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Abstract

Diabetes is a group of chronic metabolic disorders that affect almost half a billion people

worldwide. Despite the rapid advancement of wearable devices, such as continuous glucose

monitoring (CGM), maintaining blood glucose (BG) levels in a therapeutically appropriate

range has been a heavy daily burden for people living with type 1 diabetes. Due to the

large inter- and intra-subject variability, finding optimal personalised treatment is still an

open problem. In this thesis, a wide range of novel deep learning technology is investigated

to enhance diabetes management and tackle the challenges in BG prediction, glycaemic

control, BG time series generation, and digital health systems.

Combing the latest advances in evidential deep learning and meta-learning, this

thesis proposes the Fast-adaptive and Confident Neural Network (FCNN), a novel deep

learning framework for personalised BG prediction, which incorporates model confidence

and enables fast adaptation to address the challenges in clinical settings. The proposed

algorithm was evaluated on three clinical datasets and achieved state-of-the-art perfor-

mance. Then, the physiological data measured by wearable wristband sensors were inte-

grated into BG prediction using the FCNN framework, which significantly improved the

model performance.

Subsequently, deep reinforcement learning (DRL) is explored in glycaemic control.

First, a novel algorithm based on double deep Q-learning is proposed to control basal

insulin and glucagon delivery in the artificial pancreas for single- or dual-hormone therapy.

Then, an actor-critic algorithm is applied to develop a novel insulin advisor to recommend

meal insulin bolus. The results of in silico trials demonstrated that the proposed DRL

control algorithms significantly enhanced the percentage of time spent in the target BG

range and reduced hypoglycaemia and hyperglycaemia. Furthermore, a novel offline DRL
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and off-policy evaluation framework is proposed for basal insulin control, which enables

DRL models to be developed in a safe and offline process. The framework was evaluated

on both in silico and clinical datasets and improved various clinical metrics.

To generate synthetic BG time series for data augmentation, this thesis introduces

GluGAN, a novel framework based on generative adversarial networks. By integrating a

supervised learning loss into adversarial training, GluGAN captures autoregressive tempo-

ral dynamics and generates high-quality synthetic BG data for the three clinical datasets.

In the experiments on BG prediction, training data augmented by GluGAN significantly

improved the performance of three classic data-driven algorithms.

Finally, this thesis proposes a novel Internet of Medical Things (IoMT) framework

for digital health systems in diabetes management. The centre of the proposed framework

is an IoMT-enabled wearable wristband that comprises a low-cost and low-power system on

a chip to communicate CGM and provide decision support by edge computing. In addition,

a smartphone app is designed for data visualisation, while desktop and cloud platforms are

proposed for data storage and model training. As a use case, an embedded BG prediction

algorithm is developed through the FCNN framework and implemented on the wristband.

The optimised hardware design results in extremely low energy consumption for edge

inference and wireless connectivity on the wristband. The use of the IoMT framework

notably improved glycaemic control in a hardware-in-the-loop in silico trial.
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Chapter 1

Introduction

1.1 Motivation

In the era of artificial intelligence (AI), innovative breakthroughs and emerging technolo-

gies are changing the landscape of biomedical and healthcare areas. In recent years, due

to the ubiquitous nature of digital information systems and mobile devices in the health-

care industry, a substantial amount of clinical data collected from diverse sources, such

as images, text entries, electronic health records (EHRs), sensor measurements, genomics,

are available for research purposes. These clinical data offer great promise to develop

AI-based applications, especially data-driven approaches, to enhance the treatment of

various diseases and accelerate new scientific discoveries. However, the medical datasets

from multiple sources are often heterogeneous, high-dimensional, and sparse, and thus

they are likely to be underused in clinical scenarios [1]. Fortunately, machine learning,

as an increasingly successful AI branch, is powerful at discovering nonlinear correlations

of high-dimensional data. The definition of machine learning is that systems are able

to learn knowledge and patterns automatically from experience or existing data without

being explicitly instructed [2]. Empowered by boosting computational capabilities, a fron-

tier machine learning method, deep learning, has achieved recent success and improved

performance surpassing the state of the art in many health domains [3]. Among these,

deep learning technology has attracted increasing attention in diabetes research and has
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been investigated in a rapidly growing number of applications to diabetes management.

Diabetes is a global health problem, defined as a group of lifelong metabolic dis-

orders caused by defective insulin secretion or impaired insulin action. The International

Diabetes Federation estimates that there are 463 million people (95% confidence inter-

val (CI): 369–601 million) living with diabetes in 2019, half of whom, however, remain

undiagnosed, due to the complex pathogenesis of diabetes [4]. The global prevalence of

diabetes is projected to significantly increase in the coming decade. Treating diabetes has

been a heavy burden for national economies, healthcare systems, and personal medical

expenditures, especially for low- and middle-income countries [5]. The majority of people

with diabetes needing exogenous insulin employ the so-called basal-bolus insulin therapy,

which consists of measuring blood glucose (BG) levels and delivering insulin with insulin

pens or insulin pumps [6].

For people with diabetes, especially type 1 diabetes (TID), it is vital to maintain

BG levels in a normal range. Otherwise, hyperglycaemia or hypoglycaemia can cause

short and long-term complications in microvasculature and macrovasculature, including

neuropathy, nephropathy, retinopathy, stroke, cardiovascular disease, and peripheral vas-

cular disease [7]. However, people with diabetes currently face many real-world challenges

and require further improvements in diabetes management systems. First, BG control is

a complex intervention, since there are plenty of daily factors influencing BG levels, such

as meal ingestion, exercise, alcohol, illness, and stress. Self-management, such as timely

BG measurement, insulin, and adherence to recommended lifestyle, is essential, but it

requires multidisciplinary knowledge in clinical practice, which is especially challenging

for children and adolescents [8]. Due to high inter and intra-population variability in the

glucose kinetics process and pharmacokinetics [9], it is difficult to find an optimal thera-

peutic strategy for all people. An end-to-end digital health system with personalised and

intelligent decision-support algorithms is highly desired in diabetes management.

Significant progress has been made in developing continuous glucose monitoring

(CGM) for diabetes care. Utilising a minimally-invasive sensor inserted onto the abdomen

or the arm, CGM automatically measures subcutaneous glucose concentration and con-
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Figure 1.1: Illustration of leveraging data from diabetes management to develop deep
learning-based treatment. A large amount of data is generated and processed by healthcare
providers to develop deep learning algorithms for the new treatments.

verts the raw signals into BG levels with a fixed frequency (e.g. five minutes). CGM has

been demonstrated to reduce the number of severe hypoglycaemic events with multiple

daily injections (MDI) [10] and maternal hyperglycaemia [11], which can be combined

with an insulin pump as sensor-augmented therapy or hybrid closed-loop glycaemic con-

trol [12, 13]. Hybrid closed-loop hormone delivery systems, also known as the artificial

pancreas (AP), have been widely researched, aiming at developing automatic glucose regu-

lation. An AP system employs CGM, a control algorithm, and an insulin pump to deliver

insulin by continuous subcutaneous insulin infusion (CSII), which has been proven to ef-

fectively improve glycaemic control [14]. Smartphone apps to log daily events [15, 16]

and calculate bolus insulin are increasingly being adopted and have successfully reduced

the daily burden associated with diabetes management. There is also an increasing in-

terest in integrating physical activity monitoring through exercise bands to enhance BG

management [17].

The wide use of these wearable devices and digital systems in diabetes management

and the increasing EHRs in clinics have produced a considerable amount of available data.

This current scenario offers tremendous opportunities to apply advanced data-driven AI

methods, especially deep learning, in diabetes research to further improve the treatment

and interventions and reduce the risk of diabetes-related complications for people living
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with diabetes. As depicted in Figure 1.1, a variety of data can be processed by healthcare

providers to develop deep learning algorithms for the new treatments. Compared with

conventional machine learning technology, deep learning allows the input of raw data and

learns representation automatically by exploiting deep neural networks (DNNs), which

require little feature engineering work on data pre-processing [18]. Meanwhile, the granular

physiological measurements generated in daily management meet the data requirement

for deep learning models. Hence, deep learning technology plays a significant role in

developing next-generation treatments for diabetes over the last decade [19].

1.2 Research Objectives

The research in this thesis investigates a wide range of cutting-edge deep learning technol-

ogy and various data features obtained from diabetes cohorts, aiming to make significant

steps towards novel personalised decision-support algorithms, wearable devices, and plat-

forms to enhance management and treatment for people living with diabetes. This thesis

presents a comprehensive set of deep learning-based methods to address clinical challenges

in various scenarios of diabetes management. This thesis also provides complete end-to-

end solutions to bring actual therapeutic benefits to people with diabetes, which include

data processing, algorithm development, and model implementation in clinical settings.

This research is mainly based on BG time series data measured by CGM. Other time series

data include the vital signs obtained by wearable sensor wristband (e.g., Empatica E4) and

basal insulin levels provided by insulin pumps. In addition, diabetes management apps

can provide discrete data of daily events, such as exercise, meal intake and insulin bolus,

that can be aligned with time series data as exogenous inputs. Although the research is

based on a group of T1D datasets collected in multiple clinical trials, many findings can

be generalised to type 2 diabetes (T2D), since more and more people with diabetes, both

T1D and T2D, are adopting CGM that enables ambulatory glucose profiles [20].

The main objectives of this thesis and research questions are summarised as follows:

• Glucose prediction. Can we develop accurate and reliable glucose prediction algo-
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rithms to forecast future BG levels and detect adverse glycaemic events, leveraging

DNNs and real-time data? Does the use of non-invasive physiological data improve

prediction performance?

• Glycaemic control. Can we enhance glycaemic control and maintain BG levels in a

target range by controlling hormone delivery with deep learning and reinforcement

learning methods?

• Synthetic data generation. Is it possible to generate personalised synthetic CGM

data to provide ambulatory glucose profiles and increase training data size for better

performance of deep learning models in glucose prediction?

• Digital health systems. How can we integrate the deep learning algorithms with vari-

ous digital devices and platforms to be used by individuals, clinicians, and healthcare

providers in clinical settings?

1.3 Thesis Structure and Contributions

This thesis is structured into seven chapters. Chapters 3 to 6 present the technical con-

tributions in the order of the aforementioned four research objectives. Figure 1.2 depicts

a roadmap of the thesis and relationships between the chapters. An overview of the re-

maining chapters is presented as follows.

• Chapter 2 introduces the background of diabetes management with various medical

devices for glucose monitoring, insulin delivery, and closed-loop control. Then an

overview of deep learning technology is presented according to different learning

targets and model architectures, which is followed by a systematic literature review

of existing deep learning applications in diabetes management. The challenges and

current trends in this field are discussed.

• Chapter 3 investigates the prediction of BG levels and adverse glycaemic events. A

novel deep learning framework, combing the recent advances of attention mechanism,

evidential deep learning, and meta-learning, is proposed. It achieves the state of the
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Figure 1.2: Thesis structure and relationships between the chapters. The dashed black
arrows indicate the core technology used in each task. The dashed green arrows indicate
potential benefits, and the dashed blue arrows indicate the technology deployment.

art in BG prediction and tackles the clinical challenges of model uncertainty and the

cold-start issue. The process of model development is presented in detail. The model

is evaluated on the three clinical datasets and compared with a group of baseline

methods, using a variety of regression, classification, and clinical metrics. The use

of non-invasive physiological sensor wristband data collected in a previous clinical

trial significantly enhances prediction accuracy.

• Chapter 4 describes the research in glycaemic control using deep learning and rein-

forcement learning. Problem formulation of glycaemic control in terms of reinforce-

ment learning and the settings of in silico simulation are introduced. First, two novel

reinforcement learning algorithms are proposed for single- and dual-hormone (basal

insulin and glucagon) control and meal insulin bolus recommendation, which sig-

nificantly improve glycaemic control in an FDA-approved T1D simulator. Next, an

offline reinforcement learning framework is introduced to enable control algorithms
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to be developed and evaluated on actual clinical datasets.

• Chapter 5 investigates synthetic glucose data generation using a novel deep learning-

based generative model. Employing the conditional inputs of daily entries of meal,

insulin, and self-monitoring blood glucose measurements, the proposed model gen-

erates high-quality glucose time series and achieves the best predictive and discrimi-

native scores in the experiments. As a use case, the training data augmented by the

synthetic data significantly improve the accuracy of three machine learning glucose

predictors for three clinical datasets.

• Chapter 6 presents the integration of deep learning models in actual clinical set-

tings. A customised wristband with a novel low-power and low-cost hardware design

is proposed to interact with CGM, forecast BG levels, and send alerts, using an

embedded deep learning-based BG predictor that outperforms all the considered

baseline methods. Combining edge devices with specifically-designed smartphone,

cloud, and desktop platforms, a novel Internet of Medical Things (IoMT) digital

health framework is proposed to backup data, visualize historical records, train and

fine-tune models, and provide real-time decision support.

• Chapter 7 concludes the thesis by summarising the achievements of this research

and discussing the potential directions of future work.
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Chapter 2

Background

The aim of this chapter is to provide the reader with the multidisciplinary background

of diabetes management and deep learning technology and a systematic literature review

of current efforts. To begin with, Section 2.1 to 2.4 introduce diabetes mellitus, glucose

monitoring systems, insulin delivery modes, and existing digital health systems for dia-

betes care and corresponding medical devices that generate data for the development of

data-driven algorithms. This is followed by an overview of deep learning technology in

Section 2.5, which includes supervised learning, reinforcement learning, and unsupervised

learning as the basis of the technical content in this thesis. The results of the systematic

review on deep learning for diabetes management are presented in Section 2.6 with the

identified challenges and trends described in Section 2.8. The work in this chapter and

Chapter 1 has led to the following journal article:

• T. Zhu, K. Li, P. Herrero, P. Georgiou, “Deep learning for diabetes: A systematic

review,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 7, pp.

2744–2757, 2021.

2.1 Diabetes Mellitus

According to the etiopathology of diabetes, there are three main clinical categories: T1D,

T2D, and gestational diabetes mellitus [21]. Other categories due to specific causes include
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latent autoimmune diabetes of adulthood and maturity-onset diabetes of the young. Due

to the increasing heterogeneity and lack of continuous monitoring, the early diagnosis and

classification of diabetes are often difficult in practice [22]. T2D accounts for about 90%

of people with diabetes, resulting from insulin resistance or insufficient insulin production.

Gestational diabetes mellitus appears during pregnancy and might require lifestyle inter-

ventions and exogenous insulin delivery to prevent complications in the infant. T1D is the

most common form of childhood diabetes [23], which occurs when the insulin-secreting

β-cells of the pancreas are destroyed by the immune system [24].

People with T1D suffer from the absolute insufficiency of endocrine insulin pro-

duced by the pancreatic β-cell, hence they rely on exogenous insulin delivery through

lifelong management. The primary objective of T1D management is to prevent immediate

adverse glycaemic events, including hypoglycaemia and hyperglycaemia, and minimise the

risk of long-term diabetes complications. Severe hypoglycaemia may cause seizures, brain

damage, and intellectual impairment [25], while hyperglycaemia is a risk factor for car-

diovascular diseases, neuropathy, nephropathy and retinopathy [26]. However, intensive

treatment in T1D management can be a challenging task for individuals and families, es-

pecially for young people, which is associated with a high economic cost [27]. Fortunately,

the recent advances in glucose monitoring, insulin therapy, and digital health systems

have significantly relieved this daily burden and enhanced the diabetes-specific quality of

life [28]. The research in this thesis also particularly focuses on T1D management, aiming

to further improve the health and well-being of people with T1D.

2.2 Glucose Monitoring

In general, there are two common glucose monitoring systems in diabetes management:

self-monitoring blood glucose (SMBG) and CGM. SMBG is the most conventional and

widely used method, which requires finger-pricking to obtain capillary blood samples and

uses a BG meter to analyse and report the results [29]. A standard BG meter is a portable

device that detects electrical current signals produced by electrochemical test strips, which

are proportional to BG concentration.
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People with T1D using SMBG tend to finger-prick three to six times per day, but

this is usually not enough to present a comprehensive profile of glucose trajectories and

effectively prevent undesired glycaemic events [30, 31]. To address this challenge, CGM

technology has been developed over the past two decades [32, 33, 34]. CGM might require

periodic calibrations based on SMBG measurements, and the most recent systems come

with factory calibration [35]. A standard CGM system consists of a minimally-invasive

sensor, a non-implanted transmitter, and an external receiver. Using a subcutaneously

inserted sensor under the skin, CGM can measure glucose levels in the interstitial fluid

and estimate plasma glucose. The sensor usually has a lifespan of 7 to 14 days and can

be replaced by the user after use. The transmitter is worn on the skin and attached to

the sensor and sends measurements to the receiver. The receiver can be a customized

portable device or a compatible smartphone to record and visualise BG levels and other

information, such as glucose trends, as well as an insulin pump for feedback on glycaemic

control. Depending on how the transmitter communicates with the receiver, there are

two types of CGM: real-time CGM and intermittently scanned CGM (i.e., flash glucose

monitoring) [36]. Intermittently scanned CGM is usually for newly diagnosed T2D subjects

who do not need intensive treatment. Real-time CGM enables time series glucose data

and real-time alerts of adverse glycaemic events by measuring BG levels in a fixed time

period, e.g., every five minutes, and providing real-time information through a wireless

connection. Real-time CGM systems have been demonstrated to improve HbA1c and

reduce the number of hyperglycaemia and severe hypoglycaemic events [10, 37, 38, 39],

which is recommended in T1D management [39]. Therefore, the sources of glucose data in

this research are based on real-time CGM, which is simply referred to as “CGM” in this

thesis.

2.3 Insulin Delivery and Artificial Pancreas

The standard therapy of insulin replacement in T1D is known as the basal-bolus insulin

regimen [40]. Bolus insulin is administrated at mealtime to compensate for the post-

prandial glucose increase, while basal insulin, referred to as background insulin, aims to
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regulate BG during fasting. This insulin therapy mimics insulin secretion by the pancreas

and can be delivered through either MDI or CSII. People on the MDI regimen are given

one or two daily injections of long-acting insulin as the basal insulin and mealtime fast-

acting insulin as the bolus insulin, and many of them use insulin pens. The amount of

insulin is calculated based on BG measurements and carbohydrate content of meal inges-

tion. Alternatively, CSII involves a wearable insulin pump that delivers fast-acting insulin

to subcutaneous tissue. The insulin pump, which can be either a tethered pump or a

patch pump, continuously provides a small amount of insulin as basal insulin and delivers

meal bolus insulin with a built-in bolus calculator. Compared with conventional MDIs,

CSII has been demonstrated to effectively reduce HbA1c, glycaemic variability, cardiovas-

cular mortality, and the severity and frequency of hypoglycaemia frequency in randomised

controlled clinical trials [41, 42, 43].

Recent improvements in accuracy and reliability of CGM have accelerated the de-

velopment of open-loop systems, also known as sensor-augmented pump (SAP) therapy,

and hybrid closed-loop systems, also known as AP. Compared with SAP, AP has been

shown to decreased hypoglycaemic episodes for various T1D cohorts [44, 45, 46]. An AP

consists of, at least, a CGM sensor, a control algorithm, and an insulin pump. Addition-

ally, a dual-hormone AP system also incorporates a glucagon pump to counter-regulate

the action of insulin [47, 48]. An AP system is described as “hybrid” because the bolus

calculator require manual input of meal content.

Although AP is currently the state of the art in insulin delivery, standard basal-

bolus insulin therapy with a capillary BG meter and MDI through an insulin pen remains

a cost-effective treatment option. In particular, thanks to the wireless connectivity of

these devices to a smartphone, smart pens and smart meters have significantly enhanced

this therapeutic option [49]. The datasets used in this research contain both MDI data

and CSII data.
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2.4 Digital Health Systems in Diabetes Management

In the recent decade, due to the widespread use of smartphones and advances in mobile

health, there is an increasing number of diabetes-related smartphone apps available in

both iOS and Android markets [50]. However, only a small number of these apps have

been evaluated in clinical trials. A few of them have basic decision-support algorithms to

calculate bolus insulin and relieve the burden of intensive treatment. The majority of the

apps are served as basic electronic diaries and data visualisation tools and lack connections

with wearable devices or other diabetes management platforms. Several apps have been

reported to enhance the accuracy of carbohydrate estimation and improve postprandial

BG control, such as GoCARB with image processing technology [51]. A recent review [52]

suggests that, although these smartphone apps could benefit diabetes management in

many ways, the design and functionality should better meet the needs of T1D users to

improve both clinical outcomes and the diabetes-specific quality of life.

IoMT has opened a door to efficient and reliable BG monitoring and glycaemic

control to improve diabetes management [53, 54], leveraging wearable devices and inter-

connections in AP systems, such as CGM, insulin pumps, insulin pens, glucagon pumps,

and physiological wristbands for measuring vital signs (Figure 1.1). In [55], the authors

presented a smart diabetes care system with the hardware implementation of a develop-

ment board and a microcontroller unit to control an insulin pump and transfer health

records to cloud storage. They applied a hash algorithm to provide authenticity for indi-

vidual data and improve the security of the IoMT system. Moreover, Herrero et al. [56]

proposed the Bio-inspired Artificial Pancreas which comprises a customised handheld unit

to implement glycaemic control algorithms on a microcontroller unit and communicate

with CGM, insulin pump, and a dedicated smartphone app via Bluetooth. The cloud

services were provided in the app for remote monitoring. This system was demonstrated

by the UVA/Padova T1D simulator and further validated in a clinical trial [57]. Similar

IoMT-enabled AP systems with cloud services have been reported in the literature, such

as the Bionic pancreas [47] and DiAs system [58]. Considering various security issues ex-

isting in implantable sensors and wireless interconnections, Astillo et al. [59] developed a
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misbehaviour detection system to assess the trustworthiness of the wearable devices in AP

systems, including CGM, controllers, and insulin pumps, and also evaluated the system

in the UVA/Padova T1D simulator.

2.5 Fundamentals of Deep Learning Technology

Among the wide range of techniques and approaches in deep learning, the overview of

popular deep learning methods that are commonly applied to healthcare and, in partic-

ular, in the diabetes field is presented. Deep learning originated from artificial neural

networks (ANNs) inspired by the structure of biological neurons in the brain [60]. A

standard ANN, as depicted in Figure 2.1, comprises a number of nodes and three lay-

ers: input, hidden and output layer, to simulate the neuron behaviours by mathematical

expressions. In general, an ANN gains the perceptions through an iterative training pro-

cess called back-propagation but lacks generalization for supervised tasks [61]. By adding

more hidden layers, deep learning extends the ANN structure to DNNs for better gener-

alization, which extracts data features and learns representations with thousands or even

millions of parameters [62]. The breakthroughs of computational hardware and software

infrastructures largely accelerate the development of deep learning by increasing the size

and depth of DNN models in the recent two decades [60]. Figure 2.1 depicts five popular

DNN architectures employed in diabetes research with the corresponding nodes, cells, and

connections. Popular software frameworks to implement deep learning algorithms include

Theano [63], Caffe [64], TensorFlow [65], CNTK [66], and PyTorch [67]. These frameworks

support various programming languages and hardware acceleration, which help people ef-

ficiently build DNN models. In general, most deep learning algorithms can be divided into

supervised learning, unsupervised learning, and reinforcement learning.

2.5.1 Supervised Learning

Classification and regression are common tasks in supervised learning, for which the la-

belled input data is used during iterative model optimization and backward propaga-

tion [61]. There are three supervised learning-based DNNs found in the literature on
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Deep Neural Networks (DNNs)
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Figure 2.1: Visualization of ANNs and DNNs. DNNs have an increasing number of hid-
den layers embedding variants of neural nodes and cells. Higher-level feature maps are
computed by deep models. There are five popular DNN architectures in diabetes research:
DMLP, CNN, RNN, AE, and RBM.

diabetes: deep multilayer perceptrons (DMLPs), convolutional neural networks (CNNs),

and recurrent neural networks (RNNs). The DMLP, also known as a feed-forward neural

network, uses the simple connections between neurons, i.e. fully connected layers, and

forms the basis of many DNN models. The term “deep” is highlighted to indicate the

modes have deep architectures with more than three layers since multilayer perceptrons

refer to both ANNs and DNNs in some studies. A DMLP is associated with a set of

weight vectors, bias scalars, and nonlinear activation functions, including sigmoid, tanh,

and rectified linear units (ReLU) [60].

Leveraging convolutional layers as preceptors, CNNs can process the signals of

multi-dimensional arrays and achieve superior performance on imaging tasks [68]. A sub-

sampling layer, or pooling layer, is employed in most CNN architectures to aggregate

feature maps. One major advantage of convolutional operations is to reduce the neuron

connections between layers, as depicted in Figure 2.1, which notably enhances the efficiency

of model training through back-propagation. Empowered by the parallelized operations of

graphics processing units and tensor processing units [69], various CNN-based models have

been applied to large-scale imaging recognition tasks, such as ImageNet database [70], and

transformed into industry practices.

Different from other feed-forward neural networks, the input of an RNN contains

the information at the previous timesteps. This feature makes RNNs powerful at process-
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ing sequential signals to capture temporal features. However, the difficulty of vanilla RNNs

lies in the back-propagation training, where the gradient vanishing and exploding prob-

lems are likely to occur [71]. Fortunately, the advanced RNN cells, long short-term mem-

ory (LSTM) [72], and gated recurrent units (GRUs) [73], have overcome these problems

by introducing gate functions and persevering long-term information. These RNN-based

models have provided paradigms in numerous prediction and regression tasks, especially

in natural language processing (NLP) and speech recognition. The latest trend in RNN

is the attention mechanism [74], which allows models to focus on certain parts of input

sequences and map the dependencies regardless of the distances. Chapter 3 focuses on

supervised learning techniques, especially RNNs for BG prediction.

2.5.2 Reinforcement Learning

Deep reinforcement learning (DRL) surpasses human professionals in a variety of control

problems with high-dimensional environments, where DNNs are employed as the approx-

imators of policy function, value function, or system models. DRL has achieved expert-

level control in a number of complex tasks with a high-dimensional environment, such as

robotics [75], the game of Go [76], drug design [77], and even nuclear fusion [78]. In gen-

eral, according to the ways to find optimal control behaviours, DRL can be divided into

model-free and model-based approaches. Model-based DRL understands the environment

and plans future actions by learning a model from interaction transitions or accessing tran-

sition probability distribution. Model-free DRL approaches learn goal-directed behaviours

through a trial and error process without the need to model transition probability distri-

bution [79], which optimise control behaviours with a wide range of techniques, such as

Q-learning [80] and advantage function. Both model-based and model-free approaches can

be developed by policy-based, value-based (i.e., implicit policy), or actor-critic methods,

depending on whether the representation of value or policy is built or not.

On-policy learning means the transitions used in the learning process are based on

current policy, while off-policy learning can be performed with historical transitions based

on previous policy, such as replay memory. Online learning is based on a dynamic dataset,
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where the old transitions will be immediately discarded or replaced by new transitions

in general settings. Offline learning means the algorithms optimise policy with a fixed

historical dataset. In most clinical tasks, offline and off-policy DRL is preferred since

it does not rely on real-time interactions or explorations, which is safe and inexpensive.

Fortunately, the advances of in silico trials enable a simulated environment of people

with T1D diabetes to develop DRL algorithms. For instance, the UVA/Padova T1D

simulator, developed by the University of Virginia (US) and the University of Padova

(Italy), is a glucose-insulin dynamics simulator that has been accepted by the Food and

Drug Administration (FDA) for pre-clinical studies [81]. Chapter 4 is based on DRL

techniques for glycaemic control.

2.5.3 Unsupervised Learning

In unsupervised learning, predefined labels or classes of inputs are not required for the

model training. In this context, the algorithm aims at inferring the hidden structures

and representations from input datasets without supervision. Unsupervised learning is a

powerful tool for data pre-processing, cluster analysis, density estimation, and dimension

reduction. The autoencoder (AE) and the restricted Boltzmann machine (RBM) are the

two basic architectures. The key feature of AEs is that their training targets are the same

as inputs. Latent representations of the input are first transformed by an encoder and then

fed to a decoder for reconstruction at the output. An RBM is another approach to mapping

the representations by estimating probabilistic distribution over the input data, and thus

it is also regarded as a generative model. Compared with standard Boltzmann machines,

RBMs only allow the neuron connections that form a bipartite graph, to accelerate training

processes. By stacking multiple RBMs, deep belief networks (DBNs) or deep Boltzmann

machines can be constructed [82]. In most cases, DBNs are used as feature detectors to

extract representations from data by unsupervised learning. However, supervised learning

can be further performed to fine-tune the network weights and improve performance for

certain learning tasks [83].

A recent breakthrough in unsupervised learning is the generative adversarial net-
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work (GAN). A GAN consists of at least two DNNs acting as the generator and discrim-

inator, which are trained in an adversarial process [84]. GANs have been widely used

to generate synthetic image data to improve deep learning models for computer vision

tasks [85] and have attracted recent attention in time series data generation. Chapter 5

presents a GAN-based framework to generate synthetic BG data.

2.6 Systematic Review on Deep Learning in Diabetes Man-

agement

Aiming at identifying and analyzing the benefits of deep learning within diabetes research,

we conducted a systematic review by searching multiple public online databases, including

PubMed, DBLP Computer Science Bibliography, and IEEEXplore. PubMed is a reputable

database for biomedical and clinical research, while DBLP contains millions of publications

in the field of computer science. IEEE Xplore is a digital library that covers studies in

engineering and allied fields. All three databases provide free and open-access search

engines or interfaces without requiring institutional subscriptions like other databases

(e.g. Ovid, Scopus, and Web of Science). Therefore, to facilitate the reproducibility of

the search results, we have chosen open-access search engines. The initial search based

on titles, abstracts, and metadata was performed between April 5 and May 1, 2020, at

the beginning of the research in this thesis. We restricted the search to English-language

documents that were published between January 1, 2016 and March 31, 2020 (first quarter,

Q1), aiming to identify research gaps, and followed preferred reporting items for systematic

review and meta-analyses approach [86], as shown in Figure 2.2. Table 2.1 and 2.2 show

the selected articles.

Aiming to provide an up-to-date literature review, we further performed a literature

search to include the articles published between March 31, 2020, and September 1, 2022,

and present them in Table 2.3 and 2.4. The discussion of the latest literature and related

work are provided in the introduction sections of the remaining chapters.
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Figure 2.2: Selection process of the preferred reporting items for systematic review and
meta-analyses.

2.6.1 Search Strategies

In the literature search, the keywords “diabetes”, “glucose” and “artificial pancreas” were

combined with the deep learning terms using Boolean operators AND/OR. The specific

query searched was: ((diabetes OR glucose OR artificial pancreas) AND (deep learning OR

deep neural network OR convolution neural network OR convolutional neural network OR

recurrent neural network OR LSTM OR autoencoder OR Boltzmann machine OR deep

belief network)). After obtaining the results of an initial collection of relevant articles,

we first excluded duplicated articles from different sources and then performed a manual

inspection to evaluate the remaining based on inclusion criteria.

2.6.2 Inclusion and Exclusion Criteria

The studies included in this review are original and available full-text, focusing on deep

learning applications in diabetes. The final collection of articles was organised into three

categories based on the clinical application: diagnosis of diabetes, glucose management,

and diagnosis of complications. Particularly, the included studies were expected to:



42 Chapter 2

• present the details of datasets and data processing

• explicitly describe methods, e.g., the structure of DNNs

• evaluate model performance with standard metrics.

It should be noted that the application of diabetic retinopathy accounts for a large

portion of the literature. Thus, in this area, we selected the works presenting DNN results

of high originality, or large-scale clinical datasets. Abstracts, posters, technique reports,

and reviews were excluded.

2.6.3 Information Extraction

From the selected collection of articles, we inspected the full-text and extracted key infor-

mation to assess the deep learning applications. The following pre-defined categories were

used to present the selected studies.

• Cases: We first summarised the specific application cases, i.e. scenarios, of the

selected studies to identify the target of each work. For the studies with the available

information on the types of diabetes, we have indicated them with † and ‡ for T1D

and T2D, respectively.

• Models: We present an overview of model architectures which includes a variety of

DNN layers and the popular configurations, as mentioned in Section 2.5. The details

of hybrid structures and ensemble techniques are also included.

• Data Sources: The source of input data is an essential factor for deep learning

models. Many studies use more than one dataset, including public and private

datasets, to validate the generalization of DNN models. Thus, this category sum-

marises the information regarding the employed datasets, e.g. sources, types, and

formats. To facilitate future research to address the issues of data availability, we

have highlighted the publicly available datasets with ⋆.

• Development Process: This category summarises the strategies for developing
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deep learning models, including pre-processing, training, validation, and testing.

Although deep learning is good at extracting representations from raw data, these

development steps need to be carefully designed, which impact on the functionality

and reproducibility of the models.

• Main Outcomes: The major outcomes with the corresponding metrics and criteria

for performance evaluation, are included in this category. Some of the employed

metrics in diabetes and complication diagnosis are sensitivity, specificity, and area

under the curve (AUC); and root mean square error (RMSE) and time in range

(TIR) is common in glucose management. The results are consistent with the goals

in the Cases category.

• Baselines: In most selected studies, the authors implemented various baseline

methods to compare with the performance of DNN algorithms. Many conventional

statistic and machine learning methods are collected in this category, including lo-

gistic regression (LR), autoregression (AR), autoregressive integrated moving av-

erage (ARIMA), supporting vector machines (SVMs), supporting vector regression

(SVR), random forests (RFs), naive Bayes (NB), k-nearest neighbours (KNN), la-

tent variable-based statistical model (LVX), principal component analysis (PCA),

and decision trees (DTs). The best performance achieved by the baselines is also

presented for the purpose of comparison using the metrics that are consistent with

the Main Outcomes category.

• Limitations: As a review for an emerging methodology such as deep learning, this

category collects the limitations that were identified for the selected studies, which

could inspire future work.

2.7 Literature Summary

The initial search yielded a total of 610 papers (PubMed (307), DBLP (31), and IEEE

Xplore (272)), as shown in Figure 2.2. After removing the duplicates, 362 papers remained.

Then the papers were screened by the inclusion and exclusion criteria. We manually
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Figure 2.3: Number of articles included in the collection is grouped by the year of publi-
cation and application field. The orange dashed line indicates the number of citations in
each year.

assessed the eligibility of the remaining papers by full-text inspection and included 40

papers in the final collection. Based on the application scenarios, we divided the final

collection into three categories: diagnosis of diabetes (n = 11), glucose management (i.e.,

diabetes management) (n = 14), and diagnosis of complications (n = 15). As shown in

Figure 2.3, most of the selected papers were published in recent years, which indicates

that deep learning research for diabetes is a fairly new topic, and its interest has been

accelerating. In addition, we also calculated and plotted the number of citations of the

selected papers in October 2020, according to Google Scholar. The literature review on

glucose management is presented in this chapter (Table 2.1 and 2.2), which is the most

relevant to this thesis, while the reviews on the diagnosis of diabetes and diabetes-related

complications are presented in Appendix A (Table A.1 and A.2).

The goal of diabetes management is to keep BG levels in the euglycaemia region

and avoid undesired glycaemic events (i.e. hypoglycaemia and hyperglycaemia), which

can be differentiated: BG prediction, insulin delivery control, and daily-life decision sup-

port. Among these, BG level prediction has attracted increasing attention in recent years.

An accurate BG prediction enables early interventions to prevent BG anomalies (i.e. hy-

poglycaemia and hyperglycaemia) and assists SAP therapy (e.g. predictive low-glucose

management (PLGM)) and AP systems (e.g. model predictive control) to deliver optimal

insulin and/or glucagon doses. The use of smartphone apps allows people to report the
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Table 2.1: Literature review on deep learning in diabetes management (Part I)

Ref. Cases Models Data Sources Development Process Main Outcomes Baselines

[87]
Detect
hypo†

DBN by
stacking
RBMs

15 T1D
children
monitored for
10-hour
overnight

Calculating QT correlation
and heart rate; training
and testing data: 10 and 5
subjects

Sensitivity:
79.70%,
specificity:
50.00%

DBN by
ANNs
(76.28%,
50.40%),
multiple
regression

[88]
Predict
BG
levels†

LSTM and a
linear layer

A clinical
database with
the T1D data
over 1600 days

Pre-training; linear
interpolation; training and
testing data: 5 patients in
400 days, another 5
patients with 200 samples

RMSE for 30,
60-min PH: 21.4,
38.0 mg/dL

ARIMA, EPM
with SVR
(21.6, 39.2
mg/dL)

[89]
Predict
BG
levels†

LSTM,
Bidirec-
tional
LSTM and
3 FC layers

(1) GoCarb
dataset (20
adults) [90], (2)
UVA/Padova
T1D simulator
(11 adults) [81]

Pre-training on (2); linear
interpolation on (1);
cross-validation (67%,
33%); testing data: 26
sub-dataset from (1),
1791±141 CGM samples

RMSE for 30,
45, 60-min PH:
11.63, 21.75,
36.92 mg/dL

ARIMA, SVR
(11.69, 22.14,
37.42 mg/dL)

[91]
Predict
BG
levels†

Deep
sequential
polynomial
model
(RNN)

40 T1D
subjects over
1900 days

The ratio of
training,validation and
testing data: 85%, 7.5%
and 7.5% from 555,000
CGM samples

Absolute
percentage error
for 30-min PH:
4.87

Linear
extrapolation,
RF,
RNN(LSTM,
5.3)

[92]
Glycaemic
control†

CNN
(Inception-
v3)

Food-101
dataset (101
classes, 101,000
images) [93]⋆

Image augmentation;
pre-training on ImageNet
dataset; training and
testing data: 75,750,
25,250 images

TIR: 91.76%,
top-1 accuracy
of the image
classification:
81.65%

Standard
controller in
UVA/Padova
T1D simulator
(TIR: 78.8%)

[94]
Predict
BG
levels‡

LSTM with
dynamic
time
warping

A dataset from
a randomized
trial (26 adults,
smartphone
group (n =
11))] [95]

Pre-processing; TL;
min-max normalization
across patients; training,
validation and testing
data: CGM samples of
120, 30 and 30days

Clark Error
Grid zones of
next-day PH (A:
84.12, B: 15.16,
C: 0, D: 0.72, E:
0)%

ANN, KNN,
ridge
regression (A:
83.03%),
kernel ridge
regression,
moving
average

[96]
Predict
BG
levels†

CNN,
LSTM and
2 FC layers

(1)UVA/Padova
T1D simulator
(10 adults) [81],
(2) 10 clinical
subjects

Using Gaussian filter to
remove outliers; training
and testing data: 50% and
50%

RMSE for 30,
60-min PH: 9.38,
18.87 (1); 21.07,
33.27 (2) mg/dL

SVR (22.00,
34.35 (2)),
LVX, neural
network, AR

[97]
Predict
BG
levels†

LSTM and
a FC layer

RT CGM
dataset (the
population of
451
patients) [98]⋆

Removing sequences with
low quality; Tikhonov
regularization; training and
testing data: 304,450 and
94128 samples

RMSE for 30,
45, 60-min PH:
19.47, 26.47,
32.38 mg/dL

AR, ANN,
standard
RNN,
non-linear AR
(24.66, 32.33,
38.58 mg/dL)

[99]
Predict
BG
levels†

Memory-
Augmented
LSTM with
neural
attention
weights

(1) OhioT1DM
dataset [100]⋆,
(2)AIDA
Simulator,
(3)UVA/Padova
T1D
simulator [81]

Pre-training; linear
interpolation and
extrapolation; testing,
validation and training
data: last 10 days,
previous 10 days, rest days
(1); 400, 100, and 100 days
(2); 70, 10 and 10 days (3)

RMSE for 30,
60-min PH:
18.74, 30.63 (1);
1.23, 2.27 (2);
2.93, 4.92 (3)
with input of
CGM, insulin
and meal events

ARIMA
(20.17, 33.47
(1); 5.59,
16.48 (2);
12.00, 18.66
(3))

† T1D, ‡ T2D, ⋆ publicly available dataset
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Table 2.2: Literature review on deep learning in diabetes management (Part I cont.)

Ref. Cases Models Data Sources Development Process Main Outcomes Baselines

[101]
Predict
BG
levels†

Dilated
CNN
(residual
and parame-
terized skip
connections)

(1)
UVA/Padova
T1D
simulator [81],
(2) ABC4D
dataset, (3)
OhioT1DM
dataset [100]⋆

Ruling out outliers; inter-
polation/extrapolation;
label transformation;
training, validation and
testing set: 45%, 5%, 50%
(1, 2); 40 and days (3)

RMSE for 30,
60-min PH:
8.88, 19.90 (1);
19.19, 31.78 (2);
19.28, 31.83 (3)

SVR (21.75,
34.31 (3)),
LVX (12.25,
22.41 (1)),
neural
network
(20.42, 33.13
(2)), AR

[102]
Glycaemic
control†

Deep
Q-network
with GRU
or 1-D CNN

UVA/Padova
simulator (30
virtual
subjects) [103]

Using CGM and insulin
data in past 24 hours as
the states, action setting:
{0, basal rate, 5*basal
rate}; testing in 10 days

Average risk
index for the
virtual subject:
9.26

Proportional-
integral-
derivative
control (11.80)

[104]
Predict
BG
levels†

2 branches
of LSTM
cells (past
and future
information)

(1)
UVA/Padova
T1D simulator
(100
adults) [81], (2)
Padova clinical
dataset (1
patient) [105]

Min-max normalization;
output filtering in (2);
training data: four-day
protocol (1), testing data:
3-day scenario and in vivo
data over a month (2)

Average RMSE
for PH of 60
minutes: 11.72
(1), 21.09 (2)

Linearized
average model
(46.82 (2)),
daily model
predictor

[106]
Predict
HbA1c†

1-D CNN,
Inception
module, FC
layers

A clinical
dataset (759
T1D subjects,
1543
observations)

Behavioral feature
extraction; manual feature
extraction; 10-fold
cross-validation; batch
normalization; loss
regularization

Mean absolute
error: 4.80, the
coefficient of
determination:
0.71

Nathan’s
formula, CNN
(5.98, 0.62),
manual
features
extraction
network

[107]
Predict
BG
levels†

LSTM and
2 FC layers

OhioT1DM
dataset [100]⋆

Scaling glucose values by
0.01; the ratio of training,
validation and testing
data: 60%, 20% and 20%

RMSE for 30,
60-min PH:
18.867, 31.403

Previous work
with machine
learning

† T1D, ‡ T2D, ⋆ publicly available dataset
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Table 2.3: Literature review on deep learning in diabetes management (Part II)

Ref. Cases Models Data Sources Development Process Main Outcomes Baselines

[108]
Predict
BG
levels†

LSTM and
a FC layer

(1) OpenAPS
data (55 partic-
ipants) [109],
(2) OhioT1DM
dataset [100]⋆

Removing outliers; linear
interpolation and median
filtering (training); linear
extrapolation (testing)

RMSE for
30-min PH: ;
14.53 (1); 19.12
(2) mg/dL

LR (15.33(1),
19.59 (2)),
SVR, RF,
ARIMA

[110]
Glycaemic
control‡

CNN and
FC layers

In silico data
simulated by
Medtronic
virtual patient
model [111]

Engineered features and
plasma glucose
measurements; 43740
adherent days and 43740
nonadherent dayas

Accuracy: 79.8%
LR (78.6%),
ANN

[112]
Predict
BG
levels†‡

CNN with
adversarial
TL

(1) IDIAB
dataset (T2D),
(2) OhioT1DM
dataset [100]⋆,
(3) T1DMS
dataset [81]

Standardization; linear
interpolation and
extrapolation; training,
validation data (80%,
20%); testing data (5 days
(1), 10 days (3))

RMSE for
30-min PH:
19.61 (1); 19.45
(2) mg/dL

SVR (20.32
(1), 20.10 (2)
mg/dL)

[113]
Glycaemic
control†

N-BEATS
OhioT1DM
dataset [100]⋆

Meal correction; linear
interpolation; sample
filtering

RMSE for cards
recommenda-
tion: 9.79;
bolus: 0.85

LSTM (11.15,
1.02)

[114]
Predict
BG
levels†‡

GRU, CNN,
and
Transformer
with TL

(1) Beth Israel
Deaconess
Medical Center
(40 T2D
outpatients) (2)
OhioT1DM
dataset [100]⋆

Pre-training; data
augmentation;
leave-one-out
cross-validation

RMSE for 30
and 60-min PH:
19.08, 33.80 (2)
mg/dL

LSTM with
attention
(18.82, 31.10
(2) mg/dL)

[115]
Glycaemic
control‡

Double deep
Q-network

Singapore
Health Services
Diabetes
Registry
(189,520 T1D
subjects) [116]

Training, testing data
(80%, 20%); 49-dimension
state vector; prioritized
experience replay;

Model-
concordant
treatments:
better control
(OR 1.73, 95%
CI 1.69-1.76)%

Model-
nonconcordant
treatments

[117]
Predict
BG
levels†

CNN and
LSTM with
multitask
learning

OhioT1DM
dataset [100]⋆

Two-hour sliding window;
Linear interpolation and
extrapolation

RMSE for 30,
60-min PH: 18.8,
31.8 mg/dL

SVR (19.2,
32.6)

[118]
Predict
BG
levels†‡

CNN

Samsung
Medical Center
(1,114
subjects) [119]

Min-max normalization;
training, validation, and
testing data (64%, 16%,
20%)

RMSE for 30,
60-min PH: 17.8,
28.1 (T1D);
17.2, 27.7 (T2D)
mg/dL

RF (18.6, 29.2
(T1D); 17.7,
28.6 (T2D))

[120]
Predict
BG
levels†

Dilated
CNN

Tidepool Big
Data (97 T1D
subjects) [121]

Piecewise cubic
interpolation; Average
lengths of training and
testing data: 143, 25 days

RMSE for
30-min PH: 23.2
mg/dL

Kernel ridge
regression
(25.77),
Gaussian
process

† T1D, ‡ T2D, ⋆ publicly available dataset
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Table 2.4: Literature review on deep learning in diabetes management (Part II cont.)

Ref. Cases Models Data Sources Development Process Main Outcomes Baselines

[122]
Predict
BG
levels†

Vanilla
LSTM with
ensembles

OhioT1DM
dataset [100]⋆

Linear extrapolation;
training, validation data:
80%, 20%

RMSE for 30,
60-min PH:
19.83, 34.21
mg/dL

LR (19.85,
33.63)

[123]
Synthetic
data†

Generative
adversarial
network

Hospital clinic
of
Barcelona [124],
OhioT1DM
dataset [100]

Linear interpolation; data
reshaping; data
augmentation for
hypoglycaemia prediction

Sensitivity:
69%, specificity:
79%

Previous work
on machine
learning for
hypoglycaemia
prediction

[125]
Glycaemic
control†

Proximal
policy
optimization
with LSTM

UVA/Padova
simulator (30
virtual
subjects) [103]

Current CGM as state;
blood glucose risk index
rewards; insulin action
between 0 to 30 units

Smallest risk
index,
euglycemia is
maintained in
73%

Basal-bolus
and PID
control

† T1D, ‡ T2D, ⋆ publicly available dataset

exogenous events that influence BG levels. By temporally aligning CGM measurements

with these self-reported events, such as meal composition and insulin dosage, a multi-

variate time series can be formed and processed by deep learning models. Normally, the

prediction horizon (PH) for short and long-term forecasting is 30 minutes and greater than

60 minutes respectively. In this scenario, the RNN-based architecture is a powerful tool,

referring to its success in temporal sequence processing and regression. Augmented by

LSTM cells, the RNN is the most widely used method for glucose prediction in Table 2.1.

Mirshekarian et al. proposed an LSTM model for 30 and 60-minute prediction, which out-

performs the engineered physiological model (EPM) with SVR [88]. EPM is a continuous

dynamic model used to calculate the system states, which comprises the compartments

of meal absorption dynamics, insulin absorption dynamics, and glucose-insulin dynamics.

They further introduced a neural attention layer to emulate the case-based prediction by

a memory module [99].

In addition, Li et al. transferred the prediction into a classification problem and

used 1-D dilated CNNs in their GluNet framework to classify the predictive changes of

future BG values [101]. The study tested the model on the two clinical datasets. The

use of dilated DNNs to improve the BG prediction is also highlighted in [126, 127, 128].

Similarly, Zaitcev et al. employed 1-D CNNs with the Inception module to estimate HbA1c

from imperfect time series of CGM [106]. An important consideration for BG prediction is
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whether the algorithm can be applied in real time. In this regard, the deep learning models

based on CNN and LSTM layers have been validated in smartphone apps to perform real-

time BG prediction with short inference time and small memory consumption [96, 101].

Another application of CNNs is to estimate macronutrient content as a daily-life

support [92]. The trained CNN model can predict the food category based on the food

images from smartphones and then assist decision support systems and AP systems to

compute the required amount of meal bolus insulin. The proposed algorithm was vali-

dated in the UVA/Padova T1D simulator with the disturbances of carbohydrate content

and incorrect estimation of meal sizes. In recent years, many research groups use computer

simulation, i.e. in silico setup, to test algorithms in various virtual scenarios, considering

the high costs and safety concerns associated to actual clinical trials in humans and ani-

mals. Fox et al. used the UVA/Padova T1D simulator to test DRL algorithms to control

the delivery of basal insulin, using GRU and 1-D CNN architectures.

Notably, although many of the studies conducted experiments on their proprietary

clinical datasets, there are two datasets publicly available to researchers, the OhioT1DM

dataset and the RT CGM dataset. The OhioT1DM dataset was released for the first

edition of the BG level prediction challenge in 2018 and later updated for the 2020 edi-

tion [100]. It contains multi-modal data with a total of 20 data fields corresponding to 12

subjects with T1D over eight weeks. Among these, BG levels were the most important

feature and were recorded by Medtronic Enlite CGM every five minutes. Self-reported

events recorded by a smartphone app, including carbohydrate estimate for meal intake,

insulin bolus amount, and duration and intensity of exercise, were widely used in the se-

lected articles and can be combined with CGM data for multivariate time series input.

Other physiological data were measured by the Basis Peak band or Empatica Embrace

band and aggregated every five minutes. In the RT CGM dataset, only CGM is available,

corresponding to 451 subjects with T1D over 26 weeks. There are unavoidable errors in

real-world data. The sources of errors in recent CGM systems (e.g., Dexcom G6) include

the conversion of interstitial measurements into the vascular space, imperfect calibration,

and random measurement noise [129]. The mean absolute percentage deviation between
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CGM and a BG meter is typically around 5-10%. Manual data entry errors, such as miss-

ing input and misestimation, are inevitable in self-reported events. Meal carbohydrates

are often underestimated by around 20% of total carbohydrate content [130]. To this

end, the UVA/Padova T1D simulator [81, 103] is frequently employed to generate syn-

thetic population datasets for additional validation, which can provide CGM, meal, and

insulin data. The users are allowed to control the aforementioned errors by adjusting the

parameters of the models that simulate medical devices and daily scenarios.

Furthermore, an unsupervised learning algorithm based on DBNs, and taking ECG

signals as input, was employed to detect hypoglycaemia in children with T1D [87]. Sim-

ilarly, in a recent study, ECGs were used to detect nocturnal hypoglycaemia in healthy

individuals with a CNN-LSTM model [131].

2.8 Challenges and Current Trends

Although deep learning has improved the state of the art in several areas of diabetes, the

applications in healthcare systems need to be robust, reliable, and convincing to avoid

safety issues and provide effective therapeutic aids. In this context, there remain several

limitations and challenges for deep learning to be further introduced in actual clinical

settings. Two main limitations identified from the selected articles are summarised as

follows.

• Model issues: The model uncertainty represents the confidence of model outputs

and indicates whether the decisions made by the model are reliable and safe in

healthcare settings [132]. Interpretability, i.e. explainability, stands for how the

model obtains the corresponding output based on a set of inputs. In many cases,

deep learning models are regarded as “black boxes” with a lack of model transparency

due to complex nonlinear layersa [96]. As a consequence, if the model performance

degrades in certain circumstances, it might be difficult to explain why. It is also

challenging to implement increasingly complex models on current medical devices

and platforms. Solving these issues is an important goal for AI in healthcare to
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convince clinicians to adopt such systems.

• Data issues: Training a deep model for complicated tasks requires a high volume

of data [94, 107]. Collecting data from people with diabetes is often time-consuming

and expensive, compared to other tasks in computer vision and NLP. Consequently,

many studies face a shortage of data during their research cycles. The variability

among people with diabetes is largely due to complex glucose dynamics. To obtain

better generalization for deep learning models, the training data needs to cover a

diverse range of individuals, such as people of different ages and comorbidities [87,

92, 94, 97, 106]. However, many datasets are often collected from a specific cohort of

people, which lacks diversity and could bring bias to learning. Similar to many other

problems in healthcare, most diabetes datasets are heterogeneous, sparse, and noisy

with some missing values [94, 101, 102, 106, 107]. It is not realistic to collect perfect

data from either clinical practice or daily self-management, e.g., the unavoidable

errors from CGM sensors.

In real-world scenarios, the data collected from people with diabetes are prone to

be imperfect, due to human errors and sensor artifacts. The process to collect real data is

sometimes expensive and time-consuming. Due to data privacy policies, sharing datasets

among research teams is sometimes difficult. These factors lead to many studies employing

a reduced, sometimes insufficient, amount of data. Another challenge that arises due to the

complexity of glucose dynamics is how to process the available data in order to characterise

people with diabetes. Also, deep learning models lack transparency. From the perspective

of clinicians, why the models produce the output for a certain input case and whether

the output can be trusted or not are important, particularly for some critical decision-

making applications. The complicated structures in DNN layers can effectively learn the

patterns from non-linear signals but reduce the interpretability the model. The introduced

challenges not only apply to the field of diabetes but also are valid in other health domains.

Fortunately, the recent development in both diabetes care and deep learning can provide

new solutions to meet these challenges.

First, digital records and vital signs are increasingly collected by multi-modal sys-
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tems with wearables and smartphone apps. Most of these data are conveniently uploaded

to centralised systems or cloud repositories. With the popularisation of IoMT and 5G net-

works, data volumes and variability of data sources are expected to significantly increase

in many healthcare applications, and in particular, in diabetes care. As the data volume

expands, many low-quality data samples can be filtered out and removed from training

sets, and the advances in wearables (e.g. CGM) can effectively reduce measurement er-

rors. Deep learning is well adapted to cope with such an increase in data availability.

Several publicly available datasets are outlined above, and more datasets will be shared

in the communities after proper post-processing and anonymisation. In order to deploy

deep learning in an ambulatory setting, the software frameworks mentioned in Section 2.5

can be easily ported to mobile devices by using tools such as TensorFlow Lite [96, 101].To

interpret deep learning technology in healthcare, many recent attempts in the AI domain

have been made to enhance model transparency and understand model functionality. In

particular, a unified framework, the Shapely additive explanations, was proposed to ex-

plain the input features that contribute to the final output, which has been validated in

many data-driven healthcare applications [133]. This is also an effective method to select

input features by ranking their importance.

Instead of solely using data-driven models, integrating the expert knowledge in the

learning process can help to better understand the underlying mechanisms of a health

condition, such as diabetes. Specifically, there are two feasible methods. One is to incor-

porate the physiological parameters as the input feature of the models, and the other is

to use expert knowledge as a guide during the training process. Expert knowledge is also

essential to craft safety constrains and calculate the confidence of the model outputs.

Training a very deep model from scratch is time-consuming since millions of pa-

rameters in the DNN units need to be tuned. In this regard, an approach called transfer

learning (TL), i.e. pre-training, provides a shortcut to solve this issue. In the tasks of BG

prediction, the in silico datasets derived from the simulators and a portion of real clinical

data are used for pre-training [88, 89, 99]. It is an effective method to mitigate the high

demand for data during the DNN training. Alternatively, data augmentation is a way to
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improve model performance with limited data [114].

In this research, we addressed the aforementioned challenges as follows. For the

model issues, Chapter 3 provides theoretically-supported upper and lower bounds to indi-

cate model uncertainty and corresponding confidence intervals, while a customised wrist-

band and a smartphone app are proposed in Chapter 6 for model implementation. To

train a deep learning model with limited data, we present a meta-learning framework

in Chapter 3 to enable few-shot learning in personalised BG prediction, and Chapter 4

uses a TL framework to generalise the glycaemic control algorithms from T1D simulators

to clinical settings with a small number of interactions. Chapter 5 further introduces a

GAN-based framework to generate synthetic BG time series to increase the amount of

personalised data.

2.9 Conclusion

This chapter provided an overview of the clinical settings in diabetes management and the

fundamentals of deep learning technology. After performing a rigorous search to select a

collection of articles and summarise the key information, we presented a comprehensive

systematic review of the current trends in deep learning technology for diabetes manage-

ment. A significant number of deep learning methods have been adopted by the diabetes

research community, covering various DNN architectures that outperformed previous con-

ventional machine learning approaches. Moreover, challenges in medical data and deep

learning models have been identified in the literature.

Deep learning is a hotspot in the era of AI, and it is worth noting that most of the

selected papers are publications from the recent years (Figure 2.3), which indicates that

this is an emerging technology. Hence, there is great potential to meet the aforementioned

challenges and improve the current applications by transferring the latest advances in deep

learning into massive multi-modal data on diabetes management, as one of the objectives

of this thesis. It is observed that most of the existing studies focused on BG prediction.

Therefore, this thesis also aims to develop novel deep learning-based methods and address
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practical considerations in other clinical scenarios of diabetes management. We expect

that deep learning technology will bring actual therapeutic benefits and largely improve

the treatment for people living with diabetes.
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Chapter 3

Deep Learning for Personalised

Blood Glucose Prediction

The availability of large amounts of data from CGM, together with the latest advances

in deep learning technology, has opened the door to a new paradigm of algorithm de-

sign for personalised BG prediction in T1D with superior performance. However, several

challenges prevent the widespread implementation of deep learning algorithms in actual

clinical settings, including unclear prediction confidence and limited training data for new

T1D subjects, as identified in the previous chapter (Section 2.8). To this end, a novel deep

learning framework, Fast-adaptive and Confident Neural Network (FCNN), is proposed in

this chapter. The proposed framework is first validated on the OhioT1DM, ARISES, and

ABC4D datasets with standard input data of CGM and self-reported events. FCNN sig-

nificantly improved prediction performance for 30 and 60-minute PHs in the experiments

and successfully addressed the aforementioned challenges.

The rest of this chapter investigates the efficacy of non-invasive wristband sen-

sor data available in the ARISES dataset collected in a six-week longitudinal clinical

study. Several significant associations between wristband sensor data and adverse gly-

caemic events are identified in statistical analysis. We proceed to develop a prediction

model based on the FCNN framework, which utilises multi-modal data from CGM, a

smartphone app, and the sensor wristband to predict glucose levels and hypo- and hy-
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perglycaemia. When compared with baseline methods, the proposed algorithm achieved

the smallest error for predicting glucose levels and detecting hypoglycaemia and hyper-

glycaemia. The work in this chapter has led to the following journal articles:

• T. Zhu, K. Li, P. Herrero, P. Georgiou, “Personalized blood glucose prediction for

type 1 diabetes using evidential deep learning and meta-learning,” IEEE Transac-

tions on Biomedical Engineering, 2022.

• T. Zhu, C. Uduku, K. Li, P. Herrero, N. Oliver, P. Georgiou, ” Enhancing self-

management in type 1 diabetes with wearables and deep learning”, npj Digital

Medicine, vol. 5, no. 1, p. 78, 2022.

3.1 Introduction

Accurate BG prediction is a valuable tool for enhancing decision support systems in dia-

betes care, which aims to mitigate these adverse glycaemic events and reduce the burdens

on people living with diabetes. In particular, BG prediction enables proactive interven-

tions, such as glucose alerts in CGM and the PLGM with basal insulin suspension in SAP

or AP systems [134]. CGM allows for real-time tracking of BG levels and has been verified

as an effective device for BG control in T1D management [33, 34]. There is a rising trend

of connecting CGM with smartphone apps to display retrospective BG trajectories and

allow users to record daily events (e.g. meals, insulin doses, exercise) that have an impact

on glucose levels. The wide use of CGM and mobile apps has produced a large amount

of data, which enables the development of data-driven BG prediction [135, 136, 137], es-

pecially machine learning algorithms. Among these, empowered by DNNs, deep learning

algorithms have achieved superior performance [19, 126, 127]. The accuracy of BG predic-

tion is essential to decision making in clinical settings. In this regard, a common method

to evaluate clinical accuracy is error grid analysis (Section 3.4), e.g., Clark error grid

(CEG) [138]. CEG shows a scatter plot of ground truth versus predictions and divides

the grid into five zones. The diagonal stands for perfect predictions, while values in the A

and B zones are clinically acceptable and would not lead to inappropriate treatment. For
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a CGM sensor measuring BG levels every five minutes, a 1% increase in A and B zones

can avoid approximately three inappropriate interventions per day. Therefore, more than

95% of predictions within A and B zones are needed. In addition, BG predictions with low

RMSE can benefit AP systems using predictive control algorithms that calculate insulin

doses based on the predictive value at each timestep [139].

Although deep learning approaches have improved the BG prediction accuracy,

there are still many challenges in translating these models into clinical settings (Section 2.8

in Chapter 2). According to feedback from clinicians and clinical outcomes reported in

previous studies [3, 19, 140], we identified two clinical challenges that are most significant:

• Confidence: A primary concern is whether the provided prediction is reliable

enough, and what level of confidence can be given to it.

• Data availability: Developing a personalised model for a new subject is difficult

since DNN models require a large amount of historical data for training, and the

data collection can be expensive and time-consuming (cold-start issue).

Aiming to tackle these challenges, we propose FCNN with attention-based RNNs for per-

sonalised BG prediction. Figure 3.1 depicts the real-world settings of a T1D management

system. Given the multivariate features accessible from wearable devices and a smart-

phone app, a DNN model can be developed by the FCNN framework that incorporates

the latest advances in deep learning to address the above challenges. To the best of our

knowledge, this is the first work that adopts evidential deep learning and meta-learning

in BG prediction. The experiments show that FCNN exhibits excellent accuracy and

outperforms all the considered baseline methods.

A recent breakthrough in both NLP [141] and computer vision [142] is the attention

mechanism. In particular, it allows an RNN model to focus on the hidden states and learn

long-term temporal dependencies at certain timesteps by calculating a context vector that

is weighted by alignment scores. Various attention mechanisms and corresponding score

functions were proposed in the recent literature [143], including scaled dot-product [74],

additive [141], general [144], dot-product [144], and location-based form [144]. The trans-
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Figure 3.1: System architecture of incorporating FCNN in a T1D management system.
A smartphone app receives BG measurements from CGM, data from other wearable de-
vices (e.g., insulin pumps and wrist bands), and records of relevant daily activities. After
uploading the multivariate data to a server (e.g., cloud repository), FCNN is used for
fast adaptation of a deep learning model with confidence. Then the well-trained model
is embedded into the smartphone app to perform real-time prediction. Besides the bidi-
rectional RNN proposed in this chapter, FCNN also supports other customised DNNs as
base models.

former is based on a multi-head self-attention mechanism, which is a highly successful deep

learning architecture in recent NLP studies (e.g., BERT and GPT-3) [145]. In the context

of personalised BG prediction, Mirshekarian et al. [99] presented a memory-augmented

LSTM using the attention weights derived by a two-layer dense network (i.e., additive

form), which exhibited improvement on synthetic data. In this chapter, we adapt another

sequence-to-sequence attention mechanism (i.e., general form) for many-to-one prediction,

according to model validation performance. In addition, we employ the transformer as a

baseline method in the experiments.

Taking advantage of historical datasets, TL approaches have been widely used in

previous studies to improve personalised BG prediction performance with pretraining and

fine-tuning [99, 128, 146]. To further reduce the demand for individual data in the fine-

tuning phase, meta-learning, also referent to as learning to learn, is an emerging approach

for optimising a meta-model across a set of learning tasks, so that fast adaptation can

be performed with only a few data samples. In particular, model-agnostic meta-learning
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(MAML) [147] can learn the initialisation of a DNN model with good average performance

and has already been applied to assist clinicians in sleep stage classification [148] but has

never been used in the context of BG prediction. Treating each T1D subject as a learning

task, We use MAML and compared it with a conventional TL method.

Most of the existing work treated BG prediction as a traditional regression task

and used mean square error as the loss function to obtain a single prediction value [19].

In [107], a mixture density network was proposed to model the uncertainty with a univari-

ate Gaussian distribution. However, this configuration can only model data uncertainty

by a mixture distribution [149]. Here, we incorporate evidential regression [150] to simul-

taneously map data uncertainty and model uncertainty.

3.2 Fast-Adaptive and Confident Neural Network

3.2.1 Problem Formulation

In general, the input of a data-driven algorithm for BG prediction is multivariate time

series, consisting of CGM sequences and other relevant data features (e.g., meals, insulin,

and heart rate variability), to represent the physiological status of a T1D subject. In this

case, the input data Xt is denoted as

Xt = [xt−L+1,xt−L+2, . . . ,xt] ∈ Rd×L, (3.1)

where xt ∈ Rd×1 contains d features at the timestep t, and L is the window length, i.e.,

the number of timesteps of the input. CGM series are obtained from real-time sensor

measurements, while the amount of carbohydrates and insulin are based on the daily

records from mobile apps.

Given a target PH and CGM resolution τ , the BG level at timestep t+r is expressed

as Gt+r, where r = PH/τ . To reduce bias [101, 128, 151], we use the signed difference

between the current and future BG level as the prediction targets, i.e., yt = fN (Gt+r −Gt),

where fN is the min-max normalization function to scale data within a range of [0, 1].
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Table 3.1: List of data features

Feature Description

CGM⋆ BG time series measured by CGM (mg/dL)
Carbohydrate⋆ Carbohydrate intake of meal ingestion (g)
Bolus insulin⋆ Amount of bolus insulin delivery (unit)

Basal insulin Amount of basal insulin delivery (unit)
COB Carbohydrate on board derived by Equation (3.3) (g)
IOB Insulin on board derived by Equation (3.3) (unit)
Time index Normalised 24-h time with a range of [0, 1]
⋆ Feature selected for the model input

Hence, the BG prediction Ĝt+r can be defined as

Ĝt+r = f−1N (ŷt) +Gt (3.2)

where f−1N is the inverse normalization, and ŷt is the output of the deep learning model.

We perform feature preprocessing with the following three steps: removing outliers,

imputing missing CGM data, and feature selection. Due to the sparse and random nature

of the manually logged events (e.g., meals and insulin doses), which are commonly recorded

via a mobile app, we decided to align such manually collected data with the resolution of

CGM measurements (i.e., 5-minute sampling). Outlier detection and removal were per-

formed by applying a set of thresholds based on the maximum and minimum physiological

changes between consecutive CGM measurements. Data gaps randomly occur in CGM

sequences due to sensor errors, communication problems, and sensor replacement, and

usually account for 5% to 10% of the total data. To fill these gaps, we employed a hybrid

imputation method. For each input, we linearly interpolated the gaps that occur in the

middle of the sequence, and linearly extrapolated the missing samples at the end of the

sequence, e.g., xt−2,xt−1,xt, with a bound of [0, 1]. Extrapolation was used to ensure

that future information is not taken into account when predicting missing measurements.

We used high-quality input sequences with missing gaps of less than 15 minutes since

linear interpolation is not adequate for imputing data in longer gaps. It should be noted

that the preprocessing (i.e., removal) was only performed on the training data but not on

validation or testing data.
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Table 3.1 summarises the feature set extracted from the clinical datasets, including

CGM measurements, bolus insulin, basal insulin, the ingested carbohydrate amount, in-

sulin on board (IOB), carbohydrate on board (COB), and time index series. Bolus insulin

is used to compensate for BG increase after meal ingestion and hyperglycaemia during

fasting, while basal insulin aims at maintaining BG levels in a target range when fasting.

IOB and COB, which are commonly employed in bolus calculators and AP, were derived

from linear models [152] and formulated as follows.

IOBt = B ∗max(0, 1− t− tB
TIOB

),

COBt = max(0, C −RCOB ∗ (t− tC −∆COB)), (3.3)

where B, tB and C, tC denote the amount and time of bolus insulin and carbohydrates

intake, respectively; TIOB is the active time of insulin effects, and we set it to four hours;

RCOB is the carbohydrate absorption rate of 0.5 g/min after an initial delay (∆COB) of

15 minutes. In particular, for the time index, we scaled 24-h time to a range of [0, 1] to

encode timesteps that represent time in seconds starting from midnight. After normalising

feature vectors, we performed feature selection for the FCNN model using an exhaustive

feature selector and hold-out validation sets. We evaluated performance on the OhioT1DM

dataset with an error score es that combines RMSE for 30-minute and 60-minute PHs.

Finally, we selected three input features, including CGM, amount of bolus insulin, and

carbohydrate intake, which led to the best validation performance.

3.2.2 Model Architecture

Figure 3.2 shows the overall structure of the proposed model. We instantiate a stack of

three bidirectional GRU layers to extract feature maps from the multivariate input. The

complete list of notations can be found in Appendix B (Table B.1). The computation of
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Figure 3.2: Diagram of the proposed deep learning model. The input of multivariate time
series is first processed by three bidirectional GRU layers to extract feature maps. The
attention layer computes a weighted sum of the hidden states. Then the top layer outputs
predictions with confidence from an evidential distribution.

a GRU layer, HW,U,b(xt,h
′) in a direction is given by

zt = σ(Wzxt + Uzh
′ + bz),

rt = σ(Wrxt + Urh
′ + br),

ĥt = σ(Whxt + Uhrt ⊙ h′ + bh),

ht = (1− zt)⊙ h′ + zt ⊙ ĥt, (3.4)

where zt and rt stand for update gate and reset gate vectors, respectively; σ is the sigmoid

function; ⊙ is the element-wise product; W and U, and b are the weights for input, weights

for hidden states, and bias, respectively, where the subscripts z, r, and h respectively

indicate parameters for the update gate, reset gate, and candidate activation; h, h′, and



3.2 Fast-Adaptive and Confident Neural Network 63

ĥ are the hidden states of cell output, cell input and candidate activation, respectively.

Concatenating backward and forward output, the state output of a bidirectional GRU

layer at timestep t is denoted as ht = [
−→
h t;
←−
h t], where h is a concatenated hidden state in

bidirectional RNN, which is given by

−→
h t = H−→

W,
−→
U,
−→
b

(xt,ht−1),

←−
h t = H←−

W,
←−
U,
←−
b

(xt,ht+1). (3.5)

where [
−→
h ,
−→
W,
−→
U,
−→
b ] and [

←−
h ,
←−
W,
←−
U,
←−
b ] respectively represent the set of output, weights

for input, weights for hidden states, bias in forward and backward RNNs.

To enable the DNN model to focus on the important parts of the hidden rep-

resentations, we introduce a many-to-one attention layer at the top of the GRU layers

(Figure 3.2). The input of this layer contains a complete sequence of the RNN hidden

states. We use a modified general alignment score function [144] to calculate attention

weights. Thus, there are a total of two trainable weight matrices (Wa and Wm) in the

attention layer. Each of them is implemented by a dense layer without bias or activation,

and therefore it can be updated as a part of the DNN model with gradient descent and

back-propagation. The output of the attention layer is an attention vector whose hidden

dimension is determined by Wm. Specifically, we first calculate the context vector ct as

follows

ct =
t∑

i=t−L+1

aihi, (3.6)

where hi is the concatenated hidden state at the i-th timestep, and the corresponding

attention weights ai is derived by alignment scores.

ai =
exp(score(hi,ht))∑
i exp(score(hi,ht))

. (3.7)

The general alignment score function [144] is formulated as follows.

score(hi,ht) = h
T
t Wahi. (3.8)
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where Wa denotes the weights for alignment scores. Given the weighted context vector

ct, the output of the attention middle layer with weights Wm is defined as

ht = tanh(Wm[ct;ht]), (3.9)

which is then fed to an evidential layer for final output.

3.2.3 Evidential Deep Learning

The prediction confidence can be estimated by uncertainty levels. In general, there are

two types of uncertainty in deep learning: aleatoric uncertainty, i.e., the uncertainty in

the data, and epistemic uncertainty, i.e., the uncertainty in the prediction model [149].

Epistemic uncertainty is crucial to determine out-of-distribution shift, indicating whether

the prediction can be trusted or not. Bayesian deep learning is a conventional approach

to model epistemic uncertainty, but it heavily relies on a complex sampling process during

model training [149]. Therefore, inspired by recent advances on evidential deep learn-

ing [150, 153], we employ a process of evidence acquisition to simultaneously model

aleatoric uncertainty and epistemic uncertainty. Assuming the targets y1, y2, . . . , yt, are

the i.i.d. observations following a Gaussian distribution with unknown mean µ and vari-

ance σ2,

µ ∼ N (γ, σ2/λ), σ2 ∼ Γ−1(α, β), (3.10)

we then have the Gaussian conjugate prior following the normal-inverse-gamma (NIG)

distribution: (µ, σ2) ∼ NIG(γ, λ, α, β), as the higher-order evidential distribution. Based

on Bayes’ theorem, the model evidence p(yt|γ, λ, α, β), also known as marginal likelihood,

can be derived by the likelihood parameters (µ, σ2) and the probability density function of

NIG, following a generalised Student-t distribution St [150]. In this case, to learn the model

parameters by maximum likelihood estimation, the corresponding negative log-likelihood
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loss function is given by

LNt = − log p(yt|γ, λ, α, β)

= − log(St(yt|2α, γ,
√
β(1 + λ)

λα
)), (3.11)

where 2α is the degrees of freedom; γ and

√
β(1+λ)
λα are the location parameter and the

scale parameter, respectively. Furthermore, a regularizer is introduced to penalise the

errors in the prediction [150],

LRt = |yt − γ|(2λ+ α). (3.12)

Thus, the loss function on t-th sample is

Lt = LNt + kLRt , (3.13)

where k is a hyperparameter to adjust regularization. In this case, the final output of

proposed model are γ, λ, α, β in four dimensions. The prediction ŷt, aleatoric uncertainty

uat and epistemic uncertainty uet (i.e., prediction uncertainty) are denoted as

ŷt = γ, uat =

√
β

α− 1
, uet =

√
β

λ(α− 1)
. (3.14)

3.2.4 Fast Adaptation by Meta-learning

Most commercial CGM sensors measure BG levels at intervals of five minutes. Therefore,

a maximum of 288 data points can be collected per day. Training a personalised deep

learning model usually requires months of clinical data acquisition. Fortunately, datasets

collected from historical clinical trials are available for research purposes. To make use

of these datasets and accelerate the training process of new personalised models, meta-

learning is a feasible approach. Particularly, we employ MAML [147] with the first-order

implementation called Reptile [154]. In terms of BG prediction, the learning tasks in

MAML can be referred to as predicting BG levels for different T1D subjects in a cohort
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Fast Adaptation:

Without MAML:

Figure 3.3: Illustration of applying meta-learning to BG prediction for fast adaptation.
Meta-learning optimises the model initialization across different subjects in a cohort
dataset. Then the initialised model is fast-adaptive to a new subject.

dataset, as shown in Figure 3.3. The meta-models are used in personalised fine-tuning but

cannot be used for population-based BG prediction.

The MAML meta-model is expected to minimise loss over a group of different

learning tasks (i.e., a T1D cohort). The original MAML relies on an outer loop and an in-

ner loop for meta-optimization and task learning, respectively. Hence, second derivatives

are required during the meta-optimization. Calculating a gradient through a gradient

is computationally expensive, so a more practical and efficient way to do this is by us-

ing the first-order approximation that has the nearly same performance as the original

MAML [147]. In this regard, Reptile further simplifies the first-order MAML by reusing

the gradients from task learning [154]. Given a task Tj , the j-th update of the model

parameters θj in the inner loop is defined as

θj = θj−1 − η∇θj−1
LBTj

(fθj−1
), (3.15)

where η is the learning rate of an Adam optimiser [155]; LBTi
stands for the loss of a mini-
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batch of data samples from the task Ti; and fθj−1
is the model inference with parameters

θj−1. Then the update of meta-model parameters θm across N tasks, i.e., the outer loop,

is given by

θm ← θm +
ϵ

N

N∑
j=1

(θj − θm), (3.16)

where ϵ is the step size of stochastic gradient descent. Thus, a pre-trained meta-model

with initial parameters θm enables fast adaptation and largely reduces the requirement of

data availability.

3.3 Experimental Setup

3.3.1 Clinical Datasets

This research uses the following three clinical datasets. It is important to note that,

although the number of T1D subjects is not large in each dataset, there is a considerable

amount of individual data collected over 6-26 weeks of clinical trials, which is sufficient to

develop a personalised deep learning model for each subject. There is normally a 5-10%

mean absolute percentage deviation between the measurements of CGM sensors and BG

meters. Hence, BG predictions based on CGM might not reflect exact plasma glucose levels

but are useful in clinical decision support, because most existing SAP and AP systems

automatically adjust the amount of insulin delivery based on CGM measurements and

predictions [12, 13, 139]. Recent development in diabetes technology, such as factory-

calibrated CGM, has continually reduced sensor error and improved CGM systems [156].

OhioT1DM Dataset

The OhioT1DM dataset is a publicly available dataset [100]. It contains data from 12

subjects with T1D over an eight-week period. All the participants wore a Medtronic

Enlite CGM and Medtronic 530G or 630G insulin pumps, and reported their daily events

via a smartphone app. Some of them wore Basis Peak or Empatica Embrace bands to
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collect vital signs data. The data have already been divided into training and testing sets,

which account for approximately 80% and 20% of the total samples, respectively.

ARISES Dataset

The ARISES dataset is a proprietary dataset (Imperial College London, London, UK) from

a six-week clinical trial (NCT03643692) including 12 T1D participants either on MDI or

CSII. Participants in the trial were equipped with Dexcom G6 CGM and logged daily

events via mySugr app. In addition, they used Empatica E4 wrist bands and myTracks

app. The study was under the protocol (18/LO/1096) approved by London - Fulham

Research Ethics Committee in 2018. The details of data collection and clinical study are

presented in Section 3.5.1.

ABC4D Dataset

The ABC4D dataset is a proprietary dataset (Imperial College London, London, UK)

including data from 25 T1D subjects over six months (NCT02053051) [157]. The dataset

contains BG levels measured with Dexcom G5 CGM and multiple self-reported events,

including meal ingestion, physical exercise, and basal-bolus insulin regimens. The study

was under the protocol (13/LO/0264) approved by London - Chelsea Research Ethics

Committee in 2013.

3.3.2 Model Configurations

We performed a two-step hold-out data split (Figure B.1 in Appendix B). The training

and testing sets of the OhioT1DM dataset are provided separately. Thus, we first divided

the data of each subject in the ARISES and ABC4D datasets into a training set including

the first 80% of the data and a hold-out testing set including the remaining 20%. Secondly,

we split each training set of the OhioT1DM, ARISES and ABC4D datasets again into an

actual training set with the first 80% of the data and a hold-out validation set with the rest

20%. In this way, the training, validation, and testing sets respectively contain 64%, 16%,

and 20% of the full data of the ARISES and the ABC4D datasets. The models were trained
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using the actual training sets, and validation and testing sets were unseen data. Then the

validations sets were used for feature selection and hyperparameter tuning. Finally, the

testing sets were used to provide unbiased evaluation and the prediction results reported

in this work. We strictly followed chronological partitions to split time series data to avoid

data leakage and guaranteed that the testing and validation sets did not include any data

from the training sets. Similar split methods have been widely used in previous studies

on BG prediction [99, 101, 128, 158].

The chosen values for the hyperparameters are listed in Table B.2 in Appendix B.

Early stopping was used to mitigate overfitting and improve the generalization of the DNN

models, for which we set the total number of epochs to 500 with the patience of 50. We

compared the performance of the proposed model with several classic data-driven baseline

methods in the literature [19]. SVR [159], random forest regression (RFR) [160], and

ARIMA [161] were used as classic machine learning baselines, while bidirectional LSTM

(Bi-LSTM) [89] and a variant of the transformer [74] were used as deep learning baselines.

The original transformer is a sequence-to-sequence model, so we adopted its encoder as a

prediction model [162]. We also used a convolutional recurrent neural network (CRNN)

as a baseline method, considering it is the best model in our previous work [96]. We tuned

these baseline models using the same hold-out validation sets. The input features of the

baseline models are the same as those of FCNN, including CGM, carbohydrate, and bolus

insulin, except for ARIMA which only uses CGM data.

We developed the FCNN models and the other DNNs with Python 3.8, TensorFlow

2.3, and Keras 2.4 with a GPU acceleration (NVIDIA GTX 1080 Ti). The classic ma-

chine learning methods were developed with scikit-learn 0.23 (SVR, RFR) and statsmodels

0.12 (ARIMA). Finally, we conducted the experiments with the PHs of 30 and 60 min-

utes. These PHs are commonly employed since they allow timely intervention to prevent

undesired glycaemic events [19].
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3.3.3 Evaluation Metrics

We used commonly employed evaluation metrics in BG prediction: RMSE, mean abso-

lute error (MAE), and mean absolute percent error (MAPE) with the detailed values of

percentages in the A, B, C, D and E regions of CEG [138]. To evaluate the clinical perfor-

mance, we also used the glucose-specific RMSE (gRMSE) [163] and prediction time delay

(PTD) [96, 101, 128] for a comprehensive evaluation. The definition is as follows:

RMSE =

√√√√ 1

LT

LT∑
t=1

(Gt − Ĝt)2, (3.17)

MAE =
1

LT

LT∑
t=1

|Gt − Ĝt|, (3.18)

MAPE =
1

LT

LT∑
t=1

|Gt − Ĝt
Gt

|, (3.19)

gRMSE =

√√√√ 1

LT

LT∑
t=1

P (Gt, Ĝt)(Gt − Ĝt)2, (3.20)

PTD = arg max
k

(

LT∑
t=1

GtĜt−k), (3.21)

where LT denotes the total number of data samples in the testing sets;

P (Gt, Ĝt) = 1 +αLσ̄Gt≤TL,βL(Gt)σĜt≥Gt,γL
(Ĝt, Gt) +αHσGt≥TH ,βH (Gt)σ̄Ĝt≤Gt,γH

(Ĝt, Gt),

P (Gt+w,Ĝt+w) ≥ 1, and values of αL, βL, γL, TL, αH , βH , γH , TH equal to

1.5, 30, 10, 85, 1, 100, 20, 155.

For classification tasks in hypo- and hyperglycaemia detection, we have a group

of standard metrics, including accuracy, sensitivity, precision, specificity, the Matthews

correlation coefficient (MCC) (i.e., the Phi coefficient), as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (3.22)

Sensitivity =
TP

TP + FN
, (3.23)
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Specificity =
TN

TN + FP
, (3.24)

Precision =
TP

TP + FP
, (3.25)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + F)(TN + FN)
, (3.26)

where the number of true positives, true negatives, false positives, and false negatives in

a binary classification problem are denoted as TP, TN, FP, and FN. We use additional

metrics to indicate alarm fatigue in daily management, including false-positives per day

(FPPD) and false alarms per day (FAPD) as follows:

FPPD =
FP

Number of Days,
(3.27)

FAPD =
False Hypoglycaemic events

Number of Days
. (3.28)

Mean deviation (MD) scores are calculated by the MAE for the glucose sequences in missed

predicted hypoglycaemic or hyperglycaemic events.

3.4 Results and Discussion

3.4.1 BG Level Prediction Performance

Table 3.2, 3.3 and 3.4 respectively summarise the prediction results for the OhioT1DM

dataset, the ARISES dataset and the ABC4D dataset with PH of 30 and 60 minutes

(Mean±STD). Notably, for both PHs, FCNN achieved the best performance on each

dataset with the smallest RMSE, MAE, gRMSE, and PTD. Moreover, after evaluating the

normality of the results with Shapiro–Wilk tests, we performed paired t-tests to indicate

statistical significance with respect to the proposed baseline methods. The FCNN obtained

significant improvements on RMSE results for each dataset, but the improvements on

gRMSE results are less significant, especially for the ABC4D dataset. The reason for this

reduced performance with the ABC4D dataset might be explained by the large number

of missing data points in several subjects. The proposed method exhibited good average

performance in terms of all the mean errors, but its impact on the clinical benefits needs
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Table 3.2: Prediction performance of the considered prediction methods on the OhioT1DM
dataset

Methods RMSE (mg/dL) ↓ MAE (mg/dL) ↓ gRMSE (mg/dL) ↓ PTD (min) ↓
PH = 30 minutes

FCNN 18.64± 2.60 13.25± 1.67 22.86± 3.47 6.75± 4.30

CRNN [96] 19.38± 2.39† 13.79± 1.64∗ 24.12± 3.14† 7.42± 4.66

Bi-LSTM [89] 19.59± 2.22‡ 13.79± 1.31† 24.30± 3.14‡ 6.82± 4.08

Transformer [74] 19.69± 2.36‡ 13.90± 1.42‡ 24.60± 3.25‡ 7.56± 4.49

SVR [159] 21.10± 2.31‡ 15.98± 1.94‡ 26.49± 3.14‡ 7.94± 3.76∗

RFR [160] 21.18± 2.26‡ 15.30± 1.61‡ 26.33± 2.97‡ 8.25± 3.86∗

ARIMA [161] 20.39± 2.21‡ 14.40± 1.41‡ 24.48± 2.68‡ 11.36± 4.43‡

PH = 60 minutes

FCNN 31.07± 3.62 22.86± 2.89 39.78± 5.28 14.58± 9.91

CRNN [96] 32.02± 3.76‡ 23.82± 3.13‡ 41.25± 5.37‡ 16.01± 10.03

Bi-LSTM [89] 33.44± 3.76‡ 24.59± 2.89‡ 43.45± 5.42‡ 16.71± 8.82

Transformer [74] 32.96± 3.70‡ 24.19± 2.79‡ 42.82± 5.22† 14.81± 10.66

SVR [159] 33.83± 3.62‡ 25.63± 2.98‡ 43.88± 5.07‡ 24.00± 9.67‡

RFR [160] 35.31± 3.72‡ 26.43± 3.02‡ 45.32± 5.13‡ 23.10± 10.61†

ARIMA [161] 35.42± 3.74‡ 25.97± 2.70‡ 43.78± 4.68‡ 35.12± 10.58‡

CEG-Regions (%)

Methods A ↑ B ↑ C ↓ D ↓ E ↓
PH = 30 minutes

FCNN 89.80± 3.65 8.96± 2.85 0.01± 0.02 1.22± 0.93 0.01± 0.01

CRNN [96] 88.72± 3.90∗ 9.72± 2.98∗ 0.02± 0.03 1.55± 1.14∗ 0.00± 0.00

Bi-LSTM [89] 88.93± 3.07∗ 9.74± 2.49‡ 0.02± 0.03 1.30± 0.84 0.01± 0.02

Transformer [74] 89.15± 3.46∗ 9.77± 2.80‡ 0.01± 0.03 1.07± 0.71 0.00± 0.01

SVR [159] 82.70± 6.05‡ 14.58± 4.32‡ 0.01± 0.02 2.71± 2.23∗ 0.00± 0.01

RFR [160] 86.71± 4.48‡ 11.70± 3.52‡ 0.02± 0.04 1.56± 1.10∗ 0.00± 0.01

ARIMA [161] 88.41± 3.48‡ 10.94± 3.19‡ 0.03± 0.06 0.61± 0.38∗ 0.01± 0.01

PH = 60 minutes

FCNN 72.58± 7.87 24.39± 6.41 0.16± 0.14 2.85± 1.68 0.02± 0.04

CRNN [96] 71.06± 8.69∗ 25.57± 7.07 0.15± 0.17 3.20± 1.99∗ 0.01± 0.04

Bi-LSTM [89] 70.61± 8.21† 25.98± 6.70∗ 0.17± 0.13 3.19± 1.89 0.05± 0.07

Transformer [74] 71.70± 7.77 25.20± 6.43 0.15± 0.15 2.92± 1.65 0.04± 0.05

SVR [159] 66.43± 9.15‡ 29.61± 7.30† 0.20± 0.21 3.73± 2.62∗ 0.03± 0.04

RFR [160] 67.03± 8.17‡ 29.38± 6.29‡ 0.23± 0.19 3.34± 2.14∗ 0.02± 0.04

ARIMA [161] 68.77± 6.85∗ 28.65± 5.83‡ 0.46± 0.40∗ 2.06± 1.00∗ 0.05± 0.05
∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005.

to be further improved. This is the reason why we introduced model confidence to predict

adverse glycaemic events with adjustable lower and upper bounds (Section 3.4.2).

Overall, the accuracy of BG prediction decreased as the PHs became larger. The
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Table 3.3: Prediction performance of the considered prediction methods on the ARISES
dataset

Methods RMSE (mg/dL) ↓ MAE (mg/dL) ↓ gRMSE (mg/dL) ↓ PTD (min) ↓
PH = 30 minutes

FCNN 20.23± 3.38 14.67± 2.36 25.20± 4.52 8.36± 4.22

CRNN [96] 20.76± 3.71‡ 15.02± 2.62∗ 26.14± 4.98† 8.64± 4.73

Bi-LSTM [89] 20.95± 3.11‡ 15.29± 2.22‡ 26.54± 4.13∗ 8.49± 4.48

Transformer [74] 22.45± 4.08‡ 16.38± 3.01‡ 28.73± 5.54‡ 10.24± 5.36‡

SVR [159] 22.26± 4.21‡ 16.85± 3.20‡ 28.19± 5.85‡ 9.52± 4.82

RFR [160] 23.86± 4.44‡ 17.56± 3.18‡ 30.14± 5.99‡ 10.28± 5.21‡

ARIMA [161] 21.75± 4.02‡ 15.59± 2.70‡ 26.21± 5.23∗ 11.56± 4.89‡

PH = 60 minutes

FCNN 35.40± 7.04 26.23± 5.00 45.93± 9.60 24.44± 11.05

CRNN [96] 36.08± 6.99∗ 26.86± 5.14‡ 47.58± 10.03‡ 24.84± 11.24

Bi-LSTM [89] 36.83± 7.27‡ 27.44± 5.38‡ 48.13± 10.09‡ 25.53± 11.48

Transformer [74] 36.98± 6.96‡ 27.59± 5.27‡ 48.66± 10.01‡ 26.14± 12.30

SVR [159] 37.06± 7.55‡ 27.94± 5.66‡ 48.74± 10.71‡ 27.32± 12.17

RFR [160] 39.46± 7.73‡ 29.78± 5.87‡ 51.58± 10.79‡ 26.69± 11.91

ARIMA [161] 39.46± 8.13‡ 28.71± 5.62‡ 49.70± 10.97‡ 36.00± 12.44‡

CEG-Regions (%)

Methods A ↑ B ↑ C ↓ D ↓ E ↓
PH = 30 minutes

FCNN 87.24± 5.86 10.60± 4.20 0.02± 0.07 2.14± 1.75 0.00± 0.00

CRNN [96] 86.92± 6.12 10.79± 4.48 0.03± 0.05 2.27± 1.81 0.00± 0.00

Bi-LSTM [89] 86.63± 6.21 10.92± 4.38 0.02± 0.04 2.43± 1.92 0.00± 0.00

Transformer [74] 85.29± 7.50∗ 12.37± 5.53‡ 0.04± 0.09 2.30± 2.03 0.00± 0.00

SVR 82.57± 8.57‡ 14.45± 6.37‡ 0.03± 0.05 2.94± 2.35 0.00± 0.00

RFR [160] 83.22± 7.19‡ 14.24± 5.44‡ 0.07± 0.11 2.47± 1.85 0.00± 0.00

ARIMA [161] 86.43± 6.07 12.68± 5.42‡ 0.04± 0.06 0.85± 0.72‡ 0.00± 0.00

PH = 60 minutes

FCNN 69.29± 8.91 26.27± 6.51 0.33± 0.46 4.11± 2.60 0.01± 0.02

CRNN [96] 68.52± 9.56 26.99± 7.15 0.24± 0.28 4.24± 2.63 0.01± 0.03

Bi-LSTM [89] 67.50± 9.51‡ 28.00± 7.09‡ 0.30± 0.39 4.18± 2.61 0.01± 0.03

Transformer [74] 67.14± 9.57‡ 28.33± 7.11‡ 0.21± 0.29 4.30± 2.66 0.02± 0.04

SVR [159] 66.42± 10.32† 28.94± 7.88∗ 0.31± 0.38 4.30± 2.80 0.03± 0.06

RFR [160] 64.34± 9.51‡ 30.92± 7.20‡ 0.41± 0.43 4.24± 2.54 0.09± 0.12∗

ARIMA [161] 67.05± 9.52‡ 29.19± 7.76‡ 0.56± 0.53‡ 2.91± 1.65† 0.29± 0.34∗

∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005.

daily events that might occur within the 60-minute period (e.g. meals, corrections boluses,

exercise) have an affect on BG levels and make the prediction more challenging. It is

worth noting that all the three deep learning methods outperformed the classic machine

learning baselines, demonstrating the good learning behaviors of DNNs. Regarding the
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Table 3.4: Prediction performance of the considered prediction methods on the ABC4D
dataset

Methods RMSE (mg/dL) ↓ MAE (mg/dL) ↓ gRMSE (mg/dL) ↓ PTD (min) ↓
PH = 30 minutes

FCNN 20.25± 2.60 14.50± 1.95 25.00± 3.49 7.76± 3.79

CRNN [96] 20.55± 2.55∗ 14.77± 1.86† 25.44± 3.46∗ 8.23± 4.62

Bi-LSTM [89] 20.66± 2.45‡ 14.85± 1.77‡ 25.68± 3.22‡ 7.90± 4.42

Transformer [74] 20.63± 2.66† 14.84± 1.91‡ 25.60± 3.59‡ 8.87± 4.85

SVR [159] 21.90± 2.44‡ 16.73± 1.85‡ 27.70± 3.45‡ 8.71± 4.65

RFR [160] 21.80± 2.48‡ 15.83± 1.81‡ 27.12± 3.34‡ 8.69± 4.63

ARIMA [161] 22.13± 2.60‡ 15.60± 1.90‡ 26.48± 3.56‡ 13.55± 4.65‡

PH = 60 minutes

FCNN 34.03± 4.74 25.26± 3.60 44.06± 6.25 21.47± 7.59

CRNN [96] 34.39± 4.75‡ 25.63± 3.53‡ 44.58± 6.31† 25.56± 10.94†

Bi-LSTM [89] 34.82± 4.44† 25.86± 3.27∗ 45.17± 5.98∗ 22.78± 9.78

Transformer [74] 34.91± 4.43† 25.99± 3.28∗ 45.42± 6.13† 26.08± 11.65∗

SVR [159] 35.37± 4.70‡ 26.98± 3.50‡ 45.99± 6.43‡ 26.99± 11.30‡

RFR [160] 36.57± 4.76‡ 27.43± 3.55‡ 47.27± 6.40‡ 24.95± 10.28∗

ARIMA [161] 38.55± 5.15‡ 28.00± 3.75‡ 47.94± 7.16‡ 39.42± 7.48‡

CEG-Regions (%)

Methods A ↑ B ↑ C ↓ D ↓ E ↓
PH = 30 minutes

FCNN 86.50± 3.90 11.54± 2.84 0.03± 0.06 1.93± 1.20 0.00± 0.01

CRNN [96] 85.94± 3.75† 11.78± 2.46 0.03± 0.06 2.25± 1.47‡ 0.00± 0.00

Bi-LSTM [89] 85.72± 4.15† 11.81± 2.74 0.03± 0.06 2.43± 1.72‡ 0.00± 0.02

Transformer [74] 85.89± 3.98∗ 11.92± 2.68 0.03± 0.06 2.17± 1.56 0.00± 0.00

SVR [159] 79.87± 6.55‡ 15.59± 3.28‡ 0.03± 0.06 4.51± 4.30‡ 0.00± 0.00

RFR [160] 83.91± 4.30‡ 13.37± 2.65‡ 0.03± 0.06 2.68± 1.93‡ 0.00± 0.01

ARIMA [161] 85.11± 3.81‡ 13.67± 3.18‡ 0.06± 0.06‡ 1.14± 0.77‡ 0.01± 0.02‡

PH = 60 minutes

FCNN 68.01± 5.37 27.07± 3.47 0.23± 0.24 4.67± 2.87 0.03± 0.04

CRNN [96] 67.07± 5.53‡ 27.72± 3.29∗ 0.24± 0.29 4.95± 3.35 0.02± 0.05

Bi-LSTM [89] 66.71± 5.89∗ 28.13± 3.56∗ 0.25± 0.25 4.88± 3.35 0.03± 0.05

Transformer [74] 66.68± 5.89∗ 28.26± 3.88 0.22± 0.26 4.82± 3.12 0.02± 0.04

SVR [159] 63.62± 7.01‡ 30.44± 4.04‡ 0.28± 0.29∗ 5.62± 4.54∗ 0.03± 0.05

RFR [160] 64.60± 6.22‡ 30.02± 3.76‡ 0.36± 0.36‡ 4.98± 3.63 0.04± 0.06

ARIMA [161] 65.22± 4.88‡ 30.94± 3.63‡ 0.59± 0.46‡ 3.05± 1.55‡ 0.20± 0.15‡

∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005.

RMSE performance, the transformer is comparable to the Bi-LSTM, which exhibits better

results with the 60-minute PH in the OhioT1DM dataset, and with the 30-minute PH in

the ABC4D dataset.
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Figure 3.4: 1.5-day period forecasting performance of the considered methods over the 30-
minute PH for the OhioT1DM dataset. The solid black line indicates BG levels measured
by CGM, and the dashed red line indicates the prediction results of FCNN. The magenta,
cyan, green, yellow, blue, and orange lines respectively indicate the baselines of Bi-LSTM,
Transformer, CRNN, RFR, SVR, and ARIMA.
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Figure 3.5: CEG analysis over 30-minute (top) and 60-minute (bottom) PHs for three
T1D subjects from the OhioT1DM, ARISES, and ABC4D datasets (from left to right),
receptively.

Figure 3.4 shows the trajectories of the BG predictions on a subject in the

OhioT1DM dataset. Compared with the baseline methods, we see that the FCNN per-
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formed well, especially at the peaks and troughs of the BG curve. That is, the errors

in the hypoglycaemia and hyperglycaemia regions are small (e.g., the predictions around

9:00 on May 29). Similar performance can be observed in the ABC4D dataset and the

ARISES dataset. These findings on the BG trajectories are consistent with the results in

the above tables. Figure 3.5 depicts the CEG analysis for FCNN, which is evaluated on

three T1D subjects and two PHs. We observed that the dots concentrate on the A and B

regions. These two regions include the predictions that are within 20% error with respect

to the actual CGM measurements, and would not lead to inappropriate treatment. The

corresponding numerical results of each region are presented in Table 3.2, 3.3 and 3.4. It is

to be noted that, when evaluated on the OhioT1DM dataset, 98.86% of FCNN predictions

for the 30-minute PH are located within the A and B regions.

3.4.2 Confidence for Hypoglycaemia Prediction

Although FCNN achieves substantial improvements in these regions, a significant delay

can still be observed in Figure 3.4. To address this clinical challenge, we incorporated

the evidential deep learning and modeled uncertainty defined in Equation (3.14). Fig-

ure 3.6 depicts an instance of using the lower bounds of the CI to successfully identify two

hypoglycaemia regions in the dashed black ellipses, which are likely to be missed using

single prediction values. Considering epistemic uncertainty interprets the confidence of

predictions, we calculated upper and lower bounds as [Ĝt+r − f−1N (uet ), Ĝt+r + f−1N (uet )].

Hypoglycaemia is more dangerous than hyperglycaemia, since it can lead to acute

coma or even death in severe cases [25]. To quantify the effectiveness of the prediction

confidence, we altered the bounds by [Ĝt+r − zf−1N (uet ), Ĝt+r + zf−1N (uet )], where z is the

ratio of the uncertainty and treated as a hyperparameter with a range of [0, 1]. We evalu-

ated the results using four classification metrics: sensitivity, precision, FPPD, and MCC.

Considering that hypoglycaemia is a minority class, accounting for 3-5% of whole BG

trajectories (Table B.4 in Appendix B), we use FPPD as an alternative way to present the

specificity. It indicates how often the algorithm would lead to false hypoglycaemia alarms

in decision support systems or closed-loop systems. Rescue treatment for impending hy-
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Figure 3.6: Forecasting results corresponding to the proposed method including predic-
tion confidence on a subject in the OhioT1DM dataset. The solid black line indicates
CGM measurements, and the dashed red line indicates the prediction results of FCNN.
The dotted blue and green lines respectively indicate the upper and lower bounds derived
by evidential regression. The shaded light blue area indicates the CI for upper and lower
bounds. The dashed blue and green lines respectively indicate the thresholds of hypergly-
caemia and hypoglycaemia.

poglycaemia, such as rescue carbohydrates, is commonly performed in T1D management.

Hence, a hypoglycaemic event was considered when there was a single BG level below 70

mg/dL. Table 3.5 presents the hypoglycaemia prediction performance of FCNN and the

baseline methods. It is noted that, FCNN outperformed all the considered baseline meth-

ods with higher MCC scores for the 30-minute and 60-minute PHs. Although ARIMA

exhibited the large RMSE and PTD results for BG prediction across the three datasets, it

obtained good performance for hypoglycaemia prediction. A possible explanation is that

ARIMA performed well at the troughs of BG curves but showed significant delay in other

regions (Figure 3.4). It is reasonable that FCNN yields high FPPD due to the use of the

lower bounds for detecting hypoglycaemia. However, most false positives occurred around

actual hypoglycaemic events. If each event triggers a single alarm, FCNN can still achieve

a small number of FAPD of 0.48± 0.53 for the 60-minute PH.

There is a trade-off between precision and sensitivity, while high MCC scores can
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Table 3.5: Performance of hypoglycaemia prediction methods on the OhioT1DM dataset

Method Sensitivity (%) ↑ Precision (%) ↑ FPPD ↓ MCC ↑
PH = 30 minutes

FCNN 84.09± 5.73 65.60± 17.68 6.07± 4.30 0.72± 0.10

CRNN [96] 44.34± 25.53‡ 70.03± 23.33 1.88± 1.43 0.53± 0.23‡

Bi-LSTM [89] 45.12± 23.13‡ 56.58± 19.93 4.71± 3.50 0.48± 0.20‡

Transformer [74] 59.35± 18.82‡ 71.36± 16.48 3.69± 1.94 0.61± 0.15‡

SVR [159] 12.84± 11.73‡ 54.84± 36.37 1.12± 1.04‡ 0.24± 0.18‡

RFR [160] 47.86± 25.16‡ 62.49± 21.08 3.21± 2.21 0.52± 0.21‡

ARIMA [161] 86.32± 6.04 50.94± 9.61∗ 10.87± 4.74 0.63± 0.06

PH = 60 minutes

FCNN 68.58± 14.39 60.64± 18.82 14.45± 15.86 0.59± 0.08

CRNN [96] 15.83± 13.30‡ 42.58± 29.52 2.60± 2.27 0.23± 0.18‡

Bi-LSTM [89] 28.73± 19.32‡ 52.77± 26.34 5.77± 3.78 0.34± 0.17‡

Transformer [74] 38.71± 27.98∗ 53.92± 29.71 5.81± 4.94 0.40± 0.23∗

SVR [159] 9.46± 8.91‡ 34.29± 30.45∗ 3.25± 2.95∗ 0.15± 0.14‡

RFR [160] 19.03± 24.44‡ 32.63± 30.99 2.70± 3.02 0.22± 0.19‡

ARIMA [161] 80.17± 8.99 43.80± 9.51 19.55± 9.33 0.54± 0.07
∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005.

be obtained only if model performs well on all the confusion matrix categories. To avoid

hypoglycaemia, higher sensitivity is preferred in clinical settings at the cost of slightly less

precision (i.e., increase of false positive rate), as indicated by the dashed black and red

ellipses in Figure 3.6, but too low precision might cause alarm fatigue. In this regard, the

ratio z is flexible and can be chosen by clinicians.

3.4.3 Adaptation Performance With Limited Data

A common use case of fast adaptation is supposed to be fine-tuning a meta-model for a

new T1D subject with an increasing amount of data, starting from a very small batch

of available data. In this section, we present a case study assuming that only the first

14 days of training data are available for a hold-out target subject in a cohort dataset,

aiming to test the day-to-day performance of fast adaptation. The training data of the

other subjects remain unchanged for the development of MAML meta-models. We chose a

length of 14 days because the lifespan of most commercial CGM sensors in clinical settings

is between 7 and 14 days.
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Figure 3.7: 30-minute RMSE results of fine-tuning on the FCNN meta-model and the TL-
pretrained model with the small-size training sets of the OhioT1DM dataset. The solid
blue and orange lines are the mean RMSE of TL and MAML, respectively, and shaded
areas stand for 95% CI.

For comparison purposes, a pretrained model with TL techniques was employed

as a baseline, which has been commonly used in the literature of BG prediction [99, 128,

146, 114]. The TL-pretrained model has the same DNN architecture as that of FCNN,

and developing such a model includes two steps. First, we excluded the data of the target

subject and combined the training data of the remaining subjects to form a global set.

Then, we pretrained a model with the mini-batch data randomly sampled from the global

set, and each input batch corresponds to a single subject.

After performing MAML and TL without the hold-out data, we fine-tuned the

meta-model and TL-pretrained model using the same individual data of the hold-out

target subject. In order to simulate the 14-day use case across a lifespan of a CGM sensor,

we sequentially added one-day data into the individual data set and repeated the fine-

tuning experiments on each experimental day. Each time we used the same testing sets as

those in the previous Section 3.4.1 for evaluation. The experiments were repeated for all

the subjects.

Figure 3.7 depicts the performance of FCNN and the TL baseline on the OhioT1DM

dataset. Table 3.6 summarises the results for the three datasets. In this limit case, when

compared with TL, MAML provided an average RMSE improvement of 1.48 and 0.96
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Table 3.6: 30-minute RMSE of the fast adaptation methods across the three datasets

Day Method OhioT1DM ARISES ABC4D

1
MAML 21.61± 2.59 25.66± 5.26 22.87± 2.81

TL 23.22± 4.27 27.05± 7.03 24.32± 3.78

7
MAML 19.99± 2.35 23.00± 3.95 22.54± 3.16

TL 21.06± 2.56 23.78± 3.65 22.94± 2.60

14
MAML 19.46± 2.48 21.00± 3.62 21.53± 2.53

TL 20.56± 2.81 22.02± 3.78 22.30± 2.66

mg/dL on day 1 and day 14, respectively. The meta-models by MAML exhibited better

prediction performance during the whole fine-tuning process and achieved much smaller

RMSE from the start of the fine-tuning (day 1), when the size of available data was

extremely small. These findings are consistent with a recent study on MAML, which

has proven that the effectiveness of MAML is primarily due to feature reuse [164]. That

is, the meta-initialised models were already good at learning representations for a new

subject. MAML achieved an RMSE below 20 on day 7, while it took much longer for the

TL-pretrained models to reach this level. We further performed the experiments using

the data of the first 25 days, which is the maximum mutual length of the data in the

training sets. It is observed that the RMSE of MAML keep decreasing until day 18 for the

OhioT1DM and ARISES datasets, and day 20 for the ABC4D dataset, and then become

stable.

In the general case, where enough training data were available for each subject, the

use of MAML significantly reduced RMSE by 0.2 mg/dL (p < 0.005, Figure 3.8). These

results indicate that the use of MAML is a feasible approach to enable fast adaptation

and improve model performance with a small size of available data. It should be noted

that the MAML meta-models are not the population models for BG prediction, which

cannot be directly evaluated on the testing data of new subjects. Here we only indicate

that MAML outperformed TL during the fine-tuning of the development of personalised

models.
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Figure 3.8: Histogram of the RMSE performance across the three datasets in ablation
analysis. Each bin stands for the number of subjects within the corresponding RMSE
range.

3.4.4 Comparison With Existing Studies

There are several significant differences between the attention-based LSTM model pre-

sented by Mirshekarian et al. [99] and the proposed model in this chapter. Firstly, the

authors evaluated the model on a previous version of the OhioT1DM dataset (2018 ver-

sion), which contains six of the 12 T1D subjects in the 2020 OhioT1DM dataset that we

used. If we evaluate our models on the six 2018 subjects, a 30-minute RMSE of 18.10

mg/dL can be obtained, which is lower than the best result of 18.70 mg/dL that the

authors reported using the same experimental settings (i.e., agnostic scenarios without

what-if events). Secondly, the authors used an additive form of attention module [141]

to obtain a hidden state of LSTM cells with the largest attention weight, while we use a

general form of attention mechanism [144] to calculate the weighted sum of the hidden

states of bidirectional GRU cells. Finally, their attention module did not improve BG

prediction for real clinical data, while ours significantly reduced RMSE by 0.45 mg/dL

(p < 0.005) in ablation analysis (Figure 3.8). It is to be noted that, in the literature, the

sensitivity of 75% and precision of 51% [165], and the sensitivity of 59% and precision

of 68% [114], were obtained for a 30-minute PH, while an MCC score of 0.51 with the

sensitivity of 48.5% was achieved for a 60-minute PH [166]. Therefore, the performance

of FCNN (Table 3.5) is better than the state of the art. A potential improvement can
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be made by introducing another regularizer into the loss function to penalise the error of

hypoglycaemia detection (Equation (3.13)), although it may result in a larger RMSE for

BG prediction.

In the experiments, we have shown that FCNN is a superior prediction method

when compared with the chosen baseline algorithms. In general, it is difficult to perform

a fair comparison with the existing work, due to unavailable code, data, and experimental

settings. A recent work proposed the glucose variability impact index and glucose predic-

tion consistency index as a method to assess the correlation between RMSE results of BG

prediction and glucose variability [167], which can be used to compare algorithms across

different studies. Here we measured glucose variability by means of the coefficient of vari-

ation (CV) and applied linear least-squares regression to obtain indices for each prediction

method. However, it is to be noted that the correlation results on the OhioT1DM and

ARISES dataset are not significant, possibly due to the small numbers of T1D subjects.

Thus, we reported the results with Pearson correlation coefficients (r) and p-values (p)

on the ABC4D dataset in Table B.5 of Appendix B. It is worth noting that the FCNN

method achieved small indices for both PHs, indicating that glucose variability has a low

impact on the accuracy and consistency of BG prediction. Moreover, the FCNN frame-

work can be adapted to many existing DNN models to improve their performance, such as

the CNN [101], the CRNN [96] and the dilated RNN [128]. Particularly, such adaptation

only involves three steps: replacing the dense top layer with evidential output layer, using

the corresponding negative log-likelihood loss, and applying the MAML procedures.

To further improve the accuracy of BG prediction, it is viable to incorporate phys-

ical activity data, since aerobic exercise would cause rapid changes in BG concentration

and has significant impacts on the action of insulin and other hormones [168]. Thus, real-

time BG prediction is critical for physically active people with T1D, such as adolescents,

which enables proactive interventions to reduce the risk of hypoglycaemia during exercise.

However, it is currently challenging to estimate the duration and intensity of physical ac-

tivity. Pioneering studies applied wearable devices to measure physiological data, such as

heart rate [168] and acceleration [169], as the indicators of physical activity and used them
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Figure 3.9: System architecture and clinical scheme of ARISES. A T1D subject is equipped
with CGM and the wristband to measure glucose levels and vital signs, both of which
communicate with the ARISES app via Bluetooth connectivity and provide input data
for the deep learning models. The wearable devices in the system are marked by ∗. The
data collected in phase I are used to train a population model with meta-learning, which
is then fine-tuned in phase II to develop personalised models.

as exogenous input features of BG predictors. Therefore, in the remaining sections of this

chapter, we investigate the effect of physiological data measured by a wearable wristband

on BG prediction.

3.5 Non-Invasive Wristband Sensor Data

Wristband sensors have been used in recent literature to estimate physical activity for

T1D subjects [170, 171]. In a recent study, wristband measurements combined with food

logs were employed as digital biomarkers to estimate interstitial glucose using a machine

learning method [172]. However, the clinical efficacy of sensor wristbands in diabetes

management remains unproven [173]. The ARISES dataset has been used in Section 3.4

as one of the evaluation datasets to provide CGM data and self-reported events to the

FCNN model. In this section, we further analyse the non-invasive wristband sensor data

in this proprietary dataset collected in our previous clinical trial. Figure 3.1 shows the

overall system architecture and clinical scheme.
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3.5.1 Data Collection in Phase I prospective study

This was a six-week longitudinal prospective study (NCT ID: NCT03643692) using a clin-

ically validated real-time physiological data acquisition sensor (Empatica E4) and CGM

(Dexcom G6) to identify correlations between measurable physiological parameters and

glycaemia. Under free-living conditions, twelve adults (18 years old and older) with a me-

dian age (interquartile range (IQR)) of 40 years (30-50) were equally stratified by gender

and mode of insulin delivery (MDI and CSII). Participants were recruited from the Impe-

rial College Healthcare NHS trust T1D outpatient clinics, registered research databases,

and interested participants who contact us. Throughout the duration of the study, par-

ticipants wore the Empatica E4 and Dexcom G6 devices with alarm thresholds of glucose

levels set at < 4 mmol/L and > 11 mmol/L. Participants were asked to log daily events

such as, insulin doses in units, meal macronutrient composition in grams, alcohol intake

in units, stress, illness, and exercise in the mySugr smartphone app, which are used to

develop the input features of glucose prediction models. All the participants provided

written informed consent.

Table 3.7 presents the demographic and clinical characteristics of the 12 T1D par-

ticipants in the phase I prospective study. We collected a median (IQR) of 1,113.5 (1,059.0-

1,184.0) and 832.5 (733.0-953.0) hours of glucose data and sensor wristband data, respec-

tively, and received a total of 5,767 daily entries with a median (IQR) of 396 (237-732.3)

interactions (Table B.6 and B.7 of Appendix B), including carbohydrates, protein, fat,

insulin bolus, exercise, alcohol, stress, and illness, where the carbohydrate entries account

for the largest portion.

3.5.2 Association Between Sensor Data and Adverse Glycaemic Events

Different from most of the previous studies using CGM and daily manual logs [19, 152, 160,

165, 166, 174] and the experiments reported in Section 3.4, the objective of this section

is to better understand the effect of the non-invasive physiological data on the prediction

of glycaemic events. Using the package lme4 in R, a mixed effects logistic regression [175]

was applied calculate the logarithm of odds ratios (ORs) to interpret the relationship
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Table 3.7: Demographic characteristics (Median (IQR)) and clinical characteristics
(Mean±STD) of the 12 T1D participants in the phase I clinical study

Demographic

Age (years) 40.0 (30.0-49.0)
Gender (male/female) 6/6 (50.0% male)
Insulin regimen (CSII/MDI) 6/6 (50.0% CSII)
HbA1c (mmol/mol) 50.4 (41.5-57.5)
Glucose data length (hours) 1,113.5 (1,059.0-1,184.0)
Sensor wristband data length (hours) 832.5 (733.0-953.0)

Clinical

Time below range (< 54 mg/dL) (%) 0.4± 0.3
Time below range (< 70 mg/dL) (%) 2.9± 1.9
Time in range ([70, 180] mg/dL) (%) 63.4± 15.8
Time above range (> 180 mg/dL) (%) 33.7± 16.9
Low blood glucose index 0.8± 0.5
High blood glucose index 7.6± 4.2
Average daily risk range 40.4± 10.5
Inter-day coefficient of variation (%) 35.2± 4.5
Intra-day coefficient of variation (%) 30.9± 4.8
Mean glucose level (mg/dL) 161.2± 25.9
Median glucose level (mg/dL) 154.8± 26.8

MDI: multiple daily injection, CSII: continuous subcutaneous insulin infusion.

between physiological measurements and the binary outcome of adverse glycaemic events

(i.e., hypoglycaemia (< 70 mg/dL) or hyperglycaemia (> 180 mg/dL) in Figure 3.10. The

measured physiological variables applied to the regression analysis include the mean values,

standard deviation, range, and maximum and minimum differential values of electrodermal

activity (EDA), inter-beat intervals (IBIs), acceleration, and skin temperature signals.

The association of the non-invasive physiological measurements with adverse gly-

caemic events over a 60-minute PH is shown in Figure 3.10. Hypoglycaemia is negatively

associated with a larger range of IBIs (OR: 0.72, 95% CI: 0.57-0.91; p < 0.01), while

higher mean IBIs and mean skin temperature increases the ORs of hypoglycaemia (OR:

1.23, 95% CI: 1.17-1.30; p < 0.01; and OR: 1.18, 95% CI: 1.07-1.29; p < 0.01, respectively).

Similarly, we observe that, besides the IBIs and skin temperature, variables derived from

EDA and acceleration are also significant predictive factors for hyperglycaemia predic-

tion. Considering all the physiological signals are significantly associated with adverse

glycaemic events, we, therefore, combined these non-invasive measurements with CGM
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Figure 3.10: Forest plots of mixed effects logistic regression showing the association be-
tween non-invasive physiological measurements and adverse glycaemic events, including
electrodermal activity (EDA), inter-beat intervals (IBIs), acceleration (ACC), and skin
temperature (TEMP). The horizontal error bars represent 95% CIs. The regression coeffi-
cients were computed for mean values, standard deviation (SD), range, and maximum and
minimum differential (diff) values over a one-hour retrospective window. The differential
values refer to difference between adjacent measurements. a Analysis for hypoglycaemia.
b Analysis for hyperglycaemia. The significance of a predictor is indicated as ∗p < 0.05,
∗∗p < 0.01.

and daily entries to extract a total of 20 real-time features (Table B.8 of Appendix B),

which were used in feature selection for the deep learning-based prediction model.
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3.6 Integrating Wristband Sensor Data Into BG Prediction

3.6.1 Multi-modal Feature Engineering and Preprocessing

As a clinically validated, commercially available, and non-invasive device, the Empatica

E4 wristband uses a photoplethysmography sensor to measure blood volume pulse (BVP),

two electrodes to obtain EDA, a pair of accelerometers and a gyroscope to detect the level

of physical activity, and a peripheral temperature sensor to monitor skin temperature. In

previous clinical studies, BVP and electrocardiogram signals are the primary sources to

identify IBIs for heart rate variability analysis [176]. In particular, we applied a band-pass

Butterworth filter to remove noise in BVP signals and employed a slope sum function [177]

to detect the local maxima. Then we used a sliding window with decision rules [177] to

search peaks, as the systoles in cardiac cycles. The IBIs were computed by the difference

of consecutive peaks.

We extracted short-term heart rate variability features with a 5-minute window

to indicate early changes [178] in temporal and frequency domains [179]. To obtain skin

conductance levels and skin conductance responses, we continuously decomposed EDA

data into tonic and phasic components via a high-pass filter [180]. There are two open-

source software tools involved in EDA and BVP processing [181, 182]. Together with

physical activity levels and skin temperature, the outcomes of these features in the past

five minutes were averaged and aligned with the time steps of CGM readings. Heart

rate variability is an established indicator that reflects cardiac autonomic activities, while

EDA is related to the status of the nervous system. These biomarkers have been used in

previous studies to predict and detect hypoglycaemia for T1D [178, 183, 184].

The median value of the missing percentages of CGM and wristband data are 3.02%

and 23.05%, respectively, which are reasonable since the wristband needs to be charged for

around 4-5 hours every day. All the features, including IOB and COB, were preprocessed

following the procedure in Section 3.2.1. We noted that features derived from the same

measurement exhibited strong a correlation with each other. Hence, each time we retained

one feature in IBI or EDA feature group (Table B.8 of Appendix B) and selected the best
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combination according to the error scores that summed up RMSE results for the four PHs

in model validation.

Considering the personalised models are provided to the T1D subjects at a midterm

clinical visit (Figure 3.9), we divided the data of each subject into a training set and a

testing set that include the first 50% data and the remaining 50% data, respectively. The

last 20% data of each training set were used as a hold-out personalised validation set. To

simulate a clinical scheme with two phases (Figure 3.9), we employed a population set

containing the training sets of 11 subjects and a personalised set with the data of the

remaining subject, assuming it is a new subject (e.g., a participant in phase II). Data

of each subject in the population set were used to optimise the population model. The

population models were validated with leave-one-subject-out cross validation. Then we

used the training data of the personalised set to fine-tune the population model to develop

a personalised model, and used the testing data of the personalised set for evaluation. We

used early stopping to mitigate overfitting and improve generalization.

The chronological partition of training, validation and testing set in this work was

carefully selected. Random cross-validation can be found in previous work, which trained

and validated machine learning models on the same dataset [131, 152]. However, during

the experiments, we noticed that there were temporal dependencies between the data

points from nearby locations, especially in adjacent ones. The features were derived with

the small resolution of CGM, so the difference between consecutive time steps is sometimes

negligible. In this regard, the use of random or stratified splitting methods would introduce

underlying temporal correlation into training and testing sets, which could result in serious

overestimation of model accuracy [185].

3.6.2 Developing Population and Personalised models

With the population and personalised data sets, we applied the FCNN framework (Sec-

tion 3.2) to develop a deep learning model for glucose prediction and hypo- and hyper-

glycaemia detection. As shown in Figure 3.11, the architecture of the ARISES model is

similar to the attention-based RNN with GRUs proposed in Section 3.2.2, where a single
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Figure 3.11: Architecture of the ARISES model to incorporate wristband sensor data.

GRU layer was used to replace the second and third bidirectional GRU layers in Figure 3.2.

The multivariate input data for the RNN model were selected according to validation per-

formance, which include CGM, carbohydrate amount, insulin bolus, time index, IBIs, and

skin conductance responses. Due to the change of input data and experimental settings,

the hyperparameters were updated and presented in Table B.3 of Appendix B. Interest-

ingly, according to Figure 3.10, the IBI also has significant effects on both hypoglycaemia

and hyperglycaemia prediction in mixed effects logistic regression.

In addition, lower bounds Bl
t+r and upper bounds Bu

t+r were applied to improve

hypo- and hyperglycaemia prediction, respectively, which are denoted as

Bl
t+r = Ĝt+r − klf−1N (uet ),

Bu
t+r = Ĝt+r + kuf−1N (uet ), (3.29)

where kl and ku are tunable thresholds of the uncertainty.
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3.6.3 Prediction Performance

We used the results for the 60-minute PH as the primary outcomes, since predicting glucose

over such a long PH is challenging. The converted TensorFlow Lite models were evaluated

to simulate on-device inference in the ARISES app (Section 6.5.3). To compare the pro-

posed model with existing approaches, we employed a set of classic machine learning and

deep learning baseline methods, including SVR with the radial basis function kernel [160],

ANNs with three fully-connected layers [174], Bi-LSTM [89], and CRNNs [96]. Besides, we

also used a statistical model, the autoregressive moving average (ARMA) with exogenous

inputs [186], and a physiological model, the physiologically-based kinetic model (PKM),

which is based on the composite minimal model of plasma glucose and insulin kinetics

with personalised insulin sensitivity, time to maximum glucose rate of appearance, and

time to maximum insulin absorption [187, 188]. The PKM has been validated on both

the in silico data from the UVA/Padova T1D simulator [81] and real data from clinical

trials [189] in terms of glucose prediction [188]. The input features of baseline models were

identical to those of the proposed model, except that the PKM only used the information

of CGM measurements, carbohydrate intake and insulin bolus.

Figure 3.12 depicts the predicted trajectories and CGM measurements of a partici-

pant over a two-day period. We present the 7-day trajectories of four selected participants

in Figure B.2 of Appendix B. We observe that the daily activities, including meal intake

and insulin bolus delivery, have a significant impact on the glucose levels. The glycaemic

homeostasis is affected by these external factors and internal changes in the T1D subject.

Thus, the accuracy degrades as the PH increases. As highlighted by the eclipses in Fig-

ure 3.12, the use of lower bounds successfully identified two hypoglycaemic events that are

likely to be missed using single prediction values.

Glucose Level Prediction

Table 3.8 presents the results (Mean±STD) of the personalised models with 15, 30, 45,

60-minute PHs. The proposed ARISES model outperformed all the considered baseline

methods in terms of RMSE, gRMSE, MAE, MAPE, and PTD. The results of the baseline
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Figure 3.12: Two-day period CGM and prediction trajectories of a T1D adult over a 30-
minute PH. The ellipses indicate the hypoglycaemic events that are missed by prediction
values but detected by the lower bounds.

methods are presented in Table 3.9. The ARISES obtained significant improvement in

RMSE, gRMSE, MAE, and MAPE, when compared with the best performance of the

baseline methods (CRNNs [96]; p < 0.01). When only one day of data was used for

fine-tuning, the MAML approach obtained the average RMSE of 39.37 ± 7.14 for the

60-minute PH, which is much smaller than the RMSE obtained by a baseline method of

transfer learning [128] (RMSE: 43.07 ± 8.41; p < 0.05).

Table 3.8: Performance of glucose level prediction evaluated on 12 clinical subjects

PHs 15 min 30 min 45 min 60 min

RMSE (mg/dL) 10.15± 1.67 20.92± 3.55 28.99± 4.41 35.28± 5.77

gRMSE (mg/dL) 12.14± 2.06 26.07± 4.47 37.20± 5.97 46.26± 7.73

MAE (mg/dL) 7.21± 1.09 15.06± 2.36 21.15± 3.15 26.11± 4.36

MAPE (%) 5.07± 0.97 10.62± 2.03 14.94± 2.77 18.53± 3.78

PTD (min) 1.39± 1.06 7.37± 5.18 14.00± 7.24 17.63± 11.39

In addition, Figure 3.13 shows the results of ablation analysis, where we removed

certain components from the model and evaluated their impact on the prediction perfor-
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Table 3.9: Performance of baseline methods for glucose level prediction over the 60-minute
PH

Methods RMSE ↓ gRMSE ↓ MAE ↓ MAPE ↓ PTD ↓
ARISES 35.28± 5.77 46.26± 7.73 26.11± 4.36 18.53± 3.78 17.63± 11.39

PKM [188] 43.12± 7.53† 51.22±10.42† 31.51± 5.09† 21.95± 4.28† 19.87±10.26∗

ARMA [186] 42.29± 7.73† 53.44±10.24† 30.77± 5.43† 21.04± 3.96† 41.89±13.19†

SVR [160] 39.99± 7.03† 52.03±10.48† 31.52± 5.93† 24.19± 5.61† 21.34± 11.49

ANN [174] 39.31± 6.85† 51.88± 9.59† 29.69± 5.35† 21.15± 4.10† 31.88±13.65†

Bi-LSTM [89] 39.32± 7.19† 51.62± 9.92† 29.02± 5.23† 20.21± 4.01† 19.57± 10.71

CRNN [96] 37.18± 6.09† 49.04± 8.50† 27.77± 4.89† 19.55± 3.70† 21.57± 11.41
∗p < 0.05, †p < 0.01.
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Figure 3.13: Ablation analysis on the prediction performance of glucose levels. The model
achieved smaller average RMSE for the 12 T1D subjects when using MAML and wrist-
band input data. The improvement is most significant for the 60-minute PH. The lower
and upper hinges of boxplots show the first quarter (Q1) and the third quartile (Q3),
respectively. The central lines indicate the median, while the whiskers extend to 1.5 IQR.

mance. In particular, the use of MAML and wristband input respectively reduced the

average RMSE by 1.41 and 2.25 mg/dL (p < 0.05) for the 60-minute PH.

Hypoglycaemia and Hyperglycaemia Prediction

Table 3.10 and 3.12 respectively show the results of hypoglycaemia and hyperglycaemia

prediction using the lower and upper bounds derived from evidential deep learning. We

observe that the proposed ARISES model achieved the accuracy of 88.58% with the sen-

sitivity of 70.30% and the accuracy of 87.20% with the sensitivity of 86.62% for hypo-

glycaemia and hyperglycaemia prediction over the 60-minute PH, respectively. For the

considered baseline methods (Table 3.11 and 3.13), we used the predicted glucose levels,

i.e., single trajectories, to detect adverse glycaemic events. Among these, ARMA [186]
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and PKM [188] achieved the best baseline results for hypoglycaemia and hyperglycaemia

prediction, respectively. It is worth noting that, compared with the ARMA, the ARISES

model significantly increased sensitivity by 13.35% and reduced MD by 13.29 mg/dL for

hypoglycaemia prediction. Compared with the PKM for hyperglycaemia prediction, the

ARISES model significantly increased specificity and precision by 5.38 % and 5.43 %, re-

spectively, while reducing the MD by 13.80 mg/dL. As shown in Figure 3.14, we observe

that the use of lower bounds and wristband input data enhanced the average MCC scores

by 0.34 (p < 0.01) for hypoglycaemia prediction with the 60-minute PH.

Table 3.10: Performance of hypoglycaemia prediction evaluated on 12 clinical subjects

PHs 15 min 30 min 45 min 60 min

Accuracy (%) 98.03± 1.03 94.96± 2.92 91.97± 4.22 88.58± 6.53

Sensitivity (%) 84.15± 4.20 76.08± 5.88 72.07± 4.45 70.30± 12.84

Specificity (%) 98.72± 0.75 96.42± 2.48 93.99± 4.08 90.09± 8.21

Precision (%) 78.91± 4.31 65.65± 5.31 58.23± 10.21 56.20± 10.43

MCC score 0.80± 0.04 0.68± 0.05 0.60± 0.06 0.56± 0.07

MD (mg/dL) 10.28± 3.80 19.18± 7.00 26.30± 9.28 28.63± 11.00

Table 3.11: Performance of hypoglycaemia prediction with the baseline methods over the
60-minute PH

Methods Accuracy ↑ Sensitivity ↑ Specificity ↑ Precision ↑ MCC score ↑ MD ↓
ARISES 88.58± 6.53 70.30± 12.84 90.09± 8.21 56.20± 10.43 0.56± 0.07 28.63± 11.00

PKM [188] 80.05± 6.29† 82.49± 13.10∗ 78.75± 8.77† 36.43±12.98† 0.45± 0.11∗ 40.36±15.34†

ARMA [186] 91.89± 5.23 56.95± 19.24† 94.87± 3.67 55.28± 17.38 0.51± 0.12 41.92±14.60†

SVR [160] 87.20± 6.08 6.03± 10.16† 99.10± 1.40† 30.05± 32.98 0.08± 0.12† 60.55±22.73†

ANN [174] 88.01± 5.80 17.15± 11.75† 98.39± 1.43† 61.76± 15.16 0.26± 0.11† 48.18±18.05†

Bi-LSTM [89] 87.51± 6.65 19.78± 12.38† 97.52± 1.92∗ 47.79± 20.69 0.25± 0.15† 43.61±16.73†

CRNN [96] 88.06± 5.94 12.54± 8.40† 99.07± 0.72† 67.70± 16.88 0.24± 0.11† 45.94±19.37†

∗p < 0.05, †p < 0.01.

Table 3.12: Performance of hyperglycaemia prediction evaluated on 12 clinical subjects

PHs 15 min 30 min 45 min 60 min

Accuracy (%) 96.75± 0.99 93.22± 1.24 90.06± 1.05 87.20± 1.95

Sensitivity (%) 95.32± 2.16 91.25± 4.75 88.48± 7.87 86.62± 7.81

Specificity (%) 96.95± 1.14 92.62± 2.89 87.61± 5.10 82.59± 7.96

Precision (%) 94.62± 2.37 90.51± 3.20 87.43± 4.76 85.11± 5.83

MCC score 0.92± 0.02 0.84± 0.02 0.77± 0.03 0.70± 0.05

MD (mg/dL) 13.00± 2.30 28.69± 5.16 40.05± 8.04 47.62± 10.33
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Table 3.13: Performance of hyperglycaemia prediction with the baseline methods over the
60-minute PH

Methods Accuracy ↑ Sensitivity ↑ Specificity ↑ Precision ↑ MCC score ↑ MD ↓
ARISES 87.20± 1.95 86.62± 7.81 82.59± 7.96 85.11± 5.83 0.70± 0.05 47.62± 10.33

PKM [188] 85.54± 3.13 91.58± 3.52 77.21± 4.74∗ 79.68±12.49∗ 0.68± 0.06 61.42±16.26†

ARMA [186] 85.05± 1.85† 82.26± 7.02† 83.52± 6.27 84.59± 6.51 0.66± 0.04† 65.36±14.47†

SVR [160] 84.73± 3.24† 83.44± 15.68 75.59± 19.79 84.04± 5.22 0.64± 0.08† 52.09±10.85∗

ANN [174] 84.13± 2.15† 76.24±18.61∗ 82.43± 13.46 85.77± 4.85 0.62± 0.08† 56.65±11.12†

Bi-LSTM [89] 84.22± 3.38† 77.03±17.55∗ 83.19± 11.59 85.84± 4.58 0.63± 0.08† 57.43±10.60†

CRNN [96] 83.97± 4.33† 76.03±20.07∗ 82.70± 14.53 87.28± 4.57 0.63± 0.09† 53.47±10.27∗

∗p < 0.05, †p < 0.01.
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Figure 3.14: Ablation analysis on the prediction of adverse glycaemic events, evaluated
on the 12 T1D subjects. a MCC scores for hypoglycaemia prediction. b MCC scores
for hyperglycaemia prediction. The lower bounds significantly improved hypoglycaemia
prediction, while the use of wristband data enhanced MCC scores for all the PHs. The
lower and upper hinges of boxplots show the Q1 and the Q3, respectively. The central
lines indicate the median, while the whiskers extend to 1.5 IQR.

It is observed that the machine learning and deep learning baseline models obtained

better RMSE performance for glucose level prediction, but smaller MCC scores for hypo-

and hyperglycaemia prediction, when compared with the physiological and statistical base-

line methods. One possible explanation is that the machine learning and deep learning

baseline models were optimised in a supervised learning process with the targets of actual

CGM measurements, but the prediction of adverse glycaemic events was not considered.

In this regard, the introduced lower and upper bounds in the ARISES model enabled a

good balance between glucose level prediction and hypo- and hyperglycaemia detection.

We compared the MCC scores using these bounds against the results of single curve

prediction in Figure 3.14, where the classification based on the bounds exhibited better

performance. We noticed that hypoglycaemia is a minority class in the dataset, which
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accounts for 2.91 ± 1.93% of total glucose measurements (Table 3.7). In general, the

classifier is less sensitive to detecting a minority class. Nevertheless, in this model, the

sensitivity can be further enhanced by reducing the thresholds of lower bounds at a cost

of potential alarm fatigue. This trade-off can be decided by clinicians on an individual

case basis.

3.7 Conclusion

In this chapter, we proposed FCNN, a novel deep learning framework to overcome the

critical clinical challenges in personalised BG prediction: confidence in the predictions and

data availability. Incorporating meta-learning and evidential deep learning, we developed

a fast-adaptive and confident deep learning model based on the bidirectional GRU and

attention mechanism. To the best of our knowledge, FCNN is the first work that uses

an attention-based GRU model for BG prediction, while incorporating model confidence

and fast adaptation for clinical benefits. We have shown that FCNN achieved state-

of-the-art performance and significantly outperformed the selected baseline methods, in

terms of RMSE, MAE, and gRMSE, when evaluated on the three clinical datasets. The

confidence bounds derived by evidential regression have notably improved MCC scores of

hypoglycaemia detection, especially for the 60-minute PH. Compared with the classic TL

baseline, the use of MAML has obtained superior performance of fast adaptation when

training data are limited.

We further integrated wristband sensor data into the FCNN to build a deep learning

predictor for the ARISES clinical study. The results suggest that measurements obtained

from wearable wristband data sensors can be integrated alongside CGM data to improve

the prediction of glucose levels and adverse glycaemic events. It is also noted that indicate

heart rate variability can be useful biomarkers in T1D decision support.
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Chapter 4

Glycaemic Control Using Deep

Reinforcement Learning

People with T1D require the regular exogenous infusion of insulin to maintain their BG

concentration in a therapeutically adequate target range. Although the AP and CGM

have been proven to be effective in achieving closed-loop control, significant challenges

still remain due to the high complexity of glucose dynamics and limitations in the tech-

nology. Optimising the doses of insulin delivery to minimise the risk of hyperglycaemia

and hypoglycaemia is still an open problem. In this context, this chapter first presents

a novel DRL model for single-hormone (basal insulin) and dual-hormone (basal insulin

and glucagon) delivery. In particular, the delivery strategies are developed by double

Q-learning. For designing and testing purposes, the FDA-accepted UVA/Padova T1D

simulator is employed. In silico results show that the single and dual-hormone delivery

strategies achieve good glycaemic control when compared with low-glucose insulin suspen-

sion. The simulator is further used to develop a novel DRL advisor for meal insulin bolus

using an actor-critic model and prioritised memory replay. The DRL insulin bolus advisor

significantly improved the time spent in the adverse glycaemic events for virtual cohorts

of adults and adolescents.

DRL has provided new paradigms of glycaemic control algorithms. However, all the

existing DRL-based AP controllers require a large number of random online interactions
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between the agent and environment, which can be validated in T1D simulators but are not

feasible in clinical settings. To this end, we propose an offline DRL framework that can

develop and validate models purely offline. We evaluated the proposed framework on an

offline in silico dataset and a clinical dataset with 12 real T1D subjects. The performance

on the in silico dataset shows that the offline DRL algorithm significantly increased TIR

for the adult and adolescent groups. A notable increase in policy values was observed for

each subject in the clinical dataset. The work in this chapter has led to the following

journal articles:

• T. Zhu, K. Li, P. Herrero and P. Georgiou, ”Basal glucose control in type 1 dia-

betes using deep reinforcement learning: An in silico validation,” IEEE Journal of

Biomedical and Health Informatics, vol. 25, no. 4, pp.1223–1232, 2021.

• T. Zhu, K. Li, L. Kuang, P. Herrero and P. Georgiou, “An insulin bolus advisor

for type 1 diabetes using deep reinforcement learning,” Sensors, vol. 20, no. 18, p.

5058, 2020. (Editor’s Choice Article)

• T. Zhu, K. Li, P. Herrero and P. Georgiou, ”Offline Deep Reinforcement Learn-

ing and Off-Policy Evaluation for Personalized Blood Glucose Control in Type 1

Diabetes,” Submitted to IEEE Journal of Biomedical and Health Informatics.

4.1 Introduction

To date, most existing AP systems that have been evaluated in the clinic have used a

control engineering approach for basal insulin control [190], such as the model predictive

control [191, 192], and proportional integral control [193]. Other groups have also em-

ployed a bio-inspired approach [56] and a conventional AI approach (fuzzy logic) [194]. In

particular, two of them, the Medtronic MiniMed 670G and the Tandem Control-IQ have

reached the commercialization stage. More recently, CamAPS FX and MiniMed 780G

obtained Conformité Européenne marking and were commercialized in 2020. Two dual-

hormone AP systems, Beta Bionics iLet and Inreda APS, have been shown to improve

glycaemic control in clinical trials [195, 196] and are in preparation for commercialization.
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For meal bolus delivery, different research groups have developed advanced bolus

advisors to further enhance the accuracy of insulin dose recommendations. Assuming

the bolus insulin therapy in people with T1D is repetitive by nature, the use of run-

to-run control with capillary blood measurements has been proposed [197] and clinically

evaluated [198]. By enhancing run-to-run control with CGM measurements and the AI

technique of case-based reasoning, Herrero et al. proposed an advanced bolus advisor

which was integrated into a smartphone [199] and clinically evaluated in a free-living

setting over six weeks [200]. In recent years, taking advantage of the increasing data

availability thanks to the use of wearables and EHRs, AI is playing an important role

in decision support systems for diabetes management [201]. Tyler et al. proposed a

KNN decision support system to provide weekly insulin dosage recommendations to T1D

adults with MDI therapy [202]. The use of the KNN classifier was compared with rule-

based reasoning for meal, insulin, and exercise recommendation in [203]. In [204], Aiello

et al. proposed a KNN classification algorithm to predict postprandial glucose profiles

and suggest corrections to meal insulin. DNNs have been employed to determine the

insulin bolus dose [205], and a reinforcement learning method was employed to personalise

insulin treatment [206]. Combined with a reinforcement learning control algorithm, the

GoCARB system was presented within an AP framework to estimate carbohydrates of

meals to improve glycaemic control [207]. However, although these systems have been

proven to improve glycaemic control [193, 208], challenges remain, and further work is

needed to achieve optimal therapeutic targets.

In the recent systematic review by Tejedor et al. on the application of reinforce-

ment learning to BG control [209], almost all the included studies (i.e., 29 out of 30)

employed traditional reinforcement learning approaches, except for a recent work using a

DRL algorithm [102], which is compared with our work in Section 4.2.4. Unlike success-

ful DRL applications in the virtual world, such as Atari video games [80] or board-game

Go [76], where an agent dynamically interacts with a virtual environment, performing

such exploration on human subjects can be dangerous without proper safety supervision.

Alternatively, DRL algorithms can learn from existing collected data using experience re-

play. This process is called off-policy learning and plays an important role in practical
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scenarios. However, collecting the training data required is expensive and time-consuming

[210]. Fortunately, the UVA/Padova T1D simulators, including S2008 [103] and S2013 [81]

versions, provide a perfect platform that allows the agents to freely explore different ac-

tions or exploit learned policy. The S2013 version is upgraded from the S2008 version by

incorporating a nonlinear hypoglycaemia model and counter-regulation (i.e., glucagon ad-

ministration). These simulators were accepted by FDA for pre-clinical in silico trials and

have been proved to match the observations in actual clinical trials [211]. However, the

simulators have several limitations [81]. First, many intra-subject variability and realistic

scenarios, such as physical activity, complex carbohydrates, and recurrent illness, are not

included in current versions. Secondly, physiological models, such as glucagon kinetics,

and hardware models, such as CGM and insulin pumps, need to be further updated to

better fit the data collected in recent clinical trials.

Thus, most existing studies on glucose control and DRL developed algorithms in the

UVA/Padova T1D simulator and reported primary outcomes based on in silico population.

Employing the UVA/Padova T1D simulator (S2008), DQNs [102] and proximal policy

optimization [212] were proposed to control basal-bolus insulin with discrete insulin doses.

Similarly, Fox et al. [213] proposed a soft actor-critic algorithm with continuous action

space, which exhibited low glycaemic risk on 2.1 million hours of simulated data. In [214],

the authors used Hovorka model [215] for in silico simulation and developed a trust-

region policy optimization algorithm for basal insulin control. The work in this chapter

is mainly based on the UVA/Padova T1D simulator (S2013) with 10 virtual adults and

10 virtual adolescents. In our previous work on glycaemic variability [216], we introduced

modifications to the simulator to emulate realistic intra-subject variability and uncertainty

for the adult and adolescent subjects. In this research, we also apply these modifications

to the simulator, and the children cohort is currently not included.

Several notable limitations hamper the widespread adoption of DRL in actual T1D

management. First, all these existing approaches were developed by online learning in

T1D simulators and required long-term error and trial exploration, which is possible in

virtual simulation but impractical and dangerous in clinical settings. Secondly, none of
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these studies evaluated the algorithms on real clinical datasets and failed to prove the

generalization of the DRL models, due to the lack of methods for off-policy evaluation

(OPE). Fortunately, the recent advances in offline DRL [217, 218, 219, 220, 221] and

OPE [222, 223, 224] respectively address the problem of policy learning and policy eval-

uation on fixed historical datasets instead of online interactions with environments. A

major challenge for offline DRL is the trade-off between distributional shift and policy

improvement, which is generally tackled by either using policy constraints [217, 218, 219]

or value function regularization [220, 221]. Fitted Q evaluation (FQE) [223] is a promising

OPE method that has been demonstrated to provide accurate policy value estimates for

several large benchmark datasets [225, 226], as well as for a healthcare application of sepsis

treatment [227].

This chapter consists of the following three parts: single-hormone and dual-hormone

control in Section 4.2, meal insulin bolus recommendation in Section 4.3, and basal insulin

control in Section 4.4. In particular, the DRL algorithms are developed and evaluated

in the UVA/Padova T1D simulator in Section 4.2 and 4.3, while a clinical dataset, the

OhioT1DM dataset, is used in Section 4.4 to validate the proposed offline DRL algorithm.

4.2 Single and Dual-Hormone Basal Glucose Control

Figure 4.1 depicts an overview of the system architecture used to develop the DQN con-

trollers evaluated on the T1D in silico environment and to be potentially used in clinical

trials. Algorithm 1 and Algorithm 2 correspond to the two-step learning framework de-

scribed in Section 4.2.2.

4.2.1 Problem Formulation

The problem of basal glucose closed-loop control in T1D can be formulated as a Markov

decision process with noise, which is defined by a tuple ⟨S,P, A,R, γ⟩ consisting of a state

S (i.e., physiological state), a state transition function P (i.e., physiological model), an

action A (i.e., insulin and glucagon control actions), a reward function R (i.e., glycaemic
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Figure 4.1: System architecture to implement DQN for basal glucose control in the T1D
simulator (black arrows) and clinical trials (red arrows).

outcomes), and a discount factor γ ∈ [0, 1] (i.e., the importance of future glycaemic out-

comes). The agent in the environment takes an action a ∈ A at each time step (i.e., each

CGM measurement), and then its state s ∈ S turns into the successor state s′ according

to P. The policy to select action for given states is denoted by π. Maximising the ac-

cumulation of expected reward is the target of reinforcement learning. An action-value

(Q-function) Qπ(s, a) can be defined to compute this reward:

Qπ(s, a) = E[

∞∑
t′=t+1

γt
′−t−1rt′ |st = s, at = a, π]. (4.1)

The optimal action-value function Q∗(s, a) = maxπ Q
π(s, a) offers the maximal values,

which can be determined by solving the Bellman equation defined by

Q∗(s, a) = Es′
[
R(s, a) + γmax

a′
Q∗(s′, a′)

]
, (4.2)

The optimal action-value at the current state s is obtained by selecting the action

that maximises expected return with the optimal Q∗(s′, a′) at the next state s′. Although

this recursive equation can be estimated by an iterative update, linear and non-linear

approximators are commonly used in reinforcement learning for better generalization [80].
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In this paper, DQNs are employed to approximate the action-values Q(s, a; θ) ≈ Q∗(s, a)

where θ represents the parameters of the neural networks.

Agent states

In the closed-loop glucose control problem, we collect the multi-modal data from the

control system, as shown in Figure 4.1, to form a multi-dimensional input vector D to

approximate physiological state S. Specifically, D comprises the real-time continuous

blood glucose levels G (mg/dL) measured with a CGM sensor, the carbohydrate estimation

of meal ingestion M (g) recorded through a smartphone app, and hormone doses delivered

by the infusion pumps, including the meal bolus insulin B, basal insulin Bas, and glucagon

dose C. Thus, we have D = {G,M, I, C} = [dt+1−L, · · · , dt]T ∈ RL×4, where L is the

length of the time steps vector, I = B + Bas (Unit) represents the sum of meal bolus

insulin and basal insulin. The approximated observation ot = st+et takes into account the

errors or miss-estimations et in glucose measurements G, carbohydrate meal estimation M ,

and the meal insulin bolus B. Here B is computed from M with a standard bolus calculator

(SBC) [228]. From a DRL perspective, the problem can be seen as an agent interacting

with an environment over sequential time steps. Every five minutes, an observation ot can

be obtained from the environment, and an action at can be taken according to the agent’s

policy. We choose a five-minute time scale because this is the common sampling frequency

for many commercial CGMs (e.g. Dexcom G6; Medtronic Guardian) and a typical setting

for AP systems [229]. Glucose-insulin-glucagon dynamics are quite slow; hence a shorter

sampling period is unlikely to improve the outcomes of an AP system.

Actions

Following the same framework, we provide two types of delivery strategies for different

pump settings. For people with T1D wearing insulin pumps, the action space is defined

by modifying the basal insulin rate (BR) as follows: {suspension of BR, 0.5*BR, BR,

1,5*BR, 2*BR}. For those wearing dual-hormone pumps, the action space is defined by the

following options: {suspension of BR, 0.5*BR, BR, 1,5*BR, 2*BR, delivering glucagon}.



4.2 Single and Dual-Hormone Basal Glucose Control 103

30 70 90 140 180 300

R
ew

ar
d

Glucose

Hypo HyperTIR

-1

0

1

Figure 4.2: Visualization of the employed reward function in terms of the glucose level
(mg/dL) in the next state.

The value of BR is subject-specific and is known in advance. Based on previous work,

we fix glucagon doses to 0.3 µg/kg for all individuals and constraint the total amount of

delivered glucagon to a maximum of one mg per day [230]. This dosage has also been

tested in clinical trials with two formulations of glucagon, which demonstrates efficacy

and safety [231].

Rewards

The desired performance of closed-loop glucose control is to maintain BG in a target

range of 70-180 mg/dL. By using an empirical approached aiming at maximising TIR and

minimising hypoglycaemia, the following piece-wise reward function was selected.

rt+1 =



1, 90 ≤ Gt+1 ≤ 140

0.1, 70 ≤ Gt+1 < 90 & 140 < Gt+1 ≤ 180

−0.4− (Gt+1 − 180)/200, 180 < Gt+1 ≤ 300

−0.6 + (Gt+1 − 70)/100, 30 ≤ Gt+1 < 70

−1, else.

(4.3)

As depicted in Figure 4.2, the agent receives a positive reward if the BG level for the

next state is in the target range and a negative reward otherwise. If the BG is below 30

mg/dL or above 300 mg/dL, we terminate exploration and restart the simulator. Different

evaluated reward functions are presented in Table C.1 of Appendix C.
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4.2.2 Double Deep Q-Networks

Two-step Learning Framework

First, we perform long-term generalised training to obtain a population model for the

hormone delivery strategies. We use dilated recurrent neural networks (DRNNs) [128]

for modeling the multi-dimensional time series including glucose levels, hormone doses,

and meal intake. Other inputs affecting glucose levels, such as physical exercise, could

also be considered [232]. To train the model, each basal hormone delivery (at five-minute

intervals) is regarded as an action taken by the agent, while the glucose level on the next

time step is set to the reward by the criteria of time in range (Equation 4.3). Secondly,

by initialising the weights obtained from the population model, we have a model with

good initial performance. With a TL process, we individualise the DQNs according to

personal characteristics and safety constraints with a small subject-specific dataset. Safety

constraints in the AP refer to a set of safety measures based on the observations by

monitoring systems (e.g., CGM measurements), estimation of the metabolic state of the

subject (e.g. IOB), and meal ingestion, to prevent or mitigate possible harmful BG events

[233]. A safety supervision system can comprise multiple safety constraints tasked with

potentially dangerous events that may arise in a clinical setting (e.g. manual inputs

constraints, glucose sensor saturations, insulin and glucagon delivery limits).

During clinical trials, the data for training is usually very limited, thus we aim at

fast learning performance. Therefore, we use a double DQN with modified importance

sampling to further optimise approximated action values. A classic technique is employed

to accelerate learning processes, where prioritised experience replay samples important

transitions more frequently [234, 235]. To avoid overestimating the action values, a double

DQN decouples action selection and value evaluation by two separate neural networks

[236], as shown in Figure 4.3. The second step is suitable for a clinical trial setting, where

the model is able to be fine-tuned in a relatively short period of time.
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Figure 4.3: Diagram of the propose double DQN. The structure of the neural network is
the same for both action selection and value evaluation, which consists of an input layer, a
stack of DRNN layers, a fully-connected (FC) layer and output. The input data includes
BG series from CGM G, meal M , insulin I and glucagon C.

Generalised DQN Training

In the first step, we use the simulator to generate an environment by using an average

T1D subject for each one of the virtual cohorts (i.e. adult and adolescent). Compared

with standard RNNs, DRNNs are preferred as DQNs for learning the delivery strategies.

The large receptive field brought by dilation is powerful to extract features from glucose

time series [128], where the dilated skip connection can be represented as

c
(l)
t = f

(
n
(l)
t , c

(l)

t−d(l)

)
, (4.4)

where c
(l)
t is the cell in layer l at time t, n

(l)
t is the input to layer l at time t, d(l) denotes

the dilation of layer l, and f (·) represents the output function of RNN cells. As shown in

Figure 4.3, we use three DRNN layers with exponentially increasing dilation, to process the

multi-dimensional time-aligned sequence and extract high-level features. Then training is

carried out in the simulator with double DQN weights θ1, θ2, where action selections θ1

and value evaluations θ2 are obtained from two separate neural networks. According to

Equation (4.2), the action-selection networks are trained with the loss as

JDQ(Q) = E(o,a,r,o′)∼ρ[(r+

γQ(o′, a′; θ2)−Q(o, a; θ1)
)2

],

(4.5)
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where ρ is a mini-batch with transitions (o, a, r, o′) sampled from the memory pool, and

a′ = arg max′aQ(o′, a′; θ1) is chosen by the action selection DQN in Figure 4.3. Thus, the

Q-function can be updated as

Qθ1(o, a)← Qθ1(o, a) + α(r+

γQθ2(o′, arg maxaQθ1(o′, a))−Qθ1(o, a)),

(4.6)

where α is the learning rate, and the weights of θ1 are copied to θ2 with a fixed period. We

optimise the learning rate by the Adam method at each iteration [155]. The corresponding

pseudo-code is presented in Algorithm 1.

Algorithm 1 Generalised DQN Training

1: Input: the environment E with average T1D subject parameters Is provided by the
simulator, update period TG, ε-greedy

2: Initialise DQNs with random weights θ1, θ2, replay memory B
3: for steps t∈ 1, 2, ..k do
4: Sample action from a ∼ π(Qθ1 , ε), observe o′ in EIs, calculate r, store (o, a, r, o′)

into B
5: end for
6: repeat
7: Sample action from a ∼ π(Qθ1 , ε), observe o′ in EIs, calculate r, store (o, a, r, o′)

into B
8: Sample a mini-batch uniformly from B and calculate loss JDQ(Q)
9: Perform a gradient descent to update θ1

10: if t mod TG = 0 then θ2 ← θ1 end if
11: until converge

For each meal, a standard dose of bolus insulin is delivered, and the agent explores

random hormone delivery actions (single or dual) under policy π that is ε-greedy with

respect to Qθ1 . Human intervention could reduce training time and improve initial per-

formance, but it would cause potential bias during the training process [237]. For in silico

trials, random actions are tested with great flexibility and no safety concerns, as a great

advantage of using a simulation environment. In this case, we can train the agent for a

long time until the loss converges, so human intervention is not necessary. At the end of

the generalised training, a population model consisting of a double DQN with weights θ1

and θ2 is obtained.
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Personalised DQN Training

After developing a generalised model, we fine-tune the model by TL with regards to

personal characteristics. We fetch the weights and features from the generalised model,

then train the personalised DQNs within a dataset corresponding to a short period of time

with safety constraints. We can choose to fine-tune all layers of the generalised model or

to retain the weights of some of the lower layers and only fine-tune a higher-level portion

of the network to avoid over-fitting. In experiments, we found that lower layers contain

more generic features (e.g. insulin suspension during the trend of hypoglycaemia) that

should be useful for all the subjects with T1D.

Here a method modified from [235] is used for calculating the loss of policy-

generated data. Specifically, Jn(Q) has an n-step returns (n= 12) to propagate values

of actions to earlier states ri + γri+1 + · · ·+ γn−1ri+n−1 + maxaQ(oi+n, a), and JL2(Q) is

an L2 regularization loss applied to θ to mitigate over-fitting. Prioritised experience re-

play samples the transitions with a probability Pri proportional to its importance priority

[234], which is computed from previous data and normalised afterwards,

Pri =
pαi∑
i p
α
i

, pi = |δi|+ ϵ′, (4.7)

where α ∈ [0, 1] determines the level of using prioritization, pi is the priority of transition

i calculated from last temporal difference (TD) error δi and ϵ′ is a small positive constant.

It allows the DQN to more frequently replay transitions with higher TD error. In addition,

to ensure that hormones are delivered safely in the clinical trial, constraints C are applied

to the suggested action before execution. Here we use a simple strategy for the safety

constraints: suspending basal insulin or glucagon when the current BG level is below 80

mg/dL or over 160 mg/dL, respectively. In practice, the trend and prediction of BG levels

can also be used in the safety constraints for early interventions. With proper training of

the generalised model and adequate safety constraints, this algorithm can be adopted in a

clinical trial setting. The corresponding pseudo-code detailing the algorithm is presented

in Algorithm 2.
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Algorithm 2 Personalised DQN Training

1: Input: replay memory B and DQNs weights θ′1, θ
′
2 from generalised training; individ-

ual environment E, safety constraints C, update period TP , parameter λ1, λ2,
2: Initialise personalised DQNs weights θ1 ← θ′1, θ2 ← θ′2
3: Initialise replay memory D, merging B with priorities
4: for steps i∈ 1, 2, ..N do
5: Sample action from policy a ∼ π(Qθ1),
6: if a subject to C then execute a end if
7: Observe (o′, r) in E
8: Store (o, a, r, o′) in D, overwriting the samples previously merged from B
9: Sample a mini-batch from D by modified importance sampling Pr and update the

transition priority
10: Calculate loss J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JL2(Q)
11: Perform a gradient descent to update θ1
12: if t mod TP = 0 then θ2 ← θ1 end if
13: end for

4.2.3 In Silico Environment and Baseline

Following the architecture evaluation setup depicted in Figure 4.1, we conducted ex-

periments to evaluate, in silico, the effectiveness of proposed DRL framework with the

UVA/Padova T1D Simulator [81]. As stated in Section 4.2.1, we use two settings of con-

trol actions in the proposed DRL algorithm: single-hormone (DRL-SH) and dual-hormone

delivery (DRL-DH). Following a TL strategy, we started with a long-term exploration with

1,500 simulated days to obtain a stable generalised model using Algorithm 1, then, we per-

formed personalised training for each individual in the cohort (i.e. adult and adolescent)

with 30 simulated days using Algorithm 2. Due to the significant amount of data required,

the generalised model is meant to be trained in the simulator, whereas the personalised

model training has the potential to be done in a clinical setting. Finally, the personalised

models were tested in a period of 90 days. The details of DNN selection and hyperparam-

eters are presented in Figure C.1 and Table C.2 of Appendix C, respectively.

The UVA/Padova T1D simulator provides an interactive environment for the agent

to explore and learn the policy. We introduced additional intra-subject variability in the

meal protocol scenario and the parameters of the T1D model [216]. In particular, we

selected four meals as the daily pattern (average cases: 7 am (70 g), 10 am (30 g), 2 pm

(110 g), 9 pm (90 g)) with meal-time variability (STD = 60 min) and meal-size variability
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(CV = 10%). The meal-duration was set to 15 minutes. A misestimation of carbohydrate

amount between −30% and +10% with uniform distribution was applied. The reason

we used this skewed distribution is that the underestimation of carbohydrate content is

more common than overestimation in real-life conditions, according to a cross-sectional

study with 50 T1D subjects [130]. Variability for meal absorption and carbohydrate

bioavailability were set to 30% and 10%, respectively. The variability of insulin sensitivity

was considered to be 30% for adult cohort and 20% for adolescent cohort, which are

created by the scenario function in the subjects’ own profile. These values of variability

were selected based on available physiological knowledge and to achieve the glycaemic

outcomes commonly observed in such populations when treated with standard therapy

[238]. We saved intra-day and intra-person variability for each subject and used the same

scenarios for all the evaluated methods, i.e. same daily events and variability time series,

in order to have a fair comparison. We utilised the 10 virtual adults and 10 virtual

adolescents, plus the corresponding average subjects, for generalised training.

As a baseline method, a low-glucose insulin suspension (LGS) strategy, commonly

found in SAPs, was employed [189]. LGS systems have been proven to reduce hypogly-

caemia by suspending basal insulin delivery [134]. For meal bolus calculation, a SBC was

used [228].

4.2.4 Results and Discussion

To evaluate the performance of the proposed algorithms and compare them against the

baseline method, we selected five standard glycaemic metrics commonly employed by the

diabetes technology community [239]. These include: percentage time in the glucose target

range of [70, 180] mg/dL (TIR), percentage time below range (TBR) (i.e. hypoglycaemia),

percentage time above range (TAR) (i.e. hyperglycaemia), mean BG levels, and risk index

(RI). Results are expressed by mean values and standard deviations (Mean±STD).

Table 4.1 and Table 4.2 shows the results of the three tested methods evaluated

on the adult and adolescent cohorts, respectively. Compared with LGS therapy, both

single-hormone and dual-hormone DRL models improve the glucose control performance
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Table 4.1: Testing performance of glucose control on the adult virtual cohort

Method TIR (%) TBR (%) TAR (%) Mean BG RI

LGS 77.55±6.78 2.87±1.38 19.58±5.79 140.78±8.23 2.52±0.89

DRL-SH 80.94±7.00∗ 2.06±1.33∗ 17.00±5.82 140.36±5.98 2.28±0.72

DRL-DH 85.55±7.33∗∗,† 1.92±1.90∗ 13.81±6.67∗∗,† 140.12±8.13 2.16±0.65†

Symbol ∗ and † indicates statistical significance (p < 0.05 ) with with respect to LGS and
DRL-SH, respectively. A double symbol (e.g. ‡) indicates statistical significance (p < 0.01).

Table 4.2: Testing performance of glucose control on the adolescent virtual cohort

Method TIR (%) TBR (%) TAR (%) Mean BG RI

LGS 55.50±14.68 6.93±4.69 37.57±11.64 162.15±20.46 4.76±2.70

DRL-SH 65.85±16.30∗∗ 5.51±3.37 28.63±14.36∗∗ 151.18±18.26∗∗ 3.99±2.43∗∗

DRL-DH 78.83±6.60∗∗,† 2.64±1.96∗∗,‡ 18.53±6.48∗∗,† 149.96±8.83∗∗ 2.94±0.99∗∗,‡

Symbol ∗ and † indicates statistical significance (p < 0.05 ) with with respect to LGS and
DRL-SH, respectively. A double symbol (e.g. ‡) indicates statistical significance (p < 0.01).

by reducing hypoglycaemia, hyperglycaemia and increasing TIR in the two cohorts. Of

note, the dual-hormone DRL model significantly increases the mean TIR with a notable

decrease of risk index, achieving the best performance. Mean BG levels are maintained in

the adult cohort, while the improvement is significant in the adolescent cohort.

For demonstration purposes, Figure 4.4 graphically displays the performance of the

three evaluated methods for a chosen adult and a chosen adolescent over a three-month

testing period. In particular, the glucose profile over 24 hours (Mean±STD) (i.e. am-

bulatory glucose profile) is presented. The displayed results in Figure 4.4 are consistent

with the numerical results corresponding to the overall population presented in Tables 4.1

and 4.2. Control variability grid analysis (CVGA) is a commonly used tool for evaluating

closed-loop insulin delivery techniques [240], as shown in Figure 4.5. It plots the extreme

(minimum/maximum) BG values on a grid with 9 zones, which has been widely used to

compare the efficacy of different algorithms for in silico and clinical trials. The points

in A+B zones stand for optimal glycaemic control. It is worth noting the significant im-

provement achieved by DRL-DH when compared with LGS. In particular, the percentage

of points in the A+B zones increases from 26% to 94% for the adult cohort and from 27%

to 76% for the adolescent cohort.
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Figure 4.4: Performance of the three methods on an adult subject (a) and an adolescent
subject (b) over the three-month testing period: (Top-to-bottom) LGS, DRL-SH, DRL-
DH, carbohydrate distribution. The average BG levels are shown in solid blue lines,
and the hypo- and hyperglycaemia thresholds are shown in dotted green and red lines,
respectively. Blue shaded regions show the 95% CI, and the purple shaded regions indicate
the standard deviation.
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Figure 4.5: CVGA plot for the adult (a) and the adolescent (b). The blue, orange and
green dots represent the LGS, DRL-SH and DRL-DH results, respectively.

It is observed that there is a significant difference between results for adults and

adolescents. This is because the simulator used different metabolic and demographic

parameters for the two cohorts and set a higher glucose variability in adolescents than in

adults [81]. Adolescents usually have lower body weight and higher insulin sensitivity.
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To the best of our knowledge, this is the first study that systematically evaluates,

in silico, a DRL algorithm to control BG levels with single-hormone and dual-hormone

delivery, using the latest T1D simulator (S2013) [81] and additional intra-subject vari-

ability. In the presented in silico experiments, when compared against the LGS baseline

method, the proposed DRL model achieves superior performance in terms of glycaemic

outcomes. Comparing the proposed model with existing closed-loop insulin delivery tech-

niques, although interesting, is a challenging task due to the difficulty in replicating the

testing scenarios and the tuning of the controllers. Hence, a head-to-head comparison is

not performed. Although not directly comparable, an informal comparison with existing

works in the literature on reinforcement learning for insulin and glucagon delivery has

been done. In [206], the authors propose an reinforcement learning controller and achieve

the adult TIR of 89% on the UVA/Padova simulator, which is close to the performance

achieved by our DRL-DH model. In this previous work, both basal and bolus insulin

delivery are optimised, while in our work only basal insulin delivery is optimised using

different variability in the simulator. In [241], Ngo et al. use reinforcement learning to op-

timise control parameters in glycaemic models without providing comparable TIR results.

In [102], the authors propose a DQNs algorithm to control single hormone (insulin) deliv-

ery and they evaluate it on the previous version of the UVA/Padova simulator (S2008).

However, no comparable glycaemic outcomes are provided. Therefore, our work not only

proposes a novel DRL algorithm for insulin and glucagon delivery but also serves as a

benchmark for the future evaluation of other control algorithms. Future work includes

comparing the proposed DRL model with classic control algorithms in AP systems [242],

such as model predictive controller [139, 191, 192], proportional-integral-derivative [233],

and fuzzy logic [194, 243]. In this work, a total of six discrete actions are considered in

a dual-hormone AP system. Smoother actions or continuous action space could be con-

sidered in future work to further improve glycaemic control. This feature is particularly

important for meal insulin bolus delivery as dietary intake varies widely. Therefore, we

adopt an actor-critic model with continuous action space in the next section.
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Figure 4.6: System architecture to evaluate the DRL models for meal insulin bolus rec-
ommendation in an ambulatory clinical setting.

4.3 Meal Insulin Bolus Recommendation

This section presents a novel DRL advisor for meal insulin bolus recommendation in T1D

management. Figure 4.6 shows the system architecture to incorporate the DRL advisor in

a smartphone app that collects real-time data from two sources. One is wearable sensors

for acquiring physiological data via Bluetooth, and the other is a manual log for recording

any exogenous events, such as meals, exercise, and health conditions. Based on an input

state, the embedded DRL advisor can calculate a corresponding action, i.e., the gain of

meal insulin bolus, to assist users to control the insulin pump with CSII, or insulin pen

with MDI. The historical data is automatically uploaded to a cloud server for monitoring

and backup purposes. Moreover, the uploaded data forms a pool of replay memory, where

the DRL models can be further updated using new data and personalised training. Finally,

the app automatically fetches the updated model and saves it in local storage.

4.3.1 Problem Formulation

We consider a standard DRL setup to formulate the problem of insulin bolus advisor, which

employs an agent to deliver insulin and interact with the environment of diabetes ED in

discrete timesteps. At timestep t, i.e., meal time, the agent first receives an observation st

from the sensing devices in the glucose control system and takes an action at to deliver a

certain amount of insulin bolus. Then the physiological state of the T1D subject transits to
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st+1 and returns the reward rt+1 based on the evaluation of postprandial glucose excursion.

In this regard, this problem can be modeled as a Markov decision process with a tuple

⟨S,A,P, R⟩, where S is the state space, A is action space, P is the transition functions

between states and R is a reward function. The policy of the agent maps the distribution

of actions for a given state, which is defined by π : S → P(A). Under the policy π,

the action-value function Qπ(st, at) is the sum of the discounted future reward with the

current state st and chosen action at. The target of reinforcement learning is to obtain the

optimal policy to gain maximum reward. Moreover, a policy µ can be modeled by mapping

the state to a specific action in a deterministic environment as in our case: µ : S → A. In

this regard, the estimated target policy can be solved by the Bellman equation:

Qµ(st, at) = Ert+1,st+1∼ED
[R(st, at) + γQµ(st+1, µ(st+1))] , (4.8)

where γ is a discount factor within the range of [0, 1], and Qµ can be learned by off-

policy. In the context of glycaemic control, the input and output of the algorithm are

the current observation of physiological states and insulin bolus suggestion, respectively.

The objective is to obtain the meal insulin bolus that optimises glycaemic control by

solving Equation (4.8). Safety constraints on insulin suggestions are required to avoid

undesirable glucose events in a clinical setting.

In this problem, the insulin bolus varies largely depending on the meal ingestion and

will significantly influence the postprandial BG levels. It is difficult to discretize the range

of feasible bolus insulin doses as the action set with value-based DRL in Section 4.2.1.

Too many intervals will exponentially slow the training process, while a small action set

can degrade the performance due to the variability of meals. Alternatively, we could get

an estimation of the dosage with a bolus calculator and then vary a continuous range

(e.g., ±30%) around this value. Therefore, we introduce an actor-critic method, deep

deterministic policy gradient (DDPG) [244], to enable a continuous action-space for the

agent-based on deterministic policy gradient [245]. The critic function Q(s, a) is recursively

learned by the Bellman equation in Equation (4.8). With the initial distribution J of the
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parameters, the actor function µ(s) is updated as:

∇θµJ ≈ Est∼ρ[∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st ], (4.9)

where θQ and θµ are the parameters of critic and actor, respectively, ρ is the state-visitation

distribution. Specifically, the actor decides how many units of bolus insulin to deliver for

the current physiological state, whilst the critic determines how good the action was taken

and tells the actor how to adjust.

Agent States And Actions

For the SBC in AP systems with CGM and insulin pumps [246], a relatively empirical

formula is used to calculate the insulin dose:

Bolus∗t =
CHOt
ICR

+
Gt −GT

ISF
− IOBt, (4.10)

where CHOt is the total carbohydrate amount of the meal ingestion (gram), ICR is the

insulin-to-carbohydrate ratio (g/IU); ISF is the insulin sensitivity factor (mg/l/IU); Gt is

the current reading of BG level from CGM (mg/dl); GT is the target BG level; and IOB

is insulin on board. The ISF is commonly multiplied by a portion to adapt correction

insulin [228]. IOB can be estimated by the previous bolus dose using various methods,

e.g., dynamic rule-based algorithms [247], ANNs [248], circadian insulin sensitivity varia-

tion [249], or a simple formula as:

IOBt = Bolust−1 ∗max(0, (1− (tst − tst−1)
TIOB

), (4.11)

where ts is the time of bolus delivery, and TIOB is a manually defined interval to indicate

the active time. ts stands for the time sampled by the CGM at fixed intervals, e.g., every 5

min. In real clinical practice, these parameters {ICR, ISF, TIOB} are not time-varying and

might depend on the physiological state of the subject. This underline non-linear function

can be approximated by the actor function with the weights of DNNs µ(θµ). Furthermore,

considering DNNs have the superior capability of representation learning [18], we extend



116 Chapter 4

the Gt into a series of historical record of CGM Gt to extract more features from input

states, such as the BG trends. As a result, the agent state at timestep t is denoted as:

st = {Gt, CHOt, tst, IOBt} ∈ S, (4.12)

where Gt ∈ R1×L contains a number (L) of BG measurements from CGM.

In most cases, the action space of DDPG methods is defined by a range. The range

of insulin bolus could be relatively large due to the uncertainty of meal carbohydrate

intake. To improve the convergence of the training, we define the bolus actions from

DDPG as:

Bolust = [
CHOt
ICR

,
Gt −GT

ISF
,−IOBt] ∗ µ(st|θµ)T ∈ A (4.13)

where the output of the actor function µ(st|θµ) = [gICR, gISF , gIOB] is defined as a three-

element vector, consisting of the gains to respectively adapt ICR, ISF, and IOB for the

SBC. In this case, the range of the gains is defined as [0.2, 2], to reduce or amplify the

bolus insulin. The action is the same as the SBC when µ(st|θµ) = [1, 1, 1].

Reward Function

The goal of a bolus advisor is to maximise postprandial BG levels in the target zone, i.e.,

[70, 180] mg/dL while minimising the the occurrence of hypoglycaemia [239, 250]. To guide

the agent to achieve this goal, the positive rewards are applied to the TIR zone. Employing

CGM systems, we obtain a series of postprandial BG levels with a fixed sampling period,

which allows us to assign a reward value for each postprandial BG reading then sum them

up:

rt+1 =
1

ts ∗ −tst

ts∗∑
k=tst

fR(Gk), (4.14)

where ts∗ = min(tst+5h, tst+1). If the time interval between two successive states (meal

ingestion) is too large, we only consider 5-hour postprandial period after the current



4.3 Meal Insulin Bolus Recommendation 117

30 70 180 300

R
ew

ar
d

Glucose

Hypo HyperTIR

350

0

-2

0.5

-1

(a)

13:20 13:45 14:10 14:35 15:00 15:25 15:50 16:15 16:40 17:05 17:30 17:55 18:20 18:45 19:10

Time

50

100

150

200

250

300

G
lu

co
se

 (m
g/

dl
)

Hyper

TIR

Hypo

Bolus 1

Bolus 2

Bolus 3

CHO

(b)

Figure 4.7: Illustration of proposed reward function to determine the performance of the
action that was taken. (a) Step function to calculate the reward for the discrete BG values
after dietary intake, referring to Equation (4.15). The blue, green, and red regions stand
for hypoglycaemia, euglycaemia, and hyperglycaemia zones, respectively; (b) Postprandial
glucose curves corresponding to three different bolus and same variability.

meal [250].The discrete reward is formulated as:

fR(Gk) =



0.5, 70 ≤ Gk ≤ 180,

−0.8, 180 < Gk ≤ 300,

−1, 300 < Gk ≤ 350,

−1.5, 30 ≤ Gk < 70

−2, else.

(4.15)

Figure 4.7a depicts the proposed reward function. Figure 4.7b shows a com-

parison of the postprandial excursions corresponding to three different insulin bolus

{Bolus1, Bolus2, Bolus3} for the same meal and variability. The TIR and rewards for

the three insulin boluses are {53.3%, 65.0%, 58.3%} and {−0.107, 0.045, −0.112}, respec-

tively. Although Bolus3 obtains better TIR than Bolus1, its reward is smaller than that

of Bolus1, which is due to the increase of hypoglycaemia. People with hypoglycaemia

episodes are at major risk of acute short-term complications (e.g., coma), which is in

general less preferable than hyperglycaemia [25].
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4.3.2 Deep Deterministic Policy Gradient

To learn a generalised policy in a large action-state space, we use DMLP as the non-linear

approximators to parameterise the actor and critic functions in DDPG, which means θQ

and θµ in Equation (4.9) become the weights of neural networks. Following the success

of the DRL on human-level control [80], we employ replay memory M and fixed tar-

get networks to further improve the stability of the proposed methods. M stores last

N transitions with a tuple ⟨st, at, rt+1, st+1⟩ to provide experience samples for off-policy

learning. Using fixed target networks, we have separated DNNs to calculate targets dur-

ing the model training. Thus, the target neural networks of actor Q′ and critic µ′ are

obtained by copying weights of current actor Q and critic µ with a fixed period T , using

soft update [244]. Referring to Bellman Equation (4.8) and transition tuples, the loss of

critic is formulated as follows:

L(θQ) = Est∼ρ[(rt+1 + γQ′(st+1, u
′(st+1|θu

′
)|θQ′

)−Q(st, at|θQ)2]. (4.16)

Particularly, the value-based algorithm includes calculating the TD error to update

the weights of critic neural network with Equation (4.16), while the policy-based part is

using the outcomes of critic and Equation (4.9) to update actor neural network. Repeat-

edly updating the weights of critic and actor DNNs, the model can learn the policy to

maximise the expected reward by delivering optimal bolus, as depicted in Figure 4.8. We

instantiate DNNs with three fully connected hidden layers for both the actor and critic.

4.3.3 Two-Step Learning Framework

Collecting large sets of clinical data is often expensive, and evaluating algorithms on human

subjects without pre-clinical validation, or proper safety constraints, might be dangerous.

To this end, we extend the use of the two-step learning framework described in Section 4.2.2

and employ the UVA/Padova T1D simulator. In particular, at the first step, the agent

is allowed to explore random actions by adding Gaussian noise N (0, 0.3) and constantly

interact with the simulator. For this purpose, we use average T1D subjects provided by
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Figure 4.8: The block diagram of the proposed DDPG model with the actor-critic archi-
tecture.

the simulator. To obtain a population DRL model, the agent performs long-term off-policy

learning until the loss of critic converges. In the second step, the weights of the population

model are used to initialise a personalised model for each individual by TL. Then the

models are further fined-tuned by using subject-specific data with safety constraints in a

short-term training period of Tp. Here we use a simple constraint during in silico validation:

the action gain is limited to be greater than one if current BG enters hyperglycaemia and

less than one for hypoglycaemia. In a clinic practice, more advanced constraints could be

used, such as a interval arithmetic-based dynamic insulin constraint proposed by Liu et

al. [189]. During the fine-tuning, the data is collected with a form of transitions, i.e., a tuple

of ⟨st, at, rt+1, st+1⟩. According to Equation (4.12), such a transition requires multiple data

fields, including CGM measurements, estimated carbohydrate of meal ingestion, mealtime,

and dosages of insulin bolus. These data fields are available with the proposed system

architecture in Figure 4.6, where carbohydrate estimation is manually entered, while other

data can be collected automatically. Finally, we test the personalised models on separate

testing sets.

To accelerate the training process, we adopt a variant of prioritised memory replay

to sample mini-batches of the transitions [234]. The priority, i.e., the probability of sam-

pling a transition Pr(i), is based on the magnitude of the TD error δi, which is denoted
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Algorithm 3 DDPG Insulin Bolus Advisor

1: Input: average environment Ea, individual environment Ei, safety constraints C,
update period T .

2: if personalised training then
3: Initialise the weights θQ, θµ from the population model, N = 0, ED = Ei,
4: else
5: Randomly initialise the weights θQ, θµ for actor Q and critic µ, C = ϕ, ED = Ea
6: end if
7: Copy the weights to the target networks Q′ and µ′ : θQ

′ ← θQ, θµ
′ ← θµ

8: Initialise empty replay memory M with the volume of N and prioritization
9: repeat

10: Observe state st from E, select action by actor at = µ(st|θµ) +N ,
11: if at subject to C then execute at in E else restrict at by C end if
12: Observe state st+1, calculate reward rt+1, store the transition (st, at, rt+1, st+1) in
M

13: Sample a mini-batch from M by priority Pr
14: Calculate the loss of critic L(θQ) and update the weights θQ with importance

weights w
15: Calculate TD error, update Pr and w
16: Perform a gradient descent ∇θµJto update θu

17: if t mod T = 0 then soft update: θQ
′ ← τθQ + (1− τ)θQ

′
, θµ

′ ← θµ + (1− τ)θµ
′

end if
18: until the loss of critic converges or t = Tp

as:

Pr(i) =
(|δi|+ ϵ)α∑N
n=1(|δn|+ ϵ)α

, (4.17)

where N is the total number of transitions in replay memory; ϵ is a small positive constant

to guarantee that the transitions with zero TD error can also be sampled; and α is the de-

gree of using prioritization (α = 0 stands for uniform sampling). To remove the bias of the

prioritised sampling and improve convergence, a set of importance weights is introduced

and normalised as: wi = (N ∗ Pr(i))−β/maxnwn, where β is the degree to compensate

the prioritization (β = 1 means full compensation). The details of the complete training

algorithm are presented in Algorithm 3. The hyperparameters are listed in Table C.3 of

Appendix C.
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4.3.4 In Silico Validation

To validate the performance of the proposed algorithm, we use a customised version of the

UVA/Padova T1D simulator [81] as the platform to conduct pre-clinical trials. For this

purpose, we tested the models on 10 adult and 10 adolescent virtual subjects. Additional

intra-day variability was introduced to better emulate real-life conditions [216]. In partic-

ular, we employ a daily pattern with three realistic meals: breakfast, lunch, and dinner.

The time and carbohydrate content are as follows: 7 a.m. (70 g), 2 p.m. (110 g), and 9

p.m. (90 g), and the duration of each meal is set to 15 min. The variability of meal-time

and meal-size are set to STD = 30 min and CV = 10%, respectively. In addition, we

consider that the subjects are likely to under- or over-estimate the carbohydrate content

of meals by 70% and 110%, respectively. The intra-subject insulin sensitivity variability

is set to 30% following a sinusoidal function [216]. Although a single dose of basal in-

sulin might not be optimal to cover the basal insulin requirements due to the presence of

intra-subject variability, this is a common practice in people on MDI. Hence, we wanted

to test the viability of our proposed approach on this subpopulation, which represents the

majority of people with T1D.

In this work, we first use the average virtual subjects to train a generalised model

over a long period until the performance, i.e., the learning curve, is stable. This step

includes random exploration, which needs to be done in the simulator. With proper safety

constraints and initialisation, personalised training can be then conducted in an actual

clinical setting. Here, we perform the second training step on 180 simulated days (6

months) to fine-tune the personalised model in the simulator. This setting is determined

by the convergence of the models, i.e., the learning curves. The computational time of

model training is short, which is around 10 milliseconds for each step, but it takes a long

time to collect transitions in the training sets, since there are only a few meal events (i.e., 3–

4 transitions) per day. If waiting 6 months is considered too long to converge to an optimal

performance in an actual clinical setting, it is possible to use a larger learning rate or stop

training earlier. However, in this case, the model could achieve sub-optimal performance.

Finally, we test the personalised model in a period of 90 days (3 months), and the new
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Table 4.3: Glycaemic control metrics evaluating the performace of the DRL and SBC
algorithms on the 10-adult virtual cohort. Statistical significance is indicated as † for
p ≤ 0.01.

Method TIR (%) TBR (%) TAR (%) Mean BG CV (%) LBGI HBGI

SBC 74.1± 8.4 5.5± 1.9 20.2± 8.2 138.6±11.5 34.8± 4.8 1.5± 0.5 4.1± 1.7

DRL 80.9± 6.9† 1.9± 1.5† 17.0± 6.1 138.1± 7.5 31.1± 5.3† 0.7± 0.4† 3.6± 1.2

simulations are generated by the same meal protocol. To make a fair comparison between

the proposed model and baseline algorithms, the same scenarios and randomness seed of

variability are saved and used for each evaluated method.

4.3.5 Results and Discussion

To measure the performance of glycaemic control, we use a set of commonly employed

metrics, including TIR, TBR, and TAR. The mean BG values, CV, low blood glucose index

(LBGI), and high blood glucose index (HBGI) are also used to present a comprehensive

evaluation. Furthermore, CVGA [240] is employed to visualise the glycaemic outcomes.

In order to evaluate the performance of the proposed algorithm, we employed a

baseline method consisting of the SBC with fixed parameters (Equation (4.10)) [228]. The

results of personalised DRL models and the baseline method are presented as Mean±STD.

In particular, we use the paired t-test to compute p-values to analyze the statistical sig-

nificance, and the normality of data distribution is tested using histograms. Table 4.3 and

4.4 show the glycaemic outcomes for the adult cohort (n = 10) and adolescent cohort (n

= 10), respectively, over 3 months. It is to be noted that the DRL algorithm achieves

better performance than the SBC for every evaluated metric. The TIR results have been

significantly enhanced for the adult and adolescent cohorts with a significant decrease in

hypoglycaemia and hyperglycaemia. The mean BG level is improved for the adolescent

cohort and maintained for the adult cohort. Finally, LBGI and HBGI, as the key metrics

for measuring the risk of hypoglycaemia and hyperglycaemia, are largely improved.

Figure 4.9 shows an average glucose profile over a 24-hour period for two chosen

adult and adolescent subjects to illustrate the improvement of DRL compared with the
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Table 4.4: Glycaemic control metrics evaluating the performace of the DRL and SBC
algorithms on the 10-adolescent virtual cohort. Statistical significance is indicated as *
for p ≤ 0.05 and † for p ≤ 0.01.

Method TIR (%) TBR (%) TAR (%) Mean BG CV (%) LBGI HBGI

SBC 54.9± 12.4 6.5± 3.5 38.5± 13.0 167.5±25.3 40.7± 6.1 2.4± 1.7 9.2± 4.9

DRL 61.6± 14.1† 4.3± 2.4∗ 34.1± 13.6∗ 161.6±24.7 38.6± 7.5∗ 1.3± 0.8∗ 8.0± 4.8∗
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(b) An adolescent subject.

Figure 4.9: Graphical example of the improvement on glycaemic control of the DRL
algorithm over the SBC method. (a), (b) show the performance of an adult and adolescent
subject, respectively. From top to bottom, each plot shows the daily glucose trajectory of
SBC and DRL and distribution corresponding to three meal ingestion over 3 months. The
thresholds of hyperglycaemia and hypoglycaemia are displayed in red and green dashed
lines. The solid blue lines indicate the average BG levels. The blue and purple shades
indicate the 95% CI and standard deviation, respectively.

SBC method. After learning the personalised strategies, the well-trained DRL agent de-

livers an optimal insulin bolus that effectively reduced the postprandial hyperglycaemia

without increasing hypoglycaemia.

Figure 4.10 depicts the corresponding CVGA plots for the chosen adult and ado-

lescent subjects. Here we customised the CVGA plots, where each dot stands for the

glycaemic performance over 24 h, i.e., daily glucose trajectory of the same subject. The

results, i.e., the distribution of the scattering dots, are consistent with the glucose profile

in Figure 4.9. It is worth noting that, compared with the SBC method, the percentage

improvement in the A+B zone increased from 67% to 88% for the adult subject and from

48% to 90% for the adolescent subject. The dot distribution of the DRL method shifted
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Figure 4.10: CVGA plots comparing the SBC (orange dots) and DRL (blue dots) methods
corresponding to a chosen adult subject (a) and a chosen adolescent subject (b) over a
three-month scenario.

towards bottom-left corner, which is an indicator of good glycaemic control.

In this section, we proposed a novel algorithm for meal insulin bolus dosing based

on DRL. To the best of our knowledge, this work is the first attempt employing DRL

to develop personalised insulin bolus advisor in T1D. Although many pioneering stud-

ies have used the UVA/Padova T1D simulator to develop glycaemic control algorithms,

the different settings in meal-protocols, variability, randomness in the scenarios make it

challenging to perform a direct head-to-head comparison between the existing works. In

addition, sometimes the existing algorithms are evaluated in combination with basal in-

sulin control [206, 212]. Hence, we evaluated the proposed DRL algorithm with commonly

employed metrics to comprehensively assess its performance. This data-driven algorithm

also has the potential to be applicable to support people with T2D on insulin. However,

this requires further study and will be the subject of future work.

The results presented in Tables 4.3 and 4.4 show that the DRL algorithm achieves

good in silico glycaemic control on a customised version of the the FDA-accepted

UVA/Padova T1D simulator. Compared with SBC, the proposed methods achieves a

significant improvement in TIR and hypoglycaemia reduction for both adult and adoles-

cent virtual cohorts. Using the system architecture in Figure 3.1, the proposed method

can be implemented on a smartphone app and updated by the cloud server without much

engineering work. Therefore, it suggests that the DRL algorithm has the potential to
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improve meal bolus insulin bolus delivery for T1D subjects in actual clinical settings.

To validate the robustness of the proposed method, we introduced additional intra-

day variability to the in silico trials and tested the algorithm on 20 different subjects. As

depicted in Figure 4.9a, for the chosen adult, the DRL algorithm reduced postprandial

hyperglycaemia after lunch, while the mean BG levels before dinner time remains above

the hypoglycaemia threshold thanks to the strict reward setting in the low BG zone (Fig-

ure 4.7). However, the improvement by optimal insulin bolus is less significant in some

extreme scenarios, e.g., a highly insulin-sensitive subject ingesting a meal with high carbo-

hydrate content. Thus, adaptive control of basal insulin and glucagon (optional) by DRL

would be helpful in these cases in T1D subjects wearing insulin pumps [251], as described

in Section 4.2. Although we introduced variability into carbohydrate misestimation, it

might be worth evaluating separately the effects of under- or overestimation of carbohy-

drate content and investigating how these errors will influence the final strategies by the

proposed DRL model.

4.4 Offline DRL for Basal Insulin Control

In this section, we describe the problem of basal insulin control using the framework of

offline DRL and OPE, as shown in Figure 4.11, which includes a total of four steps. The

first step is to train offline DRL agents with different hyperparameter settings to obtain

multiple policies. Then we train a value function for each learned policy with the OPE

method and the same training data. Next, we use the trained OPE to estimate policy

values on validation data and select the best policy with the highest value. The final step

is to evaluate the selected policy on testing data and/or in clinical trials to demonstrate

unbiased performance.

4.4.1 Problem Formulation

The DRL environment of glucose control can be modelled as a Markov decision process,

denoted by a tuple M = (S,A, T , r, γ, ρ0), where S denotes the state space; A is a set
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Figure 4.11: System architecture of developing glucose control algorithms in T1D man-
agement using the proposed offline DRL and OPE framework. The thin and thick arrows
indicate the input and output of each module, respectively. The model training, valida-
tion, and testing are performed in completely offline settings. The clinical trials or in silico
simulation can be further conducted to obtain clinical metrics.

of actions; T (st+1|st, at) defines the transition distribution; r : S × A 7→ R is the reward

function; γ ∈ (0, 1] is a discount factor, and ρ0 represents the distribution of initial states.

In general, the goal of DRL is to optimise the performance of a policy π(at|st) in a

given environment or on a historical dataset D in terms of offline settings. Typically, such

an offline dataset is collected from one or multiple behaviour policy πβ(at|st), which may be

different from π(at|st), and contains a set of historical transitions D = {sit, ait, sit+1, r
i
t+1}.

Denoting an episode (i.e., a trajectory) τ with a length of L, the dataset can also be

defined as D = {τ i}, where τ = (s0, a0, r0, . . . , sL, aL, rL), and s0 ∈ ρ0. The state-value

function is the excepted return when an agent starts from a state s and follows the policy

π, which is defined as

V π(s) = Eπ[
∞∑
k=0

γkrt+k+1|st = s]. (4.18)

To quantitatively estimate offline performance of DRL on D, policy value vπ is a common

metric [225, 226, 227] that computes the expected state value of initial states with the
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distribution ρ0, which can be denoted as

vπ(ρ0) = Es0∼ρ0 [V π(s0)]. (4.19)

In particular, we incorporate basal glucose control into M as follows.

States

In an AP system, BRs are frequently adjusted according to the real-time CGM measure-

ments and the information of daily activities. Therefore, we model the states using the

features extracted from a CGM sequence during the past hour and the external events

recorded by insulin pumps or smartphone apps for diabetes management. Based on the

feature processing in previous work [102, 251, 252, 212, 214, 253] and the results in model

validation, we consider a total of seven features for glucose patterns, including the cur-

rent BG level, the mean, maximum, and minimum values of the sequence, the maximum

difference between adjacent measurements, and percentages of hypoglycaemia and hyper-

glycaemia. The cyclical encoding of timestamps, time and amount of last carbohydrate

ingestion, and meal insulin bolus are also included in the states.

Actions

The action space is continuous, defined by the amount of BRs. In offline settings, we do

not need to explicitly specify the range for random exploration.

Rewards

We design a reward function based on the clinical targets of TIR, TAR, and TBR, which

are the standard metrics of glucose control recommended by the International Consen-

sus [254]. In particular, TIR refers to the percentage of time that a T1D subject spends

within the euglycaemic range (70-180 mg/dL). TBR is the percentage of time spent in the

hypoglycaemic region and can be divided into level 1 (54-70 mg/dL) and level 2 (below 54

mg/dL). Similarly, TAR stands for the percentage of time spent in hyperglycaemia and
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Figure 4.12: Reward function based on the clinical metrics of TAR, TIR, and TBR in
glucose control.

can be divided into level 1 (180-250 mg/dL) and level 2 (above 250 mg/dL). Hence, we

use a piecewise function with multiple slopes to compute a reward rt using the current

BG level at st and the intervals of clinical targets, as depicted in Figure 4.12, which pe-

nalises the agent when BG levels move toward hyperglycaemia or hypoglycaemia [251].

We denote this reward function as a TIR reward since the agent receives high rewards if

good TIR is achieved. Another TBR reward function is used in OPE to estimate hypogly-

caemia performance, which assigns -1 to a BG level below 70 mg/dL and 0 otherwise. We

terminate episodes when a BG level is below 40 mg/dL or above 450 mg/dL, indicating

that there is a medical emergency.

4.4.2 Offline Deep Reinforcement Learning

Double DQNs and DDPG have been proved to effectively improve glucose control in our

previous work [251, 253, 252], as described in Section 4.2.2 and 4.3.2. The advantages of

these two algorithms have been combined in recent studies on deep actor-critic methods

for continuous control, which is known as the twin delayed deep deterministic policy gra-

dient (TD3) [255]. By using target networks, delayed policy updates, and target policy

smoothing, TD3 outperformed DDPG in benchmark environments [255]. Furthermore,

combining a behaviour cloning regularization, TD3 has been demonstrated to be a min-

imalist method to achieve state-of-the-art performance in offline tasks [218], which has

much lower complexity and computational cost when compared with other offline DRL

algorithms [220, 221]. Therefore, we choose this variant of TD3 to learn personalised

glucose control for T1D subjects using previously collected clinical data.
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As an actor-critic approach, we first formulate the state-action value function (i.e.,

critic) Qπ updated by the Bellman equation as follows:

Qπ(st, at) = rt+1 + γEst+1∼T (st+1|st,at)[V
π(st+1)], (4.20)

which is the expected return when an agent starts from a state st and takes action st.

Parameterised by deep neural networks with parameters θ and ϕ, we denote the Q function

and policy (i.e., actor) by Qθ and πϕ, respectively. By doing this, we update Qθ by TD

learning with the temporarily frozen target Q-network Qθ′ and actor network πϕ′ . To

reduce overestimation bias, TD3 uses twin Q functions (i.e., Qθ1 and Qθ2) to select a less

biased value estimate in each updating step. In offline settings, we sample a mini-batch

B with M transitions d = (st, at, st+1, rt+1) from D to calculate the loss L of TD learning

as follows

L(θi) = Ed∼B[(rt+1 + γ min
j=1,2

Qθ′j (st+1, πϕ′(st+1) + ϵ)−Qθi(st, at))
2], (4.21)

where ϵ ∼ clip(N (0, σ)) is a clipped random noise to mitigate overfitting and smooth

estimation in the deterministic policy. Aiming to reduce extrapolation error and distribu-

tional shift, a behaviour cloning term is introduced in the policy gradient of actor update,

which can be denoted as follows

J (ϕ) = Ed∼B[λQθ1(st, πϕ(st)− (at − πϕ(st))
2], (4.22)

where J is the loss function; λ = α(Ed∼B|Qθ1(st, at)|)−1 is a normalization factor calcu-

lated by the mean absolute values of Qθ1 . The overall process of developing offline DRL

is summarised in Algorithm 4.

4.4.3 Off-Policy Evaluation

The goal of OPE is to estimate the performance of DRL models using historical datasets

and thus to rank and select polices, which enables us to assess the personalised glucose

control algorithms without conducting actual clinical trials. Particularly, we choose FQE
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Algorithm 4 Developing Offline DRL

Input: Randomly initialised θ1, θ2, and ϕ, historical
training data Dtrain, interval to delay policy update td
Output: Learned policy πϕ

1: Set target networks: θ′1 ← θ1, θ
′
2 ← θ2, ϕ

′ ← ϕ
2: for steps t ∈ 1, 2, . . . , TDRL do
3: Sample a mini-batch B from Dtrain

4: Update Qθi for the critic using L(θi) in Equation (4.21), for i = 1, 2
5: if t mod td = 0 then
6: Update πϕ for the actor using J (ϕ) in Equation (4.22)
7: θ′i ← (1− µ)θ′i + µθi, for i = 1, 2
8: ϕ′ ← (1− µ)ϕ′ + µϕ
9: end if

10: end for

as the OPE method with the implementation by Paine et al. [225], considering it provided

accurate and robust estimation in healthcare settings [227]. Given a evaluation policy

π with parameters ϕ, FQE initialises a critic with parameters ψ and retrains it using

bootstrapping targets of the Bellman equation and a supervised learning loss as follows

L(ψ) = Ed∼B[(rt+1 + γQψ′(st+1, πϕ(st+1))−Qψ(st, at))
2]. (4.23)

The pseudo-code of OPE is presented in Algorithm 5, where the output is the estimated

state-value function V̂ π(s). Assuming a group of candidate policies {π1, π2, . . . , πN}

with different hyperparameters is obtained in offline DRL by Algorithm 4, we can ap-

ply OPE to estimate a set of state-value functions {V̂ π1(s), V̂ π2(s), . . . , V̂ πN (s)}. Us-

ing a validation set with the initial state distribution of ρval0 , we estimate policy values

{v̂π1(ρval0 ), v̂π2(ρval0 ), . . . , v̂πN (ρval0 )} by Equation (4.19), as scalar scores to rank the candi-

date policies. Various reward functions can be used as input r′ to evaluate model perfor-

mance in different ways. As a result, the optimal policy π∗ with the best scores is selected.

Then, the control performance can be measured by either policy value v̂π
∗
(ρtest0 ) for testing

data or clinical metrics obtained in clinical or in silico trials. Figure 4.11 illustrates this

process.
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Algorithm 5 Developing OPE

Input: Randomly initialised ψ, historical training data
Dtrain, update interval tu, policy to be evaluated πϕ, reward function r′

Output: Estimated V̂ π(s) = Qψ(s, π(s))

1: Set target networks: ψ′ ← ψ
2: for steps t ∈ 1, 2, . . . , TOPE do
3: Sample a mini-batch B from Dtrain

4: Update Qψ for the critic using L(ψ), reward function r′ in Equation (4.23)
5: if t mod tu = 0 then θ′ ← θ end if
6: end for

4.4.4 Offline Datasets

We conducted the experiments using two offline datasets to validate the clinical efficacy of

the proposed algorithm, of which the details are summarised as follows. In both datasets,

the BG levels were measured by CGM every five minutes.

In Silico Data

An in silico dataset was generated by the UVA/Padova T1D simulator (S2013) [81], which

includes nine months of data of 10 virtual adults and 10 virtual adolescents. To emulate

the variations of insulin sensitivity, we introduced a set of additional intra-subject vari-

ability [216] by adjusting meal intake protocols and the parameters of physiological models

in the simulator. Specifically, the meal times of breakfast, lunch, and dinner followed nor-

mal distributions with mean values of 7:00, 14:00, and 21:00, respectively, and a standard

deviation of 30 minutes. The corresponding carbohydrate amount for the three types of

meals also followed normal distributions with mean values of 70, 110, and 90 grams, and

a CV of 10%. The misestimation of carbohydrate counting was assumed to follow a uni-

form distribution with an interval of [0.7, 1.1]. The variability of insulin sensitivity, meal

absorption, and carbohydrate bioavailability were respectively set to 30%, 10%, and 30%.

During data generation, the virtual subjects used personalised BR profiles and

LGS [189] to control basal insulin and employed a SBC to compute meal insulin [228]. The

LGS method has been demonstrated to significantly reduce the exposure to hypoglycaemia

in clinical trials [256] and therefore is used as the baseline method in this case. We divided
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the in silico dataset into a development set containing the first six-month data and an

unseen testing set containing the remaining three months of data to provide an unbiased

evaluation. The last two months of data in the development set were used as a hold-out

validation set, while the training set included the first four-month data.

Clinical Data

The publicly available OhioT1DM dataset [100] was employed to the analyze the proposed

framework. It contains data of 12 people with T1D over an eight-week clinical trial. Each

participant wore a Medtronic Enlite CGM sensor to measure BG levels and a Medtronic

530G or 630G insulin pump to deliver basal and bolus insulin, where a personalised BR

profile was used. Notably, the T1D participants frequently set temporary BRs during the

self-management to manually adjust basal insulin delivery, including zero BR for suspen-

sion, to meet insulin needs for a specified period of time, such as physical activities. Thus,

we used such personalised BR (PBR) control as the baseline method, in order to reflect

the performance of real-world glucose control.

4.4.5 Experimental Setup and Evaluation Metrics

The offline DRL algorithms developed by in silico data were evaluated by both simulation

and OPE with the same meal scenarios and variability. Aiming to investigate the clinical

performance, we first initialised the simulator using the initial state of the whole testing

set for each subject and delivered basal insulin with the control strategy of the offline

DRL algorithms through a three-month simulation. Secondly, we evaluated the offline

DRL algorithms with OPE and investigated how well the OPE estimation matches actual

policy values. In this case, we initialised the simulator using the initial state of each

episode in a testing set (ρtest0 ) and obtained actual policy values by calculating rewards

and state-values through in silico simulation for each episode.

To evaluate the outcomes of the three-month simulation, we use a group of clinical

metrics. Besides the aforementioned TBR (level 1 & 2), TIR, and TAR (level 1 & 2), we

employed LBGI and HBGI to indicate the risk of adverse glycaemic events, while CV is
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used to reflect glycaemic variability. The mean of BG levels measured by CGM is also

presented. We performed the paired t-test to indicate the statistical significance after

using the Shapiro-Wilk test to confirm normality.

For the real clinical data, the offline DRL algorithms were evaluated by OPE only

since the clinical trials on the same T1D subjects cannot be performed. All the deep

learning algorithms were developed by Python 3.8, PyTorch 1.9, and NVIDIA GTX 1080

Ti GPU. The episodes and transitions of datasets were structured by the d3rlpy frame-

work [257]. The hyperparameters are listed in Table C.4 of Appendix C .

4.4.6 Performance on In Silico Dataset

Clinical Metrics

Table 4.5 and 4.6 respectively present the results (Mean±STD) of glucose control for

the adult group and adolescent group through the three-month simulation, which was

evaluated by the clinical metrics. It is worth noting that, when compared with the LGS

baseline method, the offline DRL algorithm significantly enhanced TIR for the two virtual

cohorts and achieved smaller TAR and TBR. In particular, level 1 TBR, level 1 TAR, and

level 2 TBR decreased in both groups, while level 2 TAR was maintained in the adult

group. Meanwhile, we observed that the offline DRL algorithm reduced the HBGI and

LBGI, indicating a lower risk of hyperglycaemia and hypoglycaemia, and exhibited smaller

mean CGM glucose and CV scores, indicating that BG concentrations are more stable.

This comprehensive analysis suggests that the offline DRL algorithm effectively improved

glucose control for the subjects in the in silico dataset.

OPE Quality

To investigate whether OPE is a reliable method for policy evaluation, we analyze the

quality of OPE by a direct measure of rank correlation, which has been widely adopted

in existing studies [225, 226, 227]. Figure 4.13 depicts the scatter plot of normalised OPE

scores and actual policy values, where the TIR and TBR rewards were used for the adult
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Table 4.5: Performance of glucose control on the virtual adult cohort through a three-
month simulation

Metrics LGS Offline DRL

TIR (70− 180 mg/dL) (%) 75.7± 6.1 78.1± 6.7†

TAR (> 180 mg/dL) (%) 21.3± 6.4 19.5± 6.8∗

Level 1 (181− 250 mg/dL) (%) 19.5± 5.1 17.4± 5.4∗

Level 2 (> 250 mg/dL) (%) 2.1± 2.0 2.1± 1.9
TBR (< 70 mg/dL) (%) 3.0± 1.5 2.4± 1.7∗

Level 1 (54− 69 mg/dL) (%) 1.9± 0.9 1.6± 1.1
Level 2 (< 54 mg/dL) (%) 1.1± 0.8 0.8± 0.5

LBGI 0.87± 0.41 0.76± 0.48
HBGI 4.24± 1.29 3.98± 1.67
CV (%) 31.0± 3.9 30.4± 3.0
Mean CGM glucose (mg/dL) 144± 10 141± 13
∗p ≤ 0.05 †p ≤ 0.01.

Table 4.6: Performance of glucose control on the virtual adolescent cohort through a
three-month simulation

Metrics LGS Offline DRL

TIR (70− 180 mg/dL) (%) 57.4± 12.7 59.9± 8.6∗

TAR (> 180 mg/dL) (%) 38.4± 14.5 36.7± 9.8
Level 1 (181− 250 mg/dL) (%) 24.5± 2.1 23.8± 2.6∗

Level 2 (> 250 mg/dL) (%) 14.6± 14.4 12.2± 9.1
TBR (< 70 mg/dL) (%) 4.2± 2.6 3.4± 2.2†

Level 1 (54− 69 mg/dL) (%) 2.4± 1.2 2.0± 0.9†

Level 2 (< 54 mg/dL) (%) 1.8± 1.8 1.4± 1.5†

LBGI 1.51± 1.39 1.24± 1.10†

HBGI 9.82± 6.69 8.37± 3.27
CV (%) 39.5± 4.1 38.1± 4.2
Mean CGM glucose (mg/dL) 171± 35 165± 18∗

∗p ≤ 0.05 †p ≤ 0.01.

and adolescent cohorts. We performed the Spearman correlation analysis and obtained

rank coefficients ρ of 0.98 (p < 0.001) and 0.91 (p < 0.001) for TIR and TBR rewards,

respectively, indicating high correlation and good ranking statistics. The solid green line

stands for the results of the linear regression between the two variables, and the shaded

area is a 95% CI. A regression coefficient of 0.99 (p < 0.001) was achieved. These results

demonstrate that the OPE method estimated accurate policy values and can be used to
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Figure 4.13: Scatter plot of the comparison between OPE estimation and actual policy
values for the two cohorts and the two reward functions.

evaluate model performance in offline settings.

Policy Values

The ladder plots in Figure 4.14 and 4.15 show the improvement of the normalised policy

values achieved by the proposed offline DRL algorithm in the adult and adolescent groups,

respectively, when compared with the LGS baseline method. Of note, the offline DRL al-

gorithm enhanced the policy value for each T1D individual in the two groups. Specifically,

as indicated by the black dashed lines, the mean policy values significantly increased by

32.6% (p < 0.01) and 47.0% (p < 0.01) for the TIR and TBR rewards, respectively, in the

adult group, while the mean policy value was significantly improved by 36.2% (p < 0.01)

for the TIR reward and 33.5% (p < 0.01) for the TBR reward in the adolescent group.

These results indicate that the offline DRL algorithm is expected to improve glucose con-

trol by simultaneously increasing TIR and reducing TBR for the virtual cohorts, which

are consistent with the clinical results reported in Table 4.1 and 4.2. Figure 4.16 shows

examples of BG trajectories and corresponding basal insulin delivered by the offline DRL
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Figure 4.14: Comparison of policy values between the LGS baseline and the offline DRL
algorithm for each T1D subject in the virtual adult group.
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Figure 4.15: Comparison of policy values between the LGS baseline and the offline DRL
algorithm for each T1D subject in the virtual adolescent group.

and LGS algorithms. With the same initial state, the use of offline DRL algorithm success-

fully avoided severe reactive hypoglycaemia, nocturnal hypoglycaemia, and postprandial

hyperglycaemia. The offline DRL control promptly adjusted BRs when the measured BG

levels tended to move outside of the target range, resulting in higher policy values for both

reward functions in the same episodes.

4.4.7 Performance on Clinical Dataset

Figure 4.17 depicts the normalised policy values of the PBR baseline method and offline

DRL algorithm for real T1D subjects. A notable increase in policy values for each subject

was observed in terms of the two reward functions. Compared with the PBR baseline, the
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(c) Postprandial hyperglycaemia

Figure 4.16: Examples of BG trajectories and corresponding BRs controlled by the offline
DRL algorithm and the LGS baseline method. The use of the offline DRL algorithm
prevented the potential adverse glycaemic events that occurred in the LGS control.

offline DRL algorithm substantially improved the mean policy values by 45.3% (p < 0.01)

for both the TIR and TBR rewards, as shown by the black dashed line. The TIR and TBR

results (Mean±STD) of PBR on the OhioT1DM dataset are 63.5%± 9.7 and 3.3± 2.3%,

respectively. These values are close to the results of the virtual adult and adolescent

groups (Table 4.1 and 4.2) and indicate that the in silico simulation reflect the real-world

scenarios well. Therefore, we anticipate that using the trained offline DRL models can
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Figure 4.17: Comparison of policy values between the PBR baseline and the offline DRL
algorithm for each T1D subject in the clinical dataset.

outperform the temporary BR settings of the PBR control and achieve better glucose

control for the T1D subjects in the OhioT1DM dataset.

4.4.8 Discussion

To the best of our knowledge, this is the first study that applies offline DRL or OPE to

glucose control in T1D management, and this is also the first study that combines offline

DRL and OPE to solve a healthcare problem. Due to different datasets and various exper-

imental settings, it is difficult to draw a head-to-head comparison of the numeric results

of clinical metrics or policy values. However, in our previous work [251] (Section 4.2),

we identified that optimising glucose control by adjusting a single hormone (i.e. basal

insulin) is a challenging task. The reported TIR and TBR results on the in silico dataset

(Table 4.5 and 4.6) are comparable with those by the online DRL algorithm after training

agents through thousands of simulated days. Although a two-step TL framework was pro-

posed in [251] to mitigate the high demand for personalised data, it still needs to fine-tune

the policy with online interactions, where an undertrained agent may produce dangerous

actions at the beginning of clinical trials. Moreover, the proposed DRL algorithm conser-

vatively updated the policy by behaviour cloning regularization with a weighting factor α,

where a smaller α means the update is more inclined to imitation learning. As shown in

Figure 4.16, the BRs of the DRL algorithm were close to those of the LGS method, and

notable differences were only observed when there was a risk of adverse glycaemic events.
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Although this feature may lead to limited performance improvements, it prevents the DRL

policy from deviating too far from behaviour polices πβ , aiming to avoid out-of-distribution

actions and provide better safety guarantees for healthcare applications.

Several studies [102, 212, 213] added meal insulin bolus into action space and ob-

tained new control strategies for total insulin delivery through long-term random explo-

ration (e.g., millions of simulated hours), which is not feasible for real-world scenarios. In

addition, the number of transitions of meal insulin bolus is quite limited (i.e., three or four

times per day), while a wide range of carbohydrate content in food ingestion requires a

large action space. The public use of dual-hormone AP for glucagon delivery has not been

approved, and there is no existing dataset containing data of glucagon delivery. Hence,

these hormones have not been considered in developing personalised offline DRL control

yet, due to insufficient historical data. The scenarios considered in this study are the same

as the real use cases of most AP systems [258]. That is, users manually enter carbohydrate

amount into insulin pumps that calculate meal insulin bolus with bolus calculators, while

basal insulin patterns can be automatically alternated by built-in personalised control

algorithms.

Moreover, all the existing studies on DRL [102, 251, 252, 212, 214, 253] validated

their models by simulators rather than actual clinical datasets, and their therapeutic

benefits for real T1D subjects were unproven. Expert assessment [202] and a Bayesian

framework [259] with Markov-Chain Monte Carlo strategy to estimate physiological models

trace by trace (i.e., episode by episode) [260] were used to evaluate supervised learning

algorithms on glucose control, but these assessment methods are either costly or time-

consuming, especially when the size of testing data is large. In this regard, OPE provides

a convenient method to evaluate control algorithms on clinical data and can be adopted

by many existing models without much difficulty.

The model implementation is essential to the decision support systems for people

living with T1D in daily self-management. Thus, aiming at on-device deep learning for

model inference, we implemented the actor network of the offline DRL model on an iOS

smartphone by converting the PyTorch model into the TensorFlow Lite format through the
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Open Neural Network Exchange framework. Then we analyzed the run-time and memory

usage of the embedded model using a customised diabetes management app (Figure 4.11),

as described in Section 6.5.3. The experiment was repeated 50 times. After the app

received a BG measurement from Dexcom G6 CGM, it took an average of 5.2 ms and 2.1

MB of memory to compute a BR for basal insulin delivery.

Such end-to-end implementation of a personalised control algorithm would incentive

the development of the do-it-yourself artificial pancreas (DIY AP) [13, 261], in which

people with T1D are able to build AP systems by themselves. However, the existing

controllers in DIY AP, such as OpenAPS, AndroidAPS, and Loop, adjust BRs based on

fixed physiological parameters and simple formulas but lack personalised algorithms to

meet real-world challenges of inter- and intra-subject variability [262]. By employing the

proposed offline DRL framework, the users can train, update and evaluate personalised

insulin control algorithms using their own historical data collected during daily self-care.

4.5 Conclusion

With the aim of overcoming the challenge of blood glucose control in T1D, we first proposed

a novel DRL algorithm for optimising basal insulin and glucagon delivery in AP systems.

DRNNs are applied to the structure of double DQNs to develop personalised models

through a two-step framework that involves TL. When compared with LGS, the proposed

methodology significantly improves glycaemic outcomes in a virtual adult and adolescent

population. This works shows that the proposed approach has the potential to be adopted

in a clinical setting.

To benefit T1D subjects on MDI or SAP therapy as well, we proposed a novel meal

insulin bolus advisor that uses the actor-critic DDPG architecture with multiple DNNs,

which was trained by the two-step learning framework and prioritised memory replay.

When compared with the standard therapy of insulin bolus calculation, the experimental

results of the in silico trials indicate the promising performance of the DRL model, which

significantly improved the TIR and reduced the risk of hypoglycaemia and hyperglycaemia



4.5 Conclusion 141

for virtual cohorts of people with T1D.

Employing a safe offline process to build and implement personalised control mod-

els, we proposed a novel offline DRL framework to optimise BRs for basal insulin delivery.

A TD3 model with behaviour cloning regularization and an FQE-based OPE method

were adopted to develop the control algorithms, which ensure that the model training,

validation, and testing can be completed offline without performing actual clinical trials

or requiring the assessment by human experts. The proposed algorithm was validated

on in silico and clinical datasets, which significantly enhanced TIR while reducing TBR

and TAR and improved other clinical targets in the three-month simulation. A promising

increase in policy values was also noted in the OPE analysis for both datasets.

We envision that the proposed algorithms would benefit T1D subjects on MDI,

SAP, and AP systems and have huge potential to be adopted in a clinical settings of

glycaemic control.
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Chapter 5

Generating Personalised Glucose

Data with GANs

Time series data generated by CGM sensors offer unparalleled opportunities for developing

data-driven approaches, especially deep learning-based models, in diabetes management.

Although these approaches have achieved state-of-the-art performance in various fields

such as glucose prediction in T1D (Chapter 3), challenges remain in the acquirement of

large-scale individual data for personalised model training due to the elevated cost of clini-

cal trials and data privacy regulations. In this chapter, we introduce GluGAN, a framework

based on GANs to generate personalised glucose time series with conditional inputs that

consist of self-reported events. Employing RNN modules, the proposed framework uses a

combination of unsupervised and supervised training to learn temporal dynamics in latent

spaces. Aiming to assess the quality of synthetic data, we apply post-hoc RNNs to com-

pute discriminative and predictive scores. In the experiments, GluGAN achieved better

discriminative and predictive scores when compared with four baseline GAN models. The

efficacy of data augmentation is evaluated by the use case of BG prediction with three

classic machine learning-based predictors. Using the training sets augmented by GluGAN

significantly reduced RMSE and MAE for the predictors over 30 and 60-minute horizons.

This work provides GluGAN, an effective method to generate synthetic glucose time series

that are highly similar to real CGM data. GluGAN has the potential to be used for eval-
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uating the effectiveness of automated insulin delivery algorithms and as a digital twin to

substitute for pre-clinical trials. The work in this chapter has led to the following journal

article:

• T. Zhu, K. Li, P. Herrero and P. Georgiou, ”GluGAN: Generating Personalized

Glucose Time Series Using Generative Adversarial Networks,” Submitted to IEEE

Journal of Biomedical and Health Informatics.

5.1 Introduction

The application of deep learning, or other data-driven algorithms, in diabetes manage-

ment is often challenging, since training these models usually requires collecting large-

scale datasets in months-long clinical trials, a problem which is referred to as the cold

start issue (Chapter 2). In this regard, glucose-insulin simulators, such as the OHSU T1D

simulator [263] and the UVA/Padova T1D simulator [81], have been proposed to enable

cost-effective in silico trials, which allow generating synthetic glucose time series using

predefined virtual cohorts. Although the UVA/Padova T1D simulator has been demon-

strated to be representative of a T1D population in a clinical trial [211], a major limitation

of current glucose simulators is the lack of personalisation for T1D individuals, due to the

large intra- and inter-subject variability [264, 19]. Visentin et al. used a Bayesian method

to fit the UVA/Padova T1D simulator to one-day data collected from inpatient clinical

trials with specific admission patterns, where each participant received three meals per day

with the same meal-times and carbohydrate amounts [265]. However, exploiting outpatient

data of T1D subjects under free-living conditions to develop a simulator for personalised

data generation [265] is still an open problem. Moreover, personalised physiological sim-

ulation enables the development of digital twins [266, 267] for people with T1D, which

has the potential to be used to assess therapeutic efficacy, predict glycaemic outcomes of

intervention treatment, and reduce the need for actual clinical trials.

To this end, GAN-based frameworks can provide effective solutions. In recent

works, GAN-based frameworks for sequential data generation have attracted significant
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attention. In [268], a GAN model was first applied to generate music using bidirectional

RNNs with LSTM cells. Esteban et al. [269] extended LSTM-based GANs to the recurrent

conditional GAN (RCGAN), which allow generating real-valued medical time series data

with conditional inputs and a differentially private training procedure. Based on dilated

convolutional neural networks, WaveGAN was proposed to produce synthetic audio [270].

Yoon et al. [271] proposed TimeGAN by introducing an embedding network and a recovery

network in the GAN architecture to learn hidden temporal dynamics. The performance

was tested in multiple time series datasets, including sinusoidal sequences, stock prices,

energy data, and discrete events. In a more recent study, TimeGAN was applied to gen-

erate synthetic hypoglycaemic events to tackle the issue of imbalanced data in glycaemic

classification [114]. Previously, we also explored a modified GAN-based model to extract

feature maps from a multivariate input and forecast glucose levels [151].

In this chapter, we propose GluGAN, which to the best of our knowledge, is the

first GAN framework that allows generating realistic glucose time series, and represents

a first step towards data-driven personalised T1D simulators. Different from existing

simulators based on fixed glucose profiles, GluGAN can learn glucose patterns for T1D

individuals and generate personalised glucose data based on outpatient T1D datasets. The

conditional inputs of GluGAN are daily entries manually recorded in T1D management,

including SMBG measurements, carbohydrates from meal intake, and insulin delivery.

The GAN model uses a combination of losses to learn temporal patterns of time series

data. Three clinical datasets are employed to evaluate the quality of synthetic data and

their usefulness in data augmentation. However, the interpretability and causality of

the proposed method are still under-researched, which are essential factors for estimating

the efficacy of glucose control algorithms in pre-clinical studies. Therefore, the current

application of this work is a practical data augmentation tool for machine learning-based

glucose prediction algorithms, instead of a fully-functional T1D simulator.
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Figure 5.1: Illustration of a T1D management system. A smartphone app is used to com-
municate with the glucose monitoring devices via Bluetooth connectivity, collect daily logs,
and visualise historical profiles and current trends of glucose levels. The right bottom plot
shows two-day multivariate time series data of a clinical T1D subject in the OhioT1DM
dataset.

5.2 Problem Formulation

Given personalised data from a clinical T1D dataset, we first slice the multivariate time

series by a sliding window and obtain input sequences of length L. We assume an input

sequence starts from a time-step ts and ends with a time-step t, where ts = t+ 1−L; and

a vector at t is the current input of a RNN.

As shown in Figure 5.1, meal ingestion and insulin delivery can cause significant

glucose fluctuations. Furthermore, CGM is usually calibrated with SMBG measurements

when sensor replacement occurs. Discrepancies between CGM and SMBG are usually

observed, especially in the postprandial period, which is a common phenomenon called

meal-related glucose differences [272]. Meal, insulin, and SMBG data are therefore highly

correlated to glucose dynamics and can provide rich information for generating realistic

glucose time series. Hence, we convert these features into continuous conditional inputs

C and attach them to CGM time series G. Let x denote the model input of real data.

We have xts:t = [Gts:t;Cts:t] ∈ R4×L. Similarly, the model input of synthetic data is the
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concatenation of a random vector Zsp sampled from a stochastic process and conditional

inputs, which is denoted as zts:t = [Zsp1:L;Cts:t] ∈ R4×L.

In this context, GluGAN aims at learning a density similar to the distribution

of ground-truth data, when conditioned on the same auxiliary information. This is the

objective of a standard GAN framework, which can be defined as follows [84]:

min
p̂

JS(p(Gts:t|Cts:t)||p̂(Gts:t|Cts:t)) (5.1)

where JS is the Jensen–Shannon divergence to measure of similarity between two probabil-

ity distributions; p stands for the density function of the distribution over real data, while

p̂ is an approximate distribution of the generator’s outputs. Jensen–Shannon divergence is

a symmetric version of conventional Kullback–Leibler divergence, which is recommended

to derive the adversarial loss of GANs [273]. However, the Jensen–Shannon divergence

requires an optimal value for discriminator, i.e, perfect adversary, which is difficult to be

obtained in unsupervised learning.

Fortunately, temporal relationships of time series data can guide the generation

of sequential data, especially for the time series with high correlation across timesteps.

Therefore, we introduce another objective function that focuses on the step-wise condi-

tional distributions, which can be formulated as [271]:

min
p̂

KL(p(Gt|Gts:t−1,Cts:t−1)||p̂(Gt|Gts:t−1,Cts:t−1)) (5.2)

where KL denotes the Kullback–Leibler divergence. Although this divergence is an asym-

metric measure, it can be optimised by supervised learning with maximum-likelihood

estimation [271]. Therefore, a supervised loss is employed in the adversarial training to

learn the transition dynamics.
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5.3 GluGAN Architecture

To generate realistic personalised glucose time series, we develop GluGAN by modifying

the stand GAN architecture in three ways. First, we use the aforementioned loss for

supervised learning to optimise the objective in Equation (5.2) and combine it with the

unsupervised adversarial loss to optimise the objective in Equation (5.1). In this case, the

model not only learns to generate data with similar distribution but also to capture the

temporal dynamics of time series. Secondly, in addition to the generator discriminator, we

introduce three other modules into GluGAN, including an embedding network, a recovery

network, and a supervisor network. The embedding and recovery networks are used for

auto-encoding to project time series data into a lower-dimensional latent space, where both

adversarial learning and supervised learning are performed, aiming to improve generation

performance for high-dimensional time series [271]. The supervisor network is used to

learn the step-wise dynamics with the targets derived from real sequences. These three

additional modules are jointly trained with the generator and discriminator. Each module

consists of a four-layer RNN with GRU cells, of which the hyperparameters are determined

in model validation. Finally, we employ three conditional input features [269] to indicate

the underlying glycaemic states, including carbohydrate amount of meal ingestion, bolus

insulin, and SMBG measurements.

Figure 5.2 depicts the overall architecture of the proposed GluGAN. For the auto-

encoding purposes, we employ the embedding network to convert the real input features to

latent representations h and reconstruct glucose data G̃ through the recovery network R.

Similarly, given a random input vector, the generator G outputs the synthetic embedding

vector ê, which is disciplined by the supervisor S to learn step-wise temporal dynamics

for the synthetic latent vector ĥ. Then, we obtain the synthetic glucose time Ĝ by the

mapping function of the recovery network. Instead of directly comparing the outcomes of

the generator with real data, the discriminator D of GluGAN performs classification in

the latent space. We denote the outputs of the discriminator by yt, ŷt ∈ {0, 1} for the real

and synthetic model input data, respectively.

Correspondingly, a total of three losses is used to optimise the weights of GluGAN.
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Figure 5.2: System architecture of the proposed GluGAN. The data flows corresponding to
glucose time series generation, adversarial training, supervised learning, and reconstruction
are marked with orange, blue, red, and green arrows, respectively.

To obtain reliable conversion between latent space and glucose features, a reconstruction

loss LR is applied to train embedding and recovery modules, which is given by:

LR = Ex∼p[
∑
t

∥∥∥G̃t −Gt∥∥∥
2
]. (5.3)

Meanwhile, supervised learning with a loss LS is performed to minimise the divergence in

Equation (5.2). This loss aims at minimising the step-wise differences between synthetic

and real latent vectors, when the current synthetic embedding vector êt are conditioned

on the real latent sequences at previous timesteps (hts:t−1), which is formulated as:

LS = Ex∼p,z∼p̂
∑
t

∥ht − S(êt,hts:t−1)∥2 , (5.4)

where S represents the function of the supervisor network. Similar to the standard GAN

framework, the discriminator is trained to be better at discriminating real from synthetic

data, while the generator is designed to generate sequences that are indistinguishable

from real glucose time series. Hence, we treat the optimization as a two-player minimax

game. The unsupervised losses of adversarial training are calculated using the classification
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results yt, ŷt, which are given by:

LGU = Ez∼p̂
∑
t

log(1− ŷt),

LDU = −Ex∼p
∑
t

log yt − Ez∼p̂
∑
t

log(1− ŷt), (5.5)

where LGU and LDU denote the unsupervised losses of the generator and discriminator,

respectively.

5.4 Model Development

Algorithm 6 Developing GluGAN to Generate Glucose Time Series

1: Input: a preprocessed training set Dtr and synthetic inputs PZ ; iteration numbers
TR, TS , TJ ; loss ratios λ1, λ2; iterations of the inner loop k, threshold of discriminator
loss lD.

2: Model training
3: for iterations in TR do
4: Sample mini-batches from Dtr
5: Update the weights of the embedding and recovery networks by minimising loss
LR

6: end for
7: for iterations in TS do
8: Sample mini-batches from Dtr and from Pz
9: Update the weights of the supervisor network by minimising LS

10: end for
11: for iterations in TJ do
12: for iterations in k do
13: Sample mini-batches from Dtr and Pz
14: Update the weights of the supervisor and generator by minimising λ1LS + LGU
15: Update the weights of the embedding and recovery networks by minimising

λ2LS + LR
16: end for
17: Sample mini-batches from Dtr and Pz
18: if LDU > lD then
19: Update the weights of the discriminator by minimising LDU
20: end if
21: end for
22: Model testing
23: Given the batch of {zts:t} from a testing set Dte
24: Obtain synthetic glucose time series by Ĝts:t = R(S(G(zts:t)))

Data preproccessing is an essential step to obtain high-quality multivariate time
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series from clinical datasets. We first remove outliers for each input feature with a set

of maximum and minimum thresholds based on physiological features. In particular,

we exclude negative values for each feature, insulin doses above 50 units, and glucose

values above 500 mg/dL. Notably, there are many missing gaps in CGM measurements

(Figure 5.1), due to various reasons, such as sensor replacement and calibration, sensor

noise, and signal loss. Thus, we perform linear interpolation to fill the gaps in the middle

of CGM sequences and use linear extrapolation for missing data samples on the tails [101,

128, 151]. We also exclude the CGM sequences with a gap longer than 15 minutes. All

the input features are normalised to a range of [0,1] with the min-max normalization.

Algorithm 6 presents the details of the model development. Training the GluGAN

model (Figure 5.2) requires optimising all the network modules with the loss functions

defined in Equations (5.3), (5.4), and (5.5). Given the numbers TR, TS , TJ of training

iterations for embedding learning, supervised learning, and joint learning, respectively, we

optimise the embedding and recovery networks with ground truth data and LR, and then

train the supervisor module alone with LS . Finally, all five modules are jointly trained with

the combinations of unsupervised and supervised losses. Specifically, two hyperparameters

λ1, λ2 are employed to adjust the ratios of LS when combined with reconstruction and

unsupervised losses. To achieve a Nash equilibrium for the two-player non-cooperative

game and avoid the discriminator becoming too strong in adversarial training [274], we

update the generator more frequently with an inner loop and update the discriminator

only if LDU is above a predefined threshold lD [268]. During the testing phase, GluGAN

can generate synthetic glucose data with the batch inputs of testing data. Table D.1 of

Appendix D summarises the values of the hyperparameters used in this work.

The performance of GluGAN is tested on three real datasets: the OhioT1DM [100],

ARISES, and ABC4D datasets, which are collected from a number of T1D subjects over

months of trials with different clinical settings. The details of the datasets are described in

Section 3.3.1. The demographic characteristics of the three datasets are shown in Table B.4

of Appendix B.
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5.5 Experiment Setup

5.5.1 Data Splitting and Analysis

During model development, we split datasets into training sets Dtr and testing sets Dte.

The OhioT1DM dataset is provided with a training set and a testing set for each T1D

subject, which respectively contain data of around 40 and 10 days [100]. As for the subjects

in ARISES and ABC4D datasets, we use the first 80% data as training sets and the rest

20% data as hold-out testing sets. It is a common split method for developing machine

learning algorithms in BG prediction, which guarantees that future information is not

involved in current model inference [19]. For the training sets in each dataset, we use the

first 75% data for model training, while the last 25% data are used as hold-out validation

sets to tune hyperparameters. We generate synthetic datasets D̂tr and D̂te for training

and testing sets, respectively, aiming at following the train-on-synthetic and test-on-real

(TSTR) routine [269] to test model performance.

In Figure 5.3, we plot the autocorrelogram of glucose time series using consecutive

sequences with a minimum length of three days . It is to be noted that, for the three

considered datasets, the glucose data have high autocorrelation when time lags are smaller

than 105 minutes. Therefore, it is important to introduce the autoregressive prior and

supervised learning loss into GluGAN model to learn step-wise temporal dynamics of

glucose time series.

5.5.2 Evaluation Metrics

To comprehensively evaluate the performance generative models, we use a set of commonly

employed metrics in previous work on GAN frameworks and time series data [269, 271].

The similarity and diversity of synthetic and real testing glucose data (i.e., D̂te and Dte)

are qualitatively visualised by PCA [275] and t-distributed stochastic neighbor embedding

(t-SNE) [276]. We convert temporal L-dimension sequential data into two dimensions and

plot the distributions, where each dot stands for a glucose sequence.

Moreover, quantitative analysis to measure the similarity and diversity is also per-
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Figure 5.3: Autocorrelation function of glucose time series in the three datasets with lags
up to 120 minuets. The autocorrelation function of the OhioT1DM, ARISES, and ABC4D
datasets are respectively showed in blue, orange, and green solid lines with 95% bootstrap
CIs. The blue shaded region indicates the 95% Bartlett CI, and any autocorrelation
function outside this region is statistically different from zero. The vertical dashed line
indicates the maximum time lag (105 min) with significant autocorrelation function for
the three datasets.

formed. We use a post-hoc binary classifier, which is based on an RNN with two LSTM

layers [271]. It is trained on both training sets (i.e., D̂tr and Dtr) and tested on testing sets

(i.e., D̂te and Dte). Then we calculate a discriminative score as |Accuracy − 0.5|, where

Accuracy = (TP + TN)/(N + P ); TP and TN are the number of true positives and true

negatives, respectively; (N + P ) stand for all the outputs. A lower discriminative score

indicates better performance of GAN models, which means that the classifier’s accuracy is

close to random guess, and synthetic data are indistinguishable from real data. Similarly,

we introduce a step-wise predictive score with a post-hoc predictive model to predict next-

step glucose value and calculate scores of RMSE. The predictive model is also constructed

by an RNN model with two LSTM layers, which is trained on synthetic datasets (D̂tr)

and tested on real datasets (Dte), i.e., TSTR. Low predictive scores indicate the synthetic

data are useful in terms of prediction tasks. Besides using the RMSE scores, we also

introduce a commonly used metric, MAE to evaluate the performance of each model in

the experiments of glucose prediction with data augmentation.
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5.5.3 Baseline Methods

We compare the performance of GluGAN, i.e., the quality of the synthetic data, with a

group of GAN models with temporal settings in the literature. Specifically, the consid-

ered baseline methods, including TimeGAN [271], RCGAN [269], C-RNN-GAN [268], and

WaveGAN [270]. Among these, TimeGAN, C-RNN-GAN, and WaveGAN use univariate

glucose data, while GluGAN and RCGAN use multivariate inputs. We retain the main

architectures of the baseline GAN models and tune the hyperparameters by the same hold-

out validation datasets, according to the predictive scores. To avoid model overfitting, we

apply early stopping to model training with a patience number of 50.

5.5.4 Model Training and Testing

We test the effect of GluGAN and data augmentation through a TL framework [128, 146].

Assuming only the first two-week glucose data are available in each training set, we combine

these data as a global set to develop a population GluGAN model and fine-tune the

whole model with individual training data of a hold-out subject. This particular length

is selected because the lifespan of most commercial CGM sensors is within 14 days. Then

the personalised GluGAN model generates two-week synthetic glucose data, which are

combined with the original data to develop an augmented training set. We compare the

performance of glucose prediction using augmented training sets (train-on-augmented and

test-on-real (TATR)) and original training sets (train-on-real and test-on-real (TRTR)).

Figure 5.4 depicts the TATR and TRTR process. Three predictors, including the post-

hoc LSTM, DRNN [128], and SVR [160], are evaluated on the testing sets with 30 and

60-minute PHs. DRNN is a state-of-the-art model to accurately predict glucose levels for

the OhioT1DM dataset in our previous work [128], which is based on three dilated RNN

layers. We also apply the same TL framework to improve the performance of LSTM and

DRNN predictors [128, 146] (Figure 5.4). SVR is a robust machine learning model in

glucose prediction and is commonly used as a baseline method in the literature [19]. All

the deep learning models are developed by TensorFlow 1.15 and Python 3.7, while SVR

(radial basis function kernel) is deployed by scikit-learn 0.24. Training the deep neural
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...

Data Flow                Development Process

Figure 5.4: Diagram of the TRTR (orange arrows) and TATR (blue arrows) in data
augmentation experiments for glucose prediction. The TL framework is applied to develop
personalised GluGAN and deep learning-based predictors (i.e., LSTM and DRNN). The
thin and thick arrows indicate data flow and development process, respectively.

networks is accelerated by NVIDIA GTX 1080 Ti GPU.

5.6 Results and Discussion

Figure 5.5 shows the results of PCA and t-SNE analysis for three T1D subjects from

OhioT1DM, ARISES, and ABC4D testing sets, respectively. It is to be noted that the

distributions of synthetic and real glucose time series are highly overlapped, indicating

good similarity.

In order to quantitatively evaluate the quality of synthetic data, we compared the

performance of GluGAN with four existing GAN frameworks. We computed the statistical

significance (p-value) by paired t-test after confirming the normality of distributions by

the Shapiro-Wilk test. Figure 5.6a depicts the performance of discriminative scores for

GluGAN and the considered baseline methods evaluated on the three clinical datasets.

Notably, GluGAN achieved the smallest mean discriminative scores across all the datasets

(0.17 ± 0.09, 0.16 ± 0.07, 0.13 ± 0.05; overall result: 0.15 ± 0.07) and obtained signifi-

cant improvements, except for the OhioT1DM dataset, when compared with the baseline

methods.

Similarly, Figure 5.6b shows the results of predictive scores. Compared with the
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Figure 5.5: PCA (the top row) and t-SNE (the bottom row) analysis on the distributions
of real and synthetic glucose sequences that are displayed in the red and blue dots, respec-
tively. The columns from left to right show the plots for the OhioT1DM, ARISES, and
ABC4D datasets, respectively.

considered baseline methods, GluGAN also significantly improved the performance and

achieved better mean predictive scores of 6.29± 1.31, 6.08± 0.98, and 7.08± 1.26 mg/dL

for the OhioT1DM, ARISES, and ABC4D datasets (overall result: 6.64 ± 1.30 mg/dL),

respectively.

Figure 5.7 shows an example of a one-day period of real and synthetic glucose time

series. It is observed that the synthetic curve passes through three of the four SMBG

measurements and has trends and peaks that are highly correlated with the actual CGM

measurements. In the experiments, we noted that excluding SMBG features did not have

a significant impact on predictive scores but caused larger bias and degraded the overall

mean discriminative scores by 0.02.

Table 5.1 presents the performance of glucose prediction with three data-driven

prediction algorithms over 30 and 60-minute PHs. Each predictor is tested by TATR

and TRTR routines. It is worth noting that the use of augmented training sets in TATR

significantly reduced RMSE and MAE scores in each dataset.

To the best of our knowledge, this work is the first attempt to generate realistic

T1D glucose time series based on a specifically designed GAN framework, i.e., GluGAN.
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Figure 5.6: Performance of GAN models evaluated on the OhioT1DM, ARISES, and
ABC4D datasets. (a): Discriminative scores. (b): TSTR predictive scores. The central
lines of the boxplots indicate the median values, and the whiskers indicate the distance of
1.5 times the interquartile range. The mean values are shown in the center of the boxplots.
Statistical significance is indicated as ∗ for p ≤ 0.05 and † for p ≤ 0.01.

To prove the validity and evaluate the performance of the approach, three clinical datasets

were employed. The visualization in Figure 5.5 and results in Figure 5.6a demonstrate that

GluGAN is able to generate high-fidelity synthetic glucose data, of which the distributions

are similar to those of real data. The results in Figure 5.6b indicate that the synthetic

data preserved good temporal dynamics and can be useful in terms of glucose prediction

tasks. It is to be noted that, by taking advantage of the autoregressive formulation and

latent space auto-encoding, GluGAN and TimeGAN achieved much smaller discriminative

and predictive scores than the other three baseline GAN models. We noticed that it is
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Figure 5.7: Visualization of synthetic glucose time series for a T1D subject in the
OhioT1DM dataset over a day. The real CGM readings and the synthetic glucose val-
ues generated by GluGAN are displayed in blue and red solid lines, respectively. The
hypoglycaemic, euglycaemic, and hyperglycaemic regions are marked by light red, green,
and blue shaded areas, respectively. The conditional inputs of SMBG, carbohydrate of
meal intake, and insulin bolus are shown in green dots, vertical yellow lines, and vertical
magenta lines, respectively.

challenging to train the GAN model to generate glucose time series without supervised

loss, mainly due to the high correlation cross timesteps (Figure 5.3). C-RNN-GAN used

a feature-matching approach [274] with a supervised loss in generator training, aiming to

match the hidden representations between real and synthetic data [268]. We also used this

basic supervised loss in another baseline method, RCGAN; otherwise, the model would

fail to generate realistic data. The authors of WaveGAN used the Wasserstein distance

and a gradient penalty [277] to improve the loss of the generator [270]. Furthermore,

to investigate whether GluGAN simply memorised training data and reproduced them

during the generative phase, we conducted an analysis of maximum mean discrepancy

with the radial basis function kernel [269]. We computed the maximum mean discrepancy

scores for synthetic training data (D̂tr) and synthetic testing data (D̂te) and employed

the Kolmogorov-Smirnov test with the null hypothesis that these two groups of scores are

sampled from the same distribution. In the experiments, we have p ≫ 0.05 for all the

datasets, indicating the performance on the training data is not significantly better than

that on the testing data.
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Table 5.1: Performance of glucose prediction by LSTM, DRNN, and SVR trained on
augmented (TATR) and original (TRTR) training sets. Statistical significance is indicated
as ∗ for p ≤ 0.05 and † for p ≤ 0.01.

Datasets Method
LSTM DRNN SVR

PH = 30
RMSE MAE RMSE MAE RMSE MAE

OhioT1DM
TATR

20.28±
2.42

14.42±
1.42

19.80±
2.35

14.10±
1.55

22.00±
5.26

15.01±
2.17

TRTR
21.30±
2.43†

15.55±
1.57†

20.39±
2.48†

14.64±
1.71†

23.89±
4.51†

17.28±
2.19†

ARISES
TATR

21.57±
4.04

15.78±
2.88

21.02±
3.73

15.35±
2.63

24.61±
6.10

17.11±
3.76

TRTR
22.81±
4.11†

16.86±
2.97†

21.69±
4.03

16.01±
2.98∗

26.39±
7.38†

19.09±
5.01†

ABC4D
TATR

21.03±
2.47

14.42±
1.42

20.81±
2.45

15.07±
1.82

21.63±
2.15

15.59±
1.63

TRTR
22.08±
2.45†

15.55±
1.57†

21.21±
2.52†

15.31±
1.86∗

23.52±
2.24†

17.87±
1.95†

Datasets Method
PH= 60

RMSE MAE RMSE MAE RMSE MAE

OhioT1DM
TATR

33.80±
3.64

25.05±
2.96

33.43±
3.56

24.80±
2.72

35.47±
5.99

25.59±
3.70

TRTR
35.61±
4.50∗

26.64±
3.61∗

34.38±
3.73∗

25.37±
2.97

36.46±
5.87∗

27.06±
3.66†

ARISES
TATR

37.10±
7.37

27.75±
5.41

36.54±
7.31

27.41±
5.44

39.10±
7.42

28.66±
5.62

TRTR
38.98±
8.34∗

29.28±
6.49∗

38.19±
8.09

28.64±
6.22

39.23±
7.77

29.31±
6.17∗

ABC4D
TATR

35.26±
4.89

26.37±
3.62

35.07±
4.85

26.28±
3.63

36.22±
4.76

26.74±
3.45

TRTR
36.37±
4.95†

27.46±
3.74†

36.03±
4.90†

27.05±
3.62†

36.64±
4.50

27.91±
3.43†

We also applied GluGAN to increase the amount of available training data, and thus

to enhance the performance of a glucose prediction algorithm. Particularly, we explored

two deep learning predictors and a machine learning predictor with 30 and 60-minute

PHs. As shown in Table 5.1, the use of augmented training sets reduced RMSE and

MAE for all the predictors over the two PHs. In this case, GluGAN is an effective and

model-agnostic solution to meet the challenge of limited personal data and the cold start

issue for the development of data-driven models. To perform a fairer comparison in data

augmentation, future work includes introducing two baseline methods to increase training
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data. One is to randomly oversample the training data, and the other is to add random

noise to test whether the improvement in RMSE is because the models fit the random

noise. Figure 5.7 shows the visualization of synthetic glucose over 24 hours, which was

obtained by retraining the GluGAN model with an input length of one day. It is worth

noting that the trends and peaks of the synthetic data are similar to that of the real

CGM measurements, which may offer an estimation of ambulatory glucose profiles for

T1D subjects with the SMBG regimen only.

5.7 Conclusion

In this chapter, we proposed a novel framework, GluGAN, based on GAN architectures

and deep learning technologies for the generation of realistic blood glucose time series in

T1D. In the reported experiments, we demonstrated that GluGAN is able to generate

high-quality synthetic data and outperformed all the considered baseline GAN models, in

terms of predictive and discriminate scores derived by post-hoc RNNs.

As an application of the proposed approach, we used GluGAN to increase the size of

training data as a data augmentation technique for blood glucose prediction. In particular,

we enhanced the prediction accuracy of different machine learning-based glucose predictors

(LSTM, DRNN, and SVR) over 30 and 60-minute PHs.

The promising results of this work have demonstrated the feasibility of using Glu-

GAN to improve data-driven decision support systems in T1D management. Finally, in

combination with physiological models and clinical constraints, GluGAN has the potential

to be employed as a personalised T1D simulator or a digital twin in future work.
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Chapter 6

An IoMT Framework in Diabetes

Management

The recent development of CGM and deep learning technology have been demonstrated

to achieve the state of the art in BG prediction and glycaemic control, as described in

Chapter 3 and 4. However, it is challenging to implement such algorithms in actual clinical

settings to provide persistent decision support due to the high demand for computational

resources, while smartphone-based implementations are limited by short battery life and

require users to carry the device. In this chapter, we propose an IoMT-enabled wearable

device that comprises a low-cost and low-power system on a chip (SoC) to perform Blue-

tooth connectivity and edge computing for decision support. In addition, we develop a

smartphone app according to T1D user feedback in the ARISES trial (Section 3.5.1) to

visualise BG trajectories and predictions, and desktop and cloud platforms to backup data

and fine-tune models.

Considering BG prediction is essential to diabetes management, we build an em-

bedded deep learning model using the FCNN framework proposed in Section 3.2 and

implement it on the wearable device for real-time BG prediction and predictive hypogly-

caemia detection. The embedded model achieved superior performance of RMSE, MAE,

and gRMSE, and obtained the best accuracy for hypoglycaemia detection when compared

with a group of machine learning baseline methods. Moreover, we performed hardware-
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in-the-loop in silico trials with 10 virtual T1D adults to test the whole IoMT system

with predictive low-glucose management, which significantly reduced hypoglycaemia and

improved BG control. This work provides an IoMT system for diabetes management,

including a smartphone app, a desktop platform, a cloud platform, and a customised

wearable wristband that provides wireless connectivity and edge computing for real-time

decision support. The work in this chapter has led to the following journal articles:

• T. Zhu, L. Kuang, J. Daniels, P. Herrero, K. Li, P. Georgiou, “IoMT-enabled

real-time blood glucose prediction with deep learning and edge computing,” IEEE

Internet of Things Journal, 2022.

• T. Zhu, C. Uduku, K. Li, P. Herrero, N. Oliver, P. Georgiou, ” Enhancing self-

management in type 1 diabetes with wearables and deep learning”, npj Digital

Medicine, vol. 5, no. 1, p. 78, 2022.

6.1 Introduction

With the rapid development of Internet of things, recent advances in CGM have been

shown to enhance the treatment for people with T1D [34]. A CGM system comprises an

implanted sensor to measure interstitial BG levels and a transmitter to send measurements

to a receiver, such as a customised hardware box, smartphone, or smart watch with a fixed

frequency (e.g., every five minutes). As a well-established paradigm of IoMT [278], CGM

can also be combined with insulin pumps as SAP or AP. In this context, BG prediction

can be used in closed-loop AP systems with model predictive control [139] and enables

PLGM systems that have been proved to be effective for reducing hypoglycaemia in clinical

settings [134].

Deep learning-based models have recently achieved superior performance in BG

prediction [19]. Of note, by employing the latest deep learning technology, the increas-

ingly complex models rely on a huge number of parameters, neurons, and layers for model

inference. Thus, how to implement these models in actual clinical settings to bring actual

therapeutic benefits is under-researched, which can be problematic since on-device infer-
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ence with a large number of model parameters requires intensive computational resources

and memory consumption.

The existing methods to implement deep learning models for BG prediction are

mainly based on customised smartphone apps [96, 101, 158]. However, several limitations

exist in these methods including lack of wearability, battery constraints, and the depen-

dency on mobile operating systems. It is inconvenient for T1D users to carry smartphones

or other handheld devices all the time, especially during high-intensity activities that

would reduce the awareness of subsequent hypoglycaemia in T1D [279]. In addition, the

battery level of smartphones and smartwatches are significantly drained because the pre-

diction algorithms continuously run in the background with Bluetooth connectivity [280].

As a result, the decision support system will be unavailable when the devices run out of

power. Moreover, the smartphone implementation is highly dependent on mobile operat-

ing systems, such as Android and iOS, and deep learning libraries, such as PyTorch [158]

and TensorFlow Lite [96, 101]. Many existing apps for diabetes management suffer from

the frequent updates of mobile operating systems. T1D users, especially the elderly popu-

lation, may need to purchase extra expensive smartphones if the implementation does not

support their own devices. Cloud implementation could be a solution to this problem, but

it is largely limited by Internet connectivity since there are many daily scenarios suffering

from poor coverage of WiFi and mobile signals. Thus, a power-efficient and low-cost wear-

able device based on edge computing [281, 282, 283] is preferred in T1D management to

provide real-time BG prediction and predictive hypoglycaemia detection. The outcomes

of this study also indicate the possibility of embedding deep learning algorithms into CGM

devices (e.g., wearable transmitters).

6.2 IoMT Framework Overview

Figure 6.1 depicts an overview of the proposed system architecture in T1D management.

There are three subsystems: 1) monitoring and decision support, 2) medical interventions,

3) platforms and servers, which are described in the subsequent sections. The IoMT-

enabled wearable device is in the center of the monitoring and decision support system.
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Figure 6.1: System architecture of the T1D management system with the proposed wear-
able device, which contains three subsystems as follows: monitoring and decision support,
medical interventions, and platforms and servers. The wearable device is a part of the
monitoring and decision support subsystem that can provide real-time measurement, BG
prediction, and hypoglycaemia warning.

Communicating with the CGM via Bluetooth connectivity, the wearable device empowers

a T1D user with real-time BG prediction and hypoglycaemia detection. Then the user

can interact with the subsystem of medical interventions to adjust treatment. The data

transmission between the wearable device and the platforms and servers aims at data

visualization, data backup, and updating the embedded deep learning model.

Monitoring and Decision Support

As the core component of the proposed system, it contains a CGM sensor that measures

BG levels every five minutes and transmits the real-time measurements to a specifically

designed wearable wristband via Bluetooth low energy (BLE). The SoC of the wearable

device performs the embedded deep learning algorithm to predict BG levels and detect

forthcoming hypoglycaemic events. The historical CGM measurements and DNN weights

are stored in the Flash memory, which can be accessed and updated by the platforms and

servers. This essential subsystem can run solely without interactions with other devices to

guarantee persistent and reliable decision support throughout day and night. In addition,
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thanks to a power-efficient design of SoC, the battery life of the wearable device (six

months) is longer than that of the CGM sensor (10 days) and transmitter (three months).

Medical Interventions

Automatic control with the same SoC that enables Bluetooth communication with insulin

pumps has been validated in our previous work [56]. In this chapter, we consider manual

control to fit different clinical scenarios since insulin pumps are not widely used by people

with T1D. Once receiving predictions and warnings from the wearable device, a T1D

subject is allowed to seek necessary interventions in advance and manually adjust existing

medical treatment.

Platforms and Servers

A smartphone app can connect with the wristband through Bluetooth to visualise current

CGM reading, predictions, and historical BG trajectories, while recording daily activities,

such as meals, excise, and health conditions. A desktop platform with a specifically

designed graphical user interface (GUI) (Figure E.1 of Appendix E) is employed to train

the deep learning models and backup collected data. It communicates with the wristband

through USB ports and can upload data to the Amazon cloud storage, i.e, a bucket of

Amazon S3. T1D users are allowed to perform these operations by themselves or with

the guidance of healthcare providers or clinicians if needed. To facilitate users without a

programming background, we deploy the deep learning models in the cloud using Amazon

SageMaker. Thus, the models can be automatically trained with newly uploaded data on

the cloud platform and downloaded from the cloud storage to the wearable device.

6.3 Problem Formulation and Feature Engineering

Denoting a BG level measured by CGM at timestep t as Gt, the target of prediction is

to estimate a future BG value of Gt+p, where p is a PH (e.g., 30 minutes) normalised by

resolution of CGM. To extract hidden representations, the input data contains a sequence
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of retrospective data Xt with a length of L, i.e., Xt = [xt,xt−1, . . . ,xt−∆] ∈ Rd×L, where d

is the dimension of the input features; xt ∈ Rd×1 denotes the input vector at the timestep

t; and ∆ = L − 1. Considering edge computing that delivers computation close to data

sources, we derive all the input features from CGM measurements and corresponding

timestamps in the monitoring and decision support system (Figure 6.1). The timestamps

for a 24-hour period are converted into two types of time index to map seasonal patterns:

min-max normalization with a range of [0, 1] [128] and sine-cosine encoding [146]. The BG

change over the PH is used as the learning target yt to reduce underlying bias [101, 128],

i.e., yt = fn(Gt+p −Gt), where fn is the min-max normalization to scale each feature.

Combining CGM sequences with time index, we perform feature selection during

the validation phase. The best validation performance was obtained with the CGM time

series Gt and min-max normalised timestamps St, i.e., Xt = fN ([Gt;St]). However, we

notice that there is a large number of missing gaps in the historical CGM measurements,

due to some inevitable reasons (e.g., sensor calibration and signal loss), which account for

around 10% of the total length. Thus, we interpolate the missing CGM data in the middle

of input sequences and extrapolates the missing CGM data at the tail to avoid involving

future information in current predictions.

6.4 BG Prediction by Edge Evidential Neural Network

A challenge of implementing such models in actual clinical settings is the lack of evaluating

the uncertainty and confidence of predictions. It is essential to determine whether a

prediction is reliable and confident when a deep learning model aims to provide crucial

decision support in a healthcare system. To this end, we build an embedded edge evidential

neural network (E3NN) model to compute the lower bounds of each prediction, based on

the FCNN framework proposed in Chapter 3. Figure 6.2 shows the architecture of the

proposed deep learning model, consisting of a base model with a stack of RNN layers,

an attention layer, a dropout layer, a dense layer, and an evidential output layer. The

input of E3NN is a multivariate time series with CGM and timestamps, while the output

comprises the parameters of the evidential distribution to compute prediction values and
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Figure 6.2: Block diagram of the proposed E3NN. The model input is a multivariate time
series. The output of E3NN includes the four parameters p[γ, σ, α, β] of the posterior
distribution to compute BG predictions with corresponding lower bounds.

lower bounds.

6.5 Model Implementation and customised Devices

6.5.1 Edge Computing

Compared with model implementation on the cloud, edge computing can offer more reliable

real-time services on the wearable device with extremely low latency of decision making,

which are not limited by Internet connectivity. Deep learning with edge inference is

emerging research in the fast-growing areas of AI and Internet of things. Existing inference

frameworks, such as TensorFlow Lite Micro [65] and CMSIS-NN [284], currently support a

limited subset of operations and DNN layers. Therefore, we convert the E3NN TensorFlow

models to C models based on the CMSIS-DSP library that offers high-performance APIs

for math functions, such as matrix operations, and the firmware development is based on

the latest nRF5 SDK v17.0.2.

The BLE SoC is based on an ARM Cortex-M4 Core with a tight memory budget

(512 KB Flash and 64 KB SRAM). However, the SoC not only communicates with the
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front-end CGM transmitter through the BLE protocol but also runs the trained RNN

model on the edge. Thus, we optimise the SRAM usage of the model inference. In

particular, assuming the input of the embedded model involves L CGM readouts associated

with timestamps, the first GRU layer processes a two-dimensional data sample at each

timestep and repeats for L rounds. Each round of operations is dependent on the output

from the previous iteration and cannot be computed in parallel for acceleration. However,

as the second GRU layer runs in the same way except for using the output of the first

GRU layer as input data, the operations of these two GRU layers can be pipelined. Thus,

the cells of the stacked RNN layers at the same timestep are performed in one round and

iterated L times. This interleaving process reduces the SRAM utilization since only one

output needs to be temporally stored instead of an output vector with a length of L. The

dropout layer only applies in the training phase, which is disabled in model inference and

thus not implemented on the SoC.

We import RNN weights as 4-byte hex data as a raw format representing 32-bit

floating-point numbers, aiming to maintain the prediction accuracy with less loss of preci-

sion compared with post-training quantization. These weights are fixed and stored in the

Flash memory, which can be claimed as static constant variables.

6.5.2 Embedded System and Wearable Device Design

To meet the requirements raised for edge computation, the proposed system involves a

lightweight and compact hardware design for a low-power and low-cost wearable device.

It is embedded with four main peripherals including the LEDs, button and buzzer for

essential user interactions as shown in Figure 6.3, where a Nordic SoC (nRF52832) is

employed as the system controller. The entire system can be divided into two parts. The

first part is a hardware power-gating circuit that includes a timer and a load switch to

control the on/off state of the system, while the second part inside the power-gated region

aims to save energy during the idle period.

Once a prediction is made and an adverse BG event is detected, the user can be

notified through either the light or sound, generated by the LED and buzzer, whereas a
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Figure 6.3: Block diagram of the proposed IoMT system in T1D management, which is
powered by a coin battery and embedded with LEDs, Buttons, and a Buzzer for user
interactions as well as a NOR Flash for data storage. The system employs a hardware
power-gating circuit including a timer and a load switch for energy saving, which can
maintain ultra-low-power during the idle period.

simple click on the button can stop the notification. In addition, to backup the CGM

readouts for post-processing, a NOR Flash is employed that provides 16 MB memory

capacity. Considering that each data sample transmitted by CGM every five minutes

only contains 16 bytes, such Flash memory space can support long-term data storage for

more than one year. The only drawback is that the Flash-type memory does not support

random access, thus the writable address must be determined at the start point. To solve

this, a binary search algorithm is implemented on the SoC which significantly improves

the efficiency compared with searching exhaustively.

The BLE SoC can enter a soft power-down mode for energy saving before starting

the next CGM readout. However, its peripherals can still consume some power if they

are connected to the main supply. As a result of this, the power gating technique is

applied in the system to shut off the current to the BLE SoC and its peripherals during

the idle period. This is realised through a timer integrated circuit which generates a

periodic power-gated signal to control a load switch. In addition, due to the need for user

notifications, such a process may take a different amount of time. Because of this, an

extra signal driven by the BLE SoC is connected to the timer integrated circuit to enter
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Figure 6.4: IoMT-enabled wearable device consists of a printed circuit board designed in
a dimension of 35 mm x 30 mm and a transparent case manufactured by 3D printing1.

the shutdown mode.

Due to the compactness of the proposed system, the finial hardware is populated

onto a 2-layer printed circuit board in a dimension of 35 mm x 30 mm as shown in Fig-

ure 6.4. The printed circuit board is inside a 3D printed case with a transparent appear-

ance. The button for users to confirm hypoglycaemic events is located at the top-left edge.

The black cylinder that occupies a large area of the printed circuit board is a buzzer. The

size of the wearable device is close to a smartwatch (e.g., Apple Watch). It can be powered

by a single coin battery (CR2302) with a lifespan of six months.

6.5.3 Smartphone App Design

In this chapter, a smartphone app is employed as a visualisation tool. As shown in

Figure 6.5, the GUI is based on the ARISES app developed in our previous clinical study

(Section 3.5.1). The ARISES app is based on the iOS operating system and integrates

with Dexcom CGM (G5 or G6) and Empatica E4 wristband, which was designed by a

multidisciplinary team consisting of diabetes clinicians and engineering specialists. In

addition, the feedback of end users (i.e., the T1D participants) was collected in a series

of focus groups, which specified the usability requirements and provided suggestions for

1The wearable device was designed and implemented by Mr. Lei Kuang.
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Bifocal Display Main panel

Food panel

Figure 6.5: Graphical user interface of the smartphone app, where bifocal display [285]
is used to present glucose trajectories2. The users are allowed to record daily activities
through the food, exercise and health panels. The embedded deep learning algorithm
predicts glucose levels and detects hypo- and hyperglycaemia with lower and upper bounds.
Then the app sends corresponding warnings to users by notifications and haptic vibration
and displays information in the advice panel. The corner icons of the food and advice
panels can show the details of carbohydrate and the status of unread alert messages,
respectively, when these panels are stacked at the bottom.

improving the GUI.

An common way to implement deep learning models is by smartphone app. There-

fore, we implemented the ARISES model (Section 3.6.2) and analysed the performance of

the app on an iPhone XS Max over 50 runs. The whole app has an initial storage size

of 39.9 MB and consumed an average of 50.5 MB and 39.3 MB memory while running

in foreground and background, respectively. The trained deep learning models were con-

verted to mobile compatible format via TensorFlow Lite, which has a storage size of 1.2

MB. When the app received a new CGM measurement, it took 5.7 ms and 1.8 MB mem-

ory to compute real-time glucose prediction through model inference on the edge, which

require one-hour historical data of CGM measurements, sensor wristband measurements,

2The design of the GUI was proposed by Prof. Robert Spence, and the diary modules were initially
implemented by Mr. Ryan Armiger.
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and daily entries (if any). Model fine-tuning is performed by Amazon S3 buckets and

SageMaker in the Amazon Web Services cloud and requires at least one-week historical

data.

6.6 Experiment Setup

We developed and evaluated the algorithms using three datasets collected from a number

of T1D subjects in clinical trials, which are described in Section 3.3.1. The OhioT1DM

dataset contains the training set and testing set of each T1D subject [100], which account

for the data of around 40 days and 10 days, respectively. Similarly, each of the ABC4D

and the ARISES datasets was divided into a training set that includes the first 80% data

and a testing set with the last 20% data. For each training set, the last 25% data was

used as a validation set for hyperparameter tuning. This setup can avoid introducing

temporal dependencies into training and testing sets, which was commonly used in pre-

vious work [19]. The selected values of the hyperparameters are listed in Table E.1 of

Appendix E.

We developed a personalised model for each T1D subject with 30-minute and 60-

minute PHs and compared the proposed E3NN model against a group of baseline methods

in the literature. The ARIMA [161] and SVR [160] were selected as two classic machine

learning baselines [19], while the temporal convolutional network (TCN) [101], CRNN [96],

LSTM [107], and Bi-LSTM [286], were employed as deep learning baselines. All the

considered models were implemented by Python 3.8 and used the same input features,

except for ARIMA that used CGM input only. We respectively applied statsmodels 0.12

and scikit-learn 0.23 libraries to build the ARIMA and SVR models. The deep learning

models were developed by TensorFlow 2.2 and Keras 2.3. We trained them using an Adam

optimiser and early stopping to mitigate overfitting, which was accelerated by NVIDIA

GTX 1080 Ti GPU. Notably, to evaluate the performance of model inference on the

wearable SoC, we sequentially fed input data to the embedded E3NN models through

a universal asynchronous receiver-transmitter (UART) with the general serial port data

transmission protocol.
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We evaluated the accuracy of BG prediction using three classic metrics: RMSE,

MAE, and gRMSE in mg/dL, which are defined in Section 3.3.3. According to the in-

ternational consensus [287], a hypoglycaemic event is defined as three consecutive CGM

measurements below 70 mg/dL. MCC is used to evaluate hypoglycaemia detection. It is

a preferred metric in binary classifications since high MCC scores can be obtained only if

the classifier performs well in all the categories of confusion matrix [288], which is denoted

in Section 3.3.3.

6.7 Results and Discussion

6.7.1 Prediction Performance

BG Level Prediction

Table 6.1, 6.2, and 6.3 respectively present the results of BG level prediction for the

OhioT1DM, the ABC4D and the ARISES datasets over 30-minute and 60-minute PHs. To

indicate the statistical significance with respect to the considered baselines, we confirmed

the normality of data distribution with Shapiro–Wilk test and employed paired t-test to

compute p values. It is worth noting that the E3NN achieved the best RMSE, MAE,

and gRMSE for all three datasets and obtained significant improvement, compared with

the considered baseline methods. Particularly, the improvement of the E3NN methods on

the OhioT1DM dataset is more significant than that on the other two datasets, which is

possibly due to the high quality of the dataset with the smallest portion of missing CGM

samples. We observe that the RMSE for the 60-minute PH is much higher than that for

the 30-minute PH, because external events, such as meal intake and exercise, and internal

changes in a T1D subject are more likely to occur within a longer period, which would

have an impact on glucose dynamics.

Overall, the deep learning methods performed better than the classic machine learn-

ing baselines, except for CRNN. The RNN-based models, including LSTM and Bi-LSTM,

exhibited better performance than TCN and CRNN that use CNN layers for feature ex-

traction, where the LSTM performed best among the baseline model. In addition, it is
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Table 6.1: Performance of the prediction models evaluated on the OhioT1DM dataset

PH Method RMSE (mg/dL) MAE (mg/dL) gRMSE (mg/dL)
3
0

m
in

u
te

s

E3NN 18.92± 2.12 13.46± 1.49 23.40± 2.86

TCN 20.23± 2.35‡ 14.59± 1.66‡ 25.04± 2.90‡

CRNN 21.48± 2.63‡ 15.80± 2.03‡ 27.25± 3.28‡

LSTM 20.11± 2.48 14.06± 1.69† 24.84± 2.88∗

Bi-LSTM 20.15± 2.25∗ 14.16± 1.63‡ 25.01± 2.73‡

SVR 21.37± 2.25‡ 16.27± 1.68‡ 26.73± 2.87‡

ARIMA 20.43± 2.19‡ 14.42± 1.41‡ 24.51± 2.65‡

60
m

in
u

te
s

E3NN 32.54± 3.61 24.05± 2.94 41.52± 4.83

TCN 34.21± 3.71† 25.29± 2.99‡ 44.26± 4.79‡

CRNN 34.05± 4.26‡ 25.57± 3.60‡ 44.22± 5.57‡

LSTM 33.10± 3.84∗ 24.50± 3.08 42.65± 5.20∗

Bi-LSTM 33.76± 4.06‡ 25.10± 3.31† 43.87± 5.20‡

SVR 33.99± 3.59‡ 25.69± 2.77‡ 44.21± 4.94‡

ARIMA 35.51± 3.72‡ 26.03± 2.69‡ 43.89± 4.65∗

∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005.

noted that the performance of ARIMA is good for the 30-minute PH but degraded with a

longer PH. A possible explanation is that the ARIMA method uses a linear equation, for

which it is difficult to capture non-linear long-term temporal dependencies. The trajec-

tories of the CGM measurements and the predictive results of the E3NN, LSTM, TCN,

and ARIMA methods are shown in Figure 6.6. The dashed green and cyan lines indi-

cate the thresholds of hypoglycaemia and hyperglycaemia, respectively. When compared

with the LSTM and TCN methods, the E3NN method obtained less underestimation in

hyperglycaemic regions and less overestimation in hypoglycaemic regions. However, it is

observed that deep learning methods lack sensitivity for BG changes at the troughs of the

plotted curves, as highlighted by the black ellipses. This may cause missed detection of

severe hypoglycaemia and lead to life-threatening events in clinical settings. Therefore,

we introduced the corresponding lower bounds to address this challenge.

It is worth noting that the performance of E3NN is comparable to that of models

proposed in Chapter 3, which use exogenous input features obtained from meal and bolus
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Table 6.2: Performance of the prediction models evaluated on the ABC4D dataset

PH Method RMSE (mg/dL) MAE (mg/dL) gRMSE (mg/dL)
3
0

m
in

u
te

s

E3NN 20.11± 2.54 14.34± 1.78 24.90± 3.39

TCN 21.86± 5.52 15.06± 1.89‡ 27.05± 6.33

CRNN 22.96± 3.28‡ 16.61± 2.21‡ 29.11± 4.35‡

LSTM 20.26± 2.58‡ 14.53± 1.84‡ 25.16± 3.37†

Bi-LSTM 20.36± 2.56‡ 14.64± 1.84‡ 25.38± 3.33‡

SVR 21.89± 2.52‡ 16.64± 1.99‡ 27.74± 3.56‡

ARIMA 22.15± 2.59‡ 15.61± 1.90‡ 26.48± 3.56‡

60
m

in
u

te
s

E3NN 33.88± 4.81 24.98± 3.56 43.77± 6.44

TCN 40.56± 17.10 26.17± 3.88‡ 51.30± 19.48

CRNN 38.23± 13.61 26.97± 4.19‡ 49.14± 15.07

LSTM 34.31± 4.94 25.36± 3.67‡ 44.32± 6.80

Bi-LSTM 34.38± 5.15∗ 25.43± 3.79‡ 44.48± 7.11∗

SVR 34.90± 4.76‡ 26.46± 3.61‡ 45.43± 6.55‡

ARIMA 38.59± 5.12‡ 28.02± 3.74‡ 47.95± 7.14‡

∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005.

entries and real-time wristband measurements. In this context, there is a trade-off between

the improvement of RMSE and the use of additional medical devices. If the applications in

T1D management do not require extremely accurate BG prediction, these devices might

not be necessary.

Comparison Among Deep Learning Methods

As an edge AI application implemented on a hardware platform with limited computa-

tional resources, the memory footprint and operations per inference, as well as prediction

accuracy, are important considerations during the selection of deep learning models. The

deep learning models were developed by the TensorFlow library. Thus, we converted them

into a TensorFlow Lite compressed format that supports on-device inference for many

mobile and Internet of things devices, to analyze the hardware requirements. Table 6.4

summarises the number of parameters (Param) and floating-point operations per second

(FLOPS), peak SRAM, Flash, and the error score (ES) that sums up the RMSE and MAE
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Table 6.3: Performance of the prediction models evaluated on the ARISES dataset

PH Method RMSE (mg/dL) MAE (mg/dL) gRMSE (mg/dL)
3
0

m
in

u
te

s

E3NN 20.45± 3.81 14.78± 2.62 25.31± 5.09

TCN 22.01± 4.19‡ 15.98± 2.91‡ 28.03± 5.80‡

CRNN 24.43± 5.19‡ 17.93± 3.76‡ 31.67± 7.28‡

LSTM 20.74± 3.66 15.03± 2.55 26.09± 4.89∗

Bi-LSTM 20.86± 3.78∗ 15.19± 2.73‡ 26.30± 5.12†

SVR 22.87± 3.99‡ 17.25± 2.99‡ 29.10± 5.49‡

ARIMA 21.76± 4.73‡ 15.59± 2.71‡ 26.20± 5.20‡

60
m

in
u

te
s

E3NN 35.55± 7.24 26.22± 5.28 46.37± 10.11

TCN 37.01± 7.72‡ 27.64± 5.66‡ 48.65± 10.76‡

CRNN 38.07± 8.20‡ 28.49± 6.15‡ 50.17± 11.37‡

LSTM 36.68± 6.97‡ 27.02± 5.12∗ 48.80± 9.83‡

Bi-LSTM 37.14± 7.38‡ 27.59± 5.45‡ 49.00± 10.55‡

SVR 37.08± 7.48‡ 27.75± 5.44‡ 48.79± 10.42‡

ARIMA 39.51± 8.16‡ 28.75± 5.65‡ 49.73± 11.00‡

∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005.

Table 6.4: Comparison between the proposed E3NN and considered deep learning baseline
methods.

Method Param FLOPs SRAM Flash ES (mg/dL)

TCN 124K 248K 13.7KB 499KB 94.44

CRNN 52K 136K 8.1KB 227KB 96.78

LSTM 53k 1577K 7.3KB 2096KB 91.87

Bi-LSTM 141K 412K 13.2KB 624KB 93.17

E3NN 32K 93K 13.8KB 171KB 88.97

for the 30-minute and 60-minute PHs. It is noteworthy that the E3NN model obtained

the best prediction performance (the lowest ES) with the smallest numbers of param-

eters, FLOPs, and Flash. Although the E3NN consumes relatively high peak SRAM,

this amount is much smaller than the available capacity of most commercial microcon-

troller units, as well as the target SoC in this work (64KB). We observe that the LSTM

model achieved the second-best ES at the cost of a large number of parameters and Flash

requirement that is likely to exceed the memory constraint.
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Figure 6.6: 1.5-day prediction performance of the considered methods on the ARISES
dataset with a 30-minute PH. The solid black line indicates the actual CGM measurements,
while the dash-dotted blue, orange, and magenta lines are the results of LSTM, TCN,
ARIMA methods. The dashed red line indicates the results of the E3NN method, where
the lower bounds and uncertainty are represented by the dotted green line and shaded
blue area, respectively. The black ellipses highlight the hypoglycaemic events detected by
the lower bounds.

Hypoglycaemia Detection

A widespread application of BG prediction in T1D management systems is to prevent

hypoglycaemic episodes that would lead to fatal complications. We detected impending

hypoglycaemia using the lower bounds of E3NN predictions and the prediction values of

the considered baseline methods at the same PHs. Table 6.5 presents the MCC scores

evaluated on the three clinical datasets. Although the TCN-based model obtained higher

RMSE, MAE, and gRMSE results than the LSTM and Bi-LSTM in Table 6.1, 6.2, and 6.3,

it is worth noting that the TCN achieved the best performance of hypoglycaemia detection

among all the considered deep learning baseline methods. A possible explanation is that

the TCN-based models have longer effective memory than canonical RNNs with the same

capacity, as suggested in [289]. Therefore, the TCN model could better understand the

patterns of hypoglycaemia caused by external events that occurred hours ago, such as

postprandial hypoglycaemia. In our previous work [101], we also noticed that the TCN

model exhibited a short prediction time lag, indicating good sensitivity to the changes
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Table 6.5: MCC scores of the hypoglycaemia prediction evaluated on the three datasets

PH Method OhioT1DM ABC4D ARISES

3
0

m
in E3NN 0.70± 0.09 0.68± 0.09 0.70± 0.12

TCN 0.55± 0.10‡ 0.49± 0.20‡ 0.40± 0.12‡

ARIMA 0.65± 0.09∗ 0.59± 0.07 0.61± 0.10

6
0

m
in E3NN 0.57± 0.09 0.54± 0.11 0.49± 0.14

TCN 0.38± 0.11‡ 0.37± 0.18‡ 0.30± 0.15‡

ARIMA 0.49± 0.06 0.48± 0.06‡ 0.45± 0.12

∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005.

in the troughs of glucose trajectories, i.e., hypoglycaemia regions. Meanwhile, it is noted

that the ARIMA outperformed the SVR model with a higher MCC score. Therefore, we

compared the E3NN with the TCN model and ARIMA in Table 6.5.

Notably, the E3NN model achieved the highest MCC scores for each dataset in both

30-minute and 60-minute PHs. It is interesting to note that the MCC scores of the ARIMA

method are significantly higher than the TCN and the other deep learning methods, while

the improvement of the E3NN on the ABC4D and ARISES datasets is not significant when

compared with the ARIMA. In Fig 6.6, we see that the ARIMA predictions can identify

more hypoglycaemic events than the TCN with a time-shifted delay on the curve, which,

however, degrades the RMSE performance (Table 6.1). It is reasonable since the weights

of the DNN models were optimised by the regression loss that aims to enhance RMSE

performance, instead of the accuracy of hypoglycaemia detection. It is observed that the

lower bounds of the E3NN curve successfully detected five hypoglycaemic events circled

by the black ellipse, which are likely to be missed if we use the prediction values only. In

particular, the use of lower bounds increased average MCC scores for the three datasets by

0.13 (p < 0.005) and 0.17 (p < 0.005) for the 30-minute and 60-minute PHs, respectively.

Hence, these results suggest that evidential regression is an important improvement in BG

prediction methods based on deep learning.
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6.7.2 Edge Implementation

The proposed RNN predictor was implemented on the BLE SoC for edge computing. By

means of utilising the optimised CMSIS-DSP library that is pre-compiled and included in

the latest NRF52 SDK, the SoC is able to accept high-throughput data while performing

rapid computation of matrix operations that typically involve single-cycle multiplication

and accumulation. This enables efficient data processing with minimal overhead and the

real-time execution of computation-intensive algorithms.

Table 6.6 presents the detailed utilization of Flash and SRAM memory in Byte (B)

for the implementation of E3NN. As the SRAM memory was allocated dynamically during

the run time, the implementation of this RNN model only led to an increase of 2.48% on

the SRAM utilization compared with that without the edge computation. Whereas the

capacity of the Flash memory is the main bottleneck that limits the size of the RNN

predictor, occupying 66.13% of the total flash utilization. In addition, the computation

time was empirically estimated by executing each layer for 100 rounds and averaging the

run time through the UART timestamp. The result shows an average computation time of

approximately 500 ms. Moreover, compared with the implementation by TensorFlow Lite

Micro in Table 6.4, our implementation significantly reduced Flash from 171 KB to 125

KB and peak SRAM from 13.8 KB to 3.5 KB, mainly because it computed outcomes using

low-level CMSIS-DSP APIs without interpreting the network graph. For each considered

T1D subject, the RMSE between the testing results of Python model and those of the

edge model is less than 10−5 mg/dL.

The final firmware for the BLE SoC utilises 189.03 KB Flash and 16.12 KB SRAM

memory, which provides the following six functionalities: 1) CGM sensor connectivity

and readout, 2) input data pre-processing, 3) edge computing of the RNN predictor, 4)

external flash memory management, 5) basic user interactions, and 6) developer mode for

data readout and parameter update.
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Table 6.6: Details of Flash and SRAM Memory Footprint

Layer Input Shape Flash (B) SRAM (B) Time

Input (2, 12) 0 96 0

GRU 1 ∗∗ (1, 2) 52,224 1,536 22.58 ms

GRU 2 ∗∗ (1, 64) 37,632 768 16.16 ms

Attention (12, 32) 20,480 2,096 28.92 ms

Dense (1, 64) 16,640 256 6.22 ms

Evidential (1, 64) 1,040 16 0.32 ms

Output (1, 4) 0 16 0
∗∗ This layer is repeatedly executed for 12 times.

6.7.3 Power Analysis

Power estimation was conducted by using a source meter Keithley 2606A, which supplied

3 volts and monitored the power in real time. Figure 6.7 presents the power monitoring

of a typical cycle that lasts for 13 seconds, which consumes an average run-time power of

3.78 mW. The power spikes at the initial stage indicate the Bluetooth scanning process,

which involves a tunable window and interval. The highest power occurring in the middle

indicates the edge computing for the embedded predictor. During the pulse at the end,

the system polls the power-gating circuit to enter shutdown mode.

At the very beginning, the device keeps scanning the target sensor and involves

an on-off current switching with a peak value around 6.5 mA. To reduce the power con-

sumption of this process, the BLE scanning window is shortened into a duty cycle of 10%,

resulting in an average power of 5 mW. Once the target sensor is connected, the BLE

SoC will start the authentication and bonding process, which typically lasts for 2 seconds.

After the success of bonding, the device is able to request the glucose data and start

prediction. Notably, the running of the RNN predictor is the most energy-hungry process

as it utilises the on-chip digital signal processing for the computation of floating-point

arithmetic operations, but only takes a short operating time of around 500 ms. Depending

on the predicted blood glucose level, the notifications of the low excursion with intermit-

tent alarms are generated through the LED and buzzer. During this period, the system

waits for user response but maintains a low power that is less than 1 mW. If the button

is pressed, i.e., the warning of a hypoglycaemic event is confirmed, the system will enter
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Figure 6.7: Power measurement of a complete run cycle that involves BLE scanning, au-
thentication and bonding, edge AI computing, and hypoglycaemia notification. Among
these processes, the two main contributors, including BLE scanning and edge AI com-
putation, lasted for 5 and 0.52 seconds, which consumed an average power of 5 mW and
27 mW, respectively.

the shutdown mode by triggering the on-board timer for power gating.

In the real application, the device can be powered by a single coin battery, e.g.,

CR2032, which typically has a capacity of 240 mAh. This capacity enables the device to

operate for six months, assuming that each CGM readout is processed every five minutes.

The commercial CGM sensors and transmitters in the market typically require a replace-

ment every 10 days and three months, respectively. Thus, the achieved battery life of our

wearable device is long enough to cover these periods.

6.7.4 In Silico Trial

To evaluate the performance of the whole system with the wearable device, we performed a

3-month hardware-in-the-loop in silico trial using the UVA/Padova T1D simulator, which

is a common experimental setup of pre-clinical trials in T1D management systems. In

particular, we employed 10 virtual adult subjects with additional intra- and inter-subject

variability [264] and used the carbohydrate of meal protocol as follows: 70 g (breakfast, 7

am), 110 g (lunch, 2 pm), and 90 g (dinner, 9 pm), with the variability of mealtime (STD

= 30%) and meal size (CV = 10%). The simulator sent CGM values to the wearable device
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Table 6.7: Glycaemic outcomes of the in silico trial

Method TIR (%) TBR (%) TSH (%) LBGI

Control 74.26± 7.62 5.44± 3.38‡ 2.00± 1.45‡ 1.50± 0.81‡

PLGM 74.83± 9.02 2.02± 1.14 0.47± 0.38 0.65± 0.28

∗p ≤ 0.05 †p ≤ 0.01 ‡p ≤ 0.005.

and received 30-minute predictions through a debug mode with the UART and USB ports.

We performed the PLGM algorithm with the settings in [189], where the pump suspended

basal insulin when the predictions were at or below the threshold of hypoglycaemia, i.e.,

70 mg/dL.

Table 6.7 presents the outcomes of PLGM and a control group (i.e., no suspension)

as a baseline, evaluated by TIR of [70, 180] mg/dL, TBR (BG< 70 mg/dL), time of severe

hypoglycaemia (TSH) (BG< 54 mg/dL), LBGI. It is noted that integrating the wearable

device with PLGM significantly reduced the LBGI and percent time of hypoglycaemia and

severe hypoglycaemia without a decrease of TIR. Figure 6.8 depicts the outcomes of CVGA

for a virtual adult subject. We observe that, compared with the control group, more of

the PLGM dots are located in the left bottom zones. Specifically, the PLGM improved

the percentage of the A+B zone from 67% to 77% and reduced 10% of the dots in the

D+E zone, indicating good BG control. Besides the PLGM, other interventions, such as

glucagon delivery and rescue carbohydrate recommendations, could also be performed in

clinical settings to further reduce the incidence of hypoglycaemia, based on the real-time

BG predictions of the wearable device.

6.8 Conclusion

In this chapter, we developed E3NN based on the FCNN framework for BG prediction

and a novel IoMT-enabled wearable device to implement the deep learning algorithm for

real-time BG prediction and hypoglycaemia warning with edge computing on the SoC.

When evaluated on the three clinical datasets, the proposed model obtained the best

prediction accuracy for both future BG level and impending hypoglycaemic events with
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Figure 6.8: CVGA plot comparing PLGM (orange dots) against the control group (blue
dots) for a virtual adult subject in the trial. Each dot stands for the extreme values of
BG trajectories over 24 hours.

the smallest number of model parameters and FLOPs, compared with the considered

deep learning baseline methods. Moreover, the optimised hardware design of the wearable

device enables extremely low energy consumption for edge inference and BLE connectivity,

which can run 24/7 operations over six months. The results of hardware-in-the-loop in

silico trials demonstrated that integrating the wearable device into the T1D management

system can improve glycaemic outcomes of BG control.
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Conclusion

This thesis investigated deep learning applications in diabetes management and demon-

strated that the proposed deep learning-based methods have achieved state-of-the-art per-

formance for critical decision support in multiple clinical scenarios. Taking advantage of

the substantial physiological data generated by wearable devices and daily entries recorded

by smartphone apps, we have proposed novel deep learning frameworks in glucose pre-

diction for proactive interventions, and in glycaemic control to maintain BG levels in a

therapeutically appropriate range. To take a further step towards the clinical use of the

proposed algorithms, we have proposed GluGAN to generate synthetic BG data for data

augmentation in developing data-driven algorithms and ambulatory glucose profiles for

T1D subjects on SMBG therapy, and an IoMT framework to facilitate people with dia-

betes and clinicians to visualise historical glucose profiles, store clinical data, develop and

implement deep learning models with little engineering work.

7.1 Contributions

Chapter 2 introduced the background of diabetes management and provided an overview

of deep learning technology. Following the preferred reporting items for systematic review

and meta-analyses approach, we performed a systematic literature review by searching

the journal articles that were published between January 1, 2016 and September 1, 2022
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in three reputable online databases. A comprehensive literature summary with extracted

key information, including application cases, data sources, development process, main

outcomes, baselines, and limitations, was presented. The challenges in medical data and

deep learning models were identified.

Chapter 3 provided a novel deep learning framework, FCNN, for BG prediction

and addressed the challenges of model confidence and data availability. We developed a

bidirectional GRU model with a modified many-to-one attention mechanism to improve

the prediction accuracy and evidential learning that provides theoretically supported CIs.

MAML with the first-order approximation was employed to enable fast adaptation with

limited data and solved the cold-start issue. The proposed model was evaluated on the

OhioT1DM dataset, ARISES dataset, and ABC4D dataset and compared with a group

of machine learning and deep learning baseline methods in terms of BG level prediction,

hypoglycaemia prediction, and fast adaptation performance. In the second part of Chap-

ter 3, we investigated the efficacy of physiological data measured by the wearable wristband

sensor (Empatica E4) in diabetes management, which were collected in our previous trial

with 12 T1D participants and provided in the ARISES dataset. We first analysed the

association between the sensor data and adverse glycaemic events through mixed effects

logistic regression. Then, the sensor data were used in the FCNN framework to build a

deep learning model to predict BG levels, hyperglycaemia, and hypoglycaemia over PHs

from 15 to 60 minutes.

Chapter 4 presented three novel DRL applications in glycaemic control. First, a

DRL model based on double Q-learning and DRNNs was proposed to optimise single-

hormone (basal insulin) and dual-hormone (basal insulin and glucagon) delivery in AP

systems. The personalised control algorithms were developed by means of a novel two-

step learning framework that accelerated model training and can improve safety in clinical

settings. The model was evaluated in the UVA/Padova T1D simulator with 10 virtual

adults and 10 virtual and compared with the standard LGS. Secondly, we proposed a DRL-

based meal insulin bolus advisor for both MDI and insulin pump therapy using the actor-

critic DDPG architecture. The model was trained by the two-step learning framework and
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prioritised memory replay, and evaluated in the UVA/Padova T1D simulator as well. The

model performance was compared with that of SBC. Finally, we developed an offline DRL

and OPE framework for basal insulin delivery and removed the need for long-term error

and trial exploration in simulators or actual clinical trials, enabling the DRL models to be

trained, validated, and tested in a safe and offline setting. The proposed DRL model was

based on TD3 and behaviour cloning regularization, while FQE was used for OPE. The

proposed framework was validated on both the offline in silico dataset generated by the

UVA/Padova T1D simulator and the clinical OhioT1DM datasets with 12 T1D adults.

Chapter 5 presented a novel deep learning framework, GluGAN, to generate per-

sonalised BG time series data. GluGAN incorporated three additional DNN modules,

including an embedding network, a recovery network, and a supervisor network, into a

standard GAN model. Leveraging unsupervised learning (i.e., adversarial learning) and

supervised learning, the model was shown to learn similar distribution densities and au-

toregressive relationships to those of real CGM data. We evaluated the performance of

GluGAN on the OhioT1DM dataset, ARISES dataset, and ABC4D dataset and compared

it with four GAN-based baseline methods for time series generation. GluGAN was further

applied to data augmentation in BG prediction with TRTR and TRTR routines. The

experiments were performed with three standard data-driven predictors.

Chapter 6 provided an IoMT-enabled wearable device with a low-cost and power-

efficient SoC that communicated with CGM and other devices of T1D management

through BLE and performed edge computing for the model inference of the embedded

deep learning algorithm. A cloud platform and a desktop platform were developed for

model training and data backup. An iOS smartphone app was designed to record daily

events, visualise BG trajectories, and provide decision support, according to the feed-

back of T1D users in the ARISES clinical trial. Utilising the FCNN framework proposed

in Chapter 3, an embedded model, E3NN, was developed for real-time BG prediction

and hypoglycaemia detection with CGM measurements on edge devices. The embedded

model was evaluated by the OhioT1DM dataset, ARISES dataset, and ABC4D dataset

and compared against a variety of machine learning and deep learning baseline methods.
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We analyzed the power and memory footprint of the wearable device. A hardware-in-the-

loop in silico trial using the UVA/Padova T1D simulator was performed to validate the

therapeutic efficacy of the PLGM system integrated with the proposed wearable device.

7.2 Recommendations for Future Work

This thesis has presented pioneering research on deep learning applications to diabetes

management and provided new paradigms for BG prediction, glycaemic control, synthetic

BG data generation, and digital health systems. As identified in Chapter 2, the number

of research in these areas is increasing exponentially, and deep learning is evolving more

rapidly than ever before. We expect that deep learning technology will be widespread

in clinical settings in the future, and the potential research directions are presented as

follows.

7.2.1 Non-Invasive BG Monitoring and Prediction With Wearable

Wristband Sensors

In Chapter 3, we have demonstrated that several physiological features measured by the

wristband sensor (Empatica E4), especially heart rate variability, were significantly associ-

ated with hypoglycaemia and hyperglycaemia and improved BG prediction. A very recent

study has detected current hypo- and hyperglycaemic events using a machine learning al-

gorithm (XGBoost) and wristband sensor data [172]. Therefore, there is also a possibility

to monitor current BG levels and predict upcoming hypoglycaemia and hyperglycaemia

purely based on non-invasive physiological data. The success of this application will en-

able people with severe T2D or T1D to discontinue CGM therapy, but SMBG might be

required to calibrate the algorithm. To achieve this target, future work will include devel-

oping powerful time series models with the recent advances in deep learning. In particular,

self-attention models (i.e., transformers) will be investigated. We used the encoder of a

standard transformer as a baseline method in Chapter 3, which achieved comparable per-

formance. To better learn the temporal dynamics of multivariate time series and reduce

the complexity of self-attention mechanisms, many recent variants of the transformer, such
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as temporal fusion transformers [290], will be explored.

Wristband sensors, such as Empatica E4, are quite sensitive to motion artefacts,

so it is difficult to obtain accurate measurements with too many hand movements [291].

Thus, an algorithm to detect exercise and reduce measurement error for the wristband

will be developed. In fact, it would also be possible to design a customised wristband

to measure certain non-invasive physiological features and provide on-device BG monitor-

ing, leveraging the edge computing for deep learning proposed in Chapter 6. In future

work, it would be more appropriate for a deep learning model to disentangle the effect

of different features, especially meal intake and insulin delivery, before it can be used in

clinical settings. There are two potential solutions for future work. One is to introduce

monotonic constraints in the DNNs to specify the insulin’s negative effect on BG levels,

such as restricting the layer weights of shallow networks [292] and training with heuristic

regularizations [293]. The other is to incorporate physiological models to process these

events, such as composite minimal models of glucose regulation [188].

7.2.2 Glycaemic Control With DRL and Data of Physical Activities

Despite being able to reliably model glucose-insulin dynamics in T1D, the current FDA-

accepted version of the UVA/Padova simulator [81] lacks the effect of physical activity and

health conditions (e.g., recurrent illness) that are known to significantly influence insulin

sensitivity in people with T1D. In particular, the effect of physical activities has been

proven to be very complicated to model. Thus, the modelling of the insulin-mediated and

non-insulin-mediated effect on muscle glucose need to be further assessed and developed

through more research [294].

In future work, we will first incorporate physical activity with the double DQN

and DDPG algorithms, which have been demonstrated to significantly glycaemic control

in Chapter 4. If physical activity, basal insulin, and the data of other daily events become

available in future public CGM datasets, the offline DRL and OPE framework will be

further investigated. There is rapid development in DRL, and we plan to explore the

latest advances in this area, such as combining DRL and meta-learning [295]. For all
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the proposed methods, in silico experiments with more realistic variability need to be

conducted before the clinical use of the offline DRL algorithm, for which a new version of

the UVA/Padova T1D simulator (S2017) [265] will be considered. An alternative solution

is to develop control algorithms coped with unannounced physical activities [232].

7.2.3 GAN-Based Personalised Diabetes Simulator and Digital Twins

By using conditional inputs of SMBG measurements, carbohydrates from meal intake,

and insulin delivery to generation BG time series, we presented a pilot study on the per-

sonalised data-driven T1D simulator in Chapter 5. However, to build a fully functional

personalised diabetes simulator, the interpretability and causality of deep learning models

have to be improved. For instance, we need to make sure that the synthetic postprandial

BG levels will rise if the subject increases carbohydrate intake without adjusting insulin

therapy. Therefore, future work will include casual graphs [296] and exponential objec-

tive functions [297]. Furthermore, we consider combining physiological models and CGM

models (e.g, the UVA/Padova models [81] or the Hovorka models [215]) with GluGAN to

obtain robust generative performance and finally develop personalised T1D digital twins.

The digital twins will initiate revolutionary changes in both pre-clinical and clinical

T1D studies, which allows clinicians to freely test and adjust treatment and daily man-

agement policy in a virtual environment. For the offline DRL algorithms in Chapter 4,

although policy values are highly correlated with the occurrence of adverse glycaemic

events, there is a lack of an explicit relationship between OPE metrics and specific BG

trajectories. In this context, the data-driven personalised simulators can be integrated

with OPE methods to estimate the efficacy of the proposed AP controllers.

7.2.4 On-Device Decision Support With CGM Transmitters and Insulin

Pumps

In Chapter 6, the edge computing for the E3NN is based on a tiny microcontroller unit

(nRF52832) with a dimension of 3.0 × 3.2 mm in wafer-level chip scale packaging. It is

worth noting that nRF52832 is a popular microcontroller unit that supports advanced
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BLE features, which has been used in recent commercialised CGM and insulin pumps.

Therefore, in future work, the deep learning decision support models will be deployed

in other T1D IoMT wearable devices to provide on-device decision support. With the

collaboration of manufacturers, it will be possible to implement the algorithms on CGM

transmitters and insulin pumps. The size of CGM transmitters is around 5.0×3.0 cm (Dex-

com G6), while insulin pumps measure approximately 10.0× 5.0 cm (Medtronic MiniMed

640G). There should be enough space to integrate external Flash memory or an additional

microcontroller unit into current SoCs for the embedded deep learning algorithms. Such

implementation will reduce the need for these wearable devices to constantly stay con-

nected with external controllers, and thus largely relieve daily burdens for people with

diabetes.

For the proposed IoMT system and devices, further clinical trials will be performed

to investigate the performance of software and hardware in real-world settings and modify

the functions and GUIs according to user feedback.
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[174] C. Pérez-Gand́ıa, A. Facchinetti, G. Sparacino, C. Cobelli, E. Gómez, M. Rigla,
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Appendix A

Supplementary Information:
Chapter 2

A.1 Literature Review on Diagnosis of Diabetes

The early diagnosis of diabetes can effectively improve the medical care and treatment for

people living with diabetes. The standard diagnosis to confirm diabetes in clinics requires

repeated glucose-based tests on hemoglobin A1c (HbA1c) and corresponding diagnostic

criteria for different diabetes types [21]. However, due to the huge population and shortage

of physicians in rural areas, the number of undiagnosed cases is significant and projected

to increase in the future [4]. There is a high risk of developing diabetes without the onset

of symptoms, especially for people with T2D, which could lead to long-term dysfunction

of various organs and chronic complications.

Therefore, the need to detect onset diabetes or predict the diabetes risk arises,

e.g. population screening and non-invasive systems. Table A.1 presents the current efforts

at developing deep learning decision-support algorithms for the diagnosis of diabetes. In

particular, various supervised and unsupervised learning approaches strategies have been

applied, where DMLP models are the most widely employed. The feed-forward structures

and simple connections make DMLP a good option for a binary classifier on EHRs, while

AEs and RBMs are used to extract underlying patterns of the data without supervision.

It is noted that many studies have used the publicly available dataset called Pima Indian

Diabetes (PID), which It contains 768 instances with eight attributes and a binary label
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Table A.1: Literature review on diabetes diagnosis

Ref. Cases Models Data Sources Development Process Main Outcomes Baselines

[299]
Classification
of
diabetes‡

Denosing AE
Mount Sinai Data
Warehouse⋆

(ICD-9)

Normalization; pre-process to
obtain raw features; the data of
training, validation and testing:
704,587, 5000, 76,214 patients

AUC: 0.907
Original
descriptors, PCA
(0.861)

[300]
Prediction
of
diabetes‡

Modified
LSTM,
attention
pooling layer

An EHR dataset
from a regional
hospital (7191
patients, ICD-10)

The split for training, validation
and testing: 2/3, 1/6 and 1/6
from 53,208 admissions

Precision of
diagnosis,
intervention,
unplanned
readmission: 66.2%,
78.7%, 79.0%

SVM, RF, plain
RNN, LSTM
(65.7%, 78.2%,
75.9% )

[301]
Detection
of
diabetes†‡

RBM and RNN
PID dataset from
UCI repository⋆

Feature selection by RFs;
min-max normalization; the ratio
for training and testing data:
80%, 20%

Sensitivity and
precision: 90.66%,
75%

N/A

[302]
Prediction
of
diabetes†‡

Modified 1-D
CNN and FC
layers

25 breath samples
collected by MOS
sensors with
1000-sec intervals

The data for training and testing:
15 samples, 10 samples; leave-one
out cross-validation

AUC of T1D, T2D,
healthy subjects:
0.9659, 0.9625,
0.9644

SVD, SVM, PCA

[303]
Detection
of
diabetes

5-layer CNN,
LSTM, and
SVM

ECG data sampled
at 500 Hz with
digital bandpass
filtering and
thresholding
collected from 40
people

HRV data from 71 ECG datasets
(each contains 1000 samples); 5
fold cross-validation

Validation accuracy:
95.7%

Previous work
using HRV

[304]
Detection
of
diabetes‡

DMLP with
dropout

PID dataset from
UCI repository⋆

The ratio of training and
validation data: 90% and 10%

Accuracy: 88.41%
Previous work on
the same dataset

[305]
Prediction
of
diabetes‡

DMLP

A population
dataset (4814
participants,the
majority are
overweight)

Data cleaning (imputing missing
values with the median); the ratio
of training and testing data: 80%
and 20% from 656 T2D subjects

AUC without and
with HbA1c: 0.703,
0.840

SVM (0.679,0.825)

[306]

Prediction
of the
onset
T2D‡

DMLP and a
linear model

Practice Fusion
dataset (9948
patients, ICD-9)⋆

Feature extraction by grouping
1312 features; the ratio of training
and validation data: 70%, testing
data: 30%; 10-fold
cross-validation

Sensitivity: 31.17%,
AUC: 84.13%

RF (29.12%,
16.07%)

[307]
Detection
of
diabetes‡

2 layer AE and
a softmax layer

PID dataset from
UCI repository⋆

Training the layer one by one
with previous output; fine-tuning
by supervised learning

Sensitivity: 87.92%,
specificity: 83.41%,
accuracy: 86.26%

Previous work on
the same dataset

[308]
Prediction
of
diabetes‡

DBN
PID dataset from
UCI repository⋆

Min-max normalization; feature
selection by PCA; pre-training for
RBMs; supervised fine-tuning

Sensitivity: 100%,
F1 score: 0.808

DT, LR, RF,
SVM, NB (75.9%,
0.760)

[309]

Detection
of undiag-
nosed
diabetes‡

2 hidden layer
DMLP with
dropout

An EHR dataset
from a national
survey (31,098
subjects, 4 years)

Combining 2013-2016
datasets;selecting features by LR;
the data of training and testing:
11456 and 4444 subjects

AUC: 80.11%

LR, KNN, SVM,
AdaBoost,
Gaussian NB, RF
(79.05%)

(diabetic or non-diabetic). The Pima Indians have a higher prevalence of T2D than

any population [298], making the PID dataset popular in machine learning research. An

advantage of using this dataset with the same metrics is to easily compare the results with

the previous work employing various machine learning methods.

Nevertheless, the major limitation of applying deep learning on the PID dataset is

the small number of patients and attributes. To prove the generalization of DNNs, the

trained models need to be validated on a large population dataset. To this end, Miott et al.

proposed a framework, namely Deep Patient, using a stack of denoising AEs to learn the

representations from a large-scale dataset. The achieved AUC for the diagnosis of diabetes

classification was 0.907 [299]. A recent study by Ryu et al. also employed a large dataset

with 11,456 subjects [309]. They used a DMLP model to screen undiagnosed diabetes and
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achieved an AUC of 80.11% to detect undiagnosed diabetes. It is worth highlighting the

data pre-processing step employed in these studies to extract related descriptors from the

attributes of the patients, such as feature analysis and data normalization.

Moreover, the non-invasive detection of diabetes is emerging in several studies.

Lekha et al. proposed a one-dimensional (1-D) CNN architecture to analyze the biomarkers

in real-time breath signals for diabetes detection and classification [302]. The breath

samples were collected by MOS sensors to analyze volatile organic compounds. The sensor

array measured the content in a small gas chamber with an interval of 1000 seconds. Then

the CNN classifier further processed these signals, which can reduce the need for feature

selection and optimised the overall performance, compared to PCA, SVM, and singular

value decomposition algorithm (SVD). In [303], the heart rate variability (HRV) from

ECG was used as a biomarker to detect diabetes. The data was collected from a group

of 40 people over a 10-minute duration. The ECG signals were sampled at 500 Hz with

digital bandpass filtering and thresholding operations to reduce noise during the real-time

detection. After deriving the heart rate time with the Pan-Tompkins algorithm, the study

developed a hybrid deep learning model with CNN, LSTM, and SVM, and achieved a

validation accuracy of 95.7%.

A.2 Literature Review on Diagnosis of Diabetes-Related

Complications

In this category, most research has focused on the analysis of medical imaging to detect and

diagnose multiple complications associated to people living with diabetes, as shown in Ta-

ble A.2. Diabetes-related complications are diverse and regular examinations and clinical

visits are time-consuming, expensive, and subjective [26]. For a long-term chronic disorder

such as diabetes, its treatment is a heavy burden on the healthcare systems. Therefore,

automated systems that are able to screen, detect, predict, and diagnose diabetes-related

complications play an important role in population-based surveillance and monitoring.

Diabetic Retinopathy (DR) is the leading cause of vision impairments and blindness
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Table A.2: Literature review on diagnosis of complications

Ref. Cases Models Data Sources Development Process Main Outcomes Baselines

[310]
Referable
DR
detection

CNN (Inspired
by AlexNet,
VGGNet)

(1) EyeCheck
project, (2)
Messidor-2
dataset⋆

Training data: 10,000 to 1,250,000
unique samples (1), testing data:
1748 images (2)

Sensitivity: 96.8%,
specificity: 87.0%,
AUC: 0.980

Classical detector
by LR (AUC:
0.955))

[311]
Referable
DR
detection

CNN
(Inception-v3),
an ensemble of
10 networks

(1) EyePACS-1
dataset, (2)
Messidor-2
dataset⋆

Batch normalization;
pre-initialization by the ImageNet
data; training and validation data
: 80% and 20% of 128,125 retinal
images, testing data: 4497 images
(1) and 1748 images (2)

Sensitivity: 97.5%
(1), 96.1% (2),
specificity: 93.9%
(1), 93.4% (2), AUC:
0.990 (1), 0.991 (2)

N/A

[312]
DR
detection‡

A stack of
non-negativity-
constrained
AEs

Images from 52
clinical scans with
12 retinal layers

Feature extraction by cumulative
distribution function; training
data: 40 subjects, testing data:
12 subjects

Sensitivity: 92%,
specificity: 83%,
accuracy: 100%

k-star (89%, 89%,
89%), KNN, RF,
DT

[313]
DR
detection

Customised
CNN: (5
residual blocks
), DT classifier

(1) EyePACS
dataset, (2)
Messidor-2
dataset⋆, (3)
E-Ophtha dataset⋆

Feature extraction; training and
validation data: 75,137 images
(5-fold cross-validation, 1), testing
data: 1368 images (2) and 405
images (3)

Sensitivity: 94% (1),
93% (2), 90% (3),
specificity: 98% (1),
87% (2), 94% (3),
AUC: 0.97 (1), 0.94
(2), 0.95 (3)

Previous work
with machine
learning on (2)

[314]
Referable
DR
detection

CNN (Adapted
VGGNet)

Singapore national
DR screening
program

Each image was analyzed by two
graders and one specialist,
training data: 76,370 images
(2010-2013 year), testing data:
71,896 images (2014-2015 year)

Sensitivity: 90.5%,
specificity: 91.6%,
AUC: 0.936

N/A

[315]
Referable
DR
detection

CNN
(Inception-v3)

LabelMe dataset

21 grader validated the accuracy
of the labels; training data:
58,790 images, cross-validation
data: 8000 images

Sensitivity: 92.3%,
specificity: 93.7%,
96% of participants
satisfied with the
model

Manual screening
models

[316]

Moderate
or worse
DR
detection

CNN
(Inception-v4),
an ensemble of
10 networks

EyePACS clinics,
(2) Messidor-2
dataset⋆, (3)
EyePACS-2 dataset

Gaussian process bandit algorithm
(hyper-parameter tuning);
training and validation data:
1,665,151 and 3737 images (1),
(2), testing data: 1958 images (3)

Sensitivity: 97.1%,
specificity: 92.3%,
AUC: 0.986

Three retinal
Specialists
(sensitivity:
83.8%)

[317]
DR
detection

CNN
(VGGNet-s)

Kaggle dataset⋆

Normalization schemes and data
augmentation; non-local means
denoising; 5-fold cross-validation,
training and validation data:
35,126 images

Sensitivity: 86.47%,
specificity: 97.43%,
AUC: 0.9786,
accuracy: 95.68%

AlexNet, ResNet,
VGGNet-16,
VGGNet-19
(specificity:
96.49%),
GoogleNet,

[318]
Referable
DR
detection

CNN
(Inception-v4),
an ensemble of
10 networks

A large-scale
population (13
health regions,
7517 patients)

A cascade of thresholds
(hyper-parameter tuning); testing
data: 25,326 images

Sensitivity: 96.8%,
specificity: 95.6%,
AUC: 0.987

13 human regional
graders
(sensitivity: 74%)

[319]
Referable
DR
detection

CNN(Adapted
VGGNet)

A multi-ethnic,
multi-site dataset
(5 races, 18,912
patients)

Training and validation data:
76,370 and 8000 images, testing
data: 93,293 images

The estimation of
DR prevalence:
16.1%, the AUC for
referable DR: 0.863,
the time taken to
diagnose: 10.4h, risk
factor: 0.743

10 retinal
specialists and 7
professional
graders
(prevalence:15.9%,
time: 1554.8 h)

[320]

Estimation
of DR
severity
scale

CNN pillars
(Inception-v3)
and RF

(1) Kaggle
dataset⋆, (2) 2
large clinical trials
(530 patients)

SHAP for feature selection;
transfer learning (1); 5-fold
cross-validation: 4781 images (2)

AUC at month 6, 12,
24: 0.68, 0.79, 0.77

Well-trained
reading center
experts

[321]

Prediction
of
mortality
in ICU

1-D CNN and 2
FC layers

MIMIC-III
dataset⋆

Feature analysis by importance;
addressing imbalance classes;
training and testing data: 70%
and 30% from 9000 subjects

AUC: 0.885
ANN (0.792), RF,
DT

[322]

Prediction
of myocar-
dial
infarction‡

DMLP
American
commercial health
plan

Descriptive statistics analysis,
confounding factor analysis;
extracting 199,116 patients

AUC: 0.767, with
hazard ratio: 0.81
and 0.63

LR (AUC: 0.760)

[323]
Classification
of diabetic
foot

Customised
9-layer CNN

Plantar
thermogram
database with 167
subjects⋆

Data augmentation; patch
extraction; the ratio of training
and validation data: 70% and
30%, 10-fold cross-validation

Sensitivity: 0.9167,
AUC: 0.8533

SVM, ANN,
AlexNet,
GoogLeNet

[324]
Detection
of diabetic
neuropathy†‡

U-Net CNNs (5
ensembles)

(1) BioImLab
dataset⋆, (2)
Beijing dataset, (3)
ENA dataset

Patch extraction; training set:
1698 images (2), testing set: 2137
images (1), (3)

Fibre length 0.933,
length/segment:
0.656, branch points:
0.891, nail points:
0.623

ACCMetrics
model (0.825,
0.325, 0.570,
0.257)
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in the world [325], which is often difficult to be detected until vision-threatening events

occur. Fortunately, the state-of-art technologies of deep learning have shown great poten-

tial to meet this challenge and provide solutions to various DR problems reaching, in some

cases, superhuman performance [326]. Following the success in the computer version, a

large number of CNN-based models have been adopted to extract the representation from

retinal fundus photographs. In Table A.2, nearly all the selected studies used CNNs to

detect DR (10/11, 91%). The exception is the study by ElTanboly et al. which designed

a multistage deep fusion classification network with a stack of non-negativity-constrained

AEs to detect DR in optical coherence tomography (OCT) images for the patients who

have almost normal retina appearances [312]. The AE model achieved high classification

accuracy on an experiment with 52 subjects. As for CNN-based studies, most of the

approaches are adapted or inspired from two popular architectures in the CV; VGGNet

(4/10, 40%) and Inception (5/10, 50%). In [317], multiple popular CNN configurations

were explored on the Kaggle dataset, where VGGNet-s obtained the highest accuracy in

the experiments. Both of the architectures achieved satisfactory performance on DR de-

tection. Abràmoff et al. proposed a VGGNet-based model to detect multiple classes of

DR on Messidor-2 dataset [310], achieving a high sensitivity of 96.8% on referable DR.

Then the VGG adapted architecture was validated in two large scale datasets with multi-

ethnic populations [314, 319]. Their studies indicated deep learning methods can detect

the referable DR with high accuracy but with much less time than human assessors. Gul-

shan et al. used an Inception-based architecture to detect referable DR and achieved the

sensitivity of 96.8% and the specificity of 87.0%. The clinical settings to implement such

systems were further investigated, including the feasibility and acceptability of outpatient

settings [315] and grader variability [316]. Ruamviboonsuk et al. conducted a nationwide

experiment to validate an Inception-based model [318]. Compared with human specialists,

the deep learning model obtained significantly higher sensitivity and slightly lower speci-

ficity. Meanwhile, Arcadu et al. proposed an Inception model to predict DR progression

by leveraging individual color fundus photographs [320].

The deep learning applications to other complications are also noted in the litera-

ture. Wittler et al. designed a CNN-based model to predict mortality based on the data
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from the intensive care unit (ICU) patients, achieving an AUC score of 0.885 [321]. The

ICU dataset in this study, referred to as MIMIC-III, is freely accessible [327]. Williams et

al. [324] proposed a U-Net CNN to quantify the nerve fiber properties in the diagno-

sis of diabetic neuropathy. Their results show an excellent localization performance for

the quantification and the potential to be adopted in clinical settings. In [323], a cus-

tomised CNN was designed to detect plantar ulcers on the thermography of diabetic foot.

Moreover, Yamada et al. investigated the incidence of cardiovascular disease among three

anti-diabetic drugs, using a DMLP model that achieved better results than conventional

LR analysis [322].
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Appendix B

Supplementary Information:

Chapter 3

B.1 Notations

Table B.1 summarises the notations in formulation.

B.2 Data Split

Fig. B.1 shows the process of data split.

B.3 Hyperparameters

We employed the Hyperband algorithm [328] to speed up the hyperparameter optimization

in the search space using the library of Keras Tuner. Table B.2 lists the hyperparameters

used in this work.

B.4 Demographic and Clinical Characteristics

Table B.4 shows the demographic characteristics (Median (IQR)) and relevant clinical

information (Mean±STD) for the employed datasets.
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Table B.1: Notation table

Variable Definition

X, ŷ, y, Ĝ, G
Model input, model output, target label, estimated BG level,
actual BG level

t, r, L,D,LT
Timestep, PH timestep, length of input sequences, input fea-
ture dimension, total length of a testing set

G,M, I, fN
CGM sequence, meal sequence, insulin bolus sequence, min-
max normalization function

Wz,Wr,Wh
Weights for input in update gate, reset gate, and activation in
GRU

Uz,Ur,Uh
Weights for hidden state in update gate, reset gate, and candi-
date activation in GRU

bz,br,bh Bias in update gate, reset gate, and candidate activation

h′, ĥ
Hidden state of cell function input, candidate activation in
GRU

−→
h ,
←−
h ,h

Hidden state of forward output, backward output, concate-
nated output in bidirectional RNN

ai, ct,Wa,Wm
Attention weights, context vector, weights for alignment scores,
weights for attentional output

γ, λ, α, β Parameters of the NIG distribution

L,LN ,LR, k Total loss, NLL loss, regularization loss, proportion of regular-
ization loss

ua, ue Aleatoric uncertainty and epistemic uncertainty

θj , θm Parameters of task-learning model and meta-model

η, ϵ Learning rate of Adam optimiser, step size of SGD

T , N,LBTj
, fθ

Task in meta-learning, number of tasks, loss of mini-batch,
model inference with parameters θ

Table B.2: Hyperparameters of FCNN

Hyperparameter Value

Batch size 32
Length of input sequences 12
Hidden units of GRU layers [128,64,32]
Hidden units of the attention layers 128
Regularization factor k 0.01
Adam learning rate in fine-tuning 1× 10−4

Adam learning rate η in task learning 1× 10−3

SGD learning rate ϵ 0.01
Number of meta iterations 2× 104

Number of epochs 500
Early stopping patience 50
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(Actual) Training Set Validation Set Testing Set

Full Dataset

Hold-Out 
Samples

Training Set Testing Set

Hold-Out 
Samples

Step 1: 80/20 Split

Step 2: 80/20 Split
Hold-Out 
Samples

Figure B.1: Illustration of data split. A two-step hold-out split is used to divide full dataset
into three parts: (actual) training, validation, and testing sets. The models were trained
using the actual training sets, and validation and testing sets were unseen data. Then the
validations sets were used for feature selection and hyperparameter tuning. Finally, the
testing sets were used to provide unbiased evaluation and the prediction results reported
in this work.

B.5 Additional Experimental Results

Table B.5 summarises the results of the glucose variability impact index (GVII) and glu-

cose prediction consistency index (GPCI) for the ABC4D dataset with the FCNN model.

Figure B.2 depicts the seven-day period CGM and prediction trajectories with the ARISES

model.

B.6 Data Collected in ARISES clinical trial

Table B.6 summarises the daily entries recorded in the clinical trial, and Table B.7 shows

the detailed information. Table B.8 presents the features extracted from multi-model data.
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Table B.3: Hyperparameters of ARISES

Hyperparameter Value

Hidden units of the Bidirectional GRU layer 128
Hidden units of the GRU layer 128
Hidden units of the attention layer 128
Learning rate of meta-learning 1e-4
Learning rate of fine-tuning 1e-5
Batch size 64
Number of epochs 500
Early stopping patience 50
Length of sequence 12
Feature Dimension 6

Table B.4: Demographic characteristics (Median (IQR)) and relevant clinical information
(Mean±STD) of the T1D subjects in the OhioT1DM Dataset, ARISES, and ABC4D
datasets

OhioT1DM ARISES ABC4D

Demographic

Age 50.0 (40.0-60.0)⋆ 40.0 (30.0-49.0) 36.0 (29.0–46.0)

Gender (female/male) 5/7 (41.7% female) 6/6 (50.0% female) 15/25 (60.0% female)

HbA1c (mmol/mol) N/A 50.4 (41.5-57.5) 61.0 (52.0–66.0)

Insulin regime (CSII/MDI) 12/0 (100.0 % CSII) 6/6 (50.0% CSII) 8/17 (47.1% CSII)

Clinical

Mean BG level (mg/dL) 159.37± 16.33 161.25± 26.02 158.10± 25.06

Median BG level (mg/dL) 152.58± 18.32 154.96± 26.97 151.37± 25.83

eA1c (%) 7.18± 0.57 7.25± 0.91 7.14± 0.87

Time below range (%) 3.30± 2.25 2.93± 1.93 4.97± 3.93

Time in range (%) 63.54± 9.70 63.29± 16.00 63.15± 15.50

Time above range (%) 33.16± 10.71 33.78± 17.01 31.88± 16.02

Low blood glucose index 0.88± 0.48 0.78± 0.46 1.34± 0.89

High blood glucose index 7.15± 2.45 7.59± 4.17 7.37± 3.94

Inter-day CV (%) 36.63± 3.70 35.14± 4.47 37.50± 5.98

Intra-day CV (%) 31.18± 3.56 30.84± 4.78 31.86± 5.24
⋆Approximation for the de-identified data.
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Table B.5: Glucose variability impact and glucose prediction consistency

PH Method GVII GPCI r p

3
0

m
in

FCNN 0.18 3.05 0.40 0.04
CRNN 0.18 3.08 0.41 0.04

Bi-LSTM 0.19 2.87 0.46 0.02
Transformer 0.18 3.21 0.41 0.04

SVR 0.22 2.70 0.55 < 0.01
RFR 0.20 2.86 0.49 0.01

ARIMA 0.16 3.20 0.37 0.07

6
0

m
in

FCNN 0.49 4.87 0.63 < 0.01
CRNN 0.49 4.92 0.62 < 0.01

Bi-LSTM 0.52 4.16 0.71 < 0.01
Transformer 0.48 4.96 0.65 < 0.01

SVR 0.51 4.70 0.65 < 0.01
RFR 0.54 4.64 0.68 < 0.01

ARIMA 0.51 5.50 0.59 < 0.01

Table B.6: Number of daily entries manually recorded by the participants in the phase I
of the ARISES clinical study

Entries
All (n=5767) MDI (n=2988) CSII (n=2779)
% (n) Median (IQR) % (n) Median (IQR) % (n) Median (IQR)

Carbohydrates 39.6% (2285) 207 (122-249.5) 41.2% (1233) 172 (127.5-285.5) 37.9% (1052) 213 (107.5-242)

Protein 16.9% (976) 132 (33-163) 17.5% (522) 42 (4-146) 16.3% (454) 158 (138-168)

Fat 16.5% (952) 135 (31-163) 16.5% (492) 40 (4-146) 16.5% (460) 158 (140.5-168.5)

Insulin Bolus 20.6% (1189) 111 (57-142.5) 18.9% (565) 101 (50-131) 22.5% (624) 123 (77.5-144.5)

Exercise 4.5% (262) 19.5 (13-29.5) 4.9% (148) 19.5 (13.8-28.3) 4.1% (114) 18.5 (13.5-27.3)

Alcohol 1.2% (72) 6 (4-9) 0.5% (14) 2.5 (0.75-5.25) 2.1% (58) 8 (6-17)

Stress 0.3% (18) 2.5 (2-3) 0.1% (4) 2 (2-2) 0.5% (14) 3 (2.5-4)

Illness 0.3% (18) 3 (3-4.8) 0.3% (10) 10 (10-10) 0.3% (8) 3 (2.5-3)

Table B.7: Information of daily entries manually recorded by the participants (Median
(IQR)) in the phase I of the ARISES clinical study

Entries All Baseline Endpoint p

Total daily carbohydrate (grams) 160 (102-220) 160 (100-228) 145 (101-220) 0.77

Breakfast carbohydrate (grams) 41 (25-60) 40 (26-60) 42 (29.3-58.8) 0.68

Lunch carbohydrate (grams) 45 (30-60) 50 (33.8-62.8) 40 (30-65) 0.14

Dinner carbohydrate (grams) 50 (40-70) 50 (40-70) 50 (40-75) 0.50

Daily Bolus insulin (units) 20 (14.8-28) 20.2 (15.9-28.6) 20 (14-27.5) 0.29

Number exercise 19.5 (11.8-30.3) 8.5 (7.8-12.3) 7 (2.3-8) 0.10

Daily engagement 7 (4-9) 7 (4.8-9) 6 (4-8) 0.08

Number of interactions 396 (237-732.3) 152 (121-255.3) 127 (89-229.8) 0.42
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Figure B.2: Seven-day period CGM and prediction trajectories of T1D adults over a 30-
minute prediction horizon, each representing one of the four subgroups in the clinical study.
(a) a male participant with MDI regimen. (b) a female participant with MDI regimen.
(c) a male participant with CSII regimen. (d) a female participant with CSII regimen.
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Table B.8: Description of features

Wristband (Empatica E4)

IBI Inter-beat intervals

meanHR Mean heart rate

medianNNI median value of normal-to-normal (NN) intervals

SDNN Standard deviation of NN intervals

RMSSD Root mean square of successive differences between adjacent NNs

CVSD Coefficient of variation of successive differences

CVNNI Coefficient of variation of NN intervals

pNNX Percentage of successive NN intervals greater than 50 ms

LHR Low-/high-frequency power ratio

EDA electrodermal activity

SCL Skin conductance level

SCR Skin conductance response

ACC Average 3-D acceleration

TEMP Skin temperature

CGM (Dexcome G6)

CGM CGM measurement sequence

timeIndex Normalised time sequence

Daily entries

Carb Amount of carbohydrate intake

IOB Insulin on board

Bolus Amount of insulin bolus delivery

COB Carbohydrate on board
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C.1 Reward Functions in Basal Glucose Control

Table C.1 shows the results of different reward functions explored in the experiments.

Table C.1: Reward functions and corresponding scores

BG Range
(mg/dL)

Reward
Scheme 1

Reward
Scheme 2

Reward
Scheme 3

Reward
Scheme 4

0-30 -10 -1 -1 -1

30-70 -1 -0.5 −0.5 + GL−70
80 −0.6 + GL−70

100

70-90 +0.1 +0.1 +0.1 +0.1

90-140 +1 +1 +1 +1

140-180 +0.1 +0.1 +0.1 +0.1

180-300 -1 -0.5 −0.5− GL−180
240 −0.4− GL−180

200

> 300 -10 -1 -1 -1

TIR Score (%) 75 88 86 93

C.2 DNN Selection in Basal Glucose Control

Figure C.1 shows the TIR results achieved with the different neural network architec-

tures that we evaluated in the experiments. Considering that the input data is a multi-

dimensional time-aligned sequence, we assumed that an RNN-based model would be a good
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candidate to map the multiple-step historical data. Therefore, we explored conventional

LSTM, DNNs with five fully-connected layers and DRNNs as the potential structure of

DQNs. The LSTM architecture has recently achieved great success in time-aligned tasks,

but in our case, it obtains lower TIR results than the DRNN. DMLP is commonly used in

DQNs as a basic structure. However, the DMLP curve in Fig. C.1 shows large variability

and lower mean TIR. Less variability indicates a better capability to account for within-

subject variability. Thus, the DMLP structure was disregarded. Regarding the DRNNs,

the generalised model achieves a good initial performance at the beginning of personalised

training. In addition, the DRNN curve has a positive trend and small variability, which

indicates its effectiveness at adjusting the models for a specific subject through a short

period of time. Finally, DRNN prediction models ranked top in Blood Glucose Level Pre-

diction Challenge in 2018 [128], outperforming various DNNs (e.g. one-dimensional CNNs

and bidirectional RNNs). Therefore, DRNNs were naturally selected as the DQN modules

for this work.

C.3 Hyperparameters

In Table C.2, we list the hyperparameters that have been used for double DQN. For each

parameter, we performed limited tuning based on the state-of-art DQN [80]. Table C.3 lists

the hyperparameters of DDPG model for meal insulin bolus recommendation. Table C.3

shows the hyperparameters of offline DRL and OPE. All the parameters are identical

across all the considered subjects.
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(b) Adolescent cohort

Figure C.1: TIR results (mean, 95% CI) corresponding to DRL-DH during the personalised
training for the adult and adolescent cohorts. The blue, orange and green lines show the
results of DRNN, LSTM and DMLP models, respectively.
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Table C.2: Hyperparameters of double DQN

Hyperparameter Value

Exploration before learning k 2000
Generalised network update period TG 1000
Generalised DQN ε-greedy 0.5→0.01
Personalised network update period TP 100
Discount factor γ 0.9
Adam learning rate 1× 10−5

Batch size 32
Number of time steps L 12
Replay buff size B 5000
Prioritization exponent α 0.3
Importance-sampling exponent β 0.4→1.0
Multi-step return λ1 0.1
L2 regularization λ2 1× 10−5

Cell type Vanilla RNN
DRNN dilation [1, 2, 4]
Hidden nodes of DRNN layers [32, 64, 128]

Table C.3: Hyperparameters of DDPG

Hyperparameter Value

The length of CGM measurements L 6
The hidden units of DNNs [200, 200, 10]
The learning rate of the actor 0.0001
The learning rate of the critic 0.0001
The size of replay memory N 500
Batch size 32
Soft replacement τ 0.01
Target network update period T 100
Discount factor γ 0.9
The degree of prioritization α 0.6
Compensation factor β 0.4→ 1
Priority constant ϵ 0.00001
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Table C.4: Hyperparameters of offline DRL and OPE

Hyperparameter Value

Actor learning rates 5× 10−5

Batch size M 64
Critic learning rates 1× 10−4

Discount factor γ 0.97
Episode length L 72 (6 hours)
Hidden units of network layers [256, 256, 256]
Interval to delay policy update td 2
Interval to update target networkstu 100
Normalization constant σ 1× 10−3

Number of DRL training steps TDRL 3× 104

Number of OPE training steps TOPE 2× 104

Proportion of soft update µ 0.01
Regularization factor α 2.5
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D.1 Hyperparameters

Table D.1 lists the hyperparameters of GluGAN.

Table D.1: Hyperparameters of GluGAN

Hyperparameter Value

Length of glucose time series L 24
Iterations of embedding learning TR 10,000
Iterations of supervised learning TS 10,000
Iterations of joint learning TJ 25,000
Ratio of reconstruction loss λ1 1
Ratio of unsupervised loss λ2 10
Number of the inner loop steps k 2
Batch size 128
Threshold of discriminator loss lD 0.15
Hidden units of the RNN layer 64
Learning rate of the Adam optimiser 0.001
Early stopping patience 50
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E.1 GUIs of Smartphone and Desktop Platforms

Fig. E.1 depicts the GUIs of the iOS app and the desktop platform developed by Swift 4.2

and PyQt5 5.15, respectively. The desktop platform consists of multiple panels, including

system settings, data readout, model training and update, and visualization of historical

CGM data. Besides the historical trajectories, the smartphone platform also supports the

visualization of the current CGM value and trend as shown by the green arrow.

E.2 Hyperparameters

Table E.1 listed the hyperparameters used in the E3NN model, which were determined by

the Hyperband algorithm [328] with the Keras Tuner.
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Figure E.1: Overview of the smartphone and desktop GUIs.

Table E.1: Hyperparameters of E3NN

Hyperparameter Value

Hidden units of GRU layers [64,32]
Hidden units of the attention layer 64
Hidden units of the dense layer 64
Dropout rate 0.1
Learning rate 1× 10−3

Length of input sequences 12
Batch size 32
Number of epochs 300
Early stopping patience 30
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