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Abstract

Vision-based inference systems have recently reached super-human levels thanks to significant

progress in deep learning algorithms. However, application of these algorithms on edge de-

vices is challenging due to their limited computational power and limited local information.

Alternatively, edge inference systems can utilize the resources available at more capable edge

servers to solve the underlying task. Yet, the design of distributed edge inference solutions is

challenging, as it requires carefully considering and optimizing multiple factors related to deep

learning together with wireless communications.

This thesis studies the design of vision-based edge systems for solving retrieval, classification,

and deep neural network parameter delivery tasks under various constraints including the com-

putational, memory, and communication resource limitations. The presented research is based

on the recent advances in the field of deep joint source-channel coding (DeepJSCC), which is an

alternative to classical, separation-based communication protocols. DeepJSCC simplifies the

design of edge systems by introducing an autoencoder neural network, which is trained to map

the information source directly to the channel input symbols, and similarly, to map the noisy

channel output directly to the reconstructed signal. Such a DeepJSCC autoencoder pair can

be further trained with a task-oriented optimization objective, leading to performance gains

in the underlying computer vision tasks. For the tasks studied in this thesis, we provide a

set of algorithms for achieving improved performance while meeting the communication and

computational constraints. Extensive evaluations show that the proposed DeepJSCC approach

is an exceptional alternative to the separation-based algorithms, and can play an important

role in future generations of intelligent wireless networks.
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Chapter 1

Introduction

The world as we know it would not exist without connectivity. According to the recently

published McKinsey Technology Trends Outlook [1], advanced connectivity persists as one of

the most important branches of technology. Billions of devices are connected nowadays, in

fact, it is probably harder to stay disconnected from the global network than connected to

it as over two-thirds of the global population has access to the Internet [2]. Once someone

accesses the Internet, it becomes possible to exchange information with almost any place on

Earth (and beyond). The global network expands rapidly and becomes an essential factor

in improving the quality of our everyday lives. Another technology that has exhibited stable

growth over the last few years [3] and is becoming increasingly vital to our quality of life is

machine learning, which refers to machines and algorithms that are able to learn from examples

they are provided with. Such machine learning algorithms are successfully used in many real-life

applications, as they can be easily adapted to new scenarios by utilizing existing data samples

and can provide tremendous performance improvements compared to old-fashioned handcrafted

methods. Unfortunately, one of the main drawbacks of modern machine learning algorithms is

that they require significant computational power to operate [4], which prevents most potential

users from utilizing them. This problem becomes increasingly difficult to solve if we consider

applying machine learning algorithms to visual data, that are known to be highly-dimensional

and extremely complex. Designing algorithms that combine mobile connectivity and machine
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26 Chapter 1. Introduction

learning is one of the solutions to this problem. One can imagine a system, where a mobile

phone user wants to recognize objects on a photo they captured, and utilizes a wireless network

to upload the photo to a server, which then applies a modern machine learning algorithm to

perform the desired task and transmits the answer back to the user [5]. Just a few years ago,

that would have sounded like a scenario of a science-fiction movie, but the high demand for

such algorithms is rapidly driven by the increasing number of applications, where such systems

could bring significant advantages.

An example of a system, where wireless connectivity can be successfully utilized to support

the execution of a machine learning algorithm is smart doorbells and home security cameras

[6]. Such devices do not usually have access to the computational power required by the most

demanding machine learning algorithms, yet can make use of the wireless network (usually

WiFi) available in the majority of houses to connect to a remote server that can help in

performing the task. Such tasks may include detection of humans within the proximity of the

house, or even recognizing them, as well as their intent.

Another application for such machine learning systems executed at the wireless edge is per-

forming various computer tasks with the data captured by unmanned aerial vehicles (UAVs)

[7]. Due to limited payload and battery capacity, these devices cannot have powerful computing

engines available onboard, thus offloading the collected data to a server located at the network

edge is often the only possibility to enable real-time analysis of the data with advanced machine

learning algorithms.

Finally, we can consider various applications in the area of smart cars and autonomous driving.

Modern autonomous cars have access to a significant amount of computational power neces-

sary to process the data streams produced by all the sensors they are equipped with, including

cameras, LiDAR, or proximity meters. However, their capabilities can be enriched by the con-

nectivity [8] to other nearby vehicles, or cameras monitoring the traffic at surrounding junctions

for even more optimal route planning and increased safety. For such purposes, systems have

to be designed by considering the coexistence of wireless connectivity and advanced machine

learning.
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Edge server

Edge device

Edge device

Edge device

Figure 1.1: Wireless edge inference system.

This thesis focuses on finding both computationally and communication efficient ways to per-

form machine learning at the wireless edge [9, 10] to solve advanced machine vision tasks, where

an edge device cooperates with the more capable edge server in order to complete the task,

as shown in Fig. 1.1. The edge device can be any mobile terminal with limited computa-

tional resources, while the edge server can be a base station or a WiFi access point. While the

edge device wants to exploit the available computational resources of the edge server, it has to

overcome communication constraints due to the noisy channel connecting the two.

Brief history of cellular networks. Historically, all the networks used to rely on wired

connection between two points. Even a simple telephone call required first contacting the

telephone exchange center, specifying the recipient of the call, and being physically routed by

the operator, who had to activate the appropriate switches on the switchboard. Over the years,

the rise of wireless communications made it possible to introduce mobile devices, which did not

require direct cable connection to operate, but utilized electromagnetic waves to convey the

signal. Firstly introduced in the 1960s and 1970s, personal wireless communications systems

were originally used only for voice calls [11], and very quickly adapted to other applications,

including text messages, and access to the broadband Internet.
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One of the crucial moments that contributed to the rapid development of wireless connectivity

was the introduction of cellular networks [12]. The concept of cellular networks includes dividing

the coverage areas into hexagonal cells, each containing a cell tower providing connectivity for

users within that individual cell. Each generation of cellular network technology introduced

various advances over the previous one. The first generation (1G) cellular networks were based

on analog communications, where uncoded analog voice signal was transmitted by a high-

frequency carrier directly to the cell tower. This standard only included voice calls, and had

several significant issues by modern standards. The following generation (2G) of cellular systems

replaced analog transmission with digital alternatives. Instead of modulating the carrier with

the low-frequency voice signal, the voice was sampled and quantized into a bitstream, which was

modulated with a high-frequency carrier. Introducing digital communications further allowed

for the transmission of text messages. The following, third (3G) and fourth (4G) generations

of cellular networks introduced wireless access to the Internet from mobile devices, while also

providing the technologies necessary to accommodate the rapidly growing number of users.

With the rise of 5G – the fifth generation technology standard for cellular broadband networks,

we can reliably access the global network from our personal mobile devices, while achieving

download speeds that allow for significantly more than voice or text messages. This includes

video calls, video streaming, transfer of large files, and more [13]. We quickly got used to having

access to all those resources from the devices that most of us carry in our pockets. Yet, it is

worth looking back at the technical developments of the last 75 years that contributed towards

creating the technology that we cannot imagine living without.

Artificial intelligence and machine learning for 6G. Artificial intelligence is often re-

ferred to as one of the key technologies for achieving increased connectivity necessary for the

future, 6G standard for cellular networks. Artificial intelligence is expected to provide even

better data rates, lower latency, and improved efficiency in 6G use cases. Some of the appli-

cations include smart cities, augmented reality, telemedicine, and holographic communications

[14]. Another area, where artificial intelligence can bring significant improvements, is data

compression. Machine learning algorithms can model the underlying nature of the data source
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to be compressed, and achieve significant advantages over the existing, handcrafted schemes.

This is extremely important, as we rely on the Internet more and more, with Internet traffic

expected to grow by an order of magnitude within the next 10 years [15].

The rise of deep learning. Deep learning is a branch of machine learning, that focuses on

trainable models called deep neural networks. These models are composed of multiple process-

ing layers, which are capable of learning representations of data at different levels of abstraction

[16]. The origins of deep learning can be traced back to 1943 when the first computer inspired

by the human brain was invented [17]. Following this event, researchers across the globe started

to look into deep learning and new essential technologies were proposed. These included back-

propagation algorithm [18], and convolutional neural networks [19], which finally led to the

invention of the first deep learning based digit classifier in 1989 [20]. Since then, deep learning

started to grow in popularity, however, because of multiple factors, it was extremely hard to

deliver this popularity from the research labs to a wider audience. One of the reasons was

the computational complexity of deep learning algorithms. With the less powerful hardware

that existed in the 1990s and early 2000s, it was almost impossible for a private user to run

deep learning algorithms on their personal device. Another problem was the availability of

the data. Each deep neural network requires thousands of examples for the learning purpose

to be able to generalize well to unseen data. Finally, in the early years of deep learning, the

performance achievable with deep neural networks was far from what we can achieve nowa-

days. In fact, classical machine learning algorithms provided much better performance at lower

complexity. A combination of multiple breakthroughs eventually allowed deep learning to leave

the research institutes and slowly be applied in real-life scenarios. Some of the most crucial

advances that improved the applicability of deep learning included the introduction of GPUs

(Graphics Processing Units), which are computing devices capable of parallelizing thousands

of simple arithmetic operations and achieving significant speedups compared to CPUs (Central

Processing Units). This ability to run operations in parallel is well-suited for deep learning, as

executing each layer of a deep neural network requires performing a massive number of inde-

pendent simple computations. Alongside the introduction of the GPUs, other advances were
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made as well, including the development of better optimizers [21, 22], access to large, publicly-

available datasets [23, 24, 25], and the introduction of deep learning models [26, 27] that were

able to compete against other machine learning algorithms, and ultimately outperform them

in a variety of different tasks. Having been available only to researchers, deep learning is now

a technology, that everyone can take advantage of. Developers and scientists across the world

can easily access and actively contribute towards creating new deep learning methods, through

open-source projects like NVIDIA CUDA Toolbox, PyTorch [28] and TensorFlow [29] libraries.

This means that almost any software company or individual in the world can develop products

built upon deep learning and provide them to users who can effortlessly access them through

their personal devices.

Edge inference systems. Improved latency and extreme speeds introduced within the 5G

standard enabled edge devices (smartphones, autonomous cars, IoT devices, etc.) to efficiently

communicate with powerful computing devices deployed at the wireless edge, denoted as edge

servers. Such connectivity will enable the edge devices to utilize computing resources available

at the edge servers to make use of the most advanced artificial intelligence algorithms for

their own purposes, effectively creating an edge inference system. In the next years, we are

likely to see mobile phones capable of translating between arbitrary languages in real-time,

providing accurate localization services based on images captured by their built-in cameras, and

immersing their users into high-quality AR (augmented reality) experiences. The network does

not, however, consist only of mobile phones. The increasing number of other devices connected

to mobile networks led to defining a new term – Internet of Things (IoT). IoT includes all sorts

of devices equipped with sensors, and processing power, that are connected to the Internet.

Those devices are expected to be an essential part of many edge inference systems. Some

potential uses of edge inference systems in the IoT context may include CCTV cameras, which

automatically recognize suspects, autonomous cars able to communicate with each other to

ensure improved safety and traffic control, or mobile wireless access points mounted on drones

to provide improved service quality to users. Such edge inference systems have not existed in

the past, so the research community has become increasingly active in designing and improving
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Figure 1.2: General communication system model.

the efficiency of such systems. From the engineering perspective, the data sources related to

edge inference systems are distinct from the classical data sources like images, text, or video,

for which general-purpose codecs and transmission protocols already exist. Designing new

compression standards for these new, edge inference-based sources requires in-depth analysis

and treating each system on a case-by-case basis.

Technical, semantic, and effective communications. The first general communication

model was proposed in 1948 and contains five basic components: an information source, a

transmitter, a channel, a receiver, and a destination [30]. This system, shown in Fig. 1.2 is

still commonly used nowadays by researchers worldwide. The information source is responsible

for producing a message or a sequence to be communicated to the receiver, the transmitter

translates the information to a signal suitable for a communication medium, the channel is a

medium used to convey the signal, the receiver performs an inverse operation to that of the

transmitter, and, finally, the destination is the intended recipient of the message. Within this

model, three levels of communications are considered [31], namely level A – technical, level B

– semantic, and level C – effective. The technical level focuses on transmitting communication

symbols accurately from the sender to the receiver, the semantic level is concerned with con-

veying the desired meaning of the information, and the effective level revolves around ensuring

that the received meaning affects conduct in the desired way. Most of the works in the field of

communications focus on the technical level since applying theoretical results to the other two

levels is significantly more complex. Over the last years, however, semantic communications
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received a lot of attention, thanks to the efforts in developing semantics-related measures and

theory, alongside the application of various machine learning and deep learning algorithms to

semantic communications tasks [32]. These results are widely applicable to various tasks in the

field of over-the-edge machine and deep learning, where the primary goal is to achieve satisfac-

tory task-related performance, rather than good reconstruction quality usually pursued in the

technical level communications.

Joint source-channel coding. According to Shannon’s separation theorem [30], if we as-

sume infinite blocks of data to be transmitted over a channel, the optimal approach is to

perform source coding and channel coding steps separately. Source coding is responsible for re-

moving the redundancy within the data source to achieve compression, whereas channel coding

re-introduces structured redundancy in order to better protect it from channel imperfections.

Most of the communication systems have been designed according to this paradigm since it

ensures certain theoretical guarantees. However, in practice, due to the complexity and latency

constraints, the information is transmitted through finite blocks, thus transmission of many

sources has been recently shown to benefit from joint source-channel coding [33, 34], with deep

neural networks implemented as joint encoders and decoders that map the information sources

directly to channel input symbols and back. We note, that such a design is suitable for edge in-

ference problems, where the optimal joint encoder-decoder pairs can be parameterized by deep

neural networks and trained to adapt to various sources originating from split/edge inference.

An additional benefit of utilizing such models is that they can often be trained in an end-to-end

fashion since both inference and communications can be implemented as deep neural networks

with a non-trainable channel model.

1.1 Contributions

The overall contributions of this thesis can be summarized as follows:

• We present an extensive summary of recent advances in the fields relevant to performing
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machine learning over the wireless edge for vision-based inference. These include efficient

DNN design, joint source-channel coding, collaborative/split inference, etc.

• We study a problem of vision-based edge inference, where an edge device needs to ex-

change information with an edge server, in order to complete a machine learning task with

deep neural networks trained to process image data. We consider various constraints that

may affect the problem, including latency, bandwidth, computational complexity, etc.

• We tackle different problems within the edge inference framework by proposing methods

based on joint source-channel coding and deep learning.

• In Chapter 3 we study the problem of wireless image retrieval, where the edge device

transmits a feature representation of an image to an edge server, which has access to a

large database. We explore and provide principled guidelines for designing such systems,

and validate them thoroughly.

• In Chapter 4 we explore the problem of split inference, where the edge device is capable of

running only a part of a deep neural network, due to computational power limitations, and

has to transmit the intermediate feature representation to the edge server to complete

the forward pass of the DNN and produce the final prediction. Through an extensive

evaluation of the proposed methods we show, that JSCC can outperform separation-

based approaches in a variety of scenarios.

• We extend the approach presented in Chapter 4 to a scenario, where the edge device

is equipped with an early exit mechanism that can provide a less confident prediction

locally, without the need to utilize channel resources. In order to decide, whether trans-

mitting intermediate features would be beneficial or not, a decision-making mechanism is

introduced. The mechanism analyzes the certainty of the early exit and current channel

conditions to output the final decision. In Chapter 5, we analyze various decision-making

mechanisms with respect to the transmission savings and the overall task accuracy they

can achieve.

• In Chapter 6, we propose a method for transmitting parameters of deep neural networks,
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trained for image-based inference tasks, over noisy channels. This method incorporates

recent advances in the deep learning field, alongside JSCC to ensure reliable transmission,

while also meeting stringent bandwidth and latency constraints.

1.2 Outline

Performing vision-based machine learning inference over the wireless edge is a relatively new dis-

cipline. Early machine learning algorithms were aimed at running on a single machine equipped

with sufficient computational power. However, with the recent developments of wireless mobile

networks and the improved quality of machine learning algorithms, it is possible to deliver

machine learning capabilities directly to the users through the wireless edge. This introduces

a multitude of challenges that have to be properly tackled by researchers around the world.

One of the most important problems to solve is how to ensure reasonable latency, such that the

mobile user can benefit from using machine learning algorithms in real time. Another challenge

is computational power, which is one of the most significant limitations in the current state of

machine learning approaches aimed at mobile usage. Different ways of tackling these challenges,

including efficient design of neural networks, improving the quality of source compression, and

incorporating a communication medium into the end-to-end trainable systems, have been sum-

marized in Chapter 2. The works presented in subsequent chapters tackle different problems

of vision-based machine learning inference over the wireless edge. The majority of the works

build upon recent discoveries in the field of deep learning, computer vision, and communica-

tions, particularly focusing on deep joint source-channel coding and semantic communications

fields. The summary of each of the works and their corresponding contributions is presented

below.

In Chapter 3: Wireless Image Retrieval at the Edge [35, 36], we study the image re-

trieval problem at the wireless edge, where an edge device captures an image, which is then

used to retrieve similar images from an edge server. These can be images of the same person

or a vehicle taken from other cameras at different times and locations. Our goal is to maximize
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the accuracy of the retrieval task under power and bandwidth constraints over the wireless link.

Due to the stringent delay constraint of the underlying application, sending the whole image

at a sufficient quality is not possible. This chapter proposes two alternative schemes based on

digital and analog communications, respectively. In the digital approach, we first propose a

deep neural network (DNN) aided retrieval-oriented image compression scheme, whose output

bit sequence is transmitted over the channel using conventional channel codes. In the analog

joint source and channel coding (JSCC) approach, the feature vectors are directly mapped into

channel symbols. We evaluate both schemes on image-based re-identification (re-ID) tasks un-

der different channel conditions, including both static and fading channels. We show that the

JSCC scheme significantly increases the end-to-end accuracy, speeds up the encoding process,

and provides graceful degradation with channel conditions. The proposed architecture is eval-

uated through extensive simulations on different datasets and channel conditions, as well as

through ablation studies. The relevant background theory for this chapter is covered in detail

in Section 2.1 and 2.2 of Chapter 2, as well as in Section 3.2 of Chapter 3.

In Chapter 4: Joint Device-Edge Inference Over Wireless Links [37], we propose a

joint feature compression and transmission scheme for efficient inference at the wireless network

edge. We note, that mobile devices may struggle to efficiently run the entire forward pass of

modern DNNs, given their limited computational power. This poses a significant limitation to

the applicability of the algorithms presented in Chapter 3. Therefore, the goal of Chapter 4

is to enable efficient and reliable inference at the edge server assuming limited computational

resources at the edge device. Previous works focused mainly on feature compression, ignoring

the computational cost of channel coding. The proposed approach incorporates a deep joint

source-channel coding scheme and combines it with novel pruning strategies aimed at reducing

the redundant complexity of neural networks. We evaluate our approach on a classification

task and show improved results in both end-to-end reliability and workload reduction at the

edge device. The background theory for this chapter has been provided in Section 2.1 and 2.3

of Chapter 2.

The idea introduced in Chapter 4 is further extended in Chapter 5: Evaluation of Early

Exits for Device-Edge Collaborative Inference over the Wireless Edge, where we
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consider similar joint device-edge inference systems with a particular focus on early exits, which

allow for obtaining inference results at the edge device. This approach eliminates the need to

transmit the partially processed data to the edge server, leading to further communication

savings. The central part of the system is the decision-making (DM) mechanism, which, given

the information from the early exit, and the wireless channel conditions, decides whether to

keep the early exit prediction or transmit the data to the edge server for further processing.

In this chapter, we evaluate various DM mechanisms and show experimentally, that for image

classification tasks over the wireless edge, proper utilization of early exits can provide both

performance gains and significant communication savings. The relevant background theory for

this chapter is covered in Section 2.1 of Chapter 2 and Section 5.1 of Chapter 5.

Finally, we consider a scenario, where the edge device elects not to share its data with the edge

server, as in the previous chapters, but requests a DNN architecture and its corresponding pa-

rameters to complete the vision-based inference task itself. Therefore, in Chapter 6: Neural

Network Transmission over the Air [38], we present AirNet, a novel training and analog

transmission method to deliver DNNs over the air. Often, the employed DNNs are location-

and time-dependent, and the parameters of a specific DNN must be delivered from an edge

server to the edge device rapidly and efficiently to carry out time-sensitive inference tasks.

This can be considered as a joint source-channel coding (JSCC) problem, in which the goal is

not to recover the DNN coefficients with minimal distortion, but in a manner that provides the

highest accuracy in the downstream task. In the AirNet method, we first train the DNN with

noise injection to counter the wireless channel noise. We also employ pruning to reduce the

number of parameters and reduce the channel bandwidth necessary for the transmission. We

further identify the most significant DNN parameters by calculating the largest eigenvalues of

the Hessian matrix with respect to each of the layers. Based on these values, we introduce a

non-linear bandwidth expansion to provide better error protection for the most noise-sensitive

layers of the network. We further propose a DNN interpolation scheme, where DNN parame-

ters are calculated as a weighted sum of parameters of two networks trained with two extreme

(low and high) values of channel SNR, and show that the interpolated network can achieve

satisfactory results when tested on intermediate values of SNR. This indicates that, with our
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approach, it is not necessary to store multiple sets of DNN parameters trained for a single

value of SNR. We also show that AirNet achieves significantly higher test accuracy compared

to the separation-based alternative, and exhibits graceful degradation with channel quality.

The background theory for this chapter has been provided in Section 2.1 and 2.3 of Chapter 2

and Section 6.2 of Chapter 6.

1.3 Publications
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• M. Jankowski, D. Gündüz, K. Mikolajczyk, “AirNet: Neural Network Transmission over

the Air”, arXiv:2105.11166, 2023.
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the Air”, IEEE International Symposium on Information Theory (ISIT), 2022.

• M. Jankowski, D. Gündüz, K. Mikolajczyk, “Joint Device-Edge Inference over Wireless

Links with Pruning”, IEEE International Workshop on Signal Processing Advances in

Wireless Communications (SPAWC), 2020.

• M. Jankowski, D. Gündüz, K. Mikolajczyk, “Wireless Image Retrieval at the Edge”, IEEE

Journal on Selected Areas in Communications (JSAC), 2020.

• M. Jankowski, D. Gündüz, K. Mikolajczyk, “Deep Joint Source-Channel Coding for Wire-

less Image Retrieval”, IEEE International Conference on Acoustics, Speech, and Signal
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Chapter 2

Background Theory

In this chapter, we will present relevant works in the literature related to vision-based inference

at the wireless edge. This area is extremely multifaceted, as it combines solutions to problems

related to the complexity of running machine learning and computer vision algorithms, and

proper design of wireless communications systems.

2.1 Deep JSCC

Shannon’s separation theorem. Shannon’s source-channel separation theorem [39] states

that if the minimum source coding rate is below the capacity of the channel, this source can

be reliably transmitted over the channel with the use of proper encoding and decoding oper-

ations. In the opposite scenario, that is, when the minimum source coding rate is above the

capacity of the channel, transmission of that source is impossible. Another part of this theorem

states, that the above findings still hold, even when the source and channel codes are designed

independently. These two findings lead to the conclusion that separating source and channel

coding is the optimal approach; however, this theorem operates under the assumptions of the

infinite source and channel bandwidths, ergodic source and channel distributions, and for an

additive distortion measure in general. These assumptions are not realistic in practice. One of

the reasons for that is that wireless traffic is usually formed into packets of finite length, which

38
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Figure 2.1: A comparison between separation-based and JSCC systems. JSCC introduces a
direct mapping from a source domain to channel input symbols and reverses this mapping at
the receiver.

already violates the first assumption. Despite not being fully applicable in practice, Shannon’s

source-channel separation theory has been commonly utilized to design communication systems

as modular, layer-based structures.

Separation-based systems. Classical separation-based approaches first perform source cod-

ing steps to remove the redundancy within the source and effectively compress it for more effi-

cient transmission. This step is usually followed by the channel coding step, where, depending

on channel conditions, structured redundancy is re-introduced to ensure the information can

be delivered without errors (see Fig. 2.1a). Various codes have been developed for channel

coding, including LDPC [40], Turbo [41] or Polar [42] codes. The main working principle of

these codes is to introduce additional bits into the information bit-stream, that allow for the

detection of errors within the received signal and further correct them. This channel coding

step is crucial for the performance of the digital communication systems, as the source would

be impossible to decode under the presence of even a single bit-error within the bit-stream.

Moreover, classical separation-based systems are extremely reliant on accurate channel estima-
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tion, since transmitting at rates above the channel capacity is likely to produce bit-errors and

lead to outage. Therefore, as the channel conditions get worse for a fixed transmission rate,

we are likely to observe a cliff effect, that is, a sharp drop in the reconstruction quality of the

source, once the channel SNR values get below a certain threshold.

Classical JSCC. Instead of performing source and channel coding separately, joint source-

channel coding systems apply a direct mapping from a source domain to channel input symbols.

After the transmission, received symbols are mapped back to the source domain with a reversed

mapping to restore the information, as shown in Fig. 2.1b. One of the most important features

of JSCC-based systems is that they avoid the cliff effect, characteristic of the separation-based

methods, and exhibit graceful degradation instead. With the graceful degradation, the re-

construction quality slowly decreases as the channel conditions get worse. This behavior is

extremely useful in the presence of channel estimation uncertainties. In the last 30 years, many

systems have been shown to benefit from applying JSCC for various information sources and

wireless channel models [43], [44], [45], [46].

Typical approaches for jointly designing source and channel codes for wireless image transmis-

sion rely on a rate-distortion (R-D) curve obtained for the scheme. The R-D curve characterizes

the trade-off between the expected quality of the image delivered and the minimum transmis-

sion rate necessary to achieve that quality. Using a separation-based scheme might seem more

convenient in such a scenario since it assumes only the source code is chosen based on the

R-D curve, while the channel code is designed such that it guarantees reliable transmission of

the compressed source bits. However, in certain scenarios, it has been shown that the joint

optimization of the source and channel codes might lead to improved quality of the source

reconstruction [47]. The underlying problem in designing classical JSCC algorithms is to find

a proper balance between the quantization error introduced by source coding, and the error

imposed by the channel noise, which occurs due to the imperfect reliability of the channel code.

To this end, an optimization procedure has to be designed, taking into account the character-

istics of the source coder, i.e., the R-D operating points, and the characteristics of the channel

coder, i.e., its collection of error-correcting strengths and their corresponding code rates [48]. A
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seminal work presented in [49] describes a methodology for evaluating the joint R-D behavior of

the JSCC schemes under the assumption of the fixed bandwidth. The authors further estimate

information-theoretic bounds on the performance of such systems. The authors of [50] proposed

a JSCC scheme for time-varying channels by considering multiresolution modulation constella-

tions. The proposed approach can further adapt to versatile situations of CSI available at both

transmitter and receiver or receiver only. An algorithm for progressive image transmission has

been proposed in [51]. In progressive approaches, intermediate rates are optimized alongside

target rates to achieve the maximum average performance in the presence of channel noise,

which further improves the robustness of the scheme in case of possible outages. This scheme

further reformulates the optimization task to maximize the number of correctly decoded pack-

ets instead of minimizing the overall distortion, which was shown to significantly reduce the

computational complexity of solving the problem. Despite providing certain advantages over

separation-based methods, JSCC methods presented in this paragraph still may suffer from

the high computational complexity required to find the correct setup for source and channel

codes. Moreover, they cannot be easily adapted to versatile sources or channel models, thus

their practical application might be limited.

Deep JSCC. In order to overcome some of the limitations of the classical JSCC approaches,

DNN-based methods have been proposed for efficient transmission in the JSCC regime [33, 52,

53, 54, 55, 34, 56, 57, 38, 58]. Deep learning based JSCC methods for wireless image trans-

mission usually introduce autoencoder neural networks to learn a mapping from the source to

channel input symbols, together with the reverse mapping back to the source domain. These

neural networks are usually end-to-end trainable with a non-trainable channel model embed-

ded into the autoencoder’s structure, between the encoder and the decoder. The approach

proposed in [33] proposes applying JSCC autoencoder for wireless image transmission. The

authors directly map input images’ pixel values to real or complex-valued channel symbols and

show that JSCC outperforms standard separation-based approaches, where the source coding

is performed with standard compressive codecs (JPEG, JPEG2000), even under the capacity-

achieving channel codes assumption. This approach has been further extended by considering
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receiver feedback [52], where the channel output information is utilized at the transmitter and

guides it through the subsequent transmission to improve the quality of the reconstruction at

the receiver. Successive retransmission scheme is proposed in [59], where the authors consider

the progressive transmission of images in multiple stages, with and without the presence of feed-

back from the receiver. Work proposed in [53] studies JSCC systems for image transmission,

which can adapt their bandwidth requirements under constantly changing channel conditions.

Other works in the literature apply similar techniques to image domain [54, 55], text domain

[56, 57, 60], video domain [34], speech domain [61], DNN parameter transmission [38], and

industrial sensory data [58].

DeepJSCC for distributed inference. Deep JSCC has also been applied to distributed

inference [62] problems [63, 37, 35, 64, 65, 66, 67, 68, 69]. Similarly to standard deep JSCC

methods for transmitting classical sources, those applied to distributed inference usually con-

sist of a trainable autoencoder, which learns to compress and reconstruct the intermediate

features produced by a DNN, under the presence of a channel model between the encoder and

the decoder. The main difference between classical, distortion-based JSCC approaches includ-

ing image, video, text or speech transmission, and distributed inference approaches, is that

the latter do not follow the standard reconstruction-based performance metrics. Instead, the

transmitted features have to contain enough information to perform successful inference under

the task-defined performance metrics, even under noisy channel conditions. This formulation

is inherently more difficult to tackle within the deep JSCC general framework because sim-

ply reconstructing the DNN intermediate features with low distortion may lead to suboptimal

results, thus task-oriented metrics have to be introduced to training algorithms.

Some examples of such distributed inference JSCC systems can be found in [63], where the

authors perform compression of the intermediate feature layers produced by a DNN trained for

the classification task. A similar approach is proposed in [37] with the addition of pruning at

the transmitter to minimize the complexity of the algorithm for efficient execution at power-

constrained devices. The method proposed in [66] studies the progressive transmission of the

intermediate features until the desired confidence is achieved in the classification task. Ap-
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proaches designed for features originating from multiple sources or users are proposed in [64],

with additional privacy requirements considered in [65]. Multi-task JSCC-based distributed

inference has been studied in [67, 68]. In these approaches, the information extracted from the

source has to serve multiple tasks at the receiver, including detection, segmentation, classifica-

tion, visual question answering, etc.

2.2 Deep image compression

Classical image compression algorithms. Image compression remains one of the most re-

searched areas within communications, information theory, and vision fields nowadays. Transform-

coding-based handcrafted methods have been commonly used in recent years. Popular JPEG

format [70], based on discrete cosine transform [71] is still the most popular codec because of

its versatility and low computational complexity. Nevertheless, there exist formats that are

significantly better in terms of image quality and compression rate. These include JPEG2000

[72] or BPG (Better Portable Graphics) [73] or WebP [74].

Deep image compression. Despite the undeniable success of handcrafted methods, we ob-

serve a growing interest in the field of DNN-based image compression. Recent designs are able

to jointly optimize compression rate and distortion between the input image and its reconstruc-

tion [75] [76] [77]. The general working principle of such learned schemes is similar. Firstly, an

image is transformed by a convolutional encoder into a lower-dimensional latent representation,

in which the probability density function is modeled with various learning-based methods. [75]

uses a piecewise linear density model to estimate the prior distribution of the latent variable.

Authors of [77] replace this density model with a more flexible nonlinear model of the cumula-

tive distribution of the latent, conditioned on a hyperprior. An alternative method [76] proposes

modeling the priors as a mixture of Gaussians. Such mixtures are suitable for modeling the

distribution of the latent, thanks to the generalized divisive normalization [78] layer, which

imposes Gaussian-like shapes of the distributions of the transformed inputs. The approach

proposed in [79] introduces autoregressive and hierarchical priors to better exploit the internal
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dependencies within the latent vector, and guide the entropy model for better compression.

To model the quantization process, quantization noise [80] is commonly employed to ensure

the differentiability of the resulting transform, which enables end-to-end training of the whole

compressive autoencoder. Alternative differentiable quantization approximation was proposed

in [76], where the authors explicitly set the derivative of the operation to 1, and simply round

each element of the low-dimensional latent representation to the closest integer in both train-

ing and inference. After being encoded and quantized, the latent vector is mapped back to

the original image space by the decoder, which usually mirrors the structure of the encoder.

During inference, low-entropy latent representation is losslessly compressed, usually with the

use of various arithmetic coding schemes [81], based on the approximated distribution model

learned by the DNN. Such approaches have been extremely successful in recent years, yielding

similar results or even surpassing the reconstruction quality of the handcrafted methods at

higher compression rates.

Perception-based optimization of deep image compression. Despite achieving state-of-

the-art performance in classical performance metrics, including PSNR or MS-SSIM, deep learn-

ing based compression algorithms have been also successfully applied for optimizing perception-

based performance metrics. When reconstructing an image, one can explicitly optimize a

DNN-based autoencoder to yield high-quality reconstructions, but further improvements can

be achieved in the perceptual domains if classical distortion metrics are combined with per-

ceptual quality counterparts. This idea has been studied in various works that combined

compressive autoencoders with generative adversarial networks (GANs) [82]. A group of the

proposed approaches [83] [84] aim at improving the perceptual quality of reconstructed images

and overcoming the problem of blurriness that usually occurs at higher compression rates. The

working principle of GAN-based compressive autoencoders is based on the adversarial loss term

incorporated in the loss function.

Lossless deep image compression. The field of lossless image compression is highly dom-

inated by classical codecs, including lossless variants of JPEG, JPEG2000, BPG, and WebP,
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which are usually used as lossy codecs, as well as formats that provide lossless compression

only, such as PNG [85] or FLIF [86]. Since the working principle of lossless codecs is to derive

a probabilistic model of an input image, which is later utilized to perform efficient arithmetic

coding, it was noticed in [87] that generative models that learn probability distributions over

pixels can be in theory used for lossless image compression. The design of neural-based methods

for lossless compression has been studied in [88]. The approach presented in that work consists

of building a hierarchical probabilistic model for estimating the pixel distribution within the

image. This model is used to guide the process of arithmetic coding of the pixels for lossless

compression. A similar approach is further exploited in [89] to compress an image that is the

difference between an input image and its BPG-compressed reconstruction. Such an approach

was shown to achieve better compression rates than the lossless version of BPG.

Task-oriented image compression. Despite the good quality of the reconstructed images,

both adversarial and standard compressive autoencoders fail to guarantee satisfactory results

in task-specific scenarios, where the performance of an algorithm performing the task (e.g.,

image classification or retrieval) has to be preserved.

The necessity to develop task-oriented compression schemes has already been noticed by re-

searchers, and variations of transform-based compression algorithms have been proposed for

certain tasks. In [90], focusing on magnetic resonance tomography, authors propose a wavelet-

based lossy compression technique designed to minimize the distortion between automatically

generated segmentation maps based on original and recovered images. Authors of [91] intro-

duce a metric based on conditional class entropy, which is incorporated into the JPEG2000

encoder. This method includes replacing the standard mean squared error (MSE) term during

the rate allocation step with a task-specific conditional entropy and performing encoding with

respect to such allocation, rather than the MSE, which prioritizes image reconstruction quality.

This approach leads to a significant decrease in bits-per-pixel (bpp) and increases the success

rate in detection and classification tasks at the same time. To provide high task accuracy and

better image quality, a mixed approach is proposed in [92], where a convex combination of both

objectives is used.
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Authors of [5] have shown that latent representation produced by compressive autoencoders can

be used to perform the classification task with ResNet-50 [93] network and lead to achieving

almost the same accuracy obtained by training on the uncompressed image. This finding leads

to the conclusion that the classification network does not need to reconstruct the image, as long

as sufficient information is preserved within the compressed representation of that image. A

similar approach is presented in [94] for the task of face recognition. More recently, a learning-

based method proposed in [95] allowed for compressing features generated by DNNs by jointly

optimizing the compressibility of the features, alongside a task-related objective function.

Separation-based compression techniques presented above were shown to produce visually pleas-

ing, high-quality reconstructions of images. Nevertheless, when considering the image trans-

mission problem, or task-oriented image transmission problem, digital schemes require very

accurate channel state information to ensure reliable transmission, as they exhibit the cliff

effect if the channel quality falls below a certain threshold imposed by the desired transmis-

sion rate. Therefore, joint source-channel coding has been extensively studied in recent years,

constituting a reliable compression and transmission alternative to separation-based schemes.

Such joint source-channel coding based approaches are discussed in detail in Section 2.1.

2.3 Network pruning

Network pruning is a set of techniques aimed at reducing the computational or memory com-

plexity of DNNs. State-of-the-art DNNs usually require the storage of millions of floating-point

parameters, and their computational complexity reaches billions and trillions of floating-point

operations (FLOPs). Unfortunately, even modern computers often struggle to perform such

amount of computations quickly, which drastically increases the latency of providing the predic-

tions for the task. Moreover, utilizing deep learning algorithms on mobile devices of even lower

computational capabilities would be beneficial for the users, yet extremely hard to achieve.

This motivates the researchers to seek techniques that allow them to make the DNNs smaller

and less computationally demanding.
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Pruning aims at finding the redundant connections within deep neural networks. It has been

shown [96], that deep neural networks are usually overparameterized, which means that not all

of the parameters are necessary to provide satisfactory performance. In fact, removing some

of the DNN parameters can often improve the performance of the network. These redundant

parameters are usually found by calculating their saliency/importance. The exact definitions

of the saliency measures can vary between different methods, yet the goal is the same - to

find DNN parameters that will not lead to performance degradation once removed. Different

examples of saliency measures include:

• L1-norm of the DNN parameters [97],

• The increase in the loss function induced by removing the parameter, approximated by

first-order Taylor expansion [98],

• The increase in the loss function induced by removing the parameter, approximated by

second-order Taylor expansion [99],

• LASSO regression [100],

• Average magnitude of the gradient w.r.t. the connectivity parameter of each connection

within a DNN [101],

• Rank of the feature maps produced by the parameter [102],

• Magnitude of the feature maps produced by the next layer of the network [103].

Iterative pruning. Pruning algorithms are usually applied iteratively, with fine-tuning steps

performed between individual pruning steps. The main motivation for applying fine-tuning is

to regain the accuracy lost due to pruning. After every pruning iteration, certain connections

are removed from the network, and the network requires further training to learn how to

better utilize the remaining connections. An alternative approach would be to find a smaller

DNN before the start of the training and train this smaller network from scratch, to avoid

unnecessary training time required by the iterative pruning process. Findings of [104] seem to
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confirm that repetitive pruning and fine-tuning is a proper approach since finding smaller DNNs

and training them from scratch usually leads to sub-optimal performance. The authors first

prune a DNN, and, re-initialize its weights after pruning to show that this small DNN structure

is not universal, and will not converge. However, when one reuses the same initialization as

the one applied to the full DNN before pruning, a smaller sub-network can be successfully

trained, despite a significantly lower number of parameters, and achieve the same performance

as when pruned iteratively. This leads to the conclusion, that specific sub-networks within a

larger network can effectively learn only under very specific initialization of parameters, which

is extremely difficult to find. A different approach is proposed in [101], which attempts to

find smaller sub-networks before training, by carefully analyzing connection sensitivities for the

entire DNN, and calculating the gradient of the loss function w.r.t. the connectivity parameters

assigned to each connection of the network. This allows to find the weak connections before

the training and remove them, avoiding the training complexity of iterative approaches.

Another approach to reduce the size and complexity of the DNNs, before the training procedure

starts, is to choose and train network architecture that is designed specifically for low-power

and low-memory devices. Such networks [105, 106] also contain fewer parameters from the

outset. These solutions are usually built upon smart architectural choices, including inverted

residuals [107], or pointwise convolutions and channel shuffle operations [106].

Structured and unstructured pruning. Network pruning techniques can be divided into

two categories: structured and unstructured pruning. Unstructured pruning (see Fig. 2.2b)

focuses on finding the weakest parameters in the DNN structure. This means, that the algorithm

will treat each parameter of the DNN independently from the others, and, as a result, it

will erase individual connections within the network by setting their values to 0, effectively

producing a sparse DNN structure. Examples of unstructured pruning methods can be found

in [97, 101]. One of the most important drawbacks of unstructured pruning is its limited

applicability to general-purpose hardware. Classical GPUs are not able to benefit from these

sparse structures within the DNNs. Despite many parameters being set to 0, GPUs will still

try to execute the operation, thus no speedup will be achieved in this case. The only way to



2.3. Network pruning 49

(a) Structured pruning (b) Unstructured pruning

Figure 2.2: A difference between structured and unstructured pruning techniques. Structured
pruning removes entire neurons, while unstructured pruning removes individual connections,
keeping the number of neurons unchanged.

benefit from sparsity in DNNs is to build specialized hardware specifically for the structure of

the pruned network, which will omit the computations corresponding to redundant connections,

effectively leading to significant speedups.

Structured pruning algorithms (see Fig. 2.2a), on the contrary, focus on removing structurally

significant blocks from the DNN structure. This may correspond to removing entire convo-

lutional filters or entire neurons, depending on the layer it is applied to. This means, that

the structural blocks are analyzed as a whole, rather than individual parameters belonging to

the block. Once a block is removed from the DNN, one can immediately see complexity and

memory improvements from applying this type of pruning. Computations corresponding to this

removed block can be effectively omitted, thus no specialized hardware is necessary to deploy a

DNN that has been pruned with a structured pruning method. This has a large impact on the

applicability and popularity of structured pruning methods, making them the preferred choice

compared to unstructured pruning, despite their sub-optimal performance. Some examples of

the structured pruning methods can be found in [98, 99, 102].



Chapter 3

Joint Source-Channel Coding for

Wireless Image Retrieval

This chapter studies the problem of wireless image retrieval over the wireless edge [35, 36]. The

system considered in this work consists of a CCTV camera, which collects images of pedestrians

or vehicles, and has sufficient computational capabilities to process the images locally. The goal

is to recognize the suspects within the images collected by the camera. This is a difficult task,

due to the necessity of accessing a centralized database of suspects. To this end, the edge

device that collects the data has to collaborate with an edge server to complete the task. In

the considered system, we assume the camera (edge device) is connected through a bandwidth-

constrained wireless link with the server which has access to the database of suspects. The

classical approach to this problem is to compress images/frames collected by the camera and

upload them to a centralized server, which performs further identification of the suspects. We

note that transmitting images collected by the CCTV camera in real-time may be infeasible,

due to the latency constraints of the underlying application. In our proposed solution, the

images collected by the camera are first compressed into low-dimensional feature vectors by a

deep neural network (DNN) and these features are transmitted through a wireless link to the

server, which finds the most similar feature vectors stored in the database and recognizes the

suspects. We propose two transmission schemes, a classical, separation-based approach, where

50
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the feature vectors are mapped into bit sequences and transmitted using conventional channel

codes. Alongside this approach, we propose a joint source-channel coding scheme, which maps

the feature vectors directly into channel inputs. Through extensive evaluations on multiple

datasets, we show, that the latter approach is superior, as it achieves increased recognition

accuracy and graceful degradation with channel conditions.

3.1 Introduction

Internet of Things (IoT) devices are becoming increasingly widespread. These small special-

ized computers are present in offices, streets, and homes. Their main goal is to continuously

sense their environment, and send the measurements through a wireless channel to an edge

server, which performs data collection and further processing. Typical approach in most IoT

applications is to convey all the measurements from the IoT devices to an edge server, where

state-of-the-art machine learning algorithms are used to analyse the collected data. However,

in some applications, the volume of the measurement data (e.g., images, videos or LIDAR data)

is large, and transmitting it to the server at the required quality may not be feasible within

the limited latency requirements, e.g., in autonomous driving, surveillance, drones, etc. On the

other hand, as the computational capabilities of IoT devices advance, they can process the data

locally before offloading it to a server. In some cases the desired inference tasks can be carried

out locally, which is beneficial as the IoT devices have access to the original data, rather than

its quantized version at the edge server, due to the lossy compression and transmission over

the wireless channels.

In this work, we study machine learning at the wireless edge. In particular, we focus on

distributed inference over a wireless channel, where a centrally-trained algorithm is deployed

on IoT devices to perform inference over-the-air. One of the machine learning tasks for which

remote inference is essential is retrieval. In autonomous vehicles, drones, or in surveillance

systems, agents try to identify objects, vehicles, or humans in their environment through their

sensory data. The goal in image retrieval is to identify a query image of a person or a vehicle
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Figure 3.1: An illustration of the retrieval problem at the edge. A CCTV camera takes a picture
of a pedestrian or a car, and processes the image locally to obtain a low-dimensional signature,
which is then sent through a wireless channel to an edge server that performs identification
based on a large database it has access to.

recorded locally by matching with images stored in a large database (gallery), typically available

at the edge server (cf. Fig. 3.1). We emphasize that the retrieval task cannot be performed

locally at the edge device regardless of its computational power. This is because the centralized

database is available only at the edge server, hence, some sensory data has to be transmitted

to the edge server. The fundamental question we want to answer in this chapter is what part

or function of data must be transmitted, and how.

A trivial response to these questions would be to convey the image to the edge server at the

best quality possible. The server first reconstructs the image, and performs the retrieval task

with a state-of-the-art retrieval algorithm. Note, however, that a significant part of the image

content may not be relevant for the retrieval task, therefore the original image is not needed

at the server. Indeed, novel approaches to retrieval employ deep neural networks (DNNs) as

feature encoders that map input images to a low-dimensional feature space, such that vectors

extracted from the same identities are similar, despite different views or occlusions. Accordingly,

we employ DNNs for extracting features that are then transmitted over the wireless link.

We propose two approaches to convey the feature vectors to the edge server. In the conventional

“digital” approach, feature vectors are first compressed, and encoded with a channel code for

reliable transmission. The features that are most relevant for the retrieval task are extracted

and transmitted depending on the capacity and the reliability of the channel between the edge

device and the server. To improve the efficiency of this approach, we design a retrieval-oriented

image compression scheme, which compresses the feature vectors depending on the available bit
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budget. This “separate” data compression and channel transmission scheme assumes reliable

communication over the channel. Such scenario is typically difficult to achieve in practice,

especially for short blocklengths considered in this work, imposed by the strict delay limitations.

Alternatively, we consider a joint source and channel coding (JSCC) approach, where the feature

vectors are directly mapped into channel input symbols, and the noisy channel output is used

by the server to retrieve the most relevant images, without involving any explicit channel code.

This can be considered as “analog” communication since the feature vectors are not converted

into bits at any stage. For the JSCC approach, we employ an architecture based on DNNs,

similar to the novel DeepJSCC [33, 52], which has recently been introduced for wireless image

transmission. Our results show that the JSCC scheme can outperform the highly optimized

feature compression scheme even if we assume the availability of capacity-achieving channel

codes for the digital scheme. To the best of our knowledge, this is the first work to study

image retrieval over a wireless channel. The specific technical contributions related to the work

presented in this chapter can be summarized as follows:

• We propose a novel retrieval-oriented image compression scheme, which combines a re-

trieval baseline with a feature encoder, followed by scalar quantization and entropy cod-

ing. To estimate the distribution to be used for the entropy coder, we introduce a density

model based on a Gaussian mixture.

• We propose an autoencoder-based architecture and training strategy for robust JSCC of

feature vectors, generated by a retrieval baseline, under noisy, fading, and bandwidth-

limited channel conditions.

• We perform extensive evaluations under different signal-to-noise ratio (SNR) and band-

width constraints, and show that the JSCC scheme outperforms the digital approach

even with capacity-achieving channel codes. Moreover, its performance exhibits graceful

degradation when the test and training SNRs do not match. The JSCC scheme is shown

to outperform its digital counterpart also over fading channels, even if we assume the

availability of channel state information for the digital scheme only.
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• We evaluate the proposed schemes on various surveillance tasks, and show that the per-

formance close to the noiseless bound can be achieved even under very harsh SNR and

bandwidth constraints, whereas the digital approach falls short of this performance even

with idealistic capacity-achieving channel codes.

• Our results show that, in general, it is not possible to separate inference tasks from the

communication scheme, and the end-to-end performance can be improved significantly

by designing the communication and learning algorithms jointly. We provide a compre-

hensive analysis of different architectures and training strategies that will serve as solid

baselines for future research in wireless edge learning.

3.2 Related work

3.2.1 Person and Vehicle Retrieval

Person and vehicle retrieval tasks have been extensively studied [108, 109, 110, 111, 112, 113,

114]. They share the same motivation to allow for a better and more reliable recognition

of people and vehicles, mainly targeting surveillance applications. The most successful recent

approaches for image retrieval problems are based on convolutional neural networks, and recent

techniques include part classifiers [108, 109], creating bias-invariant feature vectors [110, 114],

using attention models [112], and analyzing images at different scales [115, 116]. Despite the

popularity of triplet loss in both areas [117, 111], designs based on softmax cross-entropy have

also been successfully implemented [113].

3.3 Methods

In this work we propose two approaches for performing retrieval over wireless channels: digital

(separate) and JSCC (joint) approaches. In both cases, we consider the transmission of the

feature vectors, which are a low-dimensional representation of identities of the items to be
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retrieved e.g., humans, vehicles (Section 3.3.2), and have to be sent over bandwidth-limited

wireless channels. Due to the channel limitations, features cannot be transmitted in a lossless

fashion, and have to be compressed. The recovered noisy feature vectors at the receiver are

compared to the feature vectors of images previously collected from other edge cameras, called

the gallery, in order to find the nearest neighbour.

3.3.1 Channel Model

We assume that the edge device is connected to the edge server through an additive white

Gaussian noise (AWGN) channel. We consider static as well as slow fading channel. For both

approaches presented in this work, we assume that the channel model is known during training,

and remains the same during inference.

The AWGN channel is characterized as follows: given a channel input vector x ∈ C𝐵, consisting

of 𝐵 complex channel input symbols 𝑥𝑖, the output y ∈ C𝐵 is given by y = x + z, where

𝑧𝑖 ∼ CN(0, 𝜎2) are the independent and identically distributed (i.i.d.) elements of the noise

vector z ∈ C𝐵, 𝑖 = 1, . . . , 𝐵. An average power constraint is imposed on the input vectors,

such that 1
𝐵

∑𝐵
𝑖=1 |𝑥𝑖 |2 ≤ 𝑃 = 1; which, in the case of a static AWGN channel, translates into a

maximum received SNR of SNR = 10 log10( 1
𝜎2 ) in dB scale.

In the slow fading scenario, we consider a single-tap Rayleigh fading channel model, where

all the transmitted symbols experience the same channel gain. That is, given the channel

input vector x ∈ C𝐵, the corresponding output vector y ∈ C𝐵 is given by y = ℎx + z, where

ℎ ∼ CN(0, 𝜎2
ℎ
) and 𝑧𝑖 ∼ CN(0, 𝜎2) are drawn from independent zero-mean complex normal

distributions with variances 𝜎2
ℎ

and 𝜎2, respectively. We impose the same average input power

constraint of 𝑃 = 1 as in the AWGN case. For each transmitted feature vector we use a single

gain ℎ, which characterizes the slow fading behaviour. The maximum average SNR is evaluated

by SNR = 10 log10(
𝜎2
ℎ

𝜎2 ) dB, while for all the experiments shown in this work we set 𝜎2
ℎ
= 1,

which corresponds to the same average received power as in the static AWGN channel model.
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Figure 3.2: The digital transmission scheme. Input is transformed into a feature vector, which is
compressed using a DNN. At the receiver, latent representation is classified into IDs to compute
the loss during training only. Arithmetic coding and channel coding is bypassed during training.

3.3.2 Retrieval Baseline

Following the state-of-the-art retrieval methods [113, 109] we employ the ResNet-50 network

[93], pretrained on ImageNet [24], for feature extraction. This ensures that similar results can

be expected in different setups. In more detail, we use ResNet-50 with batch normalization

(BN) layers applied after each convolutional layer. As input, we use images resized to a common

256× 128 resolution with bicubic interpolation for person datasets and 128× 128 resolution for

vehicle datasets. For the last layer we use average pooling across all the feature maps, which

results in a 2048-dimensional feature vector. During training we use stochastic gradient descent

(SGD) with a learning rate of 0.01 and a momentum of 0.9. A relatively large value of the

learning rate is motivated by the fact that we do not intend the network to fully converge at

this stage, as it will be fine-tuned together with the JSCC network in the subsequent steps of

the training procedure. We also apply 𝐿2 regularization, weighted by 5 · 10−4 to the ResNet-50

parameters. We refer to this architecture as the feature encoder.

3.3.3 Digital Transmission of Compressed Feature Vectors

This approach is based on the assumption that a certain number of bits can be reliably conveyed

to the edge server for each image. In practice, however, this is highly challenging to achieve.

Ultra-reliable channel codes require large blocklengths even in the static AWGN setting, and

accurate channel estimation and feedback in the slow-fading case. In our simulations, we assume
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capacity-achieving channel codes, which will serve as a bound on the performance of practical

digital schemes.

An overview of the proposed digital scheme is shown in Fig. 3.2. We first extract features using

the retrieval baseline described in Section 3.3.2 as feature encoder. The resulting feature vector

is compressed into as few bits as possible through lossy compression followed by arithmetic

coding. The compressed bits are then channel coded, with introduced structured redundancy

to combat channel impairments.

The lossy feature compressor consists of a single fully-connected layer for dimensionality reduc-

tion, followed by quantization. On the receiver side we use the quantized latent representation

as a feature vector, which is passed through a fully-connected layer for ID classification. Note

that the IDs and their classification are used for calculating the loss during training only. During

retrieval, the IDs are not known and the feature vectors are used for nearest neighbour search.

This has been shown to perform well in the re-ID community [108, 109, 110, 111, 112, 113, 114].

To enable an end-to-end differentiable approach, we utilize the well-known quantization noise

[80] to model the quantization process. Specifically, instead of rounding the latent representa-

tion to the nearest integer, in the training phase we add the uniform noise to each element of

the latent representation as follows:

𝑄(z) = z + U
(
−1

2
,
1

2

)
, (3.1)

where 𝑄(·) is the approximated quantization operation, z is the latent representation, and

U(·, ·) is the uniform noise vector. This formulation ensures a good approximation of quanti-

zation during training, whereas we perform rounding to the nearest integer during inference.

In order to optimize the arithmetic coder, we estimate the distribution of the quantized outputs.

We assume that the elements 𝑞 of vector q = 𝑄(z) are i.i.d. with some probability mass function

(PMF) 𝑝(𝑞). To model this PMF, we propose a simple yet flexible solution using a mixture

of Gaussians. We first approximate 𝑝(𝑞) as a continuous-valued probability density function

𝑝𝑐 (𝑞) as follows:
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𝑝𝑐 (𝑞) =
𝐾∑︁
𝑘=1

𝛼𝑘
1

𝜎𝑘
√

2𝜋
𝑒
− 1
2

(
𝑞−𝜇𝑘
𝜎𝑘

)2
, (3.2)

where 𝐾 is the number of mixtures, 𝜎𝑘 are mixture scales, 𝜇𝑘 are mean values, and 𝛼𝑘 are the

corresponding mixture weights. In our experiments we set 𝐾 = 9, which we empirically found

to perform the best. Then, in order to evaluate our PMF 𝑝(𝑞) at discrete values 𝑞 ∈ Z, we

integrate 𝑝𝑐 (𝑞) over
[
𝑞 − 1

2 , 𝑞 +
1
2

]
to obtain:

𝑝(𝑞) =
∫ 𝑞+ 12

𝑞− 1
2

𝑝𝑐 (𝑥)𝑑𝑥 = 𝐹𝑐
(
𝑞 + 1

2

)
− 𝐹𝑐

(
𝑞 − 1

2

)
, (3.3)

where 𝐹𝑐 is the cumulative density function of the distribution 𝑝𝑐 (𝑞).

We remark that, here we learn the distribution of the quantized feature vectors, but unlike

recent works [79, 118] , we do not consider adaptive probability model and do not introduce

another neural network to predict parameters {𝛼𝑘 , 𝜇𝑘 , 𝜎𝑘 } of the mixture. The reason for that

is the proposed simple model performs sufficiently well, and we want to avoid introducing any

communication overhead by sending additional parameters per image. Instead, we use the

available bandwidth for sending quantized feature vectors only.

With the model presented above, we can easily estimate the PMF of the quantized vector q,

which can be directly used to feed the arithmetic coding engine in the test phase, but also to

evaluate the average approximate entropy over the dataset in our loss function, which we define

as a weighted sum of two objectives:

𝐿 = 𝑙𝑐𝑒 − 𝜆 · log2 𝑝(q), (3.4)

where 𝑙𝑐𝑒 is the cross-entropy between the predicted class (identity) and the ground truth for the

retrieval task. The second component of the loss function corresponds to the empirical Shannon

entropy of the quantized vector, representing the average length of the output of the arithmetic

encoder. Such formulation allows for a smooth transition between the retrieval accuracy and

number of bits necessary to send the feature vector in a lossy fashion. Moreover, minimizing the
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Figure 3.3: The architecture and training of JSCC of feature vectors for wireless image retrieval.
The feature vector is directly mapped to channel inputs. Received noisy signal is decoded and
processed by a fully-connected layer to obtain ID predictions, which are then compared to the
ground truth by the cross-entropy loss.

entropy term is equivalent to maximizing the likelihood of 𝑝(𝑞), which corresponds to increasing

the certainty of our model, and allows a satisfactory fit of our approximated distribution to the

true underlying distribution of the discrete symbols.

We apply the same settings discussed in Section 3.3.2 to train the feature encoder, the fully-

connected classifier and the density model. We train the whole network for 20 epochs, reduce

the learning rate to 0.001 and train for further 30 epochs. We initialize our mixture parameters

as follows: 𝛼𝑘 =
1
𝐾

, 𝜇𝑘 = 0, 𝜎𝑘 = 𝑘
2, 𝑘 = 1, 2, . . . 𝐾. To ensure the convergence during training,

in the first epochs we prioritize the 𝑙𝑐𝑒 loss term by setting the weight parameter 𝜆𝑖 at epoch 𝑖

as:

𝜆𝑖 = min

(
𝜆

𝑖

𝐸 − 20
, 𝜆

)
, 𝑖 = 1, . . . , 𝐸, (3.5)

where 𝐸 > 20 is the total number of epochs. In our experiments we use 𝜆 ∈ [10−5, 10−2], and

𝐸 = 50.

In the inference phase we use the arithmetic encoding engine to transmit the information with

a channel code. Note that any channel code can introduce errors, there is therefore an inherent

trade-off between the compression rate and the channel coding rate under a given constraint on

the channel bandwidth, i.e., the number of channel symbols that can be transmitted to the edge

server per image pixel. Compressing the feature vector further leads to increased distortion, and

hence, reduced retrieval accuracy, but also allows to introduce more redundancy, and hence,

increased reliability against noise. In general, the optimal compression and channel coding rates
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Figure 3.4: Proposed JSCC encoder and JSCC decoder architecture for the JSCC scheme
illustrated in Fig. 3.3. At the encoder, dimensionality reduction is performed by the first fully-
connected layer, which is inverted at the decoder.

depend on the retrieval accuracy-compression rate function of the compression scheme and the

error-rate of the channel code. To simplify this task, we assume capacity-achieving channel

codes, which provides an upper bound on the performance that can be achieved by any digital

scheme that uses the above architecture.

3.3.4 JSCC of Feature Vectors

In this section, we propose an alternative JSCC approach, called JSCC AE, and illustrated

in Fig. 3.3. We use the baseline feature encoder as before to produce the feature vector for a

given query image. The feature vector is mapped directly to the channel input symbols via a

multi-layer fully-connected JSCC encoder (Fig. 3.4a). We set the dimensionality of the channel

input vector to 2𝐵 real symbols, which corresponds to the available channel bandwidth of 𝐵

complex values. In this work we consider small values of 𝐵 modeling stringent delay constraints

of the underlying surveillance applications. This low-dimensional representation is normalized

to satisfy the average power constraint of 𝑃 = 1, and transmitted over the AWGN channel. The

noisy channel output vector at the receiver is mapped back to the high-dimensional feature

space by a JSCC decoder (Fig. 3.4b). The distance between the query feature vector and the

feature vectors stored in the gallery set is calculated to find the nearest neighbours.

In order to train our network, the most straightforward strategy would be to perform end-to-
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end training, taking images from the dataset as an input, and training both the feature encoder

and the JSCC autoencoder jointly, in an end-to-end fashion, with cross-entropy loss between

the ID predictions and the ground truth (as shown in Fig. 3). However, our experimentation

in Section IV-F shows that this approach leads to suboptimal performance. Alternatively, we

propose traininig each component of the network separately at first, and, once the feature

encoder and the JSCC autoencoder are pretrained individually, they are combined and trained

jointly. Therefore, our training strategy, which we refer to as 𝑇1,2,3, consists of three steps:

feature encoder pretraining (𝑇1), JSCC autoencoder pretraining (𝑇2), and end-to-end training

(𝑇3). In the first step, 𝑇1, we attach a single fully-connected layer at the end of the feature

encoder that maps 2048-dimensional feature vectors directly to the ID predictions. We pretrain

the feature encoder for 30 epochs with a batch size of 16, using cross-entropy between the ID

predictions and the ground truth as the loss function. In the second step, 𝑇2, we freeze the

pretrained feature encoder, and use it to extract features from all the images in the training

dataset. We use these features as inputs to the proposed autoencoder network. We train the

autoencoder using the 𝐿1-loss between the feature vectors and the vectors reconstructed by

the JSCC decoder. It is trained with SGD for 200 epochs with a learning rate 0.1, reduced

to 0.01 after 150 epochs, and momentum of 0.9. We apply 𝐿2 regularizer to the autoencoder

model, weighted by 5 · 10−4. Finally, in the third step, 𝑇3, we train the whole network jointly,

the autoencoder and the feature encoder, for 30 epochs, using the cross-entropy loss with a

learning rate 0.001, and for further 10 epochs with a learning rate of 0.0001, applying the same

optimizer and 𝐿2 regularization as in the previous two steps.

Along with 𝑇1,2,3 we evaluate four alternative training strategies. The first one, denoted by

𝑇3, corresponds to the end-to-end training of the entire network (feature encoder + JSCC

autoencoder + classifier) in a single training step. The second method, 𝑇1,2, consists of the

feature encoder pretraining, 𝑇1, followed by the JSCC autoencoder training, 𝑇2 to reconstruct

feature vectors with 𝐿1 as the distortion measure. This method corresponds to using a JSCC

scheme whose goal is to reconstruct the feature vector as reliably as possible without taking into

account the accuracy of the retrieval task. After 𝑇2, the feature encoder and the autoencoder are

combined as in Fig. 2, but the joint training step, 𝑇3, is not performed. The third method, 𝑇1,3,



62 Chapter 3. Joint Source-Channel Coding for Wireless Image Retrieval

consists of the feature encoder pretraining, 𝑇1, followed by joint training of the entire network,

𝑇3. Finally, 𝑇1,3 + 𝐿1 approach is different from the 𝑇1,3 in that it combines the cross-entropy

loss and 𝐿1 loss, in the joint training phase.

Note that, we opted for an architecture that employs a distinct feature encoder and a separate

JSCC autoencoder to transmit the feature vector over the channel. We have then trained these

components in multiple training steps. It is possible to introduce a simpler architecture with a

single JSCC encoder at the edge device that maps the query image to the channel input vector.

Thus, no decoding is required at the receiver, and the retrieval task is directly performed

using the noisy channel symbols. To compare our method to this straightforward approach,

we introduce JSCC FC, which follows the same structure as in Fig. 3.3, except that the JSCC

encoder is replaced by a single fully-connected layer and the JSCC decoder is removed. We

train the whole network end-to-end for 50 epochs with cross-entropy loss, learning rate of 0.01,

reduced to 0.001 after 30 epochs, and a momentum of 0.9. We also apply 𝐿2 regularization,

weighted by 5 · 10−4, to all the parameters, including ResNet-50, feature encoder and fully-

connected classifier.

3.4 Results

In this section we evaluate the performance of the proposed JSCC AE and JSCC FC architec-

tures, and compare with that of the digital scheme presented in Section 3.3.3, as well as the

ideal channel scenario with unlimited channel resources, where full, noiseless feature vectors

can be transmitted over the channel. We first discuss the experimental setup and the dataset

used for the evaluations.

3.4.1 Experimental Setup

For the JSCC AE and JSCC FC schemes we vary channel SNRs for training, between SNR𝑡𝑟𝑎𝑖𝑛 =

−12dB and SNR𝑡𝑟𝑎𝑖𝑛 = ∞dB, which corresponds to zero noise power. Training and test SNRs
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Figure 3.5: Performance comparison of the proposed three schemes over AWGN and slow fading
channels for a range of channel SNRs and bandwidth 𝐵 = 64. Our JSCC AE scheme achieves
the best retrieval accuracy over the whole range of tested SNRs and for all three re-ID image
retrieval datasets.
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are the same unless stated otherwise. In the digital scheme, we experiment with different dimen-

sionality of the latent representation, between 64 and 512, estimate and minimize its entropy in

the training phase by varying the value of parameter 𝜆. In the testing phase we perform round-

ing to the nearest integer on each element of the latent representation and arithmetic coding,

which is based on the probabilistic model learned by the entropy estimator, as described in Sec-

tion 3.3.3. This model assigns a probability estimate to each quantized symbol, which is then

passed to the arithmetic encoder. We note that the proposed digital scheme is a variable-length

encoder. Therefore, for a given fixed communication rate to the server, one has to determine

the 𝜆 coefficient that meets the rate constraint for each image. Instead, we fix the 𝜆 coefficient

and calculate the average number of bits required to encode the latent representations of the

test images. We then evaluate the corresponding channel SNR to deliver these many bits to

the receiver, assuming capacity-achieving channel codes. This is the upper bound on the real

performance as practical codes are far from the capacity bound in the short blocklength regime.

This model may correspond to sending multiple images together, and hence, the performance

is determined by the average rate across many test images, rather than their individual rates.

For digital transmission over a fading channel, we consider two scenarios. In the first one, we

assume perfect channel state information available at both the transmitter and the receiver.

Then, for each query image and a corresponding random channel gain, we identify the 𝜆 pa-

rameter that results in a bit rate that is as close as possible from below to the corresponding

channel capacity. Then, we find the average accuracy across many random queries and channel

conditions, following the underlying fading distribution. In the second scenario, we fix the

𝜆 parameter, and for each query image and the corresponding random channel condition, we

compare the required bit rate of the query image and the channel capacity. If the capacity

is lower than the bit rate required by the compression scheme, we assume the transmission is

failed. We then calculate the fraction of successful transmissions and multiply it by the average

accuracy of the queries whose compressed feature vector can be successfully transmitted, for a

given 𝜆. Note that, there is a trade-off between the accuracy loss due to compression and the

outage over the channel. The higher 𝜆 values results in more compact representations of the

feature vector, and hence less accurate retrieval performance even if they can be successfully
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conveyed to the server. Higher 𝜆 values relaxes the compression constraint, but may result in

higher loss over the channel. Note that, we report only the results for the 𝜆 values that lead to

the highest average accuracy for each average SNR.

To train our model we used NVIDIA GeForce RTX 2080Ti GPU. A single end-to-end training

of our digital model took approximately 35 minutes, which was similar to the training time of

the JSCC FC. For JSCC AE, the training took approximately 20 minutes, 3 minutes, and 30

minutes for 𝑇1, 𝑇2, and 𝑇3, respectively. Please note that 𝑇1 has to be performed only once, as

this step does not depend on the channel model.

3.4.2 Datasets

In order to measure the performance of the retrieval task, we employ three widely used datasets:

CUHK03 [119] is a benchmark for person retrieval that contains 14096 images of 1467 identities

taken from two different camera views. The dataset was captured with six surveillance cameras

and each identity within the dataset is represented by an average of 4.8 images per each of the

two camera views. We use the labeled variant of the dataset, where each image of the pedestrian

was manually cropped by a human.

Market-1501 [120] contains 32217 images of 1501 pedestrians taken from a total of six cameras

in front of a supermarket at Tsinghua University. Five out of six cameras are high-resolution

cameras and the remaining one is low-resolution. Training and testing splits proposed by the

authors contains 12936 and 19732 images, respectively. 750 identities are additionally selected

as a query set containing 3368 images (maximum of 6 per person). The dataset is different from

CUHK03 in that it contains junk images capturing only partial pose and distractors presenting

small fragments of pedestrian appearance or irrelevant objects.

VeRi [121, 122] is a vehicle retrieval dataset. It contains over 50000 images of 776 vehicles

captured by 20 cameras within 24 hours over the area of 1km2. Each identity is captured by

2-18 cameras in different viewpoints, occlusions, resolutions, and lighting conditions. All the
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Figure 3.6: Accuracy as a function of the channel SNR for different channel bandwidths. Higher
bandwidth introduces more robustness against the channel noise.

images within the dataset are annotated with attributes, brands and colors, but in this work

we do not utilize this information, and focus on retrieving the identity only based on the image.

The evaluation measure for all the datasets is the top-1 retrieval accuracy, which calculates the

fraction of correct IDs at the top of the ranked list retrieved for each query.

3.4.3 Performance for Different Methods

We plot the accuracy achieved by various schemes as a function of the test SNR in Fig. 3.5.

For these experiments we use the bandwidth of 64, which corresponds to the transmission of

64 complex symbols through the channel. One can see that JSCC AE outperforms the digital

scheme in all considered scenarios. For CUHK03 dataset the digital approach is not able to

recover the noiseless accuracy even at SNR = 15dB, whereas the proposed JSCC AE scheme

obtains accuracy close to the ideal channel baseline at around 10dB for the AWGN channel.

JSCC FC follows JSCC AE very closely, but the increase in the performance provided by the

autoencoder is visible for all the SNRs considered, which proves the superiority of the proposed

architecture in comparison to the relatively simpler JSCC FC. The lower accuracy of JSCC

FC may stem from the fact that the noise directly affects the low-dimensional feature vector,

while the autoencoder-based scheme introduces certain level of denoising, which improves the
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feature estimates at the receiver. In Fig. 3.5a, we also show that feature decoding is not

beneficial for the digital scenario. An alternative scheme, which we called Digital w/ decoding

(capacity achieving), follows the same training strategy as discussed in Section 3.3.3, but we

further introduce a fully-connected decoder. This decoder is placed before the fully-connected

classifier, and maps low-dimensional quantized latents back to the original, 2048-dimensional

feature vector space. We show that this decoding step brings no improvement to the digital

scheme performance, compared to the scenario without decoding. This result was consistent

across all the datasets, but to avoid clutter we show it only in Fig. 3.5a. Another observation is

that the relative performances of the three schemes are similar for all the datasets considered,

while JSCC FC seems to perform worse for the Car VeRi dataset, and even surpassed by the

digital scheme at SNR = 10dB.

Fading channels introduce additional perturbation to the channel symbols, reducing the ac-

curacy of all the proposed approaches. Similarly to the AWGN channel, JSCC AE achieves

the best performance across all three datasets and the average SNR values considered in this

chapter. The digital scheme performs worse when the channel state information is not available

(which is also the case for the JSCC schemes). We have also included the performance of the

digital scheme when perfect channel state information is available. We observe that even in

this case the proposed JSCC AE scheme outperforms the digital alternative. JSCC FC closely

follows JSCC AE at the low SNR regime, but its performance saturates to a level significantly

below that of JSCC AE, and even below the digital scheme for the CUHK03 dataset. This

result further validates the denoising interpretation of the autoencoder structure in JSCC AE,

which becomes even more critical in recovering the noisy feature vector in the presence of chan-

nel fading. Fading not only applies random attenuation to the received signal strength, but

also random rotations in the complex plain, which makes it very difficult for the receiver to

recover the features for correct retrieval without any channel state information. We note that,

while the digital scheme suffers significant performance loss in the absence of the channel state

information, JSCC AE seems to perform reasonably well. We can argue that the autoencoder

learns to mitigate the effect of random fading despite the lack of explicit pilot signals. We also

provide the performance of JSCC AE, when perfect channel state information is available at the



68 Chapter 3. Joint Source-Channel Coding for Wireless Image Retrieval

receiver. The JSCC decoder first divides the received signal by the channel gain: ŷ =
y
ℎ
= x+ z

ℎ
,

and reconstructs the input feature from ŷ. In this scenario, our method is able to recover the

noiseless bound at a reasonable SNR of 15dB, and the gap between JSCC AE w/ CSI and the

digital approach grows even further.

3.4.4 Performance for Different Bandwidths

In this experiment we investigate the effect of the channel bandwidth 𝐵 on the retrieval perfor-

mance for the person retrieval CUHK03 dataset, achieved by the JSCC AE scheme. We em-

phasize that the previously considered bandwidth of 𝐵 = 64 is extremely limited, corresponding

to extremely low-latency communications, which may be essential for many surveillance and

security applications. The top-1 accuracy as a function of the channel SNR is plotted in Fig. 3.6

for different channel bandwidth values of 64, 128, 256, and 512. It shows that the accuracy and

robustness increases significantly with the bandwidth, but the relative gain becomes smaller as

we approach the original feature vector dimension.

For the fading channel, it is visible in Fig. 3.6b that the proposed JSCC AE scheme without

the channel state information is not able to recover the original accuracy even for a significant

bandwidth, and reaches a plateau at around SNR = 12dB. As pointed out in Section 3.4.3, this

may stem from the fact that our approach cannot fully cancel the effect of the variable channel

gain. Channel estimation and feedback techniques can be utilized to mitigate the impact of

random channel fading, as shown in Section 3.4.3.

3.4.5 Graceful Degradation

In this section we evaluate the behaviour of our models on the CUHK03 dataset when the

training and test SNRs do not match. In the experiments with the digital scheme, we assume

that capacity-achieving channel codes are in use, and the quality of the channel is always

estimated correctly. However, in practice, digital approaches suffer from the cliff effect, which

results in a sharp decrease in the performance when the channel condition is worse than the
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Figure 3.7: Accuracy achieved by the proposed JSCC AE scheme as a function of SNR𝑡𝑒𝑠𝑡 for
different SNR𝑡𝑟𝑎𝑖𝑛 values for 𝐵 = 64. JSCC AE achieves graceful degradation with the channel
SNR as opposed to the digital scheme, which suffers from the cliff effect. Models trained at
moderate SNR𝑡𝑟𝑎𝑖𝑛 values achieve relatively good performance for a wide range of test SNRs
values.

channel state, for which the channel code is designed. If the code rate is above the current

channel capacity, it is known that true error probability converges to 1 [123].

On the other hand, unlike digital models, analog transmission schemes are known to achieve

graceful degradation when we are interested in the end-to-end reconstruction quality [33]; that

is the average reconstruction quality smoothly decreases as the channel conditions become

worse. This behaviour is quite beneficial, since we do not have to train multiple autoencoders,

one for each channel SNR value, or even introduce channel estimation and feedback feature if

the performance does not critically depend on applying the same training and testing SNRs.

In the previous sections we showed the best possible accuracy for a specific SNR, which means

each data point corresponds to a model trained specifically for that targer SNR. In Fig. 3.7 we

show that graceful degradation can be achieved with the proposed JSCC AE architecture, and

it is not necessary to train a separate model for every SNR value. Instead, we can take a model

trained with a moderate SNR𝑡𝑟𝑎𝑖𝑛 and apply it to a wide range of SNR𝑡𝑒𝑠𝑡 in the inference time

at the expense of a moderate loss in accuracy. To the best of our knowledge, this is the first time

graceful degradation is demonstrated for the inference as opposed to the average reconstruction

quality that is typically considered in the literature.
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Figure 3.8: Comparison of training strategies through the evolution of the cross-entropy loss in
the final joint training step. The proposed 𝑇1,2,3 is superior to the alternative approaches.

Note that the approach trained without noise (SNR𝑡𝑟𝑎𝑖𝑛 = ∞dB) is not robust against the

channel noise. Therefore, its accuracy decreases much faster than for the networks trained

under different noise levels, yet it still shows graceful degradation as the channel noise increases.

3.4.6 Training Strategy

In this section we show the superiority of 𝑇1,2,3 training strategy by comparing to the alternative

training methods introduced in Section 3.3.4. Note that, for the fairness of the comparison, we

perform the first step of the training, which is the feature encoder pretraining, only once for

𝑇1,2,3, 𝑇1,2 𝑇1,3, and 𝑇1,3 + 𝐿1.

The evolution of the cross-entropy loss over training epochs of the final joint training phase

for different training strategies is shown in Fig. 3.8. In the experiment we used the bandwidth

𝐵 = 64 and SNR=0dB. The proposed three-step training allows to achieve much better final

performance, as shown in Table 3.1. Here, we also shown the top-5 recognition accuracy i.e.,

the correct match was listed within the top 5 ranklist elements, and the mean average precision
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Table 3.1: Comparison of the retrieval performance for different training strategies.

Method Top-1 accuracy Top-5 accuracy mAP

𝑇3 0.225 0.409 0.195
𝑇1,3 0.312 0.533 0.286

𝑇1,3 + 𝐿1 0.317 0.536 0.287
𝑇1,2 0.330 0.557 0.306
𝑇1,2,3 0.392 0.602 0.351

Table 3.2: Person retrieval accuracy for the CUHK03 dataset achieved by different models at
SNR = 0dB and 𝐵 = 64.

Model # JSCC encoder layers # JSCC decoder layers Activation MSE Top-1 accuracy Top-5 accuracy mAP

A 3 3 Leaky ReLU 0.204 0.382 0.602 0.354
B 3 2 Leaky ReLU 0.222 0.391 0.597 0.354
C 3 4 Leaky ReLU 0.199 0.390 0.601 0.358
D 2 3 Leaky ReLU 0.202 0.392 0.602 0.359
D 4 3 PReLU 0.181 0.383 0.589 0.343
E 4 3 Leaky ReLU 0.208 0.383 0.598 0.356
F 1 1 N/A 0.207 0.387 0.592 0.352
G 2 2 Leaky ReLU 0.206 0.387 0.592 0.352
H 1 2 Leaky ReLU 0.207 0.386 0.593 0.353
I 2 1 Leaky ReLU 0.206 0.389 0.600 0.356

(mAP), which are standard evaluation measures for the retrieval tasks. Adding each training

step increases the performance gradually, and there is a significant difference between 𝑇3, and

𝑇1,3, as well as between 𝑇1,3 and 𝑇1,2,3. Our three-step strategy outperforms all three alternatives

by a large margin as it converges faster and achieves the smallest loss after the last epoch.

As expected, 𝑇3 performs the worse, since it has to learn both the retrieval and robustness

against the noise in a single training step with randomly initialized weights. Interestingly, the

convergence of the 𝑇1,3 + 𝐿1 seems to slightly outperform the convergence of the 𝑇1,3, thanks to

the additional loss term, which forces the reconstructed features to be similar to the original

ones. However, while this seems to speed-up the convergence of the autoencoder network

marginally, it does not affect the final performance. The reasonable performance of 𝑇1,2 shows

that 𝑇2 allows the autoencoder to produce good reconstructions of the feature vectors under

noisy environment, but the gap between 𝑇1,2 and 𝑇1,2,3 indicate the necessity of joint training

phase, 𝑇3, which maximizes the task performance. One may argue that our 𝑇1,2,3 strategy is

slower compared to the alternatives, nevertheless adding the autoencoder pretraining phase is

negligible in comparison to the joint training phase (∼ 3min vs. ∼ 1hr).
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3.4.7 Comparison of Different Models

In this section we present the results of architecture search for the JSCC autoencoder that

resulted in the best performing model presented in Fig. 3.4. We considered 9 models designed

as follows: both the JSCC encoder and the JSCC decoder are built of fully-connected layers,

followed by the BN and activation layers. The only exceptions are the last layers in the JSCC

encoder and the JSCC decoder which are without BN and activations. The first layer of the

JSCC encoder maps 2048-dimensional features to 2𝐵 real-valued symbols, which eventually

forms a 𝐵 complex symbols transmitted over the channel. Similarly, the last layer of the JSCC

decoder maps 2𝐵-dimensional vectors back to the original 2048-dimensional feature space and

the remaining FC layers keep the dimension at 2𝐵. The evaluated architectures and results

are shown in Table 3.2. We select the models by starting from the baseline (denoted as A)

from [36] and then removing or adding layers from the JSCC encoder and the JSCC decoder

networks to explore the impact of depth on the overall performance.

For each model we trained the network according to the three-step strategy described in Section

3.3.4 and performed evaluation on the CUHK03 dataset at SNR = 0dB, 𝐵 = 64. We also show

the mean squared error between the original feature vectors and their noisy reconstructions,

after JSCC autoencoder pretraining 𝑇2. The results show that the differences between the

models are marginal. Model D, which corresponds to the architecture presented in Fig. 3.4

and was used in the rest of the paper, performs slightly better than the others in terms of final

retrieval performance. This model was selected also due to its low computational cost, as it

consists of only 5 fully-connected layers in total. We also used PReLU as the activation for the

model variant D, and observed that even though it achieves better MSE in step 𝑇2, it fails to

provide a good generalization capabilities in the final step, as it overfits to the data. Please

note that the model F, does not have the activation function, as the only layers in both the

encoder, and the decoder are the last layers, therefore, as described above, the activation and

BN are removed.
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3.5 Conclusions

In this work, we have introduced the image retrieval problem over wireless channels in the

context of the edge network, where wireless edge devices send queries of images over a bandwidth

and power limited channel to an edge server that stores the image database, also called the

gallery. We first introduced a digital approach, which is based on a novel retrieval-oriented deep

image compression scheme, and applied it to feature vectors obtained from the feature encoder.

Next, we proposed a JSCC-based scheme, where feature vectors are directly mapped to the

channel symbols and decoded at the receiver. We showed the latter approach not only achieves

a superior retrieval accuracy at a target channel SNR, but also provides graceful degradation

with the test SNR when it does not match the training SNR. We further introduced JSCC FC,

which is a simplified version of the proposed model and showed that decoding is necessary at

the receiver to mitigate the effects of channel impairments. We also proposed a novel strategy

for training our JSCC scheme, that can be adapted to other machine learning applications

performed over noisy channels. Our strategy achieves superior performance for training the

JSCC scheme. We have also performed an extensive ablation study of different architectures

and training strategies and compared the alternatives under various performance measures for

a wide range of different channel conditions. The results show the superiority of the proposed

architecture and the joint training approach.

We note, that edge devices are usually not equipped with powerful hardware that allows for

the real-time processing of images with DNNs, as assumed in this work. Therefore, the next

chapter studies the problem of collaborative edge inference, where only the first few layers of

DNN can be efficiently executed at the edge device, whereas the remaining part of the forward

pass of the DNN has to be finished at the edge server, with significantly higher computational

capabilities.



Chapter 4

Joint Device-Edge Inference over

Wireless Links

In this chapter, we focus on edge inference systems, where an edge device cooperates with an

edge server to perform a machine learning task over the wireless edge [124]. As opposed to

the previous chapter, instead of the image retrieval task, we consider image classification tasks

tackled by deep neural networks (DNNs). These tasks do not require access to large databases

of objects to retrieve and in theory can be completed locally, at the edge device. However,

while the previous chapter assumed sufficient computational resources available at the edge

devices, these are not usually capable of performing such visual inference tasks locally due to

the large computational complexity of running DNNs. The solution we consider in this work is

splitting the DNNs into two parts [37, 125, 63]. The first part is deployed at the edge device and

further pruned to meet the computational power constraints of the device, while the feature

map extracted from the input image by the first part is transmitted through a wireless link to

the edge server, which finishes the forward pass of the DNN and obtains the classification result.

We build upon the recent success of deep joint source-channel coding (JSCC) algorithms and

propose a trainable compression and transmission scheme that learns a direct mapping from

the feature maps to channel input symbols. In the results section we show the superiority of

the proposed approach compared to the existing schemes based on classical separation-based
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transmission and JSCC.

4.1 Introduction

The number of Internet of Things (IoT) devices reached 22 billion at the end of 2018 and is

expected to grow up to 75 billion by the end of 2025 [126]. Currently, most of these devices act

as wireless sensors that collect data and offload it to a cloud or edge server for processing. This

creates a major bottleneck in many emerging IoT applications as communication consumes

significant energy and introduces errors and latency.

In this work, we consider deep neural network (DNN) based inference at an edge device [124].

Due to limited computational power and memory, edge devices typically cannot perform all

the computations required by a complex DNN architecture. For example, a single forward pass

of the ResNet-152 [93] architecture requires 11 × 109 floating-point operations (FLOPs) for a

224×224 input image. This would take a few minutes on a simple edge device, which is usually

limited to a few MFLOPs per second. We assume that an edge server is available to help

the device to perform the inference task. In most current implementations, the edge device

offloads all its data to the edge server, where a DNN of any complexity can be deployed. Note,

however, that parts of the data that the device is sending may not be useful for the underlying

task. An alternative approach is to preprocess the data on the edge device, within the available

computational limits, and transmit only the resulting features to the edge server. We therefore

encounter two main challenges: minimizing the number of computations that have to be done

locally, and designing a robust communication scheme within the limited available transmission

power and bandwidth.

To address the first challenge, DNN architectures that operate within the low-complexity con-

straints of mobile devices are proposed in [107]. These may still need hundreds of millions

FLOPs to perform a single forward-pass, which may be unacceptable for certain edge devices.

Some recent works [127, 125, 63] suggest splitting DNNs into two parts, where only the first few

layers are implemented on the device within its computational constraints, while the remaining
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Figure 4.1: An overview of the proposed system. The baseline neural network is split between
an edge device and an edge server. Given input data (e.g., an image), pruned sub-network
performs the first part of the forward pass to generate an intermediate feature map, which is
then compressed by DeepJSCC encoder and sent through a wireless link. At the receiver side,
first the compressed feature map is reconstructed, and the remaining part of the forward pass
is completed to obtain the final prediction.

layers are deployed on the edge server. However, this approach requires reliable transmission of

the intermediate feature vectors to the edge server. To reduce the communication requirements,

a typical approach is to quantize and/or compress the feature vectors before transmitting over

the channel [127, 125]. These methods consider the amount of information (e.g., the number

of bits) that must be conveyed to the edge server, but ignore the energy and latency cost of

communications, and potential errors that may be introduced. Moreover, reliable transmission

of the feature vectors requires an accurate estimate of the channel state at the edge device,

and separate compression and channel coding is known to be suboptimal under strict delay

constraints. Recently, a DNN-based DeepJSCC scheme has been shown to provide improved

performance and robustness in wireless image transmission [33, 59, 52]. DeepJSCC scheme has

been applied in distributed inference scenarios as well [128, 63, 36], but they require a significant

number of on-device computations to run a forward pass of the underlying DNN.

In this work, we propose to reduce the on-device computational load by incorporating a prun-

ing step in the network training. Network pruning [96] aims at reducing the computational

redundancy within DNNs by efficiently removing certain neurons, convolutional filters, or en-

tire layers based on a saliency measure or a regularization term. Therefore, given a certain

channel condition and a computational constraint at the edge device, our goal is to find the op-

timal DNN splitting point and the pruning parameters to ensure the best possible accuracy as

well as efficiency in a given scenario. We consider image classification as the target application.
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Network splitting together with pruning for edge devices has recently been studied in [129], but

similarly to other works, they ignore the errors that may be introduced over the channel. In

contrast, our work is the first to study a joint device-edge inference architecture combined with

pruning taking into account the noisy wireless channel. Contributions of the work presented in

this chapter can be summarized as follows:

• We propose a DNN training procedure for joint device-edge inference systems under ex-

treme power and latency constraints by combining novel pruning and splitting techniques

with end-to-end feature transmission.

• Inspired by the DeepJSCC architecture [33], we propose an autoencoder-based network

for intermediate feature map transmission to allow bandwidth reduction.

• We present extensive evaluations of the proposed approach at various DNN splitting

points, channel SNRs, and bandwidth and computational power constraints, and show

its efficacy in a wide range of settings.

4.2 Methods

We propose a 4-step training strategy for combining partial network pruning with an end-

to-end autoencoder architecture for transmitting intermediate feature maps of an arbitrary

hidden layer of a DNN (Fig. 4.1). Such an approach allows for a reduction in the computations

carried out at the edge device, while taking into account the effect of channel noise on the

performance (within the specified bandwidth constraint). Most popular convolutional neural

networks (CNNs), such as VGG [27] or ResNet [93] perform spatial dimensionality reduction

of intermediate feature maps by applying pooling operations or convolutional filters with stride

greater than 1. Nevertheless, as spatial dimension is being reduced, number of channels is

usually expanded to extract the most significant features from the input image. Therefore, in

the first few layers of such networks, the total dimension of the feature map increases up to a

certain point, after which it starts to decrease due to further downsampling. As a consequence,



78 Chapter 4. Joint Device-Edge Inference over Wireless Links

there exists a hidden layer within such a network, where the size of the intermediate feature

map is lower than that of the input; which acts as data compression for the underlying task.

Transmitting such a feature map instead of the original input can help to reduce the bandwidth,

but will impose significant computational resources on the device as it will have to preprocess

the image through many layers of the network. This defines a trade-off between on-device

computation and communication bandwidth, which we aim to optimize.

4.2.1 Channel model

We consider an additive white Gaussian noise (AWGN) channel, but any differentiable channel

model can be employed instead. Specifically, given a channel input vector x ∈ R𝐵, where 𝐵

represents the available channel bandwidth, the channel output y ∈ R𝐵 is given by y = x + z,

where z is an independent and identically distributed (i.i.d.) noise vector with elements 𝑧 ∼

N
(
0, 𝜎2

)
. An average power constraint of 𝑃 = 1 is imposed on the channel input vector, i.e.,

1
𝐵

∑𝐵
𝑖=1 𝑥

2
𝑖
≤ 𝑃. We evaluate the accuracy for different channel signal-to-noise ratios (SNRs)

given by 𝑃

𝜎2 . To compare our JSCC approach to digital methods we use standard Shannon

capacity formula given by 𝐶 = 1
2 log2

(
1 + 𝑃

𝜎2

)
.

4.2.2 Classification baseline

Our framework is flexible, and can be easily adapted to any system that incorporates DNNs. We

focus on image classification task as it is the most frequent approach to automatically analyse

image content and generate its metadata. Given an image and a finite set of possible classes,

the classification task aims at assigning the correct class label to the image. We experiment

with VGG16 [27] with batch normalization (BN) added after each convolutional layer as it is

one of the most popular networks employed for image classification. The network consists of 13

convolutional layers with stride 1 divided into 5 blocks, where each block is followed by a pooling

operation. We consider each of the pooling operations as a potential network splitting point

as it provides feature compression by construction, and does not affect the accuracy. After the
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Figure 4.2: Proposed encoder and decoder architecture for feature transmission. At the encoder,
dimensionality reduction is performed by the convolutional layer. Shallow structure of the
encoder reduces the computational load on the power-constrained device. Here, 𝑘 represents
the symmetric, 2-dimensional kernel size of the convolutional layers, and 𝑠 represents their
stride.

last pooling layer we also employ a fully-connected classifier consisting of three fully-connected

layers, where the first two have the output size of 512 and the last one maps 512-dimensional

vector to 100-dimensional class predictions.

4.2.3 Autoencoder architecture

In this work, we explicitly model and evaluate the impact of the noisy wireless channel on

the performance. Therefore, we design the communication scheme in conjunction with the

DNN architecture employed for the underlying classification task. As opposed to most of

the literature on device-edge co-inference, we do not employ digital codes to transmit the

feature maps, which are known to be suboptimal in finite blocklengths. Instead, we employ the

autoencoder architecture shown in Fig. 4.2. Its asymmetrical structure is designed to reduce

on-device computations; therefore, the encoder’s architecture (Fig. 4.2a) consists of a single

convolutional layer of stride 2 × 2 and 3 × 3 kernels, which perform both spatial and channel-

wise compression of the feature map in a single step. The convolutional layer is followed by the

generalized divisive normalization (GDN) layer [78], which is commonly used in most successful
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deep compression schemes such as [75] as a replacement of BN. GDN operation is defined as:

𝑢
(𝑘+1)
𝑖
(𝑚, 𝑛) =

𝑤
(𝑘)
𝑖
(𝑚, 𝑛)(

𝛽𝑘,𝑖 +
∑
𝑗 𝛾𝑘,𝑖 𝑗

(
𝑤
(𝑘)
𝑗
(𝑚, 𝑛)

)2) 1
2

, (4.1)

where 𝑢(𝑘)
𝑖
(𝑚, 𝑛) denotes the 𝑖th output channel of the 𝑘th stage of the encoder at the spatial

location (𝑚, 𝑛) and 𝑤 (𝑘)
𝑖
(𝑚, 𝑛) denotes the corresponding input value. The approximate inverse

operation, called IGDN is given by:

�̂�
(𝑘+1)
𝑖
(𝑚, 𝑛) = 𝑢 (𝑘 )

𝑖
(𝑚, 𝑛)

(
𝛽𝑘,𝑖 +

∑︁
𝑗

𝛾𝑘,𝑖 𝑗

(
𝑢
(𝑘 )
𝑗
(𝑚, 𝑛)

)2) 1
2

, (4.2)

where �̂� and 𝑢 are the output and input of IGDN, respectively. Finally, we employ parametric

rectified linear unit (PReLU) [130] as an activation function to further increase the learning

capacity of our model. The output of the encoder network is directly transmitted over the

channel (after normalization - to meet the power constraint).

At the decoder (Fig. 4.2b) we first perform a single convolution with stride 1 × 1 and 3 × 3

kernel size on the compressed feature map. This is followed by the IGDN operation, PReLU

activation, and upsampling to restore the original spatial dimension of the intermediate feature

map. Finally, another convolutional layer with the same stride and kernel size is applied to

increase the feature map’s depth to its original value, followed by BN and PReLU. Note that

the number of channels effectively controls the size of the transmitted vector as our encoder

always reduces the spatial dimensionality by a factor of 4. The only exception is the last block

of VGG16 network (after pooling 5), where the feature map of size 1 × 1 × 512 cannot be

downsampled so we only control the number of channels.

4.2.4 Training strategy

Our training strategy consists of 4 steps. Firstly, we pretrain the VGG16 network with cross-

entropy loss for 60 epochs, using SGD [131] optimizer with a learning rate of 0.01, momentum

of 0.9, and 𝐿2 penalty on network parameters weighted by 5 · 10−4 to avoid overfitting. We

reduce the learning rate by a factor of 0.1 after 20th and 40th epochs.
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Next, we select the splitting point after one of the pooling layers of the network and employ

network pruning. We use the pruning algorithm in [98], which uses Taylor expansion to ap-

proximate the change in the loss function induced by pruning. In principle, the algorithm

evaluates the importance of each convolutional filter up to the splitting point, and removes the

least significant ones. In our setup, the algorithm removes 512 convolutional filters at a single

pruning iteration, followed by additional 10 training epochs with a learning rate of 0.0001 to

recover the accuracy lost by the filter removal.

Afterwards, we run a forward pass through the pruned network with each image in the training

set to extract all the possible feature maps at the splitting point. We use the feature maps as

a new training set for our autoencoder, which we pretrain for 40 epochs with a learning rate

of 0.1, momentum of 0.9, and 𝐿2 penalty weighted by 5 · 10−4. We use 𝐿1-loss to recover the

feature maps as close to their original versions as possible. This step is crucial to speed-up

the convergence of the end-to-end training; since the feature maps are low-dimensional and

autoencoder architecture is very simple, its execution is relatively fast. Starting from this step,

we incorporate an AWGN channel model between the encoder and decoder to gain robustness

against channel noise.

In the last step, we perform end-to-end training of the entire network. Specifically, we combine

both parts of the VGG16 network and place pretrained autoencoder at the splitting point.

Similarly to the first step, we train the network with cross-entropy loss, SGD optimizer with

learning rate of 0.0001 and the other parameters unchanged.

4.3 Results

In this section we evaluate the performance of the proposed approach and compare it with

other schemes in the literature.
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Figure 4.3: Required channel bandwidth as a function of the number of on-device computations
to guarantee an accuracy level within 2% of the classification baseline.

4.3.1 Experimental setup

In order to evaluate the accuracy of the proposed method, we employ popular CIFAR100

dataset, which consists of 60000 RGB images divided into 100 different classes (e.g., bicycle,

fox, oranges, etc.) [23]. Each class is represented evenly by 600 images of size 32×32 pixels, 500

for training and 100 for testing. During training, we first perform common data augmentation

steps, namely we apply 4 pixel zero-padding at each side of an image and randomly crop

32 × 32 pixel tiles. Moreover, we randomly flip images horizontally with a probability of 50%

and normalize them to have zero mean and unit variance. After such preprocessing, we perform

multiple training runs of the proposed system, according to the strategy in Section 4.2.4 for

different values of channel SNR, pruning ratios, network splits, and channel bandwidths, and

evaluate the corresponding classification accuracy and required number of computations. In

order to calculate the computational complexity of our approach, we count the number of

FLOPs necessary to perform a single forward pass of the layers executed at the edge device

(pruned shallow sub-network and the encoder).



4.3. Results 83

10 5 0 5 10 15
Channel SNR [dB]

0.40

0.45

0.50

0.55

0.60

0.65

0.70

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Baseline (w/o channel)
0% - 99.3×106 FLOPs
50% - 25.6×106 FLOPs
80% - 5.1×106 FLOPs
85% - 2.5×106 FLOPs
90% - 1.4×106 FLOPs

(a) 𝐵 = 2048, splitting after pooling 2

10 5 0 5 10 15
Channel SNR [dB]

0.40

0.45

0.50

0.55

0.60

0.65

0.70

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Baseline (w/o channel)
0% - 286.7×106 FLOPs
50% - 81.5×106 FLOPs
75% - 22.3×106 FLOPs
85% - 8.9×106 FLOPs
90% - 4.3×106 FLOPs

(b) 𝐵 = 128, splitting after pooling 4

Figure 4.4: Classification accuracy as a function of the channel SNR for different pruning ratios
and channel bandwidth fixed to 𝐵.

4.3.2 Channel bandwidth and on-device computation

In this section we select the models that minimize the channel bandwidth, which we define

as the number of real symbols transmitted per image, and maximize the pruning ratio (which

results in the minimal on-device computation), under a channel SNR of 14.5dB, allowing for a

maximum drop of 2% in the classification accuracy compared to the baseline. Results in Fig. 4.3

clearly show that our proposed approach beats both the JSCC-based BottleNet++ [63] and the

digital communication based BottleNet [125] schemes by a large margin. The proposed scheme

requires only 4×106 FLOPs to achieve approximately 3× bandwidth reduction compared to the

baseline, which we define as transmitting the original PNG image and performing classification

on the edge server without any processing at the edge device.

Another superiority of our approach is that achieving 64× bandwidth reduction (from 512

symbols to 8 symbols) after the last pooling in VGG16 network is possible with only 156× 106

FLOPs, which is only half of the operations necessary to run a single forward pass of the

unpruned network. More importantly, given 156 × 106 FLOPs limitation, which is the number

of operations that can be performed on a single Apple Watch device within 0.05𝑠, we achieve

1024× bandwidth reduction compared to [63].
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Figure 4.5: Classification accuracy as a function of the channel SNR for different channel
bandwidths. Splitting after pooling 2 with a pruning ratio of 0.5 (24.3 × 106 FLOPs).

4.3.3 Comparison between different pruning ratios

In this section we evaluate the influence of different pruning ratios on classification accuracy

under different channel SNRs for fixed splitting points and available channel bandwidths (Fig.

4.4a and Fig. 4.4b).

It is clear, that pruning leads to a drop in accuracy, as expected. Nevertheless, given reasonable

pruning ratios of up to 50%, accuracy drop decreases as we approach very low values of channel

SNR. This behaviour may stem from the fact that feature distortion caused by network pruning

becomes less significant when the channel is very noisy. Another important observation is that

very high pruning ratios do not seem to reduce nor improve the robustness of the communication

scheme - the accuracy drop caused by reducing the channel SNR follows a similar trend for

every pruning ratio considered in this experiment.
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4.3.4 Comparison between different channel bandwidths

In our last experiment, we fix the pruning ratio and the splitting point and examine the in-

fluence of the available bandwidth on the classification accuracy under different channel SNR

values (Fig. 4.5). One can clearly see that the available bandwidth is a crucial factor in the

performance. In our experiments, reducing the bandwidth produced similar results for high

SNR values. Nevertheless, the more limited the available bandwidth is, the sharper the drop

in the accuracy with channel SNR.

4.3.5 Selecting the optimal splitting point

As demonstrated by the results, the selection of the optimal splitting point is a challenging

and multi-dimensional problem. It is necessary to consider factors such as desired classification

performance, the channel quality, available bandwidth, as well as the computational power of

the edge device. For example, given the strict performance bounds in Fig. 4.3, where each

point of the JSCC + Pruning curve corresponds to pruning layers up to pooling 1, 2, 3, 3

(higher pruning rate), 4, and 5, respectively, it is shown that changing the splitting point

towards the end of the network decreases the bandwidth needed to send the information, but

increases the required on-device computations, as more layers have to be processed by the edge

device. Moreover, lowering the accuracy of the classification task allows to further reduce the

computational requirements, or gain more robustness against channel noise.

4.4 Conclusions

We studied joint device-edge inference considering an edge device with limited computational

resources, and a wireless channel to the network edge. In particular, we considered image

classification over a power and bandwidth limited edge device. We proposed pruning of the

baseline taking into account the noise introduced over the channel, under a constraint on the

available bandwidth. Our approach achieves superior results in classification accuracy even
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with extremely limited computational and communication resources.

We note, that in the presence of extremely adverse channel conditions, the quality of the

intermediate feature maps delivered to the edge server may be insufficient for a successful

classification. The next chapter explores the possibility of obtaining class predictions locally

on the edge device through the application of an early exit mechanism. Such a mechanism can

be utilized in case of extremely bad channel conditions, or in case the input samples are easy

enough to classify locally, without the need for utilizing the full capabilities of a DNN applied

to the task.



Chapter 5

Evaluation of Early Exits for

Device-Edge Collaborative Inference

over the Wireless Edge

This chapter extends the work presented in Chapter 4 by introducing an early exit mechanism

[132, 133]. This mechanism allows to obtain a solution to a DL task early, without the need

to execute each layer of the DNN. Early exits can be implemented in the context of joint

device-edge collaborative inference systems in order to obtain a rough prediction and avoid the

transmission of the intermediate feature maps to the edge server, thus providing significant

savings of communication resources. This is different from the system studied in Chapter 4,

where the intermediate features had to be transmitted to the edge server in order to finish the

forward pass of a DNN and obtain the final predictions. We note, that the predictions obtained

early through the early exit may lead to decreased accuracy compared to utilizing the final exit

only. However, in the context of edge inference systems, it might sometimes be beneficial to

keep the prediction provided by the early exit, as the edge server might perform even worse

given highly adverse channel conditions. This chapter focuses on comparing various decision-

making (DM) mechanisms [134, 135], which, given the output of the early exit and the current

channel state information, provide a binary decision on whether to transmit the intermediate

87



88 Chapter 5. Evaluation of Early Exits for Device-Edge Collaborative Inference

feature map to the edge server or to keep the prediction provided by the early exit.

5.1 Introduction

The rise of the fifth-generation (5G) standard for broadband cellular networks drives the trans-

formation of how we understand connectivity and apply it in our everyday lives. The wide

availability of reliable wireless connectivity allows many new technologies to be delivered closer

to end users. This includes video streaming, augmented reality (AR), various Internet of Things

(IoT) applications, among others.

One of the most emerging application areas, where the users can significantly benefit from

the improved connectivity is edge machine learning (ML). The majority of edge devices are

unable to run complex ML algorithms, such as deep neural networks (DNNs), due to either

computational power or memory limitations. Currently, edge devices offload their data to a

powerful edge server through a wireless link. The edge server can then run the desired ML

algorithm on the delivered data, and return the inference result to the device.
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Figure 5.1: System model. The edge device performs a forward pass of a shallow NN. Early
exit attempts to make a prediction based on the output of NN, and passes its result to a
TD mechanism, which combines this result with the current channel state to decide whether
to transmit the output of the shallow NN to the edge server, where additional processing is
performed by a DNN to reach a more refined prediction.

Collaborative inference is a recent extension to the edge ML paradigm [136, 9]. In collaborative

inference, a complex ML algorithm is split into two parts between the edge device and the

edge server. The edge device utilizes its limited computational power to run the initial part
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of the algorithm, i.e., the first layers of the DNN, and offloads the intermediate result to

the edge server, which runs the remainder of the algorithm, and provides the final result to

the edge device. Deep neural networks are particularly suitable for collaborative inference

thanks to their sequential multi-layered structure, which provides many potential splitting

points. An important benefit of executing an initial part of the DNN on the edge device is

that DNNs trained for a specific task learn to only preserve the information essential for that

task. Therefore, each layer of a DNN reduces the amount of information contained in the

intermediate results, denoted as intermediate feature maps. As a result, executing even a few

layers of a DNN on the edge device can significantly reduce the amount of information to be

transmitted to the edge server. Such collaborative inference systems for the wireless edge have

been extensively studied in [37, 125, 63, 62, 137].

In the case of constantly changing wireless channel conditions, it may not always be the best

choice to offload the intermediate feature maps to the edge server for inference. When the chan-

nel conditions are poor, the delivered features may become too distorted to allow for successful

inference at the edge server. Moreover, certain input samples may require less processing than

others, making edge processing unnecessary. In this chapter, we study the application of early

exits in the context of wireless collaborative inference at the edge. The idea of early exits, ini-

tially proposed in [133], is to attach additional outputs to a DNN, which allow obtaining earlier

predictions without the need to execute all the layers of the DNN. Originally, early exits were

proposed as a solution to vanishing gradient problems. Since then, they have been extensively

studied for efficient ML as a method for avoiding excessive computations [138, 139, 132, 140].

We note that, in the collaborative inference problem, early exits can allow the edge device to

obtain an inference result locally, without the need to transmit the intermediate features to the

edge server, which has been noticed in [141], while [142] introduced a scheme for dynamic early

exiting based on classification confidence thresholds. The benefits of such an approach are com-

munication savings, reduced computations at the edge server, and better inference performance

in the presence of a low channel quality between the device and the edge server.

We consider a collaborative inference system (see Fig. 5.1), where an edge device can decide

whether it should rely on its own inference following an early exit, or transmit the obtained
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features to the edge server. Optimizing such a decision policy is challenging as it has to rely

solely on the information available at the edge device, i.e., the available features and channel

state information (CSI), and with the lowest possible computational cost. We propose an au-

tomated mechanism for making this decision, based on a lightweight neural network, which

analyzes the data available from the early exit combined with the CSI. To the best of our

knowledge, this is the first work to analyze early exits in the context of wireless edge collabo-

rative inference systems, and one of the first (similar NNs for accepting early exit output were

proposed in [134, 135] in the context of efficient DNN inference) to study a DL-based decision

mechanism for accepting early exit inference results. We provide a systematic comparison of

such mechanisms.

5.2 Methods

5.2.1 System model

The collaborative inference system studied in this chapter consists of a DNN for image clas-

sification, which is split into two parts (see Fig. 5.1). The first part is deployed at the edge

device, and the second at the edge server. The intermediate features produced by the first part

of the DNN are compressed by a joint source-channel coding (JSCC) encoder neural network,

which maps the intermediate features directly into channel input symbols, and follows the ar-

chitecture proposed in [37]. These symbols are then transmitted through a wireless channel to

the edge server, where they are reconstructed by a JSCC decoder neural network and further

processed by the remaining part of the image classification DNN. Early exit layers 𝐹𝑒 are added

at the splitting point of the DNN, in order to obtain early predictions for the underlying task.

We note, that obtaining correct prediction through early exit allows the edge device to avoid

transmitting intermediate features to the receiver, thus saving communication resources. We

introduce a transmission-decision (TD) mechanism for obtaining a decision on whether the edge

device should stop at the early exit prediction, or transmit the intermediate features to the edge

server for further processing. The goal of a TD mechanism is to maximize the classification
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accuracy as well as communication savings, defined as a fraction of images classified at the

edge device by the early exit, without transmitting the intermediate feature maps to the edge

server for further processing. For example, transmission savings of 0.4 indicate that 40% of

images were classified locally, while the remaining 60% required transmitting features to the

edge server. Alongside several simple TD mechanisms, we design a transmission-decision NN

(TD NN) to learn the correct decision policy based on the output of the early exit and the

channel state information. We note that this problem is multi-faceted, as one has to consider

not only the expected performances of early and final exits, but also the cost of transmitting the

intermediate features, as well as their quality at the receiver, given the instantaneous quality

of the wireless channel between the edge device and the edge server.

5.2.2 Channel model

We consider additive white Gaussian noise (AWGN) channel between the edge device and the

edge server, modeled as y = x + z, where x ∈ R𝐵 is the channel input vector and z is the

additive noise vector with each component independently drawn from the zero-mean Gaussian

distribution with variance 𝜎2. Here, 𝐵 denotes the available channel bandwidth to transmit

the intermediate features to the edge server. An average power constraint is imposed such that

𝑃 = 1
𝐵

∑𝐵
𝑖=1 𝑥

2
𝑖
≤ 1; thus, the channel signal-to-noise ratio (SNR) can be calculated as SNR = 𝑃

𝜎2 .

5.2.3 Training strategy

The training strategy applied to train each part of the proposed system is as follows. In the first

step, we initialize the DNN and the early exit layers. The DNN is trained with the sum of the

cross-entropy losses between the ground truth classification labels and the predictions of both

early exit 𝐹𝑒 at the edge and final exit 𝐹 𝑓 at the server. Please note that splitting of the DNN is

not yet performed at this step, as we pre-train the entire DNN for the image classification task

first. In the second step, we split the DNN, and introduce a JSCC autoencoder to communicate

over the wireless channel model at the splitting point. We then train the resulting architecture
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by first freezing the image classification DNN and training only the JSCC autoencoder. Once

the JSCC autoencoder converges, we unfreeze the DNN and train the whole architecture end-

to-end with the same loss function as in the previous step. Finally, we introduce the TD NN

and train it until convergence with each of the strategies detailed in Section 5.2.4. Alongside

the TD NN, we study alternative TD mechanisms, which do not require training.

5.2.4 Transmission-decision neural network (TD NN)

The TD NN 𝐷 : R𝑛 −→ [0, 1], where 𝑛 is the number of features input to the TD NN. This

number may vary based on the selection of the TD NN inputs, which may include outputs

of the early exit, statistics of these outputs, or channel SNR. The choice of these inputs is

analyzed in Section 5.3.3. TD NN is trained to make a decision on whether the edge device

should transmit the intermediate features to the edge server for further processing, or output

the prediction made by the early exit. Overall, defining a proper training criterion for the TD

NN is a non-trivial task. On one hand, the goal is to maximize the classification accuracy;

on the other hand, the system should also minimize the communication costs, that is, should

transmit only when the expected performance gain given by the final exit is sufficiently large.

To account for all these criteria, we consider multiple training objectives for the TD NN and

carefully study their impact on the final performance in terms of the trade-off between accuracy

and communication savings. The final decision on whether to transmit the features or keep the

early exit predictions should be a binary choice; therefore, during inference, we apply rounding

operation to the TD NN outputs. The architecture of the TD NN is relatively simple, consisting

of 3 fully-connected (FC) layers with ReLU activations and 256-dimensional hidden features,

as shown in Fig. 5.2.

Joint early-final cross-entropy criterion. The first training criterion we consider uses the

weighted combination of the predictions made by the early exit and the final exits of the DNN,

where the TD NN output is used as the weights. Given the decision network outputs 𝐷 (𝑥), the

early exit outputs 𝐹𝑒 (𝑥), and the final exit outputs 𝐹 𝑓 (𝑥), we define the joint early-final exit
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Figure 5.2: The architecture of the TD NN. The DNN considers the outputs of the early exit and
the CSI to obtain the decision on whether to accept the early exit predictions or transmit the
intermediate feature maps to the edge server for further processing. The numbers in parenthesis
indicate the number of input and output features for each FC layer.

prediction as follows:

𝐹 (𝑥) ≜ 𝐷 (𝑥) · 𝐹𝑒 (𝑥) + (1 − 𝐷 (𝑥)) · 𝐹 𝑓 (𝑥), (5.1)

where 𝑥 is the input sample. Then, the loss function is given by:

𝐿 𝑗𝑜𝑖𝑛𝑡 = 𝐿𝑐𝑒 (𝐹 (𝑥), 𝑦𝑔𝑡) + 𝛽 · |1 − 𝐷 (𝑥) |, (5.2)

where 𝐿𝑐𝑒 is the cross-entropy loss, 𝑦𝑔𝑡 is the classification ground truth one-hot vector for

the input sample 𝑥, and 𝛽 is a weighting parameter used to balance the accuracy with the

communication cost. Note that, in (5.2), the first term is responsible for the accuracy of the

joint early-final exit prediction, while the second is a penalty term that is aimed at prioritizing

early exit and avoiding transmission.

We note that the decision is a binary choice, i.e., 𝐷 (𝑥) : R𝑛 −→ {0, 1}, while the outputs of the

TD NN can be any value between 0 and 1. Therefore, during the training we calculate the

decision as 𝐷 (𝑥) = 1

1+𝑒−𝑇 ·�̂� (𝑥 )
, where �̂� (𝑥) are the raw outputs of the TD NNs, and 𝑇 is the

temperature parameter used to push the decisions away from ambiguous values close to 0.5.

Binary cross-entropy criterion. The second criterion used for training TD NN is based

on the assumption that the optimal decision is to transmit intermediate features only when

the early exit prediction is likely to be incorrect, while the final exit prediction is likely to

be correct. Based on this assumption, we generate a set of ground truth decisions 𝑑𝑔𝑡 , such

that 𝑑𝑔𝑡 = 1 if and only if the early exit is incorrect and the final exit is correct, and 𝑑𝑔𝑡 = 0
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otherwise. We then train the TD NN with the following loss function:

𝐿𝑔𝑡 = 𝐿𝑏𝑐𝑒 (𝐷 (𝑥), 𝑑𝑔𝑡) + 𝛽 · |1 − 𝐷 (𝑥) |, (5.3)

where 𝐿𝑏𝑐𝑒 is the binary cross-entropy function, and the second term is for penalizing excessive

transmissions as before.

Mixed criterion. The final criterion we use to train the TD NN is a mixed approach. It

includes a combination of the two aforementioned criteria to obtain the following loss function:

𝐿𝑚𝑖𝑥𝑒𝑑 = 𝐿𝑐𝑒 (𝐹 (𝑥), 𝑦𝑔𝑡) + 𝛼𝐿𝑏𝑐𝑒 (𝐷 (𝑥), 𝑑𝑔𝑡) + 𝛽 · |1 − 𝐷 (𝑥) |. (5.4)

5.3 Results

5.3.1 Experimental setup

We evaluate the proposed approach on the CIFAR100 dataset [23], which consists of 60000

images of 100 distinct classes. Each class is represented with 500 samples in the training set

and 100 samples in the test set. We employ the VGG16 architecture [27]. To avoid excessive

computations on the edge device, the early exit consists of an average pooling operation, a

FC layer with ReLU activation, followed by another FC layer with softmax activation, which

outputs 100 class predictions.

The training of the DNN follows the strategy presented in Section 5.2.3. We utilize the stochas-

tic gradient descent (SGD) optimizer with a batch size of 128, and run 90, 30, and 30 epochs

for each training step, respectively. In the first training step, we set the learning rate to 0.1,

and decay it by a factor of 10 every 30 epochs. In the second and third training steps, we

also start from a learning rate of 0.1, but the decay occurs every 10 epochs. At each training

iteration, starting from the second training step, we set the channel bandwidth 𝐵 to 64 channel

uses and determine the channel SNR according to the “sandwich rule” [143], that is, we set



5.3. Results 95

SNR = −10 dB in the first iteration, SNR = 10 dB in the second iteration, and, in the third iter-

ation, SNR = U(−10 dB, 10 dB), where U(·, ·) represents the uniform distribution. This cycle

is then repeated throughout the whole training. This ensures that the system learns to handle

diverse channel conditions by training a single set of DNNs exposed to a large SNR variability

throughout training. An alternative approach would be to train a separate set of DNNs for

each channel SNR, which imposes a significant memory overhead and is not considered in this

chapter. For the experiments presented in this section, we placed the splitting point after the

third pooling layer of the VGG16 architecture.

TD mechanisms. In addition to NN-based approaches explained in Section 5.2.4, we consider

the following alternatives:

• We define the confidence of the early exit classifier as the maximum value within the

softmax output of the classifier. We transmit the features to the edge server only if the

confidence is lower than a predefined threshold. We denote this approach as Confidence

threshold. This mechanism is closely related to the method proposed in [142], which also

utilizes confidence thresholds for making the decision.

• We first calculate the entropy of the softmax output of the classifier as:

𝐻 (𝑥) = −𝐹𝑒 (𝑥) • log2(𝐹𝑒 (𝑥)), (5.5)

where • indicates the dot product operation. We then define an entropy threshold and

transmit only if the entropy for a given sample is lower than the threshold. A similar

criterion has been utilized in [138]. We denote this approach as Entropy threshold.

• We first use the training split of the dataset to calculate the average expected accuracy

and communication savings for each class under different confidence thresholds, as de-

fined above, and multiple values of SNR. During inference, we find the set of per-class

thresholds that maximizes the objective criterion defined as a weighted sum of expected

accuracy and communication savings. We denote this approach as Per-class confidence

threshold.



96 Chapter 5. Evaluation of Early Exits for Device-Edge Collaborative Inference

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

SNR [dB]

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

u
ra

cy GT decision

Mixed criterion NN

CE criterion NN

BCE criterion NN

Per-class confidence threshold

Confidence threshold

Entropy threshold

Random decision

Early exit (savings=1.0)

Final exit (savings=0.0)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
av

in
gs

Figure 5.3: Comparison of the accuracy (solid lines) achieved by different models for comparable
communication savings (dotted lines) as a function of channel SNR.

• Early exit, which corresponds to a scheme, where the features are never transmitted to the

edge server, and only the predictions made by the early exit are utilized. This corresponds

to a case, where 𝐷 (𝑥) = 1. The opposite of this scheme is Final exit, which assumes the

features are always transmitted to the edge server, and only the predictions made by the

final exit are considered, which corresponds to 𝐷 (𝑥) = 0.

• Random decision, where the transmission of each sample is decided randomly using a

uniform distribution.

5.3.2 Performance comparison

In this section, we compare the classification accuracy achieved by the TD methods described

in Section 5.3.1 and the TD NN trained with each of the strategies described in Section 5.2.4.

In Fig. 5.3, we plot the accuracy achieved by each of the methods as a function of the channel

SNR. We tune the hyperparameters of each method to achieve similar communication savings

for a given SNR. The Mixed criterion NN approach, which is based on a TD NN trained with

the loss function in Eq. (5.4), for 𝛼 = 0.1, slightly outperforms other approaches, most of which
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Figure 5.4: Comparison of the accuracy (solid lines) achieved by different models for fixed
channel SNR = 0 dB as a function of communication savings.

achieve similar results (which will be further analyzed in Section 5.3.3), and the entropy thresh-

old approach performs slightly worse than the confidence-based approaches. More importantly,

significant communication savings (almost 45% for SNR = 0 dB) can be achieved by applying

the majority of TD mechanisms studied in this chapter. We note that proper utilization of these

mechanisms leads to achieving better or on-par performance compared to using only early exit

or final exit, which validates the need for implementing dynamic early exiting mechanisms in

the context of edge collaborative inference systems. Another observation is that the random

decision, as expected, achieved significantly lower accuracy than the other approaches. The

GT decision approach, which refers to the ground truth, and only transmits when the early

exit is incorrect and the final exit is correct, serves as an upper bound. It consistently allows

more than 85% savings at an accuracy significantly higher than the other approaches. One can

observe that savings decrease as the SNR increases since less noise leads to better accuracy at

the final exit, making it more beneficial to transmit the intermediate features to the edge server.

The TD mechanisms studied in this work can take that information into consideration, and

produce decisions that can accurately assess whether additional processing at the edge server

is required.
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Figure 5.5: Average per-class confidences of the early exit predictions for the correct and
incorrect predictions for all the classes in the CIFAR100 dataset. In general, the confidences
are higher for the correct predictions; however, the gap may differ significantly between classes.

In Fig. 5.4 we first fixed SNR to 0 dB and varied the hyperparameters of each of the methods

to achieve different values of communication savings. Again, slightly improved accuracy was

achieved by Mixed criterion NN, closely followed by CE criterion NN, where the TD NN was

trained with the loss function defined in Eq. (5.2). The other methods achieved similar accuracy

for comparable communication savings levels. Early exit and Final exit are visualized as dotted

lines on the figure (Early exit savings are always equal to 1.0). We can see that at savings of

approximately 0.4, the Mixed scheme is able to outperform Final exit by 0.6% in accuracy,

which proves that avoiding the transmission and utilizing a less powerful early exit can bring

communication savings and provide better quality predictions. Another important observation

is the fact that the Mixed approach NN is effectively a combination of the CE criterion NN

and BCE criterion NN approaches, yet it outperforms both of them. We hypothesize that

the reason for this behavior is that the CE criterion NN effectively learns to put more weight

on the output that is more likely to produce the correct prediction in given circumstances.

A small addition of the binary cross-entropy term from the BCE criterion NN further avoids

transmission when both early and final exits are not likely to produce a correct prediction. This

leads to further communication savings without imposing any accuracy loss.
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Figure 5.6: Comparison of the accuracy (solid line) and savings (dotted line) of the methods
based on early exit predictions confidence. Hyperparameters of each method were tuned to
provide comparable savings at each SNR.

5.3.3 Ablation study

Confidence analysis. In this section we analyze the distribution of the per-class confidences

of the early exit outputs separately for the correct and incorrect predictions (please see Fig.

5.5). We note that the confidences of the correct predictions are generally higher than the

confidences of the false predictions, yet the exact ratio between the two may vary significantly

from as high as 2 : 1 to 1 : 1 for different classes. This leads to the conclusion that information

about the classes has to be taken into consideration when making the decision. Surprisingly,

when analyzing Fig. 5.3, one can quickly notice, that the Per-class confidence threshold and

Confidence threshold schemes exhibit significant overlap, despite the latter utilizing only a

single threshold value for all the classes. The reason for that behavior will be analyzed next.

Performance of the confidence threshold methods. In Fig. 5.6 we compare the accuracy

achieved by various confidence-based threshold methods for different values of channel SNR and

comparable savings. We note that the accuracy of the method that sets separate thresholds for

each class, based on the training set performance, is similar to that achieved by the method that

applies a single threshold to all the classes. To further investigate the reason for this behavior,
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Figure 5.7: Comparison of the accuracy (solid line) and savings (dotted line) of the Mixed
criterion NN, given different inputs to the TD NN, as a function of SNR. Hyperparameters
of each method were tuned to provide comparable savings for each SNR. Early exit class
probabilities (CP), confidences (C), entropy (E) of the class predictions, and SNR were used
as inputs. The best-performing combination includes all of the inputs.

we obtained a new set of per-class confidence thresholds. As opposed to the original method,

the new thresholds were found based on the test set of the CIFAR100 dataset (indicated as test

set in the label). We further noted that the class with the highest softmax score assigned by the

early exit is not necessarily the correct one. Therefore, for the sake of comparison, we consider

another scheme, which selects the proper per-class threshold based on the ground truth label.

This ensures the correct per-class threshold is selected each time during inference. We see that

only in the case of utilizing the test set to calculate the thresholds and ground truth labels

to select the correct threshold during inference, the per-class confidence method was able to

achieve improvement over the single threshold method. This indicates that using the training

set to find optimal thresholds, as well as the error incurred by selecting thresholds based on the

most confident class may mislead the TD mechanism and cause a significant accuracy drop of

the per-class confidence threshold method.

Optimal TD NN inputs. The above analysis (Fig. 5.5) about the necessity of considering the

entire distribution of class predictions rather than some high-level statistical information about
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Table 5.1: Complexity of the TD NN compared to the other parts of the DNN.

Model Complexity

TD NN 0.094 MFLOPs
Early exit classifier head 0.025 MFLOPs
DNN part at the edge device 97.990 MFLOPs
Full DNN 320.717 MFLOPs

it has been experimentally validated. In Fig. 5.7 we show the comparison of the accuracy

of the models, where the TD NN was employed and trained with the Mixed criterion. The

architecture of the TD NN and other hyperparameters remain unchanged, and we only modify

the inputs to the network to find their impact on the accuracy. We see from the results that

providing only the channel SNR and the class probability (CP) distribution of the early exit is

not sufficient to achieve satisfactory performance. The behavior is similar if we consider SNR

and the statistics that summarize the CP distribution, including confidence (C) and entropy

(E). The best result is achieved by combining all the inputs, i.e., CP distribution, C, E, and

SNR. We note that the information about the entropy and the confidence is already implicitly

included in the CP distribution, but we hypothesize, that the TD NN operates best when both

high- and low-level information is provided to it as input.

Complexity analysis. In Table 5.1 we compare the complexity of the TD NN to the other

parts of the DNN. We note that in the scenario studied in this chapter, i.e., for VGG16 DNN

with a partitioning point selected after the third average pooling operation, the complexity of

TD NN is small. When we compare the complexity of the part of the DNN deployed at the

edge device with the complexity of the TD NN, we can see that the latter is responsible for

approximately 0.01% of the floating-point operations (FLOPs) performed at the edge device.

We further argue, that the computational burden of 94000 FLOPs imposed by the TD NN, is

acceptable given the modern hardware standards.
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5.4 Conclusions

In this chapter, we presented an early exit mechanism for collaborative inference systems de-

ployed at the wireless edge, where an image classification DNN is split into two parts and

deployed between the edge device and the edge server. We introduced a TD NN, which utilizes

the information provided by the early exit mechanism and the channel state to make a binary

decision indicating whether the early exit output should be accepted, or the data should be

offloaded to the edge server for further processing. We showed that, through careful design of

the TD mechanism, either learnable or not, it is possible to achieve significant communication

savings, while also outperforming strategies based on utilizing only early exit or final exit, yet

the differences between the accuracy achieved by various TD mechanisms are not significant.

Through further experimentation, we also illustrated that the entire early exit output distribu-

tion, combined with summarizing statistics should be used as an input to the TD mechanism

in order to achieve satisfactory performance.

The systems studied in this chapter and chapters 3 and 4 assume uploading the features from

edge devices to edge servers for obtaining the results of image classification or image retrieval

task. We note, however, that the wireless uplink channels are usually significantly more con-

strained than the downlink channels. Moreover, transmitting users’ data to a centralized entity

for processing induces privacy constraints. Therefore, in the next chapter, we consider a sce-

nario, where a DNN trained for a specific task requested by the user is transmitted from the

edge server to the edge device, and the user can utilize the trained network locally on their own

data, without incurring any privacy risks.



Chapter 6

Neural Network Transmission over the

Air

This chapter considers the problem of transmitting deep neural network (DNNs) parameters

over wireless channels [38, 144, 145]. We note, that chapters 3, 4, and 5 mainly focused on the

uplink transmission from the edge device to the edge server. However, in practice, such uplink

channels are heavily constrained, therefore it is usually a preferred choice to utilize the downlink

connection instead [146]. As opposed to the previous chapters, here we do not consider trans-

mitting intermediate features obtained from the DNNs. Instead, we focus on transmitting the

parameters of a DNN to an edge device, which can use the DNN to perform inference on its own

data. The proposed scheme maps the DNN parameters directly into channel input symbols.

The delivered parameters are not the perfect reconstruction of the original DNN parameters,

therefore, the proposed approach first trains the DNN such that it is robust to channel im-

perfections expected during the transmission. This includes exploiting methods such as noise

injection [147] and knowledge distillation [148]. To further improve the protection of the most

significant DNN parameters, the unequal error protection scheme is proposed, which first com-

presses the parameters and then expands their size with Shannon-Kotelnikov mappings [149],

depending on their importance measured by Hessian-based characteristics [150]. Finally, to

achieve better SNR adaptivity, an interpolation scheme is implemented by collectively training

103
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a family of DNNs [151], each targeting a single SNR. The performance of all the proposed

schemes is extensively evaluated in the experimental section.

6.1 Introduction

In recent years, deep learning (DL) has been shown to provide very promising solutions to

many practical tasks within computer vision, natural language processing, robotics, autonomous

driving, communications, and other fields. Developments within the area of DL have been made

possible mainly thanks to the rapid growth of the computational power and memory available

for both the researchers and the potential users of various DL-based algorithms. This resulted

in the development of increasingly complex deep neural networks (DNNs) with millions and

even billions of parameters trained on massive datasets, achieving impressive accuracy and

performance in a wide variety of applications. On the other hand, the memory required to

store a single modern DNN model can easily go from a few megabytes up to hundreds of

gigabytes.

We typically evaluate the performance of a DNN architecture with the accuracy it achieves on

new samples. This assumes the availability of the model at the end user. However, given the

increasing prominence of DNNs employed for a large number and variety of tasks, we cannot

expect every user to have all possible DNN parameters always available locally. Moreover, even

a locally available model may need to be updated occasionally, either because the model at

the server has been improved in the meantime through further training, or the task at hand

has changed, e.g., due to variations in the statistics or size of the samples, or the system

requirements. An alternative may be for the user to send its data samples to an edge server,

where an up-to-date model is available for inference [125, 63, 37, 58]. However, in many

scenarios, the user may not want to send its data due to privacy constraints. Also, the user

may want to infer many samples, which may create increased traffic. Moreover, the uplink

capacity may be limited compared to the downlink. In such scenarios, a reasonable solution is

to transmit the DNN parameters to the user over the network, rather than the user sending
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Figure 6.1: System model. In AirNet, DNN is transmitted over a wireless channel in an uncoded
fashion, and it employs various training techniques aimed at bandwidth reduction and enabling
robustness against channel noise.

the data samples to the edge server. However, given the growing size of modern DNNs, and

stringent latency requirements of edge intelligence applications, the transmission of the DNN

parameters to an edge user may be infeasible. This problem can be further amplified in the

future by the adoption of very specialized DNNs, that either solve very specific tasks adapted

to a specific geographic location, or are frequently updated due to the non-stationarity of the

underlying tasks. In such scenarios, it is necessary to develop methods, which allow for fast

and reliable delivery of DNN parameters over the wireless channel.

A fundamental ambition of the sixth generation (6G) of mobile wireless networks will be to

enable seamless and ambient edge intelligence. Therefore, it is expected that the efficient

storage and delivery of DNN parameters will constitute a significant amount of traffic. Indeed,

model distribution and sharing for machine learning applications at the edge is already being

considered by 3GPP as part of the next generation of mobile networks [152]. Our goal in this

chapter is to develop efficient DNN delivery techniques at the wireless network edge, such that

the highest performance can be achieved by the user despite wireless channel imperfections.

We consider the system model illustrated in Fig. 6.1, where an edge server, e.g., a base station

(BS), should enable an edge device, e.g., a mobile phone, an autonomous car, a drone, a medical

device, to carry out inference on local data samples. We impose a strict latency constraint as
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well as the usual resource constraints on the wireless channel between the server and device.

The edge device reconstructs a local model to be used for inference on local samples.

Consider, for example, vision- or LIDAR-aided channel estimation or beam selection, where

an autonomous car aims at establishing a high-rate millimeter wave connection with a BS in

the non-line-of-sight setting, based on the input from its cameras or LIDAR sensors [153, 154].

The best approach would be to provide the car with a DNN, optimized specifically for the

coverage area of the particular BS. However, we cannot expect each car to store DNNs trained

for every possible cell area that it may go through. Instead, it is much more reasonable to

assume that locally-optimized DNNs would be delivered to vehicles as they move around,

and come into a coverage area of a particular cell. Another important application of model

delivery is federated/distributed learning over wireless channels [9, 155]. In such problems,

a locally trained/updated model is shared with a parameter server or neighboring devices at

each iteration of the training process, and highly efficient delivery is essential considering that

training a large DNN model can require thousands of iterations. The same would hold for

many other DNN-aided edge applications that may require localized optimization of DNN

parameters, e.g., various localization services. On the other hand, sending even a relatively

simple VGG16 [27] network requires transmission of roughly 15 × 106 32-bit floating-point

parameters. Assuming a standard LTE connection at a channel signal-to-noise ratio (SNR)

of 5dB, and capacity-achieving channel codes, such a transmission would require roughly 30

seconds to complete, which is unacceptable for most time-sensitive edge applications.

In this work, we consider two fundamental approaches to this problem [38]. As in most wireless

lossy source delivery problems, the two approaches follow the separation approach and the

joint source-channel coding (JSCC) approach, respectively. In the separation-based approach,

we train a model of a certain size, whose parameters are then transmitted over the channel

using an error correction code to provide reliability in the presence of noise and fading. We can

either train a sufficiently small-size network that can be delivered over the channel, or a pre-

trained network can be compressed to be reduced to the required size. In the alternative JSCC

approach, the parameters of the network are transmitted directly over the channel. In the latter

approach, called AirNet, the training is carried out taking into account the effect of channel
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imperfections. We remark that, in both approaches, we assume the availability of the data at

the edge server, which allows to optimize the DNN in terms of accuracy, size, and robustness.

The problem we face can be treated as a lossy source delivery problem over a wireless channel;

more specifically a remote source delivery problem, where the goal is to deliver the underlying

true inference function, i.e., the model, to the edge user. But, the edge server does not have

access to the true model, and it can only estimate it through its local dataset.

Our major contributions can be summarized as follows:

• We introduce a novel communication problem that requires the delivery of machine learn-

ing models over wireless links under strict bandwidth and transmission power constraints

for reliable inference at the receiver.

• We propose a novel JSCC approach to this problem, called AirNet, that can achieve

reliable edge inference at very low channel SNR and bandwidth, and is robust to channel

variations, as opposed to separation-based techniques, which break down abruptly when

the channel SNR cannot support the adopted channel code rate.

• We use network pruning to meet the channel bandwidth constraint, and knowledge dis-

tillation (KD) to increase the accuracy of inference at the receiver. To further increase

AirNet’s robustness to adverse wireless channel conditions, we employ noise injection

during training and carefully study its effect on performance.

• In order to provide unequal error protection (UEP) to different network layers, we employ

bandwidth expansion; that is, we prune the network to a size smaller than the available

bandwidth, and expand some of the layers to provide extra protection against channel

noise. We choose the layers to be expanded by their sensitivity, measured through the

Hessian matrix. We show that UEP through bandwidth expansion provides significant

gains in terms of the final accuracy at the receiver.

• Above algorithms are trained for a specific channel SNR to obtain the best accuracy.

This would require training and storing a different set of network parameters for different

channel conditions, which is not practical. To resolve this critical limitation, we propose
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an ensemble learning approach, where we obtain a spectrum of networks simultaneously

for a whole range of channel SNRs.

• We present extensive evaluations of AirNet, including different datasets, channel mod-

els, training and pruning strategies, channel conditions, and power allocation methods.

We show that the proposed AirNet architecture and training strategies achieve superior

accuracy compared to separation-based methods, which employ DNN compression fol-

lowed by separate channel coding. AirNet allows for a significant reduction in bandwidth

requirements while sustaining satisfactory levels of accuracy for the delivered DNNs.

The remainder of this chapter is organized as follows. We present relevant works on DNN

compression and JSCC literature in Section 6.2. In Section 6.3, we present our system model,

followed by the introduction of the AirNet architecture in Section 6.4 with all the details

regarding training, pruning, and noise injection methods used. Section 6.5 presents bandwidth

expansion methods, alongside an UEP scheme, and Section 6.6 introduces an ensemble learning

scheme, which trains a spectrum of networks aimed at different values of channels SNRs. This

is followed by Section 6.7, which evaluates AirNet on various datasets, channel conditions and

choices of training parameters. Finally, Section 6.8 concludes the chapter.

6.2 Related Work

6.2.1 Network quantization

Alongside pruning, which has been described in detail in Chapter 2, another method of reducing

the complexity of DNNs is quantization. Instead of using a full, 32-bit precision for storing

the network weights and activations, low-bit precision can be used, resulting in significant

gains in terms of both the computations and the memory footprint. Many works have studied

network quantization in recent years [156, 157, 150, 158, 159, 160, 161]. These works study

different aspects of quantization, e.g., evaluation of the sensitivity of the DNN parameters,

training strategies that benefit quantization, etc. Authors of [150] estimate the statistics of the
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Hessian matrix corresponding to each layer of the network, in order to derive a layer-dependent

sensitivity metric for a mixed-precision quantization process. In the DeepCABAC method

[144], quantized DNN parameters are further compressed by utilizing context-adaptive binary

arithmetic coding.

Analog storage of network parameters is studied in [162], where the authors also consider

applying channel noise to DNN parameters during training, pruning, and KD. We note that

despite some techniques can be effectively used for both analog storage and wireless transmission

of DNNs parameters, there are many differences. The fundamental difference between these two

applications is that for analog storage, the channel noise variance does not change with time,

but rather with the magnitude of the stored value. For wireless transmission, however, we have

to ensure that the network adapts well to a variety of channel SNRs. To this end, our approach

requires either storage of multiple DNNs, each trained for a specific value of channel SNR,

or a training method, which ensures that the network can adapt to various SNRs. Another

novelty of our work is that we take into consideration the sensitivity of each layer with respect

to channel noise, and assign more channel bandwidth to the most sensitive layers.

6.3 System Model

We consider an edge server, which has access to a labeled dataset that can be used to train a

machine learning model. However, this trained model is to be employed at an edge device to

predict labels of new data samples. The edge server is capable of training a model locally, but it

is connected to the edge device through a bandwidth and power-limited noisy channel. The goal

is to minimize the performance loss, measured by the accuracy of the model at the receiver

end, due to the channel imperfections, while meeting the prescribed bandwidth and power

constraints at the transmitter. This is different from conventional channel coding problems,

which aim at minimizing the probability of error, or the conventional JSCC problems, which

minimize an additive distortion measure defined on source samples. The optimal performance of

such separation-based or JSCC approaches is usually achieved under the presence of multiple
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samples from the source distribution, which allows generating a model of a source used for

compression and reconstruction with minimal error/distortion. In our case, only a few, or a

single DNN is stored at the edge server, which cannot obtain such a source model. AirNet is

still a JSCC problem, but with an unconventional distortion measure, that requires not only

training but also delivery of a model over a noisy channel with good generalizability properties.

While the above formulation is general enough to be applied to any learning model, given their

state-of-the-art performance and large size that require significant communication resources, we

focus on DNNs. More specifically, we consider a DNN with parameters w ∈ R𝑑, trained at the

edge server. The DNN is then transmitted to the edge device over the wireless channel. The

specific channel models used in our work are described in Section 6.3.1. After the transmission,

the edge device reconstruct another network w̃ ∈ R𝑑 based on the signal it receives over the

channel. This network is then employed at the device to obtain predictions 𝑝w̃ = 𝑓w̃ (𝐼), where

𝐼 is a sample from the edge device’s local dataset, and 𝑓w̃ (·) represents the forward pass of the

DNN parameterized by the decoded weights w̃.

6.3.1 Channel model

We model the channel between the edge device and the edge server as an additive white Gaussian

noise (AWGN) channel. We consider static as well as slow fading channels. For the static

AWGN channel, we have y = x + z, where x ∈ C𝑏 is the channel input with the channel

bandwidth 𝑏, defined as the number of channel uses, y ∈ C𝑏 is the channel output, and z ∈ C𝑏

is a vector containing independent and identically distributed (i.i.d.) noise samples drawn from

circularly-symmetric complex Gaussian distribution CN(0, 𝜎2) with variance 𝜎2. An average

power constraint is imposed on the channel input, i.e., 1
𝑏

∑𝑏
𝑖=1 ∥𝑥𝑖∥

2 ≤ 𝑃. We set 𝑃 = 1 without

loss of generality, which corresponds to an SNR of SNR = 10 log10

(
1
𝜎2

)
.

In the slow fading scenario, the channel output y ∈ C𝑏 is given by y = ℎx + z, where ℎ ∼

CN(0, 𝜎2
ℎ
) is the channel gain. We assume that the channel remains constant for the duration

of a block of 𝑏 channel symbols, but takes i.i.d. values drawn from CN(0, 𝜎2
ℎ
) across different

blocks. As in the static channel scenario, we impose the average power constraint of 𝑃 = 1,
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and the average SNR is given by SNR = 10 log10

(
𝜎2
ℎ

𝜎2

)
. In all our experiments we set 𝜎ℎ to 1.

We also assume perfect channel state information (CSI) to be available at the receiver, thus,

to get rid of the multiplicative component ℎ, the receiver scales received signal y by ℎ∗

∥ℎ∥ . The

resulting signal is given by x+ ℎ∗z
∥ℎ∥2 , which is equivalent to AWGN channel with a random SNR

value. Therefore, in the case of communication over fading channels, we need to come up with a

transmission scheme that will perform well over a range of SNRs with a given average variance.

6.4 AirNet: JSCC of DNN Parameters for Reliable Edge

Inference

The conventional approach to the problem presented above would be to train a DNN of limited

size, and quantize, compress and deliver its parameters over the channel using state-of-the-art

channel codes. While we will also consider this “separation-based” approach as a baseline, our

main contribution is a JSCC approach, where the DNN parameters are directly mapped to

channel inputs. Next, we present the details of this approach.

6.4.1 Training strategy

Our performance measure is the average accuracy of the model reconstructed at the edge device

on new samples. Here, the randomness stems from not only the random and previously unseen

samples encountered at the receiver, but also from the channel noise and fading.

We first train a DNN with the data available at the edge server. In the proposed AirNet

approach, each DNN parameter will be mapped to a channel input symbol. This has two

consequences: first, the number of DNN parameters that can be delivered is limited by the

channel bandwidth 𝑏; and second, transmitted parameters are received with random noise at

the receiver. To increase network’s robustness against noise we inject a certain amount of noise

to the network’s weights during training. While we initially train a large DNN with more than

𝑏 parameters, in the second training step, we prune them by removing redundant parameters
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in order to satisfy the bandwidth constraint. Alongside pruning and noise injection, we also

apply KD to prevent accuracy drop due to pruning. We provide the details of each training

step in the rest of this section.

6.4.2 Pruning

To reduce the bandwidth required to transmit the network parameters we apply a simple

pruning strategy [97]. Pruning removes redundant parameters while maintaining satisfactory

performance, which effectively reduces the bandwidth requirement. In this work, we apply

repetitive pruning and fine-tuning steps. At each pruning iteration, we remove a fraction of

parameters that have the lowest 𝑙1-norm. In order to avoid the transmission of meta-data

containing the network’s structure after pruning, we only consider structured pruning, which

removes either entire convolutional filters or entire neurons, depending on the layer type. During

fine-tuning, we simply re-train the network to recover the performance lost due to pruning. We

additionally apply noise injection and KD to further increase robustness to channel noise and

reduce the performance loss imposed by pruning.

6.4.3 Noise injection

Noise injection has been originally proposed as a regularization method to prevent overfitting

in DNNs [147]. In this work, however, we utilize noise injection as a method to increase the

DNN’s robustness to channel noise. We hypothesize that, if the network experiences a certain

amount of noise injected to its weights during training, it will effectively learn to achieve good

performance even after its weights are transmitted over a noisy channel. At each iteration of the

training, we apply the same noise components as imposed by the channel on the current network

parameters, and calculate the loss function using these noisy network parameters. Please note

we only inject the noise during network training to mimic the channel noise experienced by the

network during the transmission.
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6.4.4 Knowledge distillation (KD)

KD has been proposed as an effective method to boost up the performance of various DNN

models trained for classification task [148]. In KD, a large DNN, called the teacher, which

achieves high accuracy in the task, distills some knowledge into a smaller DNN, called the

student. The loss function in KD is defined as a sum of two terms:

𝐿𝑡𝑜𝑡𝑎𝑙 = −𝑡2
𝑁∑︁
𝑖

𝑝𝑖 log 𝑝𝑖 −
𝑁∑︁
𝑖

𝑝𝑖 log 𝑝𝑖, where 𝑝𝑖 ≜
𝑒

𝑝𝑖
𝑡∑𝑁

𝑗 𝑒
𝑝 𝑗

𝑡

. (6.1)

In Eq. (6.1), the first term is responsible for distilling the knowledge between the teacher

and student, and the second is a standard cross-entropy loss, where 𝑝𝑖 represents the softmax

predictions of the teacher model, 𝑡 is the temperature parameter, set to 2 in all our experiments,

𝑝𝑖 denote the ground truth, and 𝑝𝑖 are the student’s predictions.

6.5 AirNet with Unequal Error Protection (UEP)

The network trained with noise injection has a certain level of robustness against channel

noise. However, the performance will degrade inevitably as the SNR decreases. Here, we first

propose trading-off the pruned network size with robustness against noise. The main idea is to

use bandwidth expansion to better protect the DNN parameters against noise. For example,

instead of pruning the network down to 𝑏 parameters, we can prune it to, say, 𝑏/2 parameters,

and use two channel symbols to transmit each network parameter. We consider two bandwidth

expansion methods: Shannon-Kotelnikov (SK) mapping [149] and simple layer repetition.

SK mapping has been successfully used in JSCC in [163], where the authors use Archimedes’

spiral as a codebook, and show its benefits for both bandwidth compression and expansion

tasks. In this work, we employ a similar approach. Specifically, we map the DNN parameters

onto Archimedes’ spirals defined as:
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Figure 6.2: Examples of Archimedes’ spirals used in this work for the SK mapping scheme.
Parameter 𝛾 controls the robustness of the DNN parameters against channel noise.

𝑥1 =
Δ

𝜋
𝑤 cos(𝛾𝑤), 𝑥2 =

Δ

𝜋
𝑤 sin(𝛾𝑤), 𝑤 ≥ 0 (6.2)

𝑥1 = −
Δ

𝜋
𝑤 cos(−𝛾𝑤 + 𝜋), 𝑥2 = −

Δ

𝜋
𝑤 sin(−𝛾𝑤 + 𝜋), 𝑤 < 0, (6.3)

where Δ is a scaling factor, which we set to 1, 𝛾 controls the length of the spirals without

changing the radius of the disc occupied by the spiral, and 𝑤 is a DNN parameter.

Spirals generated by different 𝛾 parameters are shown in Fig. 6.2. Each network parameter

𝑤 ∈ R is mapped to a point (𝑥1, 𝑥2) on the spiral. Sign of the parameter is encoded by mapping

positive-valued DNN parameters to the spiral defined by Eq. (6.2), and the negative-valued

ones to the spiral defined by Eq. (6.3). We note that parameter 𝛾 can effectively control the

length of the spirals, and the distance between the negative and positive spirals, which impacts

the robustness of this coding technique. At low SNR, a high 𝛾 value may lead to the two spirals

being too close to each other, resulting in sign errors in decoding. However, at high SNR, one

can increase 𝛾 in order to better allocate the 2D space spanned by the spirals.

After the transmission, we decode the original parameters by mapping the received symbols

(𝑦1, 𝑦2) back to the values of network parameters by finding the nearest point on either of the
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spirals, as shown below:

�̂� = ±argmin
𝑤

(
(𝑦1 − 𝜃 (𝑤))2 + (𝑦2 − 𝜃 (𝑤))2

)
, (6.4)

where 𝜃 (·) represents the union of the spirals defined by Eq. (6.2), and (6.3).

We note that the SK expansion as defined above only allows a 1 : 2 bandwidth expansion ratio.

In order to achieve higher orders of expansion, one may consider re-applying the same expansion

to 𝑥1 and 𝑥2, by simply replacing 𝑤 in Eq. (6.2) and Eq. (6.3) by 𝑥1 and 𝑥2. With this, we

can implement a bandwidth ratio of 1 : 2𝑛, where 𝑛 is the number of expansion steps applied.

In order to achieve more flexibility in the overall expansion rates, we propose two methods,

which allow to achieve intermediate expansion levels by applying different expansion rates to

each layer of the network, depending on the available bandwidth. For a detailed explanation

of the methods, please see Section 6.5.1.

An alternative, much simpler method is layer repetition. In this method, we simply transmit

each network parameter multiple times and average the outputs at the receiver in order to

reduce the variance of the noise component. We note that channel repetition can effectively

achieve rates of expansion of 1 : 𝑛; thus, it is inherently more flexible than SK expansion;

however, it does not exploit the higher-dimensional space as effectively as SK expansion, which

leads to a sub-optimal performance as we will observe in Section 6.7.

6.5.1 UEP of DNN parameters against channel noise

The main limitation of the methods explained above is that they only consider uniform ex-

pansion of the entire network. In this section, we aim at providing methods that achieve

intermediate levels of network expansion, and better accommodate the available bandwidth.

It is known that the impact of different DNN layers on the overall performance varies [150].

Therefore, to exploit this inhomogeneity, we will look at methods that apply different expan-

sion ratios to each layer of a DNN. A proper selection of the layers that should be expanded is

extremely important in order to achieve satisfactory performance, thus a sensitivity metric is
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Algorithm 1: Von Mises iteration for calculating the largest eigenvalue of the Hessian
matrix associated with layer w𝑖.

Input: 𝑖-th layer w𝑖 of a DNN w, training dataset D.
Calculate the loss 𝐿 =

∑
𝐼 𝑗∈D 𝑙 (w, 𝐼 𝑗 );

Calculate the gradient g𝑖 =
𝜕𝐿
𝜕w𝑖

of the loss w.r.t. w𝑖;
Draw a random vector v𝑖 of the same dimension as w𝑖;
Normalize v𝑖: v𝑖 ← v𝑖

∥v𝑖 ∥2 .

repeat
Calculate inner product g𝑇

𝑖
v𝑖;

Calculate the Hessian and v𝑖 product by 𝐻𝑖v𝑖 =
𝜕 (g𝑇

𝑖
v𝑖)

𝜕w𝑖
;

v
(𝑝𝑟𝑒𝑣)
𝑖

← v𝑖;

Update v𝑖: v𝑖 ← 𝐻𝑖v𝑖
∥𝐻𝑖v𝑖 ∥2 ;

Calculate 𝜆𝑖 =
v𝑇
𝑖
𝐻𝑖v𝑖

v𝑇
𝑖
v𝑖

.

until |v𝑖 − v(𝑝𝑟𝑒𝑣)𝑖
| < 𝜖 ;

Output: Largest eigenvalue 𝜆𝑖 of the Hessian matrix associated with layer w𝑖.

necessary to specify which layers should be protected more than the others.

The first sensitivity metric we propose is based on the variation in the loss function imposed

by injecting a certain amount of noise into a DNN, one layer at a time. We hypothesize that

the layers that lead to a higher increase in the loss function when perturbed are more sensitive,

and hence, should be protected more. Let w̃(𝑖) denote the network w with certain amount of

noise injected into its 𝑖-th layer. Our sensitivity measure is based on the squared difference

between the loss function 𝑙 (w, 𝐼) of the original DNN and the same network when the 𝑖-th layer

is perturbed: 𝑙 (w̃(𝑖) , 𝐼). The sensitivity of the 𝑖-th layer can be expressed as:

𝑠
(𝑖)
1 =

∑︁
𝐼 𝑗∈D

(
𝑙 (w, 𝐼 𝑗 ) − 𝑙 (w̃(𝑖) , 𝐼 𝑗 )

)2
, (6.5)

where D denotes the training set available at the edge server.

Next, we consider a Hessian-based sensitivity metric [150], where the largest eigenvalue 𝜆𝑖 of

the Hessian matrix associated with a given layer 𝑖 is treated as the sensitivity metric of this

layer. Since the computation of the Hessian matrix is not feasible for large DNNs, we follow

the Von Mises iteration [164] to estimate it, as shown in Algorithm 1. Once the eigenvalue 𝜆𝑖

is calculated for the 𝑖-th layer, we simply set its sensitivity as 𝑠(𝑖)2 = 𝜆𝑖.
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Expanding the layer with the highest sensitivity may not always result in the best performance.

This is because some layers contain more parameters than others, and expanding them requires

more bandwidth than some less sensitive, yet already compact layers. Similarly, some layers may

have higher variance than others, and expanding them may lead to a significant increase in the

average power. To better allocate the available power and bandwidth resources, we normalize

each sensitivity parameter by the total energy of the corresponding layer, �̃�(𝑖)
𝑗
≜ 𝑠(𝑖)

𝑗
/∥w𝑖∥22 , 𝑗 =

1, 2. Once the sensitivities are calculated for all the layers, we iteratively expand the layers

with the highest sensitivity until the available bandwidth is exhausted, as shown in Algorithm

2.

Algorithm 2: Uneven bandwidth expansion based on layer sensitivities.

Input: Layers w𝑖 ∈ R𝑑𝑖 of a DNN and their sensitivities 𝑠(𝑖), bandwidth 𝑏.
Initialize 𝑟𝑖 = 1, ∀𝑖.
while

∑
𝑖 𝑟𝑖𝑑𝑖 ≤ 𝑏 do

Calculate normalized sensitivities �̃�(𝑖) = 𝑠 (𝑖)

𝑟𝑖 ∥w𝑖 ∥22
;

Find 𝑖∗ = argmax
𝑖

�̃�(𝑖).

𝑟𝑖 ← 𝑟𝑖 + 1 (or 𝑟𝑖 ← 2𝑟𝑖 if SK expansion is considered).
end
Output: Number of repetitions {𝑟𝑖} for the selected sensitivity metric.

6.6 SNR Robustness

So far, training has been done targeting a particular channel SNR. With this approach, AirNet

performs best if the mismatch between training and test SNRs is minimal. However, such a

solution is not practical as it requires the edge server to store multiple sets of DNN param-

eters, each trained for a specific SNR value. In this section, we will present two methods to

significantly reduce memory requirements.

In the first scheme, we train a single set of DNN parameters to be used over a range of SNR

values from the interval [SNR𝑚𝑖𝑛, SNR𝑚𝑎𝑥]. Instead of sampling a noise vector from a fixed SNR

target, we consider a different noise variance at every training iteration. SNR values over the

iterations are chosen according to the “sandwich rule”, which is frequently used in the efficient
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Figure 6.3: Proposed interpolation scheme. Given a channel SNR, the interpolated network is
obtained as a weighted sum of the boundary networks with weights 𝛼1 and 𝛼2.

DNN design literature [143]. In the first training iteration, we target SNR𝑚𝑖𝑛, in the second

iteration SNR𝑚𝑎𝑥, and finally, in the third iteration, we target an SNR value randomly sampled

from [SNR𝑚𝑖𝑛, SNR𝑚𝑎𝑥], i.e., SNR = SNR𝑖𝑛𝑡𝑒𝑟 𝑝 ∼ U (SNR𝑚𝑖𝑛, SNR𝑚𝑎𝑥). We repeat these three

iterations throughout the entire training process to make sure the final DNN can adapt to a

variety of SNR values it can experience during testing.

Despite its simplicity, the above method is limited, as it still relies on a single set of parameters,

which cannot perfectly adapt to every SNR. To overcome this limitation, we consider an ensem-

ble training approach inspired by [151], which stores only two sets of DNN parameters at the

edge server. In this interpolation scheme (see Fig. 6.3), the two sets of DNN parameters, w𝑚𝑖𝑛

and w𝑚𝑎𝑥, called the boundary networks, are trained targeting channel SNR values SNR𝑚𝑖𝑛 and

SNR𝑚𝑎𝑥. In the first iteration, we set the SNR target to SNR𝑚𝑖𝑛, and train only the boundary

network w𝑚𝑖𝑛. In the second iteration, we repeat this process for the boundary network w𝑚𝑎𝑥

by setting SNR = SNR𝑚𝑎𝑥. Finally, in the third training iteration, we consider a random SNR

value from [SNR𝑚𝑖𝑛, SNR𝑚𝑎𝑥], i.e., SNR = SNR𝑖𝑛𝑡𝑒𝑟 𝑝 ∼ U (SNR𝑚𝑖𝑛, SNR𝑚𝑎𝑥), and train a DNN

with parameters w𝑖𝑛𝑡𝑒𝑟 𝑝 equal to the weighted sum of the boundary networks’ parameters. The

exact values of the interpolated model parameters are calculated as:
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w𝑖𝑛𝑡𝑒𝑟 𝑝 = 𝛼1w𝑚𝑖𝑛 + 𝛼2w𝑚𝑎𝑥 , (6.6)

where 𝛼1 =
|SNR𝑚𝑎𝑥−SNR𝑖𝑛𝑡𝑒𝑟 𝑝 |
|SNR𝑚𝑎𝑥−SNR𝑚𝑖𝑛 | and we set 𝛼2 = 1 − 𝛼1.

This strategy allows us to train a family of interpolated networks that achieve satisfactory

performance on a range of SNR values between SNR𝑚𝑖𝑛 and SNR𝑚𝑎𝑥. In this work, we initialize

both boundary networks with the same set of weights, and they naturally converge to different

optima as their parameters are updated with different SNRs. Once the networks are trained,

during the test phase, depending on the experienced channel SNR we can sample an interpolated

network, and also apply SK mapping or repetition schemes to it as desired, in order to further

increase the performance.

6.7 Results

6.7.1 Experimental setup

In this work, we focus on transmitting parameters of DNNs trained for the image classification

task. For evaluation, we utilize two distinct datasets. The first dataset we consider is CIFAR10

[23], which consists of 60000 RGB images of 32×32 resolution. The images represent 10 different

classes. Following the standard protocol, we utilize 50000 images for training and 10000 for

testing, and employ the top-1 classification accuracy as our primary accuracy metric. For a

fair comparison with other approaches, we consider Small-VGG16 [27] as our baseline DNN.

The Small-VGG16 follows a similar structure to the standard VGG16 network, but replaces the

standard classifier head with a new one that consists of three fully-connected layers, the first two

containing 512 neurons with ReLU activation, and the third containing 10 output neurons for

class prediction. During training we use cross-entropy loss, stochastic gradient descent (SGD)

optimizer with a learning rate of 0.01 and momentum of 0.9 for 30 epochs, reduce the learning

rate to 0.001 and train for a further 30 epochs. The same procedure applies to both initial

training and fine-tuning after every pruning step.
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The second dataset we utilize in this work is Tiny ImageNet [165]. The dataset consists of

100000 64×64 training images of 200 classes, where each class is uniformly represented with 500

image samples. The test set consists of 10000 images, and, as before, we use top-1 classification

accuracy as our performance metric. We adopt ResNet-34 [93] as our DNN architecture for this

task. During training, we utilize cross-entropy loss, and SGD optimizer with a learning rate of

0.001 and momentum of 0.9, reduce the learning rate to 0.0001 after 60 epochs and train for

a further 30 epochs. In order to sustain the fixed channel depth after every block of ResNet,

during the pruning phase, we only prune the output channels of the first convolutional layer of

each ResNet block. Before feeding Tiny ImageNet images into ResNet, we resize them to the

resolution of 256 × 256 and crop the central 224 × 224 pixels from each image.

We perform multiple training runs of the networks for different SNR values, available bandwidth

constraints 𝑏, channel models, and training strategies. Unless specified differently, in the fading

channel scenario, we assume the CSI is available only at the receiver.

We compare our scheme against two separation-based schemes: DeepCABAC [144] and SuRP

[145]. Both methods first perform network pruning to obtain a sparse structure, which is fol-

lowed by network quantization and compression via either arithmetic or Huffman coding. For

both methods, we performed multiple runs of pruning and compression with various hyper-

parameters, and considered only the best-performing ones in our evaluations. When digital

schemes are used over the fading channel, we consider two scenarios regarding CSI availability.

In the first scenario, we consider the CSI is only available at the receiver, and the transmitter

is assumed to transmit at a fixed rate. If the channel capacity is below this rate, we assume the

transmission fails, i.e., an outage occurs. We then calculate the fraction of successful transmis-

sions and multiply it by the accuracy achieved by the transmitted DNN. In the second scenario,

we consider the availability of CSI at both the transmitter and the receiver. This will be denoted

by CSIT in the simulations. In this scenario, the transmitter always transmits at the capacity

of the channel, which serves as an upper-bound on the performance of separation-based DNN

delivery schemes.
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Figure 6.4: Performance comparison between the proposed AirNet approaches, and the alter-
native digital and analog schemes over AWGN and slow fading channels for a range of channel
SNRs and bandwidths in image classification task with Small-VGG16 network and CIFAR10
dataset.

6.7.2 Performance comparison

In this section, we present the comparison between AirNet and alternative separation-based

schemes. For AirNet, we consider three alternatives - vanilla AirNet, denoted simply as Air-

Net, which employs noise injection, pruning, and KD, AirNet with SK bandwidth expansion

and UEP (denoted as AirNet + SK + UEP) presented in Section 6.5.1 with Hessian-based

sensitivity, and AirNet trained with the interpolation scheme (presented in Section 6.6), with

SK scheme and uneven error protection (denoted as AirNet + I + SK + UEP).

Small-VGG16. In Fig. 6.4, we consider the image classification task with the Small-VGG16
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network. In Fig. 6.4a we fix the bandwidth 𝑏 to approximately 1.2 × 106 channel uses and

vary the SNR of an AWGN channel. For the AirNet and AirNet + SK + UEP curves, each

point is achieved by a separate model trained specifically for the corresponding SNR value

used for testing. On the other hand, for AirNet + I + SK + UEP, each point corresponds

to a DNN obtained as the weighted sum of two boundary models, as explained in Section

6.6. For the separation-based DeepCABAC and SuRP approaches, the DNN is compressed to

the level allowed by channel capacity. We see that AirNet is able to outperform separation-

based alternatives for every value of the SNR by a large margin. This is despite the fact

that we assumed capacity-achieving channel coding for the separation-based approaches. More

strikingly, AirNet is able to achieve satisfactory accuracy even at extremely low values of SNR.

This accuracy is further improved by the use of SK mapping with the UEP scheme. This is

particularly beneficial in the low SNR regime. The proposed interpolation scheme not only

removes the requirement of training a separate model for every target SNR, but also brings

further performance improvement, especially at low SNR values. Our scheme is able to recover

the original accuracy of the network at a moderately low SNR value of 15dB, whereas the

digital alternatives achieve significantly lower accuracy even at the SNR of 35dB.

Similar trends can be observed when we fix the SNR value to 5dB and vary the available

bandwidth 𝑏. AirNet is able to outperform digital alternatives at every bandwidth value con-

sidered. We note, that SK bandwidth expansion improves the network performance, which

indicates that it is better to first prune the network below the available bandwidth, and to

further expand it for better protection of the remaining DNN parameters. The vanilla AirNet

without SK bandwidth expansion is not able to recover the original DNN accuracy, whereas,

with bandwidth expansion, which can exploit the available channel bandwidth for better pro-

tection against noise, the original accuracy of the DNN can be recovered at 𝑏 ≈ 8 × 106. The

digital alternatives are consistently outperformed by the proposed schemes, as they require

much larger bandwidth to achieve similar levels of accuracy.

We consider fading channels with different average SNR values, and a fixed bandwidth of

𝑏 = 1.2 × 106 in Fig. 6.4c. Here, each point of the AirNet curves is obtained by training a

different DNN to be used over the fading channels with that particular average SNR value.
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Figure 6.5: Performance comparison between the proposed AirNet approaches, and the alter-
native digital and analog schemes over AWGN and slow fading channels for a range of chan-
nel SNRs and bandwidths in classification task with ResNet-34 network and Tiny ImageNet
dataset. Our training strategy generalizes well to different network architectures and datasets.

Again, AirNet is able to achieve better accuracy than the separation-based methods, while also

being able to recover the original DNN accuracy at an average SNR of 20dB. The improvement

of AirNet is even more evident against digital schemes without CSI. We remind that the AirNet

scheme does not assume CSI at the transmitter. These schemes experience sharp accuracy drop

whenever the SNR drops below ∼ 15dB. As already observed in the AWGN case, SK bandwidth

expansion helps to increase the robustness of the network, especially at the low values of SNR,

which can be further improved by the interpolation scheme, which also enjoys low memory

requirements.

In Fig. 6.4d, we fix the average SNR value to 5dB in the fading regime, while varying the
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channel bandwidth 𝑏. We observe that both vanilla AirNet and AirNet with SK bandwidth

expansion are able to achieve satisfactory accuracy at a wide range of channel bandwidths.

Separation-based schemes tend to outperform AirNet without SK expansion when they have

access to CSIT. The results here further motivate the use of bandwidth expansion as its benefit

is clear over fading channels in the low SNR regime. It can be observed that at SNR of 5dB, the

interpolation scheme still yields performance improvements over a wide range of bandwidths

tested.

ResNet-34. In Fig. 6.5, we present the results for the classification task on the Tiny Ima-

geNet dataset with ResNet-34 network. ResNet-34 architecture differs significantly from Small-

VGG16 as it is a much deeper architecture with residual connections and batch normalization

layers.

In Fig. 6.5a, we first fix the available bandwidth 𝑏 to approximately 4.5 × 106 channel uses

and train a separate network for a variety of different SNR values. Our observations are

consistent with the previous experiments with Small-VGG16. Networks trained with AirNet

outperform separation-based counterparts by a large margin, being able to recover the original

network accuracy at SNR of 30dB in a significantly more challenging classification task. SK

mapping combined with UEP scheme is able to bring improvements over the vanilla AirNet,

although the gains are more limited in this scenario. Similarly with the previous experiments,

the interpolation scheme increases the accuracy within low SNR regime, compared to SK +

UEP, while still significantly reducing storage requirements.

Results presented in Fig. 6.5b show that our strategy consistently outperforms digital alterna-

tives at a wide range of channel bandwidths 𝑏 for a fixed SNR of 5dB. Small improvements are

achieved through applying SK expansion with the UEP scheme, which can be pushed further

by applying the interpolation scheme.

Our method shows good generalizability to fading channel scenarios as well, and significantly

outperforms separation-based alternatives, both for fixed bandwidth 𝑏 (see Fig. 6.5c), and fixed

SNR (see Fig. 6.5d) scenarios. It is further observed that the SK expansion with UEP leads

to performance improvements as before, which can be amplified by the use of the interpolation
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Figure 6.6: Performance comparison of the models trained for different values of SNR𝑡𝑟𝑎𝑖𝑛 and
tested on a range of SNR𝑡𝑒𝑠𝑡 .

scheme, especially at low SNRs. For SNR values above 5dB, no significant difference is observed

between different variations of AirNet, meaning that the proposed extensions are effective

mainly in the low SNR regime.

6.7.3 Generalizability to different noise SNR

So far, we have assumed that the DNN trained for a specific target SNR is tested at that

SNR. In this section, we investigate the effects of the mismatch between the training and test

SNRs. In Fig. 6.6a, we show the performance of the networks trained for different SNR𝑡𝑟𝑎𝑖𝑛

values varying between 0dB and 10dB as well as a model trained without noise, denoted as

SNR𝑡𝑟𝑎𝑖𝑛 = ∞ dB, when tested with SNR𝑡𝑒𝑠𝑡 values between 0dB and 35dB. We see that the

model trained and tested at the same SNR, i.e., SNR = SNR𝑡𝑟𝑎𝑖𝑛 = SNR𝑡𝑒𝑠𝑡 , achieves the

best performance. However, models trained with moderate values of SNR𝑡𝑟𝑎𝑖𝑛 seem to achieve

reasonable performance for a wide range of different SNR𝑡𝑒𝑠𝑡 . The model trained without noise

injection (SNR𝑡𝑟𝑎𝑖𝑛 = ∞ dB) clearly suffers in the low SNR𝑡𝑒𝑠𝑡 regime. This indicates the

necessity of the noise injection step throughout training. We note that standard separation-

based transmission schemes usually exhibit cliff effect, i.e., the accuracy sharply degrades when

the SNR𝑡𝑒𝑠𝑡 falls below the target SNR value. As observed in Fig. 6.6a, our model, on the

contrary, exhibits graceful degradation, thus its accuracy slowly degrades as the channel noise
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Figure 6.7: Comparison between vanilla AirNet trained with SNR𝑡𝑟𝑎𝑖𝑛 = SNR𝑡𝑒𝑠𝑡 , interpolation
scheme, and AirNet trained with variable SNR. 𝑏 ≈ 0.65 × 106.

variance increases, which makes AirNet even more desirable in practical implementations, as

it is able to achieve good performance even when accurate channel estimation is not possible.

In Fig. 6.6b we show a similar comparison, but with the ResNet-34 baseline network and

Tiny ImageNet dataset. We see that the main observations remain consistent between different

architectures and datasets.

The above results beg the question of how to train the network when we do not know the

channel SNR in advance. The natural approach is to follow the approach used for fading

channels, and train the network over a range of SNR values. In Fig. 6.7, we present the

accuracy comparison between the three methods as we increase SNR for a fixed bandwidth

𝑏 = 0.65 × 106 channel uses. The blue curve in the figure is the baseline AirNet performance

obtained by networks trained for each specific SNR value. One can see that AirNet trained

with variable values of SNR (see Section 6.6) generalizes well to a wide range of SNR, but fails

to match the performance of separate networks trained for a specific SNR. Moreover, when a

very wide range of SNR𝑡𝑟𝑎𝑖𝑛 ∈ (−3, 30) dB is considered, a significant performance degradation

is observed for extremely low values of SNR. Training over a more narrow range of SNR values,
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Figure 6.8: Ablation study for our training strategy (a) and various bandwidth expansion
strategies (b). Removing any of the steps from the training strategy leads to a drop in the
accuracy across all SNRs. We have SNR𝑡𝑟𝑎𝑖𝑛 = 5dB.

SNR𝑡𝑟𝑎𝑖𝑛 ∈ (−3, 10) dB, tends to work better in the low SNR regime, yet saturates to a sub-

optimal accuracy value as the SNR increases. We observe that the proposed interpolation

scheme not only matches the accuracies achieved by separate networks, but introduces further

performance improvements at all SNRs, particularly significant in the low SNR regime. This

performance improvement does not depend on a specific choice of the SNR𝑡𝑟𝑎𝑖𝑛 range, as long as

it overlaps with the range of SNR𝑡𝑒𝑠𝑡 values experienced during test, or a shape of the function

used to calculate the weighting parameter 𝛼. In Eq. (6.6), we proposed 𝛼(SNR) to be a

linear function; however, in Fig. 6.7, one can clearly see that similar results can be obtained

when the function is replaced with a simple strictly increasing convex or concave function

parameterized by a Bézier curve. Another important observation is that all the schemes should

be trained over an SNR range that includes the SNR values expected to be encountered during

transmission. Interpolation scheme suffers from sharp performance degradation when trained

at SNR𝑡𝑟𝑎𝑖𝑛 ∈ (0, 20) dB and tested with SNR𝑡𝑒𝑠𝑡 = −3dB. Furthermore, it is worth noting

that, on top of the performance improvements, the interpolation scheme allows for a significant

reduction in the number of parameters stored at the edge server, as it only requires storing

two sets of DNN parameters for each bandwidth, as opposed to storing a separate set of DNN

parameters for each target SNR value at each bandwidth.
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Figure 6.9: Comparison between SK mapping and layer repetition scheme for bandwidth ex-
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6.7.4 Evaluation of training steps

In this section, we evaluate the impact of every training step utilized in the AirNet method.

A comparison between networks trained with different training strategies is shown in Fig.

6.8a. One can see that each step is crucial to achieve the best possible final accuracy. The

best-performing network utilizes KD and joint pruning, meaning that the noise injection is

performed jointly with fine-tuning after each pruning iteration. Lack of KD results in a slight

decrease in the performance, visible especially at SNR𝑡𝑒𝑠𝑡 < 15dB. When we separate pruning

from noise injection by first performing pruning, and re-train the network with noise injection

afterward, denoted as separate pruning, we observe a large drop in the performance for every

SNR𝑡𝑒𝑠𝑡 value below 20dB. This illustrates that, when a certain amount of noise is injected into

the DNN parameters, it effectively learns to prioritize only a few most significant convolutional

filters within each layer, whereas the remaining ones get discarded during pruning. Once the

pruning process is performed without noise injection, it is impossible for the network to learn

this amount of robustness against channel noise. Finally, the model trained without noise

injection performs the worst across the entire range.
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Figure 6.10: Comparison of per-layer sensitivity measured by the largest eigenvalue 𝜆𝑖 of the
Hessian matrix corresponding to layer 𝑖, 𝑖 = 1, . . . , 13. Training with noise injection significantly
reduces the sensitivity of DNN layers (SNR𝑡𝑟𝑎𝑖𝑛 = 5dB, 𝑏 ≈ 0.65 × 106).

6.7.5 Comparison of bandwidth expansion methods

In this section, we compare the different bandwidth expansion methods described in detail

in Section 6.5. In Fig. 6.8b, we show the impact of each bandwidth expansion step on the

performance of AirNet. For this comparison, we use vanilla AirNet with noise injection at

SNR𝑡𝑟𝑎𝑖𝑛 = 5dB and 𝑏 ≈ 1.4×106. For bandwidth expansion, however, we first prune a DNN to

𝑏 ≈ 0.65×106 with the same SNR𝑡𝑟𝑎𝑖𝑛 and then expand it to 𝑏 ≈ 1.3×106. We see that the best

accuracy is achieved when we perform Hessian-based UEP with the SK bandwidth expansion

scheme, which is followed by DNN retraining during which the variance of noise injected into

each layer is scaled according to the number of repetitions calculated. We see that the network

without retraining (AirNet + SK + UEP) is able to achieve satisfactory accuracy; however,

retraining brings further improvement of up to 0.4% accuracy. AirNet without UEP achieves

slightly worse performance, but is still superior to the vanilla AirNet, which uniformly protects

all the weights, especially at low SNR values.

In Fig. 6.9, we consider the SK bandwidth expansion scheme with different values of the 𝛾
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parameter, and the simple layer repetition scheme. We see that even for a relatively low value of

𝛾, SK expansion outperforms layer repetition for a wide range of SNR values. The performance

of the SK expansion scheme can be further improved in the high SNR regime by increasing

the 𝛾 value. However, this results in a sharp accuracy drop in the low SNR regime. This is

caused by the fact that large 𝛾 causes the distance between positive and negative spirals to be

small, which results in large positive DNN parameters being decoded as negative values, and

vice versa. This means that 𝛾 is another hyperparameter of the proposed AirNet scheme with

SK bandwidth expansion, which can benefit from the availability of CSI at the transmitter.

6.7.6 Comparison of different sensitivity estimation criteria

In this section, we analyze the different sensitivity criteria used in adaptive layer expansion

as introduced in Section 6.5.1. In Fig. 6.10, we compare the Hessian-based sensitivity for a

network, when trained with and without noise injection. We observe that training with noise

injection significantly reduces the sensitivity of the layers, which is extremely beneficial for

further wireless transmission of the network.

Fig. 6.11a compares different sensitivity measuring criteria (Hessian-based and loss-based) in

terms of the accuracy they achieve. The number of repetitions per layer of the VGG16 network

is presented in Fig. 6.11b. In this comparison, we utilize the layer repetition scheme as it allows

any integer number of repetitions, unlike the SK expansion method which is limited to per-layer

repetition factor 𝑟𝑖 of the form 2𝑛. We can observe that the Hessian-based strategy performs

much better than the alternative schemes for every SNR value considered. Surprisingly, a large

difference can be observed between the loss-based and Hessian-based sensitivity metrics in both

the performance and the number of repetitions per layer. Despite being intuitively similar, the

two methods prioritize different layers; the loss-based method prioritizes the later layers close

to the output, while the Hessian-based method distributes the repetitions more evenly across

the network. We can further notice that the layer repetition scheme with loss-based sensitivity

is outperformed by the even repetition scheme in the low SNR regime, which illustrates that

the protection of the early layers is more important than the later layers of the DNN.



6.8. Conclusions 131

0 5 10 15 20 25 30 35

SNR [dB]

0.88

0.89

0.90

0.91

0.92

0.93

A
cc

u
ra

cy

Ideal channel

Hessian-based sensitivity

Even repetition

Loss-based sensitivity

(a) Performance comparison

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i

0

1

2

3

4

5

6

7

8

r i

Loss-based sensitivity

Hessian-based sensitivity

(b) Number of repetitions

Figure 6.11: Comparison between UEP schemes with loss-based and Hessian-based sensitivity
metrics (SNR𝑡𝑟𝑎𝑖𝑛 = 5dB, 𝑏 ≈ 1.3 × 106).

6.8 Conclusions

In this work, we studied the important problem of the transmission of the DNN parameters over

wireless channels, which is expected to become a significant traffic load for future networks given

the increasing adoption of machine learning applications in edge devices. We have proposed

training the DNN with noise injection to enable robustness against channel impairments, and

network pruning to meet the bandwidth constraint. We have then shown that performance

can be improved further, particularly in the low SNR regime by pruning the network to a size

below the channel bandwidth and applying bandwidth expansion, which can be considered as

an analog error correction technique. We then exploited the fact that not all DNN layers are

equally significant for its final accuracy, and introduced an UEP technique by applying selective

bandwidth expansion only to the most important layers of the network. Finally, to reduce

the memory requirements caused by training a separate network targeting different channel

conditions, we developed a novel ensemble training approach that allowed us to simultaneously

train a whole spectrum of networks that can be adaptively used in different channel conditions.

We believe this method lay the foundations for “on demand” delivery of DNNs in the future

mobile networks.
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Conclusion

In the preceding chapters, we have studied problems related to vision-based machine learning

over the wireless edge and proposed potential solutions. Thanks to the rapid developments in

both deep learning and wireless communication fields, similar solutions are likely to be deployed

in real systems in the near future. This would enable the end users to access powerful machine

learning algorithms conveniently, without having to own specific specialized equipment. Below

we give an overview of the main observations of the works presented in this thesis.

Deep joint source-channel coding. The main observation of this thesis is that joint source-

channel coding can be considered a reasonable alternative to separation-based, digital methods

for the wireless transmission of various sources related to deep learning, specifically feature vec-

tors and DNN parameters. We have shown that JSCC can not only outperform the separation-

based alternatives in task-related metrics, including accuracy or precision, but also provides a

number of additional benefits. Firstly, we show that deep JSCC exhibits graceful degradation

in various remote inference applications. This is an extremely desirable feature, as it effec-

tively removes the necessity for accurate channel estimation. Whenever the channel conditions

change, one can utilize the same deep JSCC algorithm and expect it to provide reasonable

performance given the current channel conditions. On the contrary, digital alternatives require

very accurate channel estimation to operate optimally. If the transmission rate used for these

132
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separation-based schemes is above the current channel capacity, the transmission is very likely

to fail, which means the task-related performance will become equivalent to a random guess,

due to the outage. On the contrary, if the transmission rate is significantly below the capacity,

we do not utilize the channel efficiently, which also leads to obtaining suboptimal performance.

Another benefit of deep JSCC compared to deep learning based digital communication schemes

is that the former can be easily modeled as an end-to-end trainable autoencoder, which, given

enough data, adapts to source and channel distributions easily, yielding satisfactory perfor-

mance which simplifies the engineering process leading to the development of new deep JSCC

algorithms. Digital-based deep learning algorithms for compression, on the contrary, require

significantly more effort to design, as they utilize quantization, which is a non-differentiable

operation. To properly address this problem, the quantization operation has to be accurately

modeled in a differentiable manner, meaning that an approximate function shall be used in the

backward pass of the training loop, leading to lower-quality gradients that do not match the

true distribution of the underlying process. Another important caveat of these methods is that

they require an accurate estimate of the underlying distribution of the quantized latent, which

is necessary for the entropy coding engine to operate as close as possible to the optimal coding

rate. JSCC effectively avoids this problem as the entire compression step happens within the

trainable autoencoder, which learns both encoding and decoding functions jointly, therefore the

latent distribution does not have to be explicitly known or learned for efficient compression.

Edge inference systems. Another key finding of this work relates to the design principles

of edge inference systems. Such systems usually include multiple constraints on computational

complexity, latency, channel bandwidth, etc., all of which have to be carefully considered in the

design.

For example, different approaches to the computational complexity constraint of an edge device

were presented in Chapter 3 and Chapter 4. The former assumes the edge device is provided

with some additional, high-performance hardware elements capable of running inference for

deep learning models deployed at the edge device. This allows the entire forward pass of the
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DNN to be performed at the edge device, which significantly reduces the number of computa-

tions to be performed at the edge server side, which is desirable, because ideally the edge server

would be connected to a large number of edge devices and performing the inference centrally,

simultaneously for all the connected edge devices, would require even more powerful hardware

available at the edge server. Moreover, such an approach reduces the amount of information to

be transmitted over the channel, as the DNN deployed at the transmitter already extracts only

the essential, task-related information from the high-dimensional input source. As a result, a

bandwidth of a few hundred channel uses was enough to convey the information necessary for

successful retrieval in the scenario considered in Chapter 3.

A different system design was used in Chapter 4, where computational or memory constraints

were imposed on the edge device, which could not run the full forward pass of the DNN locally.

Such a scenario is more realistic, as edge devices are not usually equipped with dedicated

hardware to utilize complex deep learning algorithms locally, because of their significant cost

or memory requirements. In such scenarios, one has to consider various ways to reduce the

computational or memory requirements of running DNNs. One of the approaches is to utilize

pruning or quantization of a DNN. Both pruning and quantization were shown to be able to

significantly reduce the complexity of the DNNs at a small to no loss in performance. Another

method to meet the computational complexity constraints imposed by the edge device in the

edge inference scenario is to split a DNN into two parts and only run the forward pass of the

first part at the edge device while executing the forward pass of the other part of the DNN at

the edge server. This approach has been extensively studied in Chapter 4. It was shown, that

the design of such a split system requires the optimization of multiple factors. These include

the splitting point of the DNN, which determines how many layers are executed at the edge

device, but also the compression algorithm for the intermediate features. In downstream deep

learning tasks, the DNN effectively learns how to preserve only the information necessary for

the task. This means that, as we progress with the forward pass of the network, less information

is stored within every subsequent feature map. This behavior imposes a significant trade-off in

the edge inference scenario, since the more layers the DNN is capable of executing locally, at

the edge device, the less amount of information has to be transmitted over the wireless network
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to the edge server for finalizing the forward pass and obtaining the prediction. Therefore, in

order to find the optimal splitting point, one has to carefully study the rate-complexity curve

that suits their specific performance requirements. The work presented in Chapter 4 studies

both DNN splitting and pruning, and shows, that a combination of these two methods leads to

significant improvements in the accuracy at a given constraint on the on-device computations,

compared to other methods.

The main observation made in Chapter 4 is that more local processing leads to communication

savings as the data processed by the layers of a DNN contains progressively less information with

each layer. In Chapter 5, we noted that there exist scenarios when it is no longer beneficial

to transmit the intermediate feature over the wireless link to the edge server to complete

the forward pass of the DNN. Many recent works in the area of deep learning studied early

exits, which are mechanisms for obtaining early predictions without the need to utilize the

full depth of the network. In early exits, intermediate layers of a DNN are equipped with

simple linear classifiers that are trained to map early intermediate features directly to the class

predictions. These predictions can be obtained at significant computational savings, but also

suffer from decreased accuracy. The findings provided in Chapter 5 show, that wireless edge

collaborative inference systems are perfectly suited to adapt such early exit mechanisms. In

the case of extremely challenging channel conditions, the noise may prevent the edge server

from completing the task at the desired accuracy. Moreover, certain data samples may be

easier to recognize than others, thus early exits can be effective enough to succeed in the task.

Our evaluations show, that the decision-making mechanism used to decide whether the early

exit prediction can be accepted or not, should depend on both outputs from the early exit,

and the current channel SNR. As long as both inputs are provided, the exact choice of the

decision-making mechanism is not a crucial factor. It can be as complex as a neural network or

as simple as a threshold on the early exit confidence. The difference between the accuracy and

communication savings imposed by selecting different decision-making mechanisms is negligible.

Surprisingly, it was shown that each method can achieve significant savings of approximately

40% at SNR = 0dB without any drop in classification accuracy compared to a scenario presented

in Chapter 4, where the intermediate feature was always transmitted to the edge server for
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obtaining the prediction.

7.1 Future Work

Bandwidth and SNR adaptive JSCC for edge inference. We note, that the majority of

the JSCC approaches presented in this thesis produce DNNs that target a specific, predefined

bandwidth and SNR. Despite their undeniable performance, such approaches are not desirable,

since wireless channel conditions can constantly change due to variations in the local envi-

ronment of the system. Such changes would lead to sub-optimal performance or even require

re-training of the algorithms proposed in Chapter 3 and Chapter 4.

The concept of bandwidth- or SNR-adaptive methods for split inference in the deep JSCC

regime has not been extensively studied yet, but some concepts from the classical deep JSCC

literature can be easily transferred to the split learning framework. For example, findings of

[166] indicate, that it is possible to train a deep JSCC scheme in such a way, that ensures

satisfactory image transmission performance for a variety of different bandwidth values. Of

course, this imposes a trade-off between the rate and the reconstruction accuracy, since the

more channel uses can be utilized for transmitting the features, the better reconstruction quality

is expected. A similar concept can be directly transferred to training pipelines and DNN

architectures proposed in Chapter 3 and Chapter 4. This is expected that a similar, accuracy-

rate trade-off will also exist in the remote inference setting for image classification and retrieval

tasks.

The SNR adaptivity problem for the methods proposed in Chapter 3 and Chapter 4 can be

effectively tackled with the use of the same methods that were applied in the work proposed

in Chapter 6. We note, that in the case of AirNet, it was possible to avoid training a separate

DNN for every channel SNR. Instead, we proposed the interpolation scheme and variable SNR

scheme, which allowed the network to perform well at a wide SNR range, without the necessity

to perform multiple training runs. We expect, that it is possible to train edge inference systems,

such that they are treated with channel noises of different SNR values at each iteration, and
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learn to adapt to frequently changing wireless channel conditions. Implementation of such an

approach has to be performed very carefully, with proper training pipelines, to ensure that the

accuracy achievable for the adaptive models is close to, or even on par with the accuracy of

the separate models, each targeting a separate SNR regime. Success in creating such schemes

would lead to a significant reduction in the number of training runs required for edge inference

JSCC schemes, effectively removing the need to train multiple models. This would lead to a

significant reduction in not only training times but also memory requirements for edge devices,

which would be required to store only one DNN model, which can adapt to a variety of channel

conditions.

7.2 Epilogue

In this thesis, we studied a variety of problems related to deep JSCC applied to different com-

puter vision tasks, including wireless image retrieval, classification, and transmission of DNN

parameters. Despite the existing design standards for modern wireless networks being oriented

towards digital communications, we believe that the application of the JSCC might become

extremely beneficial. This might eventually lead to the implementation of analog JSCC-based

transmission schemes, especially for scenarios with stringent latency requirements, under ex-

treme wireless channel conditions. This would include networks, where it is impossible to

estimate the SNR accurately, or where the SNR is rapidly changing. Under such conditions,

separation-based methods often fail to deliver any result, whereas JSCC-based approaches can

smoothly adapt to channel quality, and provide a result corresponding to current channel con-

ditions. Such behavior is extremely desirable for some of the recently emerging time-dependent

applications, including autonomous driving, the defense industry, or fault detection systems,

which can hugely benefit from the increased performance of JSCC systems.
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inference in devices with energy harvesting capabilities,” in IEEE International Workshop

on Machine Learning for Signal Processing, 2023.

[141] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early exiting for

deep learning applications: Survey and research challenges,” ACM Computing Surveys,

2022.



BIBLIOGRAPHY 153

[142] R. G. Pacheco, R. S. Couto, and O. Simeone, “Calibration-aided edge inference offload-

ing via adaptive model partitioning of deep neural networks,” in IEEE International

Conference on Communications, 2021.

[143] J. Yu and T. S. Huang, “Universally slimmable networks and improved training tech-

niques,” in Proceedings of the IEEE/CVF international conference on computer vision,

2019, pp. 1803–1811.

[144] S. Wiedemann et al., “DeepCABAC: A Universal Compression Algorithm for Deep Neural

Networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 4, pp. 700–

714, 2020.

[145] B. Isik, T. Weissman, and A. No, “An information-theoretic justification for model

pruning,” in International Conference on Artificial Intelligence and Statistics, vol. 151.

PMLR, 2022, pp. 3821–3846.

[146] “Uplink and slow time-to-content: Extract from the Ericsson mobility report,”

https://www.3gpp.org/ftp/Specs/archive/22 series/22.874/, Ericsson, Tech. Rep., 2016.

[147] R. Zur, Y. Jiang, L. Pesce, and K. Drukker, “Noise Injection for Training Artificial Neural

Networks: A Comparison With Weight Decay and Early Stopping,” Medical physics,

vol. 36, pp. 4810–8, 10 2009.

[148] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” in

NIPS Deep Learning and Representation Learning Workshop, 2015.

[149] V. A. Kotelnikov, The Theory of Optimum Noise Immunity. McGraw-Hill Book Com-

pany, Inc., 1959.

[150] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “HAWQ: Hessian aware

quantization of neural networks with mixed-precision,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2019, pp. 293–302.

[151] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson, “Loss surfaces,

mode connectivity, and fast ensembling of dnns,” in Advances in Neural Information



154 BIBLIOGRAPHY

Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.

[152] “5G system (5GS); study on traffic characteristics and performance requirements

for AI/ML model transfer,” https://www.3gpp.org/ftp/Specs/archive/22 series/22.874/,

3GPP, Tech. Rep., 2021.

[153] M. B. Mashhadi, M. Jankowski, T.-Y. Tung, S. Kobus, and D. Gündüz, “Federated
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