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Abstract
Background
Hypertrophic cardiomyopathy (HCM) is an important cause of sudden cardiac death associated with heterogeneous
phenotypes but there is no systematic framework for classifying morphology or assessing associated risks. Here we
quantitatively survey genotype-phenotype associations in HCM to derive a data-driven taxonomy of disease expression.
Methods
We enrolled 436 HCM patients (median age 60 years; 28.8% women) with clinical, genetic and imaging data. An
independent cohort of 60 HCM patients from Singapore (median age 59 years; 11% women) and a reference population
from UK Biobank (n = 16,691, mean age 55 years; 52.5% women) were also recruited. We used machine learning to
analyse the three-dimensional structure of the left ventricle from cardiac magnetic resonance imaging and build a
tree-based classification of HCM phenotypes. Genotype and mortality risk distributions were projected on the tree.
Results
Carriers of pathogenic or likely pathogenic variants for HCM (P/LP) variants had lower left ventricular mass, but greater
basal septal hypertrophy, with reduced lifespan (mean follow-up 9.9 years) compared to genotype negative individuals
(hazard ratio: 2.66; 95% confidence interval [CI]: 1.42-4.96; P < 0.002). Four main phenotypic branches were identified
using unsupervised learning of three-dimensional shape: 1) non-sarcomeric hypertrophy with co-existing hypertension;
2) diffuse and basal asymmetric hypertrophy associated with outflow tract obstruction; 3) isolated basal hypertrophy; 4)
milder non-obstructive hypertrophy enriched for familial sarcomeric HCM (odds ratio for P/LP variants: 2.18 [95% CI:
1.93-2.28, P = 0.0001]). Polygenic risk for HCM was also associated with different patterns and degrees of disease
expression. The model was generalisable to an independent cohort (trustworthiness M1: 0.86-0.88).
Conclusions
We report a data-driven taxonomy of HCM for identifying groups of patients with similar morphology while preserving a
continuum of disease severity, genetic risk and outcomes. This approach will be of value in understanding the causes
and consequences of disease diversity.
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Introduction
Hypertrophic cardiomyopathy (HCM) is an inherited cardiac condition (prevalence ~1 in 500) related to increased risk of
sudden death and adverse cardiac events, including in early life and middle age, which is associated with genetic and
phenotypic heterogeneity.1 Although traditionally considered a Mendelian disease, polygenic variation is now recognised
as contributing to phenotypic variability in carriers of HCM-causing rare sarcomeric variants.2,3 Sex and environmental
risk factors also interact with disease-associated variants to modify susceptibility.4 HCM-associated rare variants are not
infrequently observed in the general population, but the most prevalent variants cause an attenuated phenotype and
lower risk of adverse events outside the context of familial disease.5 In the more common non-sarcomeric HCM there is
substantial polygenic inheritance and modifiable risk factors have important roles in disease expressivity.3 HCM is also
not a static condition and adverse remodelling and fibrosis can evolve over time.6 Such dynamic endophenotypic diversity
presents challenges for understanding drivers of heterogeneity, identifying patients enriched for pathogenic variants, and
for developing personalized clinical profiles to guide intervention.

Current approaches to improve patient stratification in HCM, using sarcomere variant status and morphological traits,
have described potential functional and anatomic groupings with differing outcomes.7,8 However, such approaches do
not align with the molecular understanding of HCM as a continuum of phenotypic expression influenced by genetic and
environmental modifiers.9 While optimal care requires cardiac imaging to confirm a diagnosis of HCM and characterize
individual pathophysiology,10 there is limited understanding of phenotypic diversity and its relevance to genotype status
and clinical management. Here we apply novel approaches for phenotyping patients using quantitative three dimensional
representations of morphology to map the genotype-phenotype architecture of HCM and to discover a “taxonomy” that
identifies similar groups of patients while preserving a continuous distribution of risk. We propose this as a data-driven
framework for visualizing individual patient profiles in relation to morphological phenotype across a spectrum of sarcom-
eric and non-sarcomeric HCM.

Methods & Materials
Overview
We applied computational techniques to create patient-specific 3D models of the left ventricle from cardiac magnetic res-
onance imaging (CMR) (Fig. 1a). We used these to create a regional model of wall thickness and geometry in genotyped
patients with HCM and in a control population from UK Biobank (UKB) to visualise aggregated genotype-phenotype asso-
ciations. We applied discriminative dimensionality reduction to build a tree-like classification of HCM where phenotypes
and risks are continuously distributed while groups of morphologically similar patients are clustered together. We tested
the validity of our approach by mapping an external cohort of HCM patients of different ancestry to our tree structure and
assessed the similarity of phenotypic distribution between these groups.

HCM participants
In total 710 patients with a clinical diagnosis of HCM, either seen in the inherited cardiomyopathy service or referred for
CMR imaging, were consecutively enrolled into a prospective registry at the National Institute for Health Research (NIHR)
Royal Brompton Hospital Cardiovascular Biobank project between 2009-2015, of whom 436 were included in this study.
All participants provided written informed consent and the study was approved by the National Research Ethics Service
(19/SC/0257). HCM diagnosis was independently adjudicated by a cardiomyopathy specialist based on established clinical
and CMR criteria where all patients met the American Heart Association criteria for diagnosis.10 This was defined as a wall
thickness of 15mm or greater, or 13–14mm if there was a first degree relative with HCM, not explained by another cardiac
or systemic disease-causing abnormal loading conditions, or had disproportionate apical wall thickness and tapering in
keeping with an apical HCM phenotype.11

Patients were excluded from analysis based on age (< 16 years at time of CMR), missing demographic or clinical data,
contraindication to CMR, previous history of septal ablation, cardiac transplantation or myectomy at baseline (Fig. 1b). A
history of hypertension or diabetes was documented, as well as current medication at time of enrolment to the study.
The cohort underwent detailed clinical, imaging and genetic assessment. All patients underwent CMR for assessment of
cardiac chamber volumes and function (1.5T, Siemens Sonata or Avanto, Siemens Medical Systems, Erlangen, Germany).
Variables reported were collected at enrolment to the study. The CMRs selected for analysis were those closest to the
date of enrolment or the first diagnostic study available. Where present, left ventricular outflow tract obstruction (LVOTO)
was confirmed through stress echocardiography. Unrelated Singaporean patients with a diagnosis of HCM (n = 60) were
prospectively recruited from the National Heart Centre Singapore. Patients gave written informed consent to participate
which was approved by the Singhealth Centralised Institutional Review Board (2020/2353) and Singhealth Biobank Re-
search Scientific Advisory Executive Committee (SBRSA 2019/001v1). Singaporean subjects underwent an equivalent CMR
protocol at 1.5T (Aera, Siemens, Erlangen, Germany) or 3T (Ingenia, Philips, Best, Netherlands).

Conventional CMR analysis was undertaken by accredited operators using semi-automated software (CMRtools, Car-
diovascular Imaging Solutions, London, UK).
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UK Biobank participants
The UKB study recruited 500,000 participants aged 40 to 69 years old from across the United Kingdom between 2006 and
2010 (National Research Ethics Service, 11/NW/0382).12 This study was conducted under terms of access approval number
40616. In each case, written informed consent was provided.

A sub-study of UKB invited participants for CMR for assessment of cardiac chamber volumes and function using a
standard protocol (1.5T, Siemens Aera, Siemens Medical Systems, Erlangen, Germany).13 As a reference population, we
selected 16,691 participants that did not meet criteria for left ventricular hypertrophy and were classified as genotype neg-
ative (SARC-NEG) by having no variants in genes that may cause ormimic HCM (see Sequencing and variant categorisation).

Cardiac phenotyping using machine learning
Segmentation of the cine images in both UKB and HCM groups was performed using a deep learning neural network
algorithm developed and optimised in-house. The performance of image annotation using this algorithm is equivalent to
a consensus of expert human readers and achieves sub-pixel accuracy for cardiac segmentation.14 The label maps were
super-resolved and registered to a cardiac atlas enabling consistent quantitative three-dimensional phenotypic analysis
within and between patient groups.15

Myocardial wall thickness wasmeasured along radial line segments connecting the endocardial and epicardial surfaces
perpendicular to the myocardial centreline and excluding trabeculae. Chamber volumes and mass were calculated from
the segmentations according to standard post-processing guidelines.16 Myocardial strain analysis was performed using
non-rigid free-form deformation image registration.17 Trabecular traits were quantified using fractal dimension (FD) anal-
ysis where a higher value indicates more complex trabeculation.18

Sequencing and variant categorisation
Panel sequencing was completed in the HCM patient cohort, as previously described.19 The patients were sequenced
using either a custom SureSelect capture panel targeting genes associated with inherited cardiac conditions or the Illumina
TruSight Cardio panel. Sequencing was performed on either the SOLiD 5500xl platform, or the Illumina HiSeq, MiSeq or
NextSeq platforms. The Singaporean cohort underwent targeted genetic sequencing using the TruSight Cardio panel and
an equivalent pipeline as previously reported.20

Patients were divided into three genetic strata. Patients carrying at least one potentially-causative rare variant (allele
frequency <0.00004)21 in any of 8 sarcomere-encoding genes robustly associated with HCM were considered genotype
positive. These were further stratified into (i) those carrying variants previously confidently classified as pathogenic / likely
pathogenic (SARC-P/LP) in ClinVar, and confirmed on our review, or else curated as P/LP according to ACMG criteria using
the semi-automated CardioClassifier decision support tool22 (n = 107), as previously published,5; and (ii) those carrying
sarcomeric variants of uncertain significance (SARC-VUS), comprising variants in the same 8 genes, that are consistent
with known disease mechanisms and sufficiently rare, but with insufficient evidence to classify robustly as P/LP.23,24

Individuals were classified as genotype negative (SARC-NEG) if they had no rare protein-altering variant (minor allele
frequency <0.001 in the UKB and the Genome Aggregation Database)25 in any of 25 genes that potentially cause HCM
(definitive or moderate evidence according to international curation)26 or cause syndromes that can present with isolated
left ventricular hypertrophy (genocopies).26 In order to generate the most robust set of true genotype negatives, individu-
als carrying a protein-altering variant in any these 25 genes, but that was not sufficiently rare to be considered potentially
causative of monogenic HCM was excluded from the analysis. Further details are given in Supplementary Materials. Com-
mon genetic variation contributes substantially to HCM risk and we also assessed the relationship between phenotype and
polygenic score (PGS) derived from a case-control HCM genome wide association study (GWAS) in the 100,000 Genomes
Project.27

Outcome measures
Data were collected to measure all-cause mortality in the HCM cohort. Outcomes were verified through search of the NHS
Shared Care Records. Patients were followed up for a median of 10.2 years from date of study enrollment.

Statistical analysis and data modelling
Statistical analysis was performed with R (version 4.0.3) and RStudio Server (version 1.2; Boston, MA), unless otherwise
stated. Variables were expressed as percentages if categorical, mean ± standard deviation (SD) if continuous and normal,
and median ± inter-quartile range (IQR) if continuous and non-normal. Baseline anthropometric data were compared by
Kruskal-Wallis tests and, if differences were identified, a Wilcoxon test was used for pairwise comparisons with Benjamini-
Hochberg adjustment for multiple testing. Clustering of clinical data from HCM patients was performed using UMAP (uni-
form manifold approximation and projection).28

The association between genotype and three-dimensional phenotype was assessed using vertex-wise regression mod-
eling, controlling for false discovery, plotting the strength of association between regional wall thickness and shape on
the epicardial surface of the models.5,29 Clustering of subjects by their 3D left ventricular wall thickness, adjusted for age,
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sex and ancestry, was performed through partitioning the shared nearest neighbour (SNN) graph30 with the multilevel re-
finement Leiden algorithm.31 The SNN graph and its partitions were determined using the functions available in Seurat.32

The clusters were visually inspected by UMAP projection and their stability was assessed through bootstrapping using
fpc.33 We used DDRTree (discriminative dimensionality reduction via learning a tree) to project the 3D left ventricular wall
thickness into a 2D tree structure to visualise the distribution of HCM phenotypes.34,35

The predictive power of the DDRTree mapping for P/LP genotype was tested with a generalized additive model (GAM)
fitted on the tree coordinates, using a 10-fold cross validation repeated 3 times. Survival probability to median observed
age was estimated with a Cox proportional hazards model fitted on the cubic spline of tree coordinates of each individual
and their relative position in the tree. Association between the DDRTree mapping and polygenic risk score was assessed
with a logistic regression GAMmodel using the subjects’ coordinates as independent variables and the binarized polygenic
risk score (thresholded at median) as outcome. The predictions were obtained using a 10-fold cross validation.

The primary survival analysis was performed in individuals from the HCM cohort with chronological age as time-scale
and adjusting for genetic sex and ancestry (dichotomised by white European ancestry). Participants with SARC-P/LP vari-
ants were compared with pooled participants without variants and with SARC-VUS carriers. Proportional hazards assump-
tion as assessed using Schoenfeld residuals was not violated.

Results
Participants
The HCM cohort consisted of 436 eligible patients of whom 287 (66.0%) were classified as SARC-NEG, 41 (9.4%) as SARC-
VUS and 107 (24.6%) as SARC-P/LP. Most were European (n = 352; 80.1%) and men (n = 310; 71.1%). Patient demographics
and CMR-derived measurements are stratified by genotype in Table 1. There were 16,691 UKB participants (Supplemental
Table 5) selected for the absence of HCM, and the absence of any rare variant in a gene associated with HCM or a potential
genocopy (European = 14,683, 87.9%; women 52.5%, age 55 ± 7.5 years). Of the 60 Singaporean HCM patients (Chinese =
52, 86.7%; women 11.7%; median age 58.9, IQR: 46-66), 28 (46.6%) were classified as SARC-NEG, 16 (26.7%) as SARC-VUS
and 16 (26.7%) as SARC-P/LP (Supplemental Table 6).

Phenotypes associated with rare sarcomeric variants
Unsupervised analysis of patients’ demographic and anthropometric data, clinical characteristics, and cardiac volumes
(Supplemental Table 9) was performed using UMAP. Three clusters were identified that were enriched for the following
features (Supplemental Fig. 8): i) females with low BSA, moderate hypertrophy and hypertension; ii) males with high BSA,
more severe hypertrophy, and hypertension; and iii) younger patients with a family history of HCM, no cardiovascular risk
factors, and enrichment for SARC-P/LP variants.

HCM patients with SARC-P/LP variants had lower LV mass (173 ± 73.2 g vs 193 ± 69.1 g, P = 0.005) and less concentric
remodelling (1.3 ± 0.6 g/ml vs 1.5 ± 0.5 g/ml, P < 0.001) than SARC-NEG HCM patients. SARC-P/LP patients also showed
increased trabeculation (fractal dimension: 1.22 ± 0.04 vs 1.20 ± 0.04, P = 0.001) compared to SARC-NEG patients. SARC-
NEG HCM patients had a higher prevalence of drug-controlled hypertension than patients with SARC-P/LP variants (48.3%
vs 21.5%, P < 0.001). Differences in end diastolic and end systolic volumes were not significant.

Three dimensional analysis of cardiac geometry showed that patients with SARC-P/LP variants had a global increase in
wall thickness compared to healthy controls predominantly affecting the basal septum (Fig. 2a and b). Within the HCM
cohort, SARC-P/LP patients had lower wall thickness across the LV, apart from the basal septum, when compared to those
who were SARC-NEG. Although global cavity volumes were similar between genotypes, the three dimensional models
showed smaller ventricular cavity size in SARC-NEG individuals in all but the basal septal segments (Fig. 2c, d and e). Taken
together these observations suggest that modest global differences in mass and volume between HCM genotypes mask
stronger regional variations in geometry and wall thickness.

Taxonomy of HCMmorphology
Individual three dimensional representations of left ventricular morphology were downsampled to form a mesh of 470
vertices points per cardiac phase. DDRtree was used to identify clusters of similar left ventricular geometries and project
the data onto a taxonomy where distal branches have more extreme phenotypes and the centre of the tree contains
less differentiated phenotypes.35 Modelling was performed at both end diastole and end systole to capture structural
and functional traits. Significantly associated continuous variables, genotypes, and outcomes are shown for each branch.
Internal validation resulted in a good stability of the partitions (Supplemental Tables 1 and 2).

The mapping identified four main phenotypic branches, (Fig. 3, Supplemental Figs. 1 and 4). Variation between these
was characterised by comparing average left ventricular morphology in the respective branches to all other patients, and
assessing prevalence of genotype status, as well as other imaging and clinical features. Taken together, enriched char-
acteristics in each branch are summarised as: 1) non-sarcomeric mid to apical hypertrophy associated with controlled
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hypertension and fibrosis; 2) diffuse and basal asymmetric hypertrophy associated with outflow tract obstruction; 3) iso-
lated basal hypertrophy; 4)milder non-obstructive hypertrophy enriched for familial sarcomeric HCM. An additional branch
with an undifferentiated pattern of hypertrophy was also identified.

We then explored potential causal processes underlying phenotypic heterogeneity and the relationship to outcomes.
Phenotypic variation and associated risks can be visualised as a continuous distribution across the whole taxonomic tree,
which we show for genotype status, PGS and survival. (Fig. 3B), with end systolic morphology having the greater overall
discrimination (Supplemental Table 3 and Supplemental Fig. 5). The tree structure shows how common and rare variants
associated with HCM are differentially enriched in the morphological branches and also contribute to a continuous degree
of phenotypic expression. For instance, there is enrichment of P/LP, decreased survival, and lower left ventricular mass
present on the right side of the tree (branch 4). The median odds ratio for carrying P/LP variants in this branch compared
to branch 1 is 2.18 (95% CI: 1.93-2.28, P = 0.0001). A higher HCM PGS is associated with SARC-NEG status (P = 0.0012)
compared to SARC-P/LP. The taxonomy shows a continuous relationship between the predicted probability of high PGS
and individual coordinates on the tree as shown in Fig. 3B. Using a logistic regression model with tree coordinates as
independent variables we observed an association between the vertical axis of the tree and PGS (P = 0.0025) showing
lower PGS in more differentiated isolated basal LVH and LVOTO-enriched phenotypes.

External validation
Newpatientswith imaging can bemapped to coordinates in the tree structure to visualise individual risk andmorphological
differentiation. We mapped an independent external cohort of HCM patients with CMR imaging and assessed similarity of
phenotypic patterns. Predictive random forest models for the 2 tree coordinates were tested on the development cohort
with 10-fold cross-validation, repeated 3 times. Both models had good performances (ED: 𝑅2

𝑥
= 0.978, 𝑅2

𝑦
= 0.952, ES: 𝑅2

𝑥

= 0.974, 𝑅2
𝑦
= 0.897, for x and y coordinates, respectively). These models were used to predict the tree coordinates of the

external HCM cases from their wall thickness values adjusted for sex and age at scan.
Visual inspection of the predicted tree coordinates showed no outliers, with the points falling close to the tree structure

(Supplemental Fig. 6). Branch labels were assigned from the nearest neighbor in the development cohort (Supplemental
Table 4). This preserved the faithfulness of the mapping, as confirmed by the estimated "trustworthiness"36 (see Supple-
mentary material) (M1 - ED range: 0.83-0.87, ES range: 0.86-0.88). No significant difference was found in the distribution
of correlations within two cohorts supporting consistency between their projections on the tree (Supplemental Fig. 7)

Clinical outcomes
All-cause mortality was available for all 436 HCM cases (Supplementary Fig. 9) and was found to be 17.4% across the entire
cohort. By the end of follow up, 14 (13.1%) of the SARC-P/LP, 7 (17.1%) of the SARC-VUS and 55 (19.1%) of the SARC-NEG
patients had died. The SARC-P/LP patients were younger at recruitment (median age 49 years, IQR: 38-61); P < 0.001)
than both SARC-VUS (median age 61 years, IQR 52-67) and SARC-NEG patients (median age 62 years, IQR: 53-71). In an
unadjusted Cox model, SARC-P/LP patients had increased risk of death (n = 395, HR: 2.66; 95% CI: 1.42-4.96; P = 0.002;
Kaplan-Meier plot in Supplementary Fig. 9) relative to SARC-NEG participants and shorter lifespan (median age at death 67
years, IQR: 57-70 vs 76 years, IQR: 68-84; P = 0.0003). This relationship was also independent of genetic sex and ancestry
in a multivariable analysis (Supplemental Tables 7 and 8).

Discussion
Hypertrophic cardiomyopathy is characterised by phenotypic heterogeneity, which presents challenges for developing per-
sonalised profiles of dynamic disease status to guide patient management. Conventional morphological descriptions of
hypertrophic remodelling have relied on two dimensional appearances with a diverse range of subjective shape classifica-
tions proposed with varying genotype enrichment.37,38 Here we report a systematic study of three dimensional genotype-
phenotype associations in sarcomeric and non-sarcomeric HCM, and identify natural groupings of morphologically sim-
ilar patients while preserving the continuous distribution of phenotypic severity, clinical risk and enrichment for HCM-
associated rare variants and common variant modifiers.

The classification of HCM morphology has relied on recognising regional distributions and shape features of left ven-
tricular hypertrophy, initially with echocardiography andmore recently using CMR, with between 6 to 12 different patterns
described.39–41 Broadly, these comprise basal (sigmoid), mid-ventricular (reverse septal curve), apical, and diffuse patterns,
as well as mixed phenotypes. Within these heterogeneous endophenotypes, those with SARC-P/LP variants aremore likely
to have reverse septal curvemorphology with fibrosis, and those who are SARC-NEGmore likely to have isolated basal sep-
tal hypertrophy with obstruction but less fibrosis.7 While such approaches either associate imaging phenotypes that share
common features or stratify by genotype status, they do not objectively classify the spectrum of phenotypic expression
that is characteristic of HCM. Advances in image analysis have allowed detailed 3Dmodels of ventricular shape andmotion
to be extracted from routine CMR that possess spatial consistency within and between cohorts, allowing precise aggrega-
tion of phenotypic data in diverse populations.5 This enables regional genotype-phenotype associations to be made by
variant status and allows data-driven approaches for unsupervised learning of complex traits.
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In our study, SARC-NEG HCM patients had increased LV mass compared to SARC-P/LP patients but this masked dif-
ferences in the patterns of hypertrophy between genotypes. Three dimensional genotype-phenotype mapping showed
that SARC-P/LP patients had lower wall thickness across most of the left ventricle, apart from the basal septum, when
compared to HCM patients who were SARC-NEG. Relative to healthy controls there was diffuse hypertrophy that was most
marked in the basal septum. Cross sections of the left ventricle show a generally smaller end diastolic cavity in SARC-P/LP
patients compared to controls, especially in the long axis direction, while SARC-NEG HCM patients have a similar cavity size
to controls but showmore diffuse hypertrophy. Differences in global volumes andmass between genotypes are therefore
the net effect of opposing regional changes in the distribution and degree of hypertrophy.

To reconstruct trajectories of how HCM phenotypes transition towards differentiated states we applied a machine
learning approach, using reversed graph embedding, to learn branch points that define significant divergences in 3D mor-
phology that requires no a priori information about the genes or environment that modify disease biology.42 The resulting
tree structure provides a two-dimensional representation of complex phenotypic variation that can be generalised to di-
verse datasets,35 and addresses potential sources of bias and subjectivity in human visual assessment of HCM.43 The
tree maps disease trajectories from undifferentiated states in the centre to more characteristic morphologies in the distal
branches. This provides a visual representation of how phenotypic variation translates to variation in genetic enrichment
and survival. We also demonstrate how new patients can be mapped to a position in the tree, facilitating individualised
patient stratification.

The interaction between hypertension and HCM presents significant diagnostic challenges, including when it should
be considered a co-morbid condition rather than the underlying cause of hypertrophy.10 The phenotypic branch with the
most severe degree of hypertrophy (1) was enriched for controlled hypertension and comprised predominately SARC-NEG
patients. The pattern of hypertrophy predominantly affects the mid-ventricle to apex in this branch and may include the
phenotypic spectrum of “apical” HCM.44 Non-sarcomeric HCM is partly an exaggerated response to diastolic hypertension
in genetically susceptible individuals and this phenotype shares features of hypertensive patients without HCM.3,45 Late
enhancement burden was highest in this group, suggesting that enrichment for replacement fibrosis is associated with
more severe manifestations of HCM despite a lower prevalence of pathogenic variants.46 Recognition of these patients’
phenotype at the point of diagnosis could help to identify non-sarcomeric HCM cases associated with modifiable risk
factors. The other common phenotypic branch (4) hadmilder hypertrophy, a low prevalence of hypertension and themost
enrichment for P/LP variants. In common with previous registry studies, we also found that P/LP variants to be predictors
of mortality,47 and this non-obstructive HCM phenotype enriched for familial disease and sarcomeric variants, had the
poorest outcomewith risk increasing for patients expressing themost differentiated phenotype in the tree structure. Early
prediction of molecular sub-types of HCM could be of value when considering emerging therapies that act upstream of
the underlying genetic cause.48

Left ventricular outflow tract obstruction (LVOTO) is independently associated with adverse HCM-related outcomes,49

may benefit from surgical intervention, and is amenable to treatment with myosin inhibitors.50 It is associated with sep-
tal hypertrophy and ventricular remodelling,51 although it may also occur in milder cases of HCM.52 We found that the
phenotype in branch (2) with pronounced mid to basal asymmetric hypertrophy in a diffusely hypertrophic left ventricle
was strongly enriched for stress-confirmed LVOTO and hyperdynamic function. As this phenotype becomes more differ-
entiated from an average HCM morphology the survival probability decreases. The last main group (3) in the taxonomy
is associated with isolated hypertrophy of the basal septum with relatively mild left ventricular hypertrophy elsewhere. A
similar benign phenotype has been recognised as part of normal aging whose appearances may overlap with HCM.53 We
also found this phenotype to be associated with better survival and a low probability of P/LP variants.

Our approach differs from previous studies describing phenotypic patterns in HCMs as we adjust for age and sex, which
affect both disease physiology and outcomes, and so the classification is independent of these risk factors.54 While our
approach also aims to identify groups of similar morphology it does this using a data-driven approach without human
subjectivity and maintains a continuum of disease expression and risk factors across the taxonomic tree. We also identify
potential causal modifiers of disease expression with common variants contributing to the differentiation and severity of
phenotypes in addition to their reported role as risk markers for survival and adverse events in HCM.27 The current model
is not intended to guide treatment at present, but offers an approach to understand a complex genotype-phenotype archi-
tecture in a comprehensible model for comparison of heterogeneous disease states.35 We also show how unseen external
data can be readily mapped to coordinates in the tree to explore personal dynamic risk profiles. Multiparametric imaging-
based models offer more accurate prediction of composite endpoints in HCM compared to conventional risk factors,55

and machine learning models using conventional imaging parameters have better discrimination of HCM genotype than
clinical scores.56 The full value of these concepts could be realised across diverse disease states, including integration of
imaging with multi-omic profiles, to provide a comprehensive phenotypic and molecular classification of cardiomyopathy.

This study has limitations. TheHCMbiobank recruited consecutive patientswith a clinical diagnosis froma cardiomyopa-
thy clinic or undergoing CMR, and somay be less enriched for familial, symptomatic or more severe phenotypes compared
to other cohorts. This reflects the spectrum of disease seen in clinical practice but may account for the relatively low event
rate observed. Most of the development cohort was European, although we found that the mapping could generalise well
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to other ancestries. We used CMR as this is regarded as the gold standard for phenotyping, but it is less widely available
than echocardiography.

In summary, we provide a data-driven taxonomy for understanding dynamic phenotypic diversity in HCM that reflects
a continuum of disease, genetic risk and outcomes. A systematic representation HCM diversity onto which new patients
can be mapped has the potential to enable more individualised assessment, stratification and treatment strategies.
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549 patients met inclusion 
criteria

543 patients with
matching genotypes

436 patients
288 SARC-NEG
41 SARC-VUS

107 SARC-P/LP

563 HCM patients with 
CMRs

710 HCM patients

147 excluded
No matching CMR or
missing demographics

14 excluded
1 CMR preceded diagnosis
13 septal ablation or transplant

6 excluded
No sequencing

107 excluded
Variants in HCM-relevant genes, 
but not reportable as VUS/P/LP 
for sarcomeric HCM
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Label map
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3D phenotypic mapping
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tree-based clustering

Shape refinement Atlas registration

Short axis cine imaging

Figure 1. Study flowchart. a. Details of the analysis pipeline using segmentations of cardiac magnetic resonance cine imaging to build a 3D model of phenotypic
variation in UK Biobank and HCM participants. b. Details of patients with hypertrophic cardiomyopathy (HCM) recruited to the study and reasons for exclusion. CMR,
cardiac magnetic resonance; ED, end diastole; ES, end systole; SARC-NEG, those without variants in genes that may cause or mimic HCM; SARC-P/LP, pathogenic or likely
pathogenic sarcomeric variants; SARC-VUS, variants of uncertain significance; T, last cardiac phase.
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Figure 2. Genotype-phenotype associations in hypertrophic cardiomyopathy. a. and c. Dot and boxplots of left ventricular (LV) mass and end-diastolic volume in
patients with hypertrophic cardiomyopathy stratified by genotype (SARC-NEG, those without variants in genes that may cause or mimic HCM; SARC-P/LP, pathogenic or
likely pathogenic sarcomeric variants; SARC-VUS, variants of uncertain significance) b. and d. 3-dimensional modelling of left ventricular geometry with vertex-wise
standardised beta-coefficients projected on the epicardial surface. These show the extent of association between genotype and wall thickness or surface-to-surface
distance (comparing regional shape change) for different comparisons, adjusting for the covariates of age, sex and race. Yellow contour lines show significant regions (P <
0.05) after multiple testing correction. Left ventricular projections are septal (left) and anterior (right). e. Long axis cross sections showing the myocardial outline in red
for each genotype compared to control participants in UK Biobank (dashed outline). *P ≤ 0.05; **P ≤ 0.01; ns = not significant.
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Figure 3. Phenotypic tree of HCMmorphology. a. Three dimensional models of the left ventricle in patients with HCM were reduced to a two-dimensional tree
structure where each point represents one individual. The tree maps undifferentiated states in the centre to more characteristic morphologies in the distal branches
while preserving a continuous stratification. For each branch we show a wall thickness shape model at end systole where the colours represent beta coefficients for the
comparison between branches. Corresponding features at end diastole are shown in Supplementary Fig. 1. Branch 5 showed an undifferentiated mixed phenotype. b.
Each participant in the tree labelled by probability of SARC-P/LP genotype, polygenic score (PGS) for HCM, and predicted survival probability at median age. c. Continuous
and discrete phenotypic variables found to be significantly associated to at least one branch. For late gadolinium enhancement, labels are as follows: 1: None, 2: Minimal,
3: Moderate and 4: Severe. The significance for the enrichment of discrete variables is reported within the bars. ACE, Angiotensin-converting enzyme inhibitors; ARB,
Angiotensin receptor blockers; LVOTO, Left ventricular outflow tract obstruction; P/LP, pathogenic or likely pathogenic sarcomeric variants; SV, stroke volume; LGE, late
gadolinium enhancement. Only the significant pairs are reported with the symbols: *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001, n = 436.
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Table 1. Patient characteristics and CMR-derived measurements by genotype. Mean ± standard deviation. P value only shown if nominally significant in at least one
comparison. BSA, body surface area; concentricity, (left ventricular mass / left ventricular end-diastolic volume); CMR, cardiac magnetic resonance imaging; DBP, diastolic
blood pressure; EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; FD, fractal dimension; HCM, hypertrophic cardiomyopathy; LA, left atrial; LV,
left ventricular; LVM, left ventricular mass; LVMI, left ventricular mass index (LVM/BMI); peak diastolic strain rate, PDSR; RA, right atrial; RV, right ventricular; SBP, systolic
blood pressure; WT, wall thickness. *Medication for cholesterol, blood pressure, diabetes.

SARC-NEG
(n = 288)

SARC-VUS
(n = 41)

SARC-P/LP
(n = 107)

SARC-NEG vs -P/LP SARC-NEG vs -VUS SARC-VUS vs P/LP

Female (%) 83 (28.8) 11 (26.8) 32 (30.0)
Age at scan, y 60.5 ± 13.4 59.9 ± 11.4 47.9 ± 14.2 <0.001 0.61 <0.001
White (n, % of total) 230 (79.9) 32 (78.0) 90 (84.1)
BSA, m2 2.0 ± 0.23 1.9 + 0.19 2.0 ± 0.4
LVEDV, ml 136.1 ± 35.8 137.3 ± 27.9 139.3 ± 37.9
LVESV, ml 35.9 ± 18.5 42.5 ± 18.4 38.7 ± 17.9 0.06 0.03 0.253
LVEF, ml 74.4 ± 8.2 69.9 ± 8.3 71.8 ± 11.2 0.04 0.003 0.1
LVM, g 192.7 ± 69.1 186.6 ± 48.9 172.8 ± 73.2 0.005 0.85 0.03
LVMI, g/m2 98 ± 30.3 97.5 ± 23.1 88.2 ± 33.6 <0.001 0.6 0.005
LV maximum WT, mm 18.4 ± 4.4 18.8 ± 3.5 19.3 ± 5.9
Mean apical FD 1.20 ± 0.05 1.22 ± 0.06 1.21 ± 0.05
Mean basal FD 1.20 ± 0.05 1.22 ± 0.05 1.22 ± 0.05 <0.001 0.106 0.009
Mean global FD 1.2 ± 0.04 1.22 ± 0.05 1.22 ± 0.04 0.001 0.008 0.948
LV global radial strain, % 42.0 ± 11.80 38.0 ± 10.8 41.4 ± 11.39
LV global circumferential strain, % -19.4 ± 4.03 -17.4 ± 3.38 -19.12 ± 4.06
LV radial PDSR -8.81 ± 2.96 -8.29 ± 2.86 -9.41 ± 2.70
LV concentricity g/ml 1.5 ± 0.5 1.4 ± 0.4 1.3 ± 0.6 <0.001 0.6 0.04
Heart rate, min-1 64.4 ± 24.4 62.3 ± 20.5 63.5 ± 23.1
Hypertension (n, % of total) 139 (48.3) 13 (31.7) 23 (21.5) <0.001 0.085 0.129
On medication* (n, % of total) 225 (78.1) 27 (65.9) 53 (49.5)
SBP, mmHg 122.4 ± 42.8 123.5 ± 32.1 116.7 ± 41.2 0.02 0.39 0.39
DBP, mmHg 69.6 ± 24.5 72.0 ± 19.7 67.8 ± 25.6
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