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We consider a two-dimensional honeycomb lattice of metallic nanoparticles, each supporting a

localized surface plasmon, and study the quantum properties of the collective plasmons resulting from

the near-field dipolar interaction between the nanoparticles. We analytically investigate the dispersion, the

effective Hamiltonian, and the eigenstates of the collective plasmons for an arbitrary orientation of the

individual dipole moments. When the polarization points close to the normal to the plane, the spectrum

presents Dirac cones, similar to those present in the electronic band structure of graphene. We derive the

effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor

eigenstates represent Dirac-like massless bosonic excitations that present similar effects to electrons in

graphene, such as a nontrivial Berry phase and the absence of backscattering off smooth inhomogeneities.

We further discuss how one can manipulate the Dirac points in the Brillouin zone and open a gap in the

collective plasmon dispersion by modifying the polarization of the localized surface plasmons, paving the

way for a fully tunable plasmonic analogue of graphene.
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Light has been the source of inspiration for scientific
thinking for millennia. Ancient Assyrians developed the
first lenses in order to bend the trajectory of light and
control its propagation. In contrast to the macroscopic
scale, the use of light to observe microscopic structures
poses difficulties due to the diffraction limit [1]. In an
attempt to overcome this limit and observe subwavelength
structures, plasmonic nanostructures have been created
[2,3], such as isolated metallic nanoparticles [4]. The
evanescent field at the surface of the nanoparticle, associ-
ated with the localized surface plasmon (LSP) resonance
[5], produces strong optical field enhancement in the
subwavelength region, allowing one to overcome the
diffraction limit and achieve resolution at the molecular
level [6].

While the field of plasmonics mostly focuses on a single
or a few structures, the creation of ordered arrays of
nanoparticles constitutes a bridge to the realm of metama-
terials. Plasmonic metamaterials exhibit unique properties
beyond traditional optics, like a negative refractive index
[7], perfect lensing [8], the exciting perspective of
electromagnetic invisibility cloaking [9], and ‘‘trapped
rainbow’’ slow light exploiting the inherent broadband
nature of plasmonics [10]. Indeed, in plasmonic metama-
terials, the interaction between LSPs on individual
nanoparticles generates extended plasmonic modes involv-
ing all LSPs at once [11,12]. Understanding the nature
and properties of these plasmonic modes [referred to as
‘‘collective plasmons’’ (CPs) in what follows] is of crucial

importance as they are the channel guiding electromag-
netic radiation with strong lateral confinement over macro-
scopic distances.
CPs in periodic arrays of metallic nanoparticles are an

active area of research in plasmonics because the interac-
tion of the LSP resonances can lead to dramatic changes
in the overall optical response of such structures. For
example, it was both predicted [13] and observed [14]
that the plasmonic response of a periodic array of nano-
particles could be significantly narrowed with respect to
the single particle response. Further work has shown that
these coupled resonances are relevant to applications in
light emission [15]. The extended nature of the collective
resonances means that there is a scope for harvesting
emission from sources spread over large volumes [16,17].
The dispersion of CPs and their physical nature crucially

depend on the lattice structure of the metamaterial and on
the microscopic interaction between LSPs. A lattice which
recently generated remarkable interest in the condensed
matter community is the honeycomb structure exhibited by
graphene, a two-dimensional (2D) monolayer of carbon
atoms [18]. In the case of graphene, the hopping of electrons
between neighboring atoms gives rise to a rich band struc-
ture characterized by the presence of fermionic massless
Dirac quasiparticles close to zero energy [19]. The chirality
associated with pseudorelativistic Dirac fermions results in
several of the remarkable properties of graphene, such as a
nontrivial Berry phase accumulated in parallel transport [20]
and the suppression of electronic backscattering from
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smooth scatterers [21]. Undoubtedly, it would be exciting to
harvest the remarkable physical properties of electrons in
graphene in suitably designed plasmonic metamaterials by
analyzing the Hamiltonian and the consequent nature of
CP eigenmodes in 2D honeycomb lattices of metallic nano-
particles. This is the purpose of the present theoretical Letter.

We analytically show how the problem of interacting
LSPs in the honeycomb structure can be mapped onto the
kinetic problem of electrons hopping in graphene, yielding
massless Dirac-like bosonic CPs in the vicinity of two
Dirac points in the Brillouin zone. The conical dispersion
of classical plasmons in a honeycomb lattice of nanopar-
ticles has been discussed numerically in the past for out-
of-plane or purely in-plane polarizations [22]. In quite
different physical systems (e.g., photonic crystals [23],
acoustic waves in periodic hole arrays [24], or cold atoms
[25]), conical dispersions were also found in ‘‘artificial
graphene’’ due to the honeycomb symmetry. However,
the existence of a conical dispersion is not sufficient [26]
to prove the physical analogy between quantum CPs in
honeycomb plasmonic lattices and electrons in graphene.
In order to achieve that, here we unveil the full Dirac
Hamiltonian of quantum CPs as well as the pseudospin
structure of the CP eigenmodes for dipolar LSPs with
arbitrary orientation. The existence of Dirac points is
robust for a small in-plane component of the polarization,
where the system maps to strained graphene [27], while
band gaps can emerge for increasing in-plane polarization.
At energies away from the Dirac point, van Hove singular-
ities emerge in the CP density of states (DOS), associated
with Lifshitz transitions in the topology of equipotential
lines [28]. Our analysis highlights the physical nature of
CP eigenmodes as well as the tunability of their band struc-
ture and of the corresponding DOS with the polarization of
light,which can be crucial for enhancing the coupling of light
with the plasmonic metamaterial at different wavelengths.

Specifically, we consider an ensemble of identical
spherical metallic nanoparticles of radius r forming a 2D
honeycomb lattice with lattice constant a embedded in a
dielectric medium with dielectric constant �m (see Fig. 1).
The nanoparticles are located at positions Rs, with s ¼ A,
B a sublattice index which distinguishes the inequivalent
lattice sites. Each individual nanoparticle supports an LSP
resonance which can be triggered by an oscillating external
electric field with wavelength � much larger than r. Under
such a condition, the LSP is a dipolar collective electronic
excitation at the Mie frequency !0 ¼ !p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�m

p
,

which typically lies in the visible or near-infrared part of

the spectrum [5]. Here, !p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�nee

2=me

p
is the plasma

frequency, with ne, �e, and me the electron density,
charge, and mass, respectively. The LSP corresponding to
the electronic center-of-mass excitation can be generally
considered as a quantum bosonic mode, particularly when
the size of the nanoparticle is such that quantization effects
are important [29–32]. The noninteracting part of the

Hamiltonian describing the independent LSPs on the hon-
eycomb lattice sites reads H0 ¼ P

s¼A;B

P
Rs
½�2

sðRsÞ=
2MþM!2

0h
2
sðRsÞ=2�, where hsðRÞ is the displacement

field associated with the electronic center of mass at posi-
tion R, �sðRÞ its conjugated momentum, and M ¼ Neme

its mass, with Ne the number of valence electrons in each
nanoparticle [30,31].
The nature of the coupling between LSPs in different

nanoparticles depends on their size and distance. Provided
that the wavelength associated with each LSP is much
larger than the interparticle distance a and that r & a=3
[12], each LSP can be considered as a point dipole with
dipole moment p ¼ �eNehsðRÞp̂ which interacts with
the neighboring ones through dipole-dipole interaction.
Moreover, it has been numerically shown [22] that a qua-
sistatic approximation which only takes into account the
near field generated by each dipole qualitatively reprodu-
ces the results of more sophisticated simulations in which
retardation effects are included. Within such a quasistatic
approximation, the interaction between two dipoles p and
p0 located at R and R0, respectively, reads V ¼ ½p � p0 �
3ðp � nÞðp0 � nÞ�=�mjR�R0j3, with n ¼ ðR�R0Þ=jR�
R0j [33]. In what follows, we assume that in a CP
eigenmode all nanoparticles are polarized in the same
direction p̂ ¼ sin�ðsin’x̂� cos’ŷÞ þ cos�ẑ, where � is
the angle between p̂ and ẑ and ’ is the angle between the
projection of p̂ in the xy plane and e1 [see Fig. 1(a)]. This
can be achieved by an external electric field associated
with light of suitable polarization. We thus write the total
Hamiltonian of our system of coupled LSPs as H ¼ H0 þ
Hint, where the dipole-dipole interaction term reads

Hint ¼ ðeNeÞ2
�ma

3

X
RB

X3
j¼1

CjhBðRBÞhAðRB þ ejÞ: (1)

Here, Cj ¼ 1� 3sin2�cos2ð’� 2�½j� 1�=3Þ, and the

vectors ej connect the A and B sublattices [see Fig. 1(a)].

In Eq. (1), we only consider the dipole-dipole interaction

FIG. 1 (color online). (a) Honeycomb lattice with lattice con-

stant a and lattice vectors a1 ¼ að ffiffiffi
3

p
; 0Þ and a2 ¼ að

ffiffi
3

p
2 ; 32Þ. The

three vectors e1 ¼ að0;�1Þ, e2 ¼ að
ffiffi
3

p
2 ; 12Þ, and e3 ¼ að�

ffiffi
3

p
2 ; 12Þ

connect the A and B inequivalent lattice sites [dark gray (blue)
and light gray (red) dots in the figure]. (b) First Brillouin zone in
reciprocal space with primitive vectors b1 ¼ 2�

3a ð
ffiffiffi
3

p
;�1Þ and

b2 ¼ 4�
3a ð0; 1Þ.
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between nearest neighbors, as the effect of interactions
beyond nearest neighbors does not qualitatively change
the plasmonic spectrum [34].

The analogy between the plasmonic structure of Fig. 1
and the electronic properties of graphene becomes trans-
parent by introducing the bosonic ladder operators

aRjbR ¼ ðM!0=2@Þ1=2hAjBðRÞ þ i�AjBðRÞ=ð2@M!0Þ1=2
which satisfy the commutation relations ½aR; ayR0 � ¼
½bR; byR0 � ¼ �R;R0 and ½aR; byR0 � ¼ 0. As we will show in

the following, the introduction of such operators not only
gives access to the plasmon dispersion (which can be
calculated classically as well [34]) but also unveils the
Dirac nature of the CP quantum states. The harmonic
Hamiltonian H0 can be written in terms of the abovemen-

tioned bosonic operators as H0 ¼ @!0

P
RA
ayRA

aRA
þ

@!0

P
RB

byRB
bRB

, while Eq. (1) transforms into

Hint ¼ @�
X
RB

X3
j¼1

Cjb
y
RB

ðaRBþej þ ayRBþej
Þ þ H:c: (2)

In Eq. (2), � ¼ !0ðr=aÞ3ð1þ 2�mÞ=6�m, such that
� � !0. The first term on the right-hand side of Eq. (2)
resembles the electronic tight-binding Hamiltonian of
graphene [19], except for three major differences. (i) The
Hamiltonian of graphene describes fermionic particles
(electrons), while we deal here with bosonic excitations
(LSPs). (ii) In graphene, an electron ‘‘hops’’ from one
lattice site to a neighboring one; i.e., the underlying mecha-
nism linking the two inequivalent sublattices is purely
kinetic. In the present case, the mechanism coupling the
two sublattices is purely induced by near-field (dipolar)
interactions, leading to the creation of an LSP excitation at
lattice site RB and the annihilation of another LSP at a
nearest neighbor located at RB þ ej. (iii) In (unstrained)

graphene, the hopping matrix element between two neigh-
boring atoms is the same for all three bonds. In contrast, in
our case, the three energy scales @�Cj in Eq. (1) are in

general different and can be tuned by the direction of the
polarization p̂ of the CP eigenmode, which can be con-
trolled by means of an external light field. For 0< � � �0
and �� �0 � � < � with �0 ¼ arcsin

ffiffiffiffiffiffiffiffi
1=3

p
, the coeffi-

cients Cj are all positive for any ’ and have different

values, resulting in different couplings between the bonds
and thus mimicking the effect of strain in the lattice [27].
For �0 < �< �� �0, the signs of the coefficients Cj
depend on ’, and the analogy with strained graphene is
no longer valid. In the special case where C1 ¼ C2 ¼ C3
(for � ¼ 0 or �), we expect the CP spectrum to resemble
that of the electronic band structure in graphene since the
Bloch theorem does not depend on the quantum statistics
of the particles one considers but only on the structure of
the periodic lattice. This fact is also responsible for the
conical dispersion presented by other systems with honey-
comb symmetry [23–25]. As we will now show, two slight

differences appear in the CP dispersion as compared to the
graphene band structure; i.e., the effect of the Hamiltonian
H0 is to produce a global energy shift (by an amount @!0),

while the ‘‘anomalous’’ term / byRB
ayRBþej

in Eq. (2) intro-

duces corrections of order ð�=!0Þ2 to the spectrum.
Introducing the bosonic operators in momentum space

aq and bq through aRjbR ¼ N �1=2
P

q expðiq �RÞaqjbq,
withN the number of unit cells of the honeycomb lattice,

the Hamiltonian H ¼ H0 þHint transforms into H ¼
@!0

P
qðayqaq þ byqbqÞ þ @�

P
q½fqbyqðaq þ ay�qÞ þ H:c:�,

with fq ¼ P
3
j¼1 Cj expðiq � ejÞ. The latter Hamiltonian is

diagonalized by two successive Bogoliubov transforma-
tions. First, we introduce the two bosonic operators

��
q ¼ ½ðfq=jfqjÞaq � bq�=

ffiffiffi
2

p
in terms of which we obtain

H ¼ P
�¼�

P
q½ð@!0 þ �@�jfqjÞ��y

q ��
q þ �

@�jfqj
2 �

ð��y
q ��y�q þ H:c:Þ�. Second, we define two new bosonic

modes ��
q ¼ cosh#�

q �
�
q � sinh#�

q �
�y�q , with cosh#�

q ¼
2�1=2½ð1 � �jfqj=!0Þ=ð1 � 2�jfqj=!0Þ1=2 þ 1�1=2 and

sinh#�
q ¼�2�1=2½ð1��jfqj=!0Þ=ð1�2�jfqj=!0Þ1=2�

1�1=2, which diagonalize the Hamiltonian H as

H ¼ X
�¼�

X
q

@!�
q�

�y
q ��

q; !�
q ¼ !0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

�

!0

jfqj
s

:

(3)

The two CP branches reduce to !�
q ’ !0 ��jfqj to first

order in �=!0 � 1, for which we have ��
q ’ ��

q [34].

The dispersion in Eq. (3) is shown in Fig. 2 in the case of
a polarization p̂ perpendicular to the plane of the honey-
comb lattice [� ¼ 0, Fig. 2(a)], in the case of an in-plane
polarization [� ¼ �=2, ’ ¼ 0, Fig. 2(b)], and for the

special case � ¼ arcsin
ffiffiffiffiffiffiffiffi
1=3

p
, ’ ¼ 0 [Fig. 2(c)]. In the first

case [Fig. 2(a)], we have gapless modes with two
inequivalent Dirac cones centered at the K and K0 points
located at �K ¼ 4�

3
ffiffi
3

p
a
ð�1; 0Þ in the first Brillouin zone

[cf. Fig. 1(b)], while, in the second case, the modes are
gapped [Fig. 2(b)]. The dispersion shown in Fig. 2(c) corre-
sponds to a polarization for which C1 ¼ 0 in Eq. (1); i.e., the
bonds linked by e1 [cf. Fig. 1(a)] are ineffective and the
system is effectively translationally invariant along one di-
rection.Hence, theCP dispersion inFig. 2(c) does not depend
on qy and presents Dirac ‘‘lines.’’

The analogy between the dispersion shown in Fig. 2(a)
and the electronic band structure of graphene [19] is strik-
ing. Close to the two inequivalent Dirac points K and K0
[see Fig. 1(b)], the function fq expands as fq ’ � 3a

2 �
ð�kx þ ikyÞ, with q ¼ �Kþ k (jkj � jKj), such that the
dispersion in Eq. (3) is linear and forms a Dirac cone!�

k ’
!0 � vjkj, with group velocity v ¼ 3�a=2. This feature
is consistent with numerical analysis [22]. Moreover, by
expanding Eq. (3) in the vicinity of the Dirac points, we

can identify the Hamiltonian Heff ¼ P
k�̂

y
kH

eff
k �̂k that
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effectively describes the CPs. Here, �̂k ¼ ðak;K; bk;K;
bk;K0 ; ak;K0 Þ is a spinor operator, where K and K0 denote
the valley indices associated with the inequivalent Dirac
points, and the 4� 4 Hamiltonian reads

H eff
k ¼ @!01� @v�z 	 � � k: (4)

In this notation, 1 corresponds to the identity matrix, �z to
the Pauli matrix acting on the valley space (K=K0), while
� ¼ ð	x;	yÞ is the vector of Pauli matrices acting on the

sublattice space (A=B). Up to a global energy shift of @!0,
Eq. (4) corresponds to a massless Dirac Hamiltonian that
is fulfilled by CPs, in complete analogy with electrons in
graphene [19]. The CP eigenstates of Eq. (4), c�

k;K ¼ 1ffiffi
2

p �
ð1;�ei
k ; 0; 0Þ and c�

k;K0 ¼ 1ffiffi
2

p ð0; 0; 1;�ei
kÞ with 
k ¼
arctanðky=kxÞ, are characterized by chirality � � k̂ ¼ �1.

As a consequence, CPs will show similar effects to elec-
trons in graphene, such as a Berry phase of � [20] and the
absence of backscattering off smooth inhomogeneities
[21]. This could have crucial implications for the efficient
plasmonic propagation in array-based metamaterials.

In Figs. 2(d)–2(f), we show the DOS corresponding to
the spectrum illustrated in Figs. 2(a)–2(c). It is interesting
to notice the tunability of the DOS with the direction of the
polarization, as well as the emergence of van Hove singu-
larities. The latter are associated with Lifshitz transitions
[28] in the topology of equipotential lines that percolate at
specific energies. The tunability of van Hove singularities
in the spectrum could be of crucial importance to increase
the coupling of light of different wavelengths with
extended CP modes.

For an arbitrary polarization of the LSPs, we can deter-
mine if the CP dispersion is gapless by imposing jfqj ¼ 0

in Eq. (3), which leads to the condition 0 � ½ðC2 þ C3Þ2 �
C21�=4C2C3 � 1 for having gapless plasmonic modes [34].

In Fig. 2(g), we show in dark blue the regions of stability of
a massless Dirac spectrum in the (�, ’) parameter space
for which one has gapless plasmon modes, an example of
which is shown in Fig. 2(a). In Fig. 2(g), the white regions
correspond to polarizations for which the CP dispersion is
gapped [as an example, see Fig. 2(b)]. Thus, changing the
polarization allows one to qualitatively change the CP
spectrum. This is further illustrated in Fig. 2(h), where
we show the CP dispersion along the K0�K direction [see
Fig. 1(b)] for different angles � of the polarization (in the
figure, ’ ¼ 0). As one can see from Fig. 2(h), the two
inequivalent Dirac points located at K and K0 for
� ¼ 0 drift as one increases � and they merge at q ¼ 0

for � ¼ arcsin
ffiffiffiffiffiffiffiffi
2=3

p
, forming parabolic bands, to finally

open a gap for � > arcsin
ffiffiffiffiffiffiffiffi
2=3

p
(exemplified by � ¼ �=2

in the figure).
A limitation on the experimental observability of the CP

dispersion is plasmonic damping, which tends to blur the
resonance frequencies. In order to estimate the feasibility
of such experiments, we compare the bandwidth of the CP
dispersion to the losses in individual nanoparticles. In the
latter, two main sources of dissipation arise: (i) radiation
damping with decay rate �rad ¼ 2r3!4

0=3c
3 [35] (c is the

speed of light), which dominates for larger nanoparticle
sizes, and (ii) Landau damping with decay rate �L ¼
3vFg=4r [5,29,31] (vF is the bulk Fermi velocity and g
a constant of the order of 1), which dominates for

FIG. 2 (color online). (a)–(c) Collective plasmon dispersion relation from Eq. (3) and (d)–(f) corresponding density of states for (a),

(d) the out-of-plane mode (� ¼ 0), (b), (e) one in-plane mode (� ¼ �=2), and (c), (f) � ¼ arcsin
ffiffiffiffiffiffiffiffi
1=3

p
. (g) Polarization angles (�, ’)

for which the collective plasmon dispersion is gapless (dark blue regions) and gapped (white regions). (h) Collective plasmon
dispersion along the K0�K direction (qy ¼ 0) for different orientations � of the dipoles. In the figure, ’ ¼ 0 and �=!0 ¼ 0:01.
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smaller sizes. Hence, there exists an optimal size ropt ¼
ð3vFgc

3=8Þ1=4=!0 for which the total damping �tot ¼
�rad þ �L is minimal. For Ag nanoparticles, we find
ropt ¼ 8 nm for which �tot ¼ 0:1 eV=@. With an interpar-

ticle distance a ¼ 3ropt which maximizes the dipolar

coupling between nanoparticles [12], we find that the
bandwidth is of the order of �! ¼ !þ

0 �!�
0 ¼ !0=9 ¼

0:6 eV=@ at the center of the Brillouin zone (for �m ¼ 1
and for the out-of-plane polarization). Thus, �! is suffi-
ciently large when compared to �tot that the plasmon
excitation is well defined and hence clearly measurable.
Moreover, the appropriate use of active (gain-enhanced)
media [36] might increase the observability of the CP
dispersion.

A last comment is in order about the excitation of
CPs by external photons, whose in-plane momentum
must match the plasmonic one. In fact, the vicinity of the
Dirac points typically lies outside the light cone. In order to
overcome this momentum mismatch and observe the Dirac
plasmons, one might add an extra periodic modulation of
the lattice to allow grating coupling between the incident
light and the desired collective modes [3]. Another alter-
native might be to use a nonlinear technique to overcome
the momentum mismatch [37].

In conclusion, we demonstrated the strong analogies
between the physical properties of electrons in graphene
and those of collective plasmon modes in a 2D honeycomb
lattice of metallic nanoparticles. Whereas the electronic
states of graphene can be described by massless Dirac
fermions, the CP eigenstates correspond to massless
Dirac-like bosonic excitations. The spectrum of the latter
can be fully tuned by the polarization of an external light
field, opening exciting new possibilities for controlling the
propagation of electromagnetic radiation with subwave-
length lateral confinement in plasmonic metamaterials.
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