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Abstract

The semi-resolved Computational Fluid Dynamics coupled with the Discrete Element

Method (CFD-DEM) method has emerged as approach to modeling particle-fluid

interactions in granular materials with high particle size ratios. However, challenges

arise from conflicting requirements regarding the CFD grid size, which must ade-

quately resolve fluid flow in the pore space while maintaining a physically meaningful

porosity field. This study addresses these challenges by introducing a two-grid map-

ping approach. Initially, the porosity field associated with fine particles is estimated

using a coarse CFD grid, which is then mapped to a dynamically refined grid. To

ensure conservation of total solid volume, a volume compensation procedure is

implemented. The proposed method has been rigorously verified using benchmark

cases, showing its high computational efficiency and accurate handling of complex

porosity calculations near the surface of coarse particles. Moreover, the previously

unreported impact of the empirical drag correlation on fluid-particle force calcula-

tions for both coarse and fine particles has been revealed.
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1 | INTRODUCTION

Fluid-particle flows are common in various industrial sectors, and gain-

ing insight into their behavior is crucial for developing new downstream

processes and formulations,1,2 as well as optimizing existing ones. Addi-

tionally, comprehending the coupled response of fluid-particle systems

is vital in geomechanics applications, particularly in cases such as inter-

nal erosion,3,4 where the overall system deformation may be relatively

small. Computational Fluid Dynamics coupled with the Discrete Ele-

ment Method (CFD-DEM) is a numerical approach that can simulate

two-phase fluid-particle systems. It is a Lagrangian-Eulerian approach,5,6

in which the fluid is modeled as a continuum phase and the particle

phase is treated as a series of discrete elements; the simulation results

give particle-scale resolution as the trajectory of each particle is traced.

CFD-DEM is usually divided into two categories, namely resolved and

unresolved, according to the resolution of the CFD solver. Resolved

CFD-DEM treats the particle surfaces as no-slip boundary conditions

and the immersed boundary method (IBM)7,8 or fictitious domain

method9,10 can be used to simulate the fluid flow field, and thus a very

fine CFD mesh should be used. In contrast, unresolved CFD-DEM uses

the homogenized Navier–Stokes equations, the presence of the parti-

cles is represented by the porosity* or solids fraction, so that the

particle-fluid interface is not resolved, and a minimum cell size of

1.6–3.0 times the particle diameter is required in the simulations.11,12

In the case of bidisperse, bimodal, or gap-graded particle systems

with a relatively large size ratio, there are technical challenges

*In some publications it is also called “void fraction” or “voidage.”
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associated with use of both unresolved and resolved methods. If the

unresolved method is applied, the first challenge is to select a suitable

drag force expression to determine the fluid-particle interaction force.

While empirical models for mono-disperse particles13,14 and poly-disperse

systems15 have been used in many studies of the segregation of poly-

disperse particle systems in fluidised beds, their reliability is questionable

for large size ratios. The second issue in applying the method is determin-

ing the porosity (or solids fraction), which is also an important parameter

required to calculate the drag force. It is difficult to calculate this accu-

rately, or to obtain a representative value, when the CFD mesh size

approaches the size of the largest particle diameter.16 These problems

become more pronounced the larger the particle size ratio of the system.

While resolved CFD-DEM implementations do not require specification

of a drag model, this approach has to use a mesh with a grid size that is

less than 1=10 of the diameter of the smallest particle in the system.16

This fine resolution requirement significantly increases the computa-

tional cost and renders resolved CFD-DEM simulations unsuitable for

most industrial applications. Some measures have been applied to

address this issue. For example, Tsuji et al.17 proposed a fictitious par-

ticles method in which large particles are made up of smaller fictitious

particles; a numerical calibration procedure is required to determine

the fictitious particle size and the fictitious volume fraction.

A recently proposed compromise solution is semi-resolved CFD-

DEM,18,19 in which the coarse particle and fine particle fractions are

simulated using resolved and unresolved schemes, respectively. Note

that the term “semi-resolved” CFD-DEM may also be used to refer to

a method to smooth out the porosity field as in the works of Wang

et al.20,21 and Xie et al.22 Here, when the term “semi-resolved CFD-

DEM” is used we refer to a formulation in which the empirical drag

model is applied to determine the fluid-particle interaction force for

the fine particles only, while the fluid-particle interaction forces

for the coarse particles are calculated analytically based on the fluid

flow field. In this way the predictive capacity is improved compared to

the unresolved CFD-DEM and the restriction on particle size ratio is

removed. However, determining the porosity field for the calculations

associated with the finer particles is not straightforward due to the

discrepancy between the required CFD mesh sizes for the unresolved

and resolved methods. In other words, the refined mesh applied to

resolve the flow around the coarse particles may yield nonphysical

porosity values for the fine particle domain. Currently, a solution for

this issue reported in the literature is applying the Gaussian-kernel

weighting function to distribute the volume of a single particle to the

adjacent CFD cells.19,23 This approach was originally proposed for

unresolved CFD-DEM24 and recently has been optimized for the poly-

disperse systems.25 However, the width of the kernel is arbitrarily

determined, and is normally far greater than the particle size, to

ensure the kernel magnitude does not vary significantly over the parti-

cle volume.26,27 Moreover, there are difficulties in dealing with poros-

ity calculations near walls (and near coarse particle surfaces), making

them inflexible. A recent study by Xie et al.22 proposed a hybrid CFD-

DEM solver that uses the fictitious domain and unresolved methods

to effectively simulate fluid-particle interactions across a broad spec-

trum of grid-to-particle size ratios; this is an improved semi-resolved

method. However, the method also includes a porosity model that

employs a Gaussian kernel function. Notably, Xie et al.22 differed from

Yang et al.19 in that they only applied the kernel-based porosity model

to medium-sized particles.

This article presents a two-grid semi-resolved CFD-DEM solver,

in which a static mesh and a refined mesh are overlain. The static

mesh is introduced to calculate the porosity field for the fine particles,

while the refined mesh (refined from the static mesh) is used to esti-

mate the porosity field for the coarse particles. This method is

inspired by the two-grid approaches that have been applied in unre-

solved CFD-DEM simulations,11,28,29 which have demonstrated the

flexibility of a two-grid formulation. The proposed method is verified

using existing simulation results obtained using a resolved CFD-DEM

method.16 The effects of mesh refinement level and the empirical drag

force model adopted on the simulation accuracy are explored.

The paper is organized as follows: in Section 2, the formulation of

the semi-resolved CFD-DEM is presented; in Section 3, the porosity cal-

culation method using two mesh grids is shown; the approach to calculate

and postprocess the fluid-particle interaction forces is given in Section 4,

followed by an introduction to the simulation setup in Section 5. The per-

formance of the proposed solver is evaluated in terms of the solid volume

conservation, accuracy of the fluid-particle interaction force prediction,

etc. in Section 6; Finally, the conclusions and the aspects for future

improvement are laid out in Section 7.

2 | GOVERNING EQUATIONS FOR THE
SEMI-RESOLVED CFD-DEM

The governing equations of the semi-resolved solver can be derived

by combining the governing equations of the resolved and unresolved

solvers. First, we briefly introduce the schemes adopted in each of

these two solvers.

2.1 | Resolved solver

The CFD approach used in the resolved solver is known as the fictitious

domain method,30,31 which is the general form of the IBM. The success

of this approach hinges on the ability to enforce a no-slip boundary condi-

tion on the particle surface; this can be achieved through various methods

such as correcting the velocity field or applying a momentum source term.

Additionally, the flow field within the solid object is also solved. The equa-

tions for the resolved solver assume incompressible fluid flow. The conti-

nuity and momentum equations are

r�uf ¼0, ð1Þ

ρf
∂uf
∂t

þρfðuf �rÞuf ¼�rpþμΔuf þρfg, ð2Þ

where ρf and uf are the density and velocity of the fluid, respectively,

and g is acceleration due to gravity. The most important condition is
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that the following no-slip conditions should be fulfilled at the fluid-

particle interfaces:

uf ¼ul, inΩp, ð3Þ

where Ωp is the region occupied by the particle or the so-called fictitious

domain, and ul is the local particle velocity in a CFD cell, given by:

ul ¼upþωp� r inΩp, ð4Þ

where up and ωp are the translational and the angular velocity of the

particle.

A resolved solver has been implemented in the official release in

CFDEM,32 with details provided in Reference 10. The procedure to

implement the no-slip boundary is relatively complicated: the fluid veloc-

ity in the region occupied by the coarse particles is corrected directly

based on the particle velocity field (ul) and the gradient of a correction

factor ψ , from which the resulting velocity field is calculated as:

uf ¼ul�rψ : ð5Þ

In order to make uf divergence-free, that is, r�uf ¼0, ψ fulfills the fol-

lowing condition:

Δψ ¼rul, ð6Þ

In addition to correcting the velocity field, Hager10 also suggested expand-

ing the pressure p by the term ∂ψ
∂t to match the momentum equation.

However, the algorithms mentioned above are not capable of

achieving no-slip boundary conditions. In fact, Equation (5) shows

that there is a noticeable velocity difference between the fluid and

particles within the fictitious domain (Ωp). It has been found that a

good solution to overcome this limitation is direct application of the

body force term Sresopf , estimated based on the velocity difference

between the particle and fluid, to achieve a no-slip boundary condi-

tion. This approach has been successfully employed in previous stud-

ies, such as References 9 and 33 The momentum equation

(Equation 2) is rewritten as

ρf
∂uf
∂t

þρfðuf �rÞuf ¼�rpþμΔuf �Sresopf þρfg, ð7Þ

In order to get the source term Sresopf , ~uf should be obtained firstly

without considering the presence of the particles by solving

ρf
∂~uf
∂t

þρfð~uf �rÞ~uf ¼�rpþμΔ~uf þρfg, ð8Þ

Then Sresopf is calculated by

Sresopf ¼ð1� εresof Þðuresop � ~ufÞ
ΔtCFD

, ð9Þ

Sresopf is nonzero only in regions occupied by particles (represented by

a porosity εresof <1) and thus eliminates the need for explicit

calculation of the Lagrangian multiplier. We verify this method in

Section 6.1.

2.2 | Unresolved solver

The equations describing the behavior of the fluid phase in the unre-

solved solver use the volume averaged Navier–Stokes equations, which

were originally derived by Anderson and Jackson.34 The presence of the

particle phase in the fluid is represented by a porosity field (εunresof ), and

empirical drag models are employed to calculate the fluid-particle

force. The continuity and momentum equations5,6 are written as

ρf
∂εunresof

∂t
þρfr�ðεunresof ufÞ¼0: ð10Þ

ρf
∂ðεunresof ufÞ

∂t
þρfðεunresof uf �rÞuf

¼�εunresof rpþεunresof μΔuf �Sunresopf þ εunresof ρfg:
ð11Þ

The momentum source term, Sunresopf is estimated as

Sunresopf ¼Gpfuf �Gpfu
unreso
s , ð12Þ

where Gpf is the momentum source coefficient. Gpf is calculated as

the sum of the drag forces (obtained through empirical drag models)

of the particles within a CFD cell, as detailed below.

The porosity field exists in both the resolved and unresolved

solvers and it is defined as the volume fraction of the fluid (gas or liq-

uid) in a CFD cell as follows:

εf ¼1� Vs

Vcell
, ð13Þ

where Vs and Vcell are the volume of solid material and the CFD grid

cell, respectively. Figure 1 is a schematic diagram of the porosity fields

(εresof and εunresof ). The value of εresof is 0 (inside the particle) or 1 (out-

side the particle). The porosity is calculated for each cell in the CFD

mesh. As one CFD cell contains multiple particles, the value of εunresof

of the mono-disperse particles is estimated to be in the range of

½0:37,1:0� (based upon the data in Reference 35).

Along with the calculation of the εunresof in the unresolved solver,

the contribution of particle i to the total solid volume in a specific

CFD cell j is also recorded and expressed as a weight term Wi,j ¼ Vp,i,j

Vs,tot,j
,

which will be used to interpolate the particle proprieties to the CFD

cells. This is the reason that the porosity calculation is also called

“averaging” or “interpolation.”18 The interpolation scheme that maps

the solid particle velocities to the CFD cells is given by

us,j ¼
Xn
i¼1

Wi,jup,i: ð14Þ

The momentum source coefficient Gpf,j associated with the particles

in Equation (12) is obtained by interpolation to give:

CHE ET AL. 3 of 17
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Gpf,j ¼ jPn
i¼1Fd,iVp,i,jj

Vcell,jVp,ijuf �us,jj : ð15Þ

2.3 | Semi-resolved solver

The idea behind the semi-resolved solver is to extend the governing

equation of the unresolved solver with a source term, Scoarsepf , as in the

resolved solver, to give it the functionality of a resolved solver.

The resulting equations may then be transformed into resolved or

unresolved formats, depending on whether coarse or fine particles

occupy the regions. This is feasible since coarse and fine particles

cannot physically coexist in the same area. Referring to the above

equations, the governing equations for the fluid phase in a semi-

resolved solver (where flow around the coarse particles is resolved

and and flow around the fine particles is not resolved) can be

expressed as follows:

ρf
∂εfinef

∂t
þρfr�ðεfinef ufÞ¼0: ð16Þ

ρf
∂εfinef uf

∂t
þρfðεfinef uf �rÞuf ¼�εfinef rpþεfinef μΔuf �Sfinepf þεfinef ρfg

�Scoarsepf

ð17Þ

The momentum contribution from the fine particles (Sfinepf ) is deter-

mined from the drag forces on the particles:

Sfinepf ¼Gpfuf �Gpfu
fine
s : ð18Þ

Gpf is a coefficient determined by the drag force (Fd,i) on the particles,

which is estimated by the empirical correlations. The contribution of

the coarse particles to the momentum, Scoarsepf , is calculated according

to9,33 as

Scoarsepf ¼ εfinef ð1�εcoarsef Þðucoarse
p � ~ufÞ

ΔtCFD
, ð19Þ

where ~uf is an intermediate velocity field determined without consid-

ering the immersed (coarse) particles.

The governing equations for the DEM solver are based on

Newton's second law of motion and involve calculating the net

force acting on each particle in the system, taking into account

both contact and noncontact (fluid-particle interaction) forces.

The translational and angular velocity of the particle is calcu-

lated by

dup,i

dt
¼
XNpp

j¼1

ðFc,ijÞþFrp,iþFr�τ,iþFd,iþmp,ig, ð20Þ

Ii
dωp,i

dt
¼
XNpp

j¼1

ðFc,ij�ðRinÞÞþMpf,it�n, ð21Þ

where up,i is the velocity of particle i, Npp is the number of adjacent

particles, Frp,i, Fr�τ,i, and Fd,i are the pressure gradient force, viscous

force and the drag force, respectively, Fc,ij is the inter-particle contact

force which is calculated by the Hertz–Mindlin model.36,37

F IGURE 1 Schematic diagram of the
porosity fields in (A) resolved and
(B) unresolved computational fluid dynamics
coupled with the discrete element method
(CFD-DEM) solvers.
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3 | TWO-GRID POROSITY METHOD

3.1 | Dynamic mesh refinement and porosity
calculation

As mentioned earlier, difficulties still exist in calculating εfinef using

semi-resolved CFD-DEM. To address this issue and improve the flexi-

bility of the porosity calculation, a two-grid method was developed.

This method utilizes two CFD grids to calculate the porosity fields;

the coarse (and static) grid is used to calculate εfinef . The coarse grid

mesh size is 1.6 times greater than the fine particle diameter, which is

in line with most methods proposed to determine the porosity such as

the particle center divided method (DM).32 The second grid, namely

the dynamically refined grid used for calculating εcoarsef and solving the

governing equations, is generated using the dynamicRefineFvMesh fea-

ture in OpenFOAM. As shown in Figure 2, the strategy is to refine the

mesh close to the coarse particle surface and at the same time allow

as little mesh distortion as possible. It does not change the shape of

the mesh cells, rather it performs topological refinements at the

region where 0< εcoarsef <1. The mesh refinement level (RL) is defined

relative to the starting background mesh.† For example, if the back-

ground mesh size is 2 mm, the mesh sizes at one and two levels of

refinement will be 1 and 0.5 mm, respectively. The advantage of the

dynamic refinement is that it achieves a high resolution where neces-

sary around the particles while maintaining high computational effi-

ciency. The εcoarsef field on the refined mesh grid can be estimated by a

couple of methods9,10,38 and we adopted the method proposed by

Kempe et al.,38 which is based on the signed-distance level set func-

tion of the particle surface and is easy to implement. Due to the

dynamic refinement process, the size of the refined CFD grid may be

smaller than the fine particles in the corresponding regions. Hence, it

is not possible to estimate εfinef directly on this mesh. Therefore, a field

mapping procedure is conducted to transfer the variables (εfinef , us,

Gfine
pf ) from the coarse grid to the fine grid, and this is introduced in the

following section.

3.2 | Field mapping with solid volume
compensation

The mapFields feature‡ already available in OpenFOAM is used to per-

form the field mapping. Since the two grids have identical boundary

conditions, and the refined mesh cells are obtained by splitting cells

on the static mesh, the mapping option used is Nearest. This method

searches for the cell in the coarse grid that is closest to the target cell

in the fine grid and uses the value of the this closest cell directly in

the target cell.

A difficulty in mapping the porosity field between two grids is

that the volume of the particles may not be conserved, meaning that

the total particle volume stored in the CFD mesh may be

underestimated or overestimated. Figure 3 illustrates the field map-

ping procedures for εfinef from the static mesh to the refined mesh.

Since εfinef was initially estimated in the static mesh (without any

refinement), the values outside a coarse particle may expand into its

occupied region (see Figure 3E), where the value of εfinef should be

one. To avoid such errors, a solid volume compensation procedure is

implemented to correct the εfinef values. The basic idea of the method

is to set all the cell values in the internal area of the coarse particle to

one and then compensate for the “lost” volume of fine particles by

decreasing the porosity of the cells at the boundary of that coarse

particle (see Figure 3F,G).

Compared to existing porosity models for semi-resolved CFD-

DEM,19 the proposed two-grid method has two key advantages.

Firstly, it is highly flexible as any existing porosity calculation algo-

rithms can be used to calculate the porosity field on the coarse grid

without the need for additional treatment, and the same procedure

can be applied for field mapping. Secondly, the proposed method does

not require additional arbitrary input parameters such as the band-

width in the Gaussian kernel method19,24 or the size of the porous

sphere39 or porous cube.40

Along with the field mapping of εfinef , the momentum source field

Gfine
pf , and the solid velocity us are also mapped. Specifically, Gfine

pf was

calculated using the same weight function, based on proportion of the

particle volume in each CFD cell, that was adopted to calculate εfinef .

As a result, a correction must be applied to Gfine
pf , as illustrated in

Figure 3, to ensure conservation of the total momentum.

4 | FLUID-PARTICLE INTERACTION FORCE
CALCULATION

4.1 | Two force calculation schemes

The fluid-particle interaction forces acting on the coarse particles can

be calculated using two different methods: the direct method9,33 and

the Shirgaonkar method.41 The direct method uses the value of the

force (or momentum source term) applied in Equation (17), which is

given by

Fcoarsepf ,i ¼ ρf

ð
VðcÞ

εfinef ð1�εcoarsef Þðup,i�
~ufÞ�ðuf �uprev

f Þ
ΔtCFD

dVðcÞ: ð22Þ

In the Shirgaonkar method, the total fluid-particle interaction force is

estimated by integrating the force over the domain occupied by the

coarse particle, given by

Fcoarsepf,i ¼ ρf

ð
VðcÞ

εfinef ð1� εcoarsef Þð�rpþμfΔuÞ dVðcÞ, ð23Þ

As the fluid field around the boundary of a coarse particle is

resolved in the solver, according to the fluid field with a high resolu-

tion, the resulting torque due to the fluid-particle interaction can be

calculated by

†https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-

snappyhexmesh-castellation.html
‡https://openfoamwiki.net/index.php/MapFields
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F IGURE 3 Diagram of the field mapping with solid volume compensation approach.

F IGURE 2 Schematic diagram of the mesh
refinement (A) static mesh (B) refined system with
a mesh refinement level of 3.

F IGURE 4 Flowchart of the two-grid semi-resolved computational fluid dynamics coupled with the discrete element method (CFD-DEM).
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Mcoarse
pf,i ¼

ð
VðcÞ

r�Fcoarsepf ,i dVðcÞ: ð24Þ

4.2 | Fluid-particle interaction force normalization

In the following text,Fpf,i is chosen for comparison with the resolved sim-

ulation because it is easily obtained from both solvers and is directly

related to particle motion. To facilitate better visualization of the fluid-

particle interaction force, all the particle-fluid interaction forces discussed

in the following are normalized by the Stokes force as

Fpf ,i ¼Fpf,i=F
Stokes
pf,i ¼Fpf,i=ð3πμdpjuf �up,ijÞ: ð25Þ

5 | SIMULATION SETUP

The semi-resolved solver was implemented in the CFD-DEM open-

source code CFDEM,32 which couples the CFD solver OpenFOAM42

and the DEM solver LIGGGHTS.32 Figure 4 shows the flow chart of

the implemented algorithm.

The semi-resolved solver outlined here is suitable for bi-modal or

gap-graded particle systems with a large size ratio. In order to rigor-

ously evaluate the accuracy and efficiency of the solver, previously

obtained resolved simulation results from Knight16 were used for a bi-

modal particle assembly with a particle size ratio of 4.0. Table 1 dis-

plays the overall configuration of Knight's simulation cases, where

particle assemblies with a fine particle volume fraction (ffine) ranging

from 0.11–0.51 were selected. The coupling interval, that is, the

period in which the two solvers exchange information, was set

to 100ΔtDEM.

The procedures for performing the immersed boundary simu-

lations have been outlined in previous contributions.16,43 Here,

we provide only a high-level description. Initially, particles were

randomly placed within cubic periodic boundaries to create the

samples. Then, the sample was subjected to increasing isotropic

compression up to an effective stress of 100 kPa in the DEM

solver using servo-controlled periodic boundaries.44 During lami-

nar flow, the fluid-particle interactions were determined by IBM

simulations using the Multiflow code.8,45

Figure 5 shows the particle assembly considered, with a par-

ticle size ratio of 4. In the CFD solver, the boundaries in the

y and z direction are periodic. In the x-direction, the inlet bound-

ary has a fixed fluid velocity and zero pressure gradient, and the

outlet has a fixed pressure of zero. Periodic boundaries are also

applied in the DEM solver. The sample is fixed in space and the

particles do not move during the simulation. Table 2 lists the

particle properties and numerical settings in the semi-resolved

CFD-DEM simulations. As the “divided” porosity model is used

to estimate εfinef , the static mesh size should be greater than the fine

TABLE 1 Overall configuration of the particle assemblies for the
semi-resolved CFD-DEM verification.

Case ffineð�Þ ϕð�Þ Ntotalð�Þ Ncoarseð�Þ
1 0.11 0.645 317 38

2 0.25 0.648 696 32

3 0.51 0.621 1363 21

Note: Coarse-fine particle size ratio was four in all cases.

F IGURE 5 Illustration of particle assembly
considered (with a coarse-fine particle size ratio of
4) including annotation of boundary conditions.
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particle diameter.32 Thus mesh-particle size ratio (SR) of 1.6 was cho-

sen to generate the background static mesh. In order to capture the

pore fluid flow around the coarse particle, the mesh near the bound-

ary of the coarse particles is dynamically refined with a refinement

level of 2 to 4. The simulations were terminated when the pressure

drop across the particle assembly reached a stable level; then the total

fluid-particle interaction force (Fpf,i) was extracted from the particle

data directly.

While the primary focus of this paper is to assess the computa-

tional cost of the semi-resolved method using existing high-

accuracy resolved CFD-DEM simulations, an additional spouted

bed simulation was conducted to evaluate the model's feasibility

with moving particles. Figure 6 illustrates the spouted bed cases. A

spouted bed is a gas-solid reactor widely used in chemical and

food engineering, characterized by the presence of an internal par-

ticle circulation driven by the spouted region at the center of the

bed. The geometry and input parameters for the spouted bed were

based on Link's work,40 which has served as a benchmark case for

numerous numerical studies.

As depicted in Figure 6, the air velocity within the spouted region

was 30 m/s, with a total of 24,500 particles having a density of 2505

kg/m3 present in the bed. Additionally, a coarse particle, five times

larger in diameter than the fine fraction, was introduced into the simu-

lation. Further details on the input parameters can be found in Refer-

ences 40 and 46.

6 | RESULTS AND DISCUSSION

6.1 | Verification of the resolved solver: laminar
flow through ordered packings

As mentioned in Section 2.1, the resolved solver now includes a

new FD (or IBM) method to improve accuracy. To ensure the

accuracy of the semi-resolved method based on IBM, this new

method must be fully verified. verification cases involve ordered

packings of mono-disperse spheres at low Reynolds numbers.

Analytical solutions for these packings, including periodic simple

cubic (SC), body-centered cubic (BCC), and face-centered cubic

(FCC) arrays, have been provided by Zick and Homsy,47 and

TABLE 2 Parameters of the particles in the semi-resolved
CFD-DEM verification cases.

Property Value Unit

Density (ρp) 2470 kg/m3

Coefficient of restitution (e) 0.5 -

Coulomb friction coefficient (μ) 0.3 -

Inlet velocity (U) 2�10�4 m/s

Time step of CFD (ΔtCFD) 5�10�6 s

Time step of DEM (ΔtDEM) 5�10�8 s

Coupling interval 100 -

F IGURE 6 Schematic of the spouted bed.
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these data have been used by several researchers for bench-

mark verification purposes.48–50 Figure 7 shows the variation of

Fpf,i with ϕ for SC, BCC, and FCC arrays predicted by analytical

results,47 IBM simulations (taken from Reference 43 with the radius

retraction parameter of 0.2 and D=Δx¼64) and the current work

(D=Δx¼8,32,60), where D is the particle diameter and Δx is the grid

size. Both sets of simulation data almost coincide with the analytical

results, with a slight discrepancy in cases with high solid fraction.

Moreover, from the FCC data, it is obvious that when D=Δx¼32, a

high simulation accuracy can still be achieved, but the values of Fpf,i

are all slightly underestimated when D=Δx is reduced to 8. Knight

et al.43 discussed the suitability of the IBM for predicting particle-fluid

interaction of ordered packings. Although the accuracy of the IBM

method is somewhat lower than some of the more refined calculation

methods such as unstructured mesh methods, it strikes a good bal-

ance between computational cost and accuracy.

6.2 | Effect of mesh refinement levels

6.2.1 | Solid volume conservation

The field mapping approach with particle volume compensation

was evaluated by comparing the total solid volume of the fine

fraction in the CFD mesh before and after applying the compen-

sation. For the Case 1 particle assembly of Case 1 shown in

Figure 5, the results are shown in Figure 8, where the y-axis rep-

resents the ratio between the total solid volume in the CFD

mesh and the real solid volume of the particle assembly. There is

a relatively high error (>13%) in the solid volume for the cases

that do not use the solid volume compensation algorithm. How-

ever, after applying the modification, these errors are reduced to

be lower than 0:1%. This indicates that the solid volume compensa-

tion algorithm is necessary and accurate for ensuring the accuracy of

the field mapping approach.

F IGURE 7 Comparison of the normalized fluid-particle force for lattice packings of uniform spheres: left to right considers simple cubic (SC),
body centered cubic (BCC) and face centered cubic (FCC) packing configurations.

F IGURE 8 Comparison of the total fine particle volume obtained
from the porosity model with and without applying the solid volume
compensation.
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Figure 9 shows the distributions of εfinef and εcoarsef with differ-

ent refinement levels on a slice through the domain in the y-z plane

at a distance of 0.33 cm from the inlet. Figures 10 and 11 show the

variation in εcoarsef and εfinef along a straight line (as indicated in

Figure 9). As Figure 11 indicates, due to the low resolution in the

coarse CFD grids, the εfinef field cannot represent the fine particle

distribution correctly without the dynamic mesh refinement. As the

dynamic cell refinement level increases, the porosity fields at the

boundary region of the coarse particle sharpen and the curves

become closer, in other words the local porosity at the edge of the

coarse particles is captured more accurately as RF increases. The dif-

ference between them becomes less pronounced when RL≥3.

6.2.2 | Particle-fluid interaction force

Figure 12 compares the total fluid-particle interaction forces calcu-

lated from the resolved and the semi-resolved methods for refine-

ment levels (RL) of 2, 3, and 4 considering both the fine and coarse

particles. Given the proximity of the results across different RL values,

the data is presented in a log-log plot to more distinctly highlight the

variations between these cases. Table 3 shows the corresponding

Pearson correlation (PC)§ between the fluid-particle interaction forces

calculated from these two methods. The PC is a variable that mea-

sures linear correlation between two sets of data, and it has been

used to assess the accuracy of simulating fluid-particle interaction

forces in a previous study.46 A PC value of 1 indicates that the two

sets of data are identical. As the RL increases from 2 to 3, the PCcoarse

increases by 0.144 to 0.746; as the RL further increases to 4, the

PCcoarse increases by approximately 0.04 to 0.781, which is a minor

change compared with the former case. This suggests that the mesh

has been refined adequately to capture the details, and further

mesh refinement is unlikely to impact simulation accuracy. In contrast,

the change in the PCfine is not pronounced under different RL values.

Therefore, mesh refinement can improve the accuracy of Fcoarse
pf,i until a

specific RL has been reached, but the accuracy of the Ffinepf,i is not

affected in this process. This result is not surprising for two reasons.

Firstly, the refinement of the CFD meshes helps to improve the accu-

racy of the fictitious domain method, as it is recommended that the

mesh size should be smaller than 1=10 of the particle diameter for

the resolved solver; secondly, the Ffinepf,i is computed using empirical

drag force correlations (such as Ergun, Tang, etc.) and are based on

F IGURE 9 εcoarsef and εfinef fields under different mesh refinement levels (the slice was taken in the y-z plane at a distance of 0.33 cm from the
inlet, the size ratio of particles in the sample is 4).

F IGURE 10 Variation in εcoarsef for successive slices in the x-z
plane along a straight line parallel to the y-axis (as indicated in 9) for
three different mesh refinement levels (RLs).

§https://real-statistics.com/correlation/basic-concepts-correlation/

10 of 17 CHE ET AL.

 15475905, 2024, 2, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18321 by T

est, W
iley O

nline L
ibrary on [29/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://real-statistics.com/correlation/basic-concepts-correlation/


the fluid velocity on the static mesh, which is obtained by spatially

averaging the velocity field on the refined mesh with higher resolu-

tion.Therefore, while the resolution of flow field calculation can be

improved by refining the CFD meshes, its impact on the final predic-

tion of forces acting on fine particles is expected to remain limited.

6.3 | Effect of coarse particle force model

The Fcoarse
pf,i calculated using the above mentioned two force calcula-

tion methods (see Equations 22 and 23) is compared in Figure 13.

Though Shirgaonkar's method results in slightly lower force values,

the differences are minor. This characteristic is evident in Table 3,

where the values of PCcoarse obtained through these two methods

exhibit very little variation. Furthermore, it was observed that the

computational costs of these two methods are remarkably similar,

with simulation times of 40,075 s for Shirgaonkar's method and

40,379 s for the Direct method, both corresponding to a physical time

of 0.1 s (RL = 3). The two force models are derived using different

ideas and show close results, which again reflects the reliability of the

present solver.

6.4 | Effect of the empirical drag model

The proposed semi-resolved solver calculates the drag force on

the fine particles using an empirical model. However, the calcu-

lated drag forces impact the flow field and so the sensitivity of

both Fcoarsepf,i and Ffinepf,i to the drag model must be considered. In

order to evaluate the effect of the drag expression adopted on

the simulation accuracy, the empirical models of Ergun,51 Di

F IGURE 11 Variation in εfinef for successive slices in the x-z plane

along a straight line parallel to the y-axis (as indicated in 9) for three
different mesh refinement levels (RLs).

F IGURE 12 Comparison of the total particle-fluid interaction
force estimated using computational fluid dynamics (CFD) meshes
with refinement levels of 2, 3, and 4. (Inset illustrates the force data
for the fine particles).

TABLE 3 Pearson correlation of Fpf,i
comparing data from the resolved (IBM)
and semi-resolved solvers for different
RL values.

RLð�Þ Ncellð�Þ Ratio (-) Fpf,i models: Fine/Coarse PCfineð�Þ PCcoarseð�Þ
2 100,596 6.15 Ergun/Shirgaonkar 0.605 0.602

3 655,453 12.30 Ergun/Shirgaonkar 0.618 0.746

4 3,369,032 24.60 Ergun/Shirgaonkar 0.606 0.781

3 655,453 12.30 Ergun/Direct 0.618 0.746

F IGURE 13 Comparison of the fluid-particle force acting on the
coarse particles predicted by the direct method and the Shirgaonkar
method.
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Felice,52 Tang53 and Tenneti50 were applied in the simulation

cases with bi-modal samples. These drag expressions were cho-

sen as they have previously been applied to similar systems.16,46

Figure 14 compares the calculated fluid particle interaction force

with values from the resolved solvers; Figure 15 shows the

mean and the standard deviation (SD) values of Fpf,i, and the

Pearson correlation coefficient (PC) of the corresponding case is also

listed in Table 4. For each case, the data for the fine and coarse

particles are shown separately. After a careful analysis of those data,

the following conclusions emerged. (i) For cases with ffine ¼11%,25%

and 50%, adopting the Di Felice, Ergun and Tang models led to the

best match for Fcoarse
pf,i data, and Ergun, Tang and Tenneti models pro-

vided the best match for the Ffine
pf,i data, respectively. (ii) In all cases,

the values of PCfine are relatively low (<0.62) and show more scatter

compared to the IBM data (with lower SD), which indicates that the

stability of this approach to accurately predict Ffinepf,i is low. This result

F IGURE 14 Comparison of the Fpf,i from resolved and semi-resolved solvers illustrating sensitivity to the drag model adopted for the finer
particles (inset gives magnified image of data for the finer particles).
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is not surprising as the empirical correlations were used to calculated

the drag force (and thus the Fpf,i) for the fine particles in each case.

Previous studies43,46 have indicated that though the empirical drag

correlations (for a mono-disperse particle system) can provide a good

approximation to the overall drag force, they deliver a poor perfor-

mance in the fluid-particle interaction force prediction for individual

particles compared to the IBM simulations. In contrast, the fluid flow

is resolved around the surface of the coarse particles, the Fcoarsepf,i was

calculated directly and thus PCcoarse are higher than PCfine. We

emphasize that the semi-resolved solver is mainly proposed to

improve the feasibility and accuracy of the interaction between the

coarse particle and the fluid flow.

6.5 | Effect of the particle motion

In order to explore the effect of the particle motion on the proposed

porosity model with the dynamic mesh refinement, the transient

F IGURE 15 Comparison of the Fpf,i from the existing resolved and semi-resolved solvers for Cases 1–3 (ffine ¼0:11, ffine ¼0:25, ffine ¼0:51),
data for immersed boundary method (IBM) simulations presented alongside semi-resolved data obtained using different empirical drag
coefficients to calculate Ffinepf,i .

TABLE 4 Pearson correlation of Fpf,i comparing the resolved (IBM) and semi-resolved solvers for the different emprical drag models that were
applied to calculate Ffinepf,i .

Empirical models

ffine ¼0:11 ffine ¼ 0:25 ffine ¼0:51

Coarse Fine Coarse Fine Coarse Fine

Ergun 0.78 0.60 0.76 0.54 0.70 0.49

Difelice 0.80 0.62 0.79 0.45 0.67 0.44

Tang 0.77 0.62 0.77 0.55 0.71 0.48

Tenneti 0.77 0.62 0.77 0.55 0.70 0.49
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refined meshes around the coarse particle in the spouted bed are

depicted in Figure 16. The transient x-y slices of the porosity fields

when the coarse particle situated at the center of the spouted region

was chosen for each scenario, showcasing the mesh refinement inter-

val's capability to accurately capture high-speed particle motion. In

the cases where the mesh updating interval (Δtmesh) was set to

0.001 s (RL = 3, 4), the mesh refinement effectively tracked the parti-

cle motion. However, as the mesh updating interval increased, the

mesh refinement fell behind the particle's motion (Figure 16C,D), leav-

ing parts of the region covered by the coarse particle insufficiently

refined.

A straightforward yet efficient method for estimating the

maximum mesh refinement interval relies on the maximum parti-

cle velocity (umax
p ) and the distance of the buffer layers (Lbuffer) in the

refined mesh. For instance, in this particular case, the updating rate

can be calculated as Lbuffer=umax
p ≈ 0.002 s. Therefore, the updating

rates of 0.01 and 0.005 s are deemed too lengthy.

6.6 | Computational efficiency and accuracy

From a computational standpoint, an essential criterion for any

semi-resolved CFD-DEM implementation is its ability to reduce the

computational cost compared to resolved cases. Resolved simulations

for bi-modal particle assemblies, for example, typically require 106 to

107 fluid cells and 12 to 48 h to reach steady-state flow conditions on

100 to 1000 processing units, as the mesh cell size should be smaller

than one-tenth of the smallest particle diameter in the flow system.

Such a high computational cost confirms that resolved solvers are not

suitable for real industrial simulations. In contrast, all the semi-

resolved simulations presented in this paper were run using 105 to

106 fluid cells (under mesh refinement levels of 3 to 4, see Table 3),

requiring 2 to 10 h to reach steady-state flow conditions on 4 to

12 processing units. The computational cost can be roughly estimated

based on the number of CFD cells, as the calculation loads are mainly

spent on the CFD solver side. The mesh cell number is only 1% to

F IGURE 16 Transient mesh refinement around the coarse particle.
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10% of that in the resolved method. Accordingly, the semi-resolved

solver roughly reduces the computational cost to lower than one-

tenth of the resolved solver. The increase in computational efficiency

is mainly due to the flexible algorithm for the particle resolution as

well as the dynamic mesh refinement, which significantly reduces the

number of CFD mesh cells.

On the other hand, the simulation case of the spouted bed pro-

vides a direct comparison between the semi- and the un-resolved

CFD-DEM. The distribution of time allocation across various simula-

tion procedures is presented in Figure 17. The time allocation encom-

passes subroutines involving DEM calculations, CFD computations for

mesh refinement, field mapping, porosity calculations, and others. To

provide a basis for comparison, we also conducted unresolved CFD-

DEM simulations that excluded coarse particles. As depicted in

Figure 17, the unresolved simulations exhibit the lowest computa-

tional cost, while the RL = 4 and Δtmesh =10�3 configuration records

the highest computational time, approximately six times longer than

the unresolved case. However, the computational expense can be sig-

nificantly mitigated either by extending the remeshing interval (RL¼4,

Δtmesh = 10�2) or by reducing the mesh refinement level (RL¼3,

Δtmesh = 10�3). As Figure 16 highlighted, when the remeshing interval

is set at a high value, mesh refinement encounters challenges in rap-

idly capturing the motion of high-speed particles. Consequently, this

approach is not recommended. Furthermore, the total computation

time appears to be more responsive to changes in mesh refinement

levels than to adjustments in the remeshing interval, indicating that

exploring an appropriate mesh refinement level is a more suitable

strategy for achieving enhanced computational efficiency.

When comparing with existing semi-resolved CFD-DEM

methods, our method incorporates a porosity model allowing for a

more precise representation of solid volumes within the CFD meshes.

Consequently, this leads to enhanced simulation accuracy in both the

fluid field and fluid-particle interaction forces. Moreover, previous

semi-resolved methods predominantly employed uniform refined

meshes across the entire computational domain, inevitably resulting

in computational costs approaching those of resolved methods. In

contrast, our current approach utilizes dynamic mesh refinement,

focusing on refining the mesh near the boundaries of the coarse parti-

cle, which substantially reduces the total mesh number. The disadvan-

tage of this approach lies in the necessity of incorporating a field

mapping procedure into the calculations, which incurs some time

overhead. Therefore, the computational efficiency of the proposed

semi-resolved method should be subject to a detailed evaluation in

the future when other methods become accessible.

7 | CONCLUSION

A two-grid semi-resolved CFD-DEM approach has been proposed,

which is suitable for particle-fluid flow scenarios with a high particle

size ratio, such as bi-modal particle systems. The semi-resolved CFD-

DEM method provides a trade-off between computational efficiency

and accuracy, with its range of applicability falling somewhere

between resolved and unresolved solvers.

1. Using two CFD grids is an effective solution to address the chal-

lenge of balancing the requirements of resolving the fluid flow in

the pore space and maintaining a realistic porosity field for the fine

particles. This approach is easy to implement and provides great

flexibility. Additionally, it has been found that a solid volume com-

pensation procedure can ensure total solid volume conservation in

the system.

2. In the case of bi-modal distributed particle systems, which is the

main application scenario of this semi-resolved solver, it was found

that while the proposed solver provided a highly accurate estima-

tion of the fluid-particle interaction force for the coarse particles,

the accuracy of the force prediction for each individual fine particle

was relatively low. This was due to the limitations of the empirical

drag models and this is a fundamental issue with any unresolved

approach to CFD-DEM coupling. However, the accuracy can still

be improved by applying the empirical model which performs best

for the particular range of volume fraction of fine particles in the

system.

3. While the computational cost of the semi-resolved CFD-DEM

method depends on various factors such as the volume fraction of

coarse particles and the size of the computational domain, our sim-

ulations have demonstrated that for a typical scenario involving a

particle assembly with a size ratio of 4, the use of two sets of CFD

grids can lead to a reduction of the total computational cost by

about one order of magnitude.
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The numerical data from Figures 6, 7 and 9–14 have been tabulated

in the Appendix S1. The source code of the resolved CFD-DEM

solver, cfdemSolverIBPICI, along with the verification cases, is provided

as a .zip file in the Appendix S2. Additionally, the source code is

available as open-source on Github at https://github.com/uob-

positron-imaging-centre/PICI-CFDEM-IB. To compile cfdemSolverIB-

PICI, it should be used in conjunction with OpenFOAM-5.x, which can

be found at https://github.com/OpenFOAM/OpenFOAM-5.x.

NOMENCLATURE: GREEK SYMBOLS

ω angular velocity (rad/s)

μ dynamic Viscosity (Pa�s)
ψ correction factor of fluid velocity(m2/s)

ρ density (kg/m3)

1. ε] porosity (-)

ϕ solid volume fraction (-)

τ viscous force tensor (Pa)

8 | LATIN SYMBOLS

D diameter of the largest particle (m)

d diameter (m)

e coefficient of restitution (-)

F force (N)

G momentum source coefficient (N/m3)

g gravitational acceleration (m/s2)

I inertia of rotation (kg m2)

M torque (N m)

m mass (kg)

N particle number (-)

p pressure (Pa)

PC Pearson correlation coefficient (-)

R radius (m)

RL refinement level (-)

S source term (m=s2)

s tangential overlap (m)

t time (s)

u velocity (m/s)

V volume (m3)

W weight (-)

SUB/SUPERSCRIPTS

cell CFD mesh cell

cell CFD mesh

coarse coarse particle

f fluid

fine fine particle

l local

p particle

pf particle-fluid

pp particle-particle

prev previous time step

r radical

reso resolved

s solid

Stokes Stokes force

total total number

unreso unresolved
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