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Abstract: The paper proposes a direct method for transient stability assessment, which is
more efficient than traditional time-domain simulation methods. To achieve this objective, a new
bounded control law for the model of a power system is designed. This yields superior closed-loop
transient performances when compared to those achievable with traditional automatic voltage
regulators and power system stabilizers. The designed control law allows defining an energy-
based Lyapunov function which is instrumental in assessing transient stability properties of the
post-fault system. A case study on a single machine infinite bus power system model is presented

to illustrate the merits of the proposed method.
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1. INTRODUCTION

The assessment of transient stability for power systems is
a long-standing challenging problem because of their in-
trinsic complex characteristics, such as switching actions,
highly non-linear behaviours, non-measurable states and
control bounds, see e.g. Kundur et al. (1994); Sauer and
Pai (1998); Guo et al. (2001); Liberzon (2003); Ortega
et al. (2005); Hatziargyriou et al. (2020). Currently, time-
domain simulations (TDS) offer one of the most widely
accepted methods for the assessment of transient stability
of a post-fault power system, see e.g. Kundur et al. (1994);
Chiang (2011). In TDS methods the numerical integration
of a model of the power system is conducted to simulate
the transient response. Based on the simulation, the post-
fault system is assessed to be stable if the post-fault tra-
jectory converges to an operating equilibrium; otherwise,
it is deemed to be unstable and then corrective actions
have to be undertaken, see e.g. Chiang (2011). This off-line
practice is computationally expensive and therefore not
well-suited for real-time implementations, see e.g. Chiang
(2011); Yan et al. (2011). Compared to TDS methods,
direct methods have a distinct advantage in that they
allow assessing transient stability of a post-fault trajectory
without time-consuming numerical integrations, see e.g.
Kundur et al. (1994); Chiang (2011). Therefore, direct
methods offer a promising solution to the problem of real-
time transient stability analysis, see e.g. Chiang (2011).
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Transient stability can be assessed by checking that the
post-fault trajectory, at the instant the fault is cleared,
belongs to the region of attraction of the post-fault oper-
ating equilibrium. As a result, it is natural to expect that
Lyapunov or energy functions play a dominant role in the
development of direct methods, see e.g. Chiang (2011).
For example, in Pai and Sauer (1989); Bretas and Alberto
(2003), energy-based Lyapunov functions have been pro-
posed for transient stability analysis. These are, however,
valid only for second order models of generators which
neglect the dynamics associated with the flux linkage
through the generator field and damper windings. When
extended to the study of third order or higher order mod-
els, Lyapunov or energy functions become more complex.
In Ortega et al. (2005), the proposed control law endows
the third order model of a generator with a port-controlled
Hamiltonian structure, for which a separable Lyapunov
function can be employed in transient stability analysis.
In Ghandhari et al. (2001), another form of energy-based
control Lyapunov function for the third order model of
a generator is proposed. In Jiang and Chiang (2015), a
fifth order model including the stator transient dynamics
has been used in the study of transient stability over
two timescales, however, without the use of Lyapunov or
energy functions. In Verrelli et al. (2021), the generator
model studied includes the dynamic of the electric power
output; however, it does not consider the dynamic of
the induced voltage nor proposes a Lyapunov or energy
function.

Control bounds are of great importance in power sys-
tems due to the physical limitations of thyristor excita-
tion systems, see e.g. Kundur et al. (1994). However, in
all the studies discussed above, the control bounds are
not taken into consideration in the design stage. In the
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transient stability study for power systems controlled with
traditional automatic voltage regulators (AVR) and power
system stablizers (PSS), see e.g. Kundur et al. (1994),
the control bounds are taken into account in the imple-
mentation stage. This is achieved by forcing the control
input to stay at the boundaries when it is about to exceed
the feasible range. However, there exists no Lyapunov or
energy function such that its time derivative along the
trajectories of the closed-loop system is strictly negative
definite. It is therefore difficult to assess, through direct
methods, the transient stability properties of the post-fault
system controlled with AVR and PSS.

This paper addresses some of the above-mentioned issues.
In particular it focuses on, firstly, the design of a control
law for the third order model of a generator which takes
into account the control bounds. This is achieved through
the use of symmetric and asymmetric saturation functions
in the design stage. Then, exploiting the proposed bounded
control law, an energy-based Lyapunov function is pro-
posed to assess local stability of the closed-loop operating
equilibrium as well as transient stability of the post-fault
trajectories.

The remaining of the paper is organized as follows. In
Section 2 the classical third order model for the single
machine infinite bus (SMIB) system is recalled. Then, the
problem of transient stability analysis of the post-fault
SMIB power system is formulated. In Section 3 a new
bounded control law is designed, based on which local
stability of the closed-loop operating equilibrium is proved
through a Lyapunov approach. Then, an algorithm for
transient stability assessment of post-fault trajectories is
introduced. In Section 4 a case study to demonstrate the
merits of the designed control law as well as of the direct
method is presented. Finally, conclusions are drawn and
potential future work is discussed in Section 5.

2. MODELLING AND PROBLEM FORMULATION

The system studied comnsists of a synchronous generator
(SG) connected to an infinite bus through a transformer
and two parallel transmission lines, as illustrated in Fig. 1.
This is henceforth referred to as the SMIB power system.
Note that the SG terminal bus, the bus at the sending end
of the transmission lines and the infinite bus are henceforth
referred to as bus 1, bus 2 and bus 3, respectively.
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Fig. 1. Single machine infinite bus (SMIB) power system,
from Kundur et al. (1994). Note that F represents the
location where the fault occurs in the case study.

A simplified dynamic model of the SG which neglects the
dynamics of the induced voltage due to the change in flux
linkage in both the d-axis and the g-axis damper windings
is considered. The resulting third order model describing
the dynamics of the generator rotor angle §(¢) € [0, ],
of the rotational speed w(t) € R, and of the induced

voltage Ey(t) € R>o due to the change in flux linkage in
the generator field winding is given by the equations

. no Y p
w__ﬁ(w_w)—’_QH(Pm Fe), (2)
. 1

El = TTO[_ Eq+ (Xa— Xg)la+ Era],  (3)

where w* is the constant synchronous speed, D is the
damping constant, H is the inertia constant, P,, is the
mechanical power input to the SG (assumed to be constant
over the timescale of the transient stability analysis), P, is
the electrical power output from the SG, T}, is the g-axis
open circuit time constant, X  is the d-axis synchronous
reactance, X/ is the d-axis transient reactance, I; is the
d-axis component of the stator current, and Fyq is the
bounded field voltage.

The electrical power output P, € R>g and the electrical
torque output Te € R>o from the SG are given by

T, w
P, = , 4
== (1)
T. :E;Iq—&—E(’iId— (X(;—X&)Idlq, (5)

respectively, where I, is the g-axis component of the stator
current, E/, is the induced voltage due to the change in
flux linkage in the g-axis damper winding (assumed to be
constant), and X, is the q-axis transient reactance.

The SG stator transients are much faster compared to the
slow electro-mechanical dynamics and hence are neglected,
see e.g. Chaudhuri et al. (2014); Hatziargyriou et al.
(2020). The complex stator current I, in the d-q reference
frame of the SG is given by

[ B X Xt Bt

g R, +jX}, ’

where E, is the voltage of bus 1 expressed in a common
network D-Q reference frame and R, is the stator resis-
tance.

In the studied model of the SG, the d/D-axis leads the
q/Q-axis by 90 degrees as illustrated in Fig. 2. Note
that the generator rotor angle ¢ is defined as the angular

separation between the g-axis and the Q-axis, see e.g.
Chaudhuri et al. (2014).
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Fig. 2. The d-q and D-Q reference frames, from Chaudhuri
et al. (2014)



296 Jianli Gao et al. / IFAC PapersOnLine 54-19 (2021) 294-301

A complex quantity A,, e.g. a voltage or a current,
expressed in the generator d-q reference frame is related
to the same quantity A; expressed in the network D-Q
reference frame by the equation

Av = (A +jAip) = Age?® = (Agq + jAga)e”.  (T)

The complex current I; injected by the SG into the
network at bus 1 is given by

I = I,e?® = (I, + jlg)e°. (8)

Applying current balance, i.e. Kirchoff’s current law, at
bus 1 yields
Iy =YnE+Yi3EB, 9)

where Y71 and Y3 are the diagonal and the off-diagonal
elements corresponding to bus 1 of the bus admittance
matrix for the SMIB power system after eliminating bus 2,
and FEp is the voltage of bus 3.

Solving (6), (8) and (9) by equating the real and imaginary
parts, respectively, yields the components of the stator
current, i.e. Iq(d, Ey) and I,4(5, Ey). Then, substituting
these in (2), (3), (4) and (5) yields the dynamic equations

b=w—w*, (10)
. D+T, W
El = —acE, + b.cosd + ey + u, (12)

where ey is the constant field voltage, v is the control
input, and the electrical torque output T, € R is

T, = aTE;2 + by sind B} + ¢, sin 26 + d cosd. (13)
Note that the electrical torque output at the operating
equilibrium point (§*, E[/I*) is equal to the mechanical
power input, i.e.

T.(8*,E)") = Pp,. (14)
It is assumed that a fault occurs at the location F shown
in Fig. 1. This results in the switching from the pre-fault
mode to the fault-on mode. Then, the fault is cleared by
disconnecting the faulted transmission line, resulting in the
switching from the fault-on mode to the post-fault mode.

As indicated in Kundur et al. (1994), the values of the
coefficients in the pre-fault mode, the fault-on mode and
the post-fault mode, respectively, are given in Table 1. The
operating equilibria for the pre-fault mode and the post-
fault mode are also given in Table 1. Note that there exists
no operating equilibrium in the fault-on mode.

Table 1. Coefficients in different modes

Mode | Pre-fault Fault-on  Post-fault
Qe 0.3251 0.4698 0.0050
be 0.1803 0 0.1471
ar 0.0050 0.0148 0.0033
br 1.1621 0 0.9482
cr -0.1628 0 -0.1150
dr -0.2853 0 -0.2469
o* 1.1567 - 1.3549

E{I* 1.0483 - 1.0598

In addition, the values of the constant parameters of
the considered SMIB power system are given in Table 2.
Throughout the paper we use these parameters for ease of
illustration, although the conclusions are general.

Table 2. Constant parameters of the SMIB
power system model

D H P w* efr
0 3.5 0.8829 120w 0.2677

With the aforementioned specifications, the problem of
transient stability assessment is formulated as follows.
Consider the model of a SMIB power system, i.e. (10),
(11), (12) and (13). Find a state feedback control law such
that the following specifications are satisfied.

e The control input remains within its physical bounds.
For the considered case, these are t,,q,,; = 0.6073 and
Umin = —1.0677, respectively.

e The operating equilibrium of the post-fault closed-
loop SMIB power system is preserved and it is locally
asymptotically stable.

e There exists an energy-based Lyapunov function
which allows assessing transient stability of the post-
fault trajectory.

3. BOUNDED CONTROL DESIGN

To begin with, consider the second order mechanical
subsystem, namely the system

§=w—w, (15)
D—I—Te w* -
b= — W P, —T 1
P Sk YRS Ay S SR
where
T, = aTE[f + b, sind E’; + ¢, sin 26 + d; cos 4. (17)

Note that, at this stage, the term E('I is regarded as a
control input. Let

nll /* *
B, = E;" +sat(w —w"), (18)

where !

kr
sat(w — w*) = L, tanh (L—(w — w*)), (19)
with L, € Rso the magnitude of the saturation, and
k: € Ry the slope of the saturation at the equilibrium,

both to be selected.

To prove stability of the operating equilibrium of the
closed-loop second order subsystem, a Lyapunov approach
is used. Let D, = (D + T,)/(2H). Since T, is non-negative
and D = 0, D, is non-negative. Then, (16) can be
rewritten as

*

~ w
= Do (w—w
W (w w)—|—2H

— b, sind [E;* + sat(w — w*)| — ¢ sin 26 — d cos 5)

(Pm —a, [E}" + sat(w — w*)]2

= D (w—w*) —7(0) — dsat(w — w*), (20)
where
~ 5 N (,d* P /*2 b . 5 / *
(0) = 5H (— m +arE,  +0brsino £
+ ¢, sin 26 + d; 0085),
d= ;}H (ZaTE;* + a, sat(w — w*) + b, sin 5)~

1 Note that any differentiable, monotonically increasing saturation
function can be used.
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Note that 7(6*) = 0, 3}(5*) > 0, and d is locally positive
around the operating equilibrium.

Consider the Lyapunov function candidate
- 1 4
V(o,w) = 3 (w—w*)? -|-/

Y(€) d§ + ¢,
where ¢ is such that V(6*,w*) = 0. Note that V is
locally positive definite around the operating equilibrium.
Taking the time-derivative of V' along the trajectories of
the closed-loop system (15), (16), (17), (18) and (19) yields

(21)

V=(w-w)w+50)0
=D, (w—w")?—d(w-—w)sat(w —w*)
—D, (w—w)sat(w — w*) — d (w — w*) sat(w — w*)
- (DT—I—J) (w—w*)sat(w —w*) <0, (22)

from which we conclude local stability of the operating
equilibrium of the second order closed-loop system.

Consider now the third order model, i.e. (10), (11), (12)
and (13). For such a model the excitation control is
designed so that the closed-loop dynamics of the state E(’I
“tracks” the state-dependent reference E! given in (18).
This objective can be achieved by using the bounded state
feedback control law

u((5,w,E')—aE — becos — ey — Sat (B,

t2
+k7<1—sa (2’2 “)>w,

- )
(23)

where Sat (E,’J - E;) is a differentiable saturation function
with adjustable bounds defined as

ku
Lj; tanh (L;fg)y e > 0,
Sat(e) = ¢ 0, e =0,

L, tanh (kue), e <0,
L,

with e = E} — E! € R, k, € Ry, and L} € Rxo and
L7, € R> the magnitudes of the positive bound and of
the negative bound, respectively.

Note that L; and L
selected as

L;r = {0, —Umin T Qe (E/* _L )
sat

k, (1 )>w}

L, = max {0, Umaz — Qe (E;* +L;)+bccosd +ef

We emphasize that, locally around the closed-loop operat-
ing equilibrium, both L} and L;, are positive. In addition,
both L} and L, can be made globally bounded by a
proper selection of the slope constant k..

(24)

are functions of the states and are

becosd — ey

(25)

(26)

8.1 Stability Analysis

To analyze the stability properties of the operating equi-
librium of the third order model controlled with (23), let

= E, - E‘é indicate the difference between the state
E; and its desired state-dependent reference E;. With

this definition, the closed-loop SMIB power system can
be rewritten as

b=w—w", (27)
(D+T.) . w*

WZ—T(w—w )—l—ﬁ(Pm—Te), (28)

€ = —a.e — Sat(e), (29)

where the electrical torque output T, € R>¢ is expressed,
in the new coordinates, as

T.(0,w,€) = a, (E;* + [e +sat(w — w*)])2

+ b, sind (E; + [e + sat(w — w*)])

+ ¢, 8in 26 + d; cos d. (30)
Note that the operating equilibrium of the closed-loop
system in the new coordinates is z* = [0* w* &*]T,
with e* = 0. Let D, = (D +T.)/(2H), and note that
D, € R>g. Then, (28) can be rewritten as

*

. * w
w=—-D;(w—w")+ E(Pm - Te.)
=—-D.(w— w*) 7(5) dsat(w — w*)
_ wrar 2 _ /%
5H 2H (2a7.E + b, sind)e, (31)
where
10) = 55 (= Pty +bosind By
+ ¢, sin 26 + d, cos 6),
d= ST (QCLTE;* + a, sat(w — w*) + 2a, + b, sin (5).

Consider now the energy-based ? Lyapunov function can-
didate

V(,w,e) =

1 9 Ke o  wrar
2w — w* 0(5) -+ £
Q(w w)+()+2€+2H
where k. € Ry is a sufficiently large scaling constant to

be selected, and 6 is defined as

)
0(5) = / (€)dé + e,
with ¢ € R such that 6(6*) = 0.

5e?, (32)

(33)

Note that 6 is locally positive definite around the operating
equilibrium, as illustrated in Fig. 3. Recall that 6 € [0, 7],
thus the term 6&? is locally positive definite around the
operating equilibrium. Therefore, the Lyapunov function
candidate (32) is locally positive definite around the oper-
ating equilibrium.

Taking the time-derivative of V' along the trajectories of
the closed-loop system (27), (28), (29) and (30) yields

2 The quadratic term in w is related to the mechanical kinetic energy,
while the terms in § and e are related to the electro-mechanical
potential energy.
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. dé(9)
V= (UJ )OJ + W (5 + K
wra.
2H H
=—-D,;(w— w*)2 —d(w—w*)sat(w — w")
- </§E + w;T 5) (ace® + € Sat(e))
w* (2a-E]" + by sin§) - w?)
2H

—d(w—w*)sat(w — w")

) acg? — (ns + % 5) e Sat(e)

< DTw—oJ)
QaTE + b, sm6)

4Hk,,
_ _K;iw o *)2
- (DT 2)(‘” w’)

—d(w—w")sat(w — w")

B w* (2a,E"* + b, sin
—<H5+w;7—(5— ( q )>a652

€2+ %(w —w*)?

4Hk,, ac

- <n5 > e Sat(e). (34)
Since k. is sufficiently large, setting k., = 1 yields
— (DT — %) (w—w*)2 <0
—d(w—w")sat(w —w*) <0
wra, w* (ZaTE(’I* + b, sin ) 5
— — <
(/ﬁg + 7 é 1Hr a. a.c” <0

_ (55 + w;T 5) e Sat(e) < 0.

Hence, V < 0, from which we conclude local stability of
the post-fault closed-loop operating equilibrium. Finally, a
direct application of LaSalle’s invariance principle shows
that the post-fault closed-loop operating equilibrium is
also attractive, hence it is locally asymptotically stable.

In summary, the bounded state feedback control law (23) is
such that the post-fault closed-loop operating equilibrium
is locally asymptotically stable, and wu,;;, < u(t) <
Umaz, VI E Rzo.

3.2 Direct Method for Transient Stability Assessment

To use the Lyapunov function (32) as an tool for transient
stability analysis, consider the graph of the function 6
illustrated in Fig. 3. Note that the function 6 has a local
maximizer, denoted by ¢°, which is one of the solutions of
the equation
do(d)

55— =0 (35)
In particular, §° is the smallest of such solutions to the
right of the operating equilibrium 0*. Note that while ¢° is
a local maximizer of 0, it is a saddle point for the Lyapunov
function V.

15 : ‘
Operating equilibrium §*
Saddle point ¢*

0(9)

0 I I I I I
0 0.5 1 15 2 25 3 3.5

J [rad]

Fig. 3. Graph of the function 6 in (33)

We now discuss how the energy-based Lyapunov function
(32) can be used as an instrument for transient stability
analysis. To this end, define the “critical” value

Ve =V(6,w",e"),
and consider Algorithm 1.

(36)

Algorithm 1

Let z(tc) = z. be the state of the SMIB power system at the
instant the fault is cleared.

Calculate V(z.).

if V(z.) < V. then
the post-fault trajectory converges to its equilibrium,

else
no conclusion can be drawn, and TDS have to be conducted

for the post-fault mode.
end

The idea of Algorithm 1 is as follows. The state trajectory
at the instant the fault is cleared, i.e. x., is obtained
through the simulation of the fault-on mode. Then, the
value of the Lyapunov function at this state, i.e. V(z.), can
be calculated. If V(x.) < V., indicating that the state z is
inside the estimated region of attraction of the post-fault
operating equilibrium, the post-fault trajectory converges
to the post-fault operating equilibrium. Hence, the post-
fault system is directly assessed to be stable. If instead
V(z.) > V., indicating that the state z. is outside the
estimated region of attraction of the post-fault operating
equilibrium, the behaviour of the post-fault trajectory
cannot be predicted because of the conservativeness of the
estimation. In this case TDS have to be conducted for
transient stability assessment.

4. CASE STUDY

The simulations in this case study are conducted based
on the SMIB power system model shown in Fig. 1. Recall
that the fault is assumed to occur at the location F. The
control parameters and the saddle point in the case study
are given in Table 3.

Table 3. Parameters in the case study

L, k- ku Ke 0°
0.2 0.108 20 2407 | 2.5454
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4.1 Transient performance

To demonstrate the transient performance achievable with
the proposed control approach, consider the following test
scenario. The fault occurs at t; = 1s. It is then cleared
after a fault-on duration At = 70ms, i.e. it is cleared at
the fault-clearing time t. = 1.070s. Since the emphasis
is on the stability of the post-fault mode, the designed
bounded control law (23) is applied at the fault-clearing
time, which results in the closed-loop post-fault mode, i.e.
(27), (28) and (29).

AVR & PSS

(23)
Xty .
o it
4 5 6
AVR & PSS
(23) ]
Xty
e i 4
374 . . . . .
0 1 2 3 4 5 6
t[s]
1.2 T T
AVR & PSS
| (23) ]
1.15 Xty
o it
. 11r q
2
)
—1.05 a
1k ]
0.95 ]
0.9 . . . . .
0 1 2 3 4 5 6

Fig. 4. Time histories of the SMIB power system states:
rotor angle (top), rotational speed (middle) and in-
duced voltage (bottom)

Fig. 4 illustrates the transient performances yielded by two
control approaches, i.e. by the designed control law (23)
and by the traditional AVR and PSS, respectively. It can
be observed that the closed-loop transients yielded by the
proposed control law have a faster convergence speed.

The control signals in the considered two approaches are
displayed in Fig. 5. Since it is applied at the fault-clearing
time, the proposed control is set to zero in the open-loop
modes, i.e. in the pre-fault mode and the fault-on mode.
Both control signals remain within the specified physical
bounds. However, compared with the excitation control
input provided by AVR and PSS, the designed bounded
control input covers the whole range, indicating a higher
utilization of the available control energy. Note that the
use of the state-dependent gains L} and L, in (25) and
(26) is instrumental for this achievement.

AVR & PSS 1
(23)
Xty
e it
= = = Unas & Unin J

Control input

Fig. 5. Time histories of the control inputs

The state € quantifies the tracking performance of the state
E’ against its desired state-dependent reference E', the
behaviour of which is displayed in Fig. 6. Since the control
law (23) is applied at the fault-clearing time, the state e
stays zero in the open-loop modes. It jumps at the fault-
clearing time and then converges exponentially to zero,
consistently with (29).

0

-0.05 4
o oif Xty

© ® i
-0.15 b

post-fault

0.2 3
0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fig. 6. Time history of the state

The Lyapunov function (32) serves as a monitor for the
transient response with respect to the post-fault mode. Its
time history in the considered transient stability case is
shown in Fig. 7. Note that, after the fault-clearing instant,
the Lyapunov function decreases monotonically to zero,
consistent with the fact that the post-fault trajectory con-
verges to the post-fault closed-loop operating equilibrium.
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Xty
20 e t. |
157 post-fault 7

=

%

S 107 pre-fault 1
5¢ l .
oF

0 0.5 1 1.5 2 25 3

ts]

Fig. 7. Time history of the Lyapunov function V'
4.2 Stability of the Post-fault Trajectories

To visualize the transient response of the post-fault closed-
loop system, consider the level sets of the Lyapunov
function projected into the §-w plane illustrated in Fig. 8.
The (yellow) circle is the projection of the post-fault
operating equilibrium, while the (yellow) pentagram is the
projection of the saddle point. The region, enclosed by
the solid curve containing the saddle point, represents the
estimated region of attraction of the post-fault operating
equilibrium.

‘Estimated region of att.ract';ioni

5

st T

0 0.5 1 15 2 25 3 3.5
0 [rad]

Fig. 8. Level sets and the estimated region of attraction of
the post-fault operating equilibrium

To demonstrate the performance of the proposed direct
method, consider the following test scenarios (recall that
the fault occurs at t; = 1s). Three cases with fault-on
durations of At; = 90ms, Aty = 100ms, and Atz =
105 ms, respectively, are considered. Then, the resulting
state trajectories projected into the d-w plane are displayed
in Fig. 9 and in Fig. 10, respectively. In each plot, the (red)
cross represents the projection of the state at the time the
fault occurs, while the (red) circle represents the projection
of the state at the fault-clearing time, i.e. x..

If z. is inside the estimated region of attraction of the
post-fault equilibrium, described by the condition V (z.) <
V., the post-fault trajectory converges to the operating
equilibrium. This is the case with At; = 90ms. Note
that, for any fault-on duration shorter than Aty, the
post-fault trajectory converges to the post-fault operating

equilibrium. In conclusion, the post-fault SMIB power
system controlled with (23) is directly assessed to be stable
given that the fault-on duration is shorter than At.

w [rad/s]

0 0.5 1 1.5 2 25 3 3.5
¢ [rad]

Fig. 9. Projection of the state trajectory in the case with
Aty = 90ms

If x. is outside the estimated region of attraction of the
post-fault equilibrium, that is the condition V(z.) > V.
holds, no conclusion can be drawn on the behaviour of
the post-fault trajectory. This can either converge to the
post-fault operating equilibrium or diverge, as illustrated
in Fig. 10. In such cases, TDS for the post-fault trajectories
should be used, as an auxiliary tool, to assess the transient
stability.

w [rad/s]

0 0.5 1 15 2 25 3 3.5
¢ [rad]

Fig. 10. Projections of the state trajectories in the cases
with Aty = 100ms (top) and Atz = 105ms (bottom)
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Table 4 summarizes the conclusion for the considered test
scenarios.

Table 4. Transient stability assessment results

At V(ze) < Ve Assessment
90ms Yes Direct assessment: Stable
100 ms No Conduct TDS: Stable
105ms No Conduct TDS: Unstable

Note, in particular, that in the case with fault-on duration
of Aty = 100ms, although the state at the fault-clearing
time z. is outside the estimated region of attraction of the
post-fault operating equilibrium, the post-fault trajectory
converges to the post-fault equilibrium and is assessed
to be stable. This indicates that the estimated region of
attraction, the projection of which on the §-w plane is
illustrated in Fig. 8, is a subset of the actual region of
attraction of the post-fault operating equilibrium.

5. CONCLUSION AND FUTURE WORK

This paper has proposed a new bounded state feedback
control law with independently adjustable upper and lower
bounds. On the basis of the proposed control law, an
energy-based Lyapunov function for the third order model
of a closed-loop SMIB power system is proposed. The
Lyapunov function allows assessing local stability of the
closed-loop operating equilibrium, and serves as a monitor
for the transient performance of the post-fault trajectory.
Finally, by comparing the value of the proposed Lyapunov
function at the state at the fault-clearing time against
a critical value, we can construct an indicator for the
stability assessment of the post-fault mode.

One direction for future work is to extend the proposed
method to more detailed models of synchronous gener-
ators and to multi-machine power systems. Finally, one
could also improve the proposed bounded control law by
removing its dependence on non-measurable states.
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