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ABSTRACT

The binomial Langevin model (BLM) predicts mixture fraction statistics including higher moments excellently, but imposing boundedness
for the large scalar spaces typically associated with chemically reacting flows becomes intractable. This central difficulty can be removed by
using the mixture fraction as the reference variable in a generalized multiple mapping conditioning (MMC) approach. The resulting
probabilistic BLM–MMC formulation has several free parameters that impact the turbulence–chemistry interactions in complex flows: the
dissipation timescale ratio, the locality in selecting pairs of particles for mixing, and the fraction of particles mixed per time step. The impact
of parametric variations on the behavior of the BLM–MMC model is investigated for a complex flow featuring auto-ignition to determine
model sensitivities and identify optimal values. It is shown that only the mixture fraction rms is sensitive to the dissipation timescale ratio
with the expected behavior of an increased ratio leading to a reduction in rms. Controlling locality by increasing the maximum possible dis-
tance between paired particles in reference space has a similar impact. Increasing the fraction of particles mixed only affects reacting scalars
by advancing ignition. The modified Curl’s model is used for the mixing process and the specified amount of mixing principally controls the
local extinction and reignition behavior. It is further shown that the standard value of the dissipation timescale ratio is satisfactory;
the amount of mixing should be half that specified by Curl’s model; and the distance between particle pairs in reference space should be
proportional to the diffusion length scale.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0041351

I. INTRODUCTION

One of the promising methods for reducing emissions from
combustion-based devices is to use lean mixtures of fuel that are close
to device stability limits. Flame stabilization is an important feature to
be controlled in engines operating under such conditions1–4 where the
time-dependent combustion behavior may cause flame instability5–8

due to the pressure-convection coupling. Under such conditions,
finite-rate chemistry has a significant influence with phenomena such
as extinction/reignition emerging as turbulence–chemistry interactions
become dominant.9–14 In seminal work, Dopazo and O’Brien15,16 pre-
sented a modeled equation for the joint probability density function
(PDF) of a set of scalars that incorporated mixing and chemical reac-
tion with application to autoignition of a turbulent mixture.15 In order
to capture such effects, it is necessary to consider a wide range of time-
scales,17,18 and transported PDF models are well suited for these

applications.19,20 A key consideration in implementing PDF models
for these types of flows is that the predictions of bulk quantities
become sensitive to model parameters, especially the molecular mixing
closure.21

The multiple mapping conditioning (MMC) approach22–25 has
the potential to address these challenges. It has been applied to model
experimental cases that display extinction/reignition in different
forms26,27 with some success.28–34 The basis for MMC is that the
multi-dimensional scalar space can be represented by a lower-
dimensional manifold.35 In Conditional Moment Closure (CMC),36

this lower-dimensional manifold is mapped onto a one- or two-
dimensional manifold; in non-premixed combustion, the mixture frac-
tion is always used as a dimension, while either sensible enthalpy or
scalar dissipation can be used as a secondary dimension. In MMC, this
low-dimensional CMC manifold is mapped onto a reference space,
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which is typically one-dimensional. To model extinction/reignition
phenomena, a single reference space dimension is insufficient to repre-
sent all the behavior because the chemical timescales are longer than
the turbulent timescales, while the fluid can originate from either the
burnt or unburnt regions. Therefore, the deviations from the condi-
tional mean must be modeled (“probabilistic MMC”37) These condi-
tional fluctuations have a relaxation timescale smin—mathematically
similar to the relaxation timescale smaj of unconditional fluctuations to
the global mean—that must be specified to implement probabilistic
MMC.38

Conventional MMC specifies that the PDF of the reference vari-
able is Gaussian; most implementations of MMC apply this specifica-
tion.30–32,34,38,39 A fundamental challenge for conventional MMC is
the modeling of the interaction of the mathematical reference variable
with physical variables such as velocity. Generalized MMC40 permits
any variable to be the reference variable, so it is possible to use a physi-
cal variable with the same statistical properties as the variable that is
used as the basis for all scalars. The application of generalized MMC
has typically been to non-premixed combustion with the mixture frac-
tion used as the basis for the mixing of all the scalars. The current
examples describe partially premixed combustion, which contain
physics that are a combination of non-premixed and premixed flames,
although the driving mechanism to create these situations is the same
process as non-premixed combustion. The reference variable mixture
fraction controls the mixing behavior of the MMC mixture fraction;
the latter governs the mixing behavior of all the other scalars. The
objective of the method is to determine which pairs of particles to mix
to create a chemical composition that models a statistically homoge-
neous spatial region. The particles are stochastically advected while the
chemical state is deterministic. Two implementations of generalized
MMC have been developed. Both implementations use stochastic par-
ticles to represent the joint-PDF of the mixture fraction, reactive sca-
lars, and velocity; all processes in the PDF transport equation are
deterministic except for the model for turbulent mixing. One imple-
mentation of generalized MMC is for large Eddy simulations (LES),
where the filtered mixture fraction of the LES field is used as the refer-
ence variable for the MMC mixture fraction associated with each sto-
chastic particle;41 all LES implementations of MMC are derived from
this model. The other is for Reynolds-averaged Navier–Stokes (RANS)
models, where the binomial Langevin model (BLM)42 is solved for
each stochastic particle; the BLM velocity was originally used as the
reference variable,29,43 but now the BLM mixture fraction is preferred
(BLM-MMC).33

A remaining challenge for the generalized BLM-MMC model is
to link the control of the conditional fluctuations (via the mixing
model parameters) to the relevant mixing timescale smin. The theoreti-
cal development of a model for smin specifies that it should be propor-
tional to smaj.

38,39 For implementations based on interaction by
exchange with the conditional mean (IECM), the implementation of
smin within the model is clear. However, use of the modified Curl’s
(MC) model44,45 within MMC poses a challenge for the direct imple-
mentation of smin. One solution is to define the amount of mixing
using the IECM formulation;30 this methodology has been applied in
all subsequent implementations of MMC in a RANS context, except
those by the authors. The fundamental difference is that the current
implementation follows the approach of Wandel39 by randomly select-
ing pairs of particles for mixing, so that the pair is separated by no

more than a diffusion length-scale within the reference space with a
random subset of particles mixed for any given time step. Other imple-
mentations pair neighboring particles in reference space with all par-
ticles mixed at every time step.

This fundamental difference in implementations of MMC to
RANS, outlined above, causes different approaches to the modeling of
turbulent intermittency. The latter is caused by the transport by
intermediate-sized vortices. Other approaches rely on the number of
stochastic particles and the computational time step to be sufficiently
high so that the particles are reordered in reference space, with the
mixing intensity for each interaction being relatively low. The current
authors’ approach is numerically valid for smaller numbers of particles
and/or time steps, with the mixing intensity for each interaction being
relatively high.

The current article provides a comprehensive analysis of the
impact of each of the free parameters in BLM-MMC on the computa-
tional results for a complex test case featuring auto-ignition in a turbu-
lent flow field.

II. THEORY

This section describes all the relevant theory required for imple-
menting BLM-MMC.

A. Scalar dissipation timescales

The unconditional fluctuations of the scalar Z are defined to be

Z0 ¼ Z � hZi; (1)

with hZi the unconditional mean, which can be calculated by averag-
ing over stochastic particles. The dissipation term in the transport
equation for the variance of Z is unclosed:

@hZ02i
@t

¼ �2 D
@Z
@xi

@Z
@xi

� �
; (2)

where D is the molecular diffusivity of Z and the Einsteinian summa-
tion convention is applied. The scalar dissipation rate is defined to be

N � D
@Z
@xi

@Z
@xi

; (3)

this definition is preferred to the common definition v ¼ 2N since N
is more convenient in CMC/MMC formulations.

To close Eq. (2), a model for the mean scalar dissipation is
required. The most commonly used model is to assume that the dissi-
pation rate of velocity is proportional to the dissipation rate of scalars,

hNi ¼ CZ
e
k
hZ02i: (4)

Here, k is the turbulent kinetic energy, e is the turbulent kinetic energy
dissipation rate, and the constant CZ normally46 takes the value 1.0,
although it may be tuned to suit a model for a particular case. The rele-
vant timescale for the dissipation of the unconditional fluctuations is
the “major” dissipation timescale smaj

hNi � hZ
02i

smaj
: (5)

The major dissipation timescale is therefore conventionally modeled
as
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smaj ¼ su=CZ ; (6)

where su � k=e is the turbulent dissipation timescale. The effect of CZ

on BLM-MMC is investigated in Sec. IIIC
The conditional fluctuations of the scalar Y are defined to be

Y 00 � Y � hY jZi; (7)

with hY jZi the conditional mean: the mean of Y with the condition
that the independent (“conditioning”) variable Z takes a particular
value. The conditional variance hY 002jZi can be integrated to yield the
(unconditional) mean conditional variance,

hY 002i �
ð1
�1
hY 002jZiPZðZÞdZ; (8)

where PZðZÞ is the PDF of Z. The mean of the conditional variance is
not the same as the mean of the unconditional variance (note that the
unconditional variance is already an unconditional moment, so taking
the mean of the unconditional variance produces the same value). The
difference between the mean conditional variance and unconditional
variance was derived by Wandel39 (see the Appendix B). The dissipa-
tion rate of the conditional fluctuations is defined to be

WD � D
@Y 00

@xi

@Y 00

@xi

����Z
� �

(9)

and can be modeled using

hWDi �
hY 002i
smin

: (10)

The minor dissipation timescale smin is a measure of the rate of decay
of the conditional fluctuations. This decay occurs in practice because
there is a physical separation between a point at x1 with value of scalar
Yðx1Þ and a location x2 where the scalar Yðx2Þ is the same as the con-
ditional mean of Y at location x1: Yðx2Þ ¼ hY jZðx1Þi. There is a corre-
sponding physical separation between x1 and a location x3 where
Yðx3Þ is the unconditional mean: Yðx3Þ ¼ hYi. Because hjx1 � x2ji is
significantly shorter than hjx1 � x3ji, smin < smaj, and smin is a
“micro-dissipation timescale” (it governs the small scales of turbu-
lence), while smaj is a “macro-dissipation timescale” (it governs the
large scales of turbulence).18 If the conditional fluctuations are negligi-
ble (i.e., jx1 � x2j ! 0), then smin � smaj. The value of smin is influ-
enced by turbulence–chemistry interactions, but also by how the
conditioning space is defined, because smin is a measure of the magni-
tude of the conditional fluctuations.29 If the conditioning space has
more dimensions (i.e., there are more reference variables), then it is
possible to reduce the conditional fluctuations. A good choice of the
reference variables will mean the reference space does not require
many dimensions for smin � smaj to occur.25 This occurs when the
dimensionality of all scalars represented by Z is no smaller than the
number of independent dimensions in the multi-dimensional space
represented by all Y. In other words, Y-space can be represented by a
manifold generated by Z-space18 because there are sufficient dimen-
sions in Z-space to govern the dimensions in Y-space. This representa-
tion is possible by considering that the scalar variables construct a
space where each variable is a dimension, and the values of all the sca-
lars at a specific point in physical space are mapped to the correspond-
ing point in the scalar space.25 In circumstances where the conditional

fluctuations are non-negligible (typically because local extinction/reig-
nition results in the manifold being at least two-dimensional, while a
single dimension is used for conditioning), the following value38 is
normally used to model smin within MMC:

smin

smaj
¼ 1

8
: (11)

This value was selected as it provided the best match to the DNS data
provided by Mitarai et al.47 in a study of local extinction/reignition,
and also produced superior results to the other turbulent combustion
models tested.48 Subsequent implementations of MMC by other
groups have also found that this value produces optimal results.

Equation (10) is one of the terms in second-order CMC.36 A
challenge for CMC is that PZðZÞ requires modeling; producing an
accurate representation of the actual PDF is challenging for many
cases. In the MMC framework, an additional level of conditioning is
used, where the Z-space (used to condition Y) is mapped to n-space,
where n can be any variable. The relevant conditional fluctuations are

Z000 � Z � hZjni: (12)

These are related to the ratio (q) of the dissipation timescales by39

q ¼ smin

smaj
¼ hZ

0002i
hZ02i ; (13)

so calculation of the variances is sufficient for determining the value of
smin for a given realization. The relevant minor dissipation timescale
takes the same value40 as the timescale defined in Eq. (10), so it not
necessary to calculate Y 00 when implementing probabilistic MMC.

B. Generalized MMC

In conventional MMC, n is chosen to have a standard Gaussian
distribution, which results in a mathematically well-defined PDF
PnðnÞ, but requires the mapping function Z ¼ XðnÞ to be modeled; a
satisfactory universal model for the inhomogeneous drift term has yet
to be derived. In generalized MMC,40 n is normally chosen to be the
same variable as Z, but calculated independently, so both the PDF and
the mapping function are well-defined. The transport equation for n is
therefore model-dependent and for BLM-MMC the relevant details
for transport are described in Sec. IIC.

The transport equations for the scalars associated with stochastic
particle p (where � denotes a stochastic trajectory) are

dZ�p ¼ Sdt; (14)

dY�pI ¼ ðSþWIÞdt; (15)

where S denotes molecular mixing determined using a mixing
model that provides a closure for the dissipation of the scalar PDF,
and W is the chemical source term for scalar I. Equations (14) and
(15) imply the common assumption of equal rates of mixing for all
scalars and hence an appropriately high turbulent Reynolds num-
ber, although this does not preclude the possibility of S accounting
for differential diffusion. A key requirement of S is that it is local
in reference space, i.e., only those particles with values of n that are
close to the particle value n�p are able to influence S for particle p.
The modified Curl’s model44,45 is used for S in BLM–MMC, as
described in Sec. IID.
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Particles are transported in physical space according to

dx�pi ¼ u�pi dt; (16)

where u�pi must be consistent with the transport of n�p.

C. Binomial Langevin model

The form of the binomial Langevin model42 used in BLM-MMC
is for the joint-PDF of velocity and scalars.49 The transport equation
for the velocity ui is

du�pi ¼
1
su

a1dij þ a2bij
� �

u�pj � huji
� �

dt þ ðC0heiÞ1=2dxi; (17)

where dxi is an isotropic Wiener process and the Reynolds stress
anisotropy tensor is

bij ¼
hu0iu0ji
hu0ku0ki

� dij
3
: (18)

The applied modeling coefficients are C0 ¼ 2:1; a2 ¼ 3:7 and
a1 ¼ � 1

2þ 3
4C0

� �
� a2b

2
ll .

In BLM-MMC, the mixture fraction from the transport equation

dn�p ¼ Adt þ 2hNiBn
� �1=2

dxbin (19)

is used as the reference variable.
The drift and diffusion coefficients in Eq. (19) are

A ¼ Gn

smaj
n�p � hni
� �

; (20)

Gn ¼ � Kn 1� n0ð�pÞ

n0�

 !2* +2
4

3
5þ 1

8<
:

9=
;; (21)

Bn ¼ Kn 1� n0ð�pÞ

n0�

 !2
2
4

3
5; (22)

where

Kn ¼ K0 1� hn

jhnj þ 1

	 

; (23)

hn ¼ CK

n�p � hni
� �

u�pi � huii
� �

� hn0u0ii
h i

hn0u0ii
2
3
hkihn02i

; (24)

and K0 ¼ 2:1 and CK ¼ 0:76. Note that Eq. (24) provides the mecha-
nism for u�pi to be consistent with the transport of n�p. Furthermore,

n0ð�pÞ ¼ n�p � hni�p; (25)

n0� ¼
n0ð�pÞmax ; n0ð�pÞ > 0

n0ð�pÞmin ; n0ð�pÞ < 0
;

(
(26)

hni�p ¼ nminjn¼n�p þ hni � nminjn¼n�p
� �

�
nmaxjn¼n�p � nminjn¼n�p

nmaxjn¼hni � nminjn¼hni
; (27)

where nminjn¼n�p is the smallest possible value of n given the value n�p,
while nmaxjn¼n�p is the largest possible value.

The binomial Langevin Wiener process in Eq. (19) obeys42

dxbin ¼
b�MQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MQð1� QÞ
p ffiffiffiffiffi

dt
p ; (28)

where b is an integer sampled from the binomial distribution with
PDF Pbðb;M;QÞ, where M is the total number of trials and Q is the
probability of the bth trial being successful:

Pbðb;M;QÞ ¼ M
b

	 

Qbð1� QÞM�b; (29)

M ¼
n0ð�pÞmax � nd

� �
nd � n0ð�pÞmin

� �
2hNiBndt

; (30)

Q ¼ nd � n0ð�pÞmin

n0ð�pÞmax � n0ð�pÞmin

; (31)

nd ¼ n�p � Adt: (32)

Because both the scalar Z and its reference variable n are mixture
fractions, the mapping function is theoretically:

EðZjnÞ � XðnÞ ¼ n: (33)

If Z000 ¼ 0, then hZjni ¼ X and conditional MMC modeling is per-
formed; in BLM-MMC, Z000 is allowed to deviate from 0 and the mag-
nitude of Z000 is to be controlled.

The principal benefits of using BLM are (i) that it models the
mixture fraction PDF with a high degree of accuracy,49 so provides the
necessary basis for an accurate mapping of the mixture fraction Z and
hence high-fidelity modeling of the PDF of Z. In addition, (ii) BLM
ensures the necessary consistency between ui and n by solving the
joint-PDF of those variables.

D. Modified Curl’s model

If two stochastic particles have different weights w�p (i.e., each
stochastic particle has a different probability of existing, so a weighted
average of particle properties is required to obtain any type of average
of a variable), then the MC44,45 mixing of particles p and q for any var-
iable / between time step k and time step kþ 1 can be expressed as

/�pkþ1 ¼ /�pk þ
w�q

w�p þ w�q
a /�qk � /�pk

h i
; (34)

/�qkþ1 ¼ /�qk �
w�p

w�p þ w�q
a /�qk � /�pk

h i
; (35)

where 0 � a � 1 is the fraction of mixing (0 represents no mixing,
while 1 represents complete mixing to the weighted mean: Curl’s
model50) The amount by which variable /�p changes is proportional
to the (statistical) weight of the other particle w�q so that the
(weighted) mean of / is constant during the mixing process. The
weight w�p can be interpreted as the probability of particle p existing
relative to particle q.

The fraction of mixing (a) can be a random variable with a
PDF,44,45 denoted PaðaÞ. The simplest possible PDF is PaðaÞ
¼ dða� a0Þ, where a0 ¼ hai is a fixed value of mixing; another com-
monly used PDF is a uniform distribution (for hai ¼ 0:5). For these
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two PDFs, it has been found39 that mean statistics calculated by MC
(e.g., temperature) are independent of the shape of PaðaÞ if the value
of hai is the same. However, conditional statistics (e.g., stoichiometric
temperature) change for different shapes of PaðaÞ. The effect of the
value of hai and the shape of PaðaÞ are studied in Sec. IIID.

In the original Curl’s model50 and MC,44,45 a fraction of the par-
ticles mix in any given time step. This fraction can be defined as a
probability that particles mix, Pm, and is well-defined for MC because
a formula that is a function of PaðaÞ can be derived based on the con-
straint Eq. (2) and the closure model Eq. (4). The value of Pm for
MMC is less clear because it is a non-linear function of the parameters.
In other RANS implementations of MMC,30,31,51 the choice Pm ¼ 1 is
made, which constrains hai. In those models30,51 which have uniform
w�p; PaðaÞ ¼ dða� a0Þ, where a0 is a function of Dt and smin. The
other model31 (also used elsewhere52) allows particles to have unique
values of w�p, so a0 is also a function of w�p and w�q. Wandel39 deter-
mined that for homogeneous flows the optimal value is hai ¼ 1

2
because it generates the correct levels of conditional fluctuations. This
means that the value of Pm remains open; its effect on the flow is
investigated in Sec. III F.

E. Selection of particle pairs

It is a fundamental feature of MMC that the mixing must be
local. This is to model the physical behavior of a flow, where the field
is continuous in space and there is a limit to the distance an eddy can
transport a parcel of fluid within the duration of a computational time
step. For alternative RANS implementations of MMC,30,31,51,52 local-
ness is enforced by mixing particles that are neighboring in reference
space. An alternative approach is preferred here. Wandel53 has shown
that if the product npDt (where np is the total number of particles to
be mixed) is too small, then the transport of n is insufficient to reorder
the particles. The consequence is that the particles will reach the mean
value of the pair, which results in the cessation of mixing despite the
significant value of N. Even if npDt is sufficiently large to avoid par-
ticles mixing exclusively with another particle, the outcome of the mix-
ing process is not independent of npDt until npDt becomes sufficiently
large that Dn�p guarantees that particles will change their order.

The current approach follows Wandel39 and specifies that
particle q can only mix with particle p if it is closer than some length
scale L:

jn�p � n�qj � L: (36)

The particle pair is randomly selected from the pool of particles that
satisfy Eq. (36) and have not mixed within that time step; no further
bias is imposed. Equation (36) causes the model to be independent of
npDt for relatively low values of npDt. However, if L is too large, then
the localness of the model is lost.

To determine L, it has been suggested39 that the turbulent diffu-
sion length scale based on B, the turbulent diffusivity of n, be used:

L �
ffiffiffiffiffiffiffiffi
BDt
p

: (37)

This length scale is used here as it is expected that particles move in
n-space by L every time step. Therefore, during the interval Dt, the
parcels of fluid represented by the stochastic particles p and q have
been sufficiently close for sufficiently long enough to interact, (i.e.,
mix). The impact of L on BLM-MMC is studied in Sec. III E.

For compliance with the mapping function hZjni ¼ XðnÞ, the
following relationship between the dissipation rates is required:

hBi � hNi @Z
@n

	 
2
* +�1

; (38)

where hNi is obtained from Eq. (5). This formula is closed by model-
ing the derivative as @Z=@n � @hZjni=@n, then estimating it using
the gradient from a series of linear least squares curve-fits through
n-space,39 a technique which is used in all RANS implementations of
MMC. For BLM-MMC, the simplification @hZjni=@n ¼ 1 follows
from Eq. (33). However, in the current work the derivative was calcu-
lated numerically, instead of applying this simplification, because
hZjni 6¼ EðZjnÞ since Z000 6¼ 0.

FIG. 1. Ensemble mean of centerline Favre-statistics for different numbers of par-
ticles in the simulation. (a) Mean mixture fraction; (b) mixture fraction rms; (c) mean
temperature; and (d) temperature rms. BLM-MMC number of particles per cell:
np¼ 100, 	 	 	; 200, – –; 400, —; 800, – 	. Experiment,27 
.
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III EFFECT OF INDEPENDENT PARAMETERS

In this section, the sensitivity of BLM-MMC to the independent
parameters is explored, preceded by a description of the experimental
case used for the study (Sec. IIIA). Numerical details that were kept
the same throughout the simulations and evidence of numerical con-
vergence are provided. The chemistry was solved using direct integra-
tion with the applied systematically reduced chemical mechanism
featuring 48 species (28 in steady-state) and 300 reactions.20

A. Test case

The experimental case used for the parametric study is a
methane-air jet27 containing CH4 33% v.v., with a velocity of 100 m/s

FIG. 2. Scatter plot of temperature vs mixture fraction for BLM-MMC for the cases shown in Fig. 1. There are 2500 randomly selected data points shown at various stations.
Conditional temperature hT jZi: —. Equilibrium (upper) and frozen (lower) limits, and stoichiometric mixture fraction (vertical line): —.

FIG. 3. Scatter plot of mixture fraction vs reference variable for BLM-MMC. The val-
ues of np and stations align with Fig. 2. There are 2500 randomly selected data
points. Theoretical —; linear least squares curve fit – –.

FIG. 4. Normalized scatter Eq. (13) for different numbers of particles. The lines rep-
resent different stations: z=d ¼ 30, 	 	 	; 40, – –; 50, —; 70, – 	.
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and pipe diameter of 4.57mm, producing a jet Reynolds number
Re ¼ 28; 000; the fuel stream was at room temperature. The coflow
was vitiated air with a lean mixture of H2 at an equivalence ratio of
0.4; this mixture was completely burned upstream of the coflow
region, and flowed at 5.4 m/s at a temperature of 1350K. Because igni-
tion of the jet necessitates sufficient mixing with the coflow to have a
combustible mixture above the autoignition temperature, this configu-
ration produces a lifted flame. As autoignition is dependent on the tur-
bulent mixing, the flame liftoff height is very sensitive to both the fluid
mechanics and the chemistry of the system. Accordingly, the ability to
accurately model local extinction/reignition behavior is critical to cor-
rectly predict the behavior of this flame.

This experiment27 produces a relatively short jet core (approxi-
mately 5 jet diameters long) before the centerline starts to be influ-
enced by the coflow, with a sudden jump in the mixture fraction rms
that starts to decay after 20 jet diameters and continues decaying until
after the flame. The mean temperature experiences a reasonably steady
rise (the rate diminishes once the mixture fraction rms starts to decay)
until the large increase through the flame front (which occupies the
region approximately 40–60 jet diameters downstream of the jet exit),
followed by a steady value. The temperature rms has a sudden rise that
mirrors the mixture fraction rms rise, then remains relatively constant
until rapidly rising at the start of the flame front, with a large peak in
the middle of the flame front and a decay back to the pre-flame levels
at the end of the flame front. Models typically can predict the mixture
fraction statistics and the centerline mean temperature reasonably
well, but predicting the locations of the rise and/or fall of the centerline
temperature rms within the flame front is very challenging.

FIG. 5. Ensemble mean of centerline Favre-averaged mass fraction for the cases
shown in Fig. 1. (a) Molecular oxygen (O2); (b) hydroxyl radical (OH); and (c)
carbon monoxide (CO). Lines: BLM-MMC; experiment,27 – 
.

FIG. 6. Liftoff height of flame for variations in np. BLM-MMC, —; Experiment27

H=d ¼ 35.

FIG. 7. Confidence interval for np¼ 400 particles per cell. (a) Mean mixture frac-
tion; (b) mixture fraction rms; (c) mean temperature; and (d) temperature rms. BLM-
MMC: ensemble mean, —; 95% confidence interval, – –. Experiment,27 
.
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The computer code used to solve the case uses a parabolic imple-
mentation and has been successfully used previously33,54 to simulate
the experimental case. The axisymmetric domain was discretized using
80 cells in the radial direction, with a concentration of cells in the
region of the jet core, and the width of the domain increasing with
downstream distance. On average, there were 400 particles per cell
with an ensemble of 10 simulations.

B. Base case numerical settings and convergence

The base case numerical settings (identified to be optimal) are
defined in Table I, and this configuration is shown as a solid red line,
in all figures for ease of comparison.

To verify numerical convergence of the base case settings, the
effect of the number of particles per cell was tested, by comparing 100,
200, 400, and 800 particles per cell. The centerline Favre-averaged
results (Fig. 1) show that there is significant variation in results for
np¼ 100 particles per cell. Larger numbers produce similar results
with 400 and 800 particles per cell showing little difference. This
behavior is caused by a bias introduced by the rapid burning of par-
ticles that are close to stoichiometry for smaller sample sizes (Fig. 2).

The mapping of the mixture fraction f to the reference variable n
governs the entire mixing process, and is shown in Fig. 3. The scatter,
which is measured using Eq. (13), is close to fully converged for 400
particles per cell (Fig. 4).

Considering the mass fraction of species in Fig. 5, the inverse of
O2 has the same behavior as the mean temperature. The behavior of
OH is similar to the mean temperature except for not significantly
changing prior to the flame front and some production far down-
stream; CO is similarly not produced in significant quantities

FIG. 9. Mixture fraction PDFs at various stations for CZ in Fig. 8. Lines: BLM-MMC;
Experiment,27 – 	. The arrow indicates the direction of increasing CZ.

FIG. 8. Ensemble mean of centerline Favre-statistics for different values of CZ. (a)
Mean mixture fraction; (b) mixture fraction rms; (c) mean temperature; and (d) temper-
ature rms. BLM-MMC: CZ ¼ 0:75, 	 	 	; 1.0, —; 1.25, – –; 1.5, – 	. Experiment,27 
.

TABLE I. Parameters identified as optimal for PaðaÞ ¼ dða� a0Þ and 400 particles
per cell. These parameters are defined to be the “base settings.” The number of sim-
ulations in the ensemble for each case is ne.

Parameter CZ a0 L Pm ne

Value 1.0 0.5
ffiffiffiffiffiffiffiffi
BDt
p

0.07 10
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upstream of the flame front, but is almost completely consumed by
the end of the domain. The sensitivity of the species to the number of
particles is similar to the mean temperature.

The flame liftoff height is calculated27 by taking the ensemble
average of the axial locations where the centerline mean mole fraction
of C2H4 reached 100 ppm and C2H2 reached 2 ppm. Increasing the
number of particles slightly increased the liftoff height toward an
asymptote (Fig. 6), indicating that the system is close to convergence.
While the computed liftoff height of H=d ’ 42 is higher than the
experimental value of 35, Cao et al.55 showed that the liftoff height is
exceptionally sensitive to initial temperature of the coflow with a
decrease in 10K doubling the value of H/d. Hence, no attempt was
made to reduce the discrepancy. For 400 particles per cell, the location
of the threshold value of C2H4 varied by 61:5 z=d within the ensem-
ble, while the location varied by 64 z=d for C2H2; therefore, stochastic
variability is not a principal concern.

To numerically verify convergence, calculations were made for
each number of particles to determine the confidence interval:

CI � �x6ts=
ffiffiffiffiffi
ne
p

; (39)

where �x is the ensemble mean, t is the chosen Student’s t-value, s is the
ensemble standard deviation, and ne is the number of simulations in
the ensemble. A confidence level of 95% was chosen; as there were 10
simulations per ensemble, there are 9 degrees of freedom; therefore,
the two-sided Student’s t-value is 2.262. The confidence interval is
shown for 400 particles per cell in Fig. 7, where the results for np¼ 800
lie within the 95% confidence interval; therefore, convergence has
been verified. As a consequence, np¼ 400 particles per cell will be used
in the remainder of this paper.

It should be noted that the results presented in Fig. 7 represent
the best match to the experimental data of any simulation that has
been published, including LES and RANS.33 The improvement over
previous results using BLM–MMC33 is due to the selection of CZ,
which has been decreased from 2.0 to 1.0.

C. Effect of turbulent-scalar timescale ratio, CZ

The primary variable that needs to be considered is CZ because it
is a macro-parameter that is common for all turbulent combustion
models. Because it is defined to control the dissipation rate of the
unconditional fluctuations of mixture fraction, Eq. (4), the standard
deviation should monotonically decrease as CZ increases (with all
other parameters fixed, as per Table I). This is shown to be the case
throughout the domain for both mixture fraction and temperature in
Fig. 8, where increasing CZ causes a translation downwards. There is
no significant effect on the mean mixture fraction, Fig. 8(a), of varying
CZ (or any of the other parameters). However, there is a small but sig-
nificant effect on the mean temperature, Fig. 8(c), of increasing CZ: a
slight decrease in the flame thickness (i.e., a greater rate of increase
through the flame), with the center of the flame approximately in
the same location. This behavior is mirrored in the temperature rms,
Fig. 8(d).

The mixture fraction PDF (Fig. 9) is a key indicator of the perfor-
mance of the model because the distributions of mixture fraction con-
trol every aspect of non-premixed combustion. In general, the model
predicts the experimental behavior very well for the upstream loca-
tions, with discrepancies in the downstream locations. It can be con-
cluded that BLM-MMC produces one of the desired outcomes of

FIG. 10. Scatter plot of temperature vs mixture fraction for BLM-MMC. Each column has the same values of CZ as shown in Fig. 8. There are 2500 randomly selected data
points shown at various stations. Conditional temperature hT jZi: —. Equilibrium (upper) and frozen (lower) limits, and stoichiometric mixture fraction (vertical line): —.
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MMC of providing a viable, accurate model for PZðZÞ. For increasing
CZ, it is unsurprising that the maximum possible value decreases, since
those extreme values are mixed more intensely toward the mean.
Because the width of the PDF narrows with increasing CZ, the local
maxima away from the coflow (i.e., located at f> 0) becomes larger,
but the general shape is preserved.

Because the principal effect of CZ is on the mixture fraction rms,
there is little impact on the relationship between temperature and mix-
ture fraction (Fig. 10). The only noticeable variation is that the highest
value of mixture fraction along the frozen line decreases with increas-
ing CZ due to the more intense mixing (as indicated by the PDFs in
Fig. 9).

Increasing CZ increases the mixing intensity, thereby increasing
the correlation between the mixture fraction f and reference variable n
(Fig. 11). Meanwhile, the scatter slowly decreases with distance down-
stream, Fig. 12(a), because the mixture fraction distribution becomes
narrower (Fig. 9). Note that Fig. 12 shows the data for the timescale
ratio between the conditional fluctuations and unconditional fluctua-
tions, Eq. (13), and is much larger than the value of 1/8 originally

proposed38 and used as the standard value in most MMC simulations.
Instead, the timescale ratio needs to decay with distance downstream,
which is in agreement with the theory proposed by Wandel39 that the
timescale ratio should not be a constant.

The effect of CZ on the species (Fig. 13) is similar to the effect of
the number of particles (c.f. Fig. 5), although when CZ < 1 the species
mass fractions are more sensitive to CZ. The liftoff height is largely
insensitive to CZ, Fig. 14(a), because CZ only significantly affects the
mixture fraction rms.

D. Effect of Modified Curl’s mixing amount, hai
The mixing amount a, defined in Sec. IID, is the amount that

two particles mix, ranging from 0 representing no mixing to 1 repre-
senting complete mixing. A d-function PDF for PaðaÞ (with hai ¼ a0)
is tested for different values of a0; these are compared with a uniform
distribution for a, with hai ¼ 0:5 directly compared with a0 ¼ 0:5.
All other parameters were fixed according to Table I.

FIG. 12. Normalized scatter Eq. (13) for
different parameters of BLM-MMC. (a) CZ;
(b) a where � shows uniform random for
Pa; (c) L where n ¼ neighbor and
b ¼

ffiffiffiffiffiffiffiffi
BDt
p

; (d) Pm. The lines represent
different stations: z=d ¼ 30, 	 	 	; 40, – –;
50, —; 70, – 	.

FIG. 13. Ensemble mean of centerline Favre-averaged mass fraction for CZ in Fig. 8.
(a) Molecular oxygen (O2); (b) hydroxyl radical (OH); and (c) carbon monoxide (CO).
Lines: BLM-MMC; Experiment,27 – 
.

FIG. 11. Scatter plot of mixture fraction vs reference variable for BLM-MMC. The
values of CZ and stations align with Fig. 10. There are 2500 randomly selected
data points. Theoretical —; linear least squares curve fit – –.
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As expected, the mean mixture fraction is not influenced by this
parameter, Fig. 15(a). Increasing hai decreases the peak value of the
mixture fraction rms, Fig. 15(b); however, this is not a global effect,
since the values converge downstream of the flame front. As a conse-
quence, the mixture fraction PDFs are almost identical for the stations
considered. Although the flame front commences at approximately
the same location, Fig. 15(c), the flame narrows with increasing hai
because the intensity of mixing is increased; hence, cold particles are
more likely to become warmer than the autoignition temperature after
mixing. The temperature rms, Fig. 15(d), behaves similarly to both the
mixture fraction rms (with the same impact on the initial peak value
followed by convergence) and the mean temperature (with a slight
delay to the flame front commencement, but a significant decrease in
flame thickness with increasing hai).

The effect of PaðaÞ is relatively minor. The uniform distribution
causes a slight increase in the peak value of mixture fraction rms, and
a marginal decrease downstream, while it produces a slight delay to
the flame front commencement with a corresponding decrease in
flame thickness (the end of the flame front is only marginally delayed).
It seems that the particles which mix by a smaller amount have a
slightly greater influence on the results than those particles which mix
by a greater (equivalent) amount.

The impact of hai on the temperature distribution is clearly seen
in Fig. 16. At low values of hai, the frozen and equilibrium particles
are essentially segregated for the duration of the simulation, so the fro-
zen particles slowly warm as a group toward the autoignition tempera-
ture. In other words, for low values of hai, no local extinction/
reignition occurs. In contrast, at high values of hai, there is excessive
extinction/reignition, as the extinguishing particles cause frozen par-
ticles to quickly reach the autoignition temperature. This creates a con-
tinuum of temperatures for a given mixture fraction, as all the fluid
progresses to equilibrium. At the intermediate value of mixing
(hai ¼ 0:5), there is some extinction, but those extinguishing particles
quickly reignite, while the frozen particles are strongly drawn toward
the autoignition temperature. The influence of PaðaÞ is mostly for lean
mixtures, where there is more segregation of the particles in frozen
and equilibrium states for the uniform distribution. At z=d ¼ 40, the
d-function produces more of a continuum of temperatures, while at
z=d ¼ 50, it leaves very few particles below the autoignition
temperature.

The mapping from the MMC reference variable n to the mixture
fraction f for the different amounts of mixing is shown in Fig. 17.
Figure 12(b) shows that there is a decrease in scatter with increase in
hai, while the distribution of Pa has negligible impact. This is because
the increase in the average intensity of each mixing event causes par-
ticles to approach a more similar value of mixture fraction.

FIG. 15. Ensemble mean of centerline Favre-statistics for different amounts of mix-
ing. (a) Mean mixture fraction; (b) mixture fraction rms; (c) mean temperature; (d)
temperature rms. BLM-MMC: a0 ¼ 0:25, 	 	 	; uniform random number
(hai ¼ 0:5), – –; a0 ¼ 0:5, —; 1.0, – 	. Experiment,27 
.

FIG. 14. Comparison of liftoff heights for
different parameters of BLM-MMC. The
dashed line represents the experimental
value.27 (a) CZ; (b) a where w shows
uniform random for Pa; (c) L where
n ¼ neighbor and b ¼

ffiffiffiffiffiffiffiffi
BDt
p

; (d) Pm.
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FIG. 16. Scatter plot of temperature vs mixture fraction for BLM-MMC. Each column has the same values of hai as Fig. 15. There are 2500 randomly selected data points
shown at various stations. Conditional temperature hT jZi: —. Equilibrium (upper) and frozen (lower) limits, and stoichiometric mixture fraction (vertical line): —.

FIG. 17. Scatter plot of mixture fraction vs reference variable for BLM-MMC. The
values of a and stations align with Fig. 16. There are 2500 randomly selected data
points. Theoretical —; Linear least squares curve fit – –.

FIG. 18. Ensemble mean of centerline Favre-averaged mass fraction for the differ-
ent mixing amounts a in Fig. 15. (a) Molecular oxygen (O2); (b) hydroxyl radical
(OH); and (c) carbon monoxide (CO). Lines: BLM-MMC; Experiment,27 – 
.
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The mass fractions of species (Fig. 18) show a wider band of vari-
ation for the range of parameter values considered than discussed
above. The species O2, OH, and CO are sensitive within the flame
region. A low a leads to underpredictions of CO and OH. The liftoff
height, Fig. 14(b), is largely insensitive to the mixing amount for
hai � 0:5, but becomes more sensitive for small values of hai.

E. Effect of the mixing distance, L
Maintaining locality of mixing is fundamental to accurately pre-

dict local extinction/reignition. Four different limits L, Eq. (36), were
applied to restrict the availability of particles for pairing: the
“neighbour” (i.e., the particle closest in reference space), and three

distances based on the diffusion length scale; all other values were fixed
according to Table I.

Figure 19 shows that the effect of increasing L is broadly similar
to increasing CZ: it causes a global decrease in the rms of both mixture
fraction and temperature. However, this is not consistent across the
whole domain. Choosing the neighbor causes the start of the flame
front to advance significantly, Figs. 19(c) and 19(d), with an equal
amount of stretching of the flame, since the downstream edge of the
flame remains approximately the same. Considering the different dis-
tances based on the diffusion length scale, the peak value of mixture
fraction rms, Fig. 19(b), is less sensitive to L than CZ, while the flame
front recedes slightly more with increasing L than the end of the flame
advances. The inevitable consequence of the large variations in mixture
fraction rms is that the effect on the mixture fraction PDF (Fig. 20) is
similar to CZ. As L increases, the maximum possible value of mixture
fraction decreases, with the selection of the neighbor typically signifi-
cantly over-predicting this value, and thereby flattening the PDF so
that there is no discernible local maxima away from the coflow.

The impact of the mixing distance on the temperature is mostly
for lean mixtures (Fig. 21), where increasing L decreases the rate at
which particles reach the autoignition temperature. This is because par-
ticles can interact with particles whose composition is more different, so
they are more likely to mix to a composition which is below the autoig-
nition temperature for that new (more different) mixture fraction.

Increasing the range of values of n that are available for mixing
(thereby increasing the pool of particles available for mixing)

FIG. 19. Ensemble mean of centerline Favre-statistics for different mixing distances
L. (a) Mean mixture fraction; (b) mixture fraction rms; (c) mean temperature; and
(d) temperature rms. BLM-MMC: L¼ neighbor, 	 	 	;

ffiffiffiffiffiffiffiffi
BDt
p

, —;
ffiffiffiffiffiffiffiffiffiffi
2BDt
p

, – –;
2
ffiffiffiffiffiffiffiffiffiffi
2BDt
p

, – 	. Experiment,27 
.
FIG. 20. Mixture fraction PDFs at various stations for values of L in Fig. 19. Lines:
BLM-MMC; Experiment,27 – 	. The arrow indicates the direction of increasing L.
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significantly decreases the scatter in the mixture fraction, Figs. 22 and
12(c). The reason why the scatter is so much higher when the immedi-
ate neighbor is selected is because the equivalent behavior to stranding
in EMST occurs: particles are able to mix excessively with a small sub-
set of particles, so there is less opportunity for the particles to change
their values significantly. This process can be likened to in-breeding.

The mass fractions in Fig. 23 show similar trends to a0 in Fig. 18
except OH is sensitive further downstream of the flame as well.
Mixing particles too close together causes the reactions to start too
soon because there is insufficient influence of other particles; this sub-
sequently suppresses the secondary combustion for z=d > 70, which
assists in consuming the CO. When the distance between particle pairs
is evaluated as a function of BDt, the liftoff height is largely insensitive
to L, Fig. 14(c), although mixing neighbors advances the flame
significantly.

F. Fraction of particles mixed per time step, Pm

The remaining parameter in the BLM-MMC model is the frac-
tion of particles that mix each time step, defined by the probability of
particles mixing,Pm. There is consistent behavior of the model for val-
ues of Pm that are close to the optimal value (for this case) of 0.07
(Fig. 24); the only discrepancy for the relatively large value of 0.5 is the
peak mixture fraction rms, Fig. 24(b). In general, there is a modest
impact of Pm on the mixture fraction rms (hence also the mixture
fraction PDF), with an increase in Pm causing lower values of mixture
fraction rms upstream of the flame front and higher values of the mix-
ture fraction rms downstream of the flame front. The value of Pm

FIG. 21. Scatter plot of temperature vs mixture fraction for BLM-MMC. Each column has the same values of L as Fig. 19. There are 2500 randomly selected data points
shown at various stations. Conditional temperature hT jZi: —. Equilibrium (upper) and frozen (lower) limits, and stoichiometric mixture fraction (vertical line): —.

FIG. 22. Scatter plot of mixture fraction vs reference variable for BLM-MMC. The
values of L and stations align with Fig. 21. There are 2500 randomly selected data
points. Theoretical —; Linear least squares curve fit – –.
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does not significantly affect the flame thickness, Figs. 24(c) and 24(d),
but increasing Pm does significantly advance the flame, while also
skewing it. Besides Pm ¼ 0:5, the relative variations of Pm compared
to the base case were quite significant, and comparable to the relative
variations of CZ.

The effect of increasing how many particles mix within a given
time step is to increase the rate at which particles reach the autoigni-
tion temperature (Fig. 25), and also shifts the extinction/reignition
events to richer mixtures. This does not significantly impact the par-
ticles close to equilibrium, except that increasing Pm causes particles
at higher values of mixture fraction to approach equilibrium. The
extreme value of Pm ¼ 0:5 causes all but the richest mixtures to reach
equilibrium very early at z=d ¼ 40. However, significant mixing still
occurs downstream of this location, so some of the fuel particles
remain below the autoignition temperature further downstream, even
as they approach stoichiometry.

The fraction of particles mixing does not significantly influence
the scatter in the mixture fraction, Figs. 26 and 12(d), because the
same behavior is repeated for each particle.

The mass fractions shown in Fig. 27 have a wider range of
values than previous parameters because the values of Pm differ by
an order of magnitude. The mass fractions of O2 and CO are very
distinct compared to the lower sensitivities for the other parame-
ters. The lowest value of Pm produces unique results because of the
significant delay due to insufficient particles achieving a combusti-
ble mixture. Other than this difference, Pm behaves similarly to the
other parameters. There is a clear relationship between Pm and
liftoff height, Fig. 14(d), and the liftoff height is sensitive to this
parameter.

IV. CONCLUSIONS

This paper investigated the effects of the various free parameters
within the generalized binomial Langevin–multiple mapping condi-
tioning model using the binomial Langevin mixture fraction as the ref-
erence variable for MMC (BLM-MMC). The sensitivity of the model
was tested using a lifted flame that displays significant local extinction/
reignition behavior. Recommendations for how the parameters should
be specified follow. The model for the dissipation rate of the mixture
fraction (CZ) should be specified first, and should take the standard
value46 of 1.0; this model only significantly impacts the mixture frac-
tion rms by causing a global decrease as CZ increases, with the temper-
ature rms affected in the same manner, but with reduced sensitivity.

FIG. 24. Ensemble mean of centerline Favre-statistics for different fractions of par-
ticles mixing Pm. (a) Mean mixture fraction; (b) mixture fraction rms; (c) mean tem-
perature; and (d) temperature rms. BLM-MMC: Pm ¼ 0:05, 	 	 	; 0.07, —, 0.09, – –;
0.5, – 	. Experiment,27 
.

FIG. 23. Ensemble mean of centerline Favre-averaged mass fraction for the differ-
ent mixing distances L in Fig. 19. (a) Molecular oxygen (O2); (b) hydroxyl radical
(OH); and (c) carbon monoxide (CO). Lines: BLM-MMC; Experiment,27 – 
.
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FIG. 25. Scatter plot of temperature vs mixture fraction for BLM-MMC. Each column has the same values of Pm as Fig. 24. There are 2500 randomly selected data points
shown at various stations. Conditional temperature hT jZi: —. Equilibrium (upper) and frozen (lower) limits, and stoichiometric mixture fraction (vertical line): —.

FIG. 26. Scatter plot of mixture fraction vs reference variable for BLM-MMC. The
values of Pm and stations align with Fig. 25. There are 2500 randomly selected
data points. Theoretical —; Linear least squares curve fit – –.

FIG. 27. Ensemble mean of centerline Favre-averaged mass fraction for the differ-
ent fractions of particles mixing Pm in Fig. 24. (a) Molecular oxygen (O2); (b)
hydroxyl radical (OH); (c) carbon monoxide (CO). Lines: BLM-MMC; Experiment,27

– 
.
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The mean amount of mixing used in the Modified Curl’s model
should be the intermediate value 0.5: decreasing the intensity generates
too little local extinction by significantly advancing ignition, while
increasing it causes the extinction/reignition process to occur too
quickly due to retarded ignition. The results appear to be largely insen-
sitive to the distribution used for the amount of mixing. The maxi-
mum mixing distance between particles, L, influences the results in a
similar fashion to CZ, and the value L ¼

ffiffiffiffiffiffiffiffi
BDt
p

appears to be optimal.
Although the diffusion length scale (the mean distance a particle
moves in reference space within a time step) is physically

ffiffiffiffiffiffiffiffiffiffi
2BDt
p

, it
appears that L needs to be smaller to reflect the mean distance over
which particles interact within a time step. The fraction of particles to
be mixed, Pm, remains an unclosed parameter, and only the combus-
tion behavior is sensitive to this parameter (by contrast, the mixture
fraction statistics are relatively insensitive). Increasing Pm advances
the flame by accelerating the ignition process. For the current case, the
value of Pm ¼ 0:07 was determined to be optimal, but this was only
determined a posteriori and is not expected to be a universal value.
The ratio between the minor and major dissipation timescales varied
with distance downstream and was much larger than the constant
value of 1/8 that is commonly used.

Future work will investigate the methods for specifying Pm either
a priori or in situ. Forcing the simulations to achieve a specified ratio
between the minor and major dissipation timescales by controlling the
mixing to achieve the required ratio of conditional and unconditional
fluctuations is the best prospect for closing Pm. Further work will also
investigate the impact of age bias when selecting particle pairs, which
is useful when modeling slow-chemistry effects such as soot and NOx

formation.
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