to detect it due to insufficient sensitivity in the method, or insufficient data. It is possible 

that spatiotemporal avoidance was occurring, but that it was happening at a temporal scale 

too fine for the method to detect. This study highlights the challenge in being able to extract 

enough datapoints to power the method, such that reliable conclusions could be drawn, from 

a camera trap dataset representative of a long-term monitoring program. 

3.2 Introduction 

Environmental changes have both direct and indirect effects on ecosystem structures and 

processes (Rahman & Candolin, 2022). Species interactions provide a link between 

biodiversity and ecosystem functioning, and have thus been identified as a potential mediator 
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of species responses to environmental change (Morales-Castilla et al., 2015; Rahman & 

Candolin, 2022). The impact of habitat disturbance on mammalian wildlife has been 

demonstrated and measured through changes in abundance, richness and diversity (Rustam 

et al., 2012; Brodie et al., 2015; Wearn et al., 2016). The impact of disturbance on species 

interactions is less straightforward to capture and has been poorly studied to date (Meijaard & 

Sheil, 2008; Denis et al., 2019; Rahman & Candolin, 2022). 

One area that has seen, and continues to experience, considerable human-mediated 

disturbance are tropical rainforests undergoing logging and conversion to plantations. 

Comprising communities that are particularly vulnerable to extinction as a result of climate 

change (Wiens, 2016), it is especially important to understand the processes underlying the 

biodiversity changes in these areas. Some mammals have been previously shown to persist 

in logged forest, increasing in mean relative abundance by 28% from old-growth forest, but 

the opposite was seen in oil palm plantations with a 47% decrease compared to forest (Wearn 

et al., 2017). Species that are able to survive in disturbed landscapes are ecologically 

important but understudied.  

Bearded pigs, which are in decline and have been classified as vulnerable (IUCN), have been 

shown to persist in disturbed forest, despite a decline in relative abundance of 87% from old-

growth forest (Wearn et al., 2017). Through foraging, soil rooting and nest building, bearded 

pigs provide ecosystem services such as seed dispersal and are an ecologically important 

species (Malhi et al., 2022). In a study as part of the Stability of Altered Forest Ecosystems 

(SAFE) Project in Borneo, bearded pigs were found to shift from diurnal activity in old-growth 

forest, to crepuscular in logged forest and to nocturnal in oil palm plantations (Davison et al., 

2019). It was thought that this change in activity pattern could be due to avoidance of humans 

in the plantations, with workers there being mostly active between 7 am and midday (Davison 

et al., 2019).  

As well as, or as an alternative to, temporal partitioning to avoid competitors or predators, 

some species avoid others in space. Some evidence of spatial avoidance has already been 

discovered within the SAFE project area. In a study examining co-occurrence patterns of 

mammal species at the SAFE study site, 13 instances of spatial avoidance were found in old 

growth forest, three of which were in congeneric pairs: Maxomys rats (M. surifer and M. rajah), 

the greater and lesser (T. kanchil) mouse-deer, and the thick-spined and Malay porcupines 

(Hystrix crassispinis and H. brachyura) (Wearn et al., 2019). It was suggested that competition 

could be driving spatial niche separation in these species pairs (Wearn et al., 2019).  

The studies outlined above used data collected via camera trap surveys. The integration of 

spatial and temporal analyses of camera trap data has been highlighted as critical to improve 
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our understanding of the impact of anthropogenic disturbance and land-use changes on 

species interactions and community dynamics (Frey et al., 2017). Previous spatiotemporal 

analyses have found evidence of temporal partitioning among tropical forest mammals (Haidir 

et al., 2018; Santos et al., 2019). In their study of neotropical forest carnivores, Santos et al. 

(2019) found apparent spatial and temporal partitioning for most of the species pairs analysed 

using a combination of occupancy models and temporal activity overlap assessment. 

Comparatively, Haidir et al. (2018) found no evidence of spatial avoidance by two 

mesopredators in Sumatran tropical forest, but did find evidence for temporal niche separation, 

whereby clouded leopard appeared more nocturnal and thus had higher temporal overlap with 

more nocturnal prey species: porcupine and mouse-deer. Again, these authors used 

occupancy models, as well as Bayesian modelling and kernel density estimate associations. 

Limitations in using co-occurrence to infer species interactions have been raised by Blanchet 

et al. (2020), who argued that the complexity of ecological systems blurs the link between 

interactions and co-occurrence, and other methods and data besides presence-absence are 

needed. 

Following the suggestion in Davison et al. (2019) that the observed change in bearded pig 

behaviour between forest and oil palm could be avoidance of either humans or the higher 

temperatures in oil palm, I test the former here. Using the framework set-out by Niedballa et 

al. (2019) in their analysis of methods for detecting spatiotemporal interactions in camera trap 

data, I apply their best-powered method to the SAFE dataset to test for spatiotemporal 

avoidance of humans by bearded pigs as indicated by their temporal shift in activity. Since the 

dataset used contains measures of environmental change in both land use and habitat 

disturbance level, I consider a potential change in behaviour across both separately. Here, 

habitat disturbance corresponds to environmental variation due to the effects of logging and 

subsequent regeneration, ranging from undisturbed forest to open area (Wearn et al., 2017). 

I will test three hypotheses: (i) bearded pigs avoid humans in oil palm, (ii) bearded pigs avoid 

humans in open areas, and (iii) interactions between humans and bearded pigs vary across 

land-use categories and disturbance levels. Following Niedballa et al. (2019), in each case of 

hypothesised spatiotemporal avoidance of humans by bearded pigs, I would expect to see 

significantly longer durations between a capture of a human and the subsequent capture of a 

bearded pig than between a capture of a bearded pig and subsequent human. Where no 

interaction is occurring, I would expect to see no significant difference in interval durations. 
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3.3 Methods 

3.3.1 Dataset 

The dataset comprises camera trap data collected as part of the Stability of Altered Forest 

Ecosystems (SAFE) Project situated in tropical forest in Malaysian Borneo (Ewers et al., 

2011), and detailed in Chapter 1.2. This dataset comprises images from three land-use 

categories: old-growth forest, logged forest and oil palm plantations. Individual camera trap 

sites sampled during the initial survey were also given a score of habitat disturbance for a 5 

m radius around the sampling point. The disturbance levels are categorised on a scale 

comprising 5 levels from undisturbed forest to open area (see Table 1.1 for details). Note that 

camera trap sites not included within the initial survey have not been given a disturbance level 

score.  

For this analysis, all images used during camera trap setup, or tagged with malfunction or an 

incorrect time stamp, were removed from the dataset. To ensure independence of capture 

events, consecutive triggers of the same species occurring within 30 minutes of each other 

were grouped to one event (Burton et al., 2015; Davison et al., 2019; Easter et al., 2020).  

3.3.2 Analysis 

In their assessment of methods for detecting spatiotemporal interactions using simulated 

camera trap data, Niedballa et al. (2019) considered four methods: linear models (using both 

log-transformed and untransformed response variables), the Mann–Whitney U-test, a 

permutation test and a test based on randomly generated records. All tests were assessed as 

valid, above a minimum of 10 records per species, but a linear model using a log-transformed 

response was found to be the most suitable approach for spatiotemporal avoidance (Niedballa 

et al., 2019). The response variable used was time intervals between recordings of two 

species: AB and BA where the notation represents the order of the events, e.g. AB is the time 

interval between an event capturing species A and the next event of species B, and vice versa. 

These intervals have been used in previous analyses of camera trap data: Harmsen et al. 

(2009) found evidence of spatiotemporal avoidance between jaguars and pumas using a 

similar linear model approach, while Karanth et al. (2017) found minimal spatiotemporal 

overlap of three sympatric carnivores using a permutations approach. 

3.3.2.1 Interval extraction 

The duration of intervals between capture events of the two species were extracted from the 

data using the sequence of events at each camera for each deployment as a separate time 

series. Here, a “human-bearded pig” interval represents the time between a capture of a 

human and the subsequent capture of a bearded pig, and a “bearded pig-human” capture is 
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the reverse. It was assumed for this analysis that the presence of other species did not impact 

the behaviour of the two species of interest, so detections for all other species were ignored. 

For bearded pig-human intervals, where multiple detections of a bearded pig occurred before 

a subsequent detection of a human, only the interval between the last detection of a bearded 

pig in the sequence and the first subsequent human was recorded, and similarly for human-

bearded pig intervals. 

3.3.2.2 Linear model 

For this analysis, a linear model was constructed with the log10 of the interval duration as the 

response variable and pair orientation as a fixed effect explanatory variable, following 

Niedballa et al. (2019). The pair orientation variable is a factor consisting of two levels and 

refers to whether the interval is between a capture of a bearded pig followed by a human 

(bearded pig-human), or a human followed by a bearded pig (human-bearded pig). In their 

study, Niedballa et al. (2019) considered a single camera, whereas the SAFE dataset 

comprises images from multiple cameras, so I therefore also added camera site as a random 

effect. Spatiotemporal avoidance of humans by bearded pigs is expected to result in 

significantly longer human-bearded pig intervals compared with bearded pig-human intervals. 

3.3.2.3 Environmental variation 

To investigate whether the interaction between bearded pigs and humans changes with 

habitat disturbance, two measures of environmental variation were considered within the 

model. The interactions are first considered across land-use categories including old-growth 

forest, logged forest and oil palm. These are incorporated into the model as an additional 

explanatory factor variable. The interactions are then separately evaluated across habitat 

disturbance levels, consisting of undisturbed forest, disturbed forest, heavily-disturbed forest, 

herbaceous scrub and open area. These levels are informed by the score given to each 

camera trap site at the time of deployment. Similarly to the land-use model, a disturbance level 

factor variable is included as an additional explanatory variable.  

3.4 Results 

3.4.1 Camera trap events 

Following grouping of detections occurring within 30 minutes, the dataset contained 2,377 

bearded pig events and 1,627 human events. These events were unevenly distributed across 

both land-use categories and habitat disturbance levels (Figure 3.1). The majority of bearded 

pig images were captured in logged forest (2,006), with only a small number (39) in oil palm 

(Figure 3.1(a)). Human captures in logged forest and oil palm were similar in number (716 and 

715, respectively), but much lower in old-growth forest (196).  
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Capture events for bearded pigs across disturbance levels were similar (range: 235-283), 

except for a higher number (1,000) seen in heavily-disturbed forest (Figure 3.1(b)). Human 

captures varied more across disturbance levels, with 557 capture events in open area, but 

only 69 in disturbed forest. 

 

Figure 3.1: Number of camera trap events. Number of independent camera trap capture events per (a) land-use category and 
(b) habitat disturbance level. Note that “NA” represents detections from camera traps without a habitat disturbance score. 
 

Bearded pig captures occurred during the day - predominantly in the morning - in old-growth 

forest, around dawn and dusk in logged forest, and during the night in oil palm, as expected 

(Figure 3.2(a)). The distribution of bearded pig captures in undisturbed forest closely follows 

that of old-growth forest, while in all other disturbance levels, there are peaks around dawn 

and dusk, with smaller peaks during the night (Figure 3.2(c)). Human captures consistently 

occurred during the daytime (between 6 am and 6 pm) in all land-use categories and habitat 

disturbance levels (Figure 3.2(b) and (d)).  
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Figure 3.2: Distribution of detection times for bearded pigs and humans. Density of detection times for independent capture 
events of (a) bearded pigs and (b) humans in land-use categories, and of (c) bearded pigs and (d) humans in habitat 
disturbance levels. 
 

3.4.2 Intervals between species 

After extracting the interval durations between species from the camera trap time series, the 

dataset comprised 265 intervals in total from logged forest, 27 in old-growth forest and 28 in 

oil palm (Figure 3.3(a)). Intervals across disturbance levels were also unevenly split with 

approximately 100 in each of heavily-disturbed forest and open area, but only 22 in disturbed 

forest and 27 in undisturbed forest (Figure 3.3(b)). 
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Figure 3.3: Number of intervals extracted. Number of intervals between captures of bearded pigs and humans (grey) and 
humans and bearded pigs (white) extracted per (a) land-use category and (b) habitat disturbance level. Note that “NA” 
represents detections from camera traps without a habitat disturbance score. 
 

The interval durations were longer in old-growth forest (median 10 days for bearded pig-

human intervals and 9 days for human-bearded pig intervals) compared to the other land-use 

categories (1 day for bearded pig-human intervals in both logged forest and oil palm; 3.5 and 

4.5 days for human-bearded pig intervals in logged forest and oil palm, respectively) (Figure 

3.4). 
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Figure 3.4: Distribution of interval durations across land-use categories. Shown for bearded pig-human intervals (black) and 
human-bearded pig intervals (blue). The median (dashed line) and mean (dotted line) interval durations are also plotted. 
 

Similarly, the interval durations were longer in undisturbed forest (median 10 days for bearded 

pig-human intervals and 9.5 days for human-bearded pig intervals) compared to the other 

disturbance level categories (Figure 3.5). A reduction in median interval duration with 

increased disturbance was seen, with the shortest interval durations recorded in herbaceous 

scrub and open area (median 0.9 days for bearded pig-human intervals and 1.2 days for 

human-bearded pig intervals in both) (Figure 3.5). 
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Figure 3.5: Distribution of interval durations across habitat disturbance levels. Shown for bearded pig-human intervals (black) 
and human-bearded pig intervals (blue). The median (dashed line) and mean (dotted line) interval durations are also plotted. 
 

3.4.3 Land-use category model 

Modelling interval duration against land-use category showed no evidence of spatiotemporal 

avoidance of humans by bearded pigs in any land-use category (Figure 3.6(a)). The interval 

durations were longer in old-growth forest compared to the other land-use categories. There 

was no significant difference in predicted interval durations between the pair orientations 

(Figure 3.6(b)). 
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Figure 3.6: Results for the land-use mixed-effect model. (a) Model coefficients and (b) predicted model intervals. This model 
takes the duration between detections of bearded pigs and humans as the response variable, with pair (the order in which 
the species occur) and land-use category as explanatory variables, including the interaction between these explanatory 
variables. The intercept (not shown) comprises interval durations between a bearded pig and subsequent human in old-
growth forest. 
 

3.4.4 Disturbance level model 

In the disturbance level model, a trend can be seen for shorter interval durations with 

increasing disturbance (Figure 3.7). As with the land-use category model, no evidence of 

spatiotemporal avoidance of humans by bearded pigs was found. For all disturbance levels 

except undisturbed forest, the human-bearded pig intervals are predicted to be longer than 

the bearded pig-human intervals, but not significantly so (Figure 3.7(b)).  

(a) (b) 
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Figure 3.7: Results for the habitat disturbance level mixed-effect model. (a) Model coefficients and (b) predicted model 
interval durations. This model takes the duration between detections of bearded pigs and humans as the response variable, 
with pair (the order in which the species occur) and disturbance level as explanatory variables, including the interaction 
between these explanatory variables. The intercept (not shown) comprises interval durations between a bearded pig and 
subsequent human in undisturbed forest. 
 

3.5 Discussion 

In this study, I have investigated whether spatiotemporal avoidance of humans by bearded 

pigs can be detected in a camera trap dataset taken from disturbed tropical forest, where a 

shift in bearded pig activity patterns has previously been observed (Davison et al., 2019). 

Using a method previously identified as optimal (Niedballa et al., 2019), I found no evidence 

to support the hypothesis that bearded pigs avoid humans in oil palm plantations. It is not 

possible to conclude whether this was due to the absence of the interaction occurring, or the 

inability to detect it due to insufficient sensitivity in the method, or insufficient data. 

It has previously been shown that bearded pigs shift their daily activity pattern from diurnal in 

old-growth forest to nocturnal in oil palm (Davison et al., 2019). In their study, the authors 

found that human and bearded pig activity periods did not overlap in oil palm, and their ranges 

overlapped minimally. It was suggested that the shift in activity pattern in bearded pigs could 

be an avoidance of oil palm plantation workers, or avoidance of the higher midday 

temperatures that occur in oil palm compared to forest. The authors noted that a lack of early 

morning activity by bearded pigs when microclimates would be favourable lent weight to the 

avoidance of humans hypothesis (Davison et al., 2019). The results here do not support this 

hypothesis. 

Further, the distribution of human detections shows that human activity consistently occurs 

during the daytime across land-use categories (Figure 3.4(c)). The majority of human 

(a) (b) 
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detections were recorded between 6 am and 12 pm in oil palm, and slightly later in logged and 

old-growth forest, with a peak around 11 am and 12 pm, respectively. With consistent diurnal 

human activity, we might expect more crepuscular or nocturnal bearded pig behaviour in other 

land-use categories. Davison et al. (2019), however, note that old-growth forest offers more 

cover than the other categories, so experiences less extreme temperatures and provides a 

buffer between the species.  

It is possible that there is spatiotemporal avoidance occurring, but that it is happening at a 

temporal scale that is too fine for the method to detect. The average interval times extracted 

from the data ranged from 1 to 10 days, so it might be unrealistic to expect to detect any 

responses happening on scales of minutes or hours. Re-runs of the analysis with a focus on 

shorter timescales of 7 days and 2 days also did not provide evidence in support of the 

hypothesis, however, and were under-powered due to a reduction in data (Appendix 2). The 

process of data extraction for this method means that while bearded pig activity patterns in oil 

palm appear nocturnal, there are detections during the day, and these “outliers” could be 

influencing the results here and masking any underlying avoidance process, especially for the 

smaller number of intervals extracted in this land-use. A cross-validation analysis to assess 

the influence of individual data points might provide insight into whether this is the case, but 

again is challenging with the paucity of data. 

These results showed a trend for shorter interval durations, for both interval orientations, with 

increased disturbance (Figure 3.6(b), Figure 3.7(b)). This is an unexpected result since with 

less overlap in activity, we might expect longer durations between records of the two species. 

This trend does not follow the abundance pattern seen for bearded pigs, which show an 

increase from old growth forest to logged forest then a decrease to oil palm (Wearn et al., 

2017) so is not a consequence of higher abundance resulting in more frequent camera trap 

triggers. It could be a result of increased human activity with disturbance such that human 

detections occur more frequently, thus reducing interval durations between captures of the 

two species.  

The camera trap dataset used in this analysis is taken from a long-term project designed to 

capture biodiversity and ecosystem function change as forests are impacted by human 

disturbance. The survey was consequently designed to cover a range of habitat types, and 

camera traps were placed at random within the sampling design. Other species interactions 

studies have designed camera trap surveys specifically to capture their species of interest, by 

placing them along roads or known trails (Karanth et al., 2017; Haidir et al., 2018). In these 

targeted camera trap surveys, we might expect to capture the species of interest more 

frequently and to build a more accurate representation of their behaviour. It is possible that 
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the method used here might perform better in these datasets, which more closely represent 

the simulated camera trap data, than on a more general monitoring camera trap survey as 

used here. 

Although the dataset met the minimum requirements for this method to be valid (>10 records), 

the requirement for the analysis to be reliable (>50 records) (Niedballa et al., 2019) was not 

met for all land-use categories or disturbance levels. This dataset was taken from an extensive 

survey, which captured thousands of bearded pig and human events. It resulted in small 

numbers of datapoints (intervals between species) for the analysis, however. This method 

relies on both species of interest being captured on the same camera, such that intervals 

between the two can be extracted. Where species have a spatial avoidance interaction, they 

may not be captured on the same cameras, thus providing no or limited data to power the 

analysis. In my dataset, where only one of the species was captured, no interval could be 

recorded, and the data discarded. Further, during the interval extraction process, where a 

sequence of detections of one species was captured before a detection of the other species, 

only one interval is recorded, that is, the shortest duration between the two species so results 

in only one datapoint. 

This study has highlighted that a method that works well on simulated data does not 

necessarily translate across to real data. In their analysis, Niedballa et al. (2019) simulated 

strong spatiotemporal avoidance in just two species on one camera. Using a linear model, the 

authors were able to detect this avoidance. In my dataset, I have more than 50 species and 

in focussing on just one species pair, the detections of all other species were excluded. The 

analysis therefore assumed that the behaviour of the two species of interest was unimpacted 

by the presence and behaviour of any other species. This assumption would hold for most 

human behaviour, where the humans captured are researchers or plantation workers, but 

hunting has also been recorded in the study area and in these instances, the humans are 

likely tracking targeted species.  

Another weakness in this method is that results could misrepresent any interaction as a result 

of the relative timing of activity peaks. Considering the temporal activity patterns of humans 

and bearded pigs reported by Davison et al. (2019), it is possible that using this method, any 

spatiotemporal avoidance could be masked by the peaks in activity impacting the durations 

observed. For instance, species that do not interact but have activity peaks that are 6 hours 

apart might appear to interact via this method due to the intervals for species A-species B 

being approximately 6 hours, while the intervals for species B-species A would be 

approximately 18 hours, which could present as a significant difference. It is consequently 

difficult to set clear expectations for detecting an interaction. An alternative interval, such as 
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AA vs ABA, as used by Zalewska et al (2021), would provide a “control”. In this case, the 

influence of the presence of humans could be assessed by comparing the interval durations 

between bearded pig captures when a human is present compared with when the human is 

absent. 

Many interaction studies using camera trap data have used co-occurrence analyses to infer 

interactions between species (Ramesh et al., 2017; Davis et al., 2018; Parsons et al., 2019). 

Challenges with this approach have been highlighted by Blanchet et al (2020), who argue that 

the complexity of ecosystems blurs the link between species interactions and cooccurrence. 

In their analyses of mammal species at the SAFE project, Wearn et al (2019) agree that while 

little evidence of spatial avoidance was found in their study, it is possible that the species were 

segregated in time or vertically in space (e.g. in the forest canopy), which the cooccurrence 

analyses were not able to detect. The method used here utilises the detection of a species in 

both space and time so is a step forward, although it also cannot account for vertically 

segregated species. This study demonstrates the importance of considering both spatial and 

temporal data to gain a more complete understanding of behavioural processes. 

Species interactions remain an important topic of study, and particularly in species such as 

the bearded pig, which modify the habitat around them and are able to persist in tropical forests 

that have been impacted by human disturbance. As habitats continue to undergo 

anthropogenic change, capturing the subsequent changes in the interactions between the 

species present could provide vital insight into the impacts on biodiversity. The challenges in 

being able to power the method used in this study such that reliable conclusions can be drawn 

from a camera trap dataset that is representative of a long-term monitoring program, however, 

have been highlighted here. We need methods that are able to detect species interactions, 

but the complexity of ecosystems and the corresponding network of interacting species 

continues to present challenges to the analysis.  
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Chapter 4 

4 Detectability of competitive avoidance and predator-
prey interactions in a simulated camera trap survey 

4.1 Abstract 

Species interactions, including competition and predation, can play a dominant role in shaping 

ecological communities, particularly in mammals. They are, however, difficult to directly study 

due to logistical challenges in capturing the behaviour and performing experiments. Species 

interactions can be inferred from indirect observations, such as through camera traps. 

An evaluation of methods for detecting spatiotemporal avoidance in simulated camera trap 

data previously identified a linear model of time intervals between species detections as 

effective. This analysis featured only one camera, however, thus it did not represent a typical 

camera trap survey performed in the field.  

Here, I construct an agent-based model (ABM) to simulate the movement of multiple 

individuals from two species around a camera trap ‘grid’ for one week. Each simulation is 

performed 100 times. This forms a camera trap dataset to which I apply a linear mixed-effect 

model to detect simulated interactions between species. I further consider the thresholds 

required in species population density and camera trap density, as well as interaction zone 

radius as a proxy for interaction strength, for the interaction to be detected. 

I have shown that this method can detect avoidance and attraction behaviour. Attraction 

behaviour could be detected at all but the weakest strength, while avoidance could only be 

detected at maximum strength, and with a cap of 72 hours applied to the maximum interval 

duration. Since both interaction behaviours produced the same qualitative results, difficulty in 

discerning the specific interaction at play could be challenging in real-world data analyses 

using this method. Applying a previously identified threshold in data volume required to power 

the analysis suggested that for the parameter values investigated here, a camera trap density 

of 2/km2 would be required for a population density of ~0.1/km2., while a camera trap density 

of 1/km2 is sufficient for larger populations. 

4.2 Introduction 

Species interactions have been described as the “architecture of biodiversity” (Bascompte & 

Jordano, 2007). Interactions such as competition and predation can play a dominant role in 

shaping ecological communities, particularly in mammals (Palomares & Caro, 1999; Sinclair 

et al., 2003). Where we are able to capture data on species interactions, we are able to glean 
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insights into ecosystem processes. Further, if we are able to monitor species interactions in 

the long-term such that we are able to identify any changes in frequency or spatiotemporal 

occurrence, for example, we may be able to mitigate any subsequent impacts on biodiversity 

(Caravaggi et al., 2017).  

Species interactions are difficult to directly study, but can be inferred from indirect 

observations, such as through camera traps (Amir et al., 2022). Previous spatiotemporal 

analyses of animal behaviour using camera trap data have discovered adaptability in 

behaviour across gradients of resource availability (Karanth et al., 2017), avoidance behaviour 

(Harmsen et al., 2009; Ross et al., 2013; Ramesh et al., 2017), and temporal partitioning 

(Haidir et al., 2018; Santos et al., 2019).  

Niedballa et al. (2019) identified that a linear model of the time interval between captures of 

individuals from two different species was the most powerful method for detecting 

spatiotemporal avoidance between two species using camera trap data. One shortcoming of 

this study was the analysis simulated camera trap data from two individuals on only one 

camera. In practice, a camera trap survey commonly comprises multiple camera placements 

and can capture many individuals of the same species, so any analytical methods applied 

need to take this into account. 

In Chapter 3, I applied a recommended method for detecting spatiotemporal avoidance 

between species in camera trap data to the SAFE dataset, but was unable to detect an 

interaction. It was not clear whether the inability to detect the interaction was due to the 

absence of the interaction or a weak interaction strength, or insufficiencies in the method or 

volume of data. Therefore, here I explore the volume of data and interaction strength required 

to power the method to detect modelled interactions. I construct an agent-based model (ABM) 

to simulate the movement of multiple individuals from two species around a camera trap ‘grid’ 

to form a dataset. I then apply the linear model suggested in Niedballa et al. (2019) to assess 

the ability of this method to detect interactions between species.  

ABMs are an ideal framework for this simulation since they allow a ‘bottom-up’ approach, in 

which individuals, rather than the population as a whole, are modelled (Mortensen et al., 

2021). In ABMs, rules are applied at each time-step to update the status of each individual 

agent. ABMs have previously been applied to ecological problems such as predicting 

population trajectories for reintroduced species (Andersen et al., 2022), assessing movement 

of mammals in conservation priority areas to highlight areas requiring restoration or mitigation 

(Jayadevan et al., 2020), and the evaluation of effective predator control methods (Latham et 

al., 2019; Pacioni et al., 2021). 
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In this application, I create a set of rules tailored to each species that allow me to simulate 

movement according to different interactions. I use these to investigate the impact of 

interaction strength, population density and camera trap density on our ability to detect 

spatiotemporal avoidance and predatory stalking using the method outlined by Niedballa et al. 

(2019). I aim to identify thresholds in these parameters, beyond which competitive avoidance 

and/or predation can be captured. Three interaction scenarios are considered, in addition to a 

control scenario in which all agents follow a Correlated Random Walk (CRW). I use the SAFE 

Project (Ewers et al., 2011) situated in Borneo as a case study to inform the study site size 

and the population densities of the species within the model.  

4.3 Methods 

4.3.1 Simulation model 

An agent-based model (ABM) was constructed in Python to simulate the movement of 

individuals around an 8 km x 8 km study site. The model comprised two species, A and B, 

both of which consisted of a population of either 6, 12 or 24 individual agents. These 

population sizes were calculated from estimated mammal densities from a previous camera 

trap study, which suggested that most mammal species have densities less than 0.25/km2 in 

tropical forest (Wearn et al., 2022). Movement speed (0.15 m/s) was similarly taken from a 

previous camera trap study (Rowcliffe et al., 2016). Each individual was assigned a randomly 

generated starting location within the study site, and a randomly generated direction of travel. 

A time-step size of 10 seconds was chosen to allow for time between camera trap triggers, 

assuming that when a camera trap is triggered, it takes a rapid burst of 10 images over 

approximately 5 seconds (Wearn et al., 2022). At each time-step, the agents’ locations were 

updated according to the interaction scenario (Figure 4.1). 100 simulations were performed 

for each combination of parameter values, with each simulation lasting for 1 week (60,480 

time steps). 

Interaction strength is modelled as the distance within which the presence of an individual 

from the other species triggers the interaction behaviour. A range of interaction zone radii are 

considered between 15 m and 150 m. These values were chosen based on the vision distance 

of 15 m used in the predator-prey ABM constructed by Wheatley et al. (2020), and the 

recorded flight initiation distances of black-tailed deer of up to 150m, with most data points 

between 25 and 100 m (Stankowich & Coss, 2006). 

Table 4.1: Parameter values used in simulations, with sources. 

Parameter Value(s) Source/Notes 

No. simulations 100 - 
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Study site size 8 km x 8 km SAFE project size 

No. camera traps 64, 128, 256 Represent densities of 1, 2 and 4 per km2. 

Camera trap studies vary greatly in camera trap 

spacing and density, from 20 per km2 

(Caravaggi et al., 2016) to 1 per 2 km2 (Santos 

et al., 2019). The densities used here were 

chosen to balance representing data captured 

at different spatial scales with the computational 

power required. 

No. species 2 - 

No. agents per 

species 

6, 12, 24 Most mammal species have densities <0.25 

km2 at SAFE (Wearn et al., 2022). Here, 6 and 

12 represent densities ~0.1 and 0.2 per km2. 24 

provides an additional higher density for 

comparison. 

Time step size 10 seconds To allow for camera being triggered to take 10 

images. 

Length of simulation 1 week - 

Velocities 0.15 m/s Speed trap CT paper (Rowcliffe et al., 2016) 

data for Red brocket deer. 

Standard deviation 

for normal 

distribution of theta 

π/24 Chosen to tune moving angle in CRW. 

Avoidance/attraction 

zone radius 

15 m, 25 m, 50 

m, 75 m, 100 m, 

150 m 

Range of values between 15 m (Wheatley et al., 

2020) and 150 m (Stankowich & Coss, 2006): 

- Wheatley et al., (2020) used a 15 m vision 

distance in their predator-prey ABM  

- Stankowich & Coss ( 2006) (Fig2b): black-

tailed deer, flight initiation distance up to 150m, 

but most data points between 25 and 100 m 

Kill zone radius 1 m Wheatley et al., 2020 
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Camera trap trigger 

detection distance 

6 m Based on red deer (Table 3, Hofmeester et al., 

2017). Wearn et al., (2022) also suggests a 

range of 2-10 m, depending on species. 

Grouping into 

capture event 

30 mins To ensure independence of capture events, 

consecutive triggers of the same species 

occurring within 30 minutes of each other were 

grouped to one event (Burton et al., 2015; 

Davison et al., 2019; Easter et al., 2020). 

 

4.3.2 Interaction scenarios 

Scenario 1: Correlated random walk (CRW): control 

In the first scenario, used as a control, both species followed a correlated random walk (CRW) 

with no interactions occurring (Figure 4.1(a)). At each time step, each agent received a new 

direction of travel (theta) sampled from a normal distribution with their previous direction as 

the mean and with a constant standard deviation of π/24. The agent’s location was then 

updated using this new theta and their speed. 

Scenario 2: One-way avoidance: weak competitor avoiding a strong competitor, or prey 

avoiding predator 

In this scenario, individuals of species A avoid individuals of species B, while species B follows 

a CRW as in Scenario 1. At each time step, for each agent from species A, a scan is performed 

to identify the locations of any agents from species B that are within their avoidance zone 

(Figure 4.1(b)). If any are found, the vector between the two agents is calculated and used to 

update the trajectory of the species A agent such that they move in the opposite direction to 

where the species B agent is located (Figure 4.1(d)). Where more than one species B agent 

is located within the avoidance zone of a species A agent, an average is taken such that the 

species A agent is moving away from all of the species B agents equally (Figure 4.1(c)). 

Scenario 3: One-way attraction: predator stalking prey 

Here, species A continues on a CRW while species B is attracted towards individuals from 

species A. Similarly to Scenario 2, at each time step, for individuals from species B, a scan is 

performed to identify the locations of any agents from species A within their attraction zone 

(Figure 4.1(e)). Again, the vector between the agents is calculated and this is used to move 

the agent from species B towards an agent from species A. In contrast to Scenario 2, where 

there are multiple species A agents within the interaction zone, the agent from species B 
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orients towards the closest agent from species A (Figure 4.1(g)). Once the agent from species 

B is within a kill zone radius from the species A agent, that species A agent is killed and 

regenerates randomly within the study space to maintain the population densities (Figure 

4.1(f)). 

Scenario 4: Combined avoidance and attraction: predator-prey relationship 

In this combination, species A avoids species B (as in Scenario 2) while species B is attracted 

towards species A (as in Scenario 3). The same mechanisms are used as described above. 

 

Scenario 1: Correlated random walk 

 

At each time step, agents from both 

species continue in a direction similar to 

their previous step, unaffected by the 

presence or proximity of other agents. 

 

Scenario 2: One-way avoidance 

 

No agents from species B (white) are in 

the avoidance detection zone (dashed 

black circle) for the species A agent 

(black) so all agents move as per CRW. 

 

(a) 

(b) 
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Both species B agents (white) are within 

the avoidance detection zone of the 

species A agent (black). 

 

The species A agent moves in a 

direction that is equally opposite to the 

two species B agents, while the species 

B agents continue on a CRW. 

 

 

One species B agent (white square) is 

within the avoidance detection zone of 

the species A agent (black). 

 

The species A agent moves in the 

opposite direction to where the species 

B agent is located, while both species B 

agents continue on a CRW. 

 

Scenario 3: One-way attraction 

 

No agents from species A (black) are in 

the attraction detection zone (black 

circle) for the species B agent (white) so 

all agents move as per CRW. 

(c) 

(d) 

(e) 
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All species A agents (black) are within 

the attraction detection zone (black 

circle) of the species B agent (white). 

One species A agent (rhombus) is within 

the kill zone (red circle) so is killed and 

regenerates elsewhere. 

 

The species B agent moves in the 

direction of the closest remaining 

species A agent (black pentagon), while 

the species A agents continue on a 

CRW. 

 

One species A agent (black pentagon) 

is within the attraction detection zone of 

the species B agent (white). 

 

The species B agent continues to move 

towards this species A agent, while all 

species A agents continue on a CRW. 

Figure 4.1: Model schematic for Scenarios 1-3. Figure (a) depicts a correlated random walk, Figures (b)-(d) illustrate 
movement within the avoidance scenario and Figures (e)-(g) show movement within the attraction scenario. 
 

4.3.3 Camera traps 

Camera trap locations were randomly generated using camera-trap densities of 1/km2, 2/km2 

and 4/km2. Each agent trajectory was compared with the camera trap locations, and ‘triggers’ 

recorded for instances where an individual was situated within the camera trap detection 

distance of 6 m (Hofmeester et al., 2017). Consecutive triggers for individuals of the same 

species that occurred within 30 minutes were grouped together to form one capture event, 

following common procedure for analysing observational camera trap data to ensure 

independent events (Burton et al., 2015; Davison et al., 2019; Easter et al., 2020). 

(f) 

(g) 
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4.3.4 Analysis 

4.3.4.1 Interactions and data collection 

I first measured the number of interaction events occurring within the ABM simulations and 

compared across scenarios and parameter values to quantify the impact of increasing the 

camera or agent density, as well as interaction strength. I repeated this for the camera trap 

events recorded across the simulations. 

4.3.4.2 Intervals analysis 

The duration of intervals between a capture event of species A and the next capture event of 

species B, and vice versa, were then extracted. The subsequent analyses were based on 

comparisons of the distribution, mean and median of these interval durations for each 

scenario.  

Following the approach highlighted by Niedballa et al. (2019), a linear mixed model was 

constructed for each scenario with the log10 of the interval durations as the response variable, 

the pair orientation (see note below) as a fixed-effect explanatory variable and camera location 

as a random effect (Table 4.2). For Scenarios 2-4, the interaction zone radius was also 

included as a fixed-effect explanatory variable via an interaction term with the pair orientation 

(Table 4.2). Results were deemed significant where the absolute value of the associated t-

value was greater than 2. 

Note that the pair variable is a factor with two levels: AB and BA, where AB represents an 

interval between a camera trap capture of an individual from species A and the subsequent 

capture of an individual from species B, while BA represents the reverse.  

In the CRW scenario, where no interactions are occurring, no significant difference is expected 

between the durations of AB intervals compared with BA intervals. In the avoidance scenario, 

where species A agents avoid species B agents, significantly longer BA intervals than AB 

intervals are expected. Similarly, for the attraction scenario, where species B agents move 

towards species A agents, AB intervals are expected to be shorter than BA. 

Table 4.2: Model formulae used in R. 

Scenario Model Formulae 
1. CRW log(duration) ~ pair * n_agents + pair * n_cams + (1|camera) 
2. One-way 

avoidance 
log(duration) ~ pair * avoid_radius + pair * n_agents + pair* n_cams + 
(1|camera) 

3. One-way 
attraction 

log(duration) ~ pair * attract_radius + pair *  n_agents + pair * n_cams + 
(1|camera) 

4. Combined log(duration) ~ pair * avoid_radius * attract_radius + n_agents + n_cams 
+ (1|camera) 
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4.3.4.3 Maximum interval duration cap 

To investigate the ability to detect interactions when focussed on shorter timescales, I imposed 

caps on the maximum interval duration included within the analysis for the avoidance and 

attraction scenarios. For each cap, the dataset was reduced to only intervals with durations 

less than or equal to the cap, and the linear model re-run using this restricted data. The 

timescale on which species interactions occur can vary greatly; average interval durations 

from the analysis in Chapter 3 ranged from 0.9 to 10 days so caps of 1 to 6 days were applied, 

as well as shorter caps of 6 and 12 hours. The number of intervals available for the analysis 

at each cap is considered alongside the linear model results to explore the trade-off between 

a shorter timescale and data availability. 

4.3.4.4 Applying the Niedballa et al. (2019) threshold 

In their study, Niedballa et al. (2019) found that more than 10 records per species were 

required for their method to be valid, and more than 50 records per species were required for 

their method to produce reliable results, that is, for it to have power > 0.8. Here I apply this 

threshold as the requirement to extract 50 of both AB and BA intervals for each parameter 

setup to identify the combination of population and camera trap densities, and interaction zone 

radius required. 

4.4 Results 

4.4.1 Avoidance and attraction scenarios 

4.4.1.1 Interactions and data collection  

An increase in the interaction zone radius predictably resulted in more interaction events 

occurring in the simulations (Figure 4.2), with the largest radii of 150 m generating between 

22 and 36 times the number of interaction events per simulation seen at the smallest radii of 

15 m. This did not impact the number of camera trap triggers or intervals extracted in the 

avoidance scenario (Appendix 3: Figure 8.1 and Figure 8.4), but an increase in both with 

interaction zone radius was seen in the attraction scenario (Appendix 3: Figure 8.2 and Figure 

8.5). Both increasing the number of agents and increasing the camera trap density resulted in 

an increase in the number of intervals between species extracted for the analyses for all 

scenarios (Figure 4.3). Since more capture trap events were recorded in the attraction 

scenario than for the CRW or avoidance scenarios, particularly at the highest camera trap 

density, more intervals between species were extracted (4193 vs 3078 and 3084 for the CRW 

and avoidance scenarios, respectively, at a camera trap density of 4/km2, Figure 4.3).  
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Figure 4.2: Interaction rates. Avoidance (circles), attraction (triangles) and kill (rhombus) rates per simulation for avoidance 
and attraction scenarios, respectively, comprising 6 (white), 12 (grey) and 24 (black) agents per species. Note that a log10 
scale has been used for the y-axis. 
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Figure 4.3: Number of intervals extracted for Scenarios 1-3. Mean number of intervals extracted from the simulated camera 
trap data at camera densities of 1/km2 (blue), 2/km2 (black) and 4/km2 (red) for the CRW (circles), avoidance (cross) and 
attraction (plus sign) scenarios. 
 

4.4.1.2 Intervals analysis: distribution 

Increasing both the number of agents per species and the camera density reduced the overall 

mean and median interval duration for Scenario 1: CRW (Table 4.3, Figure 4.4). 

Table 4.3: Median and mean interval duration in days for Scenario 1: CRW. 
 Population size 

(no. agents per species) 
Camera density 

(per km2) 
 6 12 24 1 2 4 

Median (days) 1.97 1.82 1.73 1.84 1.80 1.72 

Mean (days) 2.21 2.19 2.03 2.11 2.11 2.04 
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Figure 4.4: Distribution of interval durations for Scenario 1: CRW. Density is shown for population sizes of (top) 6, (middle) 12 
and (bottom) 24 agents per species at camera densities of 1/km2 (black), 2/km2 (dark grey) and 4 /km2 (light grey). The mean 
(dotted line) and median (dashed line) are also plotted. 
 

Comparing across interval pairs, the distributions for AB intervals for CRW and avoidance are 

similar, but for intervals BA we see fewer instances of the shortest durations in the avoidance 

scenario than for the CRW scenario (Figure 4.5). The mean and median interval duration for 

BA in the avoidance scenario are also greater than for the AB intervals (mean: 2.07 vs 1.97; 

median 1.76 vs 1.57) (Figure 4.5). Intervals for the attraction scenario are concentrated close 

to zero, with a higher peak for AB intervals than for BA (AB median: 0.62 days vs BA median 

1.05 days) (Figure 4.5). The mean and median for both pair orientations are shorter than for 

the CRW and avoidance scenarios (Figure 4.5). 
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Figure 4.5: Distribution of interval durations per pair orientation for Scenarios 1-3. Interval durations for Scenario 1: CRW 
(blue), Scenario 2: one-way avoidance (red) and Scenario 3: one-way attraction (black) for intervals between an individual 
from species A followed by a capture of an individual from species B (top) and the reverse (bottom). The median interval 
duration (dashed line) and mean (dotted line) for each scenario and pair orientation are also shown. In all scenarios presented, 
data was taken from the simulations with 24 agents per species and a camera density of 4/km2 for maximum data input. The 
avoidance scenario here illustrates maximum avoidance (zone radius 150 m). The attraction scenario is represented by 
moderate attraction (zone radius 75 m). 
 

The size of the avoidance zone radius had no visible effect on interval duration length, even 

with maximum interaction strength, that is, radius 150 m, and maximum population and 

camera trap densities (Figure 4.6(a)). Conversely, for the attraction scenario, increasing the 

interaction strength, that is the attraction radius zone, reduced the median interval durations 

for 24 agents at all camera trap densities, and for 12 agents at the highest camera trap density 

(Figure 4.7). For maximum population and camera densities, and interaction zone radius, the 

interval durations are very short in the attraction scenario with a median of 40 seconds (Figure 

4.6(b)) (vs 1.69 and 1.67 days for CRW and avoidance, respectively), and a mean of 1.03 

days (vs 1.99 and 2.02 days for CRW and avoidance, respectively).  
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Figure 4.6: Boxplots for Scenarios 2 and 3 at maximum parameter values. (a) Scenario 2: one-way avoidance and (b) Scenario 
3: one-way attraction, with maximum population size (24 agents) and camera trap density (4/km2). The x-axis displays 
interaction zone radius with 0 for a CRW.  
 

 

Figure 4.7: Boxplots for Scenario 3: one-way attraction. The x-axis for each sub-plot shows the attraction zone radius. The 
plots show increasing camera density from 1/km2 (left column), 2/km2 (middle column) to 4/km2 (right column), and 
increasing population size for each species from 6 (bottom row), 12 (middle row) to 24 (top row) agents per species.  
 

(a) (b) 
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4.4.1.3 Intervals analysis: interaction-detection model 

For the CRW scenario, a linear model of interval durations following Niedballa et al. (2019) 

showed no significant difference in the interval duration for intervals BA and AB, as expected. 

There was also no significant effect on interval duration with increasing number of agents or 

camera density (Figure 4.8). 

 

Figure 4.8: Model coefficient estimates for Scenario 1: CRW (control). Note that the intercept (not shown) contains AB 
intervals for 6 agents per species at a camera density of 1/km2. 
 

For the avoidance scenario, only maximum population and camera trap densities were found 

to be significant in reducing interval durations, with no significant difference between AB and 

BA intervals (Figure 4.9). 
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Figure 4.9: Model coefficient estimates for Scenario 2: one-way avoidance. Note that the intercept (not shown) contains AB 
intervals for a CRW with 6 agents per species and a camera density of 1/km2. 
 

In Scenario 3: one-way attraction, BA intervals were found to be significantly longer than AB 

intervals for attraction zone radii greater than or equal to 25 m (Figure 4.10). AB interval 

durations were also shown to significantly decrease with increased attraction zone radius 

(Figure 4.10). 
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Figure 4.10: Model coefficient estimates for Scenario 3: one-way attraction. Note that the intercept (not shown) contains AB 
intervals for a CRW with 6 agents per species and a camera density of 1/km2. 
 

Model-predicted interval durations show a trend for longer BA intervals than AB intervals in 

the avoidance scenario, but with overlap at all avoidance zone radii (Figure 4.11(a)). In the 

attraction scenario, the model-predicted interval durations tend to zero with increasing 

attraction zone radius (Figure 4.11(b)). At each radius, the durations for BA are longer than 

for AB, and with no overlap in values from an attraction zone radius of 25 m (Figure 4.11). 
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Figure 4.11: Model-predicted interval durations for Scenarios 2 and 3. (a) Scenario 2: one-way avoidance and (b) Scenario 3: 
one-way attraction. The x-axis shows the avoidance and attraction zone radius, respectively. 
 

4.4.1.4 Maximum interval duration cap 

Applying a cap on the interval duration included in the analysis reduces the number of 

datapoints. For setups with maximum parameter values, that is, maximum population size (24 

agents per species), camera density (4/km2) and interaction zone radius (150 m), the number 

of intervals extracted reduces from 3,007 and 5,619 for avoidance and attraction, respectively, 

to 232 and 3,116 for a cap of 6 hours (Figure 4.12(b)). For setups with minimum parameter 

values, that is the smallest population size (6 agents per species), camera density (1/km2) and 

interaction zone radius (15 m), the number of intervals included in the analysis reduces from 

62 and 67 for avoidance and attraction, respectively, to 3 and 16 at a cap of 6 hours (Figure 

4.12(a)) 

(a) (b) 
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Figure 4.12: Cap on interval durations: number of intervals extracted. Number of intervals extracted for the avoidance (circles) 
and attraction (triangles) scenarios from setups with (a) minimum parameter values, i.e. 6 agents per species, camera density 
of 1/km2 and an interaction zone radius 15 m, and (b) maximum parameter values, i.e. 24 agents per species, camera density 
of 4/km2 and interaction zone radius 150 m. The x-axis shows the maximum interval duration permitted in hours. 
 

With a cap imposed on the interval durations included in the model data, interactions can be 

detected at smaller radii (Figure 4.13). For the attraction scenario, the interaction could be 

detected for radii of 25 m or greater with no cap applied, but with a cap of 6 days or less, the 

interaction can also be detected at the smallest radius of 15 m (Figure 4.13(b)). For the 

avoidance scenario, the interaction can be detected for the largest radius of 150 m with a cap 

of 24 or 72 hours imposed, while interactions at a radius of 75 m or larger could be detected 

for a cap of 6 or 12 hours (Figure 4.13(a)). 
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Figure 4.13: Maximum cap on interval durations: interaction zone radii at which the interaction can be detected. Interaction 
zone radii at which the (a) avoidance and (b) attraction interaction can be detected, that is, radii for which a significant 
difference between BA and AB interval coefficients is found in the corresponding model. Bars depict that the interaction is 
detectable at that radius, while blank space depicts radii at which the interaction is not detected in the model. The x-axis 
shows interaction zone radii and the y-axis shows the maximum interval duration in hours. 
 

4.4.1.5 Applying the Niedballa et al. (2019) threshold 

Applying a threshold of 50 intervals for each pair orientation found that a population size of 12 

agents was sufficient to generate enough datapoints for all camera densities (Table 4.4). For 

the smallest population size of 6 agents and camera density of 1/km2, only the setup with 

maximum attraction zone radius (150 m) met the requirements. Removing the corresponding 

data from these setups did not alter the results (Appendix 3: Figure 8.7 and Figure 8.8). 
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Table 4.4: Parameter setups that did not meet the Niedballa et al. requirements of 50 intervals per pair orientation for the 
analysis. 

Scenario No. agents Camera density 
(/km2) 

Interaction zone 
radius (m) 

1. CRW 6 1 NA 

2. Avoidance 
6 1 All 

6 2 75 

3. Attraction 6 1 15 - 100 

 

4.4.2 Combined scenario 

4.4.2.1 Interactions and data collection 

In Scenario 4: combined avoidance and attraction, the number of camera trap events 

generated, and intervals extracted, was impacted by both the camera density and number of 

agents, increasing with both, as per the previous scenarios (Figure 4.14). 

 

Figure 4.14: Number of intervals extracted for Scenario 4: combined avoidance and attraction. Mean number of intervals 
extracted from the simulated camera trap data at camera densities of 1/km2 (blue), 2/km2 (black) and 4/km2 (red). 
 

4.4.2.2 Intervals analysis: distribution 

Interval durations tended to decrease with increased attraction zone radius in the combined 

scenario (Figure 4.15). With avoidance radius greater than attraction radius, results are similar 

to the avoidance scenario, while for attraction radius greater than or equal to avoidance radius, 
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results are similar to the attraction scenario (Figure 4.15). For a medium-length attraction zone 

radius (75 m), interval durations for BA are consistently longer than for AB, but both increase 

with increased avoidance (Figure 4.15).  

 

Figure 4.15: Boxplot for Scenario 4: combined attraction and avoidance, with a camera density of 4/km2. The x-axis for each 
sub-plot shows the avoidance zone radius. The plots show increasing attraction zone radius from 15 m (left column), 75 m 
(middle column) to 150 m (right column), and increasing population size for each species from 6 (bottom row), 12 (middle 
row) and 24 (top row) agents per species. 
 

4.4.2.3 Intervals analysis: interaction-detection model 

In the combined scenario, for small attraction zone radii, an increase in interval duration with 

increased avoidance radius for both pair orientations can be seen (Figure 4.16). As the 

attraction radius increases, it dominates the output, with shorter interval durations seen as a 

result. In all instances, the model-predicted results show longer intervals for BA than AB 

(Figure 4.16), without overlap where attraction strength is greater than or equal to avoidance 

strength. 
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Figure 4.16: Model-predicted interval durations for Scenario 4: combined attraction and avoidance. The x-axis for each 
subplot shows the avoidance zone radius, while the subplots from left-right show attraction zone radii 15m, 75 m and 150 m. 
 

4.5 Discussion 

This study has extended the approach previously identified as the best-powered for detecting 

spatiotemporal avoidance in a time series on one camera trap, to consider performance when 

considering triggers across a camera trap grid and with multiple individuals per species in the 

landscape. Using an ABM to model different interaction scenarios, I have shown that this 

method can detect avoidance and attraction behaviour. For the parameter values used, 

attraction could be detected at all but the weakest strength, that is, from an interaction zone 

radius equal to or greater than 25 m. Avoidance, however, could only be detected with a cap 

of 72 hours applied on the maximum interval durations included. This study has highlighted 

the difficulty in discerning the specific interaction at play, since all interaction scenarios 

produced the same qualitative results.  

Increasing the avoidance zone radius had no impact on the number of camera trap triggers 

(Appendix 3: Figure 8.1), but an increase in attraction zone radius resulted in a higher number 

of camera trap triggers (Appendix 3: Figure 8.2). In the avoidance scenario, a single time-step 

can be enough to encompass the full avoidance interaction event, meaning the majority of 

time-steps are capturing a simple CRW rather than a continuous series of avoidance 

interactions. By contrast, in the attraction scenario, the predator moves closer to the prey at 

each time step until a kill occurs, meaning a trigger by a prey agent that is being stalked will 

be followed by a trigger from the stalking predator. It is also possible for a prey agent to be 

stalked by multiple predators since each predator will move towards whichever prey agent is 

closest within their attraction zone. This could result in clumping or herding where multiple 
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agents are close together. In this instance, if they were to be within the detection zone of a 

camera trap, many images would be captured. 

For one-way avoidance, fewer instances of the shortest durations were seen than for the CRW 

scenario, particularly for the BA intervals, but the interaction could only be picked up by the 

linear model when the interaction strength was strongest, i.e. avoidance zone radius 150 m, 

and a cap of 72 hours was applied. This is in agreement with Niedballa et al. (2019) who found 

that the reliability of the method is dependent on interaction strength, with a strong interaction 

required. This suggests that small-scale avoidance could be difficult to detect in camera trap 

data. For detecting differences in species interactions, between habitat types for example, we 

would need a big shift in behaviour in order to detect it using this method. The attraction 

interaction in the model was stronger than for avoidance since the interaction persisted 

through multiple time-steps. Consequently, the distribution of interval durations was skewed 

towards lower values (Figure 4.5) and the model was able to detect the interaction from the 

smallest attraction zone radius with a cap of 6 days. Attraction was therefore dominant in the 

combined scenario, with avoidance strength only having an impact for weak attraction (15 m 

radius). In reality, avoidance behaviour can be triggered by scent, sound or other visual cues, 

besides the presence of an individual competitor or predator. Avoidance of a site might 

therefore be triggered by, and sustained due to, the scent of an individual after it has moved 

on, for example, which is not captured in this model. 

Although this method is able to detect that an interaction is occurring, discerning the underlying 

mechanism is challenging since the three interaction scenarios present the same qualitative 

results: both avoidance of species B by species A, and attraction towards species A by species 

B, resulted in longer BA intervals than AB intervals. The complexity of ecological systems has 

previously been argued to blur the link between species interactions and measurable 

parameters, such as, co-occurrence (Blanchet et al., 2020). Similarly, the blur here between 

following and leading behaviour results in attraction appearing as avoidance behaviour. 

Predator-prey relationships in tropical forest have previously been shown to be weak (Brodie 

& Giordano, 2013) so we might need an alternative method or metric that is better able to 

detect these weaker interaction effects. 

An avoidance or attraction zone radius was used here as a proxy for interaction strength. An 

alternative probabilistic approach to modelling interaction strength could be used, whereby 

interaction strength is represented as a probability of the interaction response occurring. The 

results here support the finding of Niedballa et al. (2019) that statistical power is strongly 

affected by interaction strength. In my analysis, an interaction strength of 1, represented by 

an avoidance zone radius of 150 m, could not provide reliable detection of the interactions for 
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the avoidance scenario. The analysis would subsequently be unable to detect a reduction in 

strength. Responses to land-use change or anthropogenic disturbance could include changes 

in interaction strength, so methods need to be robust to this.  

In generating the camera trap data, both increasing the number of agents or the camera 

density resulted in an increase in the number of camera trap triggers. This is expected since 

increasing the density of either will result in any individual coming into proximity of a camera 

trap more frequently. In their study, Niedballa et al. (2019) found that more than 50 records 

per species were required for their method to produce reliable results, that is, for it to have 

power > 0.8. Interpreting that threshold in terms of the number of intervals here suggests that 

a camera trap density of 2/km2 would be required for population sizes of 6 agents, 

representative of a population density of ~0.1/km2., while a camera trap density of 1/km2 is 

sufficient for larger populations (Table 4.4). Removing the corresponding data from these 

setups did not alter the results here as all setups were combined in the model (Appendix 3: 

Figure 8.7 and Figure 8.8). Applying this threshold in this context provides guidance to 

researchers on the suitability of this approach for any population density of interest and what 

camera density might be required for future interactions studies using camera trap surveys. 

However, these results should only be interpreted within the range of parameter values used.   

The camera traps simulated in this study are always triggered if an animal is within the 

detection zone, and feature a 360˚ “lens”. In reality, camera traps can only be triggered and 

take images in the direction they are facing, and they can malfunction so that they fail to trigger. 

These aspects have not been included within our study but could be considered in future work. 

Camera traps can also be triggered by changes in light or movement of foliage by the wind, 

for example, but these “blank” images would be removed from analyses so this missing aspect 

would have no impact on our results. Animals can be seen to investigate camera traps in 

photos, and species sensitive to human disturbance might avoid areas with repeated human 

visitation (George & Crooks, 2006). Both of these would impact animal behaviour, and could 

consequently impact species interactions, but the general impact on animal behaviour due to 

camera traps is minimal and not the focus of this study.  

The main focus of this study was on the ability to detect species interactions within camera 

trap data, but translating our results to real-world camera trap data relies on the assumptions 

that were built into our basic animal movement simulations. We note in particular that the ABM 

we constructed necessarily simplified some aspects of biological realism. These include 

absence of pauses in the animal movement; instead, each agent’s location was updated at 

each time-step with no possibility of staying in the same location. The velocity was chosen to 

replicate the speed at which an individual may cover a certain area so incorporated stalled 
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foraging behaviour to a degree, but we would expect individuals to pause to sleep for a period 

of time over the week in which the model ran. Since the purpose of the ABM was to generate 

camera trap triggers for the subsequent evaluation of the power needed to detect the modelled 

interactions, and animals would not be generating triggers while sleeping, sleep was not 

modelled. In future work, to develop the model such that it could more realistically represent 

the 24-hour activity pattern of specific species, periods of rest could be incorporated. 

Another simplification in the ABM was the use of a constant movement speed, yet in the real 

world, prey that detect a nearby predator might either freeze or flee. Consequently, the 

addition of a freeze state and/or acceleration for prey fleeing attack, as well as a slow stalking 

pace and/or acceleration for predators giving chase, might better replicate predator-prey 

events. A time or distance-limit for predators following a prey individual would also allow the 

prey to escape predation. Including a maximum speed, which can be used while fleeing or 

giving chase, and applying a limit of 30% (Wheatley 2020), for example, for foraging or stalking 

would be one way to incorporate speed variation.  

Finally, future work might want to consider the effect of environmental variation within the 

model. Animal movement has been shown to vary according to habitat, with individuals moving 

more slowly through complex habitats (Wheatley et al., 2020) and generally moving less in 

highly productive habitat areas as they are able to gather resources in a small area (Mueller 

et al., 2011). The inclusion in the model of refuges for prey to shelter in and obstacles for both 

predators and prey to navigate (Wheatley et al., 2020), or waterholes and foraging hotspots 

where individuals aggregate, would allow for more biological realism, such that interaction 

behaviour could be more accurately modelled and explored. The incorporation of a vegetation 

index to represent different habitat types (Tucker et al., 2021) would further allow behaviour 

to be tailored to the environment and for the impact of concurrent interactions and 

environmental effects to be investigated.  
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Chapter 5 

5 Discussion and Conclusion 

Species interactions are a vital component of ecosystems, yet are poorly understood. With 

ongoing climate change and anthropogenic disturbance, we must be able to capture, monitor 

and understand how ecosystem processes, such as species interactions, are impacted so that 

we are better positioned to mitigate against negative outcomes. Camera trap surveys provide 

us with the ability to capture large volumes of data with minimal disturbance to natural 

behaviour. The use of camera trap data for ecological analyses is a growing field, with the 

potential for transformative analysis, including in our understanding of species interactions. 

Reliable rapid processing of the images, as well as sensitive methods to detect interactions, 

are, however, still lacking. 

5.1 Automated classification of camera trap images 

5.1.1 Key findings 

In Chapter 2, I applied automated image classification, in the form of convolutional neural 

networks, to a large, species-rich camera trap dataset to explore the performance of three 

established architectures and to investigate generalisability across a gradient of habitat 

disturbance in tropical rainforest. Classification performance was found to be worse on both 

unseen camera locations, and unseen disturbance levels. These results highlighted the 

ongoing issues with poor generalisability to unseen camera locations, as well as the additional 

problem of poor generalisability to changes in background associated with varying levels of 

habitat disturbance within a single camera trap dataset.  

Training across multiple disturbance levels improved generalisability, suggesting that an 

awareness of variation in habitat backgrounds is required when planning a camera trap survey 

intended for automated classification, and when training the classifier. Using a bounding-box 

object detector in conjunction with the classifier also improved both overall performance and 

generalisability, but did not completely eliminate the problem. These results support the 

aggregation of images from multiple camera trap surveys to enhance available training data 

and subsequently improve classification. Further, as habitats change over time, whether 

naturally or through anthropogenic disturbance, classifiers similarly need to be considered as 

dynamic and retrained with images representative of the modified backgrounds.  
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5.1.2 Recent developments 

A recent step-forward in the state of the art is the use of an ensemble of Data-efficient image 

Transformers (DeiTs) (Kyathanahally et al., 2022). DeiTs differ from CNNs in that they 

consider image patches, rather than individual pixels, and employ an attention mechanism 

that identifies the most relevant part of the image. Ensemble models take an average of 

predictions from several individually trained models. Kyathanally et al. (2022) validated an 

Ensemble of DeiTs (EDeiTs) on ten ecological image datasets, including images of plankton, 

coral reefs, insects, birds and large animals, in both colour and black-and white, with and 

without backgrounds. Single-model performance of DeiTs matched alternative CNN models, 

while the ensembles of DeiTs significantly outperformed the previous state-of-the-art 

ensemble of CNN models, in both accuracy and better classification of rare species 

(Kyathanahally et al., 2022). The increase in performance seen in the study was attributed to 

higher disagreement between individual models, compared with CNNs, which tend to produce 

similar predictions.  

The DeiTs used by Kyathanally et al. (2022) had a similar number of parameters and required 

similar computational power to the equivalent CNNs. DeiTs also have the advantage of being 

more transparent than CNNs in that they identify the part of the image on which the model is 

focussed, and they are more robust to perturbations such as occlusions (Naseer et al., 2021). 

They have additionally been shown to be more robust to data shift (Paul & Chen, 2022), 

whereby test images differ from the training images, due to sampling method, instrument 

degradation, environmental variation, etc. (Moreno-Torres et al., 2012). This robustness to 

data shift could result in increased generalisability across camera locations and disturbance 

levels. 

The application of DeiTs to an aggregation of camera trap data collected across multiple 

locations, habitats and disturbances, such as that on Wildlife Insights (Ahumada et al., 2020) 

could be a critical step towards making robust classifiers. 

5.2 Detection of species interactions 

5.2.1 Key findings 

In Chapter 3, I set out to test for spatiotemporal avoidance of humans by bearded pigs. 

Davison et al. (2019) previously showed that bearded pigs shift their activity pattern from 

diurnal in primary forest, to crepuscular in logged forest and nocturnal in oil palm plantations. 

In explanation of this result, the authors hypothesised that this behavioural shift could be due 

to bearded pigs avoiding plantation workers, who were active in the morning, or avoiding the 

higher daytime temperatures that occur in oil palm (Davison et al., 2019). My analysis did not 
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find evidence to support the avoidance of humans hypothesis, but it was not possible to 

conclude whether this was due to the absence of the interaction occurring, or the inability to 

detect it due to insufficient sensitivity in the method, or insufficient data. 

It is possible that any behavioural responses that may be occurring are happening at a 

temporal scale that is too fine for the method to detect. The average interval times extracted 

from the data ranged from 1 to 10 days, so it might be unrealistic to expect to detect any 

responses happening on the scale of minutes, for example. To focus in on shorter timescales 

is at the cost of exclusion of data. This analysis, therefore, highlighted challenges in being 

able to power methods such that reliable conclusions can be drawn about species interactions 

from a camera trap dataset representative of a long-term monitoring project. These 

interactions remain important to understand and capture, particularly for species such as the 

bearded pig, which modifies the habitat and is able to persist in disturbed habitat. This study 

also highlighted the challenge in assessing the effectiveness of methods for detecting 

interactions in real data. Previous research had highlighted a linear model of time intervals 

between species detections as best-powered for detecting spatiotemporal avoidance between 

two species (Niedballa et al., 2019), but in evaluating performance on a simulated dataset for 

one camera trap, many of the challenges in real-life camera trap datasets were overlooked.  

To explore how the results from Chapter 3 are impacted by data availability, as well as 

population size, camera trap density, and interaction strength, in Chapter 4 I constructed an 

agent-based model (ABM) to further evaluate our ability to detect avoidance, as well as 

predatory stalking, in a simulated camera trap survey. This analysis highlighted the difficulty 

in discerning the type of behaviour detected since both avoidance and attraction presented 

the same qualitative result via the method used; knowledge of the species’ ecology and 

ecosystem would be required to help inform this. 

This analysis also demonstrated the need for a strong interaction. Interaction strength was 

modelled here as the distance from which the avoidance or attraction behaviour is triggered, 

with the weakest and strongest interactions represented by an interaction zone radius of 15 m 

and 150 m, respectively. For attraction behaviour, whereby the interaction occurred over 

multiple sequential time-steps until a kill occurred, the interaction was detected at all but the 

weakest strength with no cap imposed. For avoidance behaviour, however, where the 

interaction could be resolved in just one time-step, the strongest interaction could only be 

detected with a cap imposed on the interval durations considered. This suggests that any 

similarly small-scale changes in behaviour, as a result of habitat disturbance, for example, 

would be similarly difficult to detect due to the challenges in capturing enough data to perform 

the analysis. These behaviours could therefore be missed using existing methods. 



83 
 

5.2.2 Alternative methods for inferring species interactions 

5.2.2.1 Extended occupancy models 

Other methodological approaches to investigating species interactions using camera trap data 

include the use of occupancy models. In their critique of this approach, Blanchet et al. (2020) 

argued that species interactions could be wrongly inferred from co-occurrence signals that 

arise simply due to habitat preferences, rather than an interspecific interaction. Recent 

approaches have consequently extended basic occupancy models to incorporate a 

continuous-time detection process (Kellner et al., 2022; Parsons et al., 2022). This extension 

allows for simultaneous analysis of species interactions in space and time, through site 

occupancy and activity patterns, respectively, while accounting for imperfect detection (Kellner 

et al., 2022). The addition of the temporal component to the model lends support to any 

consequent inference of interspecific interactions by allowing for corroboration of spatial 

findings (Parsons et al., 2022). 

Applied to a camera trap survey of coyote and white-tailed deer in the USA, Kellner et al. 

(2022) found evidence of both spatial and temporal interactions between the two species. At 

sites where coyotes occurred, deer were found to have greater overall detection intensity. This 

co-occurrence pattern was thought to be a result of either predation, whereby coyotes seek 

sites in which deer are present, or a shared preference for edge habitat. There was also a shift 

in deer detection distribution to proportionally more diurnal in the presence of coyotes, 

suggesting the deer were avoiding the primarily nocturnal coyotes (Kellner et al., 2022). The 

authors further found that coyotes were less likely to occur at hunting sites; this was in direct 

contrast with previous analyses of the same data set (Kays et al., 2017), but was consistent 

with the earlier study’s a priori predictions, that hunting would locally reduce coyote 

abundance. The inclusion of the temporal data in the approach by Kellner was argued to result 

in a more intuitive finding, and highlights the importance of accounting for species interactions 

in occupancy models (Kellner et al., 2022).  

In their application to carnivore competition along an urbanisation gradient, Parsons et al. 

(2022) also found evidence of spatiotemporal avoidance of coyote by gray foxes using 

Kellner’s approach. In a previous analysis, which used spatial data only, Parsons et al. (2019) 

found no support for their hypothesis that smaller competitors (gray fox) use humans as 

shields against larger competitors (coyotes) at higher levels of urbanisation. By incorporating 

temporal data, however, they were able to uncover a behavioural mechanism, that is, gray 

foxes avoided rural areas with sparse forest after a coyote had passed by. The spatiotemporal 

analysis provides evidence for an interaction occurring between the two species, whereas a 

pattern identified using spatial data only could be the result of an interaction occurring or a 
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response to unmodelled covariates. The results of this study re-emphasise the need to 

consider temporal behaviour patterns when investigating species interactions mediated by 

human disturbance (Parsons et al., 2022). 

In highlighting the limitations of previous analyses of species activity patterns and interactions 

using passive data, Kellner et al. (2022) state that these analyses either ignored imperfect 

detection, were limited to sites where all species cooccur, or required binning data such that 

fine-scale changes in activity patterns, which indicate temporal partitioning in site use, were 

lost. The linear model approach used in this thesis made use of the continuous detection data 

camera trap surveys collect, and has the advantages of being quick and straightforward to 

implement, as well as allowing for the addition of covariates to be modelled. A significant 

limitation in this approach, however, is the use of the intervals between species as the 

response variable; even with a large data set, it is difficult to obtain enough data to power the 

method. Conversely, the approach taken by Parsons and Kellner is able to make use of all 

independent detections in the data (Kellner et al., 2022), thus no data is lost and it has more 

wide-ranging applicability since it allows for analysis of smaller data sets. 

5.2.2.2 Multilayer ecological networks 

Studies conducted on a species level are important for understanding individual species’ 

responses to habitat disturbance and the consequences for their survival. They can also 

inform predicted responses of similar, unstudied species. These studies collectively report a 

variety of responses, however, which cannot inform generalised management or conservation 

decisions (Meijaard & Sheil, 2008). It is therefore necessary to capture and measure general 

trends and broader, more consistent responses. These can, in turn, be used to predict 

community responses to disturbance. Identifying patterns in community responses will inform 

our knowledge of interactions between functional or trophic groups. From this, we can gain a 

more mechanistic understanding of how changes in land use influence populations, 

communities and ecosystems (Bruckerhoff et al.. 2020). 

Ecological communities, comprising species interacting dynamically, can be naturally 

represented by ecological networks (Hagen et al., 2012; García-Callejas et al., 2018). 

Ecological networks consist of nodes, typically representing species or populations, connected 

by links that represent interactions or movement. The occurrence and intensity of species 

interactions varies according to the environment, species abundance and occurrence or 

absence of other interactions (Poisot et al., 2015). Similarly, the structure of ecological 

networks has been shown to vary across gradients of habitat modification (Tylianakis et al., 

2007) and among habitat fragments (Mclaughlin et al., 2010). Several ecological applications 
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that could particularly benefit from the use of multilayer networks are adaptation in space, 

niche partitioning and network stability (Hutchinson et al., 2019). 

Network studies have often focussed on one type of interaction, such as, trophic or mutualistic, 

but this excludes other interactions that could be significantly impacting community structure; 

consequently, their impact is not captured (García-Callejas et al., 2018). Multilayer networks 

offer a more comprehensive approach since they can incorporate multiple types of interaction, 

and offer the potential to model system dynamics (García-Callejas et al., 2018). Multilayer 

networks also offer the opportunity to model how disturbances might percolate through the 

network, to inform management practice (Hutchinson et al., 2019). This could extend to an 

evaluation of connectivity scenarios or the identification of keystone species for conservation 

purposes (Pilosof et al., 2017). The identification of patterns across layers could also inform 

our understanding of the consistency of species roles and interactions (Mora et al., 2018). 

In best practice, values attributed to links between species and between layers should be 

measured directly, but they can also be inferred (Pilosof et al., 2017). Since comparable data 

across multiple interactions is challenging to acquire, studies can also be aggregated a 

posteriori (García-Callejas et al., 2018). Alternatively, values can be evaluated systematically 

to explore how the relative compositions of the two interaction types affects the system overall 

(Pilosof et al., 2017). One particularly challenging element to quantify is interaction strength 

(García-Callejas et al., 2018). The probability of an interaction occurring can be approximated 

from the relative abundances of the species populations involved, which can be extended to 

approximate interaction strength by incorporating an estimate of the effect of the interaction 

on each species (P. Vázquez et al., 2007). Camera traps have been identified as a potential 

data source to parameterise multilayer ecological networks (Hutchinson et al., 2019).  

Given the importance of species interactions and how they link to ecosystem function, there 

is a need for more studies to consider the behaviour of animals when studying the impact of 

human disturbance on communities and ecosystems (Rahman & Candolin, 2022). Modelling 

ecosystems as a network of interacting species facilitates investigations into how the impacts 

of disturbance can permeate throughout the ecosystem (Hutchinson et al., 2019). Using the 

SAFE Project camera trap dataset, with its span across land-use categories and disturbance 

levels, to parameterise multilayer networks, could help provide mechanistic insight into the 

processes and changes occurring as a result of the anthropogenic disturbance in tropical 

forest. 
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5.3 Suggested future research 

Although automated classification of species in camera trap images is possible for large 

volumes of data, challenges remain in the applicability of automated classification across 

habitats. Future work might want to investigate the impact of biases arising from poor 

generalisability on the subsequent ecological studies undertaken. These misclassifications 

could bias state variable estimates, such as population density or species richness, as well as 

the statistical power to detect difference between environmental treatments. One such study 

into the impact of misclassifications on occupancy modelling found that including false 

positives at a rate of 3% or more of the data resulted in overestimation of species distributions 

and reduced estimates of occurrence associations (Clare et al., 2019). Similar studies could 

provide guidance on the required performance of automated classification methods in order 

to mitigate resultant errors in analyses of species interactions using camera trap data.  

Analysis of the performance of the CNNs used in this thesis on individual species showed that 

high performance was achieved for some relatively rare species, while there was variation in 

performance on common species. An investigation into to what degree morphological variation 

within and between species contributes to the ability of networks to better learn some species 

over others would also be insightful. 

The uptake of automated classification methods will allow for larger camera trap datasets to 

be collected and collated. This will be an important step forward given the challenge in 

extracting enough data points for the analysis here, despite the large size of the dataset. Even 

with large volumes of simulated data, interaction behaviours were not consistently detected. 

Alternative methods, such as occupancy models with an incorporated continuous-time 

detection process (Kellner et al., 2022; Parsons et al., 2022) offer the potential to gain insight 

into spatiotemporal interactions, without such data limitations. More complex methods, such 

as the use of networks, allow for insight into how any changes to these species interactions 

impact other elements of the ecosystem. More work is needed to better quantify species’ 

responses to anthropogenic disturbance so that we are able parametrise these methods and 

use them to identify the species most affected. Studies that focus on keystone species, 

ecosystem engineers and dominant species are particularly important, as they have a large 

influence on the processes and other species in the ecosystem (Rahman & Candolin, 2022). 

Future work could look to construct multilayer ecological networks that span the habitat 

disturbance levels in the SAFE dataset. Connections between land-use fragments would allow 

for evaluation of fragment composition that allow species to persist and inform management 

strategies for tropical forests undergoing land-use change. Constructing a network such that 

connections between species in each layer represent competition and links between layers 
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represent predation, we could vary the balance of weights between the two interaction types 

to assess their relative influences on community structure. Alternatively, constructing a 

network with layers representing time points would allow an analysis of how the community 

interactions change over time. 

A community-based approach to the simulated camera trap survey in this thesis could also 

improve aspects of biological realism in the model. Although the ABM used to simulate the 

animal movement was realistic in terms of animal and camera trap density, the inclusion of 

noise in terms of additional species would more closely represent realistic camera trap 

datasets, and the possible dilution of an interaction by intervening species. The model could 

also be tailored to specific species within a chosen habitat. This would enable closer realism 

in terms of the species’ behaviour when in the presence of a competitor, predator or prey. 

Similarly, the addition of environmental variation, such as watering or foraging hotspots, and 

refuges, would allow for modelling of more realistic predator-prey interactions by including 

prey-aggregation zones, and opportunities to escape, respectively. Analyses could then 

evaluate the influence of environmental variation on direct interactions, to help inform 

discernment of interaction behaviour patterns in real-world data. 

5.4 Conclusion 

As camera trap datasets become more abundant, and the use of machine learning for 

automated classification becomes more commonplace, it will be critically important to ensure 

that estimation of changes in ecosystem function and composition are not biased by 

methodological choices in identification of species or their interactions. This is particularly 

important in the context of current global biodiversity loss, for monitoring the impacts of 

anthropogenic activities on ecosystems and mitigating further declines. Increasing volumes of 

data and improved methodologies for analysing camera trap data will facilitate further studies 

into behavioural shifts and species interactions, such that their potential as an early warning 

system can be achieved.  
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Appendices 

6 Appendix 1: Chapter 2: Supplementary Information 

6.1 Methods 

6.1.1 Data 

Table 6.1: Definitions of disturbance levels (Wearn et al., 2017). 
Disturbance level Definition 
Undisturbed forest Dominated by old-growth dipterocarps. High, continuous canopy with 

sparsely-vegetated understorey. Unlogged, with little recent 

disturbance evident. 

Disturbed forest Mostly pioneer tree species (typically Macaranga species), but some 

old-growth dipterocarp species may be present. Discontinuous 

canopy. Lower intensity of logging or natural disturbance. 

Heavily disturbed 

forest 

High scrub or dense understorey layer (typically with vines and 

Dinochloa climbing bamboo species), with a low, heavily-broken 

canopy layer (< 20 m). Possibly some large, isolated trees (> 20 m). 

Intensively-logged area or large gap disturbance. 

Herbaceous scrub Dominated by herbs (typically Zingiberaceae), vines and shrubs, with 

no trees > 3 m in height (except oil palm Elaeis guineensis). Typically 

representing secondary re-growth from clear-felling, or large gaps 

due to landslides. 

Open area Open area. Dominated by grasses and small shrubs (< 1 m in height). 

Typically on logging roads or old log landing areas. 
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Table 6.2: Species included within class groups; note all other classes are single species. 
Group Species 

Banded Palm Civet Banded palm civet, Hemigalus derbyanus; Hose’s palm civet, Diplogale 

hosei 

Beautiful Squirrels Ear-spot squirrel, Callosciurus adamsi; Plantain squirrel, Callosciurus 

notatus; Prevost’s squirrel, Callosciurus prevostii 

Plain Treeshrew Pen-tailed treeshrew, Ptilocercus lowii; Long-footed treeshrew, Tupaia 

longipes 

Crane Red-legged crake, Rallina fasciata; White-breasted waterhen, 

Amaurornis phoenicurus; Great egret, Ardea alba 

Cuckoo Greater coucal, Centropus sinensis; Bornean ground cuckoo, 

Carpococcyx radiceus; Crested serpent eagle, Spilornis cheela 

Dove Emerald dove, Chalcophaps indica; Spotted dove, Spilopelia chinensis 

Landfowl Crested fireback, Lophura ignita; Great argus, Argusianus argus; 

Bulwer’s pheasant, Lophura bulweri; Chestnut-necklaced partridge, 

Arborophila charltonii; Blue-breasted quail, Excalfactoria chinensis; Red 

junglefowl, Gallus gallus; Crested partridge, Rollulus rouloul 

Langur Maroon langur, Presbytis rubicunda; Hose’s langur, Presbytis hosei 

Low’s Squirrel Low’s squirrel, Sundasciurus lowii; Slender squirrel, Sundasciurus 

tenuis 

Mueller’s Giant 

Sunda Rat 

Mueller’s giant Sunda rat, Sundamys muelleri; Small spiny rat, 

Maxomys baeodon; Black rat, Rattus rattus; Whitehead’s spiny rat, 

Maxomys whiteheadi 

Songbird Black-capped babbler, Pellorneum capistratum; Little spiderhunter, 

Arachnothera longirostra; White-crowned shama, Copsychus 

stricklandii; Short-tailed babbler, Malacocincla malaccensis; White-

crowned forktail, Enicurus leschenaultia; Oriental magpie-robin, 

Copsychus saularis; Yellow-vented bulbul, Pycnonotus goiavier; 

Chestnut munia, Lonchura atricapilla; Moustached babbler, 

Malacopteron magnirostre; Bornean ground-babbler, Ptilocichla 

leucogrammica; Giant pitta, Hydrornis caeruleus; Blue-headed pitta, 

Hydrornis baudii; Banded pitta, Hydrornis irena; Black-and-crimson 

pitta, Pitta ussheri; Hooded pitta, Pitta sordida 

Striped Ground 

Squirrel 

Four-striped ground squirrel, Lariscus hosei; Least pygmy squirrel, 

Exilisciurus exilis; Tufted ground squirrel, Rheithrosciurus macrotis; 

Flying squirrel, Aeromys thomasi 
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Western tarsier Western tarsier, Cephalopachus bancanus; Bornean gibbon, Hylobates 

muelleri 

Yellow-throated 

Marten 

Yellow-throated marten, Martes flavigula; Malayan weasel, Mustela 

nudipes 

 

6.1.2 Machine learning 

Networks were constructed using the Keras library for Python and were trained on Imperial 

College London’s HPC. Each run was performed once due to computational time. 

Table 6.3: Detail of how images for each class were allocated to training, validation and test sets for the network and dataset 
comparison analyses. 

No. of images (N) No. of events (n) Training Validation (V) Test (T) 

N>5000 N/A Max 90% Max 5% Max 5% 

N<5000 

n≥6 N-V-T Max (5%, 2 

events) 

Max (5%, 2 

events) 

4≤n≤5 N-T None 2 events 

 
Note: the minimum number of events at 6 was chosen to ensure at least two events in each 

of the three sets; and the lower minimum at 4 selected to ensure inclusion of as many species 

as possible. 
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Table 6.4: Number of images available and allocated per class to training, validation and test for the baseline dataset. 
Class Total 

images 
Training Validation Test 

Red muntjac, Muntiacus muntjak 94,927 4,500 250 246 

Bearded pig, Sus barbatus 78,888 4,491 243 250 

Human, Homo sapiens 49,852 4,497 243 244 

Sambar deer, Rusa unicolor 44,165 4,491 247 250 

Landfowl [group] 22,077 4,499 241 241 

Pig-tailed macaque, Macaca 

nemestrina 

21,378 4,492 250 242 

Yellow muntjac, Muntiacus 

atherodes 

14,682 4,498 246 246 

Greater mouse-deer, Tragulus 

napu 

14,637 4,500 242 244 

Malayan porcupine, Hystrix 

brachyura 

9,270 4,500 246 250 

Malayan civet, Viverra tangalunga 8,912 4,500 249 249 

Lesser mouse-deer, Tragulus 

kanchil 

7,016 4,492 241 249 

Banded palm civet [group] 4,673 4,212 229 232 

Long-tailed porcupine, Trichys 

fasciculata 

3,209 2,897 157 155 

Sun bear, Helarctos malayanus 2,005 1,814 99 92 

Leopard cat, Prionailurus 

bengalensis 

1,974 1,785 95 94 

Domestic dog, Canis familiaris 1,694 1,532 85 77 

Songbird [group] 1,427 1,287 71 69 

Long-tailed giant rat, Leopoldamys 

sabanus 

1,287 1,165 63 59 

Dove [group] 1,218 1,101 60 57 

Banteng, Bos javanicus 1,164 1,055 54 55 

Orangutan, Pongo pygmaeus 1,028 927 50 51 

Large treeshrew, Tupaia tana 981 893 42 46 

Low’s squirrel [group] 934 845 46 43 

Plain treeshrew [group] 921 831 45 45 
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Masked palm civet, Paguma 

larvata 

822 751 33 38 

Short-tailed mongoose, Herpestes 

brachyurus 

701 644 31 26 

Thick-spined porcupine, Hystrix 

crassispinis 

663 603 27 33 

Crane [group] 552 504 25 23 

Yellow-throated marten [group] 552 502 28 22 

Striped ground squirrel [group] 538 486 27 25 

Pangolin, Manis javanica 451 416 19 16 

Slender treeshrew, Tupaia gracilis 358 326 19 13 

Stink badger, Mydaus javanensis 323 289 14 20 

Sunda clouded leopard, Neofelis 

diardi 

318 278 20 20 

Striped treeshrew, Tupaia dorsalis 302 262 20 20 

Marbled cat, Pardofelis marmorata 272 236 16 20 

Horse-tailed squirrel, Sundasciurus 

hippurus 

244 216 13 15 

Cuckoo [group] 229 202 15 12 

Mueller’s giant Sunda rat [group] 198 167 11 20 

Borneo elephant, Elephas 

maximus  

194 154 20 20 

Binturong, Arctictis binturong 188 158 10 20 

Collared mongoose, Herpestes 

semitorquatus 

184 156 12 16 

Bay cat, Catopuma badia 168 135 18 15 

Common palm civet, Paradoxurus 

hermaphroditus 

99 59 20 20 

Langur [group] 98 66 12 20 

Long-tailed macaque, Macaca 

fascicularis 

96 65 13 18 

Moonrat, Echinosorex gymnura 83 59 12 12 

Beautiful squirrels [group] 75 43 12 20 

Oriental small-clawed otter, Aonyx 

cinereus 

59 27 20 12 

Western tarsier [group] 43 12 20 11 
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Banded linsang, Prionodon linsang 42 17 9 16 

 

 

 

Figure 6.1: Number of (a) events, (b) cameras and (c) images in the training, validation, and test sets for the baseline dataset. 
 

Table 6.5: Data augmentation applied during training. 
Data augmentation Specification 
Random shearing 0.2 radians 

Flip Horizontal 

Crop size 244 x 244 

Brightness modification +/-20% 
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Table 6.6: Baseline hyperparameter settings for all networks. 
Hyperparameter Setting 

Batch size 128 

No. epochs 40 

Optimiser SGD with momentum (0.9) 

Learning rate Dynamic (see Appendix 1, Table 6.8) 

Transfer learning Weights initialised 

Weight decay L2(0.005/2) 

Dropout probability 0.5  

 
Table 6.7: Hyperparameter settings varied during optimisation; note LR: learning rate. 

Run name Hyperparameter Parameter value/setting 

dropout prob: 0.75 dropout probability 0.75 

dropout prob: 0.25 dropout probability 0.25 

frozen conv layers fully connected layers trained only - 

optimiser: RMSprop optimising algorithm RMS prop (LR in Table 6.8) 

optimiser: Adam optimising algorithm Adam (LR in Table 6.8) 

batch64 batch size 64 

 
Table 6.8: Final learning rates used with optimisation algorithms. 

Epoch SGD with momentum (baseline) RMSprop/Adam 

1-5 0.005 0.0001 

6-10 0.001 0.0001 

11-20 0.005 0.00005 

21-30 0.001 0.00001 

31-35 0.0005 0.000005 

36-40 0.0001 0.000001 
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6.1.3 Generalisability – individual disturbance level comparison 

 
Figure 6.2: Training image distribution. Shown across classes per disturbance level from undisturbed forest (left) to open area 
(right) for the dataset split at event. level
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Table 6.9: Mean detection rate per camera for each species in each disturbance level for the dataset split at camera level.  
Undisturbed forest 

 
Disturbed forest 

 
Heavily disturbed forest 

 
Herbaceous scrub 

 
Open area 

 
Train Test 

 
Train Test 

 
Train Test 

 
Train Test 

 
Train Test 

Bearded pig 195.65 166.67 
 

300.00 132.67 
 

39.82 35.71 
 

91.84 55.56 
 

77.59 55.56 

Human 166.67 125.00 
 

109.76 71.43 
 

84.91 54.00 
 

116.52 10.00 
 

112.50 71.43 

Landfowl 141.67 33.50 
 

87.36 117.67 
 

52.94 50.60 
 

90.35 26.75 
 

55.34 50.00 

Leopard cat 24.55 28.00 
 

33.27 10.25 
 

14.73 11.00 
 

7.50 8.00 
 

23.63 37.67 

Lesser mousedeer 58.50 21.00 
 

41.20 23.50 
 

41.77 30.00 
 

50.00 135.00 
 

94.94 37.00 

Malayan civet 65.54 66.67 
 

42.96 37.00 
 

43.79 74.00 
 

25.17 31.00 
 

16.48 23.50 

Malayan porcupine 47.45 17.67 
 

79.56 24.00 
 

41.71 26.70 
 

77.36 118.00 
 

31.37 24.63 

Masked palm civet 5.00 10.00 
 

14.00 10.00 
 

8.61 21.00 
 

8.17 10.00 
 

15.68 10.00 

Orangutan 12.33 1.00 
 

9.00 4.00 
 

14.14 21.57 
 

16.64 10.00 
 

23.75 6.00 

Pangolin 13.50 10.00 
 

13.00 10.00 
 

13.27 7.67 
 

7.75 11.50 
 

16.67 9.00 

Pig-tailed macaque 126.88 61.00 
 

47.75 1.00 
 

40.54 35.71 
 

70.34 81.50 
 

50.00 41.67 

Red muntjac 173.08 47.50 
 

115.38 68.80 
 

32.85 38.46 
 

72.58 62.50 
 

44.12 38.46 

Sambar deer 225.00 12.00 
 

321.43 500.00 
 

54.88 62.50 
 

146.58 1.00 
 

38.22 19.00 

Sun bear 14.00 10.00 
 

27.50 10.00 
 

26.54 26.50 
 

24.94 18.50 
 

20.57 15.67 
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6.1.4 Bounding boxes 

Table 6.10: Number of images per species class used in the combined disturbance level datasets with and without bounding 
boxes after passing images through the MegaDetectorv3.  

 

Total no. images with 
bounding boxes 

Total no. images 
without 

bounding boxes 

% images 
without 

bounding boxes 
Bearded pig 31,980 1,306 4% 

Human 24,312 4,515 16% 

Landfowl 17,006 388 2% 

Leopard cat 1,803 81 4% 

Lesser mouse-deer 6,105 209 3% 

Long-tailed giant 

rat 1,017 216 18% 

Malayan civet 8,053 370 4% 

Malayan porcupine 8,079 565 7% 

Masked palm civet 716 54 7% 

Orangutan 672 13 2% 

Pangolin 350 76 18% 

Pig-tailed macaque 16,824 756 4% 

Red muntjac 35,579 706 2% 

Sambar deer 25,888 1,018 4% 

Sun bear 1,759 68 4% 

Total/total/mean 180,143 10,341 5% 
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6.2 Results 

6.2.1 Network comparison 

 
Figure 6.3: Top-1 accuracy, Top-5 accuracy and F1-score for settings combinations tried for (a) Inceptionv3, (b) ResNet50 and 
(c) VGG16. 
 
Figure 6.3 shows that networks consistently achieve higher Top-5 accuracy than Top-1, which 

is to be expected since the network has more attempts to make the correct prediction. These 

metrics are also consistently higher than mean F1-score. Top-1 and Top-5 accuracy are 

biased towards large classes, whereas F1-score is a better representation of performance 

across all the classes as they have equal weighting. The final chosen network is Inceptionv3 

with Adam optimiser. 

 

Figure 6.4: Training and validation (a) loss and (b) accuracy after training for 40 epochs for the best setup of each network. 
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Figure 6.4 illustrates the overfitting present across all three networks. This is a known issue, 

particularly for imbalanced datasets (Li, Kamnitsas, & Glocker, 2019). More dropout probability 

values were tried for the Inceptionv3 network to try to improve this but to little effect (Table 

6.11). 

Table 6.11: Training and validation metrics for dropout analysis. 
Dropout 

probability 
Validation 

loss 
Validation 
accuracy 

Training 
loss 

Training 
accuracy 

0.1 2.189 0.733 0.734 1.000 

0.2 2.243 0.723 0.760 1.000 

0.3 2.321 0.723 0.755 1.000 

0.4 2.368 0.723 0.793 1.000 

0.5 2.399 0.721 0.805 1.000 

0.6 2.470 0.731 0.827 1.000 

0.7 2.496 0.731 0.866 1.000 

0.8 2.606 0.727 0.936 1.000 

0.9 2.794 0.733 1.086 1.000 

 

 

Figure 6.5: (a) F1-score and (b) recall plotted against number of training images per class in the baseline dataset. 
 

Figure 6.5 illustrates the class imbalance within our training dataset, and the variability in F1-

score and recall for rarer classes while more common classes perform consistently above 0.5. 
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Figure 6.6: Generalisability: mean F1-score across the baseline, common only and increased cap datasets. Mean F1-score for 
the network trained on undisturbed forest (bottom) through to open area (top) and tested on undisturbed forest through to 
open area (left-right) using the event-level dataset. Performance when tested on common species only (classes with >1,000 
images available) is shown by bars, for the network trained on the baseline dataset (max. 5,000 images per class, black), 
common species only dataset (white) and increased cap dataset (max. 10,000 images per class, grey). Performance when 
tested on the baseline test dataset is denoted by x.  
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6.2.2 Generalisability – combinations of disturbance levels 

 

Figure 6.7: Generalisability: Top-1 accuracy. (a) and (b): Mean Top-1 accuracy when trained on combined disturbed levels 
taken from the event-level dataset with and without the ‘blank’ images in which the MegaDetector was unable to detect an 
animal, for the network trained and tested on (a) whole images and (b) cropped images. (c) and (d): as for (a) and (b) but 
using the camera-level dataset. 
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7 Appendix 2: Chapter 3 Supplementary Information 

7.1 Intervals capped at 1 week 

Table 7.1: Median interval duration in days and number of intervals (N) recorded for each pair orientation in each land-use 
category, with a maximum cap of 7 days on intervals included in the analysis. 
 Bearded pig – human 

Median (N) 
Human – bearded pig 

Median (N) 
Primary forest 4.2 days (10) 1.4 days (6) 

Logged forest 0.8 days (103) 1.1 days (88) 

Oil palm 0.9 days (11) 1.1 days (10) 

 

 

Figure 7.1: Results for the land-use mixed-effect model with a cap of 7 days imposed on intervals included. Model coefficients 
(left) and predicted interval durations (right). 
 

Table 7.2: Median interval duration in days and number of intervals (N) recorded for each pair orientation in each habitat 
disturbance level, with a maximum cap of 7 days on intervals included in the analysis. 
 Bearded pig – human 

Median (N) 
Human – bearded pig 

Median (N) 
Undisturbed forest 5.8 days (7) 2.5 days (4) 

Disturbed forest 1.8 days (8) 4.4 days (5) 

Heavily-disturbed forest 1.0 days (36) 1.4 days (30) 

Herbaceous scrub 0.6 days (20) 0.6 days (19) 

Open area 0.8 days (47) 0.8 days (39) 
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Figure 7.2: Results for the habitat disturbance level mixed-effect model with a cap of 7 days imposed on intervals included.  
Model coefficients (left) and predicted interval durations (right). 
 

7.2 Intervals capped at 2 days 

Table 7.3 Median interval duration in days and number of intervals (N) recorded for each pair orientation in each land-use 
category, with a maximum cap of 2 days on intervals included in the analysis. 
 Bearded pig – human 

Median (N) 
Human – bearded pig 

Median (N) 
Primary forest 1.1 days (2) 0.9 days (4) 

Logged forest 0.6 days (74) 0.5 days (56) 

Oil palm 0.5 days (8) 0.5 days (6) 
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Figure 7.3: Results for the land-use mixed-effect model with a cap of 2 days imposed on intervals included.  Model coefficients 
(left) and predicted interval durations (right). 
 

Table 7.4: Median interval duration in days and number of intervals (N) recorded for each pair orientation in each habitat 
disturbance level, with a maximum cap of 2 days on intervals included in the analysis. 
 Bearded pig – human 

Median (N) 
Human – bearded pig 

Median (N) 
Undisturbed forest 1.1 days (1) 0.6 days (2) 

Disturbed forest 0.8 days (4) 1.0 days (2) 

Heavily-disturbed forest 0.7 days (21) 0.3 days(17) 

Herbaceous scrub 0.6 days (20) 0.5 days (15) 

Open area 0.6 days (35) 0.6 days (30) 

 



 

117 
 

 

Figure 7.4: Results for the habitat disturbance level mixed-effect model with a cap of 2 days imposed on intervals included.  
Model coefficients (left) and predicted interval durations (right). 
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8 Appendix 3: Chapter 4 Supplementary Information 

8.1 Influence of interaction zone radius 

8.1.1 Simulated interaction events 

Table 8.1: Mean number of avoidance events in Scenario 2, and attraction events in Scenario 3, per simulation for 6, 12 and 
24 agents per species at each detection zone radius. 

Interaction zone 
radius (m) 

6 agents per 
species 

12 agents per 
species 

24 agents per 
species 

Scenario 2: mean no. avoidance events per simulation 

15 10 42 169 

25 21 86 332 

50 52 215 868 

75 89 362 1482 

100 135 516 2131 

150 238 911 3894 

Scenario 3: mean no. attraction events per simulation 

15 269 785 3369 

25 574 2198 8413 

50 1468 6652 24404 

75 2657 11287 44399 

100 4177 16364 65426 

150 6542 27963 106670 
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8.1.2 Camera trap events 

 

Figure 8.1: Total number of camera trap capture events per 100 simulations of the CRW and avoidance scenarios. Shown for 
a camera trap density of 1/km2 (left), 2/km2 (middle) and 4/km2 (right). 
 

 

Figure 8.2: Total number of camera trap capture events per 100 simulations of the CRW and attraction scenarios. Shown for 
a camera trap density of 1/km2 (left), 2/km2 (middle) and 4/km2 (right). 
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Figure 8.3: Total number of camera trap events per 100 simulations of Scenario 4: combined avoidance and attraction. Shown 
for a camera trap density of 1/km2 (left), 2/km2 (middle) and 4/km2 (right). 
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8.1.3 Intervals extracted 

 

Figure 8.4: Total number intervals extracted from 100 simulations of the CRW and avoidance scenarios. Shown for a camera 
trap density of 1/km2 (left), 2/km2 (middle) and 4/km2 (right). 
 

 

Figure 8.5: Total number of intervals extracted per 100 simulations of the CRW and attraction scenarios. Shown for a camera 
trap density of 1/km2 (left), 2/km2 (middle) and 4/km2 (right). 
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Figure 8.6: Total number of intervals extracted from 100 simulations of Scenario 4: combined avoidance and attraction. 
Shown for a camera trap density of 1/km2 (left), 2/km2 (middle) and 4/km2 (right). 
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8.2 Applying the Niedballa et al. (2019) threshold 

 

Figure 8.7: Model coefficient estimates for Scenario 2: one-way avoidance with setups that did not meet the Niedballa et al. 
threshold of 50 records per pair excluded. Note that the intercept (not shown) contains AB intervals for a CRW with 6 agents 
per species and a camera density of 1/km2. 
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Figure 8.8: Model coefficient estimates for Scenario 3: one-way attraction with setups that did not meet the Niedballa et al. 
threshold of 50 records per pair excluded.  Note that the intercept (not shown) contains AB intervals for a CRW with 6 agents 
per species and a camera density of 1/km2. 
 

8.3 ABM code 

#!/usr/bin/env python3 
import random 
import numpy as np 
import math 
import sys 
import timeit 
import csv 
import pickle 
import bz2 
 
 
## Start timer 
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tic=timeit.default_timer() 
 
#### Retrieve settings from bash inputs #### 
run_cat = sys.argv[1] # 'CRW', 'avoid1', 'avoid2', 'attract', 'pred_prey' 
outpath = sys.argv[2] 
avoid_strength = int(sys.argv[3]) 
avoid_ddist = int(sys.argv[4]) 
n_ag = int(sys.argv[5]) 
n_agents = [n_ag,n_ag] 
n_sims = int(sys.argv[6]) 
sim_start = int(sys.argv[7]) 
attract_ddist = int(sys.argv[8]) 
kill_ddist = int(sys.argv[9]) 
 
#### Define functions ##### 
 
# Agent class with default values 
class Agent: 
    def __init__(self, id, type = "spcA", x = 0, y = 0, theta = 0, vx = 0, vy = 0, sdev = 
math.pi/12, mag = 1.5): 
        self.id = id 
        self.type = type 
        self.x = x 
        self.y = y 
        self.theta = theta 
        self.vx = vx 
        self.vy = vy 
        self.sdev = sdev 
        self.mag = mag  
        self.avoided = 0 
        self.attracted = 0 
        self.caught = 0 
    # 
    def __str__(self): 
        return f"Agent x:{self.x}, y:{self.y}, theta:{self.theta}, vx:{self.vx}, vy:{self.vy}, 
sdev:{self.sdev}, mag:{self.mag}" 
    # 
    # Update agent (passing list of other agents) 
    def update(self, agents, avoid_ddist, avoid, attract_ddist, kill_ddist, attract, width, height): 
        # 
        # Store avoid_ddist and attract_ddist squared 
        avoid_ddist_sq = avoid_ddist**2 
        attract_ddist_sq = attract_ddist**2 
        kill_ddist_sq = kill_ddist**2     
        # 
        if self.type == "spcA":  
            # Check for proximity to B agents for being predated on  
            if attract > 0: 
                for other in agents: 
                    # If the agent is of other type 
                    if (other.type == "spcB"): 
                        ## Calculate distance between this agent and other agent from other species 
                        x_dist = other.x - self.x 
                        y_dist = other.y - self.y 
                        sq_dist = np.square(x_dist) + np.square(y_dist) 
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                        #print(sq_dist) 
                        ## If agent is within kill detection radius of agent from species B, regenerate 
randomly within the grid 
                        if sq_dist <= kill_ddist_sq: 
                            self.x = np.random.random()*width 
                            self.y = np.random.random()*height 
                            self.theta = np.random.random()*2*math.pi 
                            self.caught = 1 
                            break 
                        else: 
                            self.caught = 0 
            if avoid > 0: 
                # List of agents to avoid 
                beta_list = [] 
                # Loop through all agents 
                for other in agents: 
                    # If the agent is of other type 
                    if (other.type == "spcB"): 
                        ## Calculate distance between this agent and other agent from other species 
                        x_dist = other.x - self.x 
                        y_dist = other.y - self.y 
                        sq_dist = np.square(x_dist) + np.square(y_dist) 
                        #print(sq_dist) 
                        # If we're doing avoidance and this is a type A species 
                        if avoid > 0: 
                            ## If within detection radius, save angle to agent 
                            if (sq_dist <= avoid_ddist_sq): 
                                # Calculate angle of avoidance 
                                beta_list.append(math.atan2((self.y - other.y), (self.x - 
other.x))%(2*math.pi))                     
                # If there were any agents to avoid: 
                if len(beta_list) > 0: 
                    # print(len(beta_list)) 
                    # Take mean angle of avoidance 
                    self.theta = sum(beta_list)/len(beta_list) 
                    self.avoided = 1 
                    if len(beta_list)>1: 
                        print('Number of agents being avoided: ' + str(len(beta_list))) 
                else: 
                    # Otherwise..sample theta as for CRW 
                    self.theta = (np.random.normal(self.theta, self.sdev))%(2*np.pi)  
                    self.avoided = 0 
            else: 
                # Otherwise..sample theta as for CRW 
                self.theta = (np.random.normal(self.theta, self.sdev))%(2*np.pi)  
                self.avoided = 0 
            # 
            # Re-calculate vx, vy with new theta 
            self.vx = (self.mag * np.cos(self.theta)) 
            self.vy = (self.mag * np.sin(self.theta))             
        # 
        else: # for species B 
            sq_list=[] 
            gamma_list=[] 
            if attract > 0: 
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                for other in agents: 
                    # If the agent is of other type 
                    if (other.type == "spcA"):                  
                        ## Calculate distance between this agent and other agent from other species 
                        x_dist = other.x - self.x 
                        y_dist = other.y - self.y 
                        sq_dist = np.square(x_dist) + np.square(y_dist) 
                        if sq_dist <= attract_ddist_sq: 
                            sq_list.append(sq_dist) 
                            gamma_list.append(math.atan2((other.y - self.y), (other.x - 
self.x))%(2*math.pi)) 
                # If there were any agents to follow:  
                if len(gamma_list) > 0: 
                    # Find closest 
                    ind = sq_list.index(min(sq_list)) 
                    self.theta = gamma_list[ind] 
                    self.attracted = 1 
                    # Calculate new velocity 
                    if min(sq_list)<self.mag: 
                        self.vx = min(sq_list) * np.cos(self.theta) 
                        self.vy = min(sq_list) * np.sin(self.theta) 
                    else: 
                        self.vx = self.mag * np.cos(self.theta) 
                        self.vy = self.mag * np.sin(self.theta) 
                else: 
                    # Otherwise..sample theta as for CRW 
                    # self.theta=math.pi/2 
                    self.theta = (np.random.normal(self.theta, self.sdev))%(2*np.pi)  
                    self.attracted = 0 
                    # Calculate new velocity 
                    self.vx = self.mag * np.cos(self.theta) 
                    self.vy = self.mag * np.sin(self.theta) 
            else: 
                # CRW 
                # Calculate new theta 
                self.theta = (np.random.normal(self.theta, self.sdev))%(2*np.pi) 
                # self.theta=0 
                # Calculate new velocity 
                self.vx = self.mag * np.cos(self.theta) 
                self.vy = self.mag * np.sin(self.theta) 
        # update agent location - with torus boundary conditions 
        newx = np.add(self.x, self.vx)%width 
        newy = np.add(self.y, self.vy)%height 
        self.x = newx 
        self.y = newy 
        #print("%d, %f, %f" % (a.id, a.x, a.y)) 
 
def 
sim_abm(spc_labs,n_agents,n_steps,sdevs,mag,avoid,avoid_ddist,attract,attract_ddist,kill_d
dist): 
    ## Function to simulate correlated random walks for agents from multiple species 
    ## Includes switch for 1-way avoidance 
    # 
    ## Variables 
    # spc_labs: species names (list) 
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    # n_agents: number of agents per species (list) 
    # n_steps: number of time steps 
    # sdevs: standard deviations for sampling directional angles per species (list) 
    # mag: speed per species (list) 
    # avoid: switch: 0 - none; 1 - 1-way (A avoids B); 2 - 2-way (A avoids B and B avoids A) 
    # avoid_ddist: detection radius to trigger avoidance 
    # attract: switch: 0 - none; 1 - B attracted to A 
    # attract_ddist: detection distance to trigger attraction 
    # kill_ddist: distance within which agent is killed and regenerates 
    # 
    # Generate random agents of each species with random starting positions and directions 
    positions = [] 
    agents = [] # List of agents 
    j = 1 
    for s in range(0, n_species): 
        spc = spc_labs[s] 
        for i in range(0, n_agents[s]): 
            x = np.random.random()*width 
            y = np.random.random()*height 
            theta = np.random.random()*2*math.pi 
            # a = Agent((s+1)*(i+1), spc, x, y, theta, 0, 0, sdevs[s], mag[s]) 
            a = Agent(j, spc, x, y, theta, 0, 0, sdevs[s], mag[s]) 
            #print(a) 
            agents.append(a) 
            j = j+1 
    # 
    # Update each agent at each time step 
    a = agents[1] 
    for i in range(1,n_steps+1): 
        # Shuffle 
        # random.shuffle(agents) 
        for k in range(0, len(agents)): 
            a = agents[k] 
            others = agents[:k] + agents[k+1:] 
            a.update(others, avoid_ddist, avoid, attract_ddist, kill_ddist, attract, width, height) 
            #print("%d, %d, %s, %f, %f" % (i, a.id, a.type, a.x, a.y)) 
            positions.append((i, a.id, a.type, a.x, a.y, a.avoided, a.attracted, a.caught)) 
    return positions 
 
 
######## Space constraints ########### 
xmin=0 
ymin=0 
xmax=8000 
ymax=8000 
 
width = xmax - xmin 
height = ymax - ymin 
 
# n_steps = 30*24*60*6 # 30 days at 10-second time-steps 
n_steps = 7*24*60*6 
 
######### Species traits ####### 
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## set number of species, agents per species and time steps; and standard deviation for 
velocity distributions ################# 
n_species = 2 
spc_labs = ['spcA','spcB'] 
# mag = [0.15,0.15] # velocity magnitude for each species (m/s) 
mag = [1.5,1.5] # m/10seconds 
sdevs = [math.pi/24, math.pi/24]# [math.pi/3,math.pi/4] # standard deviation for each species 
(radians) 
CT_ddist = 6 
 
# Default attract/avoid parameter values 
avoid = 0 # no avoidance 
# avoid_ddist = 15 # detection distance for triggering avoidance 
attract = 0 
# attract_ddist = 0 
# kill_ddist = 1 
 
#### Update attract/avoid parameter values according to run category 
if run_cat == 'CRW': 
    avoid = 0  
    attract = 0 
    store_string = 'CRW' 
elif run_cat == 'avoid1': 
    avoid = 1 
    store_string = 'avoid_1' 
elif run_cat == 'attract1': 
    attract = 1 
    store_string = 'attract_1' 
elif run_cat=='combi1': 
    attract=1 
    avoid=1 
    store_string = 'combi1' 
 
############################### Simulations 
################################# 
 
## Loop over n_sims for each test value and storing captures per simulation/species/camera 
avoid_list=0 
attract_list=0 
caught_list=0 
combi_list=0 
for m in range(sim_start,sim_start + n_sims): 
    print('Starting simulation ' + str(m) + ' for ' + store_string) 
    ## Run simulation of animal movement 
    positions = 
sim_abm(spc_labs,n_agents,n_steps,sdevs,mag,avoid,avoid_ddist,attract,attract_ddist,kill_d
dist) 
    print(run_cat) 
    if run_cat == 'CRW': 
        outfile = outpath + 'positions_time_step_10secs_nsteps_' + str(n_steps) + '_sim_' + 
str(m) + '_nsims_' + str(n_sims) + '_nagents_' + str(n_agents[0]) + '_' + store_string 
    elif run_cat == 'avoid1': 
        outfile = outpath + 'positions_time_step_10secs_nsteps_' + str(n_steps) + '_sim_' + 
str(m) + '_nsims_' + str(n_sims) + '_avoiddist_' + str(avoid_ddist) + '_nagents_' + 
str(n_agents[0]) + '_' + store_string 
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    elif run_cat == 'attract1': 
        outfile = outpath + 'positions_time_step_10secs_nsteps_' + str(n_steps) + '_sim_' + 
str(m) + '_nsims_' + str(n_sims) + '_attractdist_' + str(attract_ddist) + '_killddist_' + 
str(kill_ddist) + '_nagents_' + str(n_agents[0]) + '_' + store_string 
    elif run_cat == 'combi1': 
        outfile = outpath + 'positions_time_step_10secs_nsteps_' + str(n_steps) + '_sim_' + 
str(m) + '_nsims_' + str(n_sims) + '_dists_' + str(attract_ddist) + '_killddist_' + str(kill_ddist) + 
'_nagents_' + str(n_agents[0]) + '_' + store_string 
    # print(outfile) 
    # Compressing Data 
    # pickle.dump(positions,bz2.BZ2File(outfile,"wb")) 
    with open(outfile + '.csv','w') as out: 
        csv_out=csv.writer(out) 
        csv_out.writerow(['time_step', 'id', 'type', 'x', 'y', 'avoided','attracted','caught']) 
        csv_out.writerows(positions) 
    avoid_list = avoid_list + sum(positions[i][-3] for i in range(len(positions))) 
    attract_list = attract_list + sum(positions[i][-2] for i in range(len(positions))) 
    caught_list = caught_list + sum(positions[i][-1] for i in range(len(positions))) 
    combi_temp = [1 if positions[i][-2]+positions[i][-3]==2 else 0 for i in range(len(positions))] 
    combi_list = combi_list + sum(combi_temp) 
    print('avoidance events: ' + str(sum(positions[i][-3] for i in range(len(positions))))) 
    print('attraction events: ' + str(sum(positions[i][-2] for i in range(len(positions))))) 
    print('kill events: ' + str(sum(positions[i][-1] for i in range(len(positions))))) 
    print('combination events: ' + str(sum(combi_temp))) 
 
print('Total avoidance events: ' + str(avoid_list)) 
print('Total attraction events: ' + str(attract_list)) 
print('Total kill events: ' + str(caught_list)) 
print('Total combination events: ' + str(combi_list)) 
 
toc=timeit.default_timer() 
print(toc-tic) 
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