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A data-driven implementation of a quasi-linear approximation is presented, extending a
minimal quasi-linear approximation (MQLA) (Hwang & Ekchardt, J. Fluid Mech., 2020,
894:A23) to incorporate non-zero streamwise Fourier modes. A data-based approach
is proposed, matching the two-dimensional wavenumber spectra for a fixed spanwise
wavenumber between a direct numerical simulation (DNS) (Lee & Moser, J. Fluid
Mech., 2015, 774:395-415) and that generated by the eddy viscosity enhanced linearised
Navier-Stokes equations at Reτ ≈ 5200. Leveraging the self-similar nature of the energy-
containing part in the DNS velocity spectra, a universal self-similar streamwise wavenum-
ber weight is determined for the linearised fluctuation equations at Reτ ≃ 5200. The
data-driven quasi-linear approximation (DQLA) provides noteworthy enhancements in
the wall-normal and spanwise turbulence intensity profiles. It exhibits a qualitatively
similar structure in the spanwise wavenumber velocity spectra compared to MQLA.
Additionally, the DQLA offers extra statistical outputs in the streamwise wavenumber
coordinates, enabling a comprehensive global analysis of this modeling approach. By
comparing the DQLA results to DNS results, the limitations of the presented framework
are discussed, mainly pertaining to the lack of the streak instability (or transient growth)
mechanism and energy cascade from the linearised model. The DQLA is subsequently
employed over a range of Reynolds numbers up to Reτ = 105. Overall, the turbulence
statistics and spectra produced by the DQLA scale consistently with the available DNS
and experimental data, with the Townsend-Perry constants displaying a mild Reynolds
dependence (Hwang, Hutchins & Marusic, J. Fluid Mech., 2022, 933:A8). The scaling
behaviour of the turbulence intensity profiles deviates away from the classic ln(Reτ )
scaling, following the inverse centreline velocity scaling for the higher Reynolds numbers.

1. Introduction

Recently, an increasingly popular approach in modelling turbulent flows is the use of the
linearised Navier-Stokes equations. For example, the linearised Navier-Stokes equations
are used: 1) to understand the origin of coherent structures (del Álamo & Jiménez 2006;
Hwang & Cossu 2010; McKeon & Sharma 2010); 2) to generate statistical inputs for
the state-space estimation problem (Illingworth et al. 2018; Madhusudanan et al. 2019;
Morra et al. 2019; Gupta et al. 2021); 3) for a predictive quasi-linear approximation
(Hwang & Eckhardt 2020; Skouloudis & Hwang 2021); 4) to produce a reduced order
description of exact coherent states and turbulence statistics in the minimal flow unit
(Rosenberg & McKeon 2019; Nogueira et al. 2020); 5) for statistics completion problems
from partial measurements (Zare et al. 2017; Towne et al. 2019); 6) to produce reduced

† Email address for correspondence: jh5315@imperial.ac.uk



2 J. J. Holford, M. Lee and Y. Hwang

order models for existing flow control strategies (Luhar et al. 2014; Ran et al. 2021).
In wall-bounded turbulent flows, an essential feature in modelling the fluctuating state
is how the nonlinear term is replaced. Since wall-bounded turbulent flows are linearly
stable (Butler & Farrell 1993; Pujals et al. 2009), a forcing or driving term is necessary
to generate nontrivial solutions. Since this forcing term directly replaces the nonlinearity,
how accurately this forcing statistically mimics the physics of the nonlinearity has also
been observed as a key to the performance of linear models in their various uses (Morra
et al. 2021; Gupta et al. 2021; Symon et al. 2022).
One such modelling framework, which leveraged ‘predictive’ features of the physics of

wall-bounded shear flows, was recently proposed by Hwang & Eckhardt (2020). In this
approach, referred to as minimal quasi-linear approximation (MQLA), the attached eddy
model of Townsend (1976) was revisited to relax the inviscid limit, allowing statistics to
be predicted for high yet finite Reynolds numbers. The MQLA achieved this by following
the framework of a quasi-linear approximation. The general idea of this approach is
to decompose the velocity state into two separate groups, typically a large- and small-
scale state. An approximation then arises when the nonlinear self-interactions of the
small-scale state are neglected, and instead, a closure is provided. The earliest works
that implemented a quasi-linear approximation (Malkus 1954, 1956; Herring 1963, 1964,
1966) provided a closure through a marginal stability criterion. The linear stability of
wall-bounded turbulence means that alternative closures have to be provided. Indeed, in
modern variants of quasi-linear approximations, the nonlinear self-interactions of the
small-scale state have been more flexibly modelled, depending on the nature of the
flow and the purpose of the approximation. Such examples include stochastic structural
stability theory (Farrell & Ioannou 2007, 2012), direct statistical simulation (Marston
et al. 2008; Tobias & Marston 2013), self-consistent approximations (Mantic̆-Lugo et al.
2014; Mantic̆-Lugo & Gallaire 2016), restricted nonlinear models (Thomas et al. 2014,
2015; Farrell et al. 2016), a quasi-linear approximation applied to exact coherent states
(Hall & Sherwin 2010; Pausch et al. 2019) and generalised quasi-linear approximations
(Marston et al. 2016; Tobias & Marston 2017; Hernández et al. 2022a,b). The MQLA
provided a closure through a stochastic forcing term, implemented self-consistently, i.e.
the self-interactions of the small-scale state were enforced to be consistent with the large-
scale state, in this case, the mean profile.
From the perspective of the attached eddy hypothesis, the MQLA can be regarded

as a controlled approximation with the eddies arising from the linearised Navier-Stokes
equations. These linear solutions replace the assumed statistical structure of the repre-
sentative energy-containing eddies used by Townsend, Perry and co-workers (Townsend
1976; Perry & Chong 1982; Perry et al. 1986). The solutions of the linearised Navier-
Stokes equations used in the MQLA have the advantage of closely resembling a stage
of the self-sustaining process (Hamilton et al. 1995; Waleffe 1997), a cycle ubiquitous
in wall-bounded shear flows and the proposed mechanism for which each of the energy-
containing eddies can be sustained (Hwang 2015). In this linear portion of the self-
sustaining process, streamwise vortices drive the formation of elongated streaks (i.e. the
lift-up effect) (Ellingsen & Palm 1975; Schmid & Henningson 2001; Brandt 2014), the
key length scales of which are determined through the eddy viscosity enhanced linearised
Navier-Stokes operator (Hwang & Cossu 2010). Instead of superposing the representative
statistical structure of the energy-containing eddies subject to constant Reynolds shear
stress, as done by Townsend (1976), the nonlinear term in the linearised fluctuation
equations was replaced self-consistently. The linear operator was modified by an eddy
viscosity diffusion term and a forcing structure that generates the Reynolds shear stress
identical to that from the nonlinear mean equation. In other words, a self-consistent
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closure of a quasi-linear approximation was provided. With the mean profile known,
the MQLA becomes a predictive framework. The forcing term required to drive the
Reynolds shear stress consistent with the mean profile allows further statistics of the
velocity fluctuations to be determined at different Reynolds numbers.
Although the attached eddy hypothesis assumes and leverages the self-similar nature

of the eddies, attention has been turned to understanding the statistical structure of the
forcing or nonlinear term. The benefits of having a well-prescribed model for the non-
linear term are demonstrated, for example, by the performance of state-space estimators
(Hœpffner et al. 2005; Chevalier et al. 2006; Illingworth et al. 2018; Madhusudanan et al.
2019; Illingworth et al. 2018; Morra et al. 2019), with more physical models for the
nonlinear term resulting in better predictions of velocity statistics across the wall-normal
direction (Gupta et al. 2021). There are a variety of approaches in determining and
modelling the forcing term, ranging from statistically exact control and optimisation-
based techniques (for a review, see Jovanović 2021) to measurement through direct
numerical simulation (Chevalier et al. 2006; Nogueira et al. 2020; Morra et al. 2021),
as well as more phenomenological modelling (Jovanović & Bamieh 2001; Gupta et al.
2021; Holford et al. 2023). For example, Zare et al. (2017) determined a set of two-point
coloured-in-time forcing statistics through an optimisation problem. This optimisation
problem had constraints such that the velocity spectral density exactly matched that of a
direct numerical simulation (DNS). This work was recently complemented by Abootorabi
& Zare (2023), which demonstrated the benefits of an additional eddy viscosity diffusion
operator to the coloured-in-time forcing. While these methods can yield forcing statistics
that generate the exact velocity statistics, often, the techniques are local in the sense
that they are applied to a single wavenumber pair and hence have to be repeated for
every wavenumber pair to build a global forcing structure.
Regarding implementing a predictive framework, the inputs to many models are often

obtained through DNS, which is frequently a desirable output. To address this issue,
Holford et al. (2023) recently identified a global forcing structure across the entire
wavenumbers required for the eddy viscosity enhanced linearised Navier-Stokes operator
with a simplification that the forcing is white-in-time and decorrelated in space. The
findings revealed the self-similar nature of the forcing spectra corresponding to the main
energy-containing part of the velocity spectra. In the current work, Holford et al. (2023)
is approximately followed to provide a global structure for the forcing across streamwise
wavenumbers and Reynolds numbers.
The main findings of the MQLA (Hwang & Eckhardt 2020) were consistent with the

seminal predictions of Townsend’s attached eddy hypothesis on turbulence intensities.
By superposing the solutions of the linearised Navier-Stokes equations with a forcing
that provides a self-consistent Reynolds shear stress, a logarithmic decay in the wall-
parallel turbulence intensities was found, as well as a region where the wall-normal
turbulence intensity is approximately constant. Additionally, since the determination of
the fluctuating velocity generated Reynolds shear stress in the MQLA requires integration
of the velocity spectra, the scaling behaviour of the one-dimensional velocity spectra
could also be extrapolated to exceptionally high Reynolds numbers (Skouloudis & Hwang
2021). A strong qualitative match was found between the one-dimensional spanwise
wavenumber velocity spectra produced by the MQLA and those reported by direct
numerical simulation (DNS) (Lee & Moser 2015). However, important quantitative
differences were also found. In particular, turbulence intensities of the MQLA were highly
anisotropic compared to those of DNS, with the streamwise turbulence intensity far
exceeding that of DNS. At the same time, the other velocity components, particularly
the wall-normal component, were significantly lower. This result stems from neglecting
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the streamwise varying Fourier modes in the MQLA, causing the absence of streamwise
pressure strain that transfers the energy produced in the streamwise component to the
other components (Cho et al. 2018; Lee & Moser 2019). Neglecting the streamwise varying
Fourier modes is also understood to prohibit the MQLA’s capabilities in reproducing
features of the self-sustaining process beyond the lift-up effect, particularly the streak
instability or transient growth, which plays a crucial role in redistributing turbulent
kinetic energy from the streamwise velocity component to the others (Schoppa & Hussain
2002; de Giovanetti et al. 2017; Doohan et al. 2021; Lozano-Durán et al. 2021).

The present paper aims to extend the MQLA to include the streamwise varying Fourier
modes, with an emphasis on maintaining the predictive nature of the MQLA at different
Reynolds numbers. To this end, a physics-aware data-driven approach will be taken.
Hereafter, the framework of the current study will be referred to as the data-driven quasi-
linear approximation (DQLA) to distinguish it from the MQLA. The DQLA framework
incorporates the physics element through the attached eddy hypothesis and enforces self-
similarity of the forcing with respect to the spanwise length scale. The detailed structure
of the forcing is determined using the DNS database from Lee & Moser (2015). This
approach relies on the self-similar nature of the eddy viscosity enhanced linear operator
(Hwang & Cossu 2010), which has been corroborated by recent findings on the statistical
structure of the forcing of this linear model from Holford et al. (2023). While developing
a predictive model for turbulent statistics and spectra, the DQLA will provide a fair
means of evaluating the performance of the eddy viscosity diffusion operator within linear
modelling frameworks. In particular, by incorporating nonzero streamwise wavenumbers,
it allows for a comprehensive assessment across a wide range of wavenumber pairs. The
results presented represent an initial step, focusing on the evaluation of velocity spectra.

The paper is organised as follows. The DQLA framework is developed in §2, formulating
two optimisation problems. Firstly a self-similar weight is determined following Holford
et al. (2023). This weight is then extrapolated across all considered Fourier modes, and a
quasi-linear approximation is then implemented following Hwang & Eckhardt (2020). The
linear model used throughout this study includes an eddy viscosity diffusion operator,
and its significance is briefly discussed. The results of the DQLA at Reτ ≃ 5200 are
then compared with statistics from DNS of Lee & Moser (2015) in §3. Emphasis will
be placed on the streamwise one-dimensional and two-dimensional velocity spectra since
the MQLA cannot produce these statistics. Additionally, any quantitative improvements
of the DQLA compared to the MQLA will be discussed concerning the inclusion of
streamwise varying Fourier modes. The predictive capabilities of the DQLA will be
assessed by extrapolating results up to Reτ = 105 in §4. The paper is then concluded in
section 5, which summarises the results and limitations of this framework.

2. Problem formulation

2.1. Turbulent channel flow

A quasi-linear approximation for incompressible, fully-developed turbulent channel
flow is considered. The flow domain is the region confined between two infinitely long and
wide plates. The coordinates along the streamwise, wall-normal and spanwise directions
are denoted by x, y and z, respectively, with a corresponding velocity vector u =
(u, v, w). The two plates are located at y = 0, 2h, where h represents the half-width
of the channel. The velocity field is decomposed into a time-averaged mean-field, U =
(U(y), 0, 0), and the fluctuating velocity about this mean profile, u′ = (u′, v′, w′), i.e.
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the Reynolds decomposition. This results in the following coupled set of equations:

ν
dU

dy
− u′v′ =

τw
ρ

(
1− y

h

)
, (2.1a)

∂u′

∂t
+ (U ·∇)u′ + (u′ ·∇)U = −1

ρ
∇p+ ν∇2u+N , (2.1b)

where

N = −∇ ·
(
u′u′ − u′u′

)
. (2.1c)

Here, t denotes time, ρ the fluid density, p′ the fluctuating pressure, ν the kinematic
viscosity, ( · ) a time-averaged quantity and τw is the time averaged wall shear stress.
Following the typical quasi-linear approximation framework, the time-averaged mean
profile equation retains this form, including the nonlinear Reynolds shear stress term
feeding back from the fluctuating velocity field. The dynamics of the fluctuating velocity
are then ‘linearised,’ dropping the self-advection term.
As the associated linear operator is stable for the turbulent mean profile in channel

flow (Pujals et al. 2009), an additional driving term must be considered for nontrivial
statistics. To this end, the nonlinear term is replaced with the following model:

Nνt,f = ∇ ·
(
νt(∇u′ +∇u′T )

)
+ f ′, (2.2a)

where f ′ = (f ′
u, f

′
v, f

′
w) is a stochastic forcing term and Cess’ expression (Cess 1958) is

used for the eddy viscosity profile,

νt (η) =
ν

2

{
1 +

κ2Re2τ
9

(
1− η2

)2 (
1 + 2η2

)2
(1− exp [(|η| − 1)Reτ/A])

2

}0.5

− ν

2
(2.2b)

with η = (y − h) /h. Including the eddy viscosity term in (2.2a) is not a necessity. Using
only a forcing term would leave the coupled system as statistically ‘exact’ if the forcing
was set to be identical to a set of known statistics generated by the nonlinear term.
That being said, the covariance of the nonlinear term has been demonstrated to not
possess sign-definiteness (Zare et al. 2017), which significantly complicates the modelling
procedure (for example, Zare et al. 2017). The advantage of using the eddy viscosity
modified operator lies in the relaxation of this complication with a physical model,
although its use does not necessarily enforce the energy neutrality of the nonlinear term.
By doing so, the forcing input can be kept as white-in-time, whereas the overall model
for the nonlinear term will be coloured-in-time through the eddy viscosity. It has been
demonstrated that this eddy viscosity term phenomenologically mimics some features
of the nonlinear term, including the removal of energy across all integral length scales
(Symon et al. 2021), as well as the modelling of the wall-attached footprints of large
scales in the velocity spectra of the wall-parallel components (Symon et al. 2022; Holford
et al. 2023). The same eddy viscosity is also used as a closure in determining the mean
velocity profile with

−u′v′ = νt
dU

dy
, (2.3)

upon which solving (2.1a) gives the robust law of the wall. Following this closure for
the mean profile, the eddy viscosity parameters are set with κ = 0.426 and A = 25.4,
obtained by the best least squares fitting the mean profile obtained by integrating (2.1a)
with (2.3) and the DNS mean profile at Reτ ≈ 2000 (del Álamo & Jiménez 2006).
The crude physical argument for using the same eddy viscosity profile in the mean and
fluctuating velocity component equates to both velocity fields experiencing the same
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background turbulence. Although this physical assumption is used mainly for simplicity,
the inclusion of an eddy viscosity diffusion operator has been shown to be beneficial in
many previous studies (see, for example, Pujals et al. 2009; Zare et al. 2017; Illingworth
et al. 2018; Morra et al. 2019; Symon et al. 2021). Notably, the inclusion of the eddy
viscosity based diffusion enables one to describe the inner-scaling behaviour of the near-
wall attached region of the outer scale structures observed in full DNS, in terms of the
modes associated with transient growth, resolvent analysis and the stochastic response
of the linearised fluctuation equations (Hwang & Cossu 2010; Hwang 2016).
In the present study, the forcing is first considered to be white-in-time and decorrelated

in the wall-normal direction for the purpose of utilising the framework of the stochastic
linear dynamical system (Farrell & Ioannou 1992; Jovanović & Bamieh 2005; Hwang
& Cossu 2010). Given the homogeneous nature of the wall-parallel directions, it is
convenient to consider the Fourier transform along those directions:

f̂ ′(t, y; kx, kz) =

∫ ∞

−∞

∫ ∞

−∞
f ′(t, x, y, z)ei(kxx+kzz)dxdz, (2.4)

giving the wall-normal forcing profiles at a given pair of streamwise and spanwise length
scales λx = 2π/kx and λz = 2π/kz, where (kx, kz) is the considered wavenumber pair.
Analogous definitions of the Fourier transform are used for the other flow states. The
spectral covariance matrix for the forcing is then considered to be

E
[
f̂ ′(y, t; kx, kz)f̂

′H(y′, t′; kx, kz)
]
=

Wu(kx, kz) 0 0
0 Wv(kx, kz) 0
0 0 Ww(kx, kz)

 δ(y−y′)δ(t−t′),

(2.5)
where (·)H denotes complex conjugate transpose, E [·] is the expectation operator over
different stochastic realisations, and Wr, with r = {u, v, w}, are componentwise weights
to be determined. Here, the forcing amplitude is considered to vary componentwise, and
this is to model the anisotropic nature of the velocity statistics and spectra in channel
flow more flexibly.
The resulting power- and cross-spectral densities of velocity fluctuations are obtained

from the following velocity spectral covariance matrix:

Φuu(y, y
′; kx, kz) = E

[
û′(y, t; kx, kz)û

′H(y′, t; kx, kz)
]
. (2.6a)

Given the linear relation between the velocity and forcing spectral covariance ma-
trices (Farrell & Ioannou 1992; Jovanović & Bamieh 2005; Hwang & Cossu 2010),
Φuu(y, y

′; kx, kz) can further be decomposed into

Φuu(y, y
′; kx, kz) =

∑
r=u,v,w

Wr(kx, kz)Φuu,r(y, y
′; kx, kz),

where Φuu,r(y, y
′; kx, kz) is the velocity spectral covariance matrix associated with each

component of the forcing with the unit amplitude: for example, Φuu,u is obtained by
setting the forcing spectral covariance to be

E
[
f̂ ′(y, t; kx, kz)f̂

′H(y′, t′; kx, kz)
]
=

δ(y − y′) 0 0
0 0 0
0 0 0

 δ(t− t′), (2.7)

and Φuu,v and Φuu,w are obtained in the same manner. In this study, Φuu,r for r =
{u, v, w} are obtained by solving the standard Lyapunov equation formulated with
the Orr-Sommerfeld-Squire system of equations. The equations are discretized using a
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Chebyshev collocation method (Weideman & Reddy 2000) with the wall-normal grid
points reported in Table 1. For the details of the solution method, the reader may refer
to previous studies (Hwang & Cossu 2010; Holford et al. 2023). The domain of streamwise
and spanwise wavelengths are considered as (λx, λz) ∈ [10δν , 10δν ] × [100h, 10h] (δν =
ν/uτ , where uτ is the friction velocity) to cover a range of length scales including near-
wall motions, as well as very large-scale motions in the outer region.

2.2. Simplifications

The forcing covariance considered in (2.5) may be a starting point of the proposed
quasi-linear approximation. However, a white-in-time, uniform forcing in the wall-normal
direction at each kx and kz is non-physical. In particular, a uniform wall-normal forcing
variance profile yields an undesirable, large energetic response near the channel centre-
line (see figures 5 and 6 in Hwang & Eckhardt 2020). It was previously shown that
considering some of the leading proper orthogonal decomposition (POD) modes from the
response to this forcing offers an effective means to filter out these unwanted features,
with respect to modelling the primary energy-containing motions at integral length scales
(Hwang & Eckhardt 2020). That is not to say the less energetic POD modes are not useful
– they may be useful in the modelling of other features of turbulence (e.g., small-scale
spectra associated with energy-cascade). This ansatz also exacerbates the anisotropy of
the velocity fluctuations of the quasilinear models (see figure 5 in Hwang & Eckhardt
2020), although this is a necessary step to overcome the arbitrary assumption of a
spatially white forcing input.
Given these previous experiences from (Hwang & Eckhardt 2020), the forcing statistics

in this study are also implicitly modified to drive leading POD modes that contain
significant energetic content of the overall response (Hwang & Cossu 2010). Consequently,
for a given wavenumber pair, the velocity spectral covariance matrix for each forcing
component (i.e. Φuu,r) is further approximated in terms of the leading order POD modes,
such that

ΦNPOD
uu,r (y, y′; kx, kz) =

NPOD∑
i=1

σiûi,r,POD(y; kx, kz)û
H
i,r,POD(y

′; kx, kz), (2.8a)

where NPOD is the number of POD modes, and σi and ûi,r,POD(y
′; kx, kz) are the

eigenvalues and eigenfunctions of the original velocity spectral covariance matrix with
white-in-time and spatially-decorrelated forcing, denoted by ΦW

uu:∫ 2h

0

ΦW
uu(y, y

′; kx, kz)ûi,POD(y
′; kx, kz)dy

′ = σiûi,POD(y; kx, kz) (2.8b)

with σi ⩾ σi+1. Considering the previous observation in Hwang & Eckhardt (2020),
NPOD = 2 is chosen here, retaining the most energetic structure when accounting for the
geometrical symmetry in channel flow about y = h.

In addition to this, the weighting along the streamwise wavenumber axis is implemented
considering the self-similarity of the forcing structure with respect to the spanwise
wavenumber (Hwang & Cossu 2010; Holford et al. 2023), as expected from the attached
eddy hypothesis of Townsend (Townsend 1976; Hwang 2015) (see §2.3 for further details).
Consequently, the weight of each component is decomposed into a part that retains the
self-similar structure Wr,kx(kx/kz) along the streamwise wavenumber axis and a part
that determines its amplitude Wkz

(kz) for each spanwise wavenumber, such that

Wr(kx, kz) = Wr,kx
(kx/kz)Wkz

(kz), (2.9)
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giving the final form of velocity spectra covariance matrix for the quasi-linear approxi-
mation in this study:

Φuu(y, y
′; kx, kz) = Wkz

(kz)
∑

r=u,v,w

Wr,kx
(kx/kz)Φ

NPOD
uu,r (y, y′; kx, kz). (2.10)

The weights are determined by solving the optimisation problems proposed in the
following two subsections.

2.3. Data-driven determination of streamwise weighting

To first determine the self-similar weight Wr,kx(kx/kz) along the streamwise wavenum-
ber axis, for each kz, an optimisation problem is considered such that (2.10) best matches
the two-dimensional velocity spectra and Reynolds shear stress cospectra of DNS at
Reτ ≈ 5200 (Lee & Moser 2015), denoted by ΦDNS

uu (y; kx, kz). This problem has recently
been solved with the addition of a wall-normal variation in the forcing term in Holford
et al. (2023), and the reader is referred to it for a more complete discussion on the
modelling rationale. The present study leverages the main findings from Holford et al.
(2023). However, a more straightforward problem is solved for the weight, with the use
of the POD modes implicitly varying the wall-normal profile of the forcing term so that
the modelling efforts can be extrapolated to other Reynolds numbers without using any
further DNS data at different Reynolds numbers.
To determine the weight, two main observations are highlighted. The first is the self-

similar nature of the velocity spectra from DNS with respect to the spanwise length
scale (Hwang 2015; Holford et al. 2023). In particular, the self-similarity occurs at
wavenumbers which contribute significantly to the turbulence intensity profiles, i.e. main
energy-containing features of the spectra. The second is that the eddy viscosity modified
linearised Navier-Stokes equations also generate an approximately self-similar response
with respect to the spanwise length scale (Hwang & Cossu 2010; Hwang & Eckhardt
2020). Note that this second observation is primarily due to the eddy viscosity. The
key feature of the eddy viscosity is νt ∼ y, responsible for the re-scaling property of
the linear operator with respect to the spanwise wavenumber in the logarithmic region
(Hwang & Cossu 2010). Combining these two observations, an optimisation problem that
weights a self-similar linear response to an approximately self-similar set of DNS spectra
is considered. It is then expected that the weights themselves would be self-similar, at
least to the same degree as the DNS velocity spectra. A weighting is now determined to
match the two-dimensional velocity spectra from DNS at a given spanwise length scale
through the following optimisation problem:

min
Wr,kx

∑
s

∥∥ΦDNS
s −Φs(Wr,kx

)
∥∥
Q

∥ΦDNS
s ∥Q

+
∑
r

γJ [Wr,kx ], (2.11a)

subject to

Wr,kx
(kx, y; kz) ⩾ 0, (2.11b)

where r = {u, v, w}, s = {uu, vv, ww, uv} and γ is a parameter controlling the relative
importance of the regularisation. Here, J is a regularisation functional to penalise the
roughness of the forcing intensity, and ensure smooth velocity spectra and partially
denoise the DNS spectra (Holford et al. 2023), chosen to be

J [Wr,kx
] =

∥∥∥∥(∂2Wr,kx

∂ ln kx 2

)∥∥∥∥
Q

, (2.11c)
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(a) (b) (c)

Figure 1: Premultiplied streamwise Fourier mode weights in self-similar coordinates for
kzh = 14, 30, 50, 76, 126 (λz/h = 0.45, 0.21, 0.13, 0.08, 0.05 or λ+

z = 2327, 1086, 651,
429, 259): (a) streamwise, (b) spanwise and (c) wall-normal velocity components. Here

the (̃·) denotes the weights normalised such that their premultiplied maximum value is
one.

where ∥·∥Q is a norm defined as ∥·∥2Q =
∫ 2h

0

∫∞
−∞ (·)2 kxQ(y)d ln kxdy with weight Q(y) =

χ−1, where χ = 1− |η| is the distance from the wall, to place equal emphasis on points
following a logarithmic scaling with distance from the wall. Note that the logarithmic
coordinates are also used along the kx-axis to focus the problem on the modelling of
the self-similar energy-containing part, placing less significance on the non-self-similar-
part originating from energy cascade (see Holford et al. 2023, for a further discussion).
In particular, the purpose of this weighting along the streamwise wavenumber axis is
to provide a self-similar weight for use across all wavenumber pairs and all Reynolds
numbers.
The convex optimisation problem (2.11) was solved by discretising the spectral velocity

state onto Ny = 512 grid points with the Chebyshev-collocation method. Discretisation
along the streamwise wavenumber axis was carried out with logarithmic spacing to
maintain ∆(ln kx) ⩽ 0.05 or otherwise to align with the DNS streamwise wavenumbers
for the smaller values of kxh, resulting in 132 streamwise Fourier modes being used, and
integration performed using the trapezoidal rule along the streamwise wavenumber axis.
The optimisation problem was then converted to a standard second-order cone problem
and solved with the MOSEK solver (MOSEK ApS 2022). The trend in the optimisation
errors, defined by the first term in (2.11a), upon increasing the regularisation parameter,
was found to increase monotonically with γ (see figure 14 in appendix A). Hence, γ was set
upon inspection of the velocity spectra and smoothness of the weights. An approximate
value of γ = 0.5 was used and changed upon trial and inspection, giving values ranging
from 0.3-1.2 across the considered spanwise wavenumbers.
Figure 1 shows solutions to (2.11) for spanwise length scales associated with the

logarithmic region, varying from kzh = 14 (λz/h ≈ 0.45) up to kzh = 126 (λ+
z ≈ 259).

Here, the premultiplied weighting is plotted, as this is more physically representative
of the forcing spectral density in logarithmic coordinates, as opposed to a weighting
correction applied to the velocity spectra. A similar qualitative trend is seen across all
components: an approximate self-similarity at relatively large wavelengths (λx ≳ λz)
in the weighting, with a spanwise-wavelength-dependent weighting at small wavelengths
(λx ≲ λz). This trend qualitatively agrees well with the recent finding in Holford et al.
(2023), where the forcing spectra, obtained for the same linear model, were found to be
approximately self-similar at the integral length scale (i.e. λx ∼ λz ∼ y), while they are
not for λx ≲ λz at which the corresponding DNS spectra are associated with energy
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(a) (b)

(c) (d)

Figure 2: Premultiplied two-dimensional spectra in self-similar coordinates for kzh =
14, k+z = 0.0027 (λz = 0.45h, λ+

z = 2333) of (a,b) streamwise velocity spectra and
(c,d) Reynolds shear stress cospectra determined from (a,c) DNS and (b,d) DQLA. The
contour levels are separated by 0.25 times the maximum value for each spectra.

cascade. In particular, the forcing spectra for λx ≲ λz were also found to grow with λz

due to the increased separation of local integral and dissipation length scales, consistent
with the behaviours of the weights in figure 1. However, it is important to note that this
scale-dependent weighting for λx ≲ λz is of little significance in the modelling of the
spectra (Holford et al. 2023). At the smaller streamwise length scales of λx ≲ λz, large
forcing input is required to drive relatively inconsequential features of the velocity spectra
associated with the energy cascade (Holford et al. 2023) (see the discussion below and
figure 2b). The contributions of these features to turbulent kinetic energy are small, and
they have often been ignored in classical attached eddy models (Townsend 1976; Hwang
et al. 2022). In a similar context, no attempt is made here to correct or modify the
weighting at different length scales. This observation is further confirmed by assuming
the weights given from solutions of (2.11) at different λz as self-similar and determining
the errors between the normalised spectra at different spanwise length scales (see figure
15d in Appendix A for the sensitivity to weights). It is shown that the scale-dependent
features in the weight of Wr,kx(kx/kz) have only a small effect on the structure of the
velocity spectra, with the total errors being largely independent of the weight obtained
for different kz in figure 1.
To demonstrate what kind of two-dimensional velocity spectra in the kx-y plane (2.11)

determines, figure 2 compares the streamwise velocity spectra (figures 2a and 2b) and
Reynolds shear stress cospectra (figures 2c and 2d) of the DNS, to the optimally weighted
velocity spectra at kzh = 14. In the streamwise component of the optimally weighted
spectra (figure 2b), an energetic response is seen for 1 ≲ λx/h ≲ 10, consistent with
the DNS streamwise velocity spectra (figure 2a). However, the DNS streamwise velocity



A data-driven quasi-linear approximation for turbulent channel flow 11

spectra also have energetic content for λx/h ≲ 1 away from the wall (y/h ≳ 0.02). This
part of the spectra has been understood to be associated with the physical processes
that would not be modelled well by the linearised model (2.1b) with (2.2a), as discussed
in detail in the previous studies (Hwang 2015; de Giovanetti et al. 2017; Holford et al.
2023).The weighted linear response of leading POD modes appears to neglect a majority
of these features. The other qualitative difference between the spectra is the extent to
which the primary peak extends towards the wall, with the primary peak from the linear
response extending close towards the wall. The observed differences between the DNS
streamwise velocity spectra and the optimally weighted leading POD modes indicate
some critical limitations in the current modelling approach. It may be overcome by
taking the recent approaches designed to fully reconstruct the spectra using the given
linear model at a given Reynolds number (Abootorabi & Zare 2023). However, such
approaches do not easily enable us to use the modelled spectra for extrapolation to other
Reynolds numbers without additional DNS data. For this purpose, a simple approach
is taken, and the spectra not directly associated with the linear processes of the flow
are ignored. As discussed above, this is similar to the original attached eddy model of
Townsend (Townsend 1976), which ignored all the motions related to energy cascade and
dissipation (i.e., small-scale detached eddies).
A more substantial qualitative match is found comparing the Reynolds shear stress

cospectra (figures 2c and 2d). The weighted linear response provides a good agreement
for the streamwise wavelength of the primary peak and is overall energetic for a majority
of the corresponding DNS spectra. However, the overall amplitude of the Reynolds shear
stress generated by the optimally weighted leading POD modes is relatively weak. For
the standard L2-norm over the entire wall-normal distance and considered streamwise
wavenumbers, (i.e. the root mean square velocities), the ratio of the norms of Reynolds
shear stress between the linear model and DNS is approximately 0.4. In contrast, the
streamwise response is approximately 0.9, indicating a relatively low Reynolds shear
stress. This level of anisotropy is expected to carry through results, an intrinsic limitation
in this modelling approach, and it originates from the spatially decorrelated nature of the
forcing considered initially (see also Holford et al. 2023, for a further discussion). Given
that the weight shown in figure 1 is approximately self-similar for λx/λz ≳ 1 and the
non-self-similar parts for λx/λz ≲ 1 do not generate a strong response for the resulting
spectra in figure 2, the weight from kzh = 30 shall be used as a self-similar weight for
all wavenumber pairs throughout this study. Note that the choice of the weight does not
significantly change the resulting quasi-linear approximation (see Appendix A for the
sensitivity to weight choice on results of the entire DQLA procedure at Reτ ≈ 5200).

2.4. Self-consistent determination of spanwise weighting

With the self-similar weighting set Wr,kx
(kx/kz) along the streamwise axis determined,

an optimisation problem to determine the spanwise dependent weighting Wkz (kz) is now
considered. As the Reynolds shear stress generated by the fluctuating velocity field must
be identical to that required for the mean profile (see also Hwang & Eckhardt 2020, for
further details), the following optimisation problem for Wkz

(kz) is further formulated:

min
Wkz

[∫ 2h

0
(u′v′(y)− E[u′v′](y))2Q(y)dy∫ 2h

0
(u′v′(y))2Q(y)dy

]0.5

+ γ

[∫ ∞

0

(
d2Wkz

(kz)

d ln kz 2

)2

Ruv(kz)dkz

]0.5

(2.12a)
subject to

Wkz (kz) ⩾ 0, (2.12b)
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(a) (b)

Figure 3: Outputs of quasi-linear approximation optimisation: (a) the normalised
spanwise weighting of Fourier modes; (b) the wall-normal Reynolds shear stress profiles
determined from the mean profile (dashed) and the fluctuating components (solid).

and the values of the weight at the smallest and largest considered spanwise lengths are
also constrained to be zero withWkz (λ

+
z = 10) = Wkz (λz = 10h) = 0. Here, the Reynolds

shear stress u′v′(y) is given by (2.3) with the assumption that the mean velocity profile is
empirically known (e.g. from (2.2b) and (2.3)), while the Reynolds shear stress generated
by the fluctuation equation (2.1b) with the nonlinear term model (2.2a) is denoted by
E[u′v′](y) with the definition of

E[u′v′](y) = (2.12c)

1

4π2

∫ 2h

0

∫ ∞

−∞

∫ ∞

−∞
Wkz

(kz)
∑

r=u,v,w

Wr,kx
(kx/kz)Φ

NPOD
uv,r (y, y′; kx, kz)δ(y

′ − y)dkxdkzdy
′.

The optimisation problem in (2.12) is weighted in logarithmic coordinates, such that
equal emphasis is placed on logarithmic distance from the wall. The constraint in (2.12b)
ensures that the velocity covariance operators remain positive definite. Lastly, similar
to the determination of the weighting along the streamwise wavenumber axis, a global
regularisation term is considered to ensure that the weighting remains smooth, giving
a physically reasonable set of velocity spectra. The smoothness regularisation is also
weighted by Ruv(kz), where

Ruv(kz) =
1

2π

∫ 2h

h

∫ ∞

−∞

∑
r=u,v,w

Wr,kx
(kx/kz)Φ

NPOD
uv,r (y, y′; kx, kz)δ(y

′ − y)dkxdy
′.

(2.12d)
The Ruv(kz) tends to have large values at large spanwise wavelengths (or small kz),
and this is an outcome of the optimisation problem in (2.11). Since ΦDNS

uv contains large
energy at large spanwise wavelengths, the regularisation term is more heavily weighted
at such wavelengths. This weighting accounts for the rapid decay in the Reynolds shear
stress spectra observed in the previous studies (see Skouloudis & Hwang 2021, for a
further discussion). It prevents erroneous behaviour in the velocity spectra at larger
scales, encouraging a smoothly attached compact support at the large scales (figure 3a).
The optimisation problem in (2.12) is discretised and rearranged to a standard form

of a second-order cone program and solved with the MOSEK solver. Discretisation along
the spanwise wavenumber axis was carried out with logarithmic spacing to maintain
∆(ln(kz)) ⩽ 0.05, with integration performed with the trapezoidal rule. Table 1 shows
the number of wavenumbers, collocation points, and errors in the Q and L2 norms of
the problem (2.12). Figure 3 shows the weight determined by solving (2.12) and the
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Reτ Ny Nkx Nkz γ
∥∥u′v′ − E[u′v′]

∥∥2
Q

∥∥u′v′ − E[u′v′]
∣∣2
L2

500 128 172 126 1.0× 10−4 4.91× 10−4 3.03× 10−5

1000 256 186 140 5.0× 10−5 6.17× 10−4 3.12× 10−5

2000 256 200 154 9.0× 10−5 7.30× 10−4 3.54× 10−5

5200 384 219 173 2.0× 10−4 7.92× 10−4 3.24× 10−5

10000 512 232 186 1.0× 10−4 7.98× 10−4 3.12× 10−5

20000 768 246 200 7.5× 10−4 7.83× 10−4 2.97× 10−5

50000 1024 264 218 1.5× 10−4 8.53× 10−4 3.82× 10−5

100000 1536 278 232 9.0× 10−5 9.57× 10−4 2.04× 10−5

Table 1: Numerical and optimisation parameters used in the present study: Nkx
, the

number of streamwise wavenumbers; Nkz
, the number of spanwise wavenumbers; Ny, the

number of wall-normal collocation points.

associated Reynolds shear stress profile compared with −u′v′. An almost perfect match
exists between the two Reynolds shear stress profiles, with the weighting that determines
the Reynolds shear stress cospectra to provide a self-consistent approximation. With this
procedure established, §3 compares the results between the DQLA and a DNS (Lee &
Moser 2015). The predictive capabilities of the framework are also assessed by using
the selected self-similar streamwise weightings as a universal weighting across a range of
Reynolds numbers from Reτ = 103 to Reτ = 105 in §4.

2.5. Summary

Thus far, a quasi-linear approximation has been formulated, augmented by DNS
data at Reτ ≃ 5200, combined with the attached eddy hypothesis: i.e. a data-driven
quasi-linear approximation. Particular efforts are given such that the model retains a
‘predictive’ (or ‘extrapolative’) nature for some of the key turbulence statistics and
spectra at any relevant Reynolds numbers (see also §3 and 4) with ‘minimal inputs’:
i.e. a mean velocity profile and a self-similar weight. However, in doing so, a few ad-hoc
assumptions have become unavoidable for the DQLA to retain the ‘predictive’ nature.
In this respect, it would be worth documenting some of its expected characteristics
originating from the construction of the model.

1) Predictability: The main feature of the DQLA is that it is predictable (or ex-
trapolatable) for turbulence statistics and spectra at different Reynolds numbers only
with two inputs: a mean profile and a self-similar weight. Note that the mean profile
is empirically well documented and commonly available (e.g. Cess 1958), and the self-
similar streamwise weight needs to be determined only once at a sufficiently high Reynolds
number. By doing so, the DQLA can approach any Reynolds numbers without additional
DNS data, as long as the flow remains fully turbulent. Importantly, as is seen in §4, most
of the known Reynolds-number-dependent scaling behaviours of turbulence statistics and
spectra appear to be reproduced by the present DQLA. Therefore, it may be a valuable
tool for studying turbulence statistics at extremely high Reynolds numbers, where an
accurate data set is challenging to obtain, as demonstrated by Skouloudis & Hwang
(2021) and §4.

2) Performance: In the DQLA, the first input, a mean profile, is assumed to be known
at a given Reynolds number and is determined by an eddy viscosity closure, giving the
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law of the wall. Given the robustness of the law of the wall, this input should result
in reasonable approximations at extremely high Reynolds numbers. The second input
used here is the streamwise weighting. The DQLA leverages the self-similar nature of
the eddies in the attached eddy hypothesis, focusing on modelling the logarithmic layer.
Given the significance of the logarithmic layer grows with Reτ , the modelling framework
should perform best for the high Reynolds numbers, where the features not modelled by
this self-similar weight bear a minor significance: e.g. near-wall motions.

3) Limitations: The extrapolation capability of the DQLA is, however, obtained at
the cost of the accuracy of the resulting turbulence statistics, especially compared to
the recent data-driven modelling efforts (Zare et al. 2017; Abootorabi & Zare 2023;
Holford et al. 2023). In particular, the physical processes and the related velocity spectra
originating from the original nonlinear term in (2.1c) were ignored entirely. However,
this is a fundamental limitation of any modelling efforts of turbulent fluctuations based
on the linearised Navier-Stokes equations. Even if highly accurate turbulence statistics
are obtained with a more accurate forcing incorporating the ignored part of the spectra,
the model nonlinear term in (2.2a) or any of its variants can only be phenomenological,
and they do not have the dynamics of the original nonlinear term in (2.1c). Specifically,
the velocity components in the DQLA can only give feedback on each other through the
one-way coupling of the lift-up effect, i.e., wall-normal velocity, driving the wall-normal
vorticity. When considering the fully nonlinear system with time-dependent solutions, the
velocity components can interact in other ways: for example, any spanwise shear in the
mean velocity will couple the streamwise and spanwise fluctuations, with the latter driv-
ing the former in the sense of the lift-up effect. Therefore, the DQLA is a model primarily
for turbulence statistics, leveraging the physical processes that the linearised Navier-
Stokes equations can depict. In this respect, the models that describe better turbulent
‘dynamics’ may be found from some of the recent studies employing more sophisticated
state decompositions of the velocity field (e.g. Farrell & Ioannou 2012; Thomas et al. 2015;
Farrell et al. 2016; Hernández et al. 2022a,b). Lastly, the present DQLA employs a steady-
state stochastic dynamical systems framework, overlooking any time/frequency domain
details. Although the presented framework can be readily extended to encompass the
frequency domain using conventional resolvent analysis techniques (Skouloudis & Hwang
2021), introducing this additional time-frequency dimension comes with the trade-off of
increased computational overhead or imposing additional constraints and assumptions
within the time-frequency domain.

3. Data-driven quasi-linear approximation at Reτ = 5200

3.1. One-point turbulence statistics

The DQLA is initially evaluated at Reτ = 5200 for comparison with DNS data, as well
as to compare the effects of including kx ̸= 0 Fourier modes in contrast to the MQLA
which only considers kx = 0 Fourier modes. The MQLA has been re-evaluated using
the optimisation problem (2.12), with E[u′v′] determined for streamwise uniform modes
(kx = 0). Figure 4 plots the root mean square (rms) velocity fluctuations and Reynolds
shear stress profiles for the DNS, DQLA and MQLA. The Reynolds shear stress profiles
are almost identical in logarithmic coordinates (fig 4d; see also table 1), indicating that
the optimisation problem (2.12) has been successfully implemented for the DQLA and
MQLA. The models show the same qualitative features and compare well with DNS,
although the streamwise velocity profile lacks a well-defined plateau. The DQLA rms ve-
locity profiles show a greater degree of consistency with the DNS profiles than the MQLA
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(a) (b)

(c) (d)

Figure 4: Comparison between DNS at Reτ = 5186 (solid), DQLA (dashed) and MQLA
(dotted) at Reτ = 5200. (a) streamwise, (b) wall-normal and (c) spanwise root mean
square velocity and (d) Reynolds shear stress profiles.

(figures 4a-c) in terms of anisotropy. For instance, (u′
rms,max/w

′
rms,max, u

′
rms,max/v

′
rms,max)

is approximately (1.82, 2.67), (1.84, 3.48) and (5.78, 13.9) in the DNS, DQLA and MQLA,
respectively, with a strong agreement between the DNS and DQLA ratios for the wall-
parallel velocity components, due to the inclusion of kx ̸= 0 modes.
This mismatch in the MQLA is evidently due to considering only kx = 0 Fourier modes.

For the kx = 0 case, the wall-normal derivative of wall-normal velocity fluctuations must
be balanced solely by the spanwise variation in the spanwise velocity spectra, given the
form of the continuity equation: i.e.

∂v̂′

∂y
+ ikzŵ

′ = 0. (3.1)

Hence, the spanwise velocity can be determined directly from the wall-normal velocity, it-
self determined solely from the Orr-Sommerfeld equation. Note that the Orr-Sommerfeld
equation for the wall-normal velocity is not coupled with the streamwise and spanwise
velocity. Similarly, when kx = 0, the streamwise momentum equation is only passively
coupled with the other two momentum equations through the wall-normal velocity: i.e.

∂û′

∂t
+ v̂′

dU

dy
=

dνT
dy

û′ + νT∆y,zû+ f̂ ′
u (3.2)

where ∆y,z = ∂yy −k2z . This momentum equation is the only one that contains the mean
shear, which is the source of energy production in the linearised fluctuation equations.
When only kx = 0 Fourier mode is considered for velocity fluctuations, as in the MQLA,
there is no way to transfer the energy produced by the mean shear at the streamwise
velocity component to the other two components. This leads to an overestimation of the
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streamwise-to-spanwise/wall-normal rms velocity ratios in the MQLA. By allowing for
kx ̸= 0 modes in the DQLA, the streamwise momentum equation is now connected to the
equations for the other two components through continuity and pressure, significantly
reducing the odd anisotropy in the rms velocity profiles observed in the MQLA. Although
the ratio of the peaks of the wall-parallel components is quantitatively similar between
the DNS and the DQLA, the ratios in the streamwise and wall-normal components are
still overestimated in the DQLA. This is likely due to the simple model for the nonlinear
term in (2.2a) and the consideration of only two leading POD modes for the construction
of velocity spectra.

3.2. One-dimensional spectra

Figure 5 compares the spanwise one-dimensional velocity spectra from DNS with those
of the DQLA and MQLA. Both the MQLA and DQLA compare similarly to the DNS
spectra, with all components energetic on a single linear ridge (white dashed lines), as
linear ridge in which the energy sharply drops off. In general, the MQLA and DQLA are
more energetic closer to the wall. This is most noticeable in the spanwise velocity spectra
(figures 5d-f), with similar trends in the other components. The DNS spanwise spectra
are energetic along y ≈ 0.14λz, as opposed to y ≈ 0.03λz in the MQLA. This is partially
alleviated in the DQLA, which is energetic farther away from the wall (y ≈ 0.05λz),
and, at the larger length scales (λz/h ≈ 1), the DQLA spectra extend much closer to
the channel centre line, more in line with the DNS spectra. Moreover, the energy drops
along y ≈ 0.2λz in the DQLA, whereas in the MQLA, this occurs along y ≈ 0.1λz,
which is below the energy-containing ridge present in the DNS. The qualitative peak
locations are also well replicated by the MQLA AND DQLA, with a bimodal structure
in the streamwise and Reynolds shear stress spectra and a near-wall peak in the spanwise
spectra. However, the relative strength of the outer peak in the MQLA and DQLA is
consistent with the lack of a well-defined plateau in the streamwise rms velocity profile.
In the DQLA and MQLA, the outer peak remains relatively strong for much of the linear
ridge, penetrating the logarithmic region. This leaves only a small region of separation
for y/h ≈ 10−2, compared to the DNS, which has a more diffuse outer peak and a better-
defined plateau in the spectra for y/h ≈ 0.01 − 0.05. The wall-normal velocity spectra
of the MQLA and DQLA contain peaks at much larger length scales than the DNS, at
around y/h ≈ 0.1 and y/h ≈ 0.02 for the DQLA and MQLA, respectively. Aside from
the response along the linear energetic ridges, both wall-parallel velocity spectra exhibit
wall-attached features, consistent with the attached eddy hypothesis. Both DQLA and
MQLA wall-parallel velocity spectra for λz/h ≳ 0.1 penetrate the near-wall region to
below y+ ≲ 100, where the wall-normal velocity spectra are not energetic due to the
boundary condition. However, these attached features in the DQLA and MQLA are
relatively more energetic than their DNS counterparts.

Overall, the MQLA and DQLA are qualitatively similar when comparing the overall
structure of the one-dimensional spanwise wavenumber velocity spectra. This reduces
down to the limitations/expectations of the model. Given both the DQLA and MQLA
use the same linearised system, they should accurately capture the linearised dynamics
present in the real flow, i.e., production. The production in reality (as observed in DNS)
consists largely of streaky elongated motions (kx/kz ≲ 0.1; see also Lee & Moser 2019),
and the kx = 0 approximation employed in the MQLA is not completely unrealistic at
least for the production spectra. This is presumably why improvements in the DQLA
extension are relatively modest compared to the MQLA.
Figure 6 compares one-dimensional velocity and Reynolds shear stress spectra between

DNS and DQLA, excluding the MQLA due to the kx = 0 simplification. In figures 6(a,b),
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Figure 5: Premultiplied spanwise wavenumber spectra from (a,d,g,j) DNS at Reτ = 5186,
(b,e,h,k) the DQLA and (c,f,i,l) the MQLA at Reτ = 5200: (a,b,c) streamwise velocity;
(d,e,f) wall-normal velocity; (g,h,i) spanwise velocity; (j,k,l) Reynold shear stress. The
contours are normalised by 0.1 times the maximum value.

the streamwise velocity spectra are compared. Good qualitative agreement is observed
for long streaky features along the y = 0.01λz linear ridge. Although the spectra from the
DNS suffer from the finite streamwise domain considered, the DQLA replicates large-scale
attached structures, albeit with more significant energetic content. The DQLA shows a
primary peak at slightly larger length scales (λ+

x ≈ 2000) compared to DNS (λ+
x ≈ 1000).

A distinct separation between the outer and inner peaks is lacking in DQLA, resulting in
a negligible plateau and the lack of a distinct outer peak in the streamwise wavenumber
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Figure 6: Premultiplied streamwise wavenumber spectra from (a,c,e,g) DNS at Reτ =
5186 and (b, d, f, h) the DQLA at Reτ = 5200: (a,b) streamwise velocity spectra; (c,d)
wall-normal velocity spectra; (e,f) spanwise velocity spectra; (g,h) Reynolds shear stress
spectra. The contours are normalised by 0.1 times the maximum value.

spectra. The most significant difference lies above the y ≈ 0.1λx linear ridge, where the
DQLA’s energetic content drops to zero, while DNS exhibits another energetic linear
ridge (y = 0.35λx), strongly correlated with the wall-normal and spanwise velocity fields
(see also figures 6c,e) (for a detailed discussion, see Hwang 2015).



A data-driven quasi-linear approximation for turbulent channel flow 19

Figures 6(c,d) compare the wall-normal velocity spectra. There is a good qualitative
agreement between the spectra with respect to the energy-containing motions, with a
single linear ridge occurring in both at the same approximate length scale, y ∼ 0.35λx

and y ∼ 0.30λx in the DNS and DQLA, respectively. The main qualitative difference is
the DNS velocity spectra are more energetic above the linear ridge than the DQLA. In
the DNS spectra, the contour lines with low levels for y > 0.8λx do not follow any linear
scaling like y ∼ λx, and this part has previously been associated with energy cascade

developing a k
−5/3
x spectrum (e.g. Agostini & Leschziner 2017). This is expected, given

the determination of the self-similar streamwise weighting effectively removed features
associated with the energy cascade, as well as the POD filtering process used. Similarly
to the spanwise one-dimensional velocity spectra, the primary peak in the DQLA occurs
at larger length scales than the DNS. The wall-normal velocity spectra in the DQLA also
fall off at a slower rate below this primary peak when compared to the DNS. The low-level
contours in the DQLA follow the linear ridge, extending to y+ ≈ 1 for λ+

x ≈ 2, whereas
the DNS extends to y+ ≈ 1 for λ+

x ≈ 100. This discrepancy in peak location and the
DQLA extending to the near-wall region for small streamwise length scales is presumably
from the use of a self-similar weighting across all length scales and is likely contributing
to the overprediction in the near-wall wall-normal velocity intensity profile and Reynolds
shear stress profile. The spanwise velocity spectra are compared in figures 6(e,f), with
the DQLA spectra exhibiting similar characteristics to the streamwise velocity spectra
from the DQLA (figure 6b). The DQLA model predicts the location of the near-wall
peak in the streamwise direction, albeit at a slightly larger length scale (λ+

x ∼ 500 in the
DQLA compared to λ+

x ∼ 300). Most notably, the main energetic regions in the spectra
are much closer to the wall than in the DNS. The DNS velocity spectra indicate that the
main energy-containing regions are along y ∼ 0.27λx. In the DQLA, this appears to be
absent. The Reynolds shear stress spectra are compared in figures 6(g,h), with the main
observations consistent with the comparisons of the streamwise and wall-normal velocity
spectra. The Reynolds shear stress spectra generated by the DQLA are energetic closer
to the wall when compared to the DNS and similar to the wall-normal velocity spectra,
extend along the linear ridge to smaller length scales when compared to DNS, leading to
a slight overprediction in the Reynolds stress profile (figure 4d).

3.3. Two-dimensional spectra

The two-dimensional streamwise velocity spectra and Reynolds shear stress cospectra
for a fixed wall-normal location in the near-wall and logarithmic layers are shown in
figures 7 and 8, respectively. The attached footprints of the energy-containing eddies from
the log and outer regions are most clearly observed for the near-wall location (y+ ≈ 15
in figure 7). Comparing the DNS and DQLA spectra in the near-wall region (figure
7), there is a strong qualitative agreement, with the DQLA replicating all the features
in the DNS. There is a near-wall primary peak in all the spectra, with the inactive
(i.e. Reynold shear stress absent; Townsend 1976) footprints of the eddies present as
an approximate linear ridge in the streamwise spectra. Consistent with the previous
discussion, the attached footprint is more energetic than that present in the DNS, with
the 0.30 contour describing the attached footprint in the DQLA and only the 0.10 contour
in the DNS spectra. Since these features in the DQLA are modelled by the eddy viscosity
diffusion operator (Hwang 2016; Symon et al. 2022), this indicates a more accurate form of
eddy viscosity profile in the fluctuating velocity model is required to model these features
more accurately. These two-dimensional spectra also show why the peak in the streamwise
rms velocity is overpredicted in the DQLA (figure 4a) – the attached footprints of the
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(a) (b)

(c) (d)

Figure 7: Premultiplied two-dimensional wavenumber spectra at y+ ≈ 15 from (a,c) DNS
at Reτ = 5186 and (b,d) the DQLA at Reτ = 5200: (a,b) streamwise velocity spectra;
(c,d) Reynolds shear stress cospectra. The contours are normalised by 0.1 times the
maximum value.

energy-containing eddies from the log and outer regions contribute relatively more to
this integrated quantity over the kx–kz plane.
The two-dimensional streamwise velocity spectra and Reynolds shear stress cospectra

at a wall-normal location in the log layer are compared in figure 8. At this wall-normal
location, the DNS and DQLA spectra are in good agreement for the main energy-
containing features, with all of the spectra having a peak occurring at approximately
the same length scales. Here, the effects of neglecting energy cascade features are most
evident, with the black dashed lines on the DQLA spectra from the linear cutoff lines
on the one-dimensional spectra (see figures 5 and 6). Outside these cutoff lines, there is
negligible energetic content in the DQLA, whereas no simple linear cutoff was present in
the DNS (figures 5 and 6). The DNS spectra are more energetic for the smaller length
scales (λx ≲ 3y, λz ≲ 3y), which are associated with energy cascade to small scales for
dissipation. The contribution of these energy cascade features to the turbulence intensities
is expected to be reasonably small.

4. Scaling behaviour up to Reτ = 105

4.1. Spectra

The DQLA built from the DNS data at Reτ ≈ 5200 is now repeated for Reynolds
numbers ranging from Reτ = 103 to Reτ = 105, given its modelling scope to extrapolate
to other Reynolds numbers. Using the self-similar weight Wkx(kx/kz) constructed with
the DNS data at Reτ ≈ 5200, the weight is interpolated/extrapolated to the considered
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(a) (b)

(c) (d)

Figure 8: Premultiplied two-dimensional wavenumber spectra at y+ ≈ 400 (y/h ≈ 0.075)
from (a,c) DNS at Reτ = 5186 and (b,d) the DQLA at Reτ = 5200: (a,b) streamwise
velocity spectra; (c,d) Reynolds shear stress cospectra. The contours are normalised by
0.1 times the maximum value.

wavenumber domain at other Reynolds numbers, for which the self-consistent determina-
tion of the spanwise weight can be performed, solving (2.12). Firstly, the Reynolds scaling
of the one-dimensional spectra is compared between the DNS and DQLA for Reτ ≈ 1000,
2000, 5200. The qualitative scaling behaviour in the DQLA is found to be identical to the
MQLA in the spanwise one-dimensional spectra and is not displayed here (see Hwang &
Eckhardt 2020; Skouloudis & Hwang 2021, for a more complete discussion). There is a
strong qualitative agreement between them, with the DQLA and DNS exhibiting inner-
scaling features for O(10) ≲ λ+

z ≲ O(103) and outer-scaling behaviour for λz ≈ O(h).
The attached footprints in the wall-parallel velocity spectra from the DQLA importantly
exhibit inner-scaling behaviour (Hwang 2016). Overall, the spanwise velocity spectra are
consistent with the attached eddy hypothesis, with qualitative corrections due to the
incorporation of viscous effects at a finite Reynolds number (Skouloudis & Hwang 2021).

The outer- and inner-scaled streamwise one-dimensional spectra are shown in figures
9 and 10, respectively. Note that, due to the peak in the wall-normal velocity spectra
occurring at logarithmic streamwise length scales in the DQLA, the contour levels for
the inner-scaled streamwise one-dimensional spectra for the wall-normal velocity (figure
10d) are chosen to follow absolute values rather than normalised ones to exhibit the
inner-scaling behaviour. Despite the differences between the spectra at a single Reynolds
number, as described in §3, the scaling behaviour in the DQLA compares very well with
the DNS. All the spectra are energetic, spanning from λ+

x = O(102) up to λx/h = O(10).
Both the velocity and Reynolds shear stress spectra have an inner-scaling near-wall peak,
with the outer part of the spectra scaling well in outer units. Like the spanwise one-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Outer-scaled streamwise one-dimensional spectra from (a,c,e,g) DNS (Lee
& Moser 2015) and (b,d,f,h) the DQLA: (a,b) streamwise velocity; (c,d) wall-normal
velocity; (e,f) spanwise velocity; (g,h) Reynolds shear stress. Here Reτ ≃ 5200, 2000, 1000
for the shaded, dashed, and solid line contours, respectively. The contour levels are chosen
to be 0.25, 0.50, and 0.75 times the maximum value for comparison, except in (d) where
all contours levels are given by 0.25, 0.50, and 0.75 times the maximum value of the
Reτ = 5200 spectra.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: Inner-scaled streamwise one-dimensional spectra from (a,c,e,g) DNS (Lee
& Moser 2015) and (b,d,f,h) the DQLA: (a,b) streamwise velocity; (c,d) wall-normal
velocity; (e,f) spanwise velocity; (g,h) Reynolds shear stress. Here Reτ ≈ 5200, 2000, 1000
for the shaded, dashed and solid line contours, respectively. The contour levels are chosen
to be 0.25, 0.50 and 0.75 times the maximum value for comparison, except in (d) where
all contours levels are given by 0.25, 0.50 and 0.75 times the maximum value of the
Reτ = 5200 spectra.
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(a)

Reτ

(b)

Reτ

(c)

Reτ

(d)

Reτ

Figure 11: Streamwise turbulence intensity profiles from (a,c) DNS (Lee & Moser
2015) and (b,d) the DQLA in (a,b) outer-scaled coordinates and (c,d) inner-
scaled coordinates. Here Reτ = 550, 1000, 1994, 5185 for DNS and Reτ =
500, 1000, 2000, 5200, 10000, 20000, 50000, 100000 for the DQLA.

dimensional spectra (Hwang & Eckhardt 2020; Skouloudis & Hwang 2021), the wall-
parallel velocity spectra have an attached footprint, scaling well in outer and inner units.

4.2. Turbulence intensity

The predictive capabilities of the DQLA are now used up to Reτ = 105, with the focus
on the streamwise turbulence intensity profiles. The other components are consistent
with the MQLA (Hwang & Eckhardt 2020), albeit with a reduced level of anisotropy,
as presented in §3. The profiles are plotted in the inner- and outer-scaled coordinates in
figure 11. The scaling behaviour of the streamwise intensity profiles in DNS and DQLA
share the same key features: a near-wall peak at y+ ≈ 15 at relatively low Reynolds
numbers (Reτ ≲ 5000) and an approximate logarithmic decay when scaled in outer
units. This behaviour is more evident in the DQLA for Reτ ≳ 5200. For these larger
Reynolds numbers, the streamwise intensity profile is consistent with Hwang et al. (2022),
in which the spectrum-based attached eddy model of (Perry et al. 1986) was extended for
finite Reynolds numbers with an experimental data of (Samie et al. 2018). In the upper
logarithmic layer (or inertial sublayer) from y+ = 3.6Re0.5τ up to y/h = 0.2, this model
yields the following form of streamwise turbulence intensity

u′u′

u2
τ

= −A(Reτ ) ln(y/h) +B(Reτ ), (4.1a)

where

A(Reτ ) = A0 +A1(Reτ ). (4.1b)
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(a) (b) (c)

Figure 12: Premultiplied streamwise one-dimensional spectra at various wall-normal
locations for Reτ = 20000 in (a) outer scaling coordinates λx/h and (b) logarithmic
coordinates λx/y and (c) the streamwise turbulence intensity profile (solid) with the
attached eddy hypothesis approximation following Hwang et al. (2022).

Reτ ×10−4 0.52 1 2 5 10

A(Reτ ) 2.12 2.21 2.31 2.41 2.47
B(Reτ ) 0.61 0.64 0.67 0.69 0.71

Table 2: The Reynolds-number dependent model constants for the streamwise turbulence
intensity determined following Hwang et al. (2022).

Here, A(Reτ ) and B(Reτ ) are supposed to be constants in the limit of infinite Reτ , and
they vary slowly with Reτ at finite Reτ (Hwang et al. 2022).

An essential prerequisite of the model in Hwang et al. (2022) is the existence of y- and
h-scaling regions of one-dimensional spectra in the upper logarithmic layer. Figure 12
(a,b) show that the DQLA successfully reproduces such spectra in the upper logarithmic
layer (compare with figures 3(a,b) in Hwang et al. 2022) like the experimental data of
Samie et al. (2018). Following Hwang et al. (2022), A(Reτ ) and B(Reτ ) in (4.1a) are
subsequently approximated from the spectra at all Reynolds numbers:

A(Reτ ) =

[
ln

(
ax,u
y

)
− ln

(ax,l
h

)]−1 ∫ ln(ax,u/y)

ln(ax,l/h)

kxΦuu(kx, y/h)

u2
τ

d ln(kx), (4.2a)

B(Reτ ) = A(Reτ ) ln

(
ax,u
ax,l

)
. (4.2b)

Here, ax,u and ax,l are dimensionless constants associated with the upper and lower limits
of the integration of the streamwise spectra. However, they have to be chosen through
inspection of figures 12(a,b), they must be ‘constants’ for all Reynolds numbers. The
approximation (4.2) reduces down to using the mean-value-theorem to approximate the
spectra across these upper and lower limits, with the mean value, or in this case, the
Townsend-Perry constant A(Reτ ), consisting of a universal component A0 and a viscous
correction A1(Reτ ). Hence the upper and lower limits lie at values where the spectra
scale in outer (λx/h) and logarithmic (λx/y) coordinates, respectively. After trial and
improvement of the fitting procedure, the upper and lower limits are set with ax,u = π
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(a) (b)

Figure 13: The Reynolds scaling behaviour of the streamwise turbulence intensity based
on (a) logReτ and (b) inner-scaled centreline velocity U+

cl . The wall-normal locations
correspond to the peak (solid); y+ = 50 (dashed); y+ = 100 (dash-dotted). The coloured
lines correspond to (a) u′u′/u2

τ = a1 + b1 ln(Reτ ) fitted between Reτ = 1000− 2000 and
(b) u′u′/u2

τ = a2 + b2/U
+
cl fitted between Reτ = 20000− 50000.

and ax,l = 4π/3, with the comparison of the approximation and streamwise turbulence
intensity profile shown in figure 12(c).
Table 2 reports the values of A(Reτ ) and B(Reτ ) obtained. Consistent with the growing

trend of A(Reτ ) and B(Reτ ) observed in Hwang et al. (2022) with the experimental
data from Samie et al. (2018), their values obtained from the DQLA data also slowly
grow. Importantly, their growth rate tends to be smaller on increasing Reτ from Table
2, indicating that they would reach constant values. This trend is consistent with the
theoretical model of Hwang et al. (2022), which becomes identical to the classical attached
eddy model in the limit of Reτ → ∞ (Townsend 1976; Perry & Chong 1982; Perry et al.
1986).
Apart from the agreement between the near-wall peak and logarithmic decay, the

DQLA still does not have a clear plateau behaviour for y+ ≈ 200, although one starts to
emerge for Reτ ≳ 20000. This is likely due to the overly energetic response of the large-
scale motions present in the current model, as discussed in §3. In the DQLA, the primary
near-wall peaks are much less distinct than those in the DNS, with the outer-scaling parts
of the spectra and their attached features remaining relatively more energetic in the
spectra. One possible improvement on the current DQLA framework to account for this
plateau would be an outer and inner correction to the streamwise wavenumber weighting.
However, this would detract from the predictability of the current framework, with the
inner and outer scaling of the corrections having to be prescribed as additional inputs.
Another reason for the lack of the plateau is likely due to the particular use of the eddy
viscosity profile, with the large-scale response being generally overly energetic. Given how
the viscosity of the eddy is used in modelling the attached large-scale features (Hwang
2016; Symon et al. 2022; Holford et al. 2023), the eddy viscosity profile could perhaps
be tuned to replicate these features more carefully, but this is beyond the scope of this
study.
Finally, figure 13 shows the scaling behaviour of the near-wall peak and two other inner-

scaling locations, y+ = 50, 100. Like the MQLA (Hwang & Eckhardt 2020; Skouloudis
& Hwang 2021) in figure13 (a), the DQLA shows the deviation of near-wall intensities
from the classical logarithmic scaling predicted by an extension of the original attached
eddy model (Marusic & Kunkel 2003): i.e. u′u′/u2

τ ∼ lnReτ . Instead, consistent with the
recent findings from a variant of the MQLA (Skouloudis & Hwang 2021), the near-wall
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streamwise intensities are inversely proportional to the inner-scaled centreline velocity,
with the coloured lines given by fits of

u′u′

u2
τ

= C −D/U+
cl , (4.3)

favoring the prediction made by Monkewitz & Nagib (2015) for a turbulent boundary
layer using an asymptotic expansion of near-wall turbulence statistics. Notably, the
MQLA (Skouloudis & Hwang 2021) and DQLA provided the same scaling associated with
1/U+

cl . However, their construction is quite different, especially in that of the full velocity
spectra. This suggests that the scaling behaviour of (4.3) is inherently from the linearised
Navier-Stokes equations in (2.1b) with the model nonlinear term (2.2a) rather than a
peculiar feature emerging from the construction of the quasi-linear approximation. It
also strongly indicates that there must exist a mathematical structure underpinning (4.3).
Considering that the DQLA effectively reproduces the scaling behavior of the streamwise
velocity in the upper logarithmic layer, this result warrants thoughtful consideration and
should not be underestimated. Importantly, there is growing evidence that the scaling of
u′u′/u2

τ ∼ lnReτ from the classical attached eddy model may not be valid, as the original
attached eddy model is built by ignoring the viscous effect in the near-wall region. In
this respect, it is worth mentioning an alternative proposed by the recent work by Chen

& Sreenivasan (2021), where a scaling proportional to Re
−1/4
τ was proposed instead

of 1/U+
cl scaling. Such scaling may fit well with the near-wall streamwise turbulence

intensity of DQLA. However, it was recently shown that, in practice, only a negligibly

small difference has been found between the 1/U+
cl and Re

−1/4
τ scalings upon increasing

the Reynolds number (Nagib et al. 2022). To the best of the authors’ knowledge, the
correct scaling behaviour of the near-wall streamwise turbulence intensity is currently an
issue of debate. One of the authors of the present study (Hwang 2022) makes an ongoing
effort to address this issue thoroughly in the future.

5. Summary

The MQLA (Hwang & Eckhardt 2020) has been extended in the present study by
including streamwise variations of turbulence spectra. To extend the MQLA while still
maintaining its predictive nature, self-similarity was used to determine the statistical
structure of the forcing. By using the universal nature and growing significance of the log-
arithmic layer on increasing Reynolds number, a set of self-similar weights was determined
by matching the two-dimensional spectra with respect to the streamwise wavenumber
and wall-normal location at a single spanwise wavenumber of the linearised Navier-
Stokes equations to those of a DNS performed at Reτ ≈ 5200. By reconstructing the
velocity spectra from the leading POD modes of the linearised Navier-Stokes equations,
the two-dimensional spectra generated reasonably well replicated the DNS spectra. In
doing so, the energy cascade-associated features in the spectra were neglected, in line
with the attached eddy hypothesis, for the model to be extrapolatable to other Reynolds
numbers. From this self-similar weighting with respect to the streamwise wavenumber,
the self-consistent determination of the Reynolds shear stress was implemented following
Hwang & Eckhardt (2020), completing the DQLA framework.
The DQLA allows complete determination of the two-dimensional velocity spectra and

all subsequent statistics, with results compared between the MQLA, DQLA, and DNS. It
was shown that the DQLA offers significant quantitative improvements compared to the
MQLA with respect to the wall-normal and spanwise rms velocity profiles. In particular,
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it significantly reduces the anisotropy in the turbulence intensities while providing the
streamwise wavenumber spectra, the scaling of which is consistent with that of DNS.
While the DQLA did improve turbulence statistics and spectra compared to the MQLA,
there were still some qualitative differences between the DQLA and DNS results. This was
demonstrated most clearly in the streamwise one-dimensional spectra, the intensity of
which was much stronger than that of the DNS in the region close to the wall while lacking
the energetic content at length scales associated with the nonlinear processes modelled in
this study (e.g., the streak instability (or transient growth) and energy cascade Schoppa
& Hussain 2002; de Giovanetti et al. 2017; Doohan et al. 2021; Lozano-Durán et al. 2021).
Aside from the qualitative differences in the spectra, the DQLA framework was shown to
retain the predictive capabilities of the MQLA with the scaling behaviour of turbulence
intensities and spectra in qualitative agreement with the DNS. In particular, it offers a
scaling behaviour consistent with the recent theoretical model of Hwang et al. (2022),
where the spectrum-based attached eddy model in Perry et al. (1986) was extended for
finite Reynolds numbers. Also, like the MQLA, the near-wall peak turbulence intensity
was inversely proportional to the inner-scaled scaled centreline mean velocity, deviating
from the classical prediction based on the attached eddy model.
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Appendix A. Sensitivity of optimisation procedure

Figure 14: The trade-off curve between the componentwise errors in (2.11a), where ϵr =
∥ΦDNS

r − Φr∥Q/∥ΦDNS
r ∥Q for kzh = 14 for the streamwise (solid), wall-normal (chain),

spanwise velocity spectra (dotted) and Reynolds shear stress cospectra (dashed).

To select an appropriate value for γ, figure 14 shows a trade-off curve between the
regularisation parameter γ and the errors with respect to the Q−norm for each of the
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(a) (b)

(c) (d)

Figure 15: The sensitivity of the DQLA to the choice of streamwise weighting for (a)
streamwise; (b) wall-normal; (c) spanwise turbulence intensity; and (d) total error in the
two-dimensional, normalised spectra as defined in (2.11a) with the streamwise weighting
applied at different kzh. Here the colour corresponds to the selected kzh result used for
the self-similar streamwise weighting.

spectra. As the errors in all of the components are approximately monotonic, the weights
were determined by setting γ = 0.5 and using trial and inspection in varying γ until
the streamwise weights and the velocity spectra are sufficiently smooth and in good
qualitative agreement with the DNS velocity spectra.
To check the sensitivity of the DQLA to the choice of self-similar streamwise weighting

Wkx
(kx/kz), the DQLA was performed at Reτ ≈ 5200 with the different weights

from figure 1. The turbulence intensity profiles are shown in the figures. 15(a-c). The
streamwise turbulence intensity (figure 15a) is relatively insensitive to the choice of
the streamwise self-similar weight, while both the wall-normal and spanwise intensities
(figures 15b,15c) tend to decrease with kzh. The use of the kzh = 30 weight is justified
considering here that the wall-normal and spanwise turbulence intensity profiles are much
less sensitive for the kzh = 14−50 weight. Since these wavenumbers are mainly associated
with the logarithmic layer, where self-similarity is expected to hold, the different weights
from solving (2.11a) lead to similar results in a DQLA. The sensitivity to the choice of
self-similar streamwise weighting Wkx

(kx/kz) is also examined in figure 15(d), where the
total errors between the normalised two-dimensional spectra for fixed spanwise length
scales are examined using the weights for different kzh in figure 1, i.e.

∑
s

∥∥∥∥∥∥∥
ΦDNS

s

∥ΦDNS
s ∥Q

− ΦDQLA
s (Wr,kx)∥∥∥ΦDQLA

s

∥∥∥
Q

∥∥∥∥∥∥∥
Q

, (A 1)
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for s = {uu, vv, ww, uv}. Figure 15(d) shows that all weights produce a qualitatively
similar trend. This justifies the use of the weights as self-similar weights at the other
kzh. The normalised spectra produce approximately the same total errors, giving the
same approximate statistical structure of the resulting spectra.
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