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Biopsy-based transcriptomics in the diagnosis of

kidney transplant rejection

Tristan de Nattes®, Jack Beadle® and Candice Roufosse®

Purpose of review

The last year has seen considerable progress in translational research exploring the clinical utility of biopsy-
based transcriptomics of kidney transplant biopsies to enhance the diagnosis of rejection. This review will
summarize recent findings with a focus on different platforms, potential clinical applications, and barriers to

clinical adoption.

Recent findings

Recent literature has focussed on using biopsy-based transcriptomics to improve diagnosis of rejection, in
particular antibody-mediated rejection. Different techniques of gene expression analysis (reverse
transcriptase quantitative PCR, microarrays, probe-based techniques) have been used either on separate
samples with ideally preserved RNA, or on left over tissue from routine biopsy processing. Despite
remarkable consistency in overall patterns of gene expression, there is no consensus on acceptable
indications, or whether biopsy-based transcriptomics adds significant value at reasonable cost to current

diagnostic practice.

Summary

Access to biopsy-based transcriptomics will widen as regulatory approvals for platforms and gene
expression models develop. Clinicians need more evidence and guidance to inform decisions on how to
use precious biopsy samples for biopsy-based transcriptomics, and how to integrate results with standard

histology-based diagnosis.
Keywords

biopsy, biopsy-based transcriptomics, immune rejection, kidney transplant

INTRODUCTION

Despite advances in kidney transplant immunology,
kidney transplant immune rejection remains a lead-
ing cause of allograft dysfunction [1]. Noninvasive
diagnostic tests for rejection, such as urine chemo-
kines and donor-derived cell-free DNA, do not yet
substitute for a biopsy, which determines the type of
rejection and its activity, providing the diagnostic
and prognostic information necessary for patient
management decisions [2].

The Banff Classification for Allograft Pathology
recognizes two main types of rejection. In T-cell
mediated rejection (TCMR), activated T cells infil-
trate the graft endothelium (intimal arteritis lesion
“v"”), interstitium (interstitial inflammation “i”),
and tubules (tubulitis “t”) [3,4"]. In antibody-
mediated rejection (AMR), donor-specific antibod-
ies (DSA) target human leukocyte antigen (HLA)
molecules on graft endothelium, recruit intravascu-
lar immune cells (microvascular inflammation,
“MVI” corresponding to peritubular capillaritis
“ptc” and glomerulitis “g”), with or without

1062-4821 Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.

complement-dependant effects evidenced by C4d
deposition, and cause endothelial cell injury [5].
Analysis of gene expression in a homogenised
piece of kidney biopsy (“bulk” biopsy-based tran-
scriptomics, BBT) has yielded considerable insights
into the pathophysiology of rejection and shown

#Univ Rouen Normandie, INSERM U1234, CHU Rouen, Department of
Nephrology, Rouen, France and "Centre for Inflammatory Diseases,
Department of Immunology and Inflammation, Imperial College London,
London, UK

Correspondence to Candice Roufosse, MD, PhD, Imperial College
London, Hammersmith Campus, Commonwealth Building 9th Floor,
Du Cane Rd, London W12 ONN, UK.

E-mail: c.roufosse@imperial.ac.uk

Curr Opin Nephrol Hypertens 2024, 33:273-282
DOI:10.1097/MNH.0000000000000974

This is an open access article distributed under the terms of the Creative
Commons Attribution-Non Commercial-No Derivatives License 4.0
(CCBY-NC-ND), where it is permissible to download and share the

work provided it is properly cited. The work cannot be changed in any
way or used commercially without permission from the journal.

www.co-nephrolhypertens.com


mailto:c.roufosse@imperial.ac.uk

197ZIMNZIDBPXZOBBqeOATDOAEIDYIASALLIAIPO0AEIEAHION/AO AUMY TXOMADYOINX Y0

HISAbZz3ay 1o +erNiOITWNOTZTARY HdaSHNAUg Ag suauadAyjoiydau-09/wod mm| sjeulnol/:dny woiy papeojumoq

¥202/60/t70 uo

Renal immunology and pathology

KEY POINTS

e Biopsy-based transcriptomics have enhanced our
understanding of immune-mediated rejection in
transplanted organs.

o Bulk biopsy-based transcriptomics have potential to
improve diagnosis of rejection, and not only in cases
where standard histology yields ambiguous results.

e The main obstacles to routine diagnostic use are limited
robust diagnostic models reproducible across centres
and platforms, defined and tested cost-effective contexts
of use, and guidelines for integrating information from
standard histology and biopsy-based transcriptomics.

e Prospective clinical trials (observational and
interventional) should include BBT as well as digitised
histology to develop new gold standards for
rejection diagnosis.

consistent gene expression profiles in TCMR and
AMR. Both types of rejection are characterized by
expression of interferon-gamma inducible tran-
scripts, with TCMR also expressing signals from
activated effector T cells, activated macrophages
and dendritic cells, and AMR-expressing transcripts
indicative of endothelial activation and natural
killer (NK) cells and/or monocytes [6]. Although
single-cell and spatial transcriptomics are important
new areas of discovery research [7], this review will
focus on current progress in the clinical application
of bulk BBT, which are more immediately amenable
to diagnostic use.

STANDARD HISTOLOGY AND BIOPSY-
BASED TRANSCRIPTOMIC WORKFLOWS
FOR THE DIAGNOSIS OF REJECTION

Table 1 provides a comparison of key aspects of
histology and BBT with regards to the diagnostic
workflow. These are important to consider, in view
of the potential “competition” for precious biopsy
tissue that using both techniques entails. Histology,
the current “gold standard”, is highly accessible and
provides a wider range of diagnostic information
than BBT, but has key weaknesses that BBT may
be able to redress. Histology appears to be more
vulnerable to limited tissue sampling than BBT for
a diagnosis of rejection [8,9]. It also suffers from
interobserver variability, partly because its semi-
quantitative scoring is vulnerable at threshold
boundaries [10], whereas data from BBT may better
reflect the gradual nature of pathophysiological
processes. Many histological features lack specific-
ity, for example tubulitis “t” and interstitial inflam-
mation “i” are seen in TCMR but also in polyoma
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virus nephropathy (PVN); MVI is typical for AMR
but is also seen in patients without a DSA; isolated
“cg”, “g”, “v" or thrombotic microangiopathy
(TMA) can be seen in AMR, but also in glomerulo-
nephritis, TCMR or ischaemic injury [11]. We review
below whether BBT can help identify rejection in

these circumstances.

TRANSLATION TO CLINICAL PRACTICE:
WHICH PLATFORM?

Rejection-associated molecular signatures have
been noted with BBT using reverse transcriptase
quantitative PCR (qPCR) [12-16], microarrays
[4%,17], RNA sequencing [6,18,19%,20], and probe-
based techniques such as Nanostring [9,21%%,22"~
24" 25] or multiplex ligand-dependant probe-based
assay (MLPA) [26™,27]. In general, differential gene
expression patterns first discovered using microar-
rays have been validated by qPCR and probe-based
techniques, which provides evidence of robust gene
expression changes in both AMR and TCMR.

Table 2 provides an overview of the key aspects
of each of the gene expression analysis technique.
An important consideration with respect to biopsy
sample workflow, is whether the technique gener-
ally requires a good quantity of high-quality RNA
extracted from a separate piece of tissue handled to
preserve RNA (snap frozen or in an RNA preserva-
tive), or can be performed on the limited amount of
fragmented RNA that can be extracted from for-
malin-fixed and paraffin-embedded (FFPE) tissue
left over after standard histological diagnosis is
complete. Probe-based techniques are designed to
detect these degraded RNA species, by using multi-
ple short probes [28].

The Molecular Microscope Diagnostic System
(MMDx; Thermo Fisher Scientific, Waltham, MA,
USA) is based on a DNA chip assessing 19 462-genes
on fresh or RNA-later stored tissue [4"]. Classifiers
were derived from molecular phenotyping of large
cohorts and prospective evaluation of real-life
feasibility investigations [29]. It has a validated
accuracy for the diagnosis of AMR and a weaker
relationship with TCMR. Technical validity is
demonstrated, although statistical measures of
variability have not yet been reported [30]. The
MMDx Kidney platform is licensed for commercial
use as a send out test in a CLIA-approved laboratory
as a laboratory developed test not requiring FDA
approval for use in the USA. In Europe, the software
is IVD-CE certified as a medical device. In terms of
availability, it is based on a central assessment in
Portland (Oregon) or Prague (Czechia) and provides
results in 48 h after the sample is received. A report
is generated with a probability of rejection (TCMR,
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AMR, or no-rejection) along with other molecular
data such as acute tubular injury or atrophy-fibrosis
scores. Potential use cases are identified, for
example, “subpathological” AMR, DSA-negative
MVI, polyomavirus nephropathy (PVN), isolated
v-lesions, and so on. Some centres have started
reporting on the clinical use of the MMDx platform
[31,32,33™.

Nanostring analysis of transplant biopsies using
a consensus “Banff Human Organ Transplant”
(B-HOT) panel or subsets of this panel have indi-
cated ability to classify AMR and TCMR, both in
silico and in retrospective cohort analyses [21",22"",
24", 34" 35", 36]. The use of material left in the
paraffin block after histological diagnosis is com-
plete is a key benefit of this technology. The Nano-
string platform is approved by FDA (USA) and IVD-
CE (EU) certified; however, consensus for normal-
ization across runs, platforms, and centres is needed
to enable comparison of classifiers and prospective
multicentre clinical trials testing clinical utility.

gPCR and MLPA are simpler, less expensive
techniques that have also been investigated for
use in transplant diagnostics. The latter can be
performed using FFPE samples. Both use a subset
of the genes in the signatures of rejection identified
using microarray or NanoString technology. Both
techniques yield gene expression results that corre-
late with results using Nanostring, but also require
further validation in prospective clinical trials.

In our view, diagnostic gene expression panels
for rejection with either a limited number of genes
or the full transcriptome are both likely to yield
sufficient accuracy to reach a molecular diagnosis
of rejection and its subtypes. However, a restricted
gene panel may also limit the number of questions
that can be answered in any one given assay (e.g.
diagnosis, prognosis, and so on). A diagnostic test
might use additive or weighted scores of a handful of
genes, or more complex machine learning-derived
algorithms. Some institutions may be set up to
validate cost-effective laboratory developed tests,
whereas others might prefer to send samples away.
Availability of a range of validated technologies for
local clinical teams to choose from, depending on
local expertise, equipment, and funding will enable
widespread clinical implementation. However, it will
be important to agree on acceptable performance
metrics and determine if results of different molec-
ular assays for the same indications are comparable.

TRANSLATION TO CLINICAL PRACTICE:
WHICH INDICATIONS?

The existence of molecular signatures for different
types of rejection is insufficient on its own to justify

1062-4821 Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.

clinical use of BBT. BBT must also show clinical
validity (add diagnostic or prognostic information
to current practice) and clinical utility (cost-benefit
analysis) [11,37].

The Banff Classification currently supports use
of BBT only as an adjunct technique in the diagnosis
of AMR, where transcripts “if thoroughly validated
as substitute for MVI and available” can substitute
for C4d positivity or MVI above threshold.

Potential future applications range from com-
prehensive use of BBT in all biopsies alongside
standard histological assessment, to use only in a
defined set of circumstances where BBT adds infor-
mation to histology (Fig. 1). It is important to note
that the assumption that BBT will be redundant in
cases with obvious histological rejection, and useful
in cases where histology is ambiguous, is incorrect,
as outlined below and in Table 3. Discrepancies
between histological and molecular rejection occur
in around 35% of cases, more in TCMR than AMR
[31]. Histology may be better than molecular for
some indications (e.g. diagnosis of infection or glo-
merulonephritis) whereas molecular may ultimately
be proven better for others [33™].

Biopsy-based transcriptomics for antibody-
mediated rejection phenotypes

The histological diagnosis of AMR requires integra-
tion of several histological lesion scores (g, ptc, v,
TMA, cg, PTCML), additional diagnostic parameters
(e.g. “in the absence of glomerulonephritis”), C4d,
and DSA data. Many biopsies can show some but not
all of these features, leading to “incomplete” AMR
phenotypes, the significance of which is not yet
fully understood, but which were clearly defined
in the most recent Banff Report.

The assumption that biopsies with complete his-
tological AMR will have increased AMR BBT isuntrue.
A proportion of cases with histological AMR are
negative for AMR BBT and a proportion of cases
without rejection are positive for AMR BBT, with
overall discrepancies reported around 20%
[24"%,31,38™]. The lack of good treatment options
for AMR makes it hard to compare histological and
molecular definitions of disease for their ability to
best stratify patients for treatment, or to potentially
integrate both modalities for best diagnostic ability.
Clinical trials that include molecular analysis are
limited, and more are needed [39-44]. Molecular
scores of AMR probability or of injury-repair response
(IRRAT) in patients with histological AMR predict
future eGFR or graft loss, providing evidence for
prognostic (if not diagnostic) superiority of molec-
ular analysis in this context [45%]. Many potential
explanations have been put forward for discrepancies

www.co-nephrolhypertens.com 277
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On all cases
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needed

Kidney transplant pathology report

Adequacy (cortex/medulla, cortical sample size)

Rejection? Subtype(s), degree of activity and chronicity

Acute tubular injury? Severity, likely cause (e.g. CNI)

Degree of scarring (glomerular and tubulointerstitial)

State of vasculature (hypertensive, embolic, diabetic)

Signs of infection (bacterial, fungal, viral)

Evidence of glomerular disease (recurrent, de novo, diabetic...)

Signs of (pre-) malignancy (PTLD, others)

Unexpected things: "open view"

OR

Molecular
Report

FIGURE 1. Potential clinical workflows integrating biopsy-based diagnostics. Current kidney transplant biopsy assessment is
based on histological assessment including immunochemistry and electron microscopy (a). This open view approach enables
the description of multiple parameters, including unexpected lesions, which are included in the pathology report. Future kidney
transplant biopsy assessment may integrate biopsy-based transcriptomics systematically or in defined circumstances (b). We
note that digital pathology and machine learning are likely to become part of the pathology workflow. CNI, calcineurin
inhibitors; EM, electron microscopy; FFPE, formalinfixed paraffin embedded; ML, machine learning; PTLD, posttransplant

lymphoproliferative disorders.

between “histological AMR” and “molecular AMR”,
for example sampling of the biopsy tissue, poor
application of Banff rules by pathologists [46], and
inadequacy of current Banff rules. Interesting recent
work suggests semi-supervised clustering of Banff
lesion scores or logistic regression equations trained
on molecular diagnoses of rejection might identify
improved rules for histological diagnosis of rejection
using Banff lesion scores [47%,48,49™].

BBT have also been investigated in incomplete
AMR phenotypes, including cases that are “MVI-
positive, C4d-negative, DSA-negative”, and cases
with histological lesions of AMR below threshold,
either with a DSA (“probable AMR"”) or without a
DSA (isolated v, g, cg, and TMA).

278 www.co-nephrolhypertens.com

MVlI-positive, C4d-negative, DSA-negative
cases have been variably attributed to inability
to detect circulating anti-HLA DSA, non-HLA
DSA, other causes of NK-mediated rejection
(including “missing self”), or ischemia-reperfusion.
The hope is that BBT might enable classification of
this phenotype according to pathophysiology,
potentially facilitating treatment. In reality, stud-
ies examining differences in transcript expression
between MVI-positive biopsies with and without
detectable DSA have not shown any differences
(5,17,50].

We used a 9-gene molecular AMR classifier to
separate 50 biopsies with incomplete histological
features of AMR into six biopsies with molecular

Volume 33 o Number 3 o May 2024
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Table 3. Potential clinicopathological scenarios where biopsy-based transcriptomics might help with diagnosis

Banff Classification Banff Classification

Category

sub-category

Histological challenge

How would biopsy-based
transcriptomics help?

References

Normal biopsy or
nonspecific changes

Antibody-mediated

rejection

Banff lesion scores below t

hreshold for rejection

(TCMR or AMR)

DSA-positive, negative
histology

Acute tubular injury

Probable AMR
(DSA+ with g1,
ptcl, v or TMA)

MVI+ DSA- C4d-

Is there molecular TCMR?2

Is there molecular AMR?

How severe is the injury-repair
response?

Is there molecular AMR2

How severe is the injury-repair
response?

Is there molecular AMR2

Is there molecular AMR?2

[15,24%= 26"

[227= 24" 53]
[45%]

(247

Chronic/chronic

active AMR
C4d staining without
evidence of rejection
Borderline for TCMR
TCMR TCMR grade Il and Il

Chronic-active TCMR

Mixed AMR and TCMR

IFTA NOS Scarring?

cause

Other findings

Polyomavirus nephropathy

Glomerulonephritis

Presence of endarteritis

i-IFTA lesion

[17,24™ 50]

Can molecular findings
distinguish causes of MVI
(e.g. HLA antibody,
non-HLA antibody,
missing self, efc)?

Degree of injury-repair
response?

Degree of chronicity?

Is there molecular AMR2 [13]

[45",61]

Is there molecular TCMR?2
Is there molecular AMR?2

Is there molecular TCMR? [52]
Is there molecular AMR?

Is there molecular TCMR2 [54]
Is there molecular AMR?
How severe is the injury-repair

response?

Is there molecular TCMR?2
Is there molecular AMR?2

Is there molecular TCMR?2 [54]
Is there molecular AMR?
How severe is the injury-repair

response?

[15,31,62]

Molecular identification of BK virus
Is there molecular TCMR?2

Is there molecular AMR2

[56,57]

AMR, antibody-mediated rejection; DSA, donor specific antibody; g, glomerulitis; MVI, microvascular inflammation; ptc, peritubular capillaritis; TCMR, T-cell

mediated rejection; TMA, thrombotic microangiopathy; v, intimal arteritis.

AMR and 44 biopsies without molecular AMR. The
six biopsies with molecular AMR had MVI of 1 or
more and a worse outcome, similar to that of AMR.
Cases with isolated v or TMA were negative for
molecular AMR in our study. Other studies with
isolated v-lesions have not consistently identified a
molecular signature associated with TCMR or
ABMR, and data are generally lacking for cases
with TMA as the main diagnostic feature
[24%,51,52]. These data suggest that molecular
AMR is mainly driven by MVI, which is not

1062-4821 Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.

surprising, as it is the most frequent histological
finding in AMR.

Finally, some patients with a DSA have no his-
tological features of rejection, and BBT might pro-
vide an opportunity for earlier diagnosis in such
patients with high immunological risk. Indeed, a
proportion of these biopsies may have molecular
AMR [53], but it remains unclear whether these
patients are more at risk of developing histological
rejection at a later stage, or if treatment of rejection
would alter outcomes.
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TCMR comprises active TCMR and chronic active
TCMR (caTCMR) in the Banff Classification. As for
AMR, discrepancies have been found between his-
tological TCMR and molecular TCMR, with little
evidence for which is superior to the other. Ideally,
BBT might help in circumstances where histology is
problematic, namely borderline for TCMR, PVN
versus TCMR and caTCMR.

caTCMR refers to cases that where the interstitial
inflammation component mainly affects the scarred
areas of the biopsy. Whilst inflammation in areas of
atrophy is associated with allograft loss, it can be due
to TCMR or to other pathological processes such as
infections [37]. BBT show that such biopsies show a
variety of molecular signatures, and in fact have
molecular AMR in 45% of cases and molecular
TCMR in 16% of cases according to the MMDx
system [54].

Similarly, biopsies that are borderline for TCMR
have shown a range of molecular features. In a study
using MMDx, 74% of biopsies borderline for TCMR
had a no-rejection gene signature, 13% had a molec-
ular signature of AMR, and only 9% had a molecular
signature of TCMR [31]. In another study, a molec-
ular tubulitis score in an early borderline biopsy
predicted patients at risk for molecular rejection
in a later follow-up biopsy [55]. Data (in particular,
clinical trial data) are lacking on whether different
molecular signatures correlate with different response
to different treatments.

PVN and TCMR both show tubulitis and inter-
stitial inflammation and are distinguished by look-
ing for evidence for polyomavirus replication in
urine, blood, or within the kidney tissue (nuclear
inclusions, SV40 immunostaining). It has also been
shown that BBT can identify polyomavirus-specific
transcripts, supporting PVN diagnosis in conten-
tious cases [56]. However, as TCMR and PVN share
a common pathophysiological pathway of antigen-
driven T cell activation, assessment of the co-occur-
rence of these two pathological processes using BBT
is limited. Moreover, more data are needed to better
understand the evolution of the molecular signal of
polyomavirus in order not to misidentify a de-novo
TCMR following PVN resolution [57].

CONCLUSION

Extensive investigations using bulk transcriptomics
over the last few decades have enabled a better
understanding of rejection, and future use of more
powerful platforms for single cell and spatial tran-
scriptomics will no doubt increase that output.
Translational research has established that BBT
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can detect rejection with good accuracy compared
to a histological “gold standard”. Frequent discrep-
ancies between histology and transcriptomics sug-
gest potential for synergy between the two
techniques, although to date, the indications where
BBT adds value are unclear. Only a few centres use
biopsy-based transcriptomics [58], and key barriers
to wider use include comparability of data and
models across centres and platforms; defined and
tested cost-effective contexts of use, and guidelines
for integrating information from standard histology
and BBT. It is important to stress that there are many
tasks for which BBT cannot replace histology, and
this has implications for how we select portions of
precious biopsy samples for best diagnostic yield.
Digitization of standard histology enhanced by
machine learning is likely to be synergistic with
BBT, but has potential to supplant BBT as a diag-
nostic tool, as has already been noted in the field of
cancer [59].

Panels and tools for molecular diagnosis have
been defined and tested for AMR, although prospec-
tive clinical trials that investigate their clinical util-
ity when used in addition to standard histology are
needed. As effective AMR treatments are currently
limited [60], BBT may not have that much impact
on allograft survival. Nevertheless, BBT has poten-
tial to help define specific molecular pathways as
therapeutic targets.
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