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Abstract

Ultrasonic wave propagation and scattering involving both solids and fluids underpin many

key configurations in non-destructive testing and underwater acoustics. The resulting interac-

tions are highly dependent on both material parameters and geometries and are often difficult

and expensive to investigate experimentally. Modelling capabilities are often used to over-

come this, but these are also complex and computationally expensive due to the complexity

of the fluid-solid interactions.

In this thesis, work is presented on simulating ultrasonic wave phenomena involving both

solids and fluids, using the finite element method implemented on graphical processing units.

The thesis beings with a literature review existing analytical and numerical methods as well

as certain necessary building blocks and useful background information.

A novel explicit time-domain finite element method for simulating ultrasonic waves interact-

ing with fluid-solid interfaces is then introduced, allowing investigation of complex, industri-

ally relevant configurations at scale and speed. The method is displacement-based, and relies

on classical hourglassing control, in addition to a modified time-stepping scheme to damp

out any shear motion in an inviscid fluid. One of the key benefits of the displacement-based

approach is that nodes in the fluid have the same number of degrees of freedom as those in

the solid. Therefore, defining a fluid-solid model is as easy as defining an all-fluid or all-solid

model, avoiding the need for any special treatments at the interfaces common in other ap-

proaches. It is thus compatible with typical elastodynamic finite element formulations and

ready for implementation on a graphical processing unit.

The method has been verified across a range of problems that involve millions of degrees of

freedom from different fields, such as non-destructive testing and underwater acoustics, and

across different scales, with frequencies of interest ranging from kHz to MHz. There is also a

brief investigation on geometrical model refinement and some initial research and simulations

conducted to extend this work in three dimensions.
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Chapter 1

Introduction

1.1 Motivation

Fast numerical methods for simulating elastic wave phenomena in coupled solid-fluid media

are needed to model a range of complex geometries in real-world applications. Ultrasonic

wave propagation and scattering in domains composed of both solids and fluids is a key

research interest in diverse subject areas such as medical science [4], geophysics [5], non-

destructive testing [6], or underwater acoustics [7]. My research, as detailed in this thesis,

focuses on the last two fields: non-destructive testing (NDT) and underwater acoustics (UA).

Non-destructive testing is primarily concerned with the identification and sizing of defects

in high-value, safety-critical engineering components without damaging or destroying them.

Techniques can be broadly classified as surface, identifying surface or near-surface level de-

fects, or volumetric, identifying defects or the lack thereof, in the internals of the tested

object. There is a wide range of methods and techniques which fall into these categories.

While this thesis focuses on ultrasonic propagation, it is helpful to mention some of these

techniques in what follows. However, this is by no means an exhaustive list and the reader is

referred to papers such as [8, 9, 10], which cover them in more detail, alongside their respec-

tive advantages, disadvantages and use cases. There are also technical standards one must

21



22 Chapter 1. Introduction

follow when using these techniques in industrial settings which vary from region to region.

Details of an applicable standard which covers the usage of guided-wave testing in the United

Kingdom is found in [11].

Common and broadly used surface methods are eddy-current testing, fluorescent penetrant

inspection and thermal methods. Eddy-current testing involves electric currents and mag-

netic fields to identify defects, fluorescent penetrant inspection involves fluorescent penetrant

applied to the surface of the object to aid visual inspection of defects, and thermal methods

involve heating the object and monitoring the heat flow across the surface using an infrared

camera [8].

One of the most commonly used volumetric testing methods is radiography. It has been

heavily studied, formulated and researched. Ionising x-rays, gamma-rays and the object’s

absorption properties are used to inspect the component of interest [12]. This can be extended

to create three-dimensional cross-sectional images by rotating the source or the object and

is the basis of computer tomography [13].

Ultrasonic testing methods, which rely on ultrasonic wave phenomena, are also frequently

used for both surface and volumetric inspection. These are varied from the conceptually rel-

atively simple to more complex techniques, which rely on information from many sources and

receivers. Classical setups include the pulse-echo technique in which ultrasound is transmit-

ted to the surface (pulse), and the response (echo) is measured and then used to determine

the size or location of a defect [14], or the through-transmission technique, in which two

transducers, the source and the receiver are placed on opposite sides of the component. More

advanced techniques exist, such as the Time-of-Flight-Diffraction (TOFD) technique, mainly

used to size cracks, relying on the differing arrival times from the diffracted waves on the

crack extremities [14], or phased-array testing in which multiple single-element transducers

are used to create a focused beam to sweep the component of interest [15]. Another method

is the full matrix capture technique (FMC) which allows one to capture all possible data from

a phased array setup. This is then often used in conjunction with the total focusing method

(TFM) algorithm which allows us to generate an image of the object at every depth and in
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Figure 1.1: A photograph of the immersion tank in the non-destructive testing lab at Imperial
College.

focus [16]. This technique can be applied both in contact but also in an immersion setup

[17]. Guided-wave testing is another such method, in which guided-waves and their disper-

sion characteristics are used to identify defects in structures with one dimension significantly

larger than the cross-section. Such configurations support the propagation of guided-waves

which allow for long-range inspection [18, 19].

One of the key industrial use cases of ultrasonic propagation involving domains of both solid

and fluid materials is immersion testing, where the examined component is immersed in a

fluid and ultrasound travels to the object and then to the receiver, so the object can be

investigated for any defects. The fluid acts as a couplant, allowing for greater transmission of

the acoustic wave. It has been successfully used to characterise materials [20], or to retrieve

a signal from some defect [21]. A photograph of an immersion tank is found in Figure 1.1.
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Geometry Type Environment Filling

Cylinder Perfectly rigid free-field fully-filled (rigid)
Cylinder Shell free-field void (air)
Cylinder Shell free-field partially-filled
Cylinder Shell proud void (air)
Cylinder Shell proud partially-filled
Sphere Shell half-buried fully-filled
Sphere Shell buried fully-filled

Table 1.1: Underwater acoustics benchmarks investigated at the NATO Undersea Research
Centre and reported by [1].

Another use-case is the inspection of pipes filled with, or surrounded by fluids. While quite

general, specific applications where ultrasonic testing has been used are those of determining

the composition of fluid [22], or in guided wave inspection of pipe such as in [23].

Underwater acoustics is also a broad application field considering the interaction of sound

waves with both fluid and solid media. The applications of these range from mapping the

ocean floor [24] to conducting biodiversity assessments of marine habitats [25]. In [1], a

series of benchmark problems for underwater acoustics relating to unexploded ordnance was

produced and is given in Table 1.1. These benchmark problems are closely related to the

research conducted as part of this thesis as it looks at similar configurations for the numerical

simulations presented in subsequent chapters. Other motivating examples are identifying and

characterising sub-sea objects using acoustic scattering from targets located on a sandy sea

floor [26] or unexploded ordnance in the free field [27]. Photographs of these cases are found

in Figure 1.2 and Figure 1.3 respectively.

1.2 State of the art

While the use-cases and motivating examples in the two application fields detailed above can

differ in materials, size of the object or domain, both would greatly benefit from fast, versatile

modelling capabilities for coupled systems. Accurate simulation of ultrasound propagation

and scattering effects in coupled solid-fluid interactions for a range of complex geometries and
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Figure 1.2: Unexploded ordnance, spherical shape, in the free-field, taken by Sergey Dubrov
[2].

Figure 1.3: Unexploded ordnance, cylindrical shape, proud on the seabed, taken by Sergey
Dubrov [2].
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materials in real-world applications is thus needed. What follows is a higher-level overview of

different modelling methods. These are also discussed in more detail later on in this thesis.

As a result of the complexities and prominence of the solid-fluid interaction problem, research

has been carried out to improve modelling capabilities for ultrasonic wave propagation, using

analytical, semi-analytical, and numerical methods. The governing physics behind the wave

equation is well understood, but analytical results are generally limited to simple geometries,

which are not able to represent realistic practical scenarios often involving complex geomet-

rical configurations [28, 29]. Semi-analytical methods rely on approximating the underlying

physical phenomena.

One example of a semi-analytical method is the Kirchhoff approximation, which in this case

is used to describe acoustic wave scattering in both underwater acoustics [30, 31] and non-

destructive testing [32, 33] contexts from (rough) surfaces. The Kirchhoff approximation

is based on an underlying assumption that each point on the surface of the scatterer can

be treated as if it was a point on an infinite tangential plane to the scatterer [33]. The

approximation thus assumes the full insonification of each point by the incident wavefield

and that there is only a single interaction of the wavefield at that point. This, neglects

among other effects, multiple scattering and surface waves, and is primarily valid for high

frequencies.

The Born approximation is a semi-analytical method [34, 35] for low frequency approxima-

tions, which works by approximating the total field in the object of interest by the incident

field [36]; a direct corollary of this is that the scattered field must be significantly weaker

than the incident field. Both the Kirchhoff and Born approximation have been implemented

in NDT simulation software such as CIVA [37].

Another semi-analytical method is the distributed point source method [38], where the to-

tal ultrasonic field is obtained via a summation of point sources distributed over a finite

transducer. These semi-analytical methods allow us to solve a greater range of problems

and configurations than analytical methods and at higher speed than numerical methods,
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although these also suffer from the drawback of being unable to fully represent all possible

practical scenarios.

Despite invaluable physical insights offered by the analytical and semi-analytical models, only

numerical methods enable a full range of complex, industry-relevant configurations to be sim-

ulated. The benefit to these numerical simulations are that researchers and practitioners can

simulate the experiment directly and adjust the design process using the model, optimizing

the use of expensive experimental tests. Furthermore, one can develop new signal processing,

inspection and imaging methods to capture specific phenomena, (eg. chosen defect scenarios),

retaining complete control over the parameters of the defect or the structure [39]. Another

more recent use of these numerical methods is to allow us to build large, diverse training sets

for use in machine-learning applications [40].

Several numerical techniques have been used to accurately model ultrasound propagation in

solid and fluid materials. Some of the most widely used methods found in the literature are

the finite-difference (FD) [41, 7], boundary-element (BEM) [42] and the finite-element (FE)

methods [43]. There are two specific challenges when using numerical methods to model

physical phenomena

i. numerical models of realistic three-dimensional setups can quickly grow to extremely

large computational sizes,

ii. the coupling between the solid and the fluid can add additional numerical complexities

depending on the formulation used.

One solution to the problem of computational size is to implement the numerical methods on

graphical processing units (GPUs). Cases involving only solid media can currently be solved

using highly-efficient displacement-based elastodynamic FE solvers benefiting from GPUs

[44]. As described in [44], GPUs are exceptionally well-suited to solving highly parallelisable

problems involving large matrix calculations compared to central processing units (CPUs).

This is thanks to the GPU architecture, where a large number of processors allow many
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threads to run in parallel. They have significantly higher processing power and memory

bandwidth compared to CPUs. These characteristics make GPUs an ideal architecture for

executing explicit time-domain simulations which model acoustic wave phenomena where each

time step only depends on field quantities at previous steps and can be solved independently

of each other.

In the Finite Element (FE) literature for the fluid-structure interaction (FSI), various formu-

lations have been proposed to model the acoustic wave propagation. Most common are the

pressure formulation and the velocity potential formulation [45], which have the benefit of

only requiring one degree of freedom per node. The coupling of solid and fluid domains using

a pressure-based formulation using the finite element method can result in non-symmetric

matrices. This is a result of off-diagonal terms resulting from the coupling between the solid

and fluid interfaces [46, 47, 48]. These non-symmetric matrices are computationally expensive

to use in numerical calculations [49]. Therefore, the pressure-based formulation cannot be

easily used in calculations involving graphical-processing-units because of the aforementioned

matrix inversion and the required special treatment at the solid-fluid boundary.

A displacement-based formulation allows modelling both domains using the same field vari-

able. The resulting matrix is sparse and symmetric, speeding up numerical calculations. This

also minimises data loading on the GPU, providing further speedups. However, displacement-

based formulations for fluids have been troubled by their own challenges in the past. Most

commonly reported problems include added computational requirements when compared to

pressure-based formulations. This is because displacement is a vector-based quantity com-

pared to the scalar pressure, and the presence of spurious circulation modes [50].

This is where the research presented in this thesis contributes to the existing literature: there

is no efficient way to model fluid-solid systems that would permit simulating realistic inspec-

tion setups directly for the reasons mentioned above. The aims of this thesis in addressing

these challenges are detailed in the following section.
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1.3 Aims of this thesis

To improve the versatility of time-domain finite element modelling in coupled fluid-solid me-

dia, displacement-based FE formulation designed for use on a GPU is proposed. The method

is explicit-in-time and relies on a modified damping matrix to minimise any non-physical

shear motion in the fluid. In addressing the concerns mentioned above, the formulation has

relied on hourglass control developed by Flanagan and Belytschko [51]. The development also

draws from the work by Chen [50], on reduced integration techniques for four-noded quadri-

lateral elements to reduce hourglassing, and Everstine [47], who configures an isotropic elastic

solid to represent a compressible inviscid fluid.

The proposed formulation enables the time domain finite element method in fluid-solid cou-

pled media to be applied to industrially relevant problems. The method’s versatility for

time-domain problems, which allows us to extract data for multiple frequencies from one

simulation and its ability to handle arbitrary and complex geometries, are crucial for the use-

cases. Furthermore, the method can handle diverse domains, which often have very different

scales of interest.

Thus, one of the central aims of this research is to formulate an explicit-in-time displacement-

based finite element method allowing for implementation on GPUs. I can thus leverage the

GPUs’ increased performance to solve large-scale simulations at speed. This allows for execut-

ing simulations involving hundreds of millions of degrees of freedom in a relatively short time,

enabling fine mesh refinement or performing parametric studies efficiently. A displacement-

based formulation ensures compatibility with existing solid solvers, alongside a non-diagonal

damping matrix that is suitable for GPU calculations and minimises hourglassing.
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1.4 Contributions

In this thesis I have made the following contributions; I have formulated, implemented and

tested a displacement-based time-domain finite element method for ultrasonic propagation

in domains involving both solid and fluid. The implementation was initially prototyped in

Python with the use of sparse matrix functionality from NumPy [52] and SciPy [53], to allow

for greater interactivity and interpretability compared to complex, highly optimised GPU

code found in implementations such as Pogo [44]. I subsequently verified and validated this

implementation across a range of different domains, by solving canonical examples found in

the non-destructive testing and underwater acoustics literature and comparing their results

to known, verified and validated analytical and semi-analytical solutions, such as those found

in papers by Faran [54], Doolittle [55], experiments by Tamarkin [56] or in guided-wave

software such as Disperse [19]. I have also provided results for problems without a known-

analytical solution, demonstrating the versatility of my method to handle complex geometries

and multiple materials.

1.5 Thesis Outline

Chapter 2 reviews the governing equations underlying ultrasound propagation, provides a

literature review of analytical and numerical methods to model this propagation and covers

the boundary conditions and ways to simulate these in numerical software,

Chapter 3 looks at the finite element method in more detail, covering its implementation

in software, and specifically focuses on my proposed formulation to simulate ultrasound

involving solid-fluid domains on a GPU,

In Chapter 4, numerical simulations related to the field of underwater acoustics are introduced

and simulated. I show results for scattering patterns from canonical setups in both the free-

field and proud or buried in the surface.
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In Chapter 5, I look at numerical simulations regarding non-destructive-testing, particularly

at simulating guided-waves. I demonstrate that I can accurately predict their existence,

capture their velocity and in the leaky-case, the attenuation of the A0 wave mode.

In Chapter 6, I summarise the work conducted as part of this thesis and provide future

research avenues.

1.6 List of Publications

Research conducted in this thesis appears in the following articles

• R. V. Craster, S. G. Haslinger, P. Huthwaite, and Y. Simillides, “Low frequency

minehunting sonar modelling, processing and design - preliminary modelling results,”

Confidential technical report, Imperial College London, Imperial Consultants, 2022.

• R. V. Craster, S. G. Haslinger, P. Huthwaite, and Y. Simillides, “Low frequency

minehunting sonar modelling, processing and design - Further modelling results,” Con-

fidential technical report, Imperial College London, Imperial Consultants, 2022.

• Y. Simillides, P. Huthwaite, Micha l K. Kalkowski, Michael J. S. Lowe, “A displacement-

based finite element formulation for solving elastic wave problems in coupled fluid-solid

media on a GPU, submitted to “Computers and Structures”.



Chapter 2

Investigating the modelling of elastic

wave phenomena

This chapter lays out the theoretical foundations of modelling ultrasound propagation in

fluids and solids which is used in non-destructive evaluation and in underwater acoustics.

As numerically modelling ultrasound in domains composed of both solids and fluids is the

core part of the research conducted as part of this thesis, an understanding of the underlying

physics and equations that govern this propagation is necessary. This chapter comprises of

two parts; in the first part, the theoretical treatment of wave propagation in elastic and

acoustic media including governing equations, is discussed. The second part reviews analyti-

cal and numerical methods for modelling wave propagation in contexts of varying complexity,

while also highlighting any issues which may be lacking in the aforementioned methods. As

part of this review of numerical methods, techniques to implement the necessary boundary

conditions to accurately model wave phenomena are also described.

32
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2.1 The wave equation and elastic waves

2.1.1 Scalar wave equation

In one dimension, the scalar wave equation is given as [57]

c2
∂2u

∂x2
=
∂2u

∂t2
. (2.1)

where c is the wave speed and the variable u(x, t), without loss of generality, represents the

field quantity, such as pressure, displacement (which is of particular interest to us), and in

some cases, the velocity potential. In two or three dimensions, the scalar wave equation for

acoustics is given as [57]

c2∇2p =
∂2p

∂t2
, (2.2)

where u(x, t) has been replaced with pressure p(x, t) to be consistent with the difference

between a scalar and a vector in higher dimensions.

By looking for a time-harmonic solution of the wave equation of the form

u(x, t) = v(x) exp−ıωt, (2.3)

one can arrive at the following

∇2v + k2v = 0. (2.4)

This is the Helmholtz equation, which is sometimes referred to as the reduced wave (Helmholtz)

equation [58] and is used to model the equations of motion in the frequency domain [59]. In

Equation (2.4), k =
ω

c
is the wavenumber, a physical parameter of the wave.

In [60], the authors give a more general form of a common linear problem as

∇2u+ g = aü+ bu̇, (2.5)
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where g = g(x), a = a(x) and b = b(x) are position dependent. By specifying the appropriate

parameters, one can go from a general case in Equation (2.5) to the wave equation given in

Equation (2.2). Using Equation (2.5), one can also see how damping could be added to

the specific equation by varying the parameter b(x). Other well known partial differential

equations of this form, although not detailed in this thesis, are the Heat Equation [61],

Laplace’s Equation [62] and Poisson’s Equation [63].

2.1.2 Vector wave equation

In the case of (solid) elastic media, the isotropic wave equation (Naviers Equation [64]) where

the material is inhomogeneous is given by

ρü = ∇λ(∇ · u) + ∇µ · [∇u + (∇u)T ] + (λ+ 2µ)∇(∇ · u) − µ∇×∇× u, (2.6)

where λ and µ are the Lamé parameters or constants, which are material dependent. For

isotropic media, where the material is homogeneous, i.e. when the gradient of the material

is constant and thus ∇λ = ∇µ = 0, the wave equation is given as

ρü = (λ+ 2µ)∇(∇ · u) − µ∇×∇× u. (2.7)

This equation admits two oscillatory solutions, compressional (P) and shear (S) waves [65].

In seismology, these are also often referred to as (P)rimary and (S)econdary waves due to

their differences in speed and therefore arrival time [66]. To obtain the solution of these two

separate waves, the Helmholtz decomposition is used [67]

u = ∇Φ + ∇×Ψ, (2.8)

∇ ·Ψ = F (r, t), (2.9)
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where Φ(x, t) is a scalar function, Ψ(x, t) is a vector valued function and F is a function of

r, the position vector, and t the time. Inspecting Equation (2.8), the equation has n degrees

of freedom on the left-hand-side and n + 1 degrees of freedom on the right-hand-side. To

determine u uniquely,gauge fixing from gauge theory is relied upon [68], which allows F to

be chosen arbitrarily. Choosing F to be zero [69], makes Ψ a zero-divergence vector. This

allows u to be uniquely defined.

Substituting Equation (2.8) into Equation (2.7) gives

ρ
∂2

∂t2
(∇Φ + ∇×Ψ) = (λ+ 2µ)∇(∇2Φ) − µ∇×∇× (∇×Ψ), (2.10)

which simplifies to

ρ
∂2

∂t2
(∇Φ + ∇×Ψ) = (λ+ 2µ)∇(∇2Φ) + µ∇2(∇×Ψ), (2.11)

and by separating variables one arrives at the following

∇
[
(λ+ 2µ)∇2Φ − ρ

∂2Φ

∂t2

]
= −∇×

[
µ∇2Ψ− ρ

∂2Ψ

∂2t

]
. (2.12)

Setting both the left-hand-side and right-hand-side to zero, gives two wave equations

∂2Φ

∂t2
=

(λ+ 2µ)

ρ
∇2Φ, (2.13)

∂2Ψ

∂t2
=
µ

ρ
∇2Ψ. (2.14)

The wave speed of the primary wave given in Equation (2.13) is

√
λ+ 2µ

ρ
and is greater than

the wave speed of the secondary wave given in Equation (2.14) which is

√
µ

ρ
as the Lamé

parameters are positive.

So far elastodynamics have been discussed. The approach taken in the rest of this thesis is

to treat fluid materials as solid materials with analogous choice of material parameters. This

is often used in the literature, such as for example in Disperse [19] or [47] by Everstine for
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a fluid-displacement finite element method. Thus, the same formality should hold for fluids,

with the exception of inviscid fluids, i.e. when µ = 0, that cannot support shear stress.

Consequently shear waves cannot propagate in such media, which will need to be accounted

for in the numerical treatment of the equation in subsequent sections.

2.1.3 Linearity of the wave equation

The wave equations presented throughout this chapter are linear, i.e. they exhibit the follow-

ing two properties: additivity and homogeneity. The additivity property means that wave

equations are subject to constructive and destructive interference [70]. In one dimension, the

addition of two plane waves (which are not necessarily in phase)

w1 = sin(kx− ωt),

w2 = sin(kx− ωt+ ϕ),

(2.15)

gives

w1 + w2 = wt = 2 cos

(
ϕ

2

)
sin

(
ϕ

2
+ kx− ωt

)
. (2.16)

Thus, at ϕ = 2πµ, ∀µ ∈ Z, there is constructive interference, i.e.

wt = 2 sin(kx− ωt), (2.17)

and at ϕ = (2π + 1)µ, ∀µ ∈ Z, there is destructive interference, i.e.

wt = 0. (2.18)

The homogeneity principle implies that results can be scaled. Practically, this means that

solutions and results are often shown with respect to some combination of parameters, such

as frequency and size. Furthermore, due to linearity, combinations of solutions are also a

solution to the wave equation.
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2.2 Review of methods for modelling wave propagation

Let us now consider methods for modelling various configurations and solving the wave equa-

tion, accounting for different application contexts. Some of the earliest work on the problem

of ultrasound propagation in coupled solid-fluids domains was done by Faran [54], who inves-

tigated sound scattering from solid cylinders and spheres in liquid. Interestingly, at the time

this research was carried out, limitations in computing power meant the calculation of the

Bessel functions proved difficult, although this poses no problems with modern computing

capabilities. The formulations provided by Faran were later expanded upon by Doolitle [55],

who provided scattering results for elastic cylindrical shells. By taking appropriate material

parameters, they derived a general case of the solution described earlier by Faran [54], and

confirmed earlier experimental results from Tamarkin [56], on scattering from a fluid inclusion

inside a fluid. Skelton and James [71] developed that concept further and provided results

for arbitrary layered media in cylindrical and spherical domains.

One can gain physical insights from these analytical models which allow one to investigate

different properties of wave propagation and scattering. Despite their good accuracy, they are

limited to simple axisymmetrical geometries, such as spheres or cylinders, which are mainly

of academic interest. There is growing interest in modelling complex setups, closely related

to realistic experimental scenarios, which requires developing numerical models, which are

capable of overcoming the limitations of analytical models. These are detailed and reviewed

in subsequent sections.

2.2.1 Transfer matrix method

The transfer matrix method, originally developed for electromagnetic waves [72], works by

setting up matrix equations for the reflected and transmitted plane waves at each interface,

repeated for all subsequent interfaces on the propagation path. When combined, these equa-

tions enable basic wave characteristics to be evaluated. One of the main disadvantages of
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this method is that it needs to be set up for each separate geometry one wishes to model,

and only certain geometries can be fully represented [73]. This drawback renders the method

unsuitable for the complex geometries one encounters in domains such as non-destructive

testing.

2.2.2 Distributed point source method

The use of Huygens’ principle applied to ultrasonic field modelling can also be frequently

found in the literature [74], where the total ultrasonic field is obtained from a linear summa-

tion of point sources distributed over a finite transducer. Various studies have been conducted

using techniques based on Huygens’ principle such as multi-Gaussian paraxial models detailed

in [75], which work by superimposing Gaussian beam solutions. However, they cannot handle

problems involving transmission at an interface near grazing incidence, or problems where

the interface has different curvature. An improvement to this technique is the distributed-

point-source-method (DPSM) [38], where the point sources are distributed on both sides of

the problem boundary and are placed at a constant distance from it. Using two layers of

point sources on two sides of the interface avoids singularity and the need of reflection and

transmission coefficient expressions that are required by other point source superposition

based methods. Once again, one of the main disadvantages with this class of methods is

that one needs to derive an implementation of this method for each geometry one wants to

investigate, and only certain geometries have been represented using this method.

2.2.3 Boundary element method

In the boundary element method, which is based on the integral representation of the acous-

tic field, the surface of the object is discretised into “boundary elements” [42]. Matrices are

then assembled based on these boundary elements and the resulting linear equations must be

solved. This method is often considered a “direct competitor” to the finite element method

in the literature [76]. There is no clear agreement on which method is advantageous, with
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benefits and disadvantages to both methods. One often reported benefit of the boundary ele-

ment method is that only the surface needs discretisation, significantly reducing the number

of degrees of freedom needed when assembling the matrices compared to the finite element

method. Despite the reduction in the number of degrees of freedom, the resultant matrix is

not sparse; this has its own computational challenges.

2.2.4 Finite volume method

In the finite volume method the governing equations are discretised over each control volume

and conservation laws are upheld. The finite volume method (FVM) is frequently used in

computational fluid dynamics, although it not as popular for structural mechanics. In [77]

states that “it is commonly accepted in the literature that the finite element method is the

more convenient option for problems involving solid materials”, although in [78] it is stated

that they are equivalent in some cases. There is very limited work done on linear ultrasonic

wave propagation and scattering using the finite volume method, but maybe there is some

unexplored potential which could benefit ultrasound simulation, particularly when dealing

with problems involving fluid flow as the FVM is well suited for such problems [79].

2.2.5 Spectral element method

The spectral element method (SEM) is a special case of the finite element method, which

relies on high-order basis function [80]. It has been extensively used in geophysics [81], a field

which has many similarities with the non-destructive testing and underwater acoustics space.

However, the spectral element method is not as well-known in these two spaces. It has the

large advantage compared to the ”general” finite element method, that it does not need much

refinement per wave-length; in [81] it is stated that a single spectral element per wavelength

is sufficient. The drawbacks of this method is that we need to use higher-order polynomials in

the SEM method [82], otherwise the results are inaccurate [80] unlike the conventional finite

element method. Furthermore, the resulting matrices in the spectral element method are
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dense. The limitation of dense matrices is particularly challenging for GPU-based software

and is thus not suitable for our use-case. In [83], it is shown that the two methods produce

very similar results, which is to be expected due to the inherent similarities of the methods.

2.2.6 Finite-difference method

The finite difference method obtains solutions to the wave equation by discretising the domain

and replacing the continuous differential equations with a set of discrete equations (finite-

differences) that can be solved to obtain the solution at discrete points. Finite-difference (FD)

techniques have frequently been used throughout the literature, due to their comparative ease

of use and computational power required as well as the fact that they are conceptually simple,

a direct discretisation of the wave equation. Their main disadvantage is that they cannot

accurately model complex domains. Numerical modelling of the wave equation in the NDT

context using the FD method can be found in [84] where they modelled the Scholte wave

[85] or in [86] dealing with elastic wave propagation in submerged solids. In [7], the authors

use the finite difference method in polar coordinate form to calculate the response from

submerged cylinders with an arbitrary amount of filling. While such calculations are not

possible to do using conventional axisymmetric techniques, the finite difference method is

still limited to simple geometries.

As the finite difference method is still frequently used to solve the wave-equation [7], the

derivation is described from first principles so one can refer back to certain aspects of it later

on. Consider the Taylor series expansion of u(x+ ∆x) and u(x− ∆x) for some ∆x > 0

u(x+ ∆x) = u(x) +
u̇(x)∆x

1!
+
ü(x)(∆x)2

2!
+Rk(x), (2.19)

u(x− ∆x) = u(x) − u̇(x)∆x

1!
+
ü(x)(∆x)2

2!
+Rk(x). (2.20)

In equations (2.19)-(2.20), terms of O(∆x2) or higher (remainder function Rk(x))) are ignored
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as these are assumed to be infinitesimally small. Rearranging, gives

u̇(x) ≈ u(x+ ∆x) − u(x)

∆x
, (2.21)

and similarly, from equation (2.20),

u̇(x) ≈ u(x) − u(x− ∆x)

∆x
. (2.22)

By combining equations (2.21) and (2.22), one arrives at the following approximation

u̇(x) ≈ u(x+ ∆x) − u(x− ∆x)

2∆x
. (2.23)

Equation (2.21) is called the forward difference, equation (2.22) is called the backward differ-

ence and equation (2.23) is called the central difference discretisation of the first derivative

of u with respect to x. One can perform similar approximations for higher-order derivatives.

For instance, the second-order central difference would read

ü(x) ≈ u(x+ ∆x) − 2u(x) + u(x− ∆x)

(∆x)2
. (2.24)

Second-order forward and backward differences follow the same paradigm.

The finite difference method works by approximating (partial) derivatives with difference

quotients calculated above in equations (2.21)-(2.24). Consider the following initial value

problem

u̇(x) =f(x, u(x)), (2.25)

u(0) =u0. (2.26)

By replacing equation (2.25) with equation (2.21) one obtains

u(x+ ∆x) = u(x) + ∆xf(x, u(x)), (2.27)
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This is the forward Euler method, which is an explicit method, as u(x+∆x) can be computed

explicitly, without solving a nonlinear system of equations. Similarly, by replacing equation

(2.25) with (2.22) one gets

u(x) = u(x− ∆x) + ∆xf(x, u(x)). (2.28)

This is the backward Euler method, an implicit method, as u(x) can only be computed

implicitly, necessitating the solution of nonlinear equations. Solving these nonlinear equations

is computationally inefficient, particularly for large simulations, despite often giving a more

stable solution. Another alternative solution is combining the two into the so-called implicit-

explicit methods (IMEX) [87] where both an explicit and an implicit method are used to

numerically model the wave equation. Although such methods have been applied to model

the solution of the wave equation in coupled solid-fluid domains, such as in [88, 89], these are

currently unsuitable for GPU calculations due to their additional complexity, as one would

need to handle the explicit and implicit parts separately.

Explicit methods are therefore preferred to implicit methods for GPU calculations, as the

variables at one time-step can be computed from their known values at previous time-steps.

The reason for this preference is the large number of processors which allow many threads to

run in parallel as well as the GPUs high-memory bandwidth for loading in data. This is well

known in the literature, as can be seen in [90], where it is stated that ”explicit methods map

well to the GPU architecture as the output elements can be computed independently of each

other, thus making full use of the high computing throughput of a GPU” or in [44], where

an in-depth explanation of the GPU architecture and how this maps to explicit-in-time finite

elements methods is given and the reader is referred to these for further information about

the GPU architecture.

Let us now apply the central difference scheme to the wave equation originally introduced

in Equation (2.1). The field variable u(x, t) is a function of space and time, so we apply the

central difference approximation to both dimensions. Without loss of generality, denote the
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time steps by the superscript k and the spatial steps by the subscript n to arrive at

∂2u

∂x2
=
ukn+1 − 2ukn + ukn−1

∆x2
,

∂2u

∂t2
=
uk+1
n − 2ukn + uk−1

n

∆t2
, (2.29)

and by rewriting the equations using equation (2.1), one arrives at the following update step

uk+1
n = r2[ukn+1 − 2ukn + ukn−1] + 2ukn − uk−1

n , (2.30)

where r = c
∆t

∆x
. The update step shown in Equation (2.30) is explicit in time and thus,

well-suited for implementation on a GPU[91].

Von Neumann stability analysis

We have seen why explicit based numerical methods are the way forward for numerically

modelling the wave equation using a GPU. However, explicit numerical methods based on

discretisation may lose stability if the discretisation is not sized correctly. A common ap-

proach to this is to perform Von Neumann stability analysis (which Trefethen defines as

“the analysis of stability by Fourier methods” [41]) to arrive at the Courant-Friedrichs-Lewy

(CFL) condition [92] necessary for convergence of the numerical method. Let us assume a

solution has the form

ukn = λk exp(ınx), (2.31)

where λ is the growth factor. If |λ| > 1, the solutions will be unbounded as time increases

(i.e. as k −→ ∞) which has no physical meaning in the context of the wave equation. Hence

the necessary condition is that |λ| < 1. Substituting equation (2.31) into equation (2.30),

gives

λ = r2[exp(ıx) − 2 + exp(−ıx)] + 2 − 1

λ
, (2.32)
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which can be rearranged as

λ2 − λ(r2[exp(ıx) − 2 + exp(ıx)] + 2) + 1 = 0. (2.33)

This then gives us the following two solutions for λ

λ = µ±
√
µ2 − 1, where µ = 1 − 2r2 sin2

( ıx
2

)
. (2.34)

The condition |λ| < 1 implies that |µ| < 1 and thus

∣∣∣1 − 2r2 sin2
( ıx

2

)∣∣∣ < 1, (2.35)∣∣2r2∣∣ < 2, (2.36)

|r| < 1. (2.37)

Given that r = c
∆t

∆x
is positive, this leads to the stability condition c

∆t

∆x
< 1. The above

stability condition means simulations must be setup according to the wavenumber of the

propagating wave and this is often one of the main limitations when modelling numerical

methods, as for very high frequencies the mesh refinement needs to be very small.

2.2.7 Finite element method

The finite element method calculates the solution of the wave equation by discretising the

domain into “finite elements” and assembling matrices over these elements. An in-depth

mathematical explanation will be given in subsequent chapters. In the finite element lit-

erature for the fluid-structure interaction (FSI), various formulations have been proposed

to model the acoustic wave propagation. Most common is the pressure-based or velocity

potential formulation [45], which have the benefit of only requiring one degree of freedom

(DoF) per node. There have also been attempts with non-standard elements for the fluid

domain, such as the Raviart-Thomas elements which are edge based and do not suffer from



2.2. Review of methods for modelling wave propagation 45

hourglassing [93]. Despite much promise, they are not generally compatible with conven-

tional FE software used for solid materials, and therefore associated functionality such as

meshing software is not currently suited for such elements. Hourglassing is the phenomenon

where an element provides no resistance to a particular mode shape; this is a non-physical

phenomenon but tends to pollute the result rapidly - within a mesh such modes can quickly

propagate through the domain and render the solution unusable [3]. Hourglass modes can be

found in Figure 2.1, and the deformation that hourglass causes to the solution can be found

in Figure 2.2. In the literature, these can often be termed zero-energy modes as they produce

zero strain or stress [3]; an alternate terminology is spurious as they have no physical basis.

Initially, the presence of these modes was not fully understood in the numerical modelling

community. Nowadays theoretical explanations describing the phenomenon exist, and relate

to the rank of the assembled finite element stiffness matrix. Without loss of generality, for

the two-dimensional displacement case, the 8 × 8 stiffness matrix has rank 5, which implies

it has an infinite number of solutions, not a unique solution. To obtain a unique solution,

rigid modes are removed according to prescribed boundary conditions. We refer the reader

to works such as [94] or [95] for a detailed explanation.

Coupling solid and fluid domains using a pressure-based formulation in FE can result in non-

symmetric matrices [46, 47, 48] or the need for matrix inversion [49]. A demonstration of

this non-symmetry will be shown in the next chapter. Non-symmetric matrices, or matrices

which require inversion are not immediately suitable for large-scale problems due to their

computational cost. Such industry-relevant cases involving only solid media can be solved

using highly-efficient displacement-based elastodynamic FE solvers benefiting from graphical

computing cards [44]. Unfortunately, the pressure-based formulation cannot be used in that

framework because of the aforementioned matrix inversion and the required special treatment

at the solid-fluid boundary.

Displacement-based formulations have also appeared in the literature, that is where both

the fluid and solid are modelled using a displacement field. One of the key benefits of the

displacement-based approach is that nodes in the fluid have the same number of degrees of
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Figure 2.1: Hourglass modes for a quadrilateral element.

Figure 2.2: Hourglass deformation taken from [3].
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freedom as those in the solid. Therefore, defining a fluid-solid model is as easy as defining an

all-fluid or all-solid model, avoiding the need for any special treatments at the interfaces. It is

thus compatible with typical elastodynamic finite element formulations and ready for imple-

mentation on a graphical processing unit. Owing to the added computational requirements

when compared to pressure-based formulations alongside the presence of spurious circula-

tion (hourglass) modes, these have not been widely used in the past [50]. These spurious

circulation modes can be found throughout the numerical method literature and extensive

research has been carried out to control these instabilities, such as by Hamdi [96] who applied

a penalty method, by Belytschko who used mesh stabilization techniques [3] or Bathe [97]

who used a mixed method. Unfortunately, these methods described above to handle the in-

stabilities are often not suitable for GPU calculations due to the added mathematical terms,

which result in non-symmetric or non-sparse matrices. In subsequent chapters, formulations

of the finite element method related to the wave equation will be shown and expanded upon.

2.2.8 Combined methods for modelling wave propagation

Apart from the methods detailed above to model wave propagation in coupled solid-fluid

domains, it is also possible to use a combination of different methods, often termed coupled or

combined approaches in the literature. These can often alleviate some of the disadvantages of

individual methods, at the cost of increased theoretical complexity as well as the need for two

separate implementations in software. Due to these inherent drawbacks, it has been decided

not to attempt to use these to model the solution of the wave equation on a GPU, although

for completeness some of the more common combinations are mentioned, particularly those

involving a finite element method alongside another method. A common approach is to

combine a boundary element method to model the fluid with a finite element method to model

the solid material. Numerous examples of such approaches can be found in the literature

such as in the following [98, 99, 100]. Other approaches can be found in [101] where a coupled

finite-volume-finite-element method is presented or in [102] where the analytical solution for

the fluid is combined with a finite element method for the solid.
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2.3 Boundary conditions

Different methods to model the wave equation and obtain its solution have been detailed.

To fully describe the wave equation, one must also consider the boundary of the domain.

Boundary conditions describe the behaviour of a system at its boundaries, and they play

a critical role in determining the accuracy of the numerical solution, and its computational

complexity.

2.3.1 Physical boundary conditions

The general form of boundary conditions for a second-order partial differential equation (such

as the wave equation in Equation (2.2) are specified as

α
∂u

∂n
+ βu+ γu̇+ δü+ ϵ = 0. (2.38)

Commonly used boundary conditions are of the form

u = uD, (2.39)

where the condition is imposed on the variable itself, called Dirichlet conditions, and

∂u

∂n
= uN , (2.40)

where the condition is imposed on the normal derivative of the variable, called Neumann

conditions. Special (termed homogeneous) cases occur when the Dirichlet boundary condition

is u = 0 in Equation (2.39) and when the Neumann condition is uN = 0 in Equation (2.40),

and therefore
∂u

∂n
= 0. These change the sign of the wave and perfectly reflect the wave

respectively and are termed reflecting boundary conditions [103]. In the latter case, this

represents a free surface. Furthermore, if one fixes the boundary to zero for displacement,

one has a “sound hard” boundary, whereas if one fixes the pressure to zero one has a “sound
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soft” boundary. In the finite element literature [104], the Dirichlet condition in (2.39) is

termed “essential or strongly imposed”, owing to its explicit appearance in the definition of

the variational form, whereas the Neumann condition in (2.40) is termed “natural or weakly

imposed”, due to its implicit appearance in the variational form.

2.3.2 Numerical boundary conditions: modelling non reflecting

boundaries

As the goal is to model physical setups, which are infinite and continuous, using numerical

methods, one needs to impose numerical boundary conditions to describe the approximation

of the infinite domain with the computational domain. In this section, different types of

boundary conditions will be described, focusing on numerical boundary conditions to handle

the transition described above. The Sommerfeld radiation condition [105], states that the

asymptotic behaviour of the solution should correspond to a wave radiating outwards to

infinity and this must be met in the numerical model. While some problems decay rapidly in

space, solutions to the wave equation are generally oscillatory, thus only decay with respect

to the following formula

decay ∝ 1

r
d−1
2

, (2.41)

where r is the distance and d is the dimension of the problem, as given in [106]. These

problems arise when solving PDEs by volume discretisation methods (such as finite difference

or finite element methods mentioned in Section 2.2).

Standard boundary conditions, such as Neumann or Dirichlet can lead to significant devia-

tions in simulations from the real physical scenarios of interest as a result of reflections from

the computational boundary. Therefore, the aim should be to minimise reflections from in-

cident waves at the boundary of the discrete domain. Difficulties arise, as mentioned in [41],

due to the fact that the boundary of the computational domain is artificial, not representing

the physical reality. While theoretically a significantly larger domain could be modelled, until

a significant decay has arisen, as in equation (2.41), practically this is not possible, as the
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models grow too large, and thus cannot be solved computationally, even with the advances in

numerical performance. One must also be aware that proposed methods must be applicable

to common FE packages, without needing to modify the underlying source code which is not

practical or often feasible.

In the numerical methods literature, boundary conditions can be split into three categories,

those of “infinite element methods”, where elements simulating infinite space are placed

around the discrete domain, those of “non-reflecting boundary conditions”, where additional

conditions are added into the equations to prevent reflections, and those of “absorbing layer

methods” detailed below. In this thesis the focus is on the case of absorbing layer methods in

particular, as “infinite element methods” have been shown in [107, 108] to perform poorly for

elasticity, and non-reflecting boundary conditions are not feasible to implement in standard

FE codes. Absorbing layer methods for the problems of interest can be further split into two

distinct categories, those of “perfectly matched layers” and “absorbing layers by increased

damping”. In Figure 2.3, the absorbing boundary layer surrounding the “area of study” is

shown.

Perfectly matched layer

The perfectly matched layer (PML) method is an artificial absorbing layer which surrounds

the boundary of the domain (see Figure 2.3), absorbing incident waves, attenuating them

and thus the wave decays exponentially. The method was first introduced by Berenger in

[109] for Maxwell’s equations, splitting the solutions to the equation, into two “split sums”.

Since then, frequent improvements have appeared in the literature, and for different wave

equations or conditions, such as for elastic wave propagation [110], for acoustic waves [111]

or for the seismic wave equation [112].

For reference, let us recall the basic equations underpinning the PML formulation. The

essence of the method is the coordinate transformation as follows (shown here for the x-
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Figure 2.3: Absorbing boundary (striped) surrounding the area of study, which is a subset
of an infinite domain.

direction)

∂

∂x
−→ 1

1 + iσx(x)
ω

∂

∂x
. (2.42)

Considering the coupled acoustic wave equation

∂u

∂t
= − 1

ρ

∂p

∂x
, (2.43)

∂v

∂t
= − 1

ρ

∂p

∂y
, (2.44)

∂p

∂t
= − ρc2

(
∂u

∂x
+
∂v

∂y

)
, (2.45)

one can define the following attenuation coefficients

σx =
xi

WPML

σmax, (2.46)

σy =
yi

WPML

σmax, (2.47)

where W is the width, xi and yi are the distances to the inner boundary of the PML Layers,
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and σmax is the largest value of the attenuation coefficient. Performing the transformation

as in [113] leads to

∂u

∂t
+ cσxu = − 1

ρ

∂p

∂x
, (2.48)

∂v

∂t
+ cσyv = − 1

ρ

∂p

∂y
, (2.49)

∂p

∂t
+ c(σx + σy)p = − ρc2

(
∂u

∂x
+
∂v

∂y

)
− ρc2σx

∂u

∂x
− ρc2σy

∂v

∂y
. (2.50)

Despite the performance of the PML, significant downsides are still inherent in the method.

One major difficulty is that the effectiveness analytical coordinate stretching responsible

for attenuating the waves decreases after discretisation [106]. The absorption is also angle-

dependent, as one only takes into account the vertical distance from the boundary. Thus, it

is ineffective in the absorption of evanescent waves [114]. Despite this inherent limitation,

practically it is possible to circumvent the aforementioned issues by increasing the “thick-

ness” of the PML. The most important downside is given in [115], and is the difficulty of

implementation in existing finite element codes, due to it being a split-method, and is the

reason it is not relied upon in this thesis.

Convolution-perfectly matched layer

The Convolution-PML method was first introduced in [116], as a method to handle the case

of evanescent waves, by modifying the coordinate transform to introduce extra (frequency-

dependent) terms. This requires additional computational memory to store these terms,

when compared to the conventional PML method.

As in [117], by using the coordinate transformation for the “classical” PML method given in

Equation (2.42), and by making sx variable dependent on ax ≥ 0 and kx ≥ 1 one gets

sx = kx +
dx

ax + ıω
. (2.51)
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By setting kx = 1 and ax = 0, one returns to equation (2.42). Following the derivation in the

paper [117], let us define

Ŝx(t) = F−1

(
1

Sx

)
, (2.52)

and replace dx by

dx̂ = Ŝx(t) ∗ dx. (2.53)

By changing the form of equation (2.51) to the following

1

Sx

=
1

kx
− dx
k2x

1

(dx/kx + ax) + ıω
, (2.54)

and using the fact that the Fourier transform of the following functions δ(t), H(t), the delta

and Heaviside functions are

F(δ(t)) = 1, F(exp−atH(t)) =
1

a+ ıω
, (2.55)

one can calculate the inverse Fourier transform similarly. Thus, when using equations (2.52)

and (2.55) one can obtain the following value for Ŝx

Ŝx(t) =
δ(t)

kx
− dx
k2x
H(t) exp

(
−
(
dx
kx

+ ax

)
t

)
, (2.56)

and denoting the following substitution

ζx(t) = −dx
k2x
H(t) exp

(
−
(
dx
kx

+ ax

)
t

)
, (2.57)

gives the following transformation for ∂x̂

∂x̂ =
1

kx
∂x + ζx(t) ∗ ∂x. (2.58)

The first term in equation (2.58) is simply the existing spatial derivative modulo a constant.

For the second term, the exact derivation is not reproduced here, although some advantages

of its implementation will be described. Calculating the second term (introducing the time
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step n) as

ψn
x = bxψ

n−1
x + ax(∂x)n+1/2, (2.59)

where

bx = exp (− (dx/kx + ax) ∆t) , ax =
dx

kx(dx + kxax)
(bx − 1). (2.60)

To compute each timestep in equation (2.58) one only needs to keep track of the previous

iteration value and update it, which although requires additional memory, significantly re-

duces the computational power when computing the convolution, as we no longer need to

iterate over all timesteps each time (one can also simply recompute the value over storing it,

and depending on the specific problem constraints, this might be another alternative option).

Stiffness reduction method

Let us now discuss a stiffness reduction method (SRM), introduced in [118], which has com-

parable results to the PML method introduced in Section 2.3.2, while maintaining ease-of-

implementation in finite element software.

The wave equation has the following spatial FE formulation [43]

[K]u + [C]u̇ + [M ]ü = F, (2.61)

where [K], [C], [M ] are the stiffness, damping and mass matrices respectively, F is the forcing

term/source and u, u̇, ü are the displacement, velocity and acceleration vectors respectively.

The time-harmonic solution of equation (2.61) is

u(x, t) = exp (ı(kx− ωt)) . (2.62)

Replacing the time derivatives in equation (2.61) with

∂u

∂t
= −ıωu, ∂2u

∂t2
= −ω2u, (2.63)
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and inserting equation (2.63) into (2.61) gives

−[M ]ω2u− [C]iωu+ [K]u = [F ]. (2.64)

Let us then describe the damping matrix, as a summation of the mass and stiffness matrix

as follows

[C] = CM [M ] + CK [K], (2.65)

and now combine equations (2.63) and (2.64) to obtain

−[M ]

(
1 + i

CM

ω

)
ω2 + [K] (1 − iωCK)u = [F ]. (2.66)

The damping introduced in (2.65) is termed Rayleigh damping [119]. The complex-valued

density, ρ, and Young’s modulus, E, is now defined as (with some minor abuse of notation)

ρ = ρ

(
1 +

ıCM

ω

)
, E = E (1 − ıωCk) . (2.67)

Furthermore, in the absorbing layers, the wavenumber is k = kr + ıkı, for some real part kr

and some imaginary part kı. When inserting into (2.62), this results in

u(x, t) = exp (ı(krx− ωt)) exp(−ıkıx). (2.68)

Conventional FE software does not allow the alteration of the wavenumber, so this is achieved

by altering the values of the FE matrices directly, increasing the value of kı inside the ab-

sorbing region. As this is effectively altering the wavenumber, the CFL condition changes,

decreasing the stable time increment. In [118], it is shown that a high value CM causes only a

small perturbation in the time increment as opposed to CK . Thus, one can control damping

purely by modifying CM and letting CK = 0. Let us now define

CM(x) = CMmaxX(x)p. (2.69)
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There is currently no known method of optimally choosing these parameters, so they are

generally adjusted until the model performs as expected, based on a certain tolerance. The

wavenumber can thus be increased by altering equation (2.69) or by decreasing the value of

Young’s modulus.

Caughey absorbing layer method

Another variation on the “classical” PML scheme encountered in literature is the Caughey

PML scheme [120], which generalises the damping introduced in equation (2.65), as follows

[C] = [M ]
m−1∑
j=0

aj([M ]−1[K])j. (2.70)

When m = 2, Caughey damping is equivalent to Rayleigh damping. This formulation is

also easily computed in most FEM software, and has shown promise in types of problems

involving elastic waves [120].

2.4 Summary

In this chapter the author has presented the theory of wave propagation in elastic media and

subsequently detailed various analytical, numerical and combinations of these methods to

solve the wave propagation problem as well as any of their disadvantages. In the following

chapter, work done on deriving and implementing a finite element formulation to solve the

wave propagation and scattering problem in domains involving both solids and fluids is

detailed, while in subsequent chapters canonical numerical simulations carried out to verify

this implementation are described.



Chapter 3

Development & Implementation of a

novel finite element method for elastic

wave phenomena

3.1 Introduction

Partial differential equations are ubiquitous throughout the scientific and engineering domains

and are used to describe and therefore model key physical interactions and phenomena. Some

important and well-known partial differential equations are the wave, the heat, the Laplace,

and the Navier-Stokes equations. As mentioned in Chapter 1, analytical results are generally

limited to simple geometries, which are not able to represent realistic practical scenarios

often involving complex configurations. Despite invaluable physical insights offered by the

analytical models, only numerical methods enable a full range of complex, industry-relevant

configurations to be simulated. Among the most commonly used methods are the finite-

difference method, described in detail in Chapter 2 and the finite element method, although

depending on the specific problems and spatial domain one wishes to model, other numerical

methods such as the finite volume method or the boundary element method also exist. For

57
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my research and the remainder of this thesis, the focus is on the finite element method for a

particular equation, the linear wave equation.

From a historical viewpoint, it is of no coincidence that the advent of the finite element

method coincided with the advent of computing resources, as it is generally not possible

to perform such calculations by hand. In [121], Wilson details some of the first software

used to automate the finite element analysis of plane stress structures. Some of the first

software packages can be traced back to NASTRAN (NASA Structure Analysis) [122], and

SAP [123]. Nowadays, many software packages exist, both commercial and free. Some of

the more well-known packages are Deal.ii [124], FEniCS [125], FreeFem++ [126], which are

open-source, and Pogo [44], Abaqus [127] and COMSOL [128], which are commercial and

proprietary. Various programming languages, such as Mathematica [129] or Matlab [130]

also provide toolboxes to handle finite element problems.

Although many such packages exist, few are optimized and allow the user to make use of

GPU acceleration. One such package is Pogo [44]. This also necessitates the development of

new algorithms and implementations suitable for such GPU acceleration, which is the central

research objective of this thesis.

In the first part of this chapter, the author will explore the literature on the finite element

method and associated software packages. The second part will focus on the specific for-

mulation and implementation that the author has developed for the problem of ultrasonic

propagation and scattering in domains involving both solids and fluids. A full historical

overview of the development of the finite element method will not be given in this thesis,

although readers interested are referred to such works as [131].
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3.2 Overview of the finite element method literature

As mentioned already, the finite element method is a numerical method well-suited for the

solution of problems arising in complex, large-scale industry-relevant configurations. It is a

classical and well established numerical method, with a rigorous theoretical mathematical

basis, and the reader is referred to works such as [132, 133, 104, 134, 125] for further details.

Rigorous mathematical definitions of a mesh, a finite element and a local-to-global mapping

can be found in the aforementioned texts, although a full understanding of them is not

required to use and implement the formulations and algorithms derived in this chapter.

The finite element method, and thus the associated software implementations, generally

have the following structure. First, the area of interest is discretised into smaller finite

elements, using some meshing algorithm implemented in software (such as the Delaunay

triangulation [135] implemented in software such as Gmsh [136] or Pogo [44]). Then, one

assembles local matrices on each element according to the underlying constitutive equations

and associated material properties and uses a local-to-global mapping to assemble the global

matrices. Finally, the resulting system of equations is solved and the solution is interpolated

across the whole domain.

The research presented in this chapter largely focuses on the assembly and solution of the

matrices detailed above, as one can rely on meshing functionality already present in software

packages. Meshio [137], a software tool for mesh files details many of the common mesh

formats for both structured and unstructured grids, as well as their efficiency, in both speed

and storage, and the reader is referred to this for further details.

Much work has been done on the finite element method for the ultrasonic propagation prob-

lem involving domains comprised of both solid and fluid, often termed the fluid-structure

interaction (FSI) problem. By investigating the solid-fluid interaction problem, the aim of

this thesis is to understand how this can be implemented efficiently in software such as Pogo,

without sacrificing on performance unnecessarily and taking into account restrictions due

to the GPU-based nature of the package. Difficulties arise when imposing the solid-fluid
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boundary conditions, and when different non-diagonal forms of damping are introduced.

In Chapter 1, some common formulations for the FSI problem have been detailed. For com-

pleteness, they will be complemented with additional formulations in the literature. Force-

based formulations have also attracted some interest for structural analysis, first by Robinson

[138], whose method can be found as the standard force method, then by Patnaik et al. [139]

and then by Kaljević et al. [140] who improved upon the method and termed in the inte-

grated force method. Despite some apparent advantages, it requires specialist software and a

different mathematical formulation, and to the author’s knowledge, no extensive studies have

been carried out for the FSI problem using this method. Nevertheless, it may be a future

avenue of research.

In Chapter 1, it was stated that displacement-based formulations for fluids may be the way

forward although there are additional computational requirements compared to pressure-

based formulations. While pressure is a scalar quantity, and thus only requires one degree of

freedom per node, displacement is a vector-field corresponding to the dimension of the prob-

lem. As the size of the matrices in the finite element method have dimensions corresponding

to N × N , where N is the number of nodes multiplied by the degrees of freedom, one can

see that the size of the problem may grow rapidly for large models. Despite this, by using

new computing hardware, such as the GPU, which have increased performance for parallel

mathematical applications, one can alleviate this. Furthermore, by storing only non-trivial

nodal values in sparse matrix formats, which is a common practice in FE software, further

savings can be made. Thus, the size of the model is no longer the main constraint for meth-

ods deployed to GPUs, given their excellent ability to handle large models when properly

implemented [44, 141].

At the same time though, pressure-based formulations for the fluid generally result in non-

symmetric matrices. The coupled fluid-solid finite element equation is given in [142] as

 [M ] [0]

−ρ[A]T [Q]


ü
p̈

 +

 [B] 0

−ρ0 [C]


u̇
ṗ

 +

[K] [A]

0 [H]


ü
p̈

 =

f1

f2

 (3.1)
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where u is the displacement vector in the solid, p is vector of pressure values in the fluid. The

matrics [M ] and [Q] are the solid and fluid mass matrices respectively, [K] is the solid stiffness

matrix, [H] is the fluid stiffness matrix, and [B] and [C] are the solid and fluid damping

matrices. The vectors f1 and f2 are the forces in the solid and fluid regions respectively and

ρ is the fluid density. The matrix [A] is the area matrix, which is responsible for converting

the fluid pressure at the interface to structural displacements, and its off-diagonal position

is the reason for the non-symmetry in the final assembled matrices. It should be noted that

this does not violate the Betti-Maxwell principle of reciprocity [143], as while the individual

matrices [M ], [Q], [K], [H], [B], [C], [A] are symmetric,

 [M ] 0

−ρ[A]T [Q]

 and

[K] [A]

0 [H]

 , (3.2)

are not. It was shown in [60], that by reformulating the pressure-based approach given

in (3.1) as a velocity-potential-based approach, one can regain symmetric matrices. The

non-symmetry of the coupled pressure-displacement based formulation is in contrast to

displacement-based formulations in which the matrices are symmetric. The non-symmetry

and need for matrix inversion also pose significant challenges to GPU implementation. We

are no longer guaranteed a sparse matrix; this results in a significant amount of increased

memory and storage, and as we are often bandwidth limited, as discussed in [44], this can

drastically slow down calculations, introducing additional bottlenecks. Furthermore, methods

must be applicable to common FE software, which in general is written for displacement-

based approaches. Nevertheless, one can always go from an approach with higher number of

degrees of freedom to one of lower number of degrees of freedom by setting certain variables

to be zero. Thus, the symmetric nature of the problem, as well as desirability to couple with

existing displacement-based solid FE software, make modelling the fluid using a displacement

field a very beneficial proposition, despite the fact that displacement-based approaches can

suffer from hourglassing [144, 3].
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3.3 The finite element formulation

3.3.1 Finite element formulation for solid materials

FE formulations for displacement-based solid elements are well-known [131] and are briefly

discussed below so that the necessary changes made for fluid materials can be introduced.

The local stiffness matrix [K]e, where the superscript is to denote “local element”, of an

element is given as

[K]e =

∫
[B]T [E][B] dV. (3.3)

The matrix [B] in Equations (3.3) is the strain-displacement matrix which comes from the

strain-displacement formula as

ϵ = [B]u. (3.4)

These are well known in the literature and depend on the choice of element, for which further

information will be provided in Section 3.3.2. The matrix [E] is the stress strain matrix

which depends on the material parameters and for an isotropic material is given as [131]

[E] =
E

(1 + v)(1 − 2v)



1 − v v v 0 0 0

v 1 − v v 0 0 0

v v 1 − v 0 0 0

0 0 0 1−2v
2

0 0

0 0 0 0 1−2v
2

0

0 0 0 0 0 1−2v
2


, (3.5)

where E is the Young’s modulus and v is Poisson’s ratio.

For the mass matrix [M ], a diagonal lumped mass matrix [145] is considered, of the form

[M ] =


m1 · · · 0

...
. . .

...

0 · · · mN

 , (3.6)
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which is purely diagonal and where mi correspond to the element mass (area in 2D, volume

in 3D).

For the damping matrix, mass proportional damping is assumed (this is equivalent to Rayleigh

damping introduced in Equation (2.65) with the appropriate choice of constants) of the form

[C] = α[M ]. (3.7)

Using the diagonal forms of the mass and damping matrices has the computational advantages

of being easy to compute, store and invert.

For the time derivative, one can use the central finite difference method [92] to arrive at

[M ]
Ut+1 − 2Ut + Ut−1

δt2
+ [C]

Ut+1 − Ut−1

2δt
+ [K]Ut = F, (3.8)

which has an error of O(δt2). Here, Ut−1, Ut and Ut+1 are the displacement vector values at

the previous, current and next time steps respectively. By re-arranging equation (3.8) one

arrives at

(
[M ]

1

δt2
+ [C]

1

2δt

)
Ut+1 = F +

(
[M ]

2

δt2
− [K]

)
Ut +

(
[C]

1

2δt
− [M ]

1

δt2

)
Ut−1. (3.9)

Due to the choice of the diagonal damping matrix [C] and the diagonal mass matrix [M ], the

expression

(
[M ]

1

δt2
+ [C]

1

2δt

)
that appears in equation (3.9) can easily be inverted as it is

purely diagonal. The matrices [K], [M ], [C] and F can be calculated and stored before the

time-marching begins and do not need to be recomputed at each time step.
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3.3.2 A novel finite element formulation for fluid materials

The derivation of the finite element matrices for fluid materials, which is based on the con-

stitutive equation for a compressible fluid, is presented. The formulation and assembly rou-

tines described in this section, and in Section 3.4 are comparable for both two and three-

dimensional physical and computational domains. Therefore, they will be demonstrated

in the simpler two-dimensional case, while making note of any differences where necessary.

Computational examples and some further discussion on the three-dimensional case will be

shown in subsequent chapters.

The constitutive equation for a compressible Stokesian fluid with Newtonian viscosity along-

side a full derivation can be found in [19]. Although the full derivation is out of scope for

this thesis, some necessary equations and their context are provided in what follows. The

constitutive equation for a compressible fluid is given as [19]

σij = −pδij −
2

3
µ̇ϵ̇kkδij + 2µ̇ϵ̇ij, (3.10)

where σij is the stress tensor, p is the equilibrium pressure, µ̇ is the dynamic viscosity of the

fluid, ϵ is the strain, ϵ̇ is the strain rate and δij the Kronecker delta. Considering the static

part of the equation one arrives at (this also follows from the isotropy of the fluid)

σxx = σyy = σzz = −p = λ(ϵxx + ϵyy + ϵzz). (3.11)

Here, λ is the bulk modulus of the fluid, which is related to the acoustic speed of the fluid,

c, and its density, ρ, as

λ = ρc2. (3.12)

Thus, without loss of generality, over a 2-dimensional x − y plane, the stress-strain and
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stress-strain rate relationships are


σxx

σyy

σxy

 =


λ λ 0

λ λ 0

0 0 0



ϵxx

ϵyy

ϵxy

 +


−4

3
µ̇ 2

3
µ̇ 0

2
3
µ̇ −4

3
µ̇ 0

0 0 −µ



ϵ̇xx

ϵ̇yy

ϵ̇xy

 . (3.13)

The matrices defined in Equation (3.13) are then used to calculate D and Ḋ which are needed

in the stiffness and element damping matrices used in the finite element assembly for the fluid

material. These are

D =


λ λ 0

λ λ 0

0 0 0

 , Ḋ =


−4

3
µ̇ 2

3
µ̇ 0

2
3
µ̇ −4

3
µ̇ 0

0 0 −µ

 . (3.14)

The local element stiffness and local element damping matrices can then be assembled (in

parallel, without needing to recalculate the matrix [B] for both [K] and[C]) as follows

[K]e = [B]T [D][B], (3.15)

[C]e = [B]T [Ḋ][B]. (3.16)

The mass matrix retains its form from the solid case, i.e. it is proportional to element mass

on the diagonal. Matrix [B] in Equation (3.15) is the strain-displacement matrix introduced

in Equation (3.4). These are well-known in the literature [146] and depend on the choice of

element and the numerical quadrature scheme.

Quadrature rules allow us to numerically approximate integrals of a function using a sum of

weight and function values at specific points. Gauss-Legendre quadrature rules (commonly

referred to as Gaussian quadrature) allow us to approximate this integral using polynomi-

als and then integrating that polynomial exactly [147]. Thus the integral of f(x) can be

approximated using ∫ 1

−1

f(x)dx ≈
n∑

i=1

wif(xi), (3.17)
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where wi are the weights and xi are the specified points. It remains to calculate these weights

and corresponding points. Much research has been carried out to efficiently calculate these

and improve upon them, such as in [148, 149, 150]. It should be noted that in Equation

(3.17) the domain of the integral is given as [−1, 1], but one can always perform a change

of interval from [a, b] to [−1, 1] to match this. For the commonly used Gaussian quadrature

rules in the finite-element literature for the elastodynamic problem, these are xi = 0, wi = 2

for the first order Gaussian quadrature scheme, and xi = ± 1√
3
, wi = 2 for the second order

Gaussian quadrature scheme.

The formulation for the under-integrated or reduced integration quadrilateral element is now

shown, i.e. the element with one point of integration in the centre. This has been demon-

strated in [50] to reduce, alongside irrotational constraints or damping, spurious modes which

are a particular issue for displacement-based fluid formulation [144]. For an isoparametric

quadrilateral with diagonal nodes at points [−1,−1] and [1, 1] with shape functions

N e =
1

4



(1 + x)(1 − y)

(1 − x)(1 − y)

(1 + x)(1 + y)

(1 − x)(1 + y)


, (3.18)

the strain-displacement matrix [B] is given as

[B] =


∂Ne

1

∂x
0

∂Ne
2

∂x
0

∂Ne
3

∂x
0

∂Ne
4

∂x
0

0
∂Ne

1

∂y
0

∂Ne
2

∂y
0

∂Ne
3

∂y
0

∂Ne
4

∂y

∂Ne
1

∂y

∂Ne
1

∂x

∂Ne
2

∂y

∂Ne
2

∂x

∂Ne
3

∂y

∂Ne
3

∂x

∂Ne
4

∂y

∂Ne
4

∂x

 . (3.19)

If one considers the single integration point to be from the first order Gaussian quadra-

ture scheme at point [0, 0] defined above, which is commonly used for bilinear quadrilateral
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elements with reduced integration [148], then

[B] =
1

4


−1 0 1 0 1 0 −1 0

0 −1 0 −1 0 1 0 1

−1 −1 −1 1 1 1 1 −1

 . (3.20)

Having derived the formulae for assembling the necessary matrices, we now recall the spa-

tial FE formulation from Equation (2.61) and its finite difference in time formulation from

Equation (3.9). One challenging step becomes immediately apparent - Equation (3.9) re-

quires inverting

(
[M ]

1

δt2
+ [C]

1

2δt

)
. It is no longer possible to execute this efficiently owing

to the non-diagonal structure of the damping matrix [C] used for the fluid elements. Since

the GPU FE method works best for explicit time domain methods [91], a new approach

must be developed. A modification of the central finite difference scheme is proposed and

implemented:

[M ]
Ut+1 − 2Ut + Ut−1

δt2
+ [C]

Ut − Ut−1

δt
+ [K]Ut = F. (3.21)

The difference in Equation (3.21) compared to Equation (3.8) is that the first order time

derivative multiplied by C is changed to depend purely on values at Ut and Ut−1 which are

known. Thus, U t+1 can be rearranged to

U t+1 = δt2[M ]−1(F − [K]U t) + 2U t −U t−1 + δt[M ]−1[C](U t−1 −U t). (3.22)

As in [44], this is computed as

U t+1 = F ′ + [C ′]U t−1 + [K ′]U t, (3.23)

where the modified matrices have been introduced

[K ′] = −δt2[M ]−1[K] + 2[I] − δt[M ]−1[C], (3.24)

[C ′] = −[I] + δt[M ]−1[C], (3.25)
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and the vector

F ′ = δt2[M ]−1F . (3.26)

Now, as in [44], [K ′], [C ′] and F ′ remain constant, they can be assembled, stored and used for

all time steps. The modified numerical scheme introduced and described above in Equation

(3.21) has the advantage that it is explicit in time, without relying on inversion of the matrix

[C], and is suitable for GPU calculations. The stability of the method remains the same as

it occupies the same stencil in time [41], requiring the same number of nodal points. Thus,

it has the same Courant-Friedrichs-Lewy condition [92] as the standard central difference

scheme i.e.

c
∆t

∆x
< 1. (3.27)

The order of the error of this method related to the modified numerical calculation of the

velocity increases from O(δt2) to O(δt) due to the use of the current time step instead of the

future one.

3.4 Algorithms and software implementation

To summarise, so far the author has introduced and derived a mathematical finite element

formulation for fluid materials which damps out the shearing motion through the use of a

non-diagonal damping matrix alongside the use of a reduced-integration Gaussian quadrature

scheme and is displacement based. It is thus compatible with existing software designed for

solid materials and explicit in time and suitable for GPU calculations. For completeness,

algorithms and some notes of their efficient implementation will be given for the common

operations needed to assemble and solve the equations given above. It is appreciated that

different software packages such as Pogo or Comsol may make different decisions in the

algorithms than those presented here, but they are sufficiently generic to be useful to any

practitioners wishing to implement finite element algorithms in general and more specifically,

for the formulations derived in this thesis.
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3.4.1 Computational Domain

The first step of using a finite element method software is defining and importing the com-

putational domain, i.e. the mesh, into our software. This can be done with a variety of

tools detailed earlier in this chapter, such as Gmsh [136], meshio [137] or Pogomesh [44].

While different software implementations provide additional information, necessary informa-

tion needed are the position of the nodes and their corresponding numbering, a connectivity

matrix detailing which nodes form each finite element, the material parameters (and there-

fore material type of each element, whether solid or fluid in our case) and the associated

quadrature rules for each element, which are usually referred to by the element type (re-

duced integration or fully integrated for the four-noded quadrilateral). An extensive list of

different element types can be found in [151], where Arnold and Logg introduce a “periodic

table of finite elements”, although not all of them are applicable to the wave equation.

Grids can be further separated into structured and unstructured grids, examples of which are

in Figure 3.1a and Figure 3.1b respectively. These have associated advantages and disadvan-

tages, which are briefly detailed here. Unstructured grids conform to the object geometry,

which is particularly important for complex real-world objects; they allow further refinement

in areas of interest and thus can generally provide us with more accurate results. Struc-

tured and equispaced/uniform grids, do not necessarily conform to the object geometry, and

thus may suffer from staircasing effects depending on the object geometry. One might also

have structured and non-equispaced/uniform grids; these are usually used in cylindrical co-

ordinates, when discretising an object such as a pipe, and these can also suffer from such

staircasing issues.

If one wants to represent the circle in Figure 3.2a as a different material, without loss of

generality assume this is solid and the remaining mesh is of fluid, the result of this can be

found in Figure 3.2b. As seen, the purple shading is correct, the blue shading is simulated

as a solid when it represents a fluid material and vice-versa, the pink shading represents a

fluid material when it should be solid, thus both overestimating and underestimating the
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(a) Structured rectangular mesh

(b) Unstructured mesh, conforming to a cylindrical shell

(c) Unstructured mesh, conforming to a cylindrical shell, using structured mesh elements for the
majority of the domain

Figure 3.1: Structured, unstructured, and combined meshes.
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true domain. Despite this, they are significantly faster to create, simpler to understand and

cheaper to store in memory.

Furthermore, as will be discussed in the assembly routine section, the total number of el-

ements and nodes is directly related to the computational time to solve a problem, and

overall for the same discretization, structured grids produce fewer nodes and elements than

the comparable unstructured grid. For this reason, the majority of simulations conducted in

this thesis will use structured grids unless otherwise noted. It should be noted that one can

combine these two methods of structured and unstructured grids, by defining the majority of

the computational domain using structured grids and only using unstructured grids around

the complex object. Finite element software and their associated meshing functionality such

as Pogo provides this. An example of such a mesh can be found in Figure 3.1c.

3.4.2 Matrix assembly

In Equation (2.61), the matrices [K], [C], [M ] were defined as the stiffness, damping and

mass matrices respectively, and Equations (3.15) and (3.16) gave the equations for [K]e,

[C]e the local stiffness and damping matrices for a fluid element. For the local stiffness and

damping matrices, one needs to calculate the strain-displacement matrix [B], which in our

derivation relied on the shape function with diagonal nodes at points [-1,-1] and [1,1] and

a single integration point, based of a first order Gaussian quadrature scheme at point [0,0].

This is called the reference element, and the mesh element is related to this by a map or

function G [152]. Figure 3.3 shows this mapping from the local or mesh element to the

reference element. One can construct the shape function on this reference element and then

through a coordinate change map to the original element. The reason we use them is to

keep all the formulas constant, irrespective of the size and position of each element, reducing

computational complexity. It should be noted that a coordinate transformation with the

associated Jacobian must be calculated, but this poses minimal computational challenges

nowadays.
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(a) Circular domain (pink) I wish to represent using a structured grid.

(b) Staircasing results, blue represents the computational domain, both over-fitting and under-
fitting

Figure 3.2: True object and computational approximation in pink and blue respectively.
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Figure 3.3: Mapping of local (left) to reference element (right).

Formulations for the local matrices have been derived and use a “local-to-global” mapping,

which provides us with information about how each local degree of freedom relates to the

global degree of freedom. Mathematically, this can be described as

[K] =
N∑
e=1

G([K]e), (3.28)

where G is the “local-to-global” mapping function and the summation is over the elements

of the computational domain. It is noted that each matrix position in the global matrix can

have a contribution from more than one local matrix.

For efficient assembly of the matrices, the numbering of the mesh nodes must be chosen in

such a way that it minimizes the bandwidth of the assembled matrices, but this is well-known

in the literature and the reader is referred to papers such as [153] by Rosen, or [154] by Cuthill

and Mckee for further information.
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3.4.3 Matrix storage

The formulations for the finite element matrices, assembly routines and how one can efficiently

assemble the system in parallel using a “local-to-global” mapping have been described above.

The dimensions of the local matrices [K]e, [M ]e, [C]e are theoretically (nk)2 where n is the

number of nodes on the reference finite element (n = 4 for tetrahedrons, n = 3 for triangles,

n = 8 for the common three-dimensional case of a brick element) and k is the number of

degrees of freedom associated with the formulation. As we are now in a displacement-based

setting, this is k = 2 for two-dimensional simulations and k = 3 for three-dimensional simu-

lations. For a pressure-based formulation k = 1 in all dimensions, although this introduces

other complexities previously discussed. The dimensions of the global matrices [K], [M ], [C]

are (Nk)2, where N is the total number of nodes in the discretised domain. These matrices

must also be stored efficiently, as for large systems, such as those simulated in [155], one

would require enormous amounts of storage, which is not feasible.

One thus relies on sparse matrix functionality, where only non-zero elements of the matrices

are stored, compared to dense matrix formats, where all the information is stored. This

functionality is well suited to finite element algorithms. For the mass matrix defined in

Equation (3.6), this can be stored in a diagonal form, keeping only the values on the diagonal.

Due to the finite elements algorithms used here, it is known that the resulting global stiffness

and damping matrices will be sparse, as non-trivial values exist only in locations with adjacent

nodes. Without loss of generality, for the ith row values are non-trivial at columns associated

with nodes which are part of the same elements as i [44]. An illustration of this is in Figure

3.4. The symmetry of the matrix, which is a corollary of the Betti-Maxwell principle of

reciprocity [143] can be seen here. If node i is in the same element as node j, then clearly

node j is also in the same element as node i. Thus the storage complexity for the stiffness,

damping and mass matrix reduces from O(N2) to O(N), allowing us to more readily solve

large-scale industrially relevant simulations.
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Figure 3.4: Node linking from the ith node.

3.5 Computational performance of the method

Direct timing comparisons between the formulation and implementation of the method on

a GPU described in this thesis and existing finite element (FE) software for fluid-solid in-

teraction are not straightforward. This is due to FE software packages being often heavily

dependent on not just the formulation used, but also the hardware used. The choice of

programming language and compiler optimisations [156] also significantly impact the per-

formance of the algorithms. Furthermore, there is frequent improvement in all aspects of

computational mathematics [157] and hardware, which can complicate direct timing compar-

isons. The formulation in this thesis will benefit from such computational improvements.

Despite the above, it is appreciated that timing comparisons can help validate the proposed

performance improvements claimed by this method. Therefore, as we know the timing ratio of

Pogo Solid to conventional CPU-based FE software, if we calculate the ratio of the fluid-solid

implementation to the solid implementation in Pogo (the method presented in this thesis),

we can indirectly compare the GPU-based method presented in this thesis to CPU-based

methods. A mathematical description of this can be as follows,

Pogo Fluid-Solid GPU

Conventional CPU
=

Pogo Fluid-Solid GPU

Pogo Solid GPU
× Pogo Solid GPU

Conventional CPU
. (3.29)
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This way of calculating the performance difference also has the benefit of being run on the

same underlying hardware for a more accurate comparison.

We setup a pair of simulations as follows: We define a square grid of rectangular elements.

For the first simulation, this is fully solid and for the second simulation we set the right-half

to be fluid. We progressively increase the size of the square grid to obtain measurements

across a wide-range of total number of degrees of freedom. We run the simulation at grid

size three times and take the average, to mitigate any anomalous results inherent in timing

computing processes.

The simulations in this study are executed using two modes offered by Pogo [44]. These

modes are denoted as “Compression on (default)” and “Compression off.” Compression, as

defined in the Pogo documentation, refers to the optimization technique where large sections

of uniform elements within a model exhibit redundancy in the stiffness matrix, K. In such

scenarios, many coefficients in the matrix are identical. To reduce the storage required, Pogo

has the capability to detect these uniform elements and optimize the problem by storing these

coefficients once and pointing to them when needed. This approach results in a reduction in

memory usage and often increased computational speed.

The results of these two measurements can be found in Figure 3.5, where we plot the ratio

of Pogo-Fluid-Solid to Pogo-Solid. We can immediately see a stark contrast between the two

images. In Figure 3.5a, where we use compression, we see only a marginal slow down between

using the solid-fluid executable and the solid executable of approximately 2%. Whereas in

Figure 3.5b, where we do not use compression, we can see a significant slow down, which

also increases as the number of degrees of freedom increase. There are a few observations

we can make here, although a full understanding of this difference is likely to be hardware

and implementation specific, and would require significantly more analysis which is outside

the scope of this work. The first observation we can make, is that despite the additional

computation required by the method described in this thesis, this does not introduce signif-

icant additional slowdown compared to the GPU FE method for solid materials introduced

in [44] and has been shown to be significantly more performant than comparable CPU based
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methods. The second observation relates to when compression is turned off; as results are no

longer cached and data must be transferred and stored for both the stiffness and damping

matrices, the performance diverges and the solid-fluid case is much more expensive. As the

number of degrees of freedom increases, this becomes more pronounced.

Despite the differences between the two cases we described above, we can indirectly state

that the method described in this thesis will be between 70 and 100 times faster than an

equivalent commercial CPU FE software, based on the solid GPU FE method in [44] being

100 times faster, using (3.29).

3.6 Summary

The author has provided formulations for the matrices, described how to calculate these for-

mulations, and also stated how they can be stored. The author has not provided an explicit

implementation of these, as they are heavily software-dependent and many different imple-

mentations exist, from meshing software to sparse matrix functionality and their associated

linear system solvers.

Running GPU FE software has been demonstrated to offer significant improvements, even

when accounting for the change in hardware, and the author refers the reader to such im-

plementations for further reference [44]. For the examples that follow, the author uses the

formulation as described in this chapter, implemented in Pogo [44], although the proposed

method is sufficiently generic to be implemented in any other FE software.
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(a) Compression on (default)

(b) Compression off

Figure 3.5: Ratio of solid-fluid vs fluid executable in Pogo run with (a) compression on and
(b) compression off.



Chapter 4

Solving Problems I: Application to

Underwater Acoustics

The scattering from rigid and elastic objects submerged in fluid has long been of interest

to the underwater acoustics community, who use this scattering response to identify objects

proud or buried in the seabed [158], to calculate target-echo strength measurements of such

objects [159], or for defence related reasons [1].

The objective of the simulations in this chapter is twofold; verify and validate the theoretical

finite element formulation derived in Chapter 3 and show that this formulation can be applied

to problems in the underwater acoustics area. Canonical setups in the underwater acoustics

community will be looked at, such as those mentioned in Chapter 1 by [54, 56, 55, 158].

The objects of interest can be represented by cylinders, spheres, and cylindrical shells, with

the latter further being empty, partially-filled or fully-filled. All of these objects can then

be present in the free-field in the fluid, proud on a sediment interface or partially or fully

buried. In this chapter, results will be shown for scattering from some of these objects in some

configurations in 2D and 3D, which can be found in Table 1.1. The results will be compared

to existing analytical or semi-analytical solutions where these exist and in the cases they do

not, informed observations and comments regarding the validity of the results will be made.

79
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All the simulations presented in this thesis have relied on the (elastic) orthogonal hourglass

control method described in [3] which relies on using an additional artificial stiffness to

reduce this phenomenon. This method has been implemented in FE software such as [127]

or [44]. As we are using the displacement-fluid based formulation formulated in Pogo for

these simulations, we have access to this hourglass control for ”free” i.e. it is not needed to

re-implement it, demonstrating the versatility of the method and formulation described in

this thesis.

An hourglass control parameter of 0.05 is used. Interestingly, we observe that, unlike solid

materials, fluid materials demonstrate less hourglass effects when using reduced-integration

as opposed to full integration. A full investigation of why this happens is out of the scope

of this thesis and could be an interesting avenue for future research. The works of Chen and

Taylor [50] who use a reduced integration formulation with a projected mass approach could

be a good starting point.

In what follows, the damping parameter formulated in Chapter 3 has been set to zero, i.e. it

is not strictly necessary to achieve accurate simulations. The reason for this is not currently

known, but is possibly related to the elastic damping present when we use hourglass control

from [3]. It has been kept in the formulation to more easily enable extension of this work to

viscous fluids and damping, and is a possible avenue for future research.

4.1 Scattering from cylindrical structures

We now proceed to compute FE simulations and compare with analytical scattering results

across three separate related physical cases. The results in this chapter will be given in terms

of radial displacement, defined as

ur = ux cos θ + uy sin θ. (4.1)
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An illustration of this can be found in Figure 4.1. To achieve scattered results numerically,

the following relation is used

utotr = uincr + uscattr , (4.2)

where utotr is the total displacement, uincr is the displacement of a homogeneous field (i.e. where

no scatterer is present) and uscattr is the scattered displacement. To obtain this numerically,

two FE simulations are computed; one with the scatterer, and one with a homogeneous

field, giving us utotr and uincr , allowing us to calculate uscattr from (4.2) As our mathematical

formulation and our software implementation are displacement-based, the response for the

ux and uy are readily available.

Figure 4.1: Radial displacement.

In all simulations in this section, an excited plane wave travels across the domain simulated

and response nodes are placed at a distance from the centre of the scatterer, details of which

are given when describing the particular simulation. Due to the nature of the FE method,

the response in the far field can be computed (arbitrary distances can be measured given
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appropriate computational power and storage). Alternatively, one can calculate the response

in the near field and then propagate the result to the far field, although this is not done in

this thesis. In all cases, a Courant-Friedrichs-Lewy [92] number of 0.8 with respect to the

highest velocity in the simulation (usually the solid longitudinal wave speed cL) is used to

determine the time step

dt =
dx

cL
× Courant, (4.3)

and the number of time steps is set to allow enough time for the wave to pass across the

domain and back with reference to the fluid wavespeed. For a quantifiable comparison, the

relative error defined as

||utrue − uFE||1
||utrue||1

, (4.4)

is used to compare the measured FE scattering versus the analytical solution, where ||u||1 is

the ℓ1 vector norm of u given by

||u||1 =
n∑

i=1

|ui|, (4.5)

i.e. the sum of the absolute vector values.

Although the simulations were carried out in the time-domain, to allow for a clear comparison

between the analytical case, which is generally given in the frequency domain for single-

frequencies, the frequency result closest to the central frequency excitation is extracted with

the use of fast-Fourier-transforms. The analytical expression for the pressure in the scattered

field for infinitely long cylindrical structures can be found in [55], and is given as

pscattr =
∞∑
n=0

inϵnbnH
(1)
n (kextr) cosnθ. (4.6)

From this, one can calculate the radial derivative to give us the scattered displacement as

uscattr =
∞∑
n=0

inϵnbnkextH
′(1)
n (kextr) cosnθ, (4.7)

where ϵn is the Neumann factor defined as ϵ0 = 1, ϵn = 2, for n > 0. The coefficients bn are

used to define the scattered fields for each scatterer and are well-known in the literature for
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specific configurations, details of which will be given below. The functions H
(1)
n , H

′(1)
n are the

Hankel function of the first kind and its respective derivative, kext is the radial wavenumber

in the exterior fluid, r is the distance from the centre of the cylindrical scatterer and θ is the

angular position.

For an elastic cylindrical shell the general form of bn is given as [55]

bn =
1

D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 α12 α13 α14 α15 0

β2 α22 α23 α24 α25 0

0 α32 α33 α34 α35 0

0 α42 α43 α44 α45 α46

0 α52 α53 α54 α55 α56

0 α62 α63 α64 α65 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.8)

where D is given by

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α11 α12 α13 α14 α15 0

α21 α22 α23 α24 α25 0

0 α32 α33 α34 α35 0

0 α42 α43 α44 α45 α46

0 α52 α53 α54 α55 α56

0 α62 α63 α64 α65 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.9)

and the coefficients αij and βi (for convenience of notation, the subscript n which refers to

the series summation found in Equations (4.6)-(4.7) has been dropped) can be calculated

from

β1 =

(
xint
kint

)2

Jn(xint),

β2 = xintJ
′
n(xint),

(4.10)
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and

α11 = −
(
xint
kint

)2

H1
n(xint),

α12 = 2µx2LJ
′′
n(xL) − λx2LJn(xL),

α13 = 2µx2LN
′′
n(xL) − λx2LNn(xL),

α14 = 2µn[Jn(xSh) − xShJ
′
n(xSh)],

α15 = 2µn[Nn(xSh) − xShN
′
n(xSh)],

α21 = −xintH ′(1)
n (xint),

α22 = −ρextω2xLJ
′
n(xL),

α23 = −ρextω2xLN
′
n(xL),

α24 = ρextω
2nJn(xSh),

α25 = ρextω
2nNn(xSh),

α32 = 2n[xLJ
′
n(xL) − Jn(xL)],

α33 = 2n[xLN
′
n(xL) −Nn(xL)],

α34 = −x2ShJ ′′
n(xSh) + xShJ

′
n(xSh) − n2Jn(xSh),

α35 = −x2ShN ′′
n(xSh) + xShN

′
n(xSh) − n2Nn(xSh),

α42 = 2µy2LJ
′′
n(yL) − λy2LJn(yL),

α43 = 2µy2LN
′′
n(yL) − λy2LNn(yL),

α44 = 2µn[Jn(ySh) − yShJ
′
n(ySh)],

α45 = 2µn[Nn(ySh) − yShN
′
n(ySh)],

(4.11)
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α46 = −
(
yext
kext

)2

Jn(yext),

α52 = −ρintω2yLJ
′
n(yL),

α53 = −ρintω2yLN
′
n(yL),

α54 = ρintω
2nJn(ySh),

α55 = ρintω
2nNn(ySh),

α56 = −yextJ ′
n(yext),

α62 = 2n[yLJ
′
n(yL) − Jn(yL)],

α63 = 2n[yLN
′
n(yL) −Nn(yL)],

α64 = −y2ShJ ′′
n(ySh) + yShJ

′
n(ySh) − n2Jn(ySh),

α65 = −y2ShN ′′
n(xSh) + yShN

′
n(ySh) − n2Nn(ySh).

(4.12)

Here, ω is the frequency of the incoming plane wave, kext is the radial wavenumber in the

exterior fluid, kint is the radial wavenumber in the interior fluid, kL is the longitudinal radial

wavenumber in the solid, kSh is the shear radial wavenumber in the solid, λ and µ are the

Lame elastic constants of the solid, ρext is the density of the exterior fluid and ρint is the

density of the interior fluid. The functions Jn and Nn are Bessel functions of the first and

second kind respectively and J ′
n and N ′

n, J ′′
n and N ′′

n are their respective first and second

derivatives, and xi and yi are calculated as xi = aki, yi = bki, where a is the outer radius

of the cylindrical shell and b is the inner radius of the cylindrical shell (equivalently b is the

radius of the internal fluid). It should be noted that Hankel functions are related to Bessel

functions of the first and second kind by

H(1)
n = Jn + iNn. (4.13)

In what follows, different configurations of cylindrical structures are considered. Their setup

is described and results from the simulations are presented, together with comparisons with

analytical results. All diagrams are logarithmically scaled on the y-axis and their amplitudes
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normalised between 0 and 1 based on the maximum amplitude present.

4.1.1 Solid cylinder

The analytical expression for the radial displacement for a solid-fluid scattering problem for

an infinitely long solid cylinder submerged in fluid can be found in [54] but can also be

calculated from Equation (4.7) with bn given as

bn =
1

D

∣∣∣∣∣∣∣∣∣∣
β1 α12 α14

β2 α22 α24

0 α32 α34

∣∣∣∣∣∣∣∣∣∣
, (4.14)

and D by

D =

∣∣∣∣∣∣∣∣∣∣
α11 α12 α14

α21 α22 α24

0 α32 α34

∣∣∣∣∣∣∣∣∣∣
. (4.15)

The coefficients αij and βi are given in Equations (4.10)-(4.12).

The considered setup of this is schematically depicted in Figure 4.2a. The domain is

−10 m < x < 10 m,

−10 m < y < 10 m,

with a grid spacing of 12.5 mm corresponding to 1601× 1601 grid points. The forcing vector

is a three-cycle Hann-windowed toneburst. The frequencies investigated range from 200 Hz

to 1 kHz. Absorbing layers are placed on the boundaries of the numerical model to satisfy

the Sommerfeld radiation condition [160], as an infinite continuous space is represented using

a finite discrete space in the simulations.

Different materials for the solid have been considered, such as steel and perspex, to demon-

strate the method’s capabilities in low and high impedance situations. Their parameters
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(a) Solid cylinder (b) Cylindrical layered media (annulus)

Figure 4.2: A schematic showing a (a) solid cylinder and (b) annulus in water insonified by
a plane wave. The red dashed lines show the receiver points.

Material
Longitudinal wave speed
(m/s)

Shear wave speed
(m/s)

Density
(kg/m3)

Steel 5960 3260 7932
Perspex 2730 1430 1180
Water 1500 - 1000
Air 350 - 1.125
Glycerine 1860 - 1258

Table 4.1: Material properties used in numerical examples.

can be found in Table 4.1. Furthermore, perspex has the interesting property that it has a

shear wave speed less than the acoustic wavespeed of the surrounding fluid, confirming the

accuracy of the model in different scenarios.

The first set of simulations to consider is scattering from a steel cylinder for kα numbers

between 0.84 and 4.19. These correspond to frequencies ranging from 200 Hz to 1000 Hz with

a fixed radius of 1 m. To compute these simulations, the radius is fixed and the frequency

modified so the geometry can be fixed and thus ease computations by eliminating the need

for remeshing.

The results are shown in Figure 4.3. There is good agreement throughout the considered

range, with the exception of scattered angles perpendicular to the propagation direction,
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(a) Scattering at 200 Hz (b) Scattering at 250 Hz

(c) Scattering at 500 Hz (d) Scattering at 1 kHz

Figure 4.3: Scattering results a for steel cylinder submerged in water compared to analytical
results.
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which show some slight deviation. One probable cause for this is due to the direction of

the plane wave, with only small amounts of energy being transmitted at grazing incidence

and a greater effect of structured mesh staircasing. This might be improved by the use of a

conforming mesh, although this does introduce additional complexities during pre-processing

as one must carefully define the object boundaries, the sources and receivers and accurately

mesh around these. In [141], it is shown that both approaches are equally good for waves

in polycrystals, which suffer from the same error regarding staircasing, and thus structured

grids are normally used due to the comparative ease of use.

The relative errors of the scattering field at the frequencies shown computed with Equation

(4.4) are 1.05%, 1.03%, 1.51%, and 2.17% respectively. At a lower mesh refinement (25 mm),

the errors increased to 1.12%, 1.16%, 2.68%, and 4.37%. This clearly shows a reduction in

error with a finer mesh, and therefore confirming the convergence of the method. It should be

noted that there will always be a trade-off in the additional computational power and storage

required to run calculations on a finer mesh for higher accuracy, and it is left to the reader to

decide what error-rate is suitable for their simulations. The discrepancy at higher frequencies

is to be expected as there is comparatively less resolution per wavelength compared to lower

frequencies, as the element sizes are fixed for each set of simulations.

The simulations are then repeated for a perspex cylinder. The geometrical setup remains the

same as described above, and a central frequency of 1 kHz with a cylinder radius of 1 m is

considered. Results for this can be found in Figure 4.4, with the equivalent-sized steel cylinder

present for comparison. This has a relative error of 3.36% for the same mesh discretisation

as the steel cylinder. While this may appear initially surprising, the explanation for this is

two-fold. Perspex has a lower longitudinal and shear wavespeed than steel, and thus needs

further refinement to maintain the same number of elements per wavelength. Furthermore,

as visible in Figure 4.5, the perspex scattering pattern is much more susceptible to small

changes in frequency compared to the steel pattern. For a ±1% shift in frequency at 1 kHz,

the relative error of the analytical solution of the steel cylinder scattering is 1.3% (both

downwards and upwards), whereas for a ±1% shift in frequency at 1 kHz, the relative error
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of the analytical solution of the perspex cylinder scattering is 3.26% for the downward shift

and 4.20% for the upward shift, indicating that errors are not linear in frequency change and

are also material dependent.

4.1.2 Layered cylindrical media

The second scattering example considers scattering by solid cylindrically layered media sub-

merged in fluid and enclosing another fluid. Analytical results for this case can be calculated

from Equations (4.7) and (4.8) - (4.9).

A schematic diagram of the setup can be found in Figure 4.2b. The same solid materials as

those in Section 4.1.1 are considered to demonstrate capabilities in low and high impedance

situations. The exterior and interior layers are of fluid, not necessarily of the same material,

which surround a solid layer. The interior fluid layer and solid layer both have a radius of

1m for a total of 2 m. The domain is

−40 m < x < 40 m,

−40 m < y < 40 m,

with a grid spacing of 50 mm corresponding to 1601 × 1601 grid points. The forcing vector

was a three-cycle Hann-windowed toneburst with a central frequency of 500 Hz. Absorbing

boundaries are also placed on the boundaries of the setup as detailed in Section 4.1.1.

In this configuration, steel and perspex is used for the solid layers, water as the exterior

fluid and both water and air as the interior layer, giving a total of four computed cases. In

Figure 4.6, which shows the scattering pattern for the steel layer, has very little change in

the scattering pattern between the two cases of an air and water interior. This is due to a

comparatively high density of the solid material compared to the interior fluid, so much of

the energy is reflected regardless of the filling material. For the perspex layer, the scattering

pattern between the two different materials in the interior layer is clearly different as can be
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(a) Steel cylinder

(b) Perspex cylinder

Figure 4.4: Scattering patterns from (a) steel cylinder and (b) perspex cylinder submerged
in water at 1 kHz.
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(a) Steel cylinder

(b) Perspex cylinder

Figure 4.5: Analytical and frequency-shifted scattering patterns from (a) steel cylinder and
(b) perspex cylinder submerged in water at 1 kHz and 0.99 kHz respectively.
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seen in Figure 4.7. Good agreement between the analytical and numerical solution can be

observed in all cases when comparing with analytical results from [55], with a relative error

of 2.68%, 3.00% for the steel layer with water and air interiors respectively and 3.73%, 3.19%

for the perspex layer with water and air interiors respectively.

The next set of scattering simulations presented are that of ultrasonic scattering from liquid

cylindrical obstacles. An experimental investigation of this setup was first performed by

Tamarkin in [56]. Analytical results for this case can be calculated from Equation (4.7) with

bn given as

bn =

∣∣∣∣∣∣∣
β1 α12

β2 α22

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
α11 α12

α21 α22

∣∣∣∣∣∣∣
. (4.16)

For full details of the coefficients found in Equation (4.16) the reader is referred to [55]. A

setup of the experiment can be found in Figure 4.2a, by replacing the solid cylinder with a

fluid one.

The circular fluid inclusion has a radius of 2 m. The incident plane wave has a central

frequency of 500 Hz and measurements are taken at a distance of 10 m from the centre of

the cylindrical inclusion. The geometrical aspect of the domain is identical to that above.

The circular inclusion material in this case is glycerine. The velocity and density material

parameters for glycerine found in Table 4.1 are used it is treated as an inviscid fluid for the

purpose of this study. The glycerine inclusion is then surrounded by an infinite water layer

and absorbing layers are also placed on the boundaries of the setup as detailed in Section

4.1.1 so it can be computationally solved.

The comparison with analytical results shows excellent agreement at all angles as seen in

Figure 4.8. Results for this simulation are expected to be more accurate due to the comparable

wavespeeds of both glycerine and water which allow the Courant-Friedrichs-Lewy number to

be closer to 1, as described in [161]. The relative error for this example is 1.12%. This
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(a) Water interior

(b) Air interior

Figure 4.6: Scattering patterns from a steel annulus submerged in water with a (a) water
interior and (b) air interior.
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(a) Water interior

(b) Air interior

Figure 4.7: As in Figure 4.6 but for a perspex annulus.
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scenario was considered, as the ability to accurately model the interaction between two fluids

is also necessary to model objects on the sediment interface or buried below it, which is

extremely useful in underwater acoustics. The current state of the art research frequently

models the sediment as a fluid, as in [158, 162].

Figure 4.8: Scattering patterns for normalized displacement from a cylindrical glycerine
inclusion.
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4.1.3 Cylindrically layered media, arbitrary filling

Now that the method has good results for solid cylinders in Section 4.1.1 and for filled or

empty layered cylindrical media, as well as for interactions between fluids in Section 4.1.2,

results for arbitrarily filled objects such as those in [7] are computed. Geometrical objects

of the same dimensions and materials as in Section 4.1.2 are considered to allow for direct

comparison between the scattering patterns. This also provides greater certainty that the

simulations are not running into any issues with convergence or refinement. These objects

will be partially filled with fluid and the remaining filling will be air. The excitation has

a central frequency of 500 Hz as previously. In the majority of the simulations, the filling

level is two-thirds water and one-third air. As the objects are no longer axisymmetric, the

responses are calculated with excitation from three separate directions, with the angle of

incidence of the plane wave being at 0, 90 and 270 degrees. These correspond to a plane

wave travelling from the side, above and below respectively. For the plane wave excitation at

0 degrees we will also look at different levels of filling across the two solid materials. These

will be filled with one-third water or half-filled with water. The setup for the two-third filling

with plane wave excitation at 0, 90 and 270 degrees can be found in Figure 4.9.

There exist no analytical results for this setup although in [7] a finite difference method is

used to acquire results. Despite this, some observations and comparisons with existing results

from Section 4.1.2 are made. For the steel annulus, with scattering pattern shown in Figure

4.6, no observable difference between water and air filling is obvious. Thus, one can expect

the partially filled water-air steel annulus to match the previous scattering pattern, which

indeed it does as seen in Figure 4.10. The scattering patterns for the partially filled water-air

perspex annulus are found in Figure 4.11. In this case, one can clearly see the difference that

the partially filled interior has on the scattering pattern, because of the reduced impedance

mismatch.

Another reason we can expect accurate results is due to the nature of the FE method, which

works for arbitrary geometries and was one of the motivating factors for using this specific
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(a)

(b)

(c)

Figure 4.9: Setup for partially filled annulus 2
3

full submerged in water with an incoming
plane wave at (a) 0, (b) 90 and (c) 270 degrees respectively.
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(a)

(b)

(c)

Figure 4.10: Scattering patterns from a steel annulus 2
3

full submerged in water with an
incoming plane wave at (a) 0, (b) 90 and (c) 270 degrees respectively.
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(a)

(b)

(c)

Figure 4.11: Same as in Figure 4.10 but for a perspex annulus.
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method. While results for a subsection of simulations are shown, often of academic interest,

it should be noted that it is straightforward to change materials, dimensions and filling level

to better suit the investigations of interest for more practical applications. To demonstrate

the ability to handle different filling levels, which is not possible to do with analytical or semi-

analytical models, scattering patterns for different filling levels in both steel and perspex are

shown in Figure 4.12. For the steel annulus, as previously, no significant changes can be

seen in the scattering patterns due to the different filling levels, with minor differences, some

which may arise due to staircasing mentioned in Chapter 3. For the perspex annulus, the

changes in scattering pattern due to the different filling levels are clearly evident.

Another way to verify and validate the results in the non-axisymmetrical case, where no

analytical results exist, is to compare with results other researchers have obtained using

existing FE software. In Figure 4.13, one can see the scattering patterns using the FE

method implemented in Pogo, compared to that of COMSOL, for the setup shown in Figure

4.9, a two-thirds filled steel annulus with a plane wave incoming at 0 degrees. Excellent

agreement between the two simulations can be seen, with only slight deviation at certain

angles, most likely due to staircasing or differences in mesh refinement, as the exact meshes

and refinement used are different between different software implementations. It should be

noted that, although this comparison shows that it is possible to solve non-axisymmetrical

problems with existing FE software, only the method developed and presented in this thesis is

in the time-domain and easily usable on GPUs. The fact that this is in the time-domain allows

users to extract data for multiple frequencies from one simulation as opposed to frequency-

domain software where one would have to solve for each individual frequency.
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(a) Steel annulus

(b) Perspex annulus

Figure 4.12: Scattering patterns from an annulus submerged in water with different levels of
filling comprised of (a) steel and (b) perspex. Plane wave is travelling from the right.
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Figure 4.13: Comparison between scattering pattern in Pogo and COMSOL for a steel
annulus with a water interior, as described in Section 4.1.3.

4.2 Objects lying and buried in the sediment

Now that the method has been verified for ultrasonic waves in a wide variety of cases, such

as those involving fluids, fluids and solids and fluids interacting with fluids, we consider more

complex setups, such as objects lying proud on the sediment, buried or similar. As previously,

objects of a similar kα number are considered. This is to ensure the simulations have been

sufficiently refined to reach convergence, as no analytical solutions exist to compare to.

In this section, the simulation consists of a solid cylinder of 1 m with a plane-wave toneburst

signal with central frequency of 500 Hz. The sediment is modelled as a fluid with density

equal to 1700 kg m−3 and a sound speed equal to 1700 m/s, following [158]. These are very

similar parameters to glycerine used to calculate the scattering in Figure 4.8. As the sediment

is modelled as a fluid, and not as a solid with a very low shear speed, there is no need to refine

the grid to handle the low shear speed and thus no additional complexities are introduced

for the meshing stage of the solver.

The cylinder is in three different configurations, as shown in Figure 4.14. These correspond

to objects lying on the sediment, partially covered and fully covered, or equivalently with

level of burial equal to 0, 50 and 100% respectively. A semi-circular ring of receivers is placed
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above the cylinder and sediment, in the water. These are 6m above the water - sediment

interface. Modelling the sediment as a fluid is a well accepted practice as in [158, 162].

Results for the directivity patterns can be seen in Figures 4.15 and 4.16 for steel and perspex

cylinders respectively, insonified with a plane wave at different levels of burial. Due to the

absence of analytical results for these cases, a comparison to COMSOL Multiphysics [128] or

similar may be useful in the future and is an avenue for extending this work.

4.3 Setting up accurate simulations

Given the validity of the method as demonstrated in the previous sections for a range of

scatterers and configurations, the factors that can affect the accuracy of these simulations

is discussed. Namely, the number of elements investigated in examples of thin solid coating

and the Courant number accuracy.

4.3.1 Thin solid coating

Another aspect of interest, is the possibility to accurately model thin solid coatings on various

objects of interest. It is known from extensive modelling done for the NDE industry that this

is possible to do and that the limiting factor is usually a requirement for a certain number

of elements per wavelength. It should be noted that a certain number of elements is also

required to capture the geometry of the object accurately. For this section, the scatterer is

a steel annulus with a different number of elements used to describe the solid part, and thus

its thickness, while keeping the rest of the simulation constant, using the same refinement

and total simulation size as described in Section 4.1.2.

Figure 4.17 shows results for 10 and 5 elements per wavelength thick solid part. For the

simulation with 10 elements per wavelength, the FE simulation approximately matches the

analytical result although some noise can be seen, while for the simulation with 5 elements
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(a)

(b)

(c)

Figure 4.14: Object proud or buried in sediment, with levels of burial at (a) 0, (b) 50 and
(c) 100% levels of burial. Receivers are placed 6m above the water - sediment interface.
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(a)

(b)

(c)

Figure 4.15: Results for the directivity patterns for a steel cylinder insonified with a plane
wave at (a) 0, (b) 50 and (c) 100% levels of burial.
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(a)

(b)

(c)

Figure 4.16: As in Figure 4.15 but for perspex.
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per wavelength, the simulation is no longer completely accurate, particularly in the lower am-

plitude regions. Thus, when considering geometries on a scale approaching the wavelength of

the wave, the assumption of accurate modelling centered on elements per wavelength breaks

down and convergence studies should be undertaken to ensure the method still generates ac-

curate results. Looking through the literature, there does not seem to be any mathematical

theory behind this, unlike the Courant-Friedrichs-Lewy condition. However, this is a phe-

nomenon that is well known in simulations regarding static analysis in which one effectively

has infinite wavelength, but still needs to sufficiently refine the mesh to accurately capture

the geometry. Thus in simulations, particularly those involving “thin layers” or complex

geometries, we are often “geometry-limited” as opposed to “wavelength-limited” and care

must be taken to sufficiently refine both aspects.

4.3.2 Courant number accuracy

Another closely related issue that one must be aware of when setting up numerical simulations

involving both solids and fluids, is the often large differences in the longitudinal velocity (cL)

in the solid and the acoustic wave speed in the fluid. In [161], it is shown that for solid

materials the closer our CFL condition is to 1, the more accurate the simulations become.

However, exceeding this results in instability, and if one assumes a much lower number,

significantly finer refinement is needed to achieve similar results. This has the implication

that, for a simulation involving steel and water, two of the most common materials one might

encounter, a Courant number of 1 for the steel immediately implies a Courant number of

approximately 0.25 for the water, significantly reducing the accuracy of the simulations at

low level of refinements. Therefore, one way to alleviate this (and what is done in this thesis),

is to simply refine the mesh further than one might for an equivalent simulation involving

only solids.
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(a)

(b)

Figure 4.17: Scattering patterns from a thin steel annulus, with (a) 10 elements through-
thickness and (b) 5 elements through-thickness.
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4.4 Solid sphere in the free field

In the final section of this chapter, initial results for a simulation of a 3-dimensional object

are shown, specifically for a solid steel sphere surrounded by water, i.e. in the free-field. The

analytical expression for the pressure in the scattered field for a solid sphere can be found in

[54], and is given as

pscattr =
∞∑
n=0

bn[jn(kextr) − inn(kextr)]Pn(cosnθ). (4.17)

From this, one can calculate the radial derivative to give the scattered displacement as

uscattr =
∞∑
n=0

bnkext[j
′
n(kextr) − in′

n(kextr)]Pn(cosnθ). (4.18)

These formulations closely follow those given in Equations (4.6)-(4.7) with the addition of

jn, nn, which are spherical Bessel functions of the first kind and second kind respectively and

j′n, n′
n are their respective derivatives, while Pn is the Legendre polynomial. The scattering

coefficient bn is given as

bn = −(2n+ 1)ϵn(−i)n+1 sin(ηn) exp(iηn) (4.19)

where ηn is the phase-shift angle of the nth scattered wave given as

ηn = arctan

(
tan(δn(xext)) ×

(tan(Φn) + tan(αn(xext)))

tan(Φn) + tan(βn(xext))

)
. (4.20)

Here αn, βn and δn are the intermediate scattering phase-angles given by

αn(x) = arctan

(
−xj′n(x)

nn(x)

)
, (4.21)

βn(x) = arctan

(
−xn′

n(x)

nn(x)

)
, (4.22)

δn(x) = arctan

(
−xjn(x)

nn(x)

)
, (4.23)
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Φn is the measure of the boundary impedance at the surface of the solid cylinder given as

Φn =

(
−ρext
ρint

)
tan(ζn(xL, σ)), (4.24)

and ζn(xL, σ) is the new scattering phase-angle and is given by

ζn(xL, σ) = arctan


−x

2
Sh

2

tan(αn(xL))

tan(αn(xL)) + 1
− n2

tan(αn(xSh)) + n2 − 1

2
x2Sh

tan(αn(xSh)) + n2 − 1

2
x2Sh

tan(αn(xL)) + 1
− n2(tan(αn(xSh)) + 1)

tan(αn(xSh)) + n2 − 1

2
x2Sh

)


.

(4.25)

The setup considered is similar to the one given in Section 4.1.1, extended to three dimensions.

The domain is

−10 m < x < 10 m,

−10 m < y < 10 m,

−10 m < z < 10 m,

with a grid spacing of 50 mm corresponding to 401 × 401 × 401 grid points. The forcing

vector is a three-cycle Hann-windowed toneburst, and absorbing boundaries are placed on

the boundaries of the setup as detailed in Section 4.1.1.

In Figure 4.18, scattering comparisons are shown between the FE simulation and those cal-

culated using the analytical result in the x-y plane with z = 0. Results are presented for 100

Hz and 200 Hz, and excellent agreement can be observed, with relative errors of 1.36% and

2.10% respectively. Although results are shown in a single plane, the simulation carried out

has been a full three-dimensional reconstruction and does not rely on any axisymmetrical

reductions.

The results presented in this section consider lower frequencies compared to earlier setups
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(a) Scattering at 100 Hz

(b) Scattering at 200 Hz

Figure 4.18: Scattering patterns for a steel sphere submerged in water compared to analytical
results.
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due to computational limitations inherent in three-dimensional simulations. Even though

the three-dimensional simulation has less refinement per wavelength than the equivalent two-

dimensional simulation (by a factor of 4), we have 25 times more nodes in our mesh for the

sphere than that of the cylinder. Ways of expanding on three-dimensional simulations are

discussed in subsequent chapters.

4.5 Concluding remarks

This chapter is concluded by recalling what was set out to be shown with this set of simu-

lations. The goal was twofold; verify and validate the theoretical finite element formulation

derived in Chapter 3 and show that this formulation could be applied to problems in the

underwater acoustics area. This has been achieved by computing results from canonical

underwater acoustics problems, such as scattering by solid cylinders, empty or filled solid

annuli which have analytical solutions in the literature [54, 55], but also those of arbitrarily

filled annuli and those of proud or buried cylinders in the sediment. Investigations have been

conducted on the thickness refinement, which has shown to be important, in addition to the

classical wavelength based refinement in finite element calculations. Finally, initial results for

three-dimensional simulations have been shown, namely for a solid sphere in the free-field.

As with all problem areas of this type, there is an infinite number of combinations one might

be interested in, such as different materials, frequencies, orientations and filling levels, but

the author has shown that they have developed capability to solve these problems, and the

exact setup is left to the reader.

In the next chapter, we will look at simulations related to the non-destructive testing area

of interest.



Chapter 5

Solving Problems II: Application to

Non-Destructive Testing

Non-destructive testing techniques are used to identify and size defects in high-value, safety

critical components, without damaging or destroying them [9]. A key technique which is used

is guided-wave testing. Significant research has been carried out to demonstrate, improve

and document the capabilities of guided-wave testing in non-destructive testing, such as in

[163, 18]. There are also software packages, such as Disperse [19], which allow us to calculate

guided-wave characteristics and their dispersion curves, which are used as reference values

for the simulations shown in this chapter.

The objective of the simulations in this chapter is once again twofold; verify and validate the

theoretical finite element formulation derived in Chapter 3 and show that this formulation can

be applied to problems in the non-destructive field. While the aim of this thesis is to develop

capabilities for modelling ultrasonic interactions, as opposed to performing or researching

non-destructive testing itself, it is useful to give a brief overview of guided-waves specifically

in the case when fluid is present in the simulated domain, so it can guide our modelling work.

It is also helpful to mention that objects of interest in the two communities of underwater

acoustics (Chapter 4) and non-destructive testing (this chapter) vary greatly in scale. In
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the NDE area, objects are often sized in millimetres and investigated with frequencies in the

megahertz range [164], whereas in the underwater acoustics community, objects are often

sized in metres with frequencies in the hertz range [7]. Due to the linearity of the wave

equation, details of which can be found in Section 2.1.3, there is an equivalence between

the two; in dimensionless units (i.e. scaling against the wavenumber) objects and their

computational complexity become similar in size between the two areas.

5.1 Guided wave theory

Guided waves are elastodynamic waves which are guided along the boundary of the object

and their propagation characteristics depend on both the elastic properties of the object,

but also of the surrounding material. This is unlike bulk waves which propagate freely in

the surrounding space. Although a full overview of guided-waves is out of the scope of this

thesis, for completeness, the key characteristics of them are given and the reader is referred

to work such as [165] for further information.

One of the key features of guided waves and therefore their usage in non-destructive testing,

is their ability to propagate over long distances with limited amplitude drop, because the

ability of the wave (and therefore energy) to spread in space is limited. Another key feature

is that they typically become dispersive, i.e. their (group) velocity varies with frequency, as

opposed to bulk waves which do not for the majority of materials of interest. This velocity-

frequency relationship is captured by a dispersion curve. These dispersion-curves depend not

only on the material characteristics but also on the individual guided-waves modes; there are

also multiple modes in any given setup. These dispersion curves are numerical solutions of

the following characteristic function

f(ω, c) = 0, (5.1)

where ω is the frequency and c is the velocity of the guided wave.
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Of great importance to NDT, but also to the specific problem of ultrasonic wave propagation

in domains involving both solid and fluid are the guided-wave modes known as (leaky) Lamb

wave modes and the Scholte wave mode. It should be noted that although theoretically Lamb

waves travel indefinitely for elastic plates in a vacuum, the equations and approximations

found in the literature also hold for the case of elastic plates in air or water, due to the large

impedance mismatch between the solid elastic material and the surrounding material [163].

The characteristic function (from Equation (5.1)) for Lamb waves [165] can be split into two

separate classes of solutions, those of symmetric and antisymmetric modes. They have shapes

which are perfectly symmetric or antisymmetric to the midplane of the plate respectively.

These modes are labelled Sn and An, for n = 0, 1, 2, . . ., for symmetric and antisymmetric

modes respectively, with S0 and A0 being termed the fundamental modes. The characteristic

function for the symmetric and antisymmetric case are given respectively by

(
B2 − k2x

)2
tan(Ah) +

(
4k2xAB

)
tan(Bh) = 0, (5.2)(

B2 − k2x
)2

cot(Ah) +
(
4k2xAB

)
cot(Bh) = 0, (5.3)

with A and B given as

A =

√(
ω

cL

)2

− k2x, (5.4)

B =

√(
ω

cSh

)2

− k2x. (5.5)

Here, cL and cSh are the longitudinal and shear wave speed in the solid respectively, and kx

is the wavenumber in the direction along the structure, given by kx =
ω

c
and the thickness

of the plate is 2h. It should be noted that Equations (5.2)-(5.3) have an infinite number of

solutions; as the frequency increases, more modes are present in the steel plate and as stated

in [163] “all of the modes can extend upwards to infinite phase velocity”. While this may

seem paradoxical at first, this does obey conservation laws as energy is transported at group

velocity, not phase velocity [163].
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5.2 Numerical simulations of guided waves

In this section, the numerical simulation of guided waves involving both solid and fluid

materials is considered. This is essential to numerous NDE applications. Three characteristics

of guided waves are investigated, with further detail given in each corresponding section.

These are: the existence of wave modes, phase velocity, and attenuation of the A0 mode.

The considered setup can be found in Figure 5.1. This corresponds to us considering the

2D representation of the cross-section through the solid steel plate, which is 1 mm thick and

surrounded by an infinite fluid (water in our case) on either side. The wave propagates in

the direction of the plane of the cross-section, left to right in Figure 5.1. The domain is

0 mm < x < 150 mm, (5.6)

0 mm < y < 22 mm, (5.7)

with a grid spacing of 0.05 mm corresponding to 3001× 441 grid points. A Courant number

of 0.8 as detailed in Equation (4.3) is used and enough time for the wave to travel the domain

in the horizontal direction and back is assumed. The stiffness reduction method by [118] is

once again used and absorbing layers are placed on the vertical boundaries of the setup as

detailed in Section 4.1.1. This is to be able to model the infinite fluid in finite space in our

finite-element simulations.

Figure 5.1: Schematic of an immersed steel plate alongside cartesian axes.
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5.2.1 Existence of wavemodes

For the first set of simulations, the goal is to investigate the existence of the antisymmetric

guided-wavemodes in a steel plate immersed in an infinite inviscid fluid. A Hann-windowed

three-cycled sinusoidal source of 1 MHz excited the 2nd DoF of the node corresponding to

the y-direction along the midpoint of the steel plate at y = 11 mm. This is expected to

excite the antisymmetric modes and not excite the symmetric ones. A series of receivers

were placed along the middle of the plate’s thickness in the far field. The distance was far

enough to allow the wave to propagate and form, so that the guided wave response can be

recorded at specific intervals.

To demonstrate the existence of the wave modes, we have relied on the two-dimensional

Fourier transform method described in [166]. Signal traces are taken from the simulated

receivers and converted to the frequency-wavenumber domain using a zero-padded 2D fast

Fourier transform.

The result from the 2D fast Fourier transform is then overlaid with theoretical dispersion

curves from Disperse [19]. The results are processed as follows: the bottom 0.1% values are

set to 0 and any other values are set to 1. This allows for greater visual clarity of the curves,

with the drawback of loss of amplitude information. Therefore, it has been decided to present

both pre-proccessed and processed results. Figure 5.2 clearly shows that both A0, A1, A2

and the Scholte wave are captured in the FE solution. The presence of the Scholte wave is

particularly encouraging as it is an interface wave, governed by the interaction between the

two media at the interface. It also confirms the expectation that the source excitation has

excited the antisymmetric modes but not the symmetric ones.

To demonstrate that the model can handle higher frequencies and excite other antisymmetric

modes, the simulation is repeated with a central frequency of 5 MHz. The rest of the setup

is unchanged. Dispersion curves calculated with the 2D fast Fourier transform method (left)

are again overlaid with dispersion curves from Disperse (right) and presented in Figure 5.3.

In this case, the higher-order A2, A3 and A4 antisymmetric modes are also present, and at
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(a)

(b)

(c)

Figure 5.2: Dispersion curves for a 1 mm thick steel plate submerged in water (a) shown
with no processing and amplitude visible (b) calculated by processing results from an FE
simulation, (c) overlaid with Disperse curves (dashed-lines) at 1 MHz.
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higher frequencies, away from 5 MHz which was the central frequency excitation, one can see

deviation of the finite element results and the theoretical results. This is to be expected, due

to the comparatively coarser discretisation per wavelength at higher frequencies.

5.2.2 Phase velocity

For the evaluation of the phase velocity, a Hann-windowed three-cycled sinusoidal source of

2 MHz is applied to the 2nd DoF of the node at the midpoint of the plate. The amplitude

spectrum method developed in [167] is used, where the two signal traces containing the A0

mode in the far field are added together. The amplitude spectrum of the result is then

obtained via a Fourier transform and the minima from the resulting graph. Phase velocity

can be calculated using the following formula

c =
2lf

m
, (5.8)

where c is the guided-wave velocity, l is the distance between the two signals, f is the

frequency and m is the index of the minima. The distance between the two response points

was 0.01 m. Minima were calculated numerically via Matlab routines and are highlighted on

Figure 5.4. Figure 5.4 also shows the combined signal traces and the FFT of the response.

Some ringing and low frequency components are visible in the combined signal traces, but

as this is far away from the central frequency it does not affect the results. Due to the

nature of the method, the results are given for discrete frequencies, and changing the receiver

placement can change these frequencies. In Table 5.1, the velocity matches that of Disperse

with high accuracy, with relative errors of less than 1%. For the frequency closest to the

central frequency, the results are even better, with a near exact match to those calculated

using semi-analytical results.
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(a)

(b)

(c)

Figure 5.3: As in Figure 5.2 but for 5 MHz.
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(a) Combined signal traces.

(b) Amplitude spectrum of combined signals.

Figure 5.4: (a) Combined signal traces of the A0 propagating wave measured at two points as
described in Section 5.2.2 alongside (b) their amplitude spectrum. Red stars in (b) indicated
local minima on the graph, found through use of Matlab routines.
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Simulation
frequency (MHz)

Disperse
Frequency (MHz)

Phase velocity
from FE (m/ms)

Phase velocity
from Disperse (m/ms)

Relative error
difference (%)

1.266 1.267 2.532 2.519 0.515
1.589 1.589 2.648 2.643 0.189
1.912 1.912 2.731 2.732 0.0366
2.235 2.235 2.794 2.797 0.108
2.558 2.558 2.842 2.845 0.106

Table 5.1: Comparison of phase velocities between Disperse and FE simulations.

5.2.3 Attenuation

Guided waves attenuate due to absorption, scattering and leakage. Absorption and scattering

do not contribute to attenuation in this case; in the simulation considered, we do not have

attenuation due to absorption as elastic materials with no damping are considered, and we

have no scattering attenuation as there is no roughness or inhomogeneities in the simulated

steel plate.

Leakage, in particular, occurs in guided waves when the waveguide (in this case the steel

plate) is in contact with another medium (the surrounding fluid). The correct prediction of

this leakage and therefore the attenuation characteristics are of great importance as they are

part of the modal properties of the plate-water system [165].

Modelling attenuation is very sensitive to the contributions of multiple modes present in a

signal (it is rarely possible to achieve single mode excitation, in both numerical and exper-

imental settings). Hence, it requires careful generation and windowing of signals to achieve

accurate results. For excitation“mode matching” has been used, where the source perfectly

matches the displacement and phase characteristics of the desired A0 wave mode. Displace-

ment and phase information for this is readily available from Disperse and can be seen in

Figure 5.5 and ensures that the simulated wave does not excite any additional modes. This

information is used as an input to the forcing vector in the simulations.

Measurements are then taken arbitrarily at two points where the receivers are placed, as

can be seen in Figure 5.1. In Figure 5.6, one can clearly see that the second signal has less

amplitude than the first signal, giving a qualitative view of the attenuation. Attenuation is
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(a) Displacement data.

(b) Phase data.

Figure 5.5: A0 mode shape data from Disperse for a 1 mm thick steel plate at 1 MHz
submerged in water with (a) displacement (b) and phase.
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then calculated by computing a Fourier transform of the received signals as shown in Figure

5.6, dividing these and then scale this based on the distance travelled.

Figure 5.6: FFT of first and second signal.

The most accurate results for attenuation are achieved around the central frequency of the

source. FFT spectra of the signals used in the 1 MHz simulation are shown in Figure 5.6.

The attenuation simulation is repeated for frequencies of 100 kHz and 200 kHz either side

of the original 1 MHz excitation for a total of 5 simulations. In Table 5.2, the attenuation

calculated from FE results is compared to those coming from Disperse. The values computed

from the FE simulations agree well with those extracted from Disperse [19], with relative

errors of less than 1%. This indicates the fluid formulation can accurately model the leakage

phenomenon in guided wave propagation.
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Frequency (kHz)
Attenuation from
FE (dB/m)

Attenuation from
Disperse (dB/m)

Relative error
difference (%)

800 556.1 555.1 0.18%
900 530.9 530.7 0.2%
1000 511.2 514.2 0.583%
1100 498.2 502.6 0.875%
1200 496.6 494.6 0.404%

Table 5.2: Comparison of attenuation between Disperse and FE simulations.

5.3 Concluding Remarks

This chapter is once again concluded by recalling what was set out to show with this set

of simulations. The goal was twofold; as in Chapter 4, verify and validate the theoretical

finite element formulation derived in Chapter 3 and show that this formulation could be

applied to problems in a different research area, in particular that of non-destructive testing.

This has been done by computing guided wave properties, such as dispersion curves, velocity

and attenuation. As mentioned, of great importance was capturing the existence of the

Scholte wave-mode and the leaky characteristics of the A0 wave mode, which have both been

successfully simulated.

In the following chapter, this thesis is concldued by providing an overview of the work pre-

sented so far as well as possible ways to extend this further.
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Concluding Remarks and Future

Research Avenues

6.1 Review of Thesis

The aim of this thesis was to investigate and implement a method that would allow us to

accurately simulate ultrasonic wave phenomena in domains involving both solid and fluid

materials. This method would need to be able to handle a range of complex geometries and

materials found in real-world engineering applications.

Chapter 2 reviewed the governing equations underlying ultrasound propagation, providing

a literature review of analytical and numerical methods to model this propagation. It also

included a review and description of the necessary boundary conditions and ways to simulate

these in numerical software with the use of the stiffness reduction method.

Chapter 3 looked at the finite element method in more detail, covering its implementation in

software, and specifically focused on the proposed displacement-based formulation to simulate

ultrasonic wave phenomena in solid-fluid domains ready for implementation on a GPU.

In Chapter 4, numerical simulations related to the field of underwater acoustics were intro-
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duced and simulated. It began by introducing analytical results found in the literature from

[54, 55]. It proceeded to compare results for scattering patterns from canonical setups of dif-

ferent materials in both the free-field and proud or buried in the surface for objects such as

cylinders, annuli and spheres. For the annuli, different levels of filing and incident directions

of the excited plane wave where also investigated.

Chapter 5, the final results chapter of this thesis, looked at numerical simulations regarding

non-destructive-testing, particularly at simulating guided-waves. It was demonstrated that

this numerical method can accurately predict their existence, capture their velocity and in

the leaky-case, the attenuation of the A0 wave mode. The calculation of these used various

methods found in the literature, such as the amplitude spectrum method [167] or Fourier-

transform methods described in [166].

6.2 Key Contributions

There is an ever increasing demand in academia and industry on acquiring a significant

number of high-fidelity results from large-scale computational simulations of ultrasonic wave

phenomena, at speed. However, this has always been challenging, due to the computational

resources required, as well as the complexities of implementing the underlying formulation

in software. While significant improvements have been made in recent years on both fronts,

there is currently no one clear performant solution to modelling these ultrasonic interactions

in complex, industry-relevant configurations. Therefore, the author has formulated an explicit

finite-element numerical method in space, coupled with a finite-difference method in time.

The method is displacement-based and is thus compatible with typical elastodynamic finite

element formulations and ready for implementation on a graphical processing unit. The

method has been subsequently verified and validated this implementation across a range of

problems involving millions of degrees of freedom.

Specifically, it was shown that the formulation can compute results from canonical underwater
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acoustics problems, both in the free-field and proud or buried on the sediment, and for arbi-

trary amounts of filling. Two-dimensional objects looked at are cylinders and cylindrically-

layered media (annuli) of different solid and fluid materials. The arbitrarily filled objects,

and cylinders proud or buried in the sediment do not have analytical solutions, and thus only

numerical methods such as those presented here can accurately simulate them. Preliminary

work has been completed showing that this formulation also works for three-dimensional

objects, by computing scattering results from a solid steel sphere surrounded by water.

Another aspect of this work which has been important is the demonstration of the need to ac-

count for “geometrical refinement” as well as the commonly accepted “wavelength refinement”

when setting up numerical simulations, particularly those involving complex geometries.

Furthermore, it is shown that one can simulate the propagation and characteristics of guided

waves, such as their existence, velocity and attenuation. Errors were calculated for guided

wave phase velocity and attenuation and these were less than 1%, while capturing the Scholte

wave correctly gives the readers of this thesis confidence in the implementation of the solid-

fluid coupling.

For the different cases considered above, good results are achieved for both low frequencies

common in underwater acoustics and high frequencies common in NDT settings, confirming

the accuracy of the method for capturing fluid-solid wave interactions.

6.3 Future Work

There are various avenues that one might explore to extend this work in the future. Below,

three such avenues are detailed, which would be a direct continuation of the work presented

in this thesis.

The first potential investigation is regarding absorbing boundary conditions, specifically for

fluid materials. In this thesis, the stiffness reduction method described in [118] has been relied
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upon, which was designed for solid materials with both longitudinal and shear waves. As in-

viscid fluid materials do not support shear wave propagation, there should be a more efficient

way to damp out these waves, thus reducing the width of the absorbing layer. This would

reduce the computational storage and power needed to perform simulations. The reduction

would allow one to further refine the computational grid; or simply perform simulations faster

with the same hardware.

Another avenue of investigation one might wish to pursue is verifying and validating that

the proposed formulation also accurately works for viscous fluids. While the formulation has

been designed to allow for viscous damping, there may be some additional complexities. Thus

this needs to be properly investigated, with comparisons to existing analytical or numerical

results across a range of scenarios. This would allow the formulation to be used in additional

investigations than just the ones involving inviscid fluids it can currently solve.

The third possible extension is to use the formulation for larger, industry-relevant complex

simulations. It has been shown we can accurately simulate such objects, although due to

the size of them, it was limited in the frequency ranges it could investigate. It may be

possible to refine the computational mesh in such a way that we have different levels of

refinement depending on the “importance” each feature has, or for different materials with

different wavespeeds. One immediate downside which would need to be accounted for is

the possibility of additional numerical reflections due to the change. There are also constant

advances being made in software, such as improvements to matrix calculations, and hardware

that will help alleviate this problem.
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