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I. INTRODUCTION

Metamaterials represent control over matter on a small enough
scale to change the macroscopic properties, opening an enormous
space of new and optimized mechanical and electromagnetic material
parameters. Nevertheless, there remain immovable constraints on con-
ventional static metamaterials. For example, static materials can never
change the wave frequency nor amplify the wave amplitude. Instead,
when a material changes with time, new degrees of freedom can be
exploited.

Recently, there has been a growing interest in time modulated
metamaterials.1 These materials exhibit dynamic changes in their
properties over time, representing a novel approach to manipulating
waves and processing information. This approach goes beyond the
constraints imposed by energy conservation and time-reversal symme-
try. Time-switched and time-varying metamaterials, as they are also
called, enable us to access the momentum and frequency of the waves,
leading to a wide array of unique properties, such as time-refraction,2

time-reversal,3 nonreciprocal behavior,4 wave synthesis and frequency
conversion,5,6 and amplification.7 Time modulated metamaterials have
potential for application in communication, security, sensing, and
computation just to mention a few, across various wave domains from
electromagnetism to acoustics and mechanics.

II. BACKGROUND

Time modulated metamaterials exhibit a temporal variation of
their wave response, for example, of their impedance, on timescales
comparable with the wave oscillation period. This modulation usually
originates from an external driving, either in the form of a mechanical
force, a laser beam, or a mechanical load, for example. Most of the
physical properties of these materials affect how waves are transported

or generated within them, and therefore, many phenomena are com-
mon to many weave domains, e.g., from light waves to elastic ones,
from acoustic waves to radio frequency.

In optics, despite the challenges of ultrafast switching of the
refractive index, pump–probe experiments have elucidated many of
the fundamental and applied aspects of time-modulated materials.
Free carrier injection by femtosecond laser pulses induces Drude-like
adjustments to the refractive index, enabling adiabatic frequency con-
version and translation,2,6 including for harmonics generation,8 and
the temporal analog of the Young’s double-slit experiment.9 However,
the lack of deep periodic drive stonewalls most experimental realiza-
tions pertaining, for instance, to time crystals and Floquet engineering.
New solutions are required to create the high-frequency periodic mod-
ulation of dielectric permittivity in the optical range.

Time-coding and space–time-coding digital metasurfaces with
inherently programmable properties emerge as powerful and versatile
platforms for implementing time modulation and space–time joint
manipulation,10 which have beenwidely explored in themicrowave fre-
quency for their potential for nonlinear harmonics controls, program-
mable nonreciprocity, and new-architecture wireless communications.

Time modulated metamaterials can also be harnessed to replicate
complex wave phenomena and information processing techniques.
Furthermore, they offer an opportunity to emulate fundamental
phenomena occurring in curved spacetimes,11 thereby extending
their utility beyond traditional wave manipulation and information
processing.

III. SUMMARY OF AREAS COVERED

This Special Topic in Applied Physics Letters collects recent
advances in the broad area of time modulated metamaterials. This is a

Appl. Phys. Lett. 123, 160401 (2023); doi: 10.1063/5.0178275 123, 160401-1

VC Author(s) 2023

Applied Physics Letters EDITORIAL pubs.aip.org/aip/apl

 19 M
arch 2024 14:35:30

https://doi.org/10.1063/5.0178275
https://doi.org/10.1063/5.0178275
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0178275
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0178275&domain=pdf&date_stamp=2023-10-16
https://orcid.org/0000-0002-4208-0374
https://orcid.org/0000-0001-8397-334X
https://orcid.org/0000-0002-7375-8870
https://orcid.org/0000-0002-0656-614X
mailto:r.sapienza@ic.ac.uk
https://doi.org/10.1063/5.0178275
pubs.aip.org/aip/apl


broad field, and this collection has contributions that encompass time
reversal, parity-time symmetry, nonreciprocity, parametric effects, sub-
harmonic mixing, coding and inverse design, and new temporal phe-
nomena. Here below, we have attempted to highlight some of the
papers and the broad topics they address.

As exemplary results within this topic, Sadafi et al.12 and Rafi
et al.13 provided an analytical solution for scattering from a particle
composed of a material with time-varying permittivity, and temporal
modulation of the material parameters can be exploited to transfer
energy to high-order modes.

Gaxiola-Luna and Halevi14 investigate the band structure xðkÞ of
a photonic time crystal with periodic square (step) modulation in time
of its permittivity eðtÞ. Additionally, He et al.15 investigate Faraday
rotation in nonreciprocal photonic time-crystals and created a link
between photonic nonreciprocity and parametric gain. While Mattei
and Gulizzi16 designed space microstructures in the propagation of
waves in time modulated composites and demonstrated that a pulse
propagates with constant amplitude regardless of the impedance
between the constituent materials.

Stefanini et al.17 studied a rainbow-like scattering process taking
place at the interface of a boundary-induced temporal metamaterial.
They demonstrate an equivalent temporal interface that occurs
between two different media by abruptly changing the conductivity of
one of the two metallic plates. Therefore, the monochromatic wave
propagating into the waveguide gets scattered into a polychromatic
rainbow in free space.

Castaldi et al.18 developed an approximate approach to model
the multiple actions of time-resolved short-pulsed metamaterials sys-
tematically. Their result illustrates the potential capabilities of SPMs
to serve as elementary bricks in more complex analog-computing
systems.

In the context of space–time coding, our Special Topic features
several exciting papers since this is an area of growing interest in the
community of programmable metasurfaces and information science
and technology. References 19–22 discuss some important features in
this area for direction-of-arrival estimations, near-field microwave
computational imaging, physics-driven intelligent autoencoder, and
time-coding spoof surface plasmon polaritons. These results demon-
strate that the space–time coding approach has powerful capabilities in
modulating the electromagnetic waves and also expands the potential
applications of programmable and information metasurfaces.

Several applications are also suggested in this Special Issue, such
as switching the transmission response of THz wave,23 secure wireless
communication,24 engineering bandwidth of small antennas,25 and
controlling the radiation of the nonlinear waves.26

IV. CONCLUSION

The field of time modulated metamaterials is developing both a
fundamental theoretical and experimental understanding while target-
ing a broad range of applications.

This Special Topic compilation offers Applied Physics Letters’
diverse readership a chance to explore the latest developments in the
field of time-modulated metamaterials and their practical applications.
We hope that this curated assortment of articles will act as a catalyst,
encouraging researchers to explore new frontiers beyond the tradi-
tional domains of electromagnetic research, photonics, and wave phys-
ics, ultimately propelling this field to greater heights.
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