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Breakdown of phonon band theory in MgO
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We present a series of detailed images of the distribution of kinetic energy among frequencies and wave vectors
in the bulk of an MgO crystal as it is heated slowly until it melts. These spectra, which are Fourier transforms
of mass-weighted velocity-velocity correlation functions calculated from accurate molecular dynamics (MD)
simulations, provide a valuable perspective on the growth of thermal disorder in ionic crystals. We use them to
explain why the most striking and rapidly progressing departures from a band structure occur among longitudinal
optical (LO) modes, which would be the least active modes at low temperature (T ) if phonons did not interact.
The degradation of the LO band begins, at low T , as an anomalously large broadening of modes near the center
of the Brillouin zone (BZ), which gradually spreads towards the BZ boundary. The LO band all but vanishes
before the crystal melts, and transverse optical (TO) modes’ spectral peaks become so broad that the TO branches
no longer appear band-like. Acoustic bands remain relatively well defined until melting of the crystal manifests
in the spectra as their sudden disappearance. We argue that, even at high T , the long wavelength acoustic (LWA)
phonons of an ionic crystal can remain partially immune to disorder generated by its LO phonons; whereas,
even at low T , its LO phonons can be strongly affected by LWA phonons. This is because LO displacements
average out in much less than the period of an LWA phonon; whereas during each period of an LO phonon, an
LWA phonon appears as a quasistatic perturbation of the crystal, which warps the LO mode’s intrinsic electric
field. LO phonons are highly sensitive to acoustic warping of their intrinsic fields because their frequencies
depend strongly on them: They cause the large frequency difference between LO and TO bands known as LO-TO
splitting. We calculate vibrational spectra from MD trajectories using a method that we show to be classically
exact and therefore applicable, with equal validity, to any solid or liquid in any thermal or nonthermal state.
By demonstrating its power and generality, we show that it has become possible to go far beyond the reach of
perturbation theories and mean-field theories in the study of vibrations in materials.

DOI: 10.1103/PhysRevB.109.014310

I. INTRODUCTION

Band theories are theories of elementary excitations in
crystals that are derived under the simplifying assumption that
the elementary excitations are approximately independent of
one another [1–4]. For example, the band theory of electrons
assumes that excited electronic states of a crystal are com-
posed of weakly interacting quasiparticles (QPs) [5], which
are collective excitations of the electrons in which only one
of the electrons plays a prominent role. A QP can roughly be
described as a single electron whose electric field is screened,
and whose energy and inertia are changed, by its many weak
interactions with other electrons. When interactions between
QPs are strong, they are not mutually independent and each
one is not really a QP, but part of a more complex collective
excitation in which multiple electrons play prominent roles
[5]. The assumptions underpinning band theory are not valid
for such excitations, and when they cause band theory to break
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down as an approximation, the electrons are said to be strongly
correlated.

Similarly, the band theory of phonons assumes that the
vibrational energy of a crystal can be approximated well by a
sum of energies of individual phonons, or phonon quasiparti-
cles, which are lattice waves with well defined frequencies and
wave vectors. Phonon band theory breaks down when strong
interactions between phonons with very different frequencies
and/or wave vectors strongly correlate their motions, resulting
in motion that cannot be characterized by a single wave vector
and a single frequency, or even by a narrow range of wave
vectors and a narrow range of frequencies.

Although strong electronic correlation has been the subject
of intense study for decades, there have been few fundamental
direct studies of strong phononic correlation [6–10]. One rea-
son for this is the so-called terahertz gap, which is the region
of the electromagnetic spectrum between about 100 GHz and
∼10 THz where detectors, and intense continuous wave or
pulsed sources, are either unavailable or not widely available
[11,12]. Another reason is that strong phononic correlation is
difficult to observe experimentally because measured spectra
tend to have low resolutions, making it difficult to detect
when, or to what degree, the band theory of weakly interacting
phonons has broken down.

In this work, we use atomistic simulations to study how the
vibrational spectrum of MgO changes as its temperature (T )
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FIG. 1. Distribution of kinetic energy of MgO in reciprocal spacetime at a selection of temperatures (T ) up to and above the melting
temperature Tm. The values of T are approximate; precise values are provided in Sec. IV B. The blue and white background image is data from
molecular dynamics simulations using an ab initio-parameterized force field UFF; at each T , the kinetic energy density in reciprocal spacetime
(ÊK(k, ω)) was calculated and normalized to one by dividing it by its integral over the first Brillouin zone. This normalization allowed the same
map between colors and energy density values to be used at each T . The image is pixelated, with the width and height of each pixel equal to the
resolutions imposed on our simulations by our finite simulation cell size and simulation times, respectively. We also project the full spectrum
onto the normal mode eigenvectors calculated at zero temperature; and we plot the locations of the quasiparticle peaks as orange symbols
in the lower right panel. The red and green symbols on each plot are the phonon frequencies calculated with UFF at zero temperature and
using the quasiharmonic approximation, respectively. The frequencies measured by Sangster experimentally [13] are plotted with blue squares
and the black lines were calculated by Karki et al. using density functional perturbation theory (DFPT) and the quasiharmonic approximation
[14]. The side plots at each temperature are plots of

∑
k ÊK(k, ω) vs ω, with ω on the vertical axis.

increases from T = 100 K, where band theory is accurate, to
T = 3800 K, where the crystal has melted and the spectrum
has lost every semblance of a band structure. At each T ,
we calculate the distribution, ÊK(k, ω), of kinetic energy in
(k, ω) space, or reciprocal spacetime, which are the terms we
use to refer to the space of all wave vectors and frequencies.
We present these spectra in Fig. 1, and analyze them and
discuss them in detail in Sec. V.

Just as perturbation theories and mean-field approxima-
tions (e.g., Hartree-Fock) cannot accurately describe strongly
correlated electrons, mean-field approximations for phonons
(so-called self-consistent phonon approximations [1,2,15,16])
cannot accurately describe strongly correlated phonons.
Therefore mean-field based methods of calculating vibrational
spectra [17–21] fail when phononic correlation is sufficiently

strong, such as at high temperatures (T ), or in a liquid. How-
ever, the method we use to calculate spectra from our MD
simulations is classically exact, which means that its accuracy
is unaffected by the strength of phononic correlation.

Each distribution ÊK(k, ω) is the Fourier transform (FT),
with respect to both space and time, of a mass-weighted
velocity-velocity correlation function (VVCF) calculated
from a molecular dynamics (MD) simulation at a different T .
The MD simulations were performed with a polarizable-ion
force field whose parameters have been fit closely to the den-
sity functional theory (DFT) potential energy surface [22,23].

It is common to Fourier transform velocity autocorrelation
functions (VACFs) with respect to time to produce frequency-
resolved spectra, such as those along the right-hand vertical
edge of each panel in Fig. 1. However, wave-vector-resolved
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spectra are relatively rare: They were calculated for a one
dimensional material in Ref. [6], and more recently they have
been calculated for three dimensional crystals using ab initio
MD [7,9,24]. However, the computational expense of ab initio
MD severely restricts the number of frequencies and wave
vectors at which ÊK(k, ω) can be calculated. Therefore, so
far, the resolutions of the spectra calculated by ab initio MD
have been too low to see bands.

Force fields whose mathematical forms can mimic the
electronic response to nuclear motion, and whose parameters
are fit to enormous datasets calculated ab initio, provide a
very useful balance of speed and accuracy [22,25–32]. As
Fig. 1 illustrates, they allow accurate spectra to be calculated
with resolutions that are high enough to see a crystal’s band
structure. For example, Lahnsteiner and Bokdam [33] recently
used them to calculate detailed spectra at two temperatures in
order to extract phonon QP frequencies for use within band
theory. Our purpose is very different.

The primary purpose of this work is to study strong
phononic correlation. To this end, we have undertaken a sys-
tematic study of the strengthening of phononic correlation,
and the consequent breakdown of band theory, as a crystal
is heated.

We chose MgO for our study because it is a material
whose vibrational properties are important in many contexts,
from studies of seismic waves traveling through the Earth’s
lower mantle, to its use as a thermal or electrical insulator,
as a substrate for growing superconducting or ferroelectric
perovskites, and in countless other important applications
[8,14,23,34–36]. As well as being a technologically important
material, MgO is one of the simplest oxides: It is a strongly
ionic insulator with the same cubic crystal structure as
rocksalt. For these reasons, it plays a similar representative
role for oxides to that played by silicon for semiconductors: It
is often the simplest setting in which properties or phenomena
that are common to many oxides can be investigated. Several
experimental and computational studies of phonon-phonon
interactions in MgO and similar materials have recently been
published [8,10,37–39]; therefore it is a natural and obvious
starting point for investigating strong phononic correlation in
oxides.

Calculations of detailed accurate spectra like those pre-
sented in Fig. 1 and by Lahnsteiner and Bokdam have been
possible for a decade or more. One reason for their rarity
may be that it is not commonly known that, within classical
physics, the FT of the VVCF, ÊK(k, ω), is exactly the dis-
tribution of kinetic energy in reciprocal spacetime: To our
knowledge, all existing derivations and discussions of the
theory rely on two simplifying assumptions: They assume that
the crystal is at thermal equilibrium and that T is low enough
for the vibrational spectrum to be a band structure [40,41].
After making these assumptions, the equipartition theorem is
usually invoked to relate ÊK(k, ω) to the vibrational density
of states (VDOS) [40,41].

Lahnsteiner and Bokdam are among those who state that
ÊK(k, ω) (our notation) is the wave-vector-resolved VDOS,
and they support this statement by citing Refs. [7,24,42,43].
This interpretation of ÊK(k, ω), which can also be found
in many other works [40,41,44–47], is correct in the limit
T → 0 and under the simplifying assumptions that lead to

band theory. It is also the appropriate interpretation of ex-
isting theory, because derivations such as those of Dove
[40] and Lee et al. [41] only provide a clear physical inter-
pretation of ÊK(k, ω) at thermal equilibrium in the T → 0
limit.

However, it is shown in Appendix A and Ref. [48] that
Fourier transforming the VVCF is a much more powerful and
general method than it is currently believed to be: It is shown
that ÊK(k, ω) is exactly the distribution of kinetic energy
in reciprocal spacetime. Appendix A contains an illustrative
proof of this result, for the case of a vibrating string. Therefore
each of the spectra presented in Fig. 1 is exactly the distri-
bution, among points (k, ω) in reciprocal spacetime, of the
classical kinetic energy of the MD simulation from which it
was calculated.

Furthermore, proving that ÊK(k, ω) is the kinetic energy
distribution does not require any assumptions to be made
about the statistical state or the structure of the material. It
is a result that applies, with equal theoretical validity, to any
crystalline or amorphous material, in any stationary or non-
stationary state, regardless of the strength of the correlation
between different vibrations and waves. This means that its
range of possible applications is vast.

For example, it could be used to calculate the spectra
of solids or liquids while they are being resonantly excited
by THz radiation; or to study how spectra change during
order-disorder phase transitions; or to investigate the relation-
ships between structure, energetics, and diffusion in liquids.
Using it may deepen our understanding of strongly corre-
lated electronic systems, which are much harder to study
computationally, by providing insight into aspects of strong
correlation that are common to both phononic and electronic
systems. It can also be used to assess the accuracies of ap-
proximate methods, such those based on perturbation theory,
self-consistent mean-field methods, and methods that assume
thermal equilibrium. As it is the only method that provides
the exact classical spectrum, it is the method against which the
accuracies of all other methods should be judged. A secondary
purpose of this work is to demonstrate the power of this
theoretical result and computational method.

By applying it to MgO we uncover a simple, strong, and
general nonresonant mechanism by which the highest fre-
quency optical modes of an ionic crystal can be disrupted
by the lowest frequency acoustic modes, leading to the dis-
integration, or melting, of the optical bands. We call this
mechanism acoustic warping of optical phonon fields. We
also explain why, despite this mechanism causing longitudinal
optical (LO) bands to melt, the acoustic bands responsible
for their melting remain intact: It is because acoustic bands
are adiabatically decoupled from LO phonons in the same
way that heavy nuclei are adiabatically decoupled from elec-
trons, despite pushing the electron density around as they
move. Among many other analyses of the results presented
in Fig. 1, we compare them to a second set of spectra (Fig. 3)
which were calculated from MD simulations performed at the
T → 0 density. This allows us to discover which T -induced
changes to the spectrum can be explained by thermal ex-
pansion and which cannot. It also provides insight into the
strengths and limitations of the quasiharmonic approximation
[14,40,49].
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In the next section, we discuss the effects of T on phonon
band structures in general terms. In Sec. III, we explain our
notation and some aspects of phonon theory that can be differ-
ent when phonons are strongly correlated than they are at low
T where perturbation theories are applicable. For example, at
high T each mode is not Lorentzian, in general, and so the
Lorentzian width is not a good measure of the degree to which
T has broadened it. In Sec. IV, we explain how we performed
our simulations.

We begin Sec. V by discussing the most important lim-
itations of our simulations. Then we begin discussing and
numerically analysing the spectra presented in Figs. 1 and 3.
We focus our discussions and analyses on the most important
and striking features of these spectra, and we include an ex-
planation of the acoustic warping mechanism. We summarize
our conclusions in Sec. VI.

II. QUALITATIVE EFFECTS OF TEMPERATURE
ON BAND STRUCTURES

In this section, we discuss the qualitative effects of temper-
ature on vibrational spectra. We begin with an illustration of a
pertinent mathematical point.

Figure 2(a) is a plot of two curves, each of which is the sum
of ten randomly positioned Gaussians. The only difference
between the two curves is that the width of the Gaussians
contributing to the red curve is a factor of ten larger than
those contributing to the blue curve. The convolution of the
red curve with itself and the convolution of the blue curve
with itself are plotted in Fig. 2(b), and the Fourier transforms
of these convolutions are plotted in Fig. 2(c).

It is well known that the more localized a smooth function
is, the more delocalized its Fourier transform is [50]. These
plots illustrate that the Fourier transform of the convolution
of a smooth function with itself is more delocalized when the
function is localized and vice-versa.

ÊK(k, ω) is the FT of the VVCF and the VVCF is the
correlation of the spacetime distribution of

√
mass-weighted

atomic velocities with itself. The spacetime distribution of
the atoms’ kinetic energy is more localized/delocalized when
the spacetime distribution of their velocities are more local-
ized/delocalized. Therefore Fig. 2 illustrates the fact that as
kinetic energy becomes more localized in real spacetime it
becomes more delocalized in reciprocal spacetime and vice
versa. With this in mind, we now discuss the qualitative effects
of temperature on vibrations in crystals.

A. Normal mode vibrations, phonon quasiparticles,
and strong phononic correlation

Classically, and in the T → 0 limit, the term phonon refers
to an oscillation of one of a crystal’s normal modes of vibra-
tion, which are standing waves of the lattice that all of the
crystal’s atoms participate in. Each normal mode is character-
ized by a single frequency (ω) and a single wave vector (k)
[1,3,48]. Therefore the energy of each normal mode vibration
(NMV) can be regarded as localized at a point (k, ω) in
reciprocal spacetime.

FIG. 2. (a) Each of the plotted curves is the sum of an array
of Gaussians at the same randomly chosen positions. The only
difference between the curves is that the widths of the Gaussians
contributing to red curve are ten times larger than those contributing
to the blue curve. (b) The convolutions of each curve plotted in
(a) with itself. (c) The Fourier transforms of the convolutions plotted
in (b).

The amplitudes of NMVs vanish in the T → 0 limit, mak-
ing them perfectly harmonic and mutually noninteracting.
Therefore the energy of each one is delocalized in spacetime.
It is delocalized in space because every atom in the crystal
participates in it and shares its energy. It is “delocalized” in
time in the sense that it is not transient: NMVs last forever
in the T → 0 limit because, without interactions, they cannot
dissipate their energies; and they cannot disperse because each
one is characterized by a single frequency and a single wave
vector.

As well as being the limit in which kinetic energy is
delocalized in spacetime and localized at a point in recipro-
cal spacetime, the T → 0 limit is the limit in which atoms
are strongly correlated and the limit in which phonons are
uncorrelated. Each contribution to the atoms’ kinetic energy
is a collective motion of all atoms, whereas each phonon
possesses its own kinetic energy, which is independent of the
energies of other phonons.

At finite T , phonons’ amplitudes are finite, and they in-
teract to some degree. When they interact, their motions
become correlated and each one is no longer characterized by
a single frequency and wave vector: it has become a superpo-
sition of NMVs with different frequencies and wave vectors.
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This interaction-induced mixing of frequencies and wave vec-
tors is analogous to what happens when a pair of harmonic
oscillators with frequencies ω1 and ω2 are coupled. The mo-
tion of each one becomes characterized by both frequencies;
or equivalently, each one becomes an oscillation at frequency
1
2 (ω1 + ω2) whose amplitude is modulated by an oscillation
at frequency 1

2 |ω1 − ω2|. When many oscillators are coupled
strongly, the motion of each one becomes a superposition of
oscillations at many different frequencies. Similarly, interac-
tions cause each phonon’s energy to be distributed among the
frequencies and wave vectors of all lattice waves contributing
to its motion.

1. Phonon quasiparticles

At low finite T , each phonon is still mostly composed
of a single NMV, but it contains small contributions to its
motion from the other NMVs with which it interacts [1].
As T increases and interactions strengthen the fraction of its
kinetic energy contributed by the original NMV decreases and
the fractions contributed by others increase. Therefore, as T
increases from the T → 0 limit, each NMV’s kinetic energy
spreads out from the point (k, ω) at which it was localized and
becomes distributed among the frequencies and wave vectors
of all of the NMVs with which it interacts.

At low T the vibrational spectrum remains sharply peaked
near the frequencies and wave vectors of the normal modes,
but the peaks have finite widths. This means that each
phonon contributing to each peak is a QP, i.e., a superposition
of NMVs with very similar wave vectors and frequencies.
Phonon QPs can dissipate their energies and disperse: their
average lifetime is inversely proportional to the width of their
spectral peak [1,51]. Therefore, at low T , they are still rea-
sonably long-lived excitations with reasonably well-defined
frequencies and wave vectors, and one can think of each
one as an NMV that is dressed by its interactions with other
NMVs.

Interactions make the average frequency and wave vector
of the QPs T -dependent, and cause their spatial coherence
(size) and temporal coherence (lifetime) to reduce as T in-
creases. The reduction in their sizes means that they are no
longer collective motions of all atoms in the crystal. Therefore
they are no longer standing waves, but traveling wave packets.

The kinetic energy spectrum, ÊK(k, ω), is called a band
structure at low T because the set of points at which there
are spectral peaks forms a set of three dimensional sur-
faces, or bands, in four-dimensional reciprocal spacetime. As
each phonon becomes a mix of NMVs, these spectral peaks
broaden and move, which causes the bands to blur, lose defi-
nition, and shift in frequency.

In quantum mechanics, the energies of NMVs and QPs are
quantized and it is the quanta that are known as phonons.
However, because most of our simulations and analyses are
classical, we use the term phonon to refer to NMVs, in the
T → 0 limit, and to phonon QPs, at finite T . A classical
phonon is simply a vibration of the crystal whose wave vector
and frequency are reasonably well defined, meaning that the
distribution of its energy in reciprocal spacetime is sharply
peaked, and most of its energy is localized in a small neigh-
borhood of its peak.

2. Strong phononic correlation

As T increases further, sooner or later the T -induced
changes to the spectrum become more complex than a grad-
ual shifting and symmetric broadening of QP peaks. Peaks
may broaden so much that they vanish; one peak may be-
come two peaks at very different frequencies and wave
vectors; or the spectrum may deviate from a superposi-
tion of well-defined QP peaks in other ways, depending
on the natures and strengths of the interactions. When the
spectrum can no longer be approximated by a sum of rea-
sonably localized QP peaks, the quasiparticle approximation
has broken down and the system can be regarded as strongly
correlated.

When interactions between phonons are strong enough that
the QP approximation has broken down, band theory also
breaks down, because kinetic energy is so delocalized in re-
ciprocal spacetime that it no longer forms bands.

For example, the energy of each oscillation in a liq-
uid is localized in spacetime and delocalized in reciprocal
spacetime. Oscillations are localized in space because spa-
tial correlations are very short-ranged, which implies that
only a small cluster of atoms participates in each one.
They are localized in time because their strong coupling to
other oscillatory and translational motions makes them tran-
sient: they have short lifetimes because they quickly disperse
and/or dissipate their energies. Their short lifetimes can also
be viewed as them morphing into other forms of motion,
namely, diffusive motion or oscillations of different frequen-
cies. For example, we can view the short lifetime of an
oscillation of an atom as a consequence of the potential well
in which it oscillates changing shape as neighboring atoms
move.

The eventual failure of band theory as T increases is
inevitable for every material because temperature generates
disorder and because each point on a band represents a
phonon with a different characteristic pattern of atomic dis-
placements, or eigenvector, and with periodicities λ ≡ 2π/|k|
and τ ≡ 2π/ω in space and time, respectively. When such a
vibration exists, it causes correlation between the velocity of
an atom at time t and the velocity of another atom, which is
displaced from it by λ in the direction of k, at time t + τ .
Therefore, when there is a T -induced reduction of the correla-
tion length to less than λ, or of the correlation time to less than
τ , the spectral intensity at point (k, ω) almost vanishes. When
a particular mode or band loses all or most of its intensity in
this way, we say that it has melted.

Band melting occurs gradually at most temperatures, and,
as Fig. 1 illustrates, it occurs at different rates for different
bands, because correlation lengths and times are different
for motions along different eigenvectors, in general. The rate
at which each band melts is determined by the natures and
strengths of the interactions between the band’s phonons and
other phonons. However, as Figs. 1(g) and 1(h) illustrate,
when an acoustic band melts suddenly and completely, it
means that the crystal has become structurally unstable and
has undergone a phase transition. In some crystals, such as
MgO, this does not occur until it becomes a liquid at the
melting temperature of the crystal, Tm. In others, such as ferro-
electric BaTiO3 [52–55], there are also one or more transitions
between crystalline phases at T ’s lower than Tm.
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III. ELEMENTS OF THE THEORY
OF INTERACTING PHONONS

In this section, we present some elements of phonon theory
that we will use in this work. A more complete account of this
theory can be found in Ref. [48] and elsewhere in the literature
[1–3].

A. Notation and definitions of key quantities

1. Structure of the crystal

We use N to denote the number of atoms in each primitive
cell, which is two in this case, and we denote the number
of primitive cells in the crystal’s bulk by Nc. We denote
the primitive lattice vectors by {a1, a2, a3} and we identify
primitive cells by their positions, R, relative to an origin in
the bulk of the crystal. These positions are lattice vectors, i.e.,
R = ∑3

α=1 Rαaα , where R1, R2, R3 ∈ Z.
We use the compound index R j to identify the jth

atom in primitive cell R and we use R jα to iden-
tify its αth lattice coordinate. We denote its displace-
ment, at time t , from its T → 0 equilibrium position as
uR j (t ) ≡ ∑

α uR jα (t ) aα . However, it is not very conve-
nient to use N vectors uR j ∈ R3 to specify the internal
structure of each primitive cell. Instead, we specify it
with a single vector |ψR〉 ≡ ∑

jα ψR jα| jα〉 ∈ R3N , where
ψR jα ≡ √

mjuR jα , mj is the mass of the jth atom, and the
set {| jα〉 : α ∈ {1, 2, 3}, j ∈ {1, . . . , N}, 〈 jα|kβ〉 = δ jkδαβ} is
a complete orthonormal basis of R3N .

For simplicity, and despite its
√

mass weighting, we
will often refer to the vector |ψR(t )〉 and its time deriva-
tive |ψ̇R(t )〉 as the displacement and velocity, respectively,
of primitive cell R. The kinetic energy of cell R is
1
2 〈ψ̇R|ψ̇R〉 = 1

2

∑
j m j |u̇R j |2.

2. Correlation functions and their Fourier transforms

The mass-weighted velocity-velocity correlation function
(VVCF) is

C(R, t ) ≡ 〈〈ψ̇R0 (t0)|ψ̇R0+R(t0 + t )〉〉R0,t0 , (1)

where the average is performed over bulk cells R0 and over
times t0. It is shown in Ref. [48] that the average kinetic energy
per bulk unit cell is given by

〈K〉
Nc

≡
∑

k

∑
ω>0

ÊK(k, ω), (2)

where K is the total kinetic energy of all bulk cells; 〈K〉 is its
time average; and ÊK(k, ω) is the discrete Fourier transform
of C(R, t ) with respect to both R and t . ÊK(k, ω) is the dis-
tribution, in reciprocal spacetime, of the time-average of the
crystal’s kinetic energy per bulk primitive cell. As discussed
in Sec. I, Eq. (2) is an exact expression, which is proved for
the case of a vibrating string in Appendix A, and for a crystal
in Ref. [48]. Theoretically, it is no less valid to apply it to a
nonequilibrium liquid than it is to apply it to a low temperature
crystal.

The first sum in Eq. (2) is over the set 
̂ of all wave vectors
k within the first Brillouin zone, 
, that are compatible with
the boundary conditions of the crystal. Within our treatment

of the theory, wave vectors that differ by a reciprocal lattice
vector, G, are regarded as equivalent to the same wave vector
in the first Brillouin zone, 
. If we wanted to distinguish
between them, the right-hand side of Eq. (2) would have
the form

∑
k

∑
ω>0(

∑
G F (k + G, ω)), where F is a function

whose domain is the set of all wave vectors. However, we
are choosing to define ÊK(k, ω) ≡ ∑

G F (k + G, ω) and to
restrict our attention to the finite set of wave vectors 
̂. This
means that we do not explicitly distinguish between so-called
Umklapp phonon interactions and normal interactions. This
distinction is commonly made when treating interactions as
scattering events, but in this work we emphasize the wave
natures of phonons. Both in our classical simulations and,
when T is high enough, in a real crystal, phonons exchange
energy with one another quasicontinuously.

The second sum in Eq. (2) is over all possible frequencies.
This set is countable because if the total time for which a
crystal is observed or simulated is T , complete oscillations
whose periods are longer than T are not observed or sim-
ulated. Therefore oscillations with frequencies smaller than
2π/T cannot contribute to C(R, t ). Furthermore, any two
frequencies that do contribute to C(R, t ) are only observably
different if they differ by more than 2π/T [48]. Therefore
ÊK(k, ω) is only defined for ω ≡ 2πm/T , where m is a non-
negative integer.

In a crystal, the T → 0 limit of ÊK(k, ω) is a band struc-
ture. Therefore, when studying the breakdown of band theory,
it is useful to decompose it into contributions from motions
along each of the crystal’s normal mode eigenvectors. In
Ref. [48] and many textbooks [1–3], it is shown that, deep
within the bulk of a large crystal, each normal mode is as-
sociated with a particular wave vector, k ∈ 
̂, and can be
labeled by kμ, where μ ∈ {1, . . . , 3N} is the band index.
At each wave vector k the dynamical matrix has 3N real
eigenvectors, |εkμ〉 ∈ R3N , where μ ∈ {1, . . . , 3N} is a band
index. We choose them to have unit norms and refer to them
as the cell eigenvectors. At each k, the set of cell eigenvectors,
{|εkμ〉}3N

μ=1, is orthonormal (〈εkμ|εkν〉 = δμν) and is a com-
plete basis of R3N . The cell eigenvectors are

√
mass-weighted

polarization vectors [2,3], but polarization vectors are not mu-
tually orthogonal when there is more than one atomic species.

For any wave vector k, we can express the identity in R3N

as
∑3N

μ=1 |εkμ〉〈εkμ| and insert it into Eq. (1), to define the set
of mode-projected correlation functions at wave vector k,

Ckμ(R, t ) ≡ 〈〈ψ̇R0 (t0)|εkμ〉〈εkμ|ψ̇R0+R(t0 + t )〉〉R0,t0 .

From this definition, and Eqs. (1) and (2), it follows that
C(R, t ) = ∑

kμ Ckμ(R, t ) and ÊK(k, ω) = ∑
μ ÊK

kμ(k, ω),

where ÊK
kμ(k, ω) denotes the discrete Fourier transform of

Ckμ(R, t ) with respect to R and t . In Sec. V, we will pay
particular attention to the LO mode and we will denote its
cell eigenvector and mode-projected correlation function at k
by |εLO

k 〉 and CLO
k (R, t ), respectively.

When studying individual modes, we will make use of the
normalized mode spectrum or mode distribution of mode kμ,
defined as

fkμ(ω) ≡ ÊK
kμ(k, ω)∑

ω ÊK
kμ(k, ω)

. (3)
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This function is the distribution among frequencies ω of the
energy of oscillatory motion in the bulk of the crystal along
the eigenvector of normal mode kμ.

When studying the spectrum as a whole, calculating
ÊK(k, ω) from C(R, t ) is equivalent to calculating ÊK

kμ(k, ω)
from Ckμ(R, t ) for each mode kμ and summing over all
modes. Therefore the spectra plotted in Fig. 1 are plots of

f (k, ω) ≡ ÊK(k, ω)∑
kω ÊK(k, ω)

=
∑

μ ÊK
kμ(k, ω)∑

kω

∑
μ ÊK

kμ
(k, ω)

. (4)

At thermal equilibrium, the equipartition theorem states that
the expectation value of the kinetic energy of each mode
kμ is 1

2 kBT . Therefore, if the spectra plotted in Fig. 1 were
converged fully, the denominators of both expressions in
Eq. (4) would be 3

2 NkBT . However, regardless of whether or
not f (k, ω) is converged with respect to simulation time or
supercell size, it is the exact distribution, among wave vectors
and frequencies, of the average kinetic energy per primitive
cell of the trajectory from which the VVCF was calculated.

B. Energy expanded in mode coordinates

The displacement of the crystal from equilibrium can be
expressed as a sum of displacements along its 3NNc nor-
mal mode eigenvectors. We denote the frequency of mode
kμ by ωkμ, and the projection of the crystal’s displacement
from equilibrium at time t onto its normalized eigenvector by
Qkμ(t ), which we refer to as its mode coordinate. The total
energy of the crystal, as a function of the mode coordinates
and their time derivatives, can be expressed as

H = H0 + K + H2 + H3 + H4 + H5 + · · · , (5)

where H0 is the potential energy of the static lattice
in the T → 0 limit (excluding zero point energy); H1

vanishes because the first partial derivatives of the po-
tential energy vanish at equilibrium; the kinetic energy is
K = 1

2

∑
kμ |Q̇kμ|2; the harmonic term of the potential energy

is H2 = 1
2

∑
kμ ω2

kμ|Qkμ|2, and Hp, where p > 2, denotes an
anharmonic term of order Qp.

C. Difference between the kinetic energy
distribution and the VDOS

As discussed in Sec. I, ÊK(k, ω) is usually interpreted as
being proportional to the VDOS at low T [40–47]. However,
this interpretation is only valid under the simplifying assump-
tions that there are as many vibrational states as there are
degrees of freedom and that the crystal is at thermal equi-
librium. When these assumptions are not valid, the kinetic
energy distribution is a very different quantity to the VDOS
because there is kinetic energy at (k, ω) if one or more waves
exist with wave vector k and frequency ω; and because the
most general and rigorous treatments of phonon theory do not
place any restrictions on which waves may exist at finite T .

Therefore let us assume that one of the defining char-
acteristics of each “state” that contributes to the VDOS is
that it is independent, or approximately independent in the
temperature range of interest, of the amount of kinetic energy
that “occupies” it. Then, the only viable definition of the set

of all states is this one: at every point (k, ω), there are exactly
as many occupiable vibrational states as there are degrees of
freedom in a primitive unit cell.

For example, in our MD simulations, there could be kinetic
energy at any point on a four-dimensional lattice in reciprocal
spacetime whose lattice spacing along the frequency axis is
inversely proportional to the total simulation time and whose
lattice spacings along the three wave vector axes are inversely
proportional to the linear dimensions of the simulation super-
cell. Therefore the VDOS of the simulated system is a uniform
distribution with exactly 3N = 6 states per point (k, ω) of the
lattice that our simulation samples.

To illustrate that this is the case, note that each spectrum in
Fig. 1 is pixelated. The 2d lattice consisting of points at the
centers of the pixels is a 2d representation of the 4d VDOS.
Therefore there are six states at the center of every pixel,
including at the centers of pixels that are white. Pixels are
white when none of the states at their centers are ‘occupied’
by kinetic energy. However, the fact that they are not occupied
does not mean that they are not occupiable, and some of them
can be seen to turn blue at high T (e.g., when the crystal
melts), indicating that they have become ‘occupied’ by some
of the kinetic energy.

D. Independent-phonon approximations

In the bottom right panel of Fig. 1, we compare the
T = 300 K band structures measured experimentally [13]
with those that we have calculated using three different
(quasi)independent-phonon approximations; namely, the har-
monic approximation (HA), the quasiharmonic approximation
(QHA), and the quasiparticle approximation (QPA).

In the HA, all cubic and higher-order anharmonic terms
in the potential energy are discarded, which is tantamount to
assuming that there is no interaction between different modes,
and the Helmholtz free energy, F (V, T ), can be approximated
as [1]

FH (V, T ) = H0(V ) +
∑
kμ

[
1

2
h̄ωkμ(V )

+ kBT ln(1 − e−h̄ωkμ(V )/kBT )

]
, (6)

where kB is the Boltzmann constant, and the ‘H’ subscript on
FH indicates that it is the free energy within the harmonic
approximation, H ≈ H0 + K + H2. Notice that FH only de-
pends on T via the second term in the summation over modes,
but that it depends on V via the cohesive energy, H0(V ), and
the T → 0 mode frequencies, ωkμ(V ).

When the third term vanishes in the T → 0 limit, it be-
comes limT →0 FH (V, T ) = H0(V ) + ∑

kμ
1
2 h̄ωkμ. However,

if phonons are treated classically, as in our MD simulations,
the zero-point energy term does not exist and we simply have
limT →0 FH (V, T ) = H0(V ). Therefore the T → 0 limits of
the mode frequencies calculated within the QHA and the QPA
are different. They are the harmonic frequencies calculated
at the volumes that minimize H0(V ) + ∑

kμ
1
2 h̄ωkμ(V ) and

H0(V ), respectively.
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1. Quasiharmonic approximation (QHA)

One of the most important ways in which the vibrational
spectra of materials change with T is via thermal expansion:
Lengthened bonds tend to be weakened bonds, and weak-
ened bonds vibrate with lower frequencies. Therefore thermal
expansion tends to lower phonon frequencies, on average.
Within perturbation theory, this effect is often modelled using
the QHA, which entails calculating the normal mode fre-
quencies at a range of volumes and using them in Eq. (6)
to calculate FH (V, T ). The volume Vmin(T ) that minimizes
FH (V, T ) is then found and treated as the equilibrium volume
at temperature T , and the normal mode frequencies at this
volume are used to calculate thermodynamic properties from
FH (Vmin, T ). In the most commonly used form of the QHA
[10,14], which is the form that we use, the dependence of Vmin

on T is ignored when taking derivatives of FH (Vmin, T ) with
respect to T .

The QHA approximates the shift of phonon frequencies
by thermal expansion, which is often the largest effect of
anharmonicity on vibrational spectra at low T . However it
does not explicitly describe any phonon-phonon interactions
and therefore cannot describe other important effects of anhar-
monicity, such as the broadening of peaks in the mode spectra,
fkμ, as T increases.

2. Quasiparticle approximation (QPA)

At very high T , such as in the liquid, each mode spec-
trum fkμ is not strongly peaked at any particular frequency.
However, in the T → 0 limit, it becomes the delta function
fkμ(ω) = δ(ω − ωkμ) and at small finite values of T it is a
sharply peaked distribution of finite width.

We denote the peak position of mode distribution fkμ at
temperature T and volume V by

ω̄kμ(V, T ) ≡ ωkμ(V ) + ωkμ(T ), (7)

where ωkμ(V ) is the harmonic frequency in the T → 0 limit
at volume V and ωkμ(T ) is a finite-T correction, which
does not depend on V to leading order in anharmonicity [1].
At constant pressure, V is determined by T ; therefore we
can write ω̄kμ(V, T ) = ω̄kμ(V (T ), T ) = ω̄kμ(T ). The shifted
frequencies, ω̄kμ(T ), are the QP frequencies. They can be
used to calculate thermodynamic properties in a manner that
is similar, but not identical for all properties [1], to how
harmonic phonon frequencies are used.

E. Band broadening

As discussed, fkμ is a delta function in the T → 0 limit
and, as T increases from this limit, its first effects on fkμ(ω)
are to broaden it and to shift it in frequency.

If phonons were independent entities that are created and
annihilated in sudden random occurrences, which might be
described as collisions or scattering events, then, at thermal
equilibrium, the average rate at which phonons of each mode
kμ were created would be equal to the rate at which they
were annihilated; and annihilation events would be Poisson
distributed. It follows that phonon lifetimes would be expo-
nentially distributed and that each mode correlation function

Ckμ(R, t ) would decay exponentially as a function of time
[56].

In the T → 0 limit, Ckμ(R, t ) is sinusoidal in both R
and t . Therefore, when annihilation events are Poisson dis-
tributed at finite T , it becomes an exponentially decaying
sinusoid, Ckμ(R, t ) ∼ e−γkμt cos(ωkμt ), and its Fourier trans-
form, Êkμ(k, ω), is Lorentzian. Therefore fkμ(ω) is also
Lorentzian, i.e.,

fkμ(ω) ≈ Akμ

(ω − ω̄kμ)2 + γ 2
kμ

, (8)

where Akμ is a constant, ω̄kμ is the QP frequency, 2γkμ is the
full width at half maximum (FWHM) of the Lorentzian and
γkμ is the rate of exponential decay of the energy of a phonon
QP of mode kμ. Therefore, when fkμ can be fit closely by
a Lorentzian, γkμ quantifies the degree to which it has been
broadened by temperature.

On the other hand, when phonons are treated as lattice
waves that continuously exchange energy, each T -broadened
spectrum, fkμ(ω), is only Lorentzian at very low T when it is
a very narrow peak. At higher T , its shape is determined by
the relative strengths of its couplings to other modes.

At any finite T , if ω > 0 is sufficiently small we can
interpret fkμ(ω)ω as the probability that the frequency of the
oscillation along the eigenvector of mode kμ at a randomly
chosen time is between ω − 1

2ω and ω + 1
2ω. We could

also interpret it as the probability that the duration of the
complete oscillation that begins at a randomly chosen time
is between 2π/(ω + 1

2ω) and 2π/(ω − 1
2ω). Therefore

we can use Shannon’s theorem to quantify the effects of T
on mode kμ by quantifying the degree of uncertainty in its
frequency. As Shannon demonstrated in the context of signal
processing [57], the correct way to quantify this uncertainty is
by the mode entropy,

Skμ ≡ −
∑

ω

fkμ(ω) ln fkμ(ω). (9)

For a given variance of fkμ, the shape that maximizes Skμ is a
Gaussian.

Although using the mode entropy, Skμ, to quantify the
degree of broadening is both more general, and better justified
theoretically, than fitting to a Lorentzian, the latter is more
common in the experimental literature. Therefore we calcu-
lated both Skμ and γkμ.

F. Anharmonicity

Phonon-phonon interactions can be considered explicitly
in perturbation theory by including cubic and higher-order
terms in the truncated Taylor expansion of the potential en-
ergy. However, at any chosen order, phonon perturbation
theory fails when T is high enough. Furthermore, although in
the T → 0 limit each individual term of order Qm contribut-
ing to Hm in Eq. (5) is larger than each individual term of a
higher order Qp contributing to Hp, there are more nonvan-
ishing Qp terms than Qm terms, in general. For example, as
Ashcroft and Mermin [3] point out, the number of quartic
terms that do not vanish by symmetry can be much larger
than the number of nonvanishing cubic terms. As a result,
even at low T , the magnitude of H4 can be comparable to,
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or greater than, the magnitude of H3. They also point out
that a crystal would not be stable if its Hamiltonian was
H ≡ H0 + K + H2 + H3; H4 must be added for stability.

The fact that |Hm| is not necessarily greater than |Hp| when
p > m makes truncation of Eq. (5), which is a necessary step
in any application of perturbation theory to real materials at fi-
nite T , formally unjustified. The method based on correlation
functions that we use is free of such complications. Therefore
it is a useful tool for checking when/whether perturbation
theories are applicable and for assessing their accuracies.

A related limitation of perturbation theory is that it is
often necessary to calculate and analyze so many phonon
interaction terms that the underlying physics can become lost
in the clutter. For example, the anomalous broadening of the
longitudinal optical (LO) mode near the BZ center evident in
Fig. 1 has been studied by perturbation theory and explained,
in part, as a consequence of the band structure [10,38]: the
number of nonvanishing contributions to H3 that involve the
LO mode near � is very high because of the locations in (k, ω)
space of the other modes.

This is an important observation, which is likely to be
part of a complete explanation, but on its own it is not a
complete and satisfactory explanation. Explaining one feature
of a spectrum as being a consequence of its other features is
not satisfactory because the spectrum as a whole is not self-
determined: it is determined by interactions between waves
passing through a lattice of ions. A more complete explanation
of a spectral feature would explain it in terms of the motions
of waves and ions.

It is also important to note that, when treating phonon kμ

at finite T as a QP whose dynamics are damped with a decay
constant γkμ, the contribution of modes qν1 and k̄ + q̄ ν2 to
the value of γkμ could be negligible despite the magnitude
of the term in H3 proportional to QkμQqν1 Qk̄+q̄ ν2

being very
large. It is not enough that modes qν1 and k̄ + q̄ ν2 exchange a
lot of energy with mode kμ: they must do so irreversibly. This
means that if they absorb some of mode kμ’s energy, they
must dissipate it, by coupling to more modes, before it has
time to return to mode kμ. For example, when two harmonic
oscillators are coupled, their combined energy oscillates back
and forth between them. There are times when one of them
has all of the energy and times when the other has it all. There-
fore, in a thermal population of phonons, it is not necessarily
possible to calculate decay constants accurately as sums of
few-phonon contributions.

Reference [6] provides an illustration of this point. It was
found that when two coaxial nanotubes are in relative sliding
motion, phonons are resonantly excited at every sliding veloc-
ity. However, it is only at a small number of velocities that
these resonances manifest as a strong friction force that slow
the sliding motion down. The energy exchange between the
mechanical motion of the tubes and most of the resonantly
excited phonons is equitable. High friction only occurs at
velocities for which the resonantly excited phonons dissipate
the energy they absorb from the sliding motion more quickly
than they return it to that motion.

Irreversible dissipation of energy always requires the par-
ticipation of very large numbers of modes. Therefore because,
in practice, perturbation theories are limited to considering
few-phonon processes, they have a fundamental limitation

that the MD-based method used here and in Ref. [6] does not
share.

The purpose of this section is not to denigrate phonon
perturbation theories. It is to point out that both perturbation
theories and the correlation function approach to calculating
spectra are limited, but in different ways; therefore they com-
plement one another. We have used harmonic phonon theory
extensively to analyze our spectra, and it is likely that we
would have learned much more with the help of anharmonic
terms.

In Sec. V B 3, we provide a simple explanation of the
anomalous LO broadening, in terms of ions and waves, and
without referring to any other feature specific to the vibra-
tional spectrum of MgO and the other similar materials in
which anomalous LO broadening has also been observed
[58–67].

We suggest that the acoustic warping mechanism we pro-
pose in Sec. V B 3 modulates the frequencies of LO modes,
and therefore the expectation values of their occupation num-
bers. At thermal equilibrium, a mode whose frequency is
fixed exchanges energy with other modes equitably: its net
rate of energy exchange with other modes vanishes. However,
because the LO mode’s frequency ωLO is changing, the ex-
pectation value, [exp(h̄ωLO(t )/kBT ) − 1]−1, of its occupation
number is changing, and this might make its net rate of en-
ergy exchange with other modes finite. This net exchange of
energy may happen quickly (e.g., for the reasons explained by
Giura et al. [38]) relative to the period of the acoustic mode
modulating ωLO, and so it may contribute significantly to the
degradation of lower-frequency bands.

IV. SIMULATION DETAILS

A. Atomistic force field

Atomistic molecular dynamics (MD) and lattice dynamics
(LD) simulations were performed using a polarizable-ion po-
tential of the form described in Refs. [25,28,29], and used to
study the pressure dependence of the melting temperature of
MgO in Ref. [23].

Our method of force field construction [22] is a form of
supervized machine learning [32,68], albeit one that predates
the widespread adoption of the term machine-learning in this
context. However, the interactions described by most machine
learning force fields are near-sighted [68], whereas a realistic
description of long-ranged Coulomb interactions is essential
when studying zone center LO phonons. Therefore we did not
impose any accuracy-lowering near-sightedness constraint on
the mathematical form of our potential.

Our force field’s parameters were fit to an effectively in-
finite dataset of forces, energy differences and stress tensors
from density functional theory (DFT) calculations using the
PBEsol functional [69]. As discussed in Refs. [22,70,71],
describing the polarizability of oxide anions, either implicitly
or explicitly, is necessary for an atomistic model of an oxide
to accurately describe the long-range fields that are intrinsic
to LO phonons. However, cations’ electrons tend to be much
more tightly bound and we did not find a significant improve-
ment in the fit to DFT data when Mg cations were polarizable,
so we assigned a polarizability of zero to them.
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TABLE I. Comparison between the average lattice constants in our constant pressure MD simulations, aMD, and the quasiharmonic lattice
constants, aQHA, at the same temperatures. The numbers in brackets are the percentage changes in volume with respect to the T → 0 volume.

0 K 100 K 300 K 500 K 1000 K 2000 K 3000 K 3500 K

aQHA/Å 4.2294 (0.0) 4.2296 (0.02) 4.2350 (0.40) 4.2442 (1.05) 4.2727 (3.10) 4.3558 (9.24) - -
aMD/Å 4.2119 (0.0) 4.2202 (0.59) 4.2305 (1.33) 4.2410 (2.09) 4.2670 (3.98) 4.3296 (8.62) 4.4120 (14.9) 4.4640 (19.1)

The mathematical form of the potential and the values
of the parameters used are quoted in Appendix B. In brief,
it is the sum of a pairwise interaction, comprising a Morse
potential and a 1/r Coulomb interaction, and the Coulomb in-
teractions between dipoles induced on oxygen anions and the
charges and induced dipoles of other ions. The dipole moment
of the ith oxygen anion is expressed as pi = pSR

i + pLR
i , where

pSR
i is a short-range (SR) contribution caused by asymmetry

of the space in which its electron cloud is confined by its
six cation neighbors, and pLR

i is the dipole moment induced
by the local electric field (Ei) from the charges and dipole
moments of all other ions. At each step of the MD simulation,
we first use the method of Wilson and Madden to calculate
pSR

i [72] as a function of the distances of ion i to neighboring
ions. Then we iterate the coupled equations (one for each
anion) pi = pSR

i + αEi[{p j} j 
=i] to self-consistency in the set
of all dipole moments {pi}, where oxygen’s polarizability, α,
is among the parameters fit to DFT data. Finally, we calcu-
late the Coulomb energy of interaction between each dipole
moment and the charges and dipole moments of all other ions.

B. Molecular dynamics

We simulate under periodic boundary conditions and our
supercell is a 10×10×10 repetition of the two-atom rhombo-
hedral primitive unit cell. We use velocity rescaling, followed
by ≈10 ps of equilibration in the NV E ensemble, to prepare
for production runs at each temperature, T . Our production
runs of T ≈ 100 ps are also performed in the NV E ensemble
and the reported values of T are calculated from the average
kinetic energy of the production run. We use a time step of
0.725 fs and sample positions and velocities every ten steps
for later analysis. We chose to perform our MD simulations at
constant volume, but with P ≈ 0, instead of at a fixed average
pressure and a variable volume. Although the magnitudes
of the fluctuations of each primitive cell’s volume would be
reduced, to some degree, by simulating with the supercell
volume fixed, this was deemed preferable to polluting our
spectra with unphysical artifacts of an MD barostat.

We performed one set of simulations with the volume V (T )
at each T chosen such that the average pressure (P) in the crys-
tal at that T is close to zero. The averages of (P, T ) in these
simulations were (100 K, 0.01 GPa), (301 K,−0.01 GPa),
(502 K,−0.02 GPa), (1004 K, 0.16 GPa), (1995 K,

0.10 GPa), (2998 K,−0.06 GPa), (3521 K, 0.16 GPa),
and (3813 K, 6.7 GPa). The pressure is large in the highest
temperature simulation because the crystal has melted and we
did not repeat the simulation with the volume adjusted for the
liquid phase. At all lower temperatures, the simulation cell
is crystalline and the maximum estimated percentage error
in the simulated volume is |V/V | = P/B ≈ 0.1%, where

B ≈ 160 GPa is its bulk modulus under ambient conditions
[14,73].

Another set of MD simulations at approximately the same
values of T was performed with the volume fixed at its value
in the low temperature limit, i.e., at the value obtained by
minimizing the enthalpy with respect to atomic positions
and the lattice parameter. The averages of (P, T ) in this
set of simulations were (100 K, 1.1 GPa), (301 K, 2.4 GPa),
(506 K, 3.8 GPa), (1008 K, 6.9 GPa), (1982 K, 12.8 GPa),
(2986 K, 18.6 GPa), and (3458 K, 21.3 GPa).

1. Correlation functions and their Fourier transforms

We used fast Fourier transforms (FFTs) to compute vi-
brational spectra from correlation functions. We calculated
spatial correlations up to the maximum distance possible
with our supercell, which is L = 5a, where a is the prim-
itive lattice parameter. We used the entire production run
trajectory of length T to calculate temporal correlations. The
resolutions, 2π/L and 1/T , with which spectra can be cal-
culated as functions of wave vector (k) and frequency ( f ),
respectively, are determined by the sizes of the domains in
space (L) and time (T ), respectively, on which the correlation
functions are calculated. With our supercell we are able to
sample five commensurate k points between � ([0,0,0]) and X
([0.5,0,0.5]), where k is a commensurate k point if waves with
wave vector k respect the periodic boundary conditions, i.e.,
if k = m1k1 + m2k2 + m3k3, where each mi is an integer, ki

is parallel to the ith supercell lattice vector, and if the length of
that lattice vector is an integer multiple of λ = 2π/|ki|. The
frequency resolution of our raw spectra is 0.01 THz, but we
smooth them along the frequency axis by convolving them
with Gaussians of standard deviation 0.05 THz, for the spectra
at T � 1000 K, and 0.1 THz for the spectra at T � 2000 K.

C. Lattice dynamics

To calculate the phonon band structure within the harmonic
approximation, we find the equilibrium (T → 0) structure of
the supercell and then calculate the dynamical matrix from
finite differences of forces after displacing atoms slightly from
equilibrium. To avoid artefacts of interpolation, we only plot
the frequencies at commensurate k points, but we increase
their density in reciprocal space by calculating phonon spectra
on M × M × M supercells for M ∈ {6, 7, 8, 9, 10, 11}.

As discussed in Sec. III D 1, the QHA simply amounts
to calculating the phonon band structure at the equilibrium
volume for the given temperature, T ′, rather than at the equi-
librium volume of the T → 0 limit. The equilibrium volume
at temperature T ′ is the volume that minimizes the free en-
ergy; but we cannot calculate the free energy easily, precisely,
or accurately due to important contributions to it from im-
probable microstates. Improbable microstates are unlikely to
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be sampled in an MD simulation and if, by chance, they did
occur, they would be oversampled. However, we can calculate
the free energy under the simplistic assumptions that phonons
do not interact with one another and that the vibrational
energy is distributed among the phonon bands according to
the Bose-Einstein distribution. Therefore, when we apply the
QHA we assume that band theory is a good approximation
and we calculate the phonon bands as a function of volume.
We use these frequencies in Eq. (6), which is exact in the
T → 0 limit where band theory is exact, to find the volume
that minimizes F (V, T )|T =T ′ .

We calculated F (V, T )|T =T ′ for a range of volumes corre-
sponding to a set of lattice parameters with uniform spacing
0.02 Å, and we interpolated between these values with cubic
splines. To calculate the phonon frequencies at each volume
we use a 10×10×10 supercell to calculate the dynamical ma-
trix at each k in the 10×10×10 commensurate set from finite
differences of forces. When calculating F (V, T )|T =T ′ from
Eq. (6), the sum over k is a sum over the set of commensurate
k points.

V. RESULTS

We presented the central result of this work in Fig. 1, which
contains eight kinetic energy spectra that show how thermal
disorder degrades the optical bands of MgO. Before analyzing
and discussing these spectra, we discuss some limitations of
our calculations that should be borne in mind while interpret-
ing them.

A. Sources of inaccuracy and imprecision

The first limitation is our use of approximate interatomic
forces. The accuracy with which our force field calculates
phonon frequencies at 300 K is evident in the bottom-right
panel of Fig. 1, where we compare with measured phonon fre-
quencies and with those calculated ab initio with DFPT. The
underestimation of LO frequencies at small wave vectors is
common for force fields of this kind [22,29,74], and has been
discussed in Ref. [29]. It is likely to be caused by the induced
dipoles of the force field overscreening the long wavelength
electric fields that LO phonons create, and which increase the
frequencies of LO phonons relative to transverse optical (TO)
phonons.

The accuracy with which our force field describes ther-
mal expansion is evident in Table I. Its accuracy for other
properties and at higher T is more difficult to assess because
we have neither more accurate calculations nor experimental
measurements to compare with. However, force fields of the
same mathematical form, and parameterized in the same way,
were used in Refs. [22,23] and shown to predict the pressure
dependences of the crystal’s volume (V ) and melting tempera-
ture (Tm) accurately, and to produce pair correlation functions
for molten MgO in perfect agreement with those produced by
ab initio MD simulations.

To parametrize the force field used in this work we fit to
DFT data calculated with the PBEsol functional [69], which
tends to be more accurate than the local density approximation
used in Refs. [22,23]. Furthermore, we fit the parameters to
DFT calculations of crystalline MgO, whereas those used in

Refs. [22,23] were required to describe MgO in both molten
and crystalline forms, which meant compromising on the ac-
curacy with which each phase was described.

Based on the tests performed here and in those previous
works we suggest that, at worst, our force field should be
regarded as describing an MgO-like material. We further sug-
gest that some of the gross features of the T dependence of
the spectra calculated with it, including those that we have
selected for discussion below, are caused by simple physical
mechanisms that would occur in other ionic crystals and there-
fore might manifest in their vibrational spectra.

A second limitation of our calculations is that our MD
simulations are classical simulations. Therefore their accuracy
at low T is questionable. However, when T is comparable to,
or greater than, the Debye temperature (TD ∼ 1000 K), which
is the range of most interest for studying the breakdown of
band theory, this approximation should not affect our results
significantly. Furthermore, we will show in Sec. V C that the
heat capacities calculated from the quasiparticle energies ex-
tracted from MD simulations are in very good agreement with
measurements at all values of T between 300 and 1800 K.

We regard our use of a supercell of finite size in our MD
simulations as by far the most important source of inaccuracy
and imprecision in the kinetic energy spectra presented. It
means that the only lattice waves present our MD simulations
were those whose wave vectors are commensurate with the
supercell. Our use of a 10×10×10 supercell means that the
longest finite wavelength among the phonons in our simula-
tion was only ten times the length of a primitive lattice vector.
To make clear that we only calculate spectra at a finite number
of points in (k, ω) space, we have pixelated the spectra, with
one pixel centered at each commensurate k point. However,
the absence of any vibrations at incommensurate (k, ω) points
would change how energy is distributed among the commen-
surate set of points. For example, in a real crystal, there
would be far more channels (modes) through which energy
and momenta could be exchanged.

B. Deviations of finite-T spectra from band structures

Let us now begin discussing Fig. 1, which compares the
full (k, ω)-resolved kinetic energy spectra, ÊK(k, ω), from
our MD simulations at different values of T , after each one
has been normalized so that it integrates to one.

As mentioned in Sec. III A 2, the equipartition theorem
implies that if the spectra were converged fully with respect
to simulation time, this normalization would be equivalent to
dividing each one by the same constant and by T . Regions
of high and low energy densities are colored dark blue and
white, respectively, with the same color scale used at each T .
For comparison, the T → 0 band structure and the finite-T
QHA band structures are plotted over the full spectrum with
red and green triangles, respectively.

The spectra show a progressive transition between two
limits of T : Phonon bands are well defined at low T , whereas
at very high T they are much less well defined or not defined.
At 300 K the phonon dispersions do not differ substantially
from the T → 0 bands calculated within the HA: all of the
vibrational energy is localized near the normal mode points,
(k, ωkμ), and the widths of the peaks at these points are
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small. At 3800 K, on the other hand, the phonon bands have
vanished and the spectrum is much more uniform and has little
observable structure. This is because the crystal has melted
and because spatial and temporal correlations are very short in
a liquid. Therefore the phonon assumption of atoms moving
collectively as waves has broken down completely.

The spectra at other T s show various stages of the progres-
sion between the low-T limit, in which atoms move as lattice
waves with well defined frequencies and wave vectors, and the
liquid, in which each atom moves independently of all other
atoms, except those closest to it.

Note that MgO melts at Tm � 3100 K [23,36], but it is
well known that, by imposing a degree of long-range order,
the periodic boundary conditions used in MD simulations
can prevent melting until T is significantly larger than Tm

[75]. Therefore the T = 3500 K spectrum in Fig. 1 should be
regarded as the spectrum of a superheated MgO crystal.

1. Selected features of the kinetic energy spectra

There is a lot of complexity in the T dependence of the
full spectrum (Fig. 1) and a much more extensive and detailed
study would be required to explain it all. Therefore we provide
the data used to produce Fig. 1 in Ref. [76] so that others may
analyze it further. We focus our attention on two important
gross features of the spectrum’s T dependence, and on one
striking specific feature.

The first gross feature is that all phonons shift to lower
frequencies as T increases. Most of this softening can be
attributed to the weakening of bonds by thermal expansion.
We will discuss this in more detail in Sec. V C.

The second gross feature is that optical bands, and par-
ticularly LO bands, lose definition much more rapidly with
increasing T than acoustic bands; and zone center modes
(k → 0, λ → ∞) lose definition much more rapidly than zone
boundary modes. Much of the intensity seen at high frequen-
cies and small wave vectors at low T gradually moves towards
lower frequencies and larger wave vectors as T increases.
This is easiest to see along the wave vector paths � → X and
� → L, which are straight line segments connecting the zone
center (�) to the high symmetry points X and L on the zone
boundary. We will denote the wave vectors at X and L by kX

and kL, respectively.
When analyzing spectra, we will ignore the point � itself,

which does not represent the limit k → 0, but the point k = 0.
The intensity at � in Fig. 1 is the kinetic energy of rigid
relative motion of the Mg and O sublattices in our simulations,
which does not interest us. However, note the disappearance,
at high T , of most of the intensity at optical frequencies and at
wave vectors of 1

5 kX , 2
5 kX , 1

5 kL, and 2
5 kL, which are the small-

est finite wave vectors along these paths that our simulation
supercell can accommodate. The redistribution of intensity
away from high frequencies at these wave vectors means that,
at very high T , little of the crystal’s kinetic energy exists as
coherent optical waves whose wavelengths are greater than
about five or ten lattice spacings. The TO branches retain
significant amounts of energy at these wavelengths, but the
LO bands have almost vanished. As discussed in Sec. II,
much of this is a manifestation of thermal disorder reducing
the correlation lengths and times of collective motions along

the cell eigenvectors of the affected modes, causing them to
become less wavelike and more localized in spacetime.

While this is happening to optical bands at small wave vec-
tors, the acoustic branches of the spectrum remain relatively
robust. Melting manifests in the spectra as the sudden total
loss of definition and integrity of the acoustic bands between
T = 3500 and 3800 K.

The broadening of bands does not necessarily mean that
the waves contributing to the band are less coherent. A band of
finite width can broaden further without the phonons’ coher-
ence lengths and lifetimes reducing further if the broadening
is caused by a very slow modulation of the properties of the
underlying lattice. As we discuss further below, the frequency
and/or wave vector of an optical mode could be modulated by
an acoustic phonon whose period and wavelength are much
larger than the optical phonons’ coherence length and lifetime,
respectively.

The specific striking feature of the spectra that we have
chosen to discuss is that the loss of definition of the optical
modes appears to begin with an anomalously large broadening
of the LO modes nearest to �, and to spread out from these
(k, ω) points as T increases. The broadening of these modes
is even visible at 100 K, which is the lowest T at which we
calculated the full spectrum, and it occurs for the LO phonons
at all wave vectors k near �, regardless of their directions.

We are not the first to observe the anomalous LO linewidth
at low T in MgO [10,38]; and similar features have been
observed experimentally in similar materials since the 1960s,
and more recently in calculated spectra [58–67]. However,
we have not found other studies that show how it evolves as
the crystal is heated to a very high T , or show that it marks
the beginning of the gradual melting of the entire LO band.
When the set of spectra in Fig. 1 are examined collectively,
the melting of the LO band may be the most noticeable
feature of the spectrum’s T dependence between 100 K and
3500 K.

Because the LO band melts gradually and systematically
from its apparent origin, at low T , as a localized anomaly
near the BZ center, and because similar anomalies have been
observed in other materials, we believe that its primary cause
is a simple and general physical mechanism, which we refer
to as acoustic warping of optical phonon fields. The effects
of this mechanism on vibrational spectra would be particular
pronounced in crystals with large LO-TO splittings, such as
strongly ionic materials with the rocksalt crystal structure. We
explain it in the sections that follow.

We begin by suggesting an explanation for why strong
coupling between low frequency acoustic phonons and optical
phonons would melt optical bands much faster than acoustic
bands. Then we explain the acoustic warping mechanism,
why it would cause LO bands to melt, and why this melting
would begin near the BZ center before gradually progressing
outwards, until the only LO modes that remain are those at the
BZ boundary.

2. Separation of optical and acoustic timescales
in the long wavelength limit

The acoustic branches can be thought of as a skeleton on
which the optical branches “hang,” because spatially coher-
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ent countermotion of cations and anions about a reference
structure would not happen unless the reference structure was
itself spatially coherent. For example, consider the projection,
〈εLO

k |ψR〉 of the displacement of cell R onto the cell eigen-
vector of the LO mode at k. When regarded as a function
of R, this projection is very unlikely to have order on length
scale λ if the crystal does not have order on length scale λ.
Crystalline order is gradually lost as T increases, and this
manifests as a gradual reduction of the correlation lengths and
times of this projection, i.e., as an increase in the rate of decay
of |CLO

k (R, t )| as a function of R at fixed t and as a function
of t at fixed finite R.

The energy cost of acoustic distortions protects long-range
order in the time average of the crystal’s structure. However,
if |k| is small, the crystal having long-range order when
averaged over several periods of a long-wavelength acoustic
(LWA) mode is not sufficient to protect long-range order in
〈εLO

k |ψR〉. It is insufficient because the periods (frequencies)
of zone center LO modes are much shorter (higher) than those
of LWA modes. Therefore long-range order of 〈εLO

k |ψR〉 as a
function of R relies, not on the degree to which the time av-
erage of LWA mode displacements preserve crystalline order
(i.e., vanish), but on the degree to which they preserve it on
timescales much shorter than LWA mode periods. Long-range
order of the optical branches requires the amplitudes of LWA
modes to be small, not their time-averaged displacements.

The converse is not true and, in either the limit of large
LO frequency ωLO

k or the limit of small LWA frequency
ωLWA

k , the coupling between LWA and LO modes is almost
unidirectional: LO vibrations are highly sensitive to LWA
mode displacements, whereas LWA vibrations are much less
sensitive to LO mode displacements. The reason for the high
sensitivity of LO phonons to LWA phonons will be discussed
in Sec. V B 3.

LWA phonons are relatively insensitive to LO phonons
because an LO mode’s period, 2π/ωLO

k , is so short that LO
displacements average to zero in much less than the period,
2π/ωLWA

k , of an LWA phonon. Therefore the forces they exert
on an LWA mode cancel one another before the LWA mode
has had time to respond to them. On the length and time scales
relevant to the lowest-frequency LWA modes of a macro-
scopic crystal, the crystal is a continuum and the LWA modes
do not see optical mode disorder directly, but experience its
effects indirectly through the T dependence of the crystal’s
elastic constants.

This partial decoupling of a slow-moving degree of free-
dom from a much faster one is known as adiabatic decoupling
[77–81]. It is exploited by the Born-Oppenheimer approxi-
mation: An excellent approximation to the force exerted on
a heavy nucleus by electrons is calculable from the electron
density, which can loosely be thought of as the time average
of the electrons’ positions.

Adiabatic decoupling does not mean that the LWA modes
do not exchange energy with the optical modes. It means
that their energy exchange is so rapid that they barely
notice. The net energy exchange in a time τ can be
very large if τ < 2π/ωLO

k , but is likely to be negligible
if 2π/ωLO

k  τ  2π/ωLWA
k , because its average over one

complete LO period is small and its average over many com-
plete periods is even smaller. Optical mode disorder changes

so quickly that every complete LWA oscillation occurs in
the presence of an almost equivalent background of optical
displacements, whereas LWA disorder changes so slowly that
every complete LO oscillation occurs in the presence of a
unique and inequivalent background of LWA displacements.

Therefore it is approximately true that LWA phonons only
experience the many rapidly changing LO displacements as
a slight dressing, which changes their frequencies very lit-
tle. Nevertheless, and at the same time, if there exists an
effective LWA-LO coupling mechanism, the frequencies and
coherence lengths and times of LO phonons are strongly in-
fluenced by whatever LWA displacements exist during their
lifetimes.

Of course, the adiabatic decoupling picture, in which op-
tical modes see ‘frozen’ acoustic modes and acoustic modes
do not see optical modes because the time averages of their
displacements vanish, is very much an idealized limiting case.
Adiabatic decoupling of acoustic modes from optical modes
becomes a perfect decoupling in the k → 0 limit, but is likely
to be far from perfect at the smallest finite wave vectors
present in our simulations. Clearly this picture would not
apply to the transverse acoustic (TA) and TO modes in the
regions of the BZ where they occupy the same small fre-
quency window between about 10 THz and 15 THz. However,
it does seem to explain why the lowest-frequency acoustic
modes are broadened less than the highest-frequency optical
modes.

As T increases from the T → 0 limit, it is the LWA modes
that are first to become active, because they are lowest in
energy. Therefore there may be a common explanation for
why the LO band is the first to melt, or partially melt, for
why zone center modes melt before zone boundary modes,
and for why acoustic bands are degraded less at the highest
temperatures than optical bands: Acoustic modes are degraded
less because of the partial immunity to optical disorder that
adiabatic decoupling affords them. LO modes are not pro-
tected by adiabatic decoupling and, as we now explain, there
is a very simple and effective mechanism by which they can
be disrupted, and their frequencies changed, by acoustic disor-
der; or even by a single quasistatic acoustic perturbation of the
crystal.

3. Acoustic warping of the LO electric field

By modulating the relative displacements of cations and
anions, an LO wave of wave vector k creates regions of excess
charge at its nodes, from which emanates an electric field,
ELO

k , of the same wavelength, λLO
k ≡ 2π/|k|. This field, which

we referred to as the LO mode’s intrinsic field above, opposes
the LO wave’s motion, thereby increasing its frequency, ωLO

k
[3,82].

One way to understand the origin of ELO
k is to consider

the case in which λLO
k is orders of magnitude larger than

a primitive lattice spacing; and to imagine partitioning the
crystal into primitive unit cells of dipole moment d, whose
volume we will treat as infinitesimal.

If the LO mode at wave vector k becomes active,
it modulates d along an axis parallel to k̂ ≡ k/|k| by
modulating the displacements of Mg cations from the O
anions with which they share a primitive cell. On length
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scale λLO
k � |a1|, |a2|, |a3|, we can define a local spa-

tial average of the cell dipole moment per unit volume,
P ≡ 〈d〉/|a1 · (a2×a3)|, and treat it as a continuous function
of position. The dependence of d on the choice of primitive
cell makes P ill-defined [83]; however its derivatives with
respect to space and time are the same for every choice.
Therefore the density ρb ≡ −∇ · P of excess charge or bound
(“b”) charge is independent of the choice of primitive cell and
is a well-defined physical quantity.

If only the LO mode at k is active, ρb varies in direction k̂
with wavelength λLO

k . Its magnitude is largest at the wave’s
nodes, which is where the Mg-O displacement varies most
from cell to adjacent cell along k̂. When multiple LO modes
are active, ρb has a contribution from each one and we will
denote the contribution from the one with wave vector k by
ρLO

b,k.
ELO

k is the field emanating from ρLO
b,k. If it was absent or

negligible (ELO
k ≈ 0) the LO and TO modes would have the

same frequency in the long wavelength limit by symmetry
[82]. Therefore near �, ELO

k increases the value of ωLO
k /2π by

almost 10 THz. It follows that any weakening or strengthening
of ELO

k could change ωLO
k quite dramatically: a 10% reduction

in |ELO
k | near � would reduce ωLO

k /2π by 10% of the differ-
ence between the frequencies of the LO and TO modes, which
is ∼ 1 THz.

A quasistatic acoustic perturbation of the crystal changes
ωLO

k by weakening or strengthening ELO
k ; and different

quasistatic acoustic perturbations would result in different fre-
quencies. Therefore the distribution of the LO mode’s energy
among frequencies, which is localized at a single frequency in
the T → 0 limit, should broaden significantly as T activates
the acoustic modes.

There are some obvious mechanisms by which TA and
longitudinal acoustic (LA) distortions would change ELO

k . The
first is simply disorder: Acoustic perturbations whose wave-
lengths differed from λLO

k would break the periodicity of ELO
k

by breaking the periodicity of ρLO
b,k. This would reduce the LO

wave’s coherence and, in many or most cases, reduce ωLO
k by

weakening ELO
k .

A second mechanism is that a TA or LA perturbation with
wave vector k (or mk, where m ∈ Z), would change ELO

k
by perturbing the charge reservoirs centered at the antinodes
of ρLO

b,k. A TA perturbation would displace the positive and
negative reservoirs relative to one another along an axis per-
pendicular to k̂, whereas an LA perturbation would expand or
compress them.

In planes perpendicular to k, the part of the crystal that a
phonon with wave vector k perturbs is finite in size at any
finite T . If the LO wave’s lateral extent was smaller than λLO

k ,
a transverse relative displacement of ρLO

b,k’s oppositely charged
antinodes would change the direction of ELO

k locally. This
would reduce the magnitude of its component along k̂, thereby
reducing ωLO

k .
An LA perturbation, on the other hand, would modulate

the magnitude of ELO
k along k̂. If, at a given moment, the

positive antinodes of ρLO
b,k were compressed (expanded) by an

LA wave of wave vector k, its negative antinodes would be
expanded (compressed) at that moment. However the phase
velocities of LO and acoustic waves are different, in general,

which means that the antinodes of an acoustic wave would be
moving relative to those of ρLO

b,k, making it a time-dependent
perturbation of the LO wave.

A third mechanism is that a quasistatic acoustic perturba-
tion of the crystal would create regions in which the crystal is
compressed and regions in which it is expanded. Compress-
ing an ionic crystal increases its Madelung energy and the
magnitudes of local electric fields. In MgO, this results in the
electronic band gap widening under pressure [84]. It increases
the electrostatic potential at oxygen sites, thereby lowering
the energy of the highest-energy valence electrons. It has also
been shown that ωLO

k increases under pressure [34], which
may be a result of all fields increasing in magnitude when
interionic distances are shortened. Therefore an acoustic wave
with a wavelength much larger than λLO

k might increase ωLO
k

in compressed regions of the crystal and reduce it in expanded
regions.

The acoustic-LO coupling mechanisms discussed above
suggest that, as soon as acoustic modes become active, we
should see a range of LO frequencies corresponding to LO
vibrations occurring in the presence of different backgrounds
of acoustic deformations of the crystal. Let us now examine
the spectra presented in Fig. 1 for consistency with this pre-
diction. We will focus on the lowest-T spectra and on what
happens near �, which is the region of the BZ occupied by the
first modes to become thermally active as the crystal is heated
from the T → 0 limit. To see clearly how the degradation of
the LO band depends on wave vector magnitude, let us focus
again on the paths � → X and � → L at the left hand side
and at the right-hand side, respectively, of each spectrum in
Fig. 1.

As T increases, the earliest deviations from a perfect band
structure occur close to � along both paths (and also along
other paths, which we do not discuss). For example, at 300 K
and 500 K the LO modes at 1

5 kX and 1
5 kL have broadened

noticeably in frequency. Along � → X the LO broadening is
accompanied by a noticeable broadening of the LA modes,
whereas along � → L it is accompanied by a noticeable
broadening of the TA modes. In the latter case the broaden-
ing of the TA mode is smaller at k = 1

5 kL than it is further
away from �, despite the largest broadening of the LO mode
being at k = 1

5 kL. However, 1
5 kL is the wave vector at which

the difference between LO and TA frequencies is greatest,
which means that it is the wave vector at which the adiabatic
decoupling of acoustic modes from optical modes discussed
in Sec. V B 2 would be most effective. Therefore the low-T
broadening of the LO modes near �, its progression to larger
wave vectors as T increases, and the broadening of acoustic
modes that accompanies it, all appear to be consistent with
acoustic modes changing ωLO

k and making LO waves less
coherent by warping ELO

k .
The main point of this section (V B 3) is that there exists

a mechanism for strong coupling between the acoustic and
LO modes of an ionic crystal, which would degrade its LO
bands but degrade its acoustic bands to a much lesser degree.
We have provided simple physical reasons why we should see
anomalous broadening of the LO mode in our spectra and,
as we analyze the spectra of individual modes in more detail
in Sec. V D, we will provide further indirect evidence that
the mechanism we proposed is responsible for the observed
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FIG. 3. Distribution of kinetic energy in reciprocal spacetime when thermal expansion is suppressed by performing simulations at the
T → 0 volume. The normalization of the data and the color scale of each plot are the same as those used for each plot in Fig. 1. As in Fig. 1,
the red and green triangles are phonon frequencies at zero temperature and at 300 K within the QHA, respectively. The temperatures are
approximate.

broadening. We end this section by summarizing our physical
reasoning.

It is well known [1,3,82] that the frequency of a long
wavelength LO phonon is increased by its intrinsic electric
field, ELO

k . It is also known that, as T increases from the
T → 0 limit, the earliest contributions to thermal disorder
come from the lowest energy modes, which are LWA modes.
It is obvious that, by breaking the long-range order of prim-
itive cell displacements along LO cell eigenvectors, acoustic
perturbations of the crystal would warp ELO

k . It follows that
acoustic phonons would change the frequencies of LO waves
and, by disordering the lattice, make them less coherent.

As T increases, the first manifestation of this effect in the
spectra would be the LO band near the BZ center beginning
to broaden and melt. As T continues to increase, causing sig-
nificant activity among higher-energy and larger-wave vector
acoustic modes, we should expect to see the melting of the LO
band spread from BZ’s center towards its boundary. All of this
is consistent with what is observed in Fig. 1.

C. Effects of thermal expansion

To disentangle the effects of thermal expansion from other
mechanisms by which T changes the spectra, let us turn our
attention to Fig. 3, which presents the spectra calculated from
MD simulations in which the volume of the crystal at all val-
ues of T was constrained at the value V (0) ≡ limT →0 V (T ).
We will refer to the MD simulations whose spectra are pre-
sented in Figs. 1 and 3 as the V (T ) and V (0) simulations,
respectively.

The comparison between Figs. 1 and 3 demonstrates that
the overall softening of most modes that occurs when the
crystal is free to thermally expand does not occur when it
is prevented from expanding. This, and the comparison with
the QHA results below, confirm that thermal expansion bears
most of the responsibilty for this softening.

The other features of the spectra that we have chosen to
discuss, namely, that melting of the band structure begins with
the LO mode near �, before spreading to the BZ boundary and
to other modes, are present in both Figs. 1 and 3. Therefore
we can rule thermal expansion out as their cause. However
it is worth noting that, at very high T , the TO branches look
much more like bands in the V (0) spectra than they do in the
V (T ) spectra. This may be because thermal expansion causes
the TO and TA branches of the spectrum to overlap more in
frequency, which would strengthen TO-TA interactions.

The QHA provides a reasonably accurate approximation
to the phonon band structure up to at least 500 K, albeit
one that is not noticeably closer to the MD band structure
than the HA. However, its overestimation of the softening of
TO frequencies is quite dramatic at T = 1000 K and 2000 K.
Referring to Table I, we see that the QHA lattice parameter is
larger than the MD lattice parameter at each T . However, these
differences are much too small to explain the differences in
frequency between the QHA bands and the V (T ) MD bands.
When the T -dependent frequency of each mode is plotted as a
function of the T -dependent volume for both sets of calcula-
tions, the QHA curves lie below the V (T ) MD curves and the
gap between them widens as T increases. Thermal expansion
must explain the softening of the QHA bands with increasing
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FIG. 4. Isobaric heat capacity versus temperature. Symbols de-
note the measured values of Isaak et al. [85], the orange line is the
result of the DFPT QHA calculations by Karki et al. [14] and the
blue line is the result of our calculations within the QPA.

T , because the difference in V is the only difference between
calculations performed at different T . However the degree to
which the QHA oversoftens bands cannot be explained fully
by inaccuracies of QHA thermal expansivities. We will return
to this issue in Sec. V D.

Karki et al. [14] found that QHA calculations of sev-
eral thermodynamic properties started to deviate significantly
from experimental measurements at around 1000 K, with both
thermal expansivity and the isobaric heat capacity C(P) be-
ing overestimated at high T and the degrees to which they
were overestimated increasing with T . Therefore, to investi-
gate whether or not this is a failure of the quasi-independent
phonon assumption we have calculated the heat capacity
within the QPA [1]. For each mode kμ we fitted the mode
spectrum, fkμ(ω), with a Lorentzian [Eq. (8)], and treated the
peak frequencies of the fitted Lorentzians as the QP frequen-
cies.

The comparison between our QPA calculation, the QHA
calculations of Karki et al., and the measurements of Isaak,
Anderson, and Goto are presented in Fig. 4.

The QPA heat capacities are in excellent agreement with
experiment at all values of T for which experimental data is
available. Therefore the inaccuracy of the QHA calculation
at high T is unlikely to be a result of treating phonons as
quasi-independent excitations. It must be caused by the QHA
failing to account for the self-energies of these phonons. It
is their self-energies that turn them from NMVs into phonon
QPs [1,5].

D. Thermal broadening of bands

In Sec. V B, we suggested some mechanisms by which LO
bands can be broadened and shifted in frequency by acoustic
modes, without acoustic bands degrading to the same degree.
In Sec. V C, we showed that thermal expansion causes most
bands to shift to lower frequencies as T increases, but is not
the cause of the anomalous broadening of the LO band. In this
section we take a closer look at thermal broadening of bands.

Figure 5 presents the results of fitting Lorentzian functions
[Eq. (8)] to individual mode spectra [Eq. (3)]. The upper
panels are plots of the T -induced frequency shifts [Eq. (7)],

FIG. 5. Results of fitting Lorentzian functions to optical mode
spectra at, from left to right, the wave vectors 1

5 kX , kX , 1
5 kL , and

kL , where kX ≡ 1
2 (b1 + b3), kL ≡ 1

2 (b1 + b2 + b3), and {b1, b2, b3}
is the set of primitive reciprocal lattice vectors. The upper panels plot
the difference between the fitted Lorentzian’s peak frequency and
the T → 0 phonon frequency vs T . The lower panels plot the fitted
Lorentzians’ full widths at half maximum vs T and the left-most plot
includes a comparison to the values measured by Calandrini et al. at
a much smaller wave vector [10]. The insets specify the meanings of
the symbols and their colors in all eight plots.

ωkμ(T ) ≡ ω̄kμ(T ) − ω̄kμ(0), of the three optical modes at
each of the four wave vectors 1

5 kX , kX , 1
5 kL, and kL, where

ω̄kμ(0) is the frequency of mode kμ at zero pressure in the
T → 0 limit. In our MD simulations, ω̄kμ(0) is the frequency
of normal mode kμ at the V that minimizes the potential
energy, whereas in the QHA it is its frequency at the V that
minimizes the sum of the potential energy and the zero-point
energy of the phonon modes. Results from our V (T ) and
V (0) MD simulations are plotted in blue and red, respectively,
and our QHA results are plotted in green. In each case the
frequency shifts of TO and LO modes are plotted as circles
and filled squares, respectively. We use the same symbols and
colors to plot the Lorentzian linewidths γkμ(T ) in the lower
panels, but instead of comparing to QHA linewidths, which
we did not calculate, we compare to infrared reflectivity data
of Calandrini et al. [10]. We find good agreement, despite
comparing calculations at k = 1

5 kX to measurements at much
smaller wave vectors.

Overall, it is less easy to see firm trends in the data pre-
sented in Fig. 5 than it is to see them in Fig. 6, which uses
the same symbols and colors to plot the shifts in the mean,
ωkμ(T ), and the entropies, Skμ(T ), of the mode distribu-
tions, fkμ(ω). Therefore we include Fig. 5 for two reasons:
to compare our MD linewidths with measured linewidths, and
to illustrate why, for the purpose of investigating the effects of
increasing T , we have chosen to not assume that mode spectra
are approximately Lorentzian. The entropy of a Lorentzian
distribution is ∼ ln γkμ, so Fig. 5(b) might be clearer if its
vertical axis had a logarithmic scale, but the entropy is a more
general measure of uncertainty than either the width of the
best-fit Lorentzian or its logarithm, and using it does not entail
making any physical assumptions.
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FIG. 6. (Top) Difference between the mean of each optical
mode’s spectrum and the mode’s T → 0 frequency as a function of
T in our V (0) MD simulations, our V (T ) MD simulations, and our
QHA calculations. (Bottom) Entropies of the optical mode spectra vs
T . The insets specify the meanings of the symbols and their colors in
all eight plots.

The QHA’s overestimation of the rates of decrease of op-
tical mode frequencies with respect to T is very clear in
Fig. 6. Figure 7 demonstrates that the frequency shifts from
our V (T ) simulations are not well approximated by adding
the shift caused by increasing T at a fixed V of V (0) to the
shift caused by changing V at a fixed T of zero. The former
is positive, which is consistent with the fact that phonon
frequencies increase under pressure [14,34]: as quantified in
Sec. IV B, when V is fixed, P increases as T increases. In-
creasing P makes it more difficult for individual primitive
cells of the crystal to strain in order to accommodate optical
mode displacements. This elastic response would reduce the

FIG. 7. LO and TO frequency shifts as a function of T at all finite
wave vectors in our simulations between � and X . The insets specify
the meanings of the symbols and their colors, which are the same as
in Fig. 6 apart from the inclusion of the sums of the V (0) MD shifts
and the QHA shifts. These are plotted in orange to demonstrate that
they differ from the V (T ) MD shifts.

FIG. 8. (Top) Difference between the mean of each acoustic
mode’s spectrum and the mode’s T → 0 frequency as a function of
T . (Bottom) Entropies of the acoustic mode spectra vs T . The insets
specify the meanings of the symbols and their colors in all eight plots.

energy cost of the optical displacements; therefore optical
frequencies are increased when this response mechanism is
suppressed. The orange symbols in Fig. 7 would coincide with
their blue counterparts if changes to T and V contributed fre-
quency shifts whose origins were approximately independent.
The fact that they do not suggests that T has other important
effects. This highlights, again, the importance of interactions
between phonons and the fact that each mode spectrum is not
the spectrum of bare NMVs, but of QPs.

Figure 8 shows that TA modes are softened much less by
T than optical modes, especially at small wave vectors. At
k = 1

5 kX the QHA shifts are negligible and the V (T ) and
V (0) shifts are almost equal. At k = 1

5 kL, by contrast, the
V (0) shifts are negligible and the V (T ) and QHA shifts are
almost equal. At all wave vectors except k = 1

5 kL, the QHA
overestimates the softening of the LA mode at 1000 K and
2000 K. There is undoubtedly much to learn from a more de-
tailed analysis of the acoustic modes than we have performed.
The nonmonotonicity of TA modes at low T is particularly
intriguing.

Notice that, at kX and kL, where acoustic frequencies are
as large as optical frequencies, the entropies of acoustic and
optical modes have similar magnitudes. However, near � the
entropies of acoustic modes, and particularly the TA modes,
are much smaller than those of optical modes. Near � is
where acoustic frequencies are small enough that adiabatic
decoupling is likely to provide acoustic modes with the most
protection from disorder generated by the optical modes.

Also notice that, at all values of T , the LA mode’s en-
tropy is significantly greater than the TA mode’s entropy at
k = 1

5 kX ; whereas at k = 1
5 kL it is the TA mode whose en-

tropy is larger at low T ; and at T � 1000 K the LA and TA
modes have similar entropies. Entropy quantifies uncertainty,
which increases with a mode distribution’s width. Therefore
Fig. 8 quantifies our observation in Sec. V B 3 that, at low T ,
there is broadening of the LA band along � → X and of the
TA bands along � → L.
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FIG. 9. (Bottom) Degree to which each mode is an optical mode
at T = 0 as a function of k along wave vector paths � → X (left) and
� → L (right). (Top) Characteristics of the normalized mode spec-
trum fkμ(ω) [Eq. (3)] as a function of wave vector k at T = 500 K.
The four plotted characteristics of fkμ are, from top to second-from-
bottom, the mean ω̄kμ/2π , the entropy Skμ [Eq. (9)], the standard
deviation σ , and the skewness, where σ 2 and the skewness are,
respectively, the second (m = 2) and third (m = 3) central moments,
(2π )−m

∑
ω(ω − ω̄kμ)m fkμ(ω).

Figure 9 provides more insight into how the mode spectra
change between the center and the boundary of the BZ. It
consists of five vertically stacked pairs of plots, with the
horizontal axes of each pair’s left-hand and right-hand plots
specifying one of the five finite wave vectors in our simula-
tions along � → X and � → L, respectively. The data plotted
in the lowermost pair of plots applies to the T → 0 limit,
because it was calculated from normal mode eigenvectors.
We will discuss it below. The four uppermost pairs are
plots of characteristics of the mode spectra from V (T ) MD
simulations at T = 500 K. The uppermost plots are simply
plots of the mean frequencies; i.e., the bands. The next pan-
els down are plots of the modes’ entropies, Skμ [Eq. (9)].
The third panels down are plots of the standard deviations
(σ ) of the mode spectra, which we include only to allow
σ to be compared to Skμ as a measure of thermal disor-
der. The plots second from the bottom show that most of
the mode spectra are skewed towards higher frequencies,
which would be consistent with them leaving behind a high-
frequency tail when thermal expansion shifts their means
downwards.

We will not speculate further about why most mode spec-
tra have positive skewnesses. However in Sec. V B 3 we
suggested a mechanism that might contribute negatively to
the skewness of only one of the six modes. An acoustic
perturbation that warps ELO

k is likely to reduce its magnitude,
thereby lowering ωLO

k . Therefore a thermal distribution of
acoustic perturbations might contribute low-frequency tails

to LO mode spectra. This might explain why the LO mode
has a skewness that is smaller in magnitude than other modes
when it is positive, why it is the only mode whose skewness
is negative at some wave vectors, and why the skewness
changes from negative to positive between the BZ center and
its boundary.

Now let us examine the plots of entropy in Fig. 9.
Notice that, starting at k = 1

5 kX or k = 1
5 kL, the acoustic

bands’ entropies increase, initially, as |k| increases. This is
to be expected because each mode’s entropy vanishes in the
T → 0 limit and it is only the interactions between modes
that makes it finite. Acoustic modes’ frequencies move closer
to those of optical modes as their wave vectors move away
from the BZ center. Therefore we should expect their inter-
actions with optical modes to strengthen as |k| increases, and
this would increase their entropies.

If a mode was damped by many weak interactions, its
entropy would increase gradually and monotonically as ei-
ther the number of interactions or their strengths increased
gradually. However, sudden reductions of entropy occur to
the LA mode and the TA modes along � → X ; and there is
a less dramatic reduction of the TA modes’ entropies along
� → L. After increasing monotonically between k = 1

5 kX

and k = 4
5 kX , the entropies of the LA band and the higher-

entropy TA mode drop abruptly at k = kX . In the right-hand
plot the entropies of both TA bands suddenly begin to decrease
at k = 4

5 kL.
These kinks in the entropy as a function of k are interesting

because they suggest the existence of strong interactions be-
tween modes, which contribute sizeable fractions of their total
entropies. If a mode’s entropy only had contributions from
weak interactions, a sudden decrease would require many
interactions to weaken or vanish simultaneously (at the same
wave vector). This is improbable. Each kink is much more
likely to be explained by the disappearance or weakening
of few very strong interactions, than by many weak ones.
Therefore a kink in a band’s entropy is likely to mean that,
on the higher-entropy side of the kink, the mode is involved in
at least one particularly strong interaction.

The fact that the entropy of the LA mode at k = 1
5 kX is

so high adds to the suspicion that it is caused by coupling
to the LO mode, because ωLA

k is so low that only TA modes
have similar frequencies. However, the TA modes’ entropies
are smaller, suggesting that they do not interact with other
modes as strongly as the LA mode does. Furthermore, if the
high entropy of the LA band was caused by almost-resonant
coupling between LA and TA modes, it should decrease
with increasing |k|, because ωLA

k and ωTA
k rapidly diverge.

For a similar reason, the fact that the TO modes’ entropies
remain relatively constant as ωLA

k approaches ωTO
k makes it

unlikely that the LA entropy has a large contribution from
LA-TO coupling. The LA-TO interaction should strengthen
as their frequencies get closer, which would increase the TO
entropy.

However, if the LA entropy was high due to LA-LO cou-
pling, we would not necessarily see the LO mode entropy
increase as ωLA

k increased. If the high LO entropy was caused
by the LA mode warping ELO

k , the effects of this disruption
on the LO band would not necessarily increase as ωLA

k drew
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closer to ωLO
k , because the strength of this coupling mech-

anism does not rely on the coupled modes having similar
frequencies. Furthermore, the degree to which ELO

k shifts ωLO
k

upwards decreases with increasing wave vector. Therefore, if
the high LO entropy was caused by warping of ELO

k , it should
decrease with increasing |k|, as it can be seen to do in Fig. 9.
This diminishing importance of ELO

k as the BZ boundary is
approached would also contribute negatively to the LA band’s
entropy, but the increase of the LA band’s frequency means
that its interactions with most optical modes strengthen with
increasing wave vector as it gets closer to resonance with
them. This positive contribution to its entropy might more
than offset the entropy reduction caused by its interaction with
the LO mode weakening. A further clue that the high entropy
of the LA mode is caused by its interaction with the LO mode
via warping of ELO

k is that ELO
k vanishes at X , which is where

the LA entropy suddenly drops. The value it drops to is similar
to that of the blue TA mode, which increases monotonically
between � and X .

An obvious question to address is why the entropy of
one of the TA bands increases more than the other, before
also dropping suddenly at k = kX . The entropy of this band
increases much more rapidly than the entropy of the other
TA band, despite their mean frequencies remaining equal.
However, it is important to note that the eigenvectors of two
degenerate modes can be rotated in the two-dimensional space
that they span, without changing their frequencies. For this
reason, the two TA bands do not have independent identi-
ties and, for some rotations of TA eigenvectors within the
subspace that they span, the entropies of the bands would
be equal. Therefore we should not refer to entropies of the
two TA bands individually; we should say that the com-
bined entropy of the TA modes increases with increasing
wave vector along � → X , before suddenly decreasing at
k = kX . This means that the results plotted in the left-hand
panels of Fig. 9 are consistent with acoustic warping of ELO

k ,
which mostly involves the LA band near �, but with the
TA modes becoming more involved as the BZ boundary is
approached.

The sudden decrease of the TA entropy at k = kX is diffi-
cult to explain if its increase between k = 1

5 kX and k = 4
5 kX

is caused by coupling to the TO modes. The data plotted in
the bottom left panel of Fig. 9 also makes TO-TA coupling
less likely to be responsible for the TA entropy being non-
monotonic. This is a plot of the degree to which each mode is
an optical mode. An optical mode modulates the cation-anion
displacement, whereas an acoustic mode modulates their cen-
ter of mass. Therefore, instead of expressing eigenvectors in
terms of displacements of Mg and O ions, we can express
them in terms of Mg-O relative displacements and center
of mass displacements. The former vanishes for an acoustic
mode, the latter vanishes for an optical mode. Therefore we
use 100 times the magnitude of latter divided by the magni-
tude of their sum to quantify the degree to which each mode
is an optical mode. What we find is that, at k = 4

5 kX , the
LA and LO modes become significantly optical and acoustic,
respectively. In other words, they mix strongly to become
acoustic/optical hybrids.

At k = kX , the polarization vectors of the LA and LO
modes are identical, by symmetry. Mathematically, the differ-

ence in their frequencies can be viewed as a consequence of
their normalized eigenvectors being different scalar multiples
of the same polarization vector. The LO and LA eigenvectors
are the polarization vector multiplied by the square roots of
the O and Mg masses, respectively.

It is well known that when two modes couple strongly
enough, they tend to hybridize: each one’s eigenvector be-
comes a mix of both eigenvectors, such that the modes
described by the hybrid eigenvectors interact much more
weakly. This is what causes avoided crossings in band struc-
tures. The LO-LA hybridization does not tell us anything
directly about TO-TA coupling, but the bottom left plot of
Fig. 9 shows that the TO and TA modes do not hybridize no-
ticeably. At k = 3

5 kX each TA (TO) mode is only 1.4% optical
(acoustic), and this increases to only 3.2% at X . Therefore
the sudden decrease of the TA modes’ entropy at k = kX is
unlikely to be a consequence of hybridization and we must
look elsewhere for an explanation of it. The involvement of
the TA modes in the acoustic-LO coupling is an obvious
alternative explanation.

Now let us turn our attention to the path � → L. The
bottom-right plot of Fig. 9 shows that the TO and TA modes
begin to hybridize at k = 4

5 kL, and that all modes become
hybrids of optical and acoustic modes at k = kL, with each
mode’s optical/acoustic ratio being approximately 60/40 or
40/60. Therefore the nonmonotonic behavior of the TA en-
tropy might be explained by its sudden decoupling from the
TO mode when they transform into TO/TA hybrids. This
would make sense because they are both transverse modes,
which become very close in frequency near k = kL. Therefore
it seems plausible to interpret the kink in the entropy as a
signature of strong TO-TA coupling at k < 4

5 kL, which would
explain why the entropy of the TA mode is greater than that of
the LA mode near �.

There are also some strong hints that acoustic modes are
disrupting ELO

k along � → L. Firstly, the LO mode has the
highest entropy, despite being the least active mode at low
T . Secondly, the LO mode has a negative skewness until
ELO

k vanishes at k = kL, which is consistent with the acous-
tic warping of ELO

k giving it a low-frequency tail. Thirdly,
the variation of the skewness with k appears to mirror the
variation of the mean frequency: As one increases the other
decreases. This is consistent with the negative LO skewness
being caused by this mechanism because it is the increasing
strength of ELO

k that causes ωLO
k to increase between L and

�. As the field’s contribution to ωLO
k increases in magnitude,

ωLO
k becomes more vulnerable to being lowered by acoustic

perturbations.
All of the acoustic-LO coupling might be LA-LO coupling,

but it is also possible that the TA mode is involved. However,
near the BZ center, strong TA-LO coupling via TA disruption
of ELO

k requires the lateral extent of the LO phonon to be
not much greater than its wavelength. This is because, if we
approximately describe ρLO

b,k as a stack of parallel uniformly-
charged infinite planes, a transverse displacement of each
plane would not alter the constant field emanating from it.
At finite T the region perturbed by an LO phonon in a plane
perpendicular to k has a finite area. Therefore transverse
displacements would change ELO

k near the boundary of this re-
gion and, if a large enough fraction of the atoms participating
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in the LO motion were affected by this change, a TA phonon
could couple significantly to it by this mechanism.

When the LO wavelength is small, on the other hand, the
crystal planes displaced laterally by a TA phonon cannot be
treated as uniformly charged. Their atomistic structures have
a significant influence on the value of ELO

k . Therefore, near
the BZ boundary, there could be strong TA-LO coupling for
LO phonons whose lateral extents are much larger than their
wavelengths.

VI. CONCLUSIONS

In this work, we have studied strong phononic correlation
in crystalline MgO with a method of calculating vibrational
spectra that does not suffer from the limitations of perturba-
tion theories or mean-field theories, and which can produce
accurate wave vector-resolved spectra with enough detail to
observe band structures. These calculations, and recent similar
calculations by Lahnsteiner and Bokhdam [33], have been
made possible by force fields whose parameters are fit to vast
quantities of data calculated ab initio [22,26,27,32,86], and
whose low computational expense, relative to ab initio MD,
makes calculations of high resolution spectra possible.

As shown in Appendix A and Ref. [48], the method we
have used to calculate spectra from our MD simulations is
much more powerful and generally applicable than exist-
ing derivations of it suggest [7,24,40–47]. It is not a new
method, having been used to calculate frequency- and wave
vector-resolved spectra at least as far back as 2006 [6], and
to calculate spectra as functions of frequency only for many
years prior to that. However existing derivations of it do not
justify using it to calculate spectra at very high T , when
phononic correlation is strong, as we have done. Therefore
it has usually been interpreted as a method of calculating the
VDOS at thermal equilibrium when phonons do not interact
(i.e., in the T → 0 limit) or when their interactions are suffi-
ciently simple that each phonon is an exponentially decaying
harmonic wave, in which case its spectral peak is Lorentzian
[24,33,43,87].

However, we have shown that it is an exact method, whose
applicability is not restricted to crystals, to low T , or even to
states of thermal equilibrium. This means that it is a powerful
tool for studying vibrations in materials, which complements
and is complemented by, perturbation theories. It can also be
used to assess the accuracies of perturbative methods, mean-
field methods, and other methods that rely on simplifying
assumptions, such as the assumption of a state of thermal
equilbrium [20]. For these reasons, it seems likely to play an
increasingly important role as it becomes possible to calculate
forces accurately and efficiently for more materials.

For example, it should help with the development of mate-
rials that are either transparent or opaque to THz radiation in
a particular frequency window. In other words, it should help
to guide us in the rational design of materials that behave as
THz bandpass filters for use as active or passive components
of THz devices.

Another application is in the study of order-disorder tran-
sitions between crystalline phases, which occur when a single
phonon band melts but the other bands do not, causing dis-
placements and velocities along the eigenvectors of the melted

band’s modes to become disordered. This critical weakening
of correlations causes both the time average and the spatial
average of the displacements to vanish. As a result, when
the crystal is observed at either a low spatial resolution or
a low temporal resolution, its symmetry appears to have
increased. The ability to see how the vibrational spectrum
changes as T crosses the transition temperature may lead to
step changes in our understandings of these transitions, or
even to a step change in our understanding of this class of
transitions.

A third application is in the study of materials at very
high T , such as thermal barrier coatings, where there are high
densities of defects, and therefore high densities of vibrations
that are localized in spacetime and delocalized in reciprocal
spacetime. A fourth application, which is related to the third,
is in the identification or design of materials with reduced
or enhanced thermal conductivities. For example, the thermal
conductivities of materials with low-frequency localized rat-
tler modes [88] are low because the energy of these modes,
being localized in spacetime, is delocalized in (k, ω) space.
Therefore they overlap with acoustic modes in reciprocal
spacetime, which allows the acoustic modes to couple with
them, and with one another through them, to disperse their
energy.

However the generality of this method means that one of
the most important applications of it may be to study gen-
eral properties of strong phononic correlation. The simplest
and most obvious first step is to study the strengthening of
phononic correlation in a simple prototype crystal as it is
heated. This has been the purpose of this work.

We have found that, despite the apparent banality of crys-
talline MgO at thermal equilibrium, there is so much to be
learned from the spectra presented herein that we have been
forced to focus most of our analyses of them on a few of
their gross features. We provide our raw V (T ) spectra, in the
form of tabulations of ÊK(k, ω) at each value of T , as supple-
mentary material in case others wish to analyse it further or
differently [76].

By calculating spectra at both constant volume and con-
stant pressure, we have been able to show conclusively that
some features of the spectrum’s T dependence, such as the
tendency of bands to soften as T increases, are consequences
of thermal expansion; and that others, such as the rapid degra-
dation of the LO band, are not. We have shed substantial light
on the strengths and limitations of the quasiharmonic approx-
imation and we have shown that some of its weaknesses are
rectified by the quasiparticle approximation.

Most importantly, we have identified, and discussed in
some detail, two physical considerations that are likely to
have observable consequences for many or most crystals.
The first is that LO phonons are highly sensitive to the am-
plitudes of acoustic phonons because a large fraction (∼ 1

2
for MgO) of ωLO

k is contributed by the LO mode’s intrinsic
field, which acoustic phonons warp. This simple mechanism
must occur, to some degree, in every partially ionic crystal,
because every LO phonon has an intrinsic field that opposes its
motion and increases its frequency. The second consideration
is that, despite this strong acoustic-LO coupling, long wave-
length acoustic phonons are adiabatically decoupled from LO
modes: they strongly modulate the energies and frequencies
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of LO modes, while maintaining approximately constant en-
ergies and frequencies themselves.

The feature of the spectrum’s T dependence that led us to
these ideas and explanations is very similar to features that
have been observed experimentally in the spectra of other
ionic crystals since the 1960s [58–67]. It has also been stud-
ied in MgO and similar materials using perturbation theory
[10,38,39], but it has lacked a simple and intuitive physical
explanation until now.
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APPENDIX A: DISTRIBUTION OF THE KINETIC
ENERGY OF A VIBRATING STRING IN

RECIPROCAL SPACETIME

Consider a taut string, of uniform mass per unit length
ρ, whose ends are fixed at x = −L/2 and L/2, and which
lies along the x axis when it is at equilibrium. Its dis-
placement from equilibrium at spacetime coordinates (x, t ) is
denoted by u(x, t ), and its kinetic energy per unit length is
κ (x, t ) ≡ 1

2v(x, t )2, where v ≡ √
ρdx u̇ and dx is an infinites-

imal length.
Let us assume that the string only moves during the time

interval (−T /2, T /2), or that it is only observed for times
t ∈ (−T /2, T /2). In the latter case, we assume that, at each
x, v(x, t ) has been tapered smoothly, but arbitrarily rapidly, to
zero at times −T /2 and T /2. Similarly, v(x, t ) is both smooth
and vanishes for x /∈ (−L/2, L/2). Therefore, for all of our
purposes within this Appendix,

∫ T /2
−T /2 dt is equivalent to

∫
R dt

and
∫ L/2
−L/2 dx is equivalent to

∫
R dx.

The average, over interval (−T /2, T /2), of the string’s
kinetic energy per unit length at x is

〈κ〉t (x) = 1

2T

∫
R

v(x, t )2dt (A1)

= 1

2T

∫
R

v̆∗(x, ω)v̆(x, ω)dω, (A2)

where v̆(x, ω) ≡ (2π )−1/2
∫
R v(x, t )e−iωt dt is the unitary

Fourier transform of v(x, t ) with respect to time, and we have
used Parseval’s theorem [50] to reach Eq. (A2) from Eq. (A1).
Since v(x, t ) is real, v̆∗(x, ω) = v̆(x,−ω), which implies that
v̆∗(x, ω)v̆(x, ω) = v̆(x,−ω)v̆(x, ω) = v̆∗(x,−ω)v̆(x,−ω).
Therefore 1

2

∫
R dωv̆∗(x, ω)v̆(x, ω) = ∫

R+ dωv̆∗(x, ω)v̆(x, ω).
If we integrate 〈κ〉t (x) over all x and use Parseval’s theorem
again we find that the average kinetic energy of the entire
string is

〈K〉 = 1

T

∫
R+

dω

∫
R

dkṽ∗(k, ω)ṽ(k, ω),

where ṽ(k, ω) is the unitary FT of v(x, t ) with respect to both
x and t , i.e.,

ṽ(k, ω) = 1

2π

∫
R

dωe−iωt
∫
R

dke−ikxv(x, t )

=
(

1

2π

∫
R

dωeiωt
∫
R

dkeikxv(x, t )

)∗

= ṽ∗(−k,−ω).

Therefore the string’s average kinetic energy divided by its
length is

〈K〉
L

= 1

LT

∫
R+

dω

∫
R

dkṽ(−k,−ω)ṽ(k, ω). (A3)

The VVCF is defined as

C(x, t ) ≡ 〈〈v(x0, t0)v(x0 + x, t0 + t )〉x0〉t0

= 1

LT

∫
R

dt0

∫
R

dx0v(x0, t0)v(x0 + x, t0 + t ).

If we express v(x0, t0) and v(x0 + x, t0 + t ) in terms of ṽ,
perform the integrals over x0 and t0 before the integrals
over frequencies and wave vectors, and use the identities
2πδ(k) = ∫

R eikx0 dx0 and 2πδ(ω) = ∫
R eiωt0 dt0, this becomes

C(x, t ) = 1

LT

∫
R

dωeiωt
∫
R

dkeikx ṽ(−k,−ω)ṽ(k, ω).

Therefore the FT of C(x, t ) with respect to both x and t
is C̃(k, ω) = (2π/LT )ṽ(−k,−ω)ṽ(k, ω), and Eq. (A3) be-
comes

〈K〉
L

= 1

2π

∫
R+

dω

∫
R

dkC̃(k, ω). (A4)

Now let us assume that the string’s velocity is sampled at
Nt evenly spaced times between −T /2 and T /2 and at Nx

evenly space points between −L/2 and L/2. Then the VVCF
becomes

C(x, t ) = 1

Nt Nx

∑
t0

∑
x0

v(x0, t0)v(x0 + x, t0 + t ),

where the sums are over the sampled times and positions.
Now, because v(x, t ) vanishes when x /∈ (−L/2, L/2), the

smallest observable wave vector and the smallest observ-
able difference between two wave vectors are both equal
to k ≡ π/L. Similarly, because v(x, t ) vanishes when
t /∈ (−T /2, T /2), the smallest observable frequency and
the smallest observable difference between two frequencies
are both equal to ω ≡ π/T . This implies that there are
only Nt observable frequencies and Nx observable wave
vectors, and the integrals in Eq. (A4) must be approxi-
mated as sums over these observable values. If we define
Ĉ(k, ω) ≡ C̃(k, ω)ωk/2π , we can express the discretized
version of Eq. (A4) as

〈K〉
L

=
∑
ω>0

∑
k

Ĉ(k, ω),

and the discrete FT of C(x, t ) as

Ĉ(k, ω) = 1

Nt Nx

∑
t

∑
x

C(x, t )e−ikxe−iωt .
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Therefore the average kinetic energy of the string per unit of
its length is a sum over all sampled frequencies and wave
vectors of the discrete FT of the VVCF. The linearity of the FT
implies that each term Ĉ(k, ω) in this sum is the contribution
to the average kinetic energy of motions with wave vector k
and frequency ω.

APPENDIX B: THE FORCE FIELD

We use a classical dipole-polarizable potential of the form
described in Refs. [25,28,29]. It includes a sum of purely
pairwise interaction energies of the form

Ui j (r) = qiq j

ri j
+ Di j[e

γi j [1−(ri j/r0
i j )] − 2e(γi j/2)[1−(ri j/r0

i j )]],

where r is the distance between ions i and j, and qi and q j

are their charges. The parameters Di j , γi j and r0
i j define the

Morse potential and, along with the charges, are among the
parameters that are fit to reproduce forces, stress tensors, and
energy differences calculated ab initio with density functional
theory. A list of all potential parameters and their values are
provide in Table II.

In addition to the pairwise part of the potential, the oxygen
anion is assigned a polarizability, α, which is used to assign a
dipole moment pi to each anion as follows:

pi = pSR
i + αEi({pi})

where the second term on the right-hand side is the dipole
moment induced on ion i by the local electric field from the

TABLE II. Force field parameters in atomic units.

Mg O Mg-Mg Mg-O O-O

charges
q 1.415382 -1.415382
D 0 3.0945×10−3 2.161×10−3

γ 25.1073 10.1621 8.9925
r0 26.9788 4.9640 6.1491
dipoles
α 0 9.6565
b 0 1.8713 0
c 0 -1.6809 0

charges and dipole moments of all other ions, and

pSR
i = α

∑
j 
=i

qi jri j

r3
i j

fi j (ri j ),

where

fi j (ri j ) = ci j

4∑
k=0

(bi jri j )k

k!
e−bi j ri j .

is a short-range contribution to the dipole from an anion’s
electron cloud changing shape as its neighboring ions move.
Since each dipole moment depends on the values of all others,
the set of all dipole moments is calculated, at each set of ionic
positions, by iterating them to self-consistency [25]. After
self-consistency has been achieved a charge-dipole interaction
energy is added to Ui j for each pair of ions (i, j) that includes
an oxygen ion, and a dipole-dipole interaction energy is added
to it when i and j are both oxygen ions.
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