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Abstract Spatiotemporal forecasting involves generating temporal forecasts for system state variables
across spatial regions. Data‐driven methods such as Convolutional Long Short‐TermMemory (ConvLSTM) are
effective in capturing both spatial and temporal correlations, but they suffer from error accumulation and
accuracy loss as forecasting time increases due to the nonlinearity and uncertainty in physical processes. To
address this issue, we propose to combine data‐driven and data assimilation (DA) methods for spatiotemporal
forecasting. The accuracy of the data‐driven ConvLSTM model can be improved by periodically assimilating
real‐time observations using the ensemble Kalman filter (EnKF) approach. This proposed hybrid ConvLSTM‐
EnKF method is demonstrated through PM2.5 forecasting in China, which is a challenging task due to the
complexity of topographical andmeteorological conditions in the region, the need for high‐resolution forecasting
over a large study area, and the scarcity of observations. The results show that the ConvLSTM‐EnKF method
outperforms conventional methods and can provide satisfactory operational PM2.5 forecasts for up to 1 month
with spatially averaged RMSE below 20 μg/m3 and correlation coefficient (R) above 0.8. In addition, the
ConvLSTM‐EnKF method shows a substantial reduction in CPU time when compared to the commonly used
NAQPMS‐EnKF method, up to three orders of magnitude. Overall, the use of data‐driven models provides
efficient forecasts and speeds upDA. This hybrid ConvLSTM‐EnKF is a novel operational forecasting technique
for spatiotemporal forecasting and is used in real spatiotemporal forecasting for the first time.

Plain Language Summary This study introduces an advanced method (ConvLSTM‐EnKF) for
PM2.5 forecasting in China, which is a challenging task due to its large area coverage, and complex
topographical and meteorological conditions. This innovative approach combines two techniques: one looks at
historical data to make forecasts, while the other periodically incorporates new information from observations to
improve forecasts over time. This combination significantly improves forecasting accuracy and provides
reliable operational PM2.5 forecasts for up to 1 month. Notably, this method is more efficient than traditional
approaches. Beyond air pollution, the method holds promise for improving predictions in other areas, including
weather, climate, and environmental systems, marking a substantial step forward in our ability to anticipate and
understand complex spatiotemporal phenomena.

1. Introduction
Spatiotemporal forecasting is crucial for scientific studies and practical applications, such as numerical weather,
air quality, and flooding forecasting (Brunner et al., 2020; Cheng et al., 2022; Qi et al., 2019; Ravuri et al., 2021;
L. Xu et al., 2021). Accurate and efficient spatiotemporal forecasting can help decision‐making and reduce life
and economic damage. However, spatiotemporal forecasting is challenging due to several factors, including the
inherent complexity of the studied systems, high dimensionality, data sparsity and incompleteness, uncertainties
in models and measurements, interactions between variables, and spatial correlations among regions (Chai
et al., 2020; Liu et al., 2019).

Machine learning (ML) methods have emerged as a powerful tool for spatiotemporal forecasting, given their
ability to handle large data sets efficiently and learn complex input‐output relationships from historical data
(Kochkov et al., 2021; Liang et al., 2020; Rasp & Thuerey, 2021; Weyn et al., 2019). In particular, recurrent
neural networks (RNNs) and RNN‐variants, such as Long short‐term memory (LSTM), are powerful in exploring
temporal dependency in sequential data (Elman, 1990; Hochreiter & Schmidhuber, 1997; Karevan & Suyk-
ens, 2020; Li et al., 2017; Yan et al., 2021). By embedding convolutional operators into the LSTM framework, the
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so‐called convolutional LSTM (ConvLSTM) network can incorporate spatial dependence and is widely adopted
in spatiotemporal forecasting problems (Alléon et al., 2020; Kim et al., 2017; Shi et al., 2015). However, most
studies are limited in short‐term forecasting due to the increased uncertainty associated with longer time horizons
and the potential impacts of unforeseen events. To tackle this challenge, we propose to incorporate real‐time
observations through DA to periodically refine forecasting trajectory and minimize forecasting uncertainty.

DA can improve forecasting accuracy by reducing uncertainty through the fusion of observations and model
simulations (Park & Xu, 2022). DA is often used in forecasting problems of chaotic systems, like weather and air
quality forecasting, where even a small disturbance of the initial state can lead to huge differences in long‐term
forecasting results (Lorenz, 1963; Schemm et al., 2023). By periodically incorporating information from newly
received observations, we can have an optimal initial state enabling more accurate and reliable forecasting results
(Ghil & Malanotte‐Rizzoli, 1991). DA has been a key component in atmospheric chemistry models for several
decades (Bocquet et al., 2015; Elbern & Schmidt, 2001; Sandu & Chai, 2011). The effective utilization of DA
techniques has notably improved the accuracy of air pollutant forecasts, particularly for PM2.5 (Particle Matter
with a diameter equal to or less than 2.5 microns) (Dash et al., 2023; Peng et al., 2017). DA incorporates real‐time
observations, such as measurements of pollutant concentrations from ground‐based sensors, satellite data, and
other sources, into the model. By assimilating this observational data, DA helps correct any discrepancies be-
tween model forecasts and actual air quality observations.

One popular DA method, the ensemble Kalman filter (EnKF), operates by generating an ensemble of model state
samples, representing the uncertainty in the initial condition (Hakim et al., 2016; Zhu et al., 2019). These samples
are then projected forward to generate a set of forecasts that encompass the possible future states. EnKF as-
similates observations, when available, to update the ensemble and produce a more accurate estimate of the
current system state. EnKF has the advantage of being computationally efficient, easy to implement and adaptable
to different models and systems compared to other DA methods such as four‐dimensional variational DA (4D‐
Var). However, EnKF is sensitive to the used ensemble size (Lorenc, 2003). A small ensemble size can result in
inaccurate assimilation results, while a large ensemble size can be computationally expensive (Evensen, 1994;
Evensen et al., 2022). Typically, O(102) ensemble members are used in conventional EnKF procedures with
physics‐based forecasting models due to limited computational resources (Houtekamer et al., 2014; Houtekamer
& Zhang, 2016; Leutbecher, 2019).

Recent studies are exploring the combination of ML and DA methods to reduce the accumulation of forecast
uncertainty and address the challenges posed by intensive computation in conventional physics‐based models.
Penny et al. (2022) implemented a pre‐trained RNN as a surrogate model for prediction in a sequential DA cycle
and tested the integrated RNN‐DA approach in the Lorenz 96 system. Chattopadhyay et al. (2022) combined a
data‐driven weather prediction (DDWP) model with DA and demonstrated the proposed DDWP + DA approach
on Z500 (geopotential height at 500 hPa) forecasting. These studies demonstrated that the integrated approaches
can correct forecast trajectories and represented an important step toward combining a purely data‐driven model
with DA for operational spatiotemporal forecasting. However, these studies are only demonstrated in toy and
simple systems with low dimensionality and synthetic observations. Pawar and San (2022) adopted a model order
reduction algorithm to reduce the dimensionality of the studied system. They proposed to train an LSTM network
as a surrogate model and performDA in the reduced‐order space. However, the reduced model sacrifices accuracy
for efficiency and may not be reliable for highly nonlinear systems. Meanwhile, the spatial correlations of
adjacent regions and complex intercorrelations between different state variables in the studies system are not
exploited. Additionally, the scarcity and sparseness of observations in realistic scenarios can also pose significant
challenges in DA.

In this work, we propose a ConvLSTM‐EnKF method for operational spatiotemporal forecasting, in which a
ConvLSTMmodel is trained and used for iterative multi‐step forecasting and EnKF is used to correct forecasts by
assimilating real‐time observations into the ConvLSTM forecasts. The ConvLSTM model is trained on a rean-
alysis data set produced by assimilating observations into physical simulation results. This is a hybrid data‐driven
and DA approach that combines the strengths of ML algorithms, real‐time observations, and physics‐based
models. Our contributions focus on (a) ML‐based operational spatiotemporal forecasting with high efficiency
and accuracy; (b) online DA with high spatial resolution; (c) the use of sparse observations in DA; (d) the
incorporation of complex topographical and meteorological features on ML‐based forecasting; (e) the application
of the proposed ConvLSTM‐EnKF method in PM2.5 forecasting over China.
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This paper is structured as follows: In Section 2, we propose an operational spatiotemporal forecasting method by
combining ConvLSTM and EnKF. This section provides the governing equations for spatiotemporal forecasting,
explanations of ConvLSTM and EnKF, and the structure of the proposed ConvLSTM‐EnKF method. Section 3
describes the application of the proposed ConvLSTM‐EnKF method in operational PM2.5 forecasting, including
the study area, the data sets used, and the details of model construction, training, and validation. In Section 4, we
conduct a comprehensive evaluation and analysis of both the ConvLSTM and ConvLSTM‐EnKF performances in
PM2.5 forecasting. Finally, Section 5 presents conclusions drawn from the preceding results.

2. An Efficient ConvLSTM and EnKF DA Framework
2.1. ML‐Based Modeling for Nonlinear Forecasting Problems

Complex physical processes can be governed by partial differential equations (PDEs), such as the continuity
equation, Navier‐Stokes (NS) equation, thermal diffusion equation, and wave equation. The governing equations
for these problems can be generally expressed as:

dφ
dt
= g(φ,u,t), (1)

where φ denotes the state variable to be forecasted in a spatial region, such as velocity, pressure, temperature, and
concentrations. u represents the model inputs, including physical parameters, and initial and boundary conditions.
t is time and g denotes a nonlinear function.

In general, forecasting problems involve a nonlinear relationship between the state variable at the current time
level t and the next time level t+ 1, given the model input ut+1 at time t+ 1. This relationship can be expressed as:

φt+1 = M(φt,ut+1), (2)

where M denotes a nonlinear forecast operator.

It is often not possible to find analytical solutions for the governing equations in a complex system. Therefore,
numerical methods are commonly utilized to solve the associated PDEs. However, widely used numerical
methods, like the finite difference method (FDM), finite element method (FEM), and finite volume method
(FVM), can introduce numerical errors and can be computationally expensive, particularly for large‐scale
problems. Recent advancements have demonstrated that ML methods can offer a feasible and efficient way to
perform spatiotemporal forecasting by leveraging the nonlinear relationships learned from data. We compared
data‐driven and physics‐based models for spatiotemporal forecasting from the perspective of accuracy and ef-
ficiency. Detailed comparative analysis between data‐driven and physics‐based methods can be found in Ap-
pendix in Supporting Information S1, Text S1 in Supporting Information S1.

The ConvLSTM model adopted in this study is an effective approach for spatiotemporal forecasting, which
captures both spatial and temporal dependencies in the data by utilizing convolution operators in both the input
and hidden states of the LSTM cells. For more details about the ConvLSTM model, please refer to the Appendix
in Supporting Information S1. We train a ConvLSTMmodel for hourly forecasting and achieve multi‐hour‐ahead
forecasting by iteratively using the trained hourly forecasting model. In this iterative forecasting procedure, each
prior forecast is employed as input for sequential forecasting. We chose the iterative strategy because the required
hourly forecasting model is easy to train and it can generate forecasts of arbitrary lengths (Shi & Yeung, 2018).
More information on iterative multi‐step‐ahead (IMS) forecasting strategy can be found in the Appendix in
Supporting Information S1, Text S2.2 in Supporting Information S1.

2.2. Coupling of EnKF With ConvLSTM

Real‐time DA is crucial for improving operational forecasting accuracy. A widely adopted DAmethod, known as
EnKF, leverages an ensemble of model simulations and incorporates real‐time observations to optimally estimate
the state of a system. EnKF is relatively easy to implement and model‐independent, making it a preferred option
over other DA methods like 4D‐Var. However, EnKF requires a large ensemble size to accurately represent
system uncertainty, which can be computationally demanding, particularly for large‐scale systems, and often
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requires parallel computing resources for practical runtime performance. To tackle this limitation, we propose a
hybrid method that employs a data‐driven ConvLSTMmodel as the forecasting model in EnKF. This ConLSTM‐
EnKF method enables the use of a large ensemble size, improving both the efficiency and accuracy of DA. The
combination of data‐driven and DA methods can further benefit online DA and operational spatiotemporal
forecasting. More information on EnKF can be found inAppendix in Supporting Information S1, Text S3 in
Supporting Information S1.

The nonlinear forecast operator M in Equation 2 can be either physics‐based or data‐driven models. Here, a
trained ConvLSTM model MConvLSTM is used for forecasting in the proposed ConvLSTM‐EnKF method. The
forecast process is expressed as:

φt+1 = MConvLSTM (φt,ut+1) + εt+1, (3)

where εt+1 is the model error. EnKF is used to reduce εt+1 by incorporating observations into theML‐based model
MConvLSTM simulations. There are three steps in the proposed hybrid ConvLSTM‐EnKF method (Figure 1):

1. Train a ConvLSTM model for spatiotemporal forecasting.
2. Estimate the system state by conducting ensemble forecasting using the trained model.
3. Update the estimated state by assimilating real‐time observations into the forecasted ensemble members using

EnKF when observations are available.

3. A Case Study of PM2.5 Forecasting in China
PM2.5 forecasting is crucial for anticipating and preparing for potential health and environmental impacts. The
complex behavior of air pollutants, such as PM2.5, can be described through the interaction of various processes,
including advection, diffusion, chemical reactions, emissions, and deposition. These complex processes are often
expressed mathematically through a set of coupled PDEs. Here, we employed an advection‐diffusion equation
with a source term to broadly encapsulate the complex atmospheric processes relevant to PM2.5 forecasting:

Figure 1. ConvLSTM‐EnKF method for operational spatiotemporal forecasting. Auxiliary variables are available or can be obtained from other systems. State variables
are what we are going to forecast. We first train a ConvLSTM model for hourly forecasting and further perform multi‐hour‐ahead forecasting by adopting the IMS
strategy. Ensemble Kalman filter (EnKF) is used to assibilate newly received observations to reduce forecast uncertainty and generate optimal reanalysis state variables.
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∂φ
∂t
+ ∇ · (vφ) = ∇ · (D∇φ) + Sφ, (4)

where φ represents the PM2.5 concentration; v is the wind velocity vector;D is the diffusion coefficient; Sφ is the
source term that encompasses PM2.5 emission, deposition, and related chemical reactions, each with its specific
mathematical formulations designed to the underlying processes.

We evaluate the capability of the proposed ConvLSTM‐EnKF method through a case study on operational
spatiotemporal PM2.5 forecasting in China. This task is challenging since (a) it covers the vast territory of
China with a variety of terrain, economic activities and meteorological conditions that exert significant
impacts on PM2.5 concentrations (An et al., 2019; Hong et al., 2019; Zhang et al., 2019); (b) it involves a
high‐resolution (15 × 15 km in spatial and 1 hr in temporal) data set which is necessary for capturing complex
atmospheric processes at different scales and accurately predicting air pollution patterns, but can lead to a dra-
matic increase in computational demands and make it difficult to perform online DA (Kong et al., 2021); (c) it
involves the assimilation of sparsely located observations, which poses difficulties in generating reanalysis results
with sufficient accuracy. In this study, we tackle the first challenge mentioned by incorporating topographical and
meteorological features into the data‐driven forecasting model, aligning with the approach of physics‐based
models. To alleviate the computational cost‐related difficulties, we adopt a ConvLSTM model as a surrogate
for physics‐based models. This enhanced forecasting efficiency achieved by the ConvLSTM model allows the
utilization of a large ensemble size in EnKF for DA, ultimately leading to improved analysis accuracy.

3.1. High‐Resolution Reanalysis Data and Sparse Observations

Reanalysis PM2.5 Concentrations are from the Chines air quality reanalysis (CAQRA) data set. This data set is
obtained by assimilating the surface observations from the sparse monitoring stations into the physical simulation
results obtained by the Nested Air Quality Prediction Modeling Systems (NAQPMS) using EnKF (Kong
et al., 2021). As a result, the CAQRA data set inherently encompasses atmospheric processes such as advection,
diffusion, chemical reactions, emissions, and deposition from the NAQPMS simulations. This data set contains
six conventional air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) in China for the period 2013–2019 at high
spatial (15 km × 15 km) and temporal (1 hr) resolutions. This reanalysis data set is used as the ground truth for
training and validating the ConvLSTM model as it optimally combines the surface observations and physical
modeling results through advanced assimilation techniques.

Meteorology and topography data are integrated as inputs during both the training and forecasting stages of the
ConvLSTM model. Meteorological variables, including the U‐ and V‐components of wind, temperature, relative
humidity, and surface pressure are obtained through meteorology simulations using the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2008). Each simulation involves a continuous 36‐hr run of the WRF
model, with the first 12 hr serving as a spin‐up phase and the subsequent 24 hr providing the meteorological inputs
for the ConvLSTM model. For each simulation, the initial and boundary conditions are derived from the Climate
Forecast System Reanalysis (CFSR) data set (Saha et al., 2010). Altitude is obtained from a Digital Elevation
Model (DEM).

Sparse surface PM2.5 observations are collected from 1,436 sparsely located air quality monitoring stations
across China. These stations are unevenly distributed, with a majority located in eastern China and a few stations
in the western regions. The uneven distribution of observations poses challenges for DA in PM2.5 forecasting.
The specific locations of all monitoring stations can be found in Appendix in Supporting Information S1, Figure
S1 in Supporting Information S1.

3.2. The ConvLSTM Model for Hourly PM2.5 Forecasting

In this study, a 3‐layer ConvLSTM model is trained for hourly PM2.5 forecasting. Details of model construction,
training, and validation can be found in Appendix in Supporting Information S1, Text S2.3 in Supporting In-
formation S1, This ConvLSTM model is initialized daily from reanalysis data generated by EnKF at 00:00
UTC+08:00 in March, June, September, and December 2018. The IMS strategy is used to forecast PM2.5 for the
following 24 hr.

The hourly forecasting model can be represented as:
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Ot = MConvLSTM (It), (5)

where It and Ot represent the input and output of the ConvLSTM model MConvLSTM at time t, respectively.

It :
⎧⎨

⎩

{ukt− m+2:t+1}∈Rm×N ,k = 1,2,⋯K

{φt− m+1:t}∈Rm×N ,
(6)

where input It includes the auxiliary variables u (here topographical and meteorological variables) and historical
PM2.5 concentrations φ; m is the time‐lag length (m = 1 in this study); K is the number of auxiliary variables,
uk ∈RN represents the kth auxiliary variable with N nodes in the study domain. ut+1 at time t + 1 is either a time‐
invariant variable (i.e., altitude) or a time‐variant variable forecasted from a related model (i.e., meteorological
variables forecasted from the WRF model). The output Ot is the forecasted PM2.5 concentrations φ̃t+1 with lead
time of 1 hr:

Ot : φ̃t+1 ∈RN . (7)

In the training and validation processes, reanalysis data from 2013 to 2017 is utilized. 90% of this data is randomly
allocated for training, while the remaining 10% is used for validation. The training and validation loss can be
found in Appendix in Supporting Information S1, Figure S4 in Supporting Information S1. To ensure inde-
pendence, all samples for training and validation are shaffled before being fed into the model. Input variables of
the ConvLSTMmodel include historical PM2.5 concentration, U‐ and V‐components of wind fields, temperature,
relative humidity, and altitude (Figure 2). These input variables are optimized based on correlation analysis
among all available variables. More details on the correlation analysis and related discussions can be found in
Appendix in Supporting Information S1 Text S4 in Supporting Information S1. The ConvLSTM model, being
data‐driven, derives valuable insights from its training data, specifically the CAQRA data set. This data set is
created by skillfully integrating NAQPMS simulations and surface observations through DA. This integration
provides the model with a comprehensive understanding of complex atmospheric processes, including advection,
diffusion, chemical reactions, and emissions.

3.3. The ConvLSTM‐EnKF Model for Operational PM2.5 Forecasting

Observing System Simulation Experiment (OSSE): We conduct an OSSE to assess the performance of the pro-
posed ConvLSTM‐EnKFmethod in hourly operational PM2.5 forecasting and analyze the impact of different DA
frequencies on the results. A set of simulated observations are assimilated into the ConvLSTM forecasts every 6,
12, and 24 hr. The synthetic observations are created by down‐sampling reanalysis PM2.5 concentrations with a
spatial resolution of 150 × 150 km, where random noise, equivalent to 10% of the original value, is added to
simulate measurement errors. These synthetic observations comprise only 1% of the reanalysis data set, repre-
senting the scarcity of real‐world observations.

Real‐world Scenario with Sparse Observations: We further apply the ConvLSTM‐EnKF method in a real‐world
scenario, where surface PM2.5 observations are collected from 1,436 sparsely located air quality monitoring
stations in China. DA is performed every 6 hr using EnKF with a configuration of 100 ensemble members and a
localization radius of 1,000 km. The proposed ConvLSTM‐EnKF method for operational PM2.5 forecasting is
illustrated in Figure 2.

4. Results and Discussion
4.1. ConvLSTM Performance in PM2.5 Forecasting

The accuracy of PM2.5 forecasting depends on several factors, including data availability and quality, model
effectiveness, and the accuracy of meteorological forecasts. Recently developed data‐driven models can achieve
reliable PM2.5 forecasting. For example, Niu et al. (2023) proposed an Informer‐based spatiotemporal predictor,
demonstrating good performance in hourly PM2.5 forecasting at 35 monitoring stations in Beijing. Teng
et al. (2023) employed a graph deep neural network to capture the spatiotemporal correlations among
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neighborhood monitoring stations for PM2.5 forecasting in the Beijing‐Tianjin‐Hebei region. However, most
studies only demonstrated at specific stations, cities, or regions, PM2.5 forecasting over a large area, like the
entire China, remains a challenging task.

In this section, we demonstrate the ability of the trained ConvLSTMmodel in hourly PM2.5 forecasting through a
comparison with surface monitoring data and reanalysis data (served as reference data) in a high spatial resolution
of 15 km × 15 km. We evaluate the performance of the trained ConvLSTM model in hourly PM2.5 forecasting
with a lead time of 24 hr during December 2018, a winter season characterized by severe PM2.5 pollution. The
model is initialized daily from reanalysis data at 00:00 UTC+08:00. Subsequently, PM2.5 concentrations for the
following 24 hr were forecasted using the IMS strategy. The inputs for the ConvLSTM are historical PM2.5
concentrations, key meteorological (wind speed, temperature, relative humidity) and topographical (altitude)
factors, which largely impact PM2.5 distribution and concentration in the atmosphere (Song & Shao, 2023; Xu
et al., 2018). Detailed correlation analysis among all available factors can be found in Appendix in Supporting
Information S1, Text S4 in Supporting Information S1.

Our results show that the trained ConvLSTM model can provide efficient and accurate hourly PM2.5 forecasting
with a lead time of 24 hr in December 2018. The forecasted results are compared with reanalysis PM2.5 con-
centrations and actual observations in four cities in China: Beijing, Shanghai, Guangzhou, and Chengdu
(Figure 3). Our analysis reveals that the ConvLSTM forecasts exhibit a high degree of alignment with the
reanalysis data and actual observations. The temporally averaged RMSE values between forecasts and obser-
vations in four cities are 24.82, 28.81, 13.51, and 31.84 μg/m3, respectively. The trained ConvLSTM effectively
captures the temporal variation in PM2.5 concentrations throughout the entire month, emphasizing its accuracy in
forecasting pollution levels under severe winter conditions. Satisfactory 24‐hr‐ahead forecasts for the other
3 months (March, June, and September) in 2018 are presented in Appendix in Supporting Information S1, Figure
S5–S7 in Supporting Information S1.

Figure 2. Illustration of the proposed hybrid ConvLSTM‐EnKF method for hourly operational PM2.5 forecasting. In this case study, PM2.5 concentrations serve as the
state variable, and topographical and meteorological fields, including U‐ and V‐components of the wind field, temperature, relative humidity, and altitude, are used as
auxiliary variables. Observations are collected from 1,436 sparsely located air quality monitoring stations in China. Forecasting is conducted using a trained three‐layer
ConvLSTM model while EnKF is used to improve the forecast accuracy by assimilating the observations into the ConvLSTM forecasts.
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We also assessed how well the ConvLSTM model performs by comparing it to the NAQPMS, a widely used
physics‐based model for air quality forecasting in China, specifically for hourly PM2.5 forecasting with a lead
time of 1 month. Our findings reveal that the ConvLSTM model outperforms the NAQPMS (Appendix in
Supporting Information S1, Figure S8 in Supporting Information S1). For an extensive examination and com-
parison between data‐driven and physics‐based models, please refer to the detailed analysis provided in the
Appendix in Supporting Information S1, Text S1 in Supporting Information S1.

Furthermore, our results indicate that the trained ConvLSTM model can capture the spatial distribution of the
PM2.5 concentration (Figure 4). The absolute forecast error at 06:00 UTC+08:00, 19 December 2018, is smaller
than 10 μg/m3 in most areas. The largest forecast error with an absolute value of 40 μg/m3 was observed in the
Jing‐Jin‐Ji region characterized by a high population density and developed industries. The spatially averaged
RMSE and R between the forecasts and reference are 8.88 μg/m3 and 0.95, respectively. Additionally, local
correlations between predictions and references are above 0.80 in all areas (Appendix in Supporting Informa-
tion S1, Figure S10 in Supporting Information S1). The mathematical definition of local correlation can be found
in Appendix in Supporting Information S1, Text S5 in Supporting Information S1.

However, we recognize that the ConvLSTM model also suffers from accumulation and accuracy loss over
forecasting time, just like other physics‐based and data‐driven models for PM2.5 forecasting, which is inherent in
chaotic systems (Lorenz, 1972). The spatially averaged RMSE increases to 14.26 μg/m3, the spatially averaged R
decreases to 0.90 at 12:00 UTC+08:00; the spatially averaged RMSE further increases to 14.79 μg/m3, the
spatially averaged R decreases to 0.84 at 18:00 UTC+08:00. To mitigate the accuracy loss stemming from errors
in both the initial condition and forecasting model, we propose the ConvLSTM‐EnKF method in Section 3.3 for

Figure 3. 24‐hour‐ahead PM2.5 forecasts in 4 cities (Shanghai, Beijing, Chengdu, and Guangzhou) in China during December 2018. Forecasts are initiated daily at 0:00
UTC+08:00, employing reanalysis PM2.5 concentration as the initial condition. RMSE(ConvLSTM‐24hr, Obs.) denotes the temporally averaged RMSE between the
24‐hr‐ahead ConvLSTM forecasts and observations for each city.
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operational PM2.5 forecasting. This method allows for periodic refinement of the initial condition by assimilating
observations into the ConvLSTM forecasts, ensuring reliable and consistent forecasts.

4.2. ConvLSTM‐EnKF Performance in Operational PM2.5 Forecasting

To improve the accuracy of operational spatiotemporal forecasting, we integrate the EnKF into the ConvLSTM
model, resulting in the ConvLSTM‐ENKF method. This approach allows for online DA at a high spatial reso-
lution, using either uniformly located synthetic observations or sparsely located monitoring observations. The
forecasting trajectory is periodically corrected with a selected DA frequency. We demonstrate the effectiveness of
this method in improving forecasting accuracy through the following two case studies.

4.2.1. DA With Synthetic Observations

To evaluate the effectiveness of the proposed ConvLSTM‐EnKF method, we conduct operational PM2.5 fore-
casting with a set of synthetic observations. These synthetic observations are created by down‐sampling the

Figure 4. Comparison of the PM2.5 concentrations obtained from the reanalysis data set (left), hourly ConvLSTM forecasts with a lead time of 24 hr (middle), and
differences between them (right) at 06:00, 12:00, and 18:00 UTC+08:00 on 19 December 2018.
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reference data with a spatial resolution of 150 × 150 km and introducing random noise at a level corresponding to
10% of the original values. Using the trained ConvLSTMmodel, we conduct IMS forecasting and incorporate the
observations using EnKF at the end of each DA cycle. By employing synthetic observations, we can achieve the
highest attainable accuracy in operational PM2.5 forecasting. We systematically analyze the effects of different
DA frequencies on the operational forecasting performance. This analysis can help in identifying the optimal DA
frequency for operational forecasting with actual observations. In this study, we adopt three DA frequencies (6,
12, and 24 hr) to facilitate the periodic incorporation of observations.

We evaluated the spatiotemporal PM2.5 forecasting results with different DA frequencies by calculating the
RMSE and R between the forecasts and reference data (Figure 5). We observe an increase in RMSE and a
decrease in Rwithin each DA cycle. At the end of each DA cycle where DA is conducted, the forecasting accuracy
is notably improved by incorporating information from observations. The specific values for RMSE reduction and
R increase at the end of each DA circle can be slightly different due to fluctuations in weather conditions. The
updated result is used as the initial condition for the next DA cycle. In the studied month, the averaged RMSE
values between reanalysis data and operational PM2.5 forecasts with DA frequencies of 6, 12, and 24 hr are 12.60,
11.45, and 9.69 μg/m3, respectively. The corresponding R values are 0.89, 0.91, and 0.94, respectively. The

Figure 5. Evaluating ConvLSTM‐EnKF operational forecasting accuracy at different DA frequencies (6, 12, and 24 hr) in December 2018. DA is conducted using EnKF
with synthetic observations and 100 ensemble members. The blue, yellow, and green curves represent the spatially averaged R and RMSE of PM2.5 concentration
between reference data and ConvLSTM‐EnKF forecasts at each hour. The labels ‘R@Xh’ and ‘RMSE@Xh’ denote the spatiotemporally averaged R and RMSE with a
DA frequency of X hours over China throughout the entire month.
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comparison of DA results at different frequencies indicates that shorter DA cycles can enhance operational
forecasting accuracy.

The use of the proposed ConvLSTM‐EnKF method in operational PM2.5 forecasting can maintain accurate
forecasting results over a long period. When the DA frequency is set to 6 and 12 hr, the RMSE maintains
below 20.0 μg/m3 and R above 0.80 throughout the studied month, except for December 1–2, 2018. The
abnormally large errors observed during this period are due to unforeseen high PM2.5 concentrations in northwest
China presented in the reanalysis data set. Compared with the reference data, we see that the ConvLSTM‐EnKF
method can capture spatial distributions of PM2.5 concentrations with a small predictive error of 10 μg/m3 in
most areas at 06:00, 12:00, and 18:00 UTC+08:00 on 19 December 2018 (Figure 6). The spatial averaged RMSE
values at these times are 7.28, 8.95, and 7.75 μg/m3, respectively. The corresponding R values are 0.96, 0.96, and
0.96, respectively. The synergy of ConvLSTM and EnKF enables operational spatiotemporal PM2.5 forecasting
with high accuracy and stability.

Figure 6. Comparison of the spatial distribution of PM2.5 concentration obtained from the reanalysis data set (left), ConvLSTM‐EnKF forecasts (middle), and
differences between them (right) at 06:00, 12:00, and 18:00 UTC+08:00 on 19 December 2018. DA frequency is opted as 6 hr for this experiment.
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Hence, in practical scenarios with limited and sparse observations, as discussed in Section 4.2.2, we choose a DA
frequency of 6 hr. This decision aims to strike a balance between accuracy and computational efficiency in our
forecasting approach.

4.2.2. DA With Sparse Observations

In real‐world scenarios, the availability of observations is restricted to a small number of sparsely distributed
monitoring stations, which has posed a significant obstacle to achieving reliable DA. To demonstrate the
effectiveness of the proposed ConvLSTM‐EnKF method in realistic operational PM2.5 forecasting, we use
observations from 1,436 sparsely distributed monitoring stations across China during the DA process. DA is
conducted every 6 hr using 100 ensemble members. To avoid impractical long‐distance correlations, we apply
localization with a radius of 500 km at the DA step.

We compare ConvLSTM‐EnKF forecasts with actual observations and reanalysis PM2.5 concentrations (refer-
ence) from the CAQRA data set in four cities (Beijing, Shanghai, Chengdu, and Guangzhou) in China (Figure 7).
Despite differences in economic, topographical, and meteorological conditions contributing to different scales
and temporal fluctuations in PM2.5 concentrations, the ConvLSTM‐EnKF forecasts align well with the reference
and observations for most of the forecasting period (1–21 December 2018). Discrepancies are noted only for high
PM2.5 concentrations in Beijing between December 1–3, and in Chengdu between December 19–21. Operational
PM2.5 forecasting is halted on December 22 due to the unavailability of observations between December 22–27
(Figure 3). Furthermore, to provide a comprehensive view of the operational PM2.5 forecasting results, satis-
factory outcomes for the other 3 months (March, June, and September 2018) are presented in Appendix in
Supporting Information S1, Figure S11–S13 in Supporting Information S1.

Figure 7. Operational PM2.5 forecasts using the proposed ConvLSTM‐EnKF method in cities (Beijing, Shanghai, Chengdu, and Guangzhou) in China during 1–21
December 2018. Data assimilation (DA) is conducted with 100 ensemble members every 6 hr. RMSE(ConvLSTM‐EnKF., Obs.) denotes the temporally averaged
RMSE between the ConvLSTM‐EnKF forecasts and observations for each city.
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4.3. Dependency of PM2.5 Concentration on Meteo‐ and Topo‐Features

PM2.5 forecasting relies on several factors, such as topographical and meteorological conditions. To evaluate the
impact of these factors on PM2.5 forecasting, three case studies have been undertaken with different input feature
combinations. The key meteorological features considered in the inputs are the U‐ and V‐components of the wind
field, temperature, and relative humidity. We employ the spatially averaged RMSE and R metrics to quantify the
performance of the trained ConvLSTM in these three cases, respectively (Figure 8).

The forecasting method that combines both historical PM2.5 concentrations and meteorological features has
demonstrated better performance compared to the method that relies solely on historical PM2.5 concentrations.
The latter can only provide accurate forecasts for a single day before the R between the forecast and reference
drops to zero, while the former can provide accurate forecasts for over 4 days. Moreover, incorporating topo-
graphical features into the forecasting model further improves its performance, with a consistently high R (above
0.5) and low RMSE (below 45.0 μg/m3).

The forecasting of PM2.5 concentration is significantly impacted by topographical features which affect both
the transport of PM2.5 and the stability of the atmosphere. We compared the forecasting accuracy with and
without consideration of terrain for 12, 18, and 24‐hr time frames (Table 1). When only historical PM2.5 and
meteorological features are considered in model training and forecasting processes, forecasting accuracy de-
creases rapidly over time. Specifically, the R decreases from 0.86 at 6 hr to 0.19 at 24 hr, while the RMSE
increases from 16.74 to 100.49 μg/m3. In contrast, when the terrain was incorporated into the forecasting
model, the R remains above 0.85 within 24 hr and the RMSE slowly increases from 26.72 μg/m3 at 6 hr to
30.57 μg/m3 at 24 hr.

Figure 8. Error analysis and impact of meteorological and topographical features on data‐driven PM2.5 forecasting. The R and RMSE values between the ConvLSTM
forecasts and reference data on 4 December 2018 (left) and from December 4 to 29, 2018 (right).

Table 1
Comparison of PM2.5 Forecasting Using Different Combinations of Input Features

Input features \ lead time

6 hr 12 hr 24 hr

R RMSE R RMSE R RMSE

hPM2.5 0.85 22.78 0.31 28.97 – –

hPM2.5 + meteo‐features 0.86 16.74 0.66 21.58 0.19 100.49

hPM2.5 + meteo & topo‐features 0.90 26.72 0.85 29.97 0.88 30.57
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4.4. The Effect of Ensemble Size on the Accuracy of DA Result

The EnKF algorithm is susceptible to spurious correlations which stem from
utilizing a limited ensemble size. This can cause inaccuracies in representing
the actual probability density function of the system being studied. Conse-
quently, the EnKF may generate inaccurate estimations that do not reflect the
genuine state of the system, which can result in incorrect results.

To mitigate this problem, it is suggested to increase the ensemble size since
the use of the ConvLSTM model for forecast can largely improve compu-
tational efficiency. We have compared the ConvLSTM‐EnKF and NAQPMS‐

EnKF methods in terms of the CPU time required for DA. The ConvLSTM‐EnKF method can reduce the CPU
time by three orders of magnitude compared to the NAQPMS‐EnKF method, a typical physical model‐based
method. More information on computational efficiency can be found in Appendix in Supporting Informa-
tion S1 Text S1 in Supporting Information S1. Data‐driven methods enable larger ensemble sizes with restricted
computational resources, which can enhance the accuracy of DA.

We examined the efficacy of DA using the EnKF with varying ensemble sizes of 50, 100, 256, and 1,000, as
illustrated in Table 2. We applied localization in EnKF to avoid spurious correlations and tuned the radius for DA
studies with different ensemble sizes. In our study, the localization radius used is increased with ensemble size
(Kirchgessner et al., 2014). The accuracy of DA improves as the ensemble size increases. With only 50 ensemble
members, the RMSE and R between DA results and observations are 13.57 μg/m3 and 0.79, respectively.
Increasing the ensemble size to 100 led to a notable reduction in RMSE to 10.54 μg/m3 and an increase in R to
0.85. Additionally, a single DA cycle only requires 46.44 s. Notably, the proposed ConvLSTM‐EnKFmethod can
accommodate even larger ensemble sizes. By employing 1,000 ensemble members, the RMSE was further
reduced to 7.49 μg/m3 and R increased to 0.93 while requiring only 8 min for a single DA cycle.

5. Conclusions
In this study, we have developed a ConvLSTM‐EnKF hybrid model for accurate and efficient online real‐time
forecasting at high spatial and temporal resolutions. This model combines a purely data‐driven ConvLSTM
model with a DA method (EnKF) to produce reliable operational spatiotemporal forecasting in complex high‐
dimensional systems. The ConvLSTM model is advantageous as it simultaneously captures spatial and tempo-
ral correlations within the data, while EnKF is used to correct forecasting errors by assimilating real‐time ob-
servations and tackling cumulative errors.

The capability of the proposed method is demonstrated in PM2.5 forecasting across the entire China. This is a
challenging task due to the complex topographical and meteorological conditions in China, the need for high‐
resolution forecasting over a large study area with hourly time intervals, and the scarcity of observations. The
key findings and conclusions of the study are presented below:

1. Operational forecasting: The ConvLSTM‐EnKF method has a good performance in operational forecasting,
delivering consistent and stable forecasts for up to 1 month. Our findings demonstrate that the ConvLSTM‐
EnKF forecasts are consistent with observations in March, June, September, and December 2018.

2. Spatial and temporal correlations: Our results also indicate that the trained ConvLSTM model can capture
both the spatial and temporal dependences of PM2.5 concentrations, with the majority of China having ab-
solute prediction errors smaller than 10 μg/m3. The largest prediction error with an absolute value of 40 μg/m3

occurred in the Jing‐Jin‐Ji region which has a high population density and developed industries.
3. Online DA at a high spatial resolution with sparse observations: The ConvLSTM‐EnKF enables online DA at

a high spatial resolution and produces effective forecasting and DA results, while also allowing for the uti-
lization of larger ensemble sizes, which improves the accuracy of DA results.

4. The efficiency of forecasting and DA: The CPU time required for the proposed ConvLSTM‐EnKF forecasting
is reduced by three orders of magnitude compared to the conventional NAQPMS‐EnKF method.

Overall, the hybrid purely data‐driven ConvLSTM‐EnKF provides efficient and accurate hourly PM2.5 fore-
casting in China. This paves the way toward operational real‐time prediction and management. Future work will
focus on explainable AI as well as physical‐informed machine learning modeling.

Table 2
Comparison of DA Accuracy and Execution Time Using EnKF With
Different Ensemble Size

Ensemble size Radius RMSE R Time

50 100 13.57 0.79 23.92 s

100 500 10.54 0.85 46.44 s

256 1,000 9.91 0.87 4 min

1,000 5,000 7.49 0.93 8 min
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Data Availability Statement
The ConvLSTM is a public model and can be found at TensorFlow Developers (2023). The CAQRA data set is
available from Tang et al. (2021). The monitoring air pollution data used in this study were accessed through the
Ministry of Ecology and Environment of the People's Republic of China (http://www.mee.gov.cn/).
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