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Abstract—For Human Action Recognition tasks (HAR), 3D
Convolutional Neural Networks have proven to be highly effec-
tive, achieving state-of-the-art results. This study introduces a
novel streaming architecture based toolflow for mapping such
models onto FPGAs considering the model’s inherent charac-
teristics and the features of the targeted FPGA device. The
HARFLOW3D toolflow takes as input a 3D CNN in ONNX
format and a description of the FPGA characteristics, generating
a design that minimizes the latency of the computation. The
toolflow is comprised of a number of parts, including (i) a
3D CNN parser, (ii) a performance and resource model, (iii) a
scheduling algorithm for executing 3D models on the generated
hardware, (iv) a resource-aware optimization engine tailored for
3D models, (v) an automated mapping to synthesizable code
for FPGAs. The ability of the toolflow to support a broad
range of models and devices is shown through a number of
experiments on various 3D CNN and FPGA system pairs.
Furthermore, the toolflow has produced high-performing results
for 3D CNN models that have not been mapped to FPGAs
before, demonstrating the potential of FPGA-based systems in
this space. Overall, HARFLOW3D has demonstrated its ability
to deliver competitive latency compared to a range of state-of-
the-art hand-tuned approaches being able to achieve up to 5x
better performance compared to some of the existing works.

I. INTRODUCTION

The growing focus on video-related applications such as
video surveillance, autonomous driving, and patient moni-
toring has necessitated the development of algorithms that
integrate and take into account the temporal domain. 3D
CNNs, which are often employed to deal with video and
volumetric data, augment their learning capacity by extracting
input features related to this additional dimension. Due to
the temporal dimension, 3D CNNs often have larger com-
putational and memory requirements compared to 2D CNNss.
Particularly, 3D CNNs have exhibited high performance in the
task of HAR, enabling the interpretation of human motion
across video frames and the detection of various activities
without the need for specialised time domain approaches (e.g.
LSTMs). Whilst vision transformers have recently attained
state-of-the-art accuracy, their operation requires orders of
magnitude more GFLOPs comparatively.

Devices such as GPUs, FPGAs, and ASICs have been
utilised to address the high processing requirements of 3D
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CNNs and deliver high-performance systems. FPGAs are
particularly attractive as an acceleration platform since they
are more flexible than ASICs and more energy efficient than
GPUs. The rapid growth and increasing complexity of 3D
CNN model designs necessitate high-quality hardware designs
that support short design cycles for new 3D CNN model
specifications. The goal of this work is to provide an automated
way for deploying 3D CNN models onto FPGA systems,
with an emphasis on minimising the execution latency. The
diversity of the supported models and devices makes it suitable
for a number of applications and enables users to select the
most appropriate 3D CNN model and device according to their
unique demands and budget.

3D CNNs have been studied and developed for quite some
time, and the topic of HAR is gaining attention year by
year. A few studies have focused on mapping 3D CNNs to
FPGAs, but the vast majority of them propose hand-tuned
hardware architectures for specific 3D CNN models. While
FPGA toolflows for 2D CNNs are well-researched [1], [2],
there is an absence of 3D CNN FPGA toolflows. The distinct
characteristics of 3D CNNs, such as their large workloads
and significantly increased memory and resource requirements,
require such toolflows.

Figure [I] displays the pareto-front both for prior works as
well as the proposed toolflow, showing their achieved accuracy
and latency. HARFLOW3D designs account for most of the
points on the pareto-front, demonstrating the tooflow’s ability
to generate pareto-optimal designs for a variety of 3D CNN
models on HAR. The pareto-optimal relationship between
accuracy and latency is an extremely desirable feature for
a toolflow, as it allows a designer to trade-off their model’s
accuracy for greater performance in a fine-grain manner.

The key contributions of this paper are the following:

o Introduction of HARFLOW3D, the first 3D CNN to
FPGA toolflow, which supports a variety of models and
devices, achieving competitive results compared to prior
hand-tuned works.

« An optimization strategy accompanied by a set of trans-
formations, providing tailored designs based on the char-
acteristics of each 3D CNN model layer.
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Fig. 1: Pareto front on 3D CNNs: Latency over Accuracy.
Designs produced by the proposed HARFLOW3D toolflow
dominate the pareto front.

¢ A set of highly-tuned parameterized building blocks that
support runtime parameterization, allowing for signifi-
cantly lower latency over the non-parameterized equiv-
alent.

o A rich evaluation with experimental results across mul-
tiple devices and multiple models, including state-of-the
art 3D CNN HAR models that have not been addressed
before, setting the landscape for FPGA-based HAR model
computation.

II. RELATED WORK

Whilst 3D CNNs have been around for a while, there have
been few studies that focus on accelerating these networks
on FPGAs. The majority of these studies have focused on
older 3D CNNs such as the C3D [3] model, whose accuracy
falls short of state-of-the-art models. Fan et al. [4]-[|6] have
released a series of publications about accelerating 3D CNNs
for human action recognition using FPGAs. In their first
work [4]], they introduced the F-C3D hardware architecture for
accelerating the C3D model, which is capable of supporting
multiple 3D convolutional layers and includes solutions for
resolving some of the challenges posed by 3D CNNs, such as
higher processing and memory demands. Additionally, they
demonstrated the portability of their design to other FPGA
devices. In a following publication [5]], they presented an
analytical model and a tool for optimising the hardware archi-
tecture based on device specifications, accuracy requirements,
and the usage of block floating point arithmetic precision to
minimise accuracy loss. Their evaluation of the design was
likewise performed on the C3D model. In their most recent
publication [6], they proposed E3DNet, an effective 3D CNN
based on the proposed 3D-1 bottleneck building block. The
F-E3D hardware implementation of E3DNet achieves a real-
time execution time of 35,3 milliseconds per frame and scores
85.1% accuracy on the UCF101 [7]] benchmark.

Based on the similarities between the 2D and 3D convolu-
tion computing patterns, Liu et al. [8] presented a hardware
design to accelerate both 2D and 3D CNNs. They sought to

turn CNN convolutions into matrix multiplication operations,
and concentrated on minimising memory usage to overcome
the challenges associated with replicating feature-maps. Ap-
plying an analytical model, they configured the accelerators
for maximum resource utilisation and evaluated their design
using the C3D model. Shen et al. [9] developed a template-
based architecture based on the Winograd transform [10]
that is capable of handling both 2D and 3D CNNs. In
addition, they developed an analytical method for quickly
exploring the design space for mapping 2D and 3D CNNs
onto FPGA accelerators and validated their design with the
C3D model. Sun et al. [11]] applied weight pruning to the
C3D and R(2+1) [[12] 3D CNN architectures using a blockwise
approach. Their hardware architecture, which is based on the
Alternating Direction Method of MultiplierstADMM), enables
the acceleration of 3D CNNs with minimal accuracy loss as
compared to their un-pruned counterparts.

Teng et al. [13] presented a design space exploration
strategy for optimizing memory access in 3D CNN mod-
els accelerated on FPGAs. The authors proposed a non-
overlapping data tiling method for off-chip memory access
and explored on-chip data reuse using different loop ordering
strategies. They further proposed a hardware architecture that
can support these strategies. Their experiments showed that the
proposed approach on the C3D model achieved state-of-the-
art performance compared to prior FPGA implementations at
that time. Khan et al. [[14] investigated various 3D CNN design
parameters for resource-limited platforms, focusing on the 13D
model, a 70-layer deep network for video action recognition.
They adjusted the feature-map word lengths and weights in
a pre-trained model, which reduced its complexity without
affecting its accuracy. They proposed a data tiling technique
that utilizes all four dimensions of video data and improves
memory bandwidth while reducing DRAM accesses. Based on
these optimizations, the proposed FPGA accelerator achieves
684 GOPs/s for 32-bit floating point and 1.29 TOPs/s for 8-bit
integer implementations with a 2% accuracy drop.

The majority of research has been largely focused on the
C3D [3]] model for HAR, which was introduced in 2013. The
model’s architecture is rather simple, consisting of only 8
convolutional layers, while it performs poorly in terms of ac-
curacy when compared to recent SoA models in HAR (85.2%
in UCF101 vs. the current SoA’s 98.6%). In terms of design
complexity, an analogy can be made to AlexNet [15], but in
three-dimensional space. Since the aforementioned approaches
are mostly focused on the design of the specific C3D model,
it is not clear how they can be extended, evaluated, or applied
to the more complicated networks of modern state-of-the-
art HAR models. The proposed toolflow addresses this by
supporting a broad variety of recent 3D CNN designs, such
as X3D [16] and Slowonly [17] among others, which include
more complex ResNet3D-wise architectures as well as older
models like C3D for direct comparison with prior studies.



ITII. PROPOSED ARCHITECTURE

This section outlines the basics of the hardware-level ar-
chitecture of the toolflow’s generated designs. The suggested
toolflow adheres to the same streaming architecture principles
as fpgaConvNet [18], which is based on the Synchronous
Data-Flow (SDF) computation model.

A. Neural Network Model Parser

To facilitate the process of incorporating various neural
network (NN) models into the toolflow, a dedicated NN model
parser has been developed. This parser is designed to read
and map NN models in the ONNX format, a standardized
format supported by many deep learning frameworks such
as PyTorch and TensorFlow, into the format required by the
toolflow. The 3D CNN model, can be described as a Directed
Acyclic Graph (DAG), which is denoted as M = {l1,...,11},
where ; is the 7*" layer within the set of model layers L and is
expressed as an execution node of M. This is then translated
into a Synchronous Data-Flow Graph (SDFG) which is also
directed and acyclic, denoted as G with N computation (or
hardware) nodes, where G = {n1,...,nx}. The core concept
of synchronous dataflow modelling is that each node fires
whenever data is available at its inputs, resulting in a paradigm
of data-driven execution. This format is compatible with the
rest of the toolflow’s tools such as the latency optimiser and
the toolflow’s resource and performance models.

B. Building Blocks Description

Each layer of a NN model accepts input data to be processed
and returns output data once its operation has been completed.
These inputs and outputs are described as feature-maps in
and out respectively. The maximum feature-map dimensions
supported for a given hardware node n are described as below.

in __ in in in in
Sn _{Hn 7Wn ’Dn 7Cn

out __ out out out out
Sn _{Hn 7Wn 7Dn ’On

where HI/out yyin/out  pinfout and ¢ are the spatial
dimensions (Height, Width), followed by the temporal dimen-
sion (Depth), followed by the number of Channels for the input
and output respectively. The size of the feature-map in regards
to the number of elements is referred to as |S|. The S, and
Sout parameters exist for all of the layers as part of their pa-
rameter space definition. Alongside functional parameters, the
hardware accepts different fixed-point precisions at compile-
time. The rest of the parameters of the layers, and their
intermediate representation definitions are detailed in Table ]
and a description is provided below. The runtime parameters
are differentiated from compile-time parameters using the A
symbol above a parameter. Computation node parameters are
subscripted with n, and execution node parameters with /.

« Convolution 3D
Due to the necessity to support a range of 3D CNN mod-
els, the toolflow’s convolution building block is designed
to accommodate the following types of convolution oper-
ation: (a) Full convolution KP x K x KW (b) Spatial

TABLE I: Compile time parameters for node n in the hardware
graph G, for each layer type.

Convolution

Fn Number of filters (output channel dimension)

K, | 3D kemnel size (K2, KII, K}V)

Jn | 3D stride (JP, JE, W)

P, | 3D Padding (P, Pr°, Pa=, Poe, Py °, Py'°)
Gy, | Grouping along the channel dimension

cr parallel streams in

coul | parallel streams out

fn Vector dot product folding

Fully Connected

F Number of filters (output channel dimension)
o Number of parallel streams in
c24? | Number of parallel streams out

Pooling
Tn Type of activation

K, | 3D kernel size (KP, KX, KW)

Jn | 3D stride (JP, JH, W)

P, | 3D Padding (Py*, Py, Pa*, Pac, Py *, Py ©)

Cn Number of parallel streams in & out
Activation

Tn Type of activation

Cn Number of parallel streams in & out
Global Average Pooling

Cn [ Number of parallel streams in & out

Element-Wise

Tn Type of element-wise operation

By Mode of operation (default or broadcast)
Cn Number of parallel streams in & out

convolution 1 x K7 x KW (c) Temporal convolution
KP x 1 x 1 (d) Depth-wise convolution (e) Point-wise
convolution. The computation node is characterised by
the following tuple of parameters:

= {Srin, Svout’ K7 j7 15’ é?", é’in7éoltt7 f}

« Pooling 3D
For 3D pooling layer, the toolflow supports both maxi-
mum and average pooling which can be chosen at runtime
by the enumerated parameter 7'. The computation node
is characterised by the following tuple of parameters:

[ ={S§" 8§ K J PT,¢é}

« Global Pooling, Activation & Element-Wise 3D Al-
though Global Pooling is a special case of the regular
Pooling layer, the hardware for it is optimised for this
case. The supported activation functions of the activation
layer are the following:

(a) ReLU activation,

(b) Sigmoid activation,

(c) Swish activation defined as: y = x * sigmoid(x)
where the type of activation is given by the parameter
T. The runtime choice for broadcasting is defined as B,
which is either true or false. The type of element-wise
operation is given by the parameter 7". The computation
node is characterised by the following tuple of parame-
ters:

I = {8 S T B, ¢}



o Fully Connected Fully Connected layers share hard-
ware with Convolution layers, but with no feature-map
buffering. The computation node is characterised by the
following tuple of parameters:

= {szn Sfout ézn éout}
C. Hardware Design and Implementation

The proposed architecture follows the paradigm of a system
consisting of a processor extended by a set of custom instruc-
tions. The core building blocks described before are equivalent
to custom instructions, and their control is performed through
a CPU. Each building block is connected to a crossbar that
is responsible for handling the routing of data between the
building blocks and off-chip memory, as well as performing
inter building block routing. The memory access to and from
memory is supported through dedicated DMA blocks.

The architecture of the custom instructions follows the
Streaming Architecture paradigm, by implementing direct con-
volution operations and exploring the opportunity of driving
the instantiated building blocks as dictated by the 3D model
without accessing the off-chip memory, but at the same time
can map multiple operations on the same building blocks in
a time-shared manner avoiding the need for reconfiguring the
FPGA fabric.

The toolflow is responsible to identify the required building
blocks in order to support the computations of a given 3D
CNN model, as well as to tune them in order to optimise
the performance of the system given the available resources
(FPGA resources and off-chip memory bandwidth). As such,
the resulting system is a heterogeneous multi-core system, with
blocks tailored to the 3D CNN model and the targeted FPGA
device. This deviates from the approach taken in other stream-
ing toolflows such as FINN [19], and fpgaConvNet [18]], where
the hardware is tailored to specific DNN models with layers
being deeply pipelined, utilising bitstream reconfiguration to
overcome resource constraints. Such design approach leads to
high performance designs for throughput oriented applications,
however bitstream reconfiguration inhibits the ability to target
latency-driven applications with a latency target smaller than
the reconfiguration time of the device, which is usually in the
order of hundreds of milliseconds.

Figure [ illustrates a simplified diagram of an example
accelerator generated for a given model. Feature-maps are sent
to and from off-chip memory via a pair of DMAs, and sent
to the hardware nodes through the configurable crossbars. The
design has a sandwich-like architecture, with the AXI-Stream
crossbars routing data to and from hardware nodes. The output
crossbar connects to the input crossbar, allowing for inter-
connectivity between hardware nodes.

The fpgaConvNet [18] toolflow is utilised for the imple-
mentation of the computation blocks. We regard this as the
baseline design, where no runtime configuration is supported,
and only padded execution can be used to execute variable
feature-map sizes. Figure [3]illustrates how the baseline design
has been modified to support runtime configurable layers.
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Fig. 2: Block diagram of an accelerator instance produced by
the HARFLOW3D toolflow. The black lines describe AXI-
Stream signals, where the arrows indicate the directionality
of the connection, blue are high-throughput AXI interfaces
for DMA access, red are AXI-Lite connections for runtime
configuration of the hardware nodes, and green indicate the

interfaces for communicating with off-chip memory.
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Fig. 3: Diagram of hardware for Convolution, and how
it can be used with runtime parameters. The blue blocks
represent compile-time configurable hardware modules. The
red blocks represent runtime configurable hardware modules.
Cross-hatching gives an example of how hardware elements
can be bypassed at runtime.

The highlighted blocks constitute the overhead required for
supporting runtime configurability. The additional hardware
includes a configurable counter to change the depth of the
line buffers and accumulation buffers, and a crossbar to
map configurable kernel sizes to a configurable number of
multipliers. These extra resources are insignificant, and there
is no change in targetable clock frequency.

IV. MODELLING

Precise, high-quality performance and resource modelling is
essential to support a rapid and valid design space exploration.
This section presents a comprehensive performance model for
the parameterized building blocks described in Section III.
Perfmorance models are described per computation node, and
the resource model is for the entire system design.



A. Performance Modelling

Performance modelling is required to evaluate the latency
objective during design space exploration. The latency of the
execution of a layer can be estimated by a roof-line model
consisting of the required memory bandwidth, and the latency
from computation. The latency model for each supported
hardware type as a function of its runtime parameters I' is
given as follows:

Sout F . K
L:Conv(r) = ‘AJ—A‘A'
cout . gin f
- F
'CFC (P) = éin . éout
_ _ , _ s
['Pool(r) - EAct(F) - EElthse(F) - ~

The preceding models assume unlimited memory band-
width, however memory accesses have limited throughput.
In order to model the effect of memory bandwidth, the
consumption and production rates of the layer are required,
which are given as,

‘ S | 7mut (F) —

in () — |0
Tn (F) - En(F) . éin’ n

L, (L) - cout

where 7 (T") and r“¢(T") are the words per cycle per stream
in and out of the computation node n when executing runtime
parameters I'.

For convolution and fully-connected layers in particular,
extra memory bandwidth is required to stream in the weight
parameters. This rate is described as,

cin P K|
L:Conv,FC(F) : ézn - eout . f
Alongside the double-buffering of weights, if the channel
dimension of a convolution or full-connected layer is folded,
the partial sums must be accumulated. This requires streaming

the previous partial sum from off-chip memory, whose rate
matches the rate out.

param

TCO’IL’U FC(F) =

raﬁch(F) = r(o%tm re(l)

The constrained bandwidth in and out can be described as,

By (T) = min{By 4, " (L) - "}
By(T) = min{Bpy 4, r* (L) - ¢}

where Bi*(T') and BS“(T") are the constrained words per
cycle for the exectution of parameters I' on the computation
node n. This describes a roofline model, where the on-chip
bandwidth is capped by the memory bandwidth. The above
model summarises the bandwidth in and out for all layers
apart from convolution and fully-connected. To describe these,
the bandwidth for parameters and partial sums must also be
considered,

Bg’bnv,FC(F) = min{BgL]MA’ i"(r) ' Cin+
TConp,ro(T) e
(D) e )

For Fully Connected layers, f = 1. Given the bandwidths,
the total latency for executing a layer is given as,

~ Sﬂ.n S'out
£u) = sl g ! w

It is worth noting that the performance models are functions
of runtime parameters, owing to the highly customisable
hardware. Streaming Architectures tend to be computationally
bounded, as supported by the results presented in Section [VII}
As the size of the feature-maps is significantly greater than
that of the weights, the weights bandwidth is often negligible
in comparison to the overall bandwidth required. There is
no latency associated with updating the runtime parameters
because they are also double-buffered and require negligible
information transfer (<100B).

B. Resource Modelling

Resource modelling is used to explore the performance-
resource design space whilst keeping designs within the target
FPGA’s constraints. Modern FPGA devices share four com-
mon resource types: DSP, BRAM, LUT and FF. Only the Conv
and FC layers use DSP resources, An analytical model of DSP
usage for building blocks n of these layer types is given by,

RgSP _ Cin . out f RDSP Cin . Cout
As a 16-bit fixed-point precision is used throughout the
design, each DSP is used for either 16 - 16 multiplication
or multiplication-accumulation. For BRAM modelling, the
number of BRAM blocks can be described as,

doth) [10-werd

The bus width of the required memory is 16 - words as 16-bit
fixed-point is used. Only Conv, FC and Pool layers consume
BRAM components. Both Conv and Pool use BRAM for the
Sliding Window module, which is described as,

C’L’n.

RBEAM (depth, words) = {

RE = RPFA (W, Dy S i 1)) +
C’Ln
RBRAM (Dn Cm JKH (KW 1) C:ln> n
el
RBRAM(%,KTI;I KW (KPP —1). cil")

n

Conv and FC, require some extra memory for storing
weights on-chip, which is modelled as,

RBRAM

BRAL RBRAM(C Fn ‘K’ﬂ| n . out f )
eight — , € n

Czn Cout fn

For Fully Connected layers, K, = {1,1,1} and f, = 1.
The hardware design uses a large data word design technique,
which significantly improves BRAM utilisation.

For the modelling of LUT and FF resources, a regression
model is used due to the non-deterministic nature of FPGA
synthesis. The regression models are obtained from a data set
of 5000 synthesised modules, where the relationship between
the module’s parameters and resources are inferred.



Using the derived resource models, we can estimate the
resource consumption of a complete hardware graph (G),

7zftotal = (Z Rn) +Rpma+ waar
neG
where R describes the complete resources (DSP, BRAM,
LUT, FF), for the given component. The quality of the resource
model is evaluated in Section

V. LATENCY-DRIVEN DESIGN SPACE EXPLORATION

The minimization of the 3D-CNN model’s execution latency
on the runtime-configurable accelerator is regarded as an
optimization problem. As such, a Design Space Exploration
is performed that searches for both an efficient accelerator for
the specific application and a schedule for execution of the 3D
CNN model layers on that architecture.

A. Scheduling

Once an accelerator design has been created, a schedule
is needed for executing the 3D-CNN model’s layers for this
given design. The main choices with regards to scheduling are:

« Mapping of the computation nodes for executing the 3D-
CNN model’s layers (i.e. execution nodes).

« Tiling of the feature-maps of execution nodes on a given
computation node.

« Runtime configurations for all the invocations of the
computation nodes based on the respective execution
nodes parameters.

The mapping between a computation node and the respec-
tive execution nodes which it will execute is described as an
execution mapping function € : G — P(M), where P(M) is
the power-set of M, which is all the distinct subsets of M.
This mapping creates disjoint subsets of M, which can be
described as,

EM)NEM)=0Vn,meGn#m

where £ is the execution mapping function. The mapping
function must give unique mappings for each computation
node, such that none of the model’s layers are executed more
than once. The inverse mapping, £ ! finds the corresponding
computation node for a given execution node. The mapping is
decided based on the transform described in Section [V-C4

Once a mapping has been decided, the schedule for G,
denoted as ®g, can be created for executing the 3D CNN
model graph M on the hardware graph G. This schedule is
outlined in Algorithm |1} For each execution node [ of the
3D CNN model graph, the tiling factors across each of its
dimensions is obtained, which are then used to find the tile
sizes for computation. The algorithm greedily allocates as
much of the feature-map as possible onto the computation
node, and then chooses the coarse factors based on the tile
shape. Additional runtime parameters such as kernel sizes
and padding are also chosen based on the execution node’s
parameters.

Having created the schedule ®¢, it can be used for execut-
ing the workload. The ordering of dimensions in the proposed

Algorithm 1 Scheduling Algorithm

1: & = empty list
2: for [ in M do
3: n=_EYI) > get the computation node

.. in in in n
4 for i in range([ 7=, [, [ |, [ 1) do

> initialise an empty schedule

H = min{H", H"™ — i1 . HI"}
X W = min{W,", W™ — i . W}
' D = min{Di", Di" —iP . Di"}
C = min{Ci", Cj* — ¢ . Cin}
6 if type(n)is Conv or FC' then
7: for i¥ in range([2L-7) do
8 F = min{Fi", Fj» — ¥ . Fin}
9: ¢ = max{ factors C }
10: " = max{ factors F }
11: I'={H,W,D,C, F,ém" ¢out}
12: ® append (n, I')
13: else A
14: ¢ = max{factors C'}
15: = {H,W,D,C,¢}
16: ® append (n,I")

accelerator is NHW DC, where the channel dimension is the
fastest changing, and so the schedule is also executed in this
order. The total latency for execution is described as,

Etotal(G> = Z En (F) (2)

n,ledg

where n is the computation node and I' is the corresponding
set of parameters for each configuration in the schedule.
The latency £, (I') of each node n for a configuration I' is
described in Equation (T).

B. Optimization Strategy

Simulated annealing (SA), a meta-heuristic for finding min-
ima in non-convex functions, is adopted as the optimization
approach for minimising the latency of a 3D CNN model to
FPGA mapping. The implementation of SA for this particular
optimsation problem is given in Algorithm [2]

The main objective of the algorithm is to seek the global
minimum of a given cost function; in this case, the cost
function is latency, which is derived from Equation (2).
Starting at an initial state by producing random values for the
parameters of the computation nodes, transformations to the
hardware graph G are applied iteratively generating new states
that may be accepted or rejected based on a policy described in
Algorithm 2] Each new state is evaluated based on the system’s
predetermined constraints, and is only accepted if it satisfies all
of them. The constraints that must be satisfied on the proposed
system are the following:

o The available memory bandwidth should not be exceeded.
e The total used resources Ri,tq; Should not exceed the
the available resources of the device.
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Fig. 4: Latency evolution during Simulated Annealing.

in cout)y of each computation

e The streams in and out (c}", ¢,
node should be a factor of the channels in and out
respectively.

o The derived scheduled parameters of each layer must be
less than the maximum supported by the computation

node.

Figure [ depicts the evolution of latency during Simulated
Annealing. The graph depicts how the latency of the C3D
model on various FPGA devices evolves over time. As in-
dicated by the graph, the starting point for each run has an
extremely high latency, as all of the parameters are set to ran-
dom values. The latency continues to improve until it reaches
a plateau, at which point the optimization is terminated.

C. Transformations

In order to traverse the design space, a set of transforms
to the hardware graph G are implemented, and are elaborated
below.

1) Feature-Map Dimensions Reshaping: The feature-map
dimensions dictate the amount of on-chip memory required
both for the weight parameters as well as caching required
by the Sliding Window module, as given in Section At
compile time, a fixed shape for the feature-map dimensions
must be given to the computation node, and at run time the

Algorithm 2 Simulated Annealing Optimisation Algorithm
= Ginit

I: T = Totarts Grew > initialisation
2: while 7 > 7,,;, do

3 Gprev = Grew > store previous design
4 Lprev = Liotal(Gprev) > get design latency
5: Grew = random transformations on Gprey

6 Loew = Liotal (Grew) > get new design latency
7 if constraints satisfied then

8 if Lycw < Lprey then

9: if Y(Lprevs Lnew,T) <z~ U(0,1) then

10: Grew = Gprev

11: T=AT

> reject new design

> reduce temperature

where Q/J(Eprevy Enewa T) = eXp(_(ﬁprev - Enew)/T)

layer can be executed on the computation node by tiling the
feature-map.

When the optimizer searches for the optimal feature-map
shape configuration for the computation node for both the
input and output, the following conditions must hold,

D,, <max{D;:1 € M}
H, =mazxz{H;:l € M}
W, <max{W;:1l e M}
Cy, € { factors C; : 1 € M}

As the choice of row dimension has no impact on resources,
the maximum of all rows is chosen. For depth and columns,
any dimension that is both less than the max of all layers,
and greater than a minimum feasible dimension is acceptable.
The channel dimension is chosen to be a factor of any of the
existing channel dimensions.

2) Coarse-grain Folding: The coarse-grain folding trans-
formation modifies the number of parallel executions of coarse
operations in each layer in order to achieve parallelism over
the channel dimensions of the input feature-map. The primary
operations of each layer can be performed simultaneously
by deploying (at max) as many instances of its processing
blocks as the number of channels. On Fully Connected and
3D Convolutional layers the coarse level parallelism can be
utilised at both the input and output channels. This parallelism
is achieved by updating and searching for appropriate values
of the compile-time parameters ¢, c,,, and c2** during opti-
mization, which are also taken into account by the performance
and resource models. To be considered valid, a design must
comply with the constraints driving this transformation.

in in out out
¢, cn € factors C)", ¢t € factors C,

3) Fine-grain Folding: The second folding-wise transfor-
mation factor determines the parallelism of the vector dot
product operation for 3D convolutional layers. This sort of
parallelism specifies the number of multipliers to be set in
parallel for multiplications and the number of levels on the
adder trees for additions. By increasing the compile-time fine
folding factor, achievable latency is reduced at the cost of extra
DSP resources, as described in Section Evidently, there
is a trade-off between performance and resource utilization.
This type of parallelism is accomplished by modifying the f,
parameter during the optimization process. The constraint on
the compile-time fine-grain folding f,, is given as,

fn € factors | K|

4) Combination and Separation of Computation Nodes: As
stated in Section the toolflow allows several model exe-
cution nodes to share the same computation node. The initial
mapping creates unique computation nodes n for each execu-
tion node [. In NNs with multiple layers, this is impractical
since the FPGA resources can be quickly exhausted, and the
performance of each computation node would be compromised
in order to fit the design. A combination of execution nodes
by type for a single computation node (the available types



are depicted in Figure [2) is proposed as a solution to this
issue. All execution nodes of the same type are combined and
mapped onto a single computation node at the beginning of
the optimization. The compile-time parameters of this node
are then modified such that it can handle the workload of its
associated execution nodes. This transformation is employed
throughout the optimization procedure, and can affect the
computation and execution nodes in two ways:

o Separate Computation Nodes: The algorithm chooses L.
execution nodes, where L. is a hyperparameter, and de-
taches them from their corresponding computation node.
The new group of execution nodes are integrated and
mapped onto new computation nodes whose characteris-
tics and parameters are adapted respectively.

o Combine Computation Nodes: The algorithm searches
for computation nodes of the same type and selects N,
of them, where N. is a hyperparameter, to combine
into a single computation node. The computation node’s
compile-time parameters are updated to support the new
set of workloads.

Each time the combination or separation is applied, a set of
constraints are considered to assure the result’s validity. The
required constraints are a combination of the Feature-Map
Dimensions Reshaping, Coarse-grain Folding, and Fine-grain
Folding constraints.

VI. HARDWARE MODEL VALIDATION

Modeling of performance and resources is used extensively
in this work for rapid traversal of the large design space. In this
section, the accuracy of the performance and resource models
is validated across different hardware designs for C3D [3]]. We
demonstrate negligible error between modelled and measured
results.

Table shows a direct comparison between predicted
resources and resources after synthesis for a C3D design.
The DSP and BRAM models are highly accurate due to the
deterministic nature of their synthesis, as resource type anno-
tations are used in the hardware design. For the LUT and FF
prediction accuracy, the modelling over-predicts LUT usage
and under-predicts FF usage. Logic optimisation contributes to
fewer LUTs in the final implemented design, and the additional
FF resources likely arise from inter-module buffering that
is neglected in the modelling. Additional BRAM resources
are required by DMAs for the buffering of bursts across the
feature-map. This is accounted for during optimisation.

The convolution layers dominate the total resource con-
sumption, with DSPs typically being the limiting factor. The
convolution layers are investigated further, where statistical
resource modelling information is captured over 16 designs
with varying configurations among different layers. Supporting
the results of Table [l the Mean Absolute Percentage Error
(MAPE) and the Standard Deviation (o) over the 16 different
convolution configurations are shown in Table

FMn DRAM FM out
H o Tieo Tie1 | = Tieo Tiet | Tieo Tile 1
Tile 2 Tile 3 Tile 2 Tile 3 Tile 2 Tile 3
>
z 5 &)
O

(a) 3D CNN Model to SDFG mapping
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< /
§ —» FC —>
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(b) Hardware execution

Fig. 5: The Dataflow of a simple design consisting of a
Convolution, ReLU, and FC layers. As the red lines and the
crossbar dictate the flow between Convolution and ReLU can
be addressed within the FPGA without sending the data back
to the off-chip memory. This is the result of Fuse Activation
optimization.

TABLE III: Statistical resource modeling information over
multiple runs for different convolution layers and configura-
tions

DSP | BRAM | LUT | FF

MAPE (%) 0.0 0.35 721 8.81
o 0.0 0.38 882 | 2.89

The accuracy of the performance model is evaluated in
Figure [6] where the calculation of the absolute percentage
error is given by: error = ‘Predi‘;&eei_sgfzzsured‘ * 100. The
small percentage differences between predicted and measured
results on ZCU106 board imply a good level of accuracy and
confidence in the toolflow’s modelling results. The divergence
between the expected and actual latency of the layers is due to
the DMA introducing a delay between bursts due to memory
access cycles. The MAPE for all convolution layers of the

C3D model at the particular design is 6.64%.

VII. EVALUATION

This section focuses on the evaluation of the proposed
methodology and its ability to discover optimal designs. The
automatically generated designs are benchmarked against ex-
isting 3D CNN accelerators.



TABLE II: Comparison of predicted and synthesised resources for C3D designs on a ZCU102 board.

Hardware DSP BRAM LUT FF
Node pred. act. error  pred. act. error  pred. act. error  pred. act. error
Conv 2304 2304 (+0%) 1052 1052 (+0%) 151K 138K (+9.4%) 155K 166K (-6.6%)

MaxPool 0 0 (+0%) 0 0 (+0%) 22K 17K (+29.4%) 16K 18K (-11.1%)
Gemm 128 128 (+0%) 456 456 (+0%) 11K 10K (+1.0%) 15K 18K (-16.6%)
ReLU 0 0 +0%) 0 0 0% 10K 14K (285) 22K 22K (+0%)
DMA 0 51 29K 4.7K
X-BAR 0 0 1.7K 1.4K
Total 2432 2432 (+0%) 1559 1559 (+0%) 189K 171K (+7.8%) 194K 210K (-9.4%)
Avail. (2520) (1824) (274K) (548K)

10 5 63 5 ‘03 For the ablation experiments, the R(2+1)D-18 model was

7.5

Absolute Percentage
Error (%)
(S48

1 2 3 4 5 6 7 8
Convolution Layer

Fig. 6: Comparison of predicted latency to measured latency
for all the convolution layers of C3D on the ZCU106 board
depicted as absolute percentage error.

TABLE IV: 3D CNN models characteristics

83.2 94.54 88.66 92.27 96.52

C3D | Slowonly  R(+1)D-18 | R(2+)D-34 | X3D-M
FLOPs (G)T 38.61 | 54.81 | 8.52 | 12.91 | 6.97
Parameters (M) 78.41 | 3251 | 3341 | 63.72 | 3.82
Num. of Layers 27 | 174 | 82 | 154 | 396
Num. of Conv Layers 8 | 53 | 3 | 69 | 115
Spatial dimensions 112 x 112 1 256 x 256 | 112 x 112 | 112 x 112 | 256 x 256
Num. of Frames 16 ! 8 16 ! 16 ! 16
UCF101 : : :

|
|
Accuracy (%) 1

T FLOPs are reported as MAC operations.

The models of 3D CNN included in the evaluation are listed
in Table [Vl Each of these models has demonstrated state-
of-the-art performance in a number of HAR benchmarks and
offers a variety of workload and network parameters. Some
of these models also serve as benchmarks for existing FPGA
accelerator-focused works. The ONNX files used for all the
experimental results have been exported from [20] for C3D,
Slowonly, and X3D-M models, and from for R(2+1)D-18
and R(2+1)D-34.

A. Experimental Results

1) Ablation Study: In this section, an ablation study was
undertaken to assess the effect of several optimization strate-
gies on the final performance of the proposed method. Having
a baseline strategy in place, as well as introducing and
investigating modifications and additions to it, has yielded
significant insights and conclusions regarding the direction that
should be followed for improving the optimization process.

used, although the findings apply to all supported models and
devices.

Baseline Design Description:
The baseline optimisation strategy is defined as follows: the
SA hypeparameters are configured by, Tsiqrt = 10, Tpin =
1 x 1075, and the cooling rate A = 0.99, while a warm start
is executed prior to the execution of the optimiser. These pa-
rameters remain constant throughout the ablation study. For the
baseline experiments, the Feature-Map Dimensions Reshaping,
Coarse-grain Folding, and Fine-grain Folding transformations
are enabled while the use of runtime parameters and the fusion
of activation layers to preceding layer are disabled.

Optimization Strategies:

o Building Blocks Combination: Incorporating the Com-
bination and Separation of Computation Nodes trans-
formation into the optimization approach improved the
optimiser’s performance by 1.14x. This optimization is
described in detail in Section [V-C

« Fusion of activation functions into previous layer: Upon
revisiting the optimization findings and assessing each
layer type of the model, it was found that the activation
layers are typically memory bounded, which hinders the
overall performance of the design. To overcome this con-
straint, the fusion optimization was introduced. Through
the crossbars seen in Figure [5b} such layers are fused
directly to the preceding ones (mostly convolution layers).
Since convolution layers are mainly compute bounded,
the fused activation layers aslo become compute bounded,
suppressing the memory bounded limitation. The addition
of this specific optimization has provided a 1.52x boost
in performance.

« Runtime reconfiguration of layer parameters: The intro-
duction of runtime reconfigurability of computation nodes
resulted in the most significant improvement boost. As
described in Section [[lI-C] in a non-runtime parameter-
izable node, in order to support a layer with different
runtime feature-map dimensions the underlying hard-
ware modules would need to add padding to match the
compile-time dimensions. This affects the performance
of the computation node greatly, as it must perform
redundant operations. With the introduction of runtime
parameterisable modules, as shown in Figure E[, the extra




TABLE V: Comparison with existing works on 3D CNN HAR models

H. Fan H. Fan Z. Liu T. Teng 1. Shen @ M. Sun @ H.Fan [6]  F. H. Khan HARFLOW3D
Architecture Hand-Tuned  Hand-Tuned Partial Hand-Tune Partial Partial Hand-Tuned Hand-Tuneq Toolflow
Model 3D 3D &) 3D 3D C3D  RE+HD-18 E3D 13D 3D Slowonly RQ+1)D-18 R(2+1)D-34 X3D-M
GFLOPst 38.61 38.61 38.61 38.61 38.61 38.61 8.52 6.1 110 38.61 54.81 8.52 12.91 6.97

Accuracy (%) 79.87 81.99 83.2 83.2 83.2 83.2 .66 85.17 95 83.2 94.54 88.66 92.27 6.52
FPGA 7C706 7C706 VC709 VC707 | VC709  VUS440 | ZCUI02  ZCU102 | Intel SX660 VC709 ZCUI02  VCT709 | ZCUI02  VC709 | ZCUI02  VC709 | ZCU102  VC709 | ZCUI02  VCT09
Latency/clip 5425 4768 1155 107.9 89.4 49.1 487 243 35.32 96 9815 9103 | 30956 23934 | 4899 4602 | 7005 6255 | 15507 12038
GOps/s 7117 80.97 33428 35783 | 43187 78635 | 798 35.06 1728 1145.83 39337 42404 | 17705 22901 | 17391 18503 | 18429 20639 | 43.78 56.14
GOps/s/DSP 0.079 0.089 0.092 0.127 0119 0273 | 0031 0013 0.102 0318 0156 0.017 | 007 0063 | 0069 0051 | 0073 0057 | 0017 0015
Op/DSP/cycle 0.459 0.449 0.773 0.798 0.799 1.365 0.209 0.092 0.68 1.59 0.781 0.785 0.351 0.424 0.345 0.342 0.365 0.382 0.086 0.104
Frequency (MHz) 172 200 120 160 150 200 150 150 150 200 200 150 200 150 200 150 200 150 200 150
Precision fp-16 BFP fp-16 fp-8 16 fp-16 fp-16 fp-16 float-32 fp-8 fp-16  fp-16 | fp16  fp-16 | fp-16  fp-l6 | fpl6  fp-16 | fp-16 fp-16
DSP (%) 90 86.6 99.8 96 42 53 48 48 93.3 100 9651 9777 | 6238  69.1 | 9694 9791 | 9567 9725 | 5352 8961
BRAM (%) 86.6 88.1 26.6 253 52 30 100 100 79 7193 6333 | 7856 8105 | 69.03 6462 | 6924 5452 | 5614 7867

* Proposed design supports multiple models (both 2D and 3D), although being tailored to the characteristics of specific 3D CNN models.

100

150 200
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250 300

Fig. 7: Pareto front of DSP utilization against latency for
R(2+1)D-34 model on a ZCU102 platform during SA

cost of padding and all the redundant operations are
omitted, resulting in a 18.21x performance increase.

2) Resources against Latency Comparison: Figure [7] de-
picts the pareto-front between resources and latency. The DSP
utilsation was chosen to represent resources, as the generated
designs are typically limited by the number of available
DSPs. The figure shows the optimiser’s ability to traverse
the resource-latency design space, achieving fine-grain control
over this trade-off. Indeed the optimiser is able to double
performance along the pareto front at the cost of double the
number of DSPs, exploring many design points in between.

B. Comparison to the state-of-the-art

Having evaluated the performance of the hardware and
the effectiveness of the design space exploration method,
the proposed work is positioned against existing accelerator
works. Table [V] outlines the current space for FPGA-based 3D
CNN acceleration, and how HARFLOW3D compares. Please
note that all existing accelerators are the product of approaches
that target only the specific workload, and thus are hand-
tuned, where the produced designs from HARDFLOW3D are
generated by a single toolflow. By parametrising all aspects
of the hardware and automating the design space exploration,
outstanding performance is achieved across a multitude of
networks, targeting more than any existing accelerator.

Figure [8] provides a more extensive and direct comparison
to existing works on C3D model. Since HARFLOW3D can
target all of the platforms that previous studies have targeted
for C3D, results for each of them have been collected for a

" FLOPs are reported as MAC operations.
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Fig. 8: Comparison on C3D - DSP Efficiency

direct comparison with all of the existing works. The results
are evaluated in DSP efficiency, GOPs normalised over the
device’s DSPs. As shown in Figure 8] HARFLOW3D achieves
1.89x increased DSP efficiency on ZC706 compared to H. Fan
[5]. On ZCU102, 5.03x greater results are achieved than M.
Sun [TI]. On VC709 HARFLOW3D achieves 1.27X better
DSP efficiency than Z. Liu [§], whereas obtains nearly equal
performance being only 1.008x off compared to J. Shen [9].
Compared to T. Teng on VC707, the DSP efficiency is
1.48x lesser, however the comparison cannot be considered
direct since the specific design uses fixed-point 8 arithmetic
precision. In comparison to J. Shen [9] on VUS440, the DSP
efficiency is inferior by 2.16x.

TABLE VI: Comparison against GPU on C3D

GPU FPGA (HARFLOW3D)
Platform RTX 3090 ZCU106
Clock Frequency 1.7 GHz 200 MHz
Precision 32-bit float 16-bit fixed
Latency/clip (ms) 5.28 182.81
Power (W) 234.1 9.44
Energy/clip (J) 1.24 1.72

Table [V outlines a comparison between an RTX 3090, a
server-grade cutting-edge GPU, and a ZCU106, a mid-range
FPGA board. Despite the difference in scale between the two
devices, the results for energy/clip demonstrate the efficiency
of the HARFLOW3D toolflow.



VIII. CONCLUSION

This paper presents HARFLOW3D, the first 3D CNN FPGA
toolflow for 3D CNNs that supports a wide range of models
and devices. A series of transformations during optimization,
in conjunction with a novel hardware implementation support-
ing runtime parametrization of the hardware nodes, enabled
comparable and even greater performance in comparison to
prior hand-tuned designs. Future directions may be the support
of additional 3D CNN models with different backbones, such
as Inception-like architectures (I3D). Furthermore, expansion
into domains other than HAR, such as 3D semantic segmenta-
tion, medical imaging (CT and MRI scans), 3D object detec-
tion from point clouds and Transformer-based HAR models
will be investigated.
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