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SUMMARY

We show that least-squares cross-validation methods share a common structure that
has an explicit asymptotic solution, when the chosen kernel is asymptotically separable
in bandwidth and data. For density estimation with a multivariate Student-t(ν) kernel,
the cross-validation criterion becomes asymptotically equivalent to a polynomial of only
three terms. Our bandwidth formulae are simple and noniterative, thus leading to very fast
computations, their integrated squared-error dominates traditional cross-validation imple-
mentations, they alleviate the notorious sample variability of cross-validation and overcome
its breakdown in the case of repeated observations. We illustrate our method with univariate
and bivariate applications, of density estimation and nonparametric regressions, to a large
dataset of Michigan State University academic wages and experience.

Some key words: Academic wage distribution; Bandwidth choice; Cross-validation; Explicit analytical solution;
Nonparametric density estimation.

1. Introduction

Let {xi}n
i=1 be an independent and identically distributed sequence of the scalar vari-

ate x, drawn from a density f that is a continuous function. The kernel density estimator
introduced by Rosenblatt (1956) is

f̂ (u) = 1
nh

n∑
i=1

K
(

u − xi

h

)
,

where h is the bandwidth and K is the kernel, and we can use the scaled kernels Kh(u − x) =
h−1K{h−1(u − xi)} to rewrite f̂ (u) = n−1 ∑n

i=1 Kh(u − xi). The asymptotic expectation and
variance of this estimator can be calculated, under the usual regularity conditions, leading
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810 Karim M. Abadir and Michel Lubrano

to the asymptotic mean integrated squared error

amise = h4

4
k2

21I2 + 1
nh

k02, (1)

where

kij =
∫ ∞

−∞
tiK(t)j dt, Ij =

∫ ∞

−∞
f (j)(u)2 du,

with the superscript (j) denoting the jth derivative of the function. Minimizing the amise
leads to

h0 = k1/5
02 (nk2

21I2)
−1/5 (2)

and to the Epanechnikov kernel Kh(t) = 1|t|<h
√

53(h2 − t2/5)/(4
√

5h3), with the indicator
function 1K returning 1 if condition K is satisfied and 0 otherwise. The multivariate gener-
alization of the above results is given in § 4.2. These solutions are deterministic, but contain
the unknown I2.

It is widely recognized that a variety of kernels have good asymptotic efficiencies com-
pared to the Epanechnikov kernel, whereas the choice of the bandwidth is crucial. For
example, using the Gaussian instead of the Epanechnikov kernel, the amise is multiplied
by a factor of {6(π/125)1/2}−4/5 ≈ 1.04, implying a relative loss of only 4% and an abso-
lute loss that vanishes at the rate of n−4/5. Moreover, this asymptotic optimality of the
Epanechnikov kernel need not hold in finite samples and when the optimal h0 is replaced by
an estimate.

Plug-in methods substitute estimates for the remaining unknown quantity I2 of (2) by
using a nonparametric estimate, as in Hall & Marron (1987) or Jones & Sheather (1991);
but, they can go as far as replacing f in I2 by a Gaussian density, a method commonly
referred to as the rule of Silverman (1986). Instead, Rudemo (1982) and Bowman (1984)
introduced the least-squares cross-validation method to determine the bandwidth that min-
imizes the integrated squared error asymptotically. The formula for the integrated squared
error is

ise =
∫ ∞

−∞
{f̂ (u) − f (u)}2 du

=
∫ ∞

−∞
f (u)2 du +

∫ ∞

−∞
f̂ (u)2 du − 2

∫ ∞

−∞
f̂ (u)f (u) du, (3)

where all three components are assumed finite with probability 1. The first integral in the
last line of (3) does not affect the procedure and can be omitted from the optimization. The
second integral is in terms of the data and the h over which the optimization is conducted.
However, the last integral contains both the unknown density and h. Cross-validation over-
comes this problem by considering an alternative criterion that has the same expectation as
the ise and is based on a resampling scheme. The validity of this method relies on a strong
result by Stone (1984) that shows that the ise with its optimal h and the ise with h obtained
by cross-validation coincide asymptotically, but the speed of convergence is rather slow. The
method is said to suffer from a great deal of sample variability, and it is costly to compute
for large samples.
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Asymptotically optimal bandwith in cross-validation 811

This cross-validation criterion is an unbiased estimator of the mean integrated squared
error, and we refer to it as unbiased cross-validation to stress this. The biased cross-
validation criterion proposed by Scott & Terrell (1987) is a biased estimator of the mean
integrated squared error, but it reduces the sample variability of the unbiased cross-
validation criterion. It was derived as a method of estimating the unknown integral I2 in
(2), and it leads to a minimum of the same amise objective function. However, Scott (2015,
p. 179) noted that ‘biased cross-validation performed poorly for several difficult densities
without a very large dataset’.

The biased cross-validation of Scott & Terrell (1987) was followed by a number of alter-
native biased cross-validations, including the modified cross-validation of Stute (1992), the
smoothed cross-validation of Hall et al. (1992) and its extension by Jones et al. (1991). The
latter is particularly interesting because it derives the functional form of an additional band-
width that helps cross-validation achieve the fastest rate of convergence relative to h0, a
rate that was established by Hall & Marron (1991) as n1/2. Smoothed cross-validation was
extensively studied for multivariate density estimation in Duong (2004).

The cross-validation method was applied to contexts other than density estimation. It
is the main method for determining h in kernel regression models, as illustrated by Müller
(1987) and Li & Racine (2006, pp. 66–72). The Nadaraya–Watson nonparametric regression
formula is an estimate of the conditional expectation obtainable from joint densities. Robin-
son & Moyeed (1989) have investigated the efficiency of various cross-validation methods
for spline smoothing regression with the objective of obtaining a better trade-off between
fit and smoothness. Other applications cover the determination of bandwidths in the esti-
mation of spectra such as in Velasco (2000), the widespread Newey & West (1987) method
that requires the estimation of spectra at the origin, as well as the more recent method by
Robinson (2005).

None of the cross-validation methods introduced above give an explicit solution for
their optimal h. We show that there is a common structure to all these cross-validation
methods, and we use this to provide an explicit solution for their bandwidths. Furthermore,
we conjecture that this structure extends to other cross-validation problems where the objec-
tive functions can be written, locally to the optimum, as polynomial approximations in terms
of h and h−1 upon choosing kernels from the class of separable kernels that we define in the
next section. The solutions we obtain are explicit and hence also much quicker, by a fac-
tor of 20 in the univariate case, are more ise-efficient than existing solutions and solve two
of the recognized problems of cross-validation methods: their excess variability and their
failure in the case of repeated observations.

2. Method for the explicit solution of bandwidths

Cross-validation criteria necessitate the calculation of
∫ ∞
−∞ f̂ (u)2 du seen in (3), which can

be problematic if done numerically. The calculation involves a convolution that we solve
explicitly here as a first step of our approach. The second step is to optimize the resulting
criterion, and an explicit solution is allowed by a class of kernels that we introduce. These
explicit analytical formulae will provide the speed, ise efficiency and stability, and robustness
to ties discussed earlier.

Let ‘∗’ denote the convolution symbol. Biased and unbiased cross-validation and their
variants require calculation of

K(q) ∗ K(r), (4)
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812 Karim M. Abadir and Michel Lubrano

where q, r ∈ Z0,+, the nonnegative integers. Define Dh = Kh − K0, where K0 is the Dirac
delta function. Smoothed cross-validation and its variants introduce an additional kernel L
with bandwidth g, now requiring

Dh ∗ Dh ∗ Lg ∗ Lg, (5)

where Lg is the scaled version of kernel L such that Lg(t) = g−1L(g−1t), with the smoothed
cross-validation optimal g taking the form ĝ ∼ Cnp/ĥ2 for C a constant as n → ∞ and p a
constant to be detailed in § 3.3 below. The notation an ∼ bn means that limn→∞ an/bn = 1,
while ĥ and ĝ denote bandwidths that solve the optimization of a cross-validation method.
They are stochastic, unlike h0, and hence the hat notation.

There are two components to the solution. The first one is straightforward once we recall
that the choice of a Gaussian kernel function φ has little effect on asymptotic efficiency
while allowing simple explicit solutions, in which case we take K = L = φ to work out (4)
and (5). To do so will require the Hermite polynomials

Hem(t) = (−1)mφ(m)(t)
φ(t)

= tm
1+	m/2
∑

j=0

(−m)2j

j! (−2t2)j
, (6)

where m ∈ Z0,+, 	m/2
 denotes the integer part of m/2 and (−m)2j = ∏2j
i=1(−m + i − 1)

is Pochhammer’s symbol; see Abadir (1999) for more details on Hem polynomials and their
relation to the other type of Hermite polynomials denoted by Hm. See also Aldershof et al.
(1995) for uses of these polynomials.

LEMMA 1. For K = L = φ, (4) and (5) respectively become

(K(q) ∗ K(r))(a) = (−1)q+rK√
2(a)Heq+r(a/

√
2)

(2q+r)1/2 , (7)

(Dh ∗ Dh ∗ Lg ∗ Lg)(a) = K(2h2+2g2)1/2(a) − 2K(h2+2g2)1/2(a) + Kg
√

2(a), (8)

where a is the argument of the convolution, Kb(t) = b−1K(b−1t) and Lb = b−1L(b−1t).

The second component of the solution is to find a way to achieve asymptotic separability,
in h and t, for a scaled kernel Kh(t). This will allow a factorization of first-order conditions
for h.

DEFINITION 1. A scaled kernel Kh(t) is said to be asymptotically separable in h and t if its
expansion around h = 0,

Kh(t) = hp2
∑

j�m
(hp1)jψj(t), 0 < p1 < ∞, |p2| < ∞,

has a finite m ∈ Z. This is a Laurent series, which generalizes the Taylor series to allow for
negative values of m and p2.

This condition of a finite m ∈ Z does not hold for φ, but it holds for another kernel
that can be made arbitrarily close to φ and that can be used instead of φ now that the

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/111/3/809/7606771 by guest on 11 Septem
ber 2024



Asymptotically optimal bandwith in cross-validation 813

convolutions have been worked out. Consider a Student-t(ν) kernel, K(t) = cν/(1 +
t2/ν)(ν+1)/2 with

cν = �{(ν + 1)/2}
(πν)1/2�(ν/2)

, k21 = ν

ν − 2
,

k02 = �(ν/2 + 1/2)�(ν/2 + 1/4)�(ν/2 + 3/4)
√

2
ν3/2�(ν/2)3√π

;

see Lemma S1 within the Supplementary Material. The Gaussian is the limiting t(∞)

case, but ν = 30 makes the two virtually indistinguishable in practice. The scaled version
of t(ν) is

Kh(t) = cν

h{1 + t2/(νh2)}(ν+1)/2 = cν

(h2 + t2/ν)(ν+1)/2 hν . (9)

As ĥ = Op(n−1/5)
p−→ 0, (9) becomes asymptotically separable in t and h since Kh(t) =

cν(t2/ν)−(ν+1)/2hν{1 + O(h2)} as h → 0 with t |= 0 and ν finite, as implied by the binomial
expansion. This asymptotic separability for small h does not hold in the Gaussian ν = ∞
case, but it nevertheless holds for any fixed large ν. This will allow subsequent derivations
to give an explicit asymptotic formula for the cross-validation solutions ĥ. The only avail-
able expansion for the Gaussian kernel is exp{−t2/(2h2)} = 1 − t2/(2h2) + · · · , which has
m = −∞ in Definition 1, thus failing the required separability criterion on m. To use the ter-
minology of complex analysis, h = 0 is an essential singularity of the function. The binomial
expansion of the Student-t(ν) kernel does not suffer this drawback, even for any arbitrarily
large but finite ν.

Separability applies to many other kernels, including the amise-optimal Epanechnikov
kernel

Kh(t) = 1|t|<h
√

5
3

4
√

5

(
1
h

− t2

5h3

)
.

It is not only asymptotically separable as h → 0, but also exactly separable: no series
expansion of a function is needed to separate h and t in h−1 − h−3t2/5. However, it is not
regular because the support depends on h, but the assumption of continuity of the variate
will get around the regularity issue. The case of the Epanechnikov kernel is treated in the
Supplementary Material.

3. Univariate set-up and illustration of the simplified solution

3.1. Unbiased cross-validation criterion

The first step of the unbiased cross-validation procedure is to delete one observation at
a time, say xj (j = 1, . . . , n), then calculate the usual kernel estimator based on the remain-
ing n − 1 data points as f̂−j(u) = (n − 1)−1 ∑

i |=j Kh(u − xi). The last integral in the ise in

(3) is an expectation which can be estimated by f̂n−1(x1, . . . , xn; h) = n−1 ∑n
j=1 f̂−j(xj) =

n−1(n − 1)−1 ∑n
j=1

∑
i |=j Kh(zij), where zij = xj − xi. Unbiased cross-validation minimizes,
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814 Karim M. Abadir and Michel Lubrano

with respect to h, the sum S = S1 + S2 + S3, where

S1 =
∫ ∞

−∞
f (u)2 du, S2 =

∫ ∞

−∞
f̂ (u)2 du, S3 = −2f̂n−1(x1, . . . , xn; h).

This procedure is justified by the fact that E(S) = E(ise), the latter being the definition of
the mean integrated squared error. Since S1 > 0 and does not depend on n, it does not tend
to 0 as n → ∞ and

S2 + S3
p−→ −S1 < 0 (10)

by the consistency of f̂ .
Using Lemma 1, we can work out S2 = n−1Kh

√
2(0) + 2n−2 ∑n

j=1
∑

i>j Kh
√

2(zij), where
we separated out the term having i = j and used the fact that K is an even function of zij to
rewrite the range of the inner summation as

∑
i |=j = 2

∑
i>j. Using n/(n − 1) = 1 + O(1/n),

S2 + S3 = Kh
√

2(0)

n
+ 2 + O(1/n)

n2

n∑
j=1

∑
i>j

{Kh
√

2(zij) − 2Kh(zij)}, (11)

where the first fraction is deterministic and of order 1/(nh). We now apply the second idea
of the previous section, separable kernels, in order to tackle the optimization.

3.2. Limiting solution for simplified unbiased cross-validation

From (9), Kh
√

2(0) = cν/(h
√

2). Applying (10) to (11), and since the unbiased cross-
validation optimal h is ĥ = Op(n−1/5), it follows that the first term of (11) drops out
asymptotically and the second term has a strictly negative and finite probability limit. This
term that we drop, in this subsection only, is often called diagonal (i = j) or nonstochastic.
In this subsection, we therefore minimize

R = 2
n∑

j=1

∑
i>j

Kh
√

2(zij) − 4
n∑

j=1

∑
i>j

Kh(zij), (12)

where R/n2 p−→ −S1 < 0. The objective function (12) with a t(ν) kernel becomes

R = 2cνhν

n∑
j=1

∑
i>j

{2ν/2(2h2 + z2
ij/ν)−(ν+1)/2 − 2(h2 + z2

ij/ν)−(ν+1)/2}. (13)

A substitution inside this double sum leads to the same unbiased cross-validation-optimal
asymptotic solution.

PROPOSITION 1. For Student-t(ν) kernels and q ∈ R0,+, define the function

yn(q; ĥ) =
n∑

j=1

∑
i>j

(ĥ2 + z2
ij/ν)−q−(ν+1)/2. (14)

If a plug-in bandwidth, denoted by ĥp and satisfying ĥp = Op(n−1/5), is used in yn(q; ĥp)

only, then we get consistency of f̂ at the same rate achieved by the unbiased cross-validation
bandwidth.
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Asymptotically optimal bandwith in cross-validation 815

Exploiting the asymptotic invariance of the yn(q; ·) function, the first-order condition in
the proof of Proposition 1 leads us to rewrite the solution of optimizing R as

ĥ =
[

ν{2ν/2yn(0; ĥp
√

2) − 2yn(0; ĥp)}
2(ν + 1){2ν/2yn(1; ĥp

√
2) − yn(1; ĥp)}

]1/2

, (15)

where the right-hand side makes use of plug-ins ĥp satisfying ĥp = Op(n−1/5). By the formu-
lation of R in (13) and the asymptotic invariance of yn(q; ·), we can verify that ĥ of (15) is
of the same order as (h−ν/h−ν−2)1/2, i.e., the same order as h to be optimized. For unbiased
cross-validation, this is Op(n−1/5).

Our method of solution can therefore be viewed as combining plug-in and cross-
validation approaches to get an explicit closed-form solution for the cross-validation opti-
mization problem. As Proposition 1 shows, this entails no loss of asymptotic efficiency, and
this will be seen to also hold very well for finite samples in the simulations reported in the
Supplementary Material. Furthermore, as we will see with other more sophisticated cross-
validation methods below, our approach will enable us to achieve good performance that is
theoretically attainable, but has been elusive in practice so far because one needed to estimate
unknown constants hitherto.

We now derive a plug-in to use as ĥp. We could substitute the rule of thumb
ĥ = 1.06σ̂n−1/5 of Silverman (1986) mentioned before (3), with σ̂ 2 denoting the sample
variance of {xi}n

i=1. A more elaborate version would again use (2), but with f replaced by a
Student density instead of the Gaussian density. The ingredients for this are given in Lemma
S1 within the Supplementary Material, yielding, for ν > 2,

ĥS =
{

4(1 − 2/ν)9/2(ν − 3/16)2(ν + 17/8)(ν + 5/2)(ν + 7/2)

3(ν − 1/4)(ν + 1)2(ν + 3)2

}1/5

σ̂n−1/5 (16)

with limν→∞ ĥS/(σ̂n−1/5) = (4/3)1/5 ≈ 1.06 implying Silverman’s rule as a special case.
By R/n2 p−→ −S1 < 0, the numerator and denominator in (15) should both be

negative at the optimum, thus restricting the allowable solutions for h. Note also that
z2

ij/ν = (xj − xi)
2/ν, appearing in yn(q; ĥ) of (14), is a measure of distance between the data

points. It is quadratic because of the adoption of a spherical probability density function
as a kernel, and this applies more generally to other spherical kernels. In particular, the
Epanechnikov kernel, which is both spherical and separable, leads to similar derivations
whose results are given in the Supplementary Material.

The combination of plug-in and cross-validation approaches has also been used by Mam-
men et al. (2011). They introduced a bandwidth based on the weighted average of a plug-in
method and a fully iterated cross-validation, using Epanechnikov, quartic and Gaussian
kernels. The empirical intuition is that plug-in methods oversmooth, while cross-validation
methods undersmooth, and their argument for considering their combination was the
important observation that practical implementation is crucial in achieving the theoretical
potential of a method. However, they showed that their asymptotic best weighted-average
solution does not perform as well as hoped in small samples, both in terms of average ise
and variability. In the Supplementary Material, our simulations show that both our Student
plug-in ĥS and our cross-validation solution manage to beat the usual methods available in
standard packages, both in terms of ise and variability. Proposition 1 assessed the nonlinear
combination of plug-in and cross-validation approaches, where the asymptotic optimality
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816 Karim M. Abadir and Michel Lubrano

of our combination is now proved for unbiased cross-validation and will apply similarly for
smoothed cross-validation below.

Other attempts have been made to improve the slow convergence rate of cross-validation
methods. Using a kernel made of the linear combination of two Gaussian kernels, Savchuk
et al. (2010) managed to reach the improved speed of n−1/4. Their kernel is robust to round-
ing and to ties in the data, but this implies a constrained choice for the two parameters
necessary to calibrate their kernel. Our Student kernel can also be seen as a mixture, a
Student-t(ν) being an infinite mixture of Gaussian processes by a χ2 mixing density, but with
only one parameter ν to determine. Our kernel is also usable for smoothed cross-validation
with its optimal n−1/2 rate of convergence, as we shall see. In addition, the applications in
§ 5 below will show that our method is robust to rounding and ties.

3.3. Smoothed cross-validation criterion

Having analysed unbiased cross-validation, we now introduce smoothed cross-validation.
Jones et al. (1991) estimated the integrated squared bias

∫
(Kh ∗ f − f )2, or, equivalently,∫

(Dh ∗ f )2, by smoothing this particular appearance of f , effectively a plug-in that uses a
second kernel L and bandwidth g. They also combined this with the option of using the
idea of Jones & Sheather (1991), in which case they set an indicator function δ = 1 below
and δ = 0 otherwise. The result is the smoothed cross-validation objective function

Ss = k02

nh
+ δ

n
(Dh ∗ Dh ∗ Lg ∗ Lg)(0) + 1

n2

n∑
j=1

∑
i |=j

(Dh ∗ Dh ∗ Lg ∗ Lg)(zij), (17)

where 0 and zij are the arguments of the respective convolutions. They showed that the
asymptotically optimal p in g ∼ Cnp/h2 is p̂ = −23/45 if δ = 1 or p̂ = −44/85 if δ = 0,
but the constant C depends on the unknown f again. They experimented with a couple of
plug-in methods to estimate C, but they do not work well and they will not be necessary in
the case of our method where we optimize with respect to both h and g.

The case in which δ = 1 achieves the best n−1/2 rate for the relative distance between
the values of h minimizing mean integrated squared error and Ss, while it is the slightly
slower rate of n−8/17 that is obtained if δ = 0. Note that ĝs dominates ĥs, where these are
the optimizers of Ss; e.g., if we take p̂ to be −1

2 henceforth then ĝs = Op(n−1/10) dominates
ĥs = Op(n−1/5). Nevertheless, the argument used for ĥ in connection with the Student kernel
in § 2 applies to ĝs as well.

Although the n−1/2 rate is achieved by smoothed cross-validation, the best possible mul-
tiplicative constant established by Fan & Marron (1992) is not quite reached by the limiting
variance of the normalized ĥs. Kim et al. (1994) modified the method to achieve this lower
bound, but their results showed that samples as large as n = 1000 are not large enough to
reach these asymptotics and they say on page 120 that their method is ‘mostly of theoretical
interest’. We therefore do not include their extension.

4. General solution for unbiased and smoothed cross-validation

4.1. Solution of unbiased and smoothed cross-validation bandwidths for multivariate kernels

Let the bandwidth matrix be H = h2I , where I is the identity matrix without a subscript
so that it is distinct from the earlier use of I . We do not tackle directly the case of H positive
definite in full generality, which would require additional 1

2d(d + 1) − 1 bandwidths to be
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Asymptotically optimal bandwith in cross-validation 817

derived. However, we will do so indirectly: we recommend orthogonalizing and normaliz-
ing the data first, then estimating the bandwidth as in this section and finally reversing the
orthonormalization. We did this in the applications of § 5 below, and we discuss both there
and here the generalization that it implies for H. In this section, x now refers to the d × 1
variate, and its n × d sample matrix is X = (x1, . . . , xn)

T; we define the vector zij = xj − xi

whose elements are denoted by zij,m. The scaled kernel defined as Kh(t) = h−dK(h−1t) is
used to write f̂ (u) = n−1 ∑n

i=1 Kh(u − xi), where t, u are now vectors.
The procedure for orthonormalization is as follows. Since the sample variance matrix

S is positive definite, S = Q
QT and the square root of the matrix is the symmetric
S1/2 = Q
1/2QT, where 
 is the diagonal matrix of positive eigenvalues of S, the columns
of Q contain the orthonormal eigenvectors of S and QQT = I . The orthonormalization is
then y = S−1/2x, which has ˆvar(y) = S−1/2 ˆvar(x)S−1/2 = I , where S−1/2 = Q
−1/2QT; see
Abadir & Magnus (2005) for matrix functions. In general, the components of y are uncorre-
lated, but mutually dependent. Under general conditions, the sample variance is a consistent
estimator of var(x) when it exists. Our paper is about asymptotically optimal bandwidth
formulae. These can no doubt be refined, but further support for our approach can be seen
in the convergence results cited in the multivariate section of the Supplementary Material
where we also have bandwidth formulae for the case of product kernels, in addition to those
below that are for multivariate kernels.

The scaled multivariate t(ν) kernel is

Kh(t) = cν,d |H|−1/2
(

1 + 1
ν

tTH−1t
)−(ν+d)/2

= cν,dhν

(
h2 + 1

ν

d∑
m=1

t2
m

)−(ν+d)/2

,

where cν,d = (πν)−d/2�{(ν + d)/2}/�(ν/2) generalizes the univariate cν = cν,1. In the
case of a spherical multivariate kernel, such as here, the quadratic form in t shows that our
procedure, orthonormalizing the data first, could be alternatively interpreted as having H
proportional to the sample’s variance matrix S, since yTy = xTS−1x in terms of the original
data x. This equivalence will not hold for the product kernels in the Supplementary Material;
hence, the general set-up, orthonormalizing the data first then using H = h2I introduced in
this section.

THEOREM 1. Let ĥ denote the solution of a cross-validation-optimal bandwidth. Then we
use ĥa to denote our asymptotic solution satisfying limn→∞ ĥa/ĥ = 1 and ĥaa to denote the
leading term of its asymptotic expansion. Take plug-ins ĥp, ĝp satisfying ĥp = O(n−1/(4+d))

and ĝp = O(n−1/(6+d)).

(a) For unbiased cross-validation, with yn(q; h) = ∑n
j=1

∑
i>j(h

2 + ν−1zT
ijzij)

−q−(ν+d)/2,
letting

α1 = 2−1−d/2dn,

α2 = ν{2ν/2yn(0; ĥp
√

2) − 2yn(0; ĥp)},
α3 = −2(ν + d){2ν/2yn(1; ĥp

√
2) − yn(1; ĥp)},

we have

ĥa =
(

α1

α2 + α3ĥ2
p

)1/(ν+d)

and ĥaa = (−α2/α3)
1/2. (18)
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(b) For smoothed cross-validation, with yn(q; h, g) = ∑n
j=1

∑
i>j(h

2 + 2g2 + ν−1zT
ij

zij)
−q−(ν+d)/2, letting

k02,d =
(

ν

2ν + d

)d/2 {(πν)−d/2�((ν + d)/2)/�(ν/2)}2

{π(2ν + d)}−d/2�(ν + d)/�(ν + d/2)
, (19)

α1 = k02,ddn
4cν,d

+ δdn
2

{(2 + 2n1/5)−1−d/2 − (1 + 2n1/5)−1−d/2},

α2 = ν{(2 + 2n1/5)(ν−2)/2yn(0; ĥp
√

2, ĝp) − (1 + 2n1/5)(ν−2)/2yn(0; ĥp, ĝp)},
α3 = −(ν + d){(2 + 2n1/5)ν/2yn(1; ĥp

√
2, ĝp) − (1 + 2n1/5)ν/2yn(1; ĥp, ĝp)},

we have

ĥa =
(

α1

α2 + α3ĥ2
p

)1/(ν+d)

and ĥaa =
[

yn(0; ĥp
√

2, ĝp) − yn(0; ĥp, ĝp)

(1 + d/ν){yn(1; ĥp
√

2, ĝp) − yn(1; ĥp, ĝp)} − 2ĝ2
aa

]1/2

(20)

with

ĝaa =
[

yn(0; ĥp, ĝp) − yn(0; 0, ĝp)

2(1 + d/ν){yn(1; ĥp, ĝp) − yn(1; 0, ĝp)}

]1/2

. (21)

The solutions ĥa require α2 + α3ĥ2
p > 0, which is guaranteed in large samples, but might

fail in small samples. If so then the simpler asymptotic approximations ĥaa should be used
instead. As for the plug-ins, in the univariate case we can use ĥp of (16), with ν > 2, and the
simple

ĝp = ĥp

n−1/5 n−1/10 = ĥpn1/10 (22)

from the discussion following (17); the multivariate case requires the next subsection.

4.2. Multivariate plug-ins

We consider the multivariate version of h0 = k1/5
02 (nk2

21I2)
−1/5 of (2) and recalculate its

components to get ĥp in the case of a multivariate Student-t(ν) kernel. Silverman’s rule for
variates with unit variance matrix is

{
4

(2 + d)n

}1/(4+d)

, (23)

which is approximated by Scott (2015) as n−1/(4+d) since the constant ratio is always between
0.92 and 1.06 with limd→∞{4/(2 + d)}1/(4+d) = 1.

The multivariate amise generalizing (1) is

amise = h4

4
k2

21I2 + 1
nhd

k02,d , (24)
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leading to the generalization of (2) as

h0 =
(

k02,dd

nk2
21I2

)1/(4+d)

, (25)

where k21 = ν/(ν − 2) as before, k02,d is given in (19) and I2 = ∫
Rd {∑d

j=1 ∂2f (u)/∂u2
j }2 du

now; see, e.g., Härdle & Müller (2000). It remains for us to work out I2 for a multivariate
Student-t(ν) plug-in density, that is, a multivariate version of our generalized Silverman
rule. From Lemma S1(iv) within the Supplementary Material,

I2 = d(2 + d)

2ν+d+1π(d−1)/2bd+4ν2+d/2

�{(ν + d)/2 + 2}�(ν + d/2 + 2)

{�(ν/2)}2�{(ν + d + 5)/2}
∼ d(2 + d)

2d+2πd/2bd+4

{
1 + (d + 4)(d + 2)

4ν

}{
1 + d(d + 4)

16ν

}{
1 − (d + 4)(3d + 12)

16ν

}
, (26)

giving

lim
ν→∞ I2 = d(2 + d)

2d+2πd/2σ d+4
, lim

ν→∞ h0 =
{

4
(2 + d)n

}1/(4+d)

σ ,

which is Silverman’s multivariate rule (23) when the scalar variance matrix is set to unity.
Our extension of his rule for general ν follows from now having all the ingredients for (25)
as

ĥS =
{

k02,dd

n(1 − 2/ν)2Î2

}1/(4+d)

, (27)

where we use b̂ = (1 − 2/ν)1/2 in Î2 with unit variance.
Theorem 3 of Duong & Hazelton (2005) implies a ĝp for smoothed cross-validation,

which is denoted there by g1. Its formula is quite elaborate and requires combinations of
sixth-order partial derivatives to be evaluated, but Duong (2007) gave a numerical way to
compute these, which yields a ĝp that we can use here. Alternatively, a rough approximation
can be obtained by comparing their theorem’s g1 with (23) to get the relation

ĝp

ĥp
∼ n−1/(6+d)

n−1/(4+d)
= n2/(6+d)(4+d),

as we had for the univariate case of (22), and we get

ĝp = ĥpn2/(6+d)(4+d). (28)

However, d = 1 here would give ĝp = ĥpn2/35, an overestimate by n3/70 of ĝp compared to
ĝp = ĥpn1/10 of (22). Since the notation for orders of magnitude is an inequality relation,
we adopt the larger order ĝp = O(n−1/(6+d)) used in the optimality derivations of Duong
& Hazelton (2005). For d = 1 in typical samples like 100 to 1000, the difference is 22%
to 34%. Such differences do not have a large impact in practice, as will be seen in the next
section, but much larger samples could require the calculations of Duong (2007) instead of
the rough (28).
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Table 1. Bandwidths for the wage dataset of Michigan State University
Student kernel Gaussian kernel

ν ĥS ucv ĥa scv ĥa scv ĥaa Silverman ucv scv

4 5.513 2.84 5.828 5.353 8.95 1.17 4.15
6 7.182 4.204 7.485 6.970

ucv, unbiased cross-validation; scv, smoothed cross-validation.

5. Academic wages at Michigan State University

We provide an empirical application on the distribution of academic wages and experi-
ence in the Michigan State University database for 2012. An additional practical advantage
of our explicit formulae is to avoid the troubles faced by existing cross-validation approaches
when there are some ties in the data, in this case some equal salaries and/or experience.

The database contains 6402 entries, after deleting 22 lines that corresponded to a null
wage. Deleting duplicate names, as the same person can be appointed by several depart-
ments, we were left with n = 5050 distinct individuals earning 4070 different salaries. The
minimum yearly wage is $3600, due to being part time. The first quartile is $52 070. The mean
wage is $90 380. The 0.995 quantile is $298 832. The maximum yearly wage is $952 400 and
corresponds to a fixed-term contract of an endowed chair of the chemistry department. We
want to make inference on the wage distribution and then on the bivariate relation between
wages and experience.

This very asymmetric wage distribution has a Kolmogorov–Smirnov measured complex-
ity equal to dn(x1, . . . , xn) = 0.120, as per the implementation details in the Supplementary
Material, which would suggest choosing between ν = 4 and ν = 6. In Table 1, we present
our various implied choices for a bandwidth and the alternative answers of the literature.
They illustrate the usual breakdown of standard unbiased cross-validation in the presence of
repeated observations. One of the assumptions needed for using a cross-validation method is
that the observations are draws from a continuous random variable. Otherwise, the presence
of a point mass piling up is detected by least-squares cross-validation, which then chooses
a small bandwidth to deal with these point masses. Wage datasets typically contain point
mass piling up as several individuals, that is those with the same qualification and experi-
ence, tend to have similar wages. The value obtained for standard unbiased cross-validation
corresponds to the lower bound of the grid search of the Brent algorithm of bw.ucv in
R (R Development Core Team, 2024). At the other extreme, the Silverman rule bw.nrd in
R gives the highest value. The plug-in was obtained as bw.nrd(x) in R. The unmodified
traditional formula ĥ = 1.06σ̂n−1/5 produces an even larger value of 10.41. In both cases,
these represent unreliable window sizes, the effects of which are depicted in Fig. 1(b), where
we see undersmoothing and oversmoothing respectively.

None of our formulae suffer these drawbacks. Our unbiased cross-validation’s ĥa helps to
identify small details of the wage distribution, while our two integral-free smoothed cross-
validations ĥa and ĥaa give a smoother density, and similarly for our generalized Silverman
rule ĥS. We use ν = 6 in Fig. 1(a) and see the following features. The wage density presents
several bumps that are well identified when using smoothed cross-validation ĥaa, which we
find here to be the best method, also because of the recommendation to use it for asym-
metric densities; see our simulations in Table S6 within the Supplementary Material. The
two main modes of the distribution are well identified with all our methods. Our unbiased
cross-validation’s ĥa, even if it provides slightly more variability than our other bandwidths,
helps to identify the first very small mode of the distribution that corresponds to 49 teachers
with a fixed-term contract and who are all paid $22 870 a year. The second and main mode
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Fig. 1. Wage density estimation for Michigan State University in 2012.

Table 2. Bandwidth 2 × 2 matrices for the tenured subsample
Plug-in ucv scv

ks (Duong, 2022)

2.600 0.035 0.000 0.000 3.050 0.045
0.035 0.009 0.000 0.034 0.045 0.011

Student kernel with ν = 6

4.280 0.024 2.880 0.016 3.518 0.020
0.024 0.006 0.016 0.004 0.020 0.005

ucv, unbiased cross-validation; scv, smoothed cross-validation.

is at $43 374. It corresponds mainly to research associates with a fixed-term contract. The
third mode is at $64 868. Around this mode, most wages correspond to either specialists or
assistant professors with a labour contract that is either not tenured / continuing system or
tenure system probationary. Around these last two modes, there are several identical wages.

A Mincer equation explains log(wages) as a function of years of experience, with the idea
that the yield of experience should decrease when approaching retirement. This relation is
well depicted by a bivariate contour for those who are tenured, which concerns 1545 mem-
bers of the university. In the top panel of Table 2, we present the H matrices obtained using
the R package ks of Duong (2022). It yielded unusual values for unbiased cross-validation
because of the presence of repeated observations. In the bottom panel of Table 2, we pro-
vide the same quantities for our formulae based on ĥaa with a multivariate Student kernel
having ν = 6. The results are more in accordance with what one would expect, unaffected
by repeated observations. Unbiased cross-validation corresponds to some undersmoothing,
while smoothed cross-validation is between the Student-generalized plug-in and unbiased
cross-validation.

The four plots reported in Fig. 2 illustrate this relation between log wages and experience,
as the contours are pointing up, but flattening when experience increases. This nonlin-
ear relation is also seen from three nonparametric regressions for each plot, by taking a
sequence of vertical lines at various experience levels, then calculating the mean, median and
peak mode of the conditional densities at each of these experience levels. The Nadaraya–
Watson regression with Silverman’s bandwidth turns out to be almost the same as the mean
regression in Fig. 2(b), as expected from it being a conditional expectation. The curves
we get from our formulae are less volatile than those obtained by other cross-validation
estimates, as indicated earlier, and we can see this here when we compare them with the
standard smoothed cross-validation reported in Fig. 2(a). Some of the crossovers of curves
in Fig. 2 can provide counterexamples to the mean-median-mode inequality, in the case of
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Fig. 2. Bivariate density of log wages and experience, using various methods and a multivariate kernel.

a unimodal, or nearly so, conditional distribution, in addition to those of Abadir (2005).
We conclude by cautioning that this regression is incomplete because other variables also
determine log wages in academia.
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Supplementary material

The Supplementary Material includes proofs, as well as our solutions for biased cross-
validation and for other kernels, including Epanechnikov and product kernels. We have also
included results of a Monte Carlo experiment showing that the Epanechnikov kernel is best
for estimating a density if the latter is Gaussian, but that a Student kernel is better in all other
cases. We also give details on execution times, showing that our method can be around 20
times faster than other cross-validation methods, especially in large samples.
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