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Understanding the mechanism sustaining cardiac fibrillation can facilitate the
personalization of treatment. Granger causality analysis can be used to deter-
mine the existence of a hierarchical fibrillation mechanism that is more
amenable to ablation treatment in cardiac time-series data. Conventional
Granger causality based on linear predictability may fail if the assumption
is not met or given sparsely sampled, high-dimensional data. More recently
developed information theory-based causality measures could potentially
provide a more accurate estimate of the nonlinear coupling. However, despite
their successful application to linear and nonlinear physical systems, their use
is not known in the clinical field. Partial mutual information from mixed
embedding (PMIME) was implemented to identify the direct coupling of
cardiac electrophysiology signals. We show that PMIME requires less data
and is more robust to extrinsic confounding factors. The algorithms were
then extended for efficient characterization of fibrillation organization and
hierarchy using clinical high-dimensional data. We show that PMIME
network measures correlate well with the spatio-temporal organization of
fibrillation and demonstrated that hierarchical type of fibrillation and drivers
could be identified in a subset of ventricular fibrillation patients, such that
regions of high hierarchy are associated with high dominant frequency.
1. Introduction
Several mechanisms for sustaining myocardial fibrillation have been described
[1]. However, the mechanism in each individual patient is less clear [2]. Under-
standing fibrillation mechanisms in specific patients would allow delivery of
personalized care, which may improve patient outcomes. Ventricular fibrilla-
tion (VF) is a life-threatening arrhythmia and a common cause of sudden
cardiac death. Catheter ablation for ventricular fibrillation (VF) is an emerging
treatment option [3] that is guided by trigger and driver identification. Catheter
ablation involves the delivery of energy (either heating from radiofrequency, or
freezing) to create scar [4].

Atrial fibrillation (AF) is the most common cardiac arrhythmia in adults [5].
Catheter ablation is a commonly used procedure to aid maintenance of sinus
(normal) rhythm. Pulmonary vein isolation (PVI) is the cornerstone of ablation
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for AF, and involves ablation encircling the pulmonary veins
to electrically isolate the pulmonary veins, which harbour the
triggers of AF, from the left atrium [6]. However ablation for
persistent atrial fibrillation has limited single procedure suc-
cess [7], and this may be due to the current one-size-fits-all
approach. This limited efficacy has prompted a search for
ablation strategies beyond PVI. These strategies usually
involve delivery of additional ablation lesions (lesion sets)
in specific areas of the atria. These generally aim to isolate
areas responsible for initiation of fibrillation (trigger) or
driver regions. A driver is a focal or localized source with
fast, repetitive activity propagating outward from this
source [8]. Many adjunctive lesion sets beyond PVI have
been tested; however, none have demonstrated convincing
efficacy [9].

Accurate identification of driver domains may be an
important target in both AF and VF ablation. In AF ablation,
if fibrillation is driven hierarchically by a spatially identifiable
source, targeted ablation in that area or linear lesions to iso-
late that area may be effective in reducing AF recurrence
[10]. Similarly, ablation of VF driver regions may reduce
future VF episodes [3].

Originally derived from econometric time-series analysis
[11], Granger causality (GC) analysis detects directed coup-
ling between time series by considering the statistical
dependency of a sink signal on the past of itself and another
potential source signal. If the source signal significantly
improves the predictability of the sink signal, then the
source signal could be considered as ‘Granger-causing’ the
sink signal. This type of analysis has initially seen broad
applications in neuroscience [12]. Typical analysis consists
of summarizing the statistical dependencies of neuronal
data into functional connectivity networks for distinct
activity or diseased brain states so that critical structures
can be identified [13–15]. More recently, the analysis has
been adopted in cardiac electrophysiology, where it has
been applied to map dominant wavefront propagation pat-
terns in fibrillation [16,17] and has been applied with vector
analysis for driver identification [18,19]. Additionally, pairing
with a traditional network analysis approach for treatment
planning has also been proposed [20].

Interpretation of fibrillation propagation patterns from
intracardiac electrograms (EGMs) has its unique challenges,
as most signals are indirectly coupled and subjected to
mixing of far-field activity. To identify the direct causality
and also to eliminate common drivers resulting from far-field
mixing, the multivariate extension conditional Granger causa-
lity (CGC) is required for EGM mapping applications. The
multivariate analysis models the system as a vector auto-
regressive (VAR) process, where the sink signal can be
explained by a linear combination of the past of all variables
within the system. In order to be considered as the direct
Granger-cause, the past of the source signal then needs to sig-
nificantly improve the fit of the model, after information from
all other variables has been accounted for (i.e. conditioned).
Direct application of CGC has been shown to yield less than
optimal results in high-dimensional data [16,21], a priori
assumptions of which signals could be physically coupled
must be considered to eliminate implausible pairings, and
specific signal pre-processing is required to satisfy the linear
assumption [22]. Apart from enforcing plausible a priori
assumptions, there are number of attempts to address the
issues of estimation in high-dimensional data and linearity
assumptions [12,13]. However, studies so far have focused on
application in brain sciences and currently these developments
have been missing in cardiac electrophysiology mapping.

Information theory offers a model-agnostic approach to
estimating directed coupling, which has the potential of cir-
cumventing the limitations of the VAR-based GC [23]. In
information theory, the signal could be considered as being
worth a certain amount of information, quantified by Shan-
non’s definition of entropy. The entropy measures the
amount of uncertainty given by the probability distribution
of the signal, and has been applied as a mapping technique
in cardiac electrophysiology [24]. In contrast to a linear predict-
ability framework, nonlinear coupling of two signals could be
quantified by considering the joint probability distribution of
the two signals, which is given by the difference of uncertainty
with and without observing the other signal. Direct nonlinear
coupling removing the common coupling of a third variable
can be discerned by replacing the distributions with con-
ditional distributions conditioned on the common input
variable. Under the conditional mutual information paradigm,
transfer entropy (TE) was introduced to detect directed coup-
ling in physical systems [25]. Multivariate extension of the
measurement has been introduced in the form of partialized
transfer entropy (PTE) [26], which also removes common
sources, therefore measuring direct coupling effects. Both TE
and PTE are sensitive to nonlinear coupling, but their perform-
ance still falls short when applied to systems of higher
dimensions. To this end, dimension reduction was
implemented by selecting only the most relevant variables to
be conditioned [27–29], albeit at a much higher computational
cost. These information theory based approaches have demon-
strated advantages when applied to high-dimensional
nonlinear systems [30]. Currently, only the non-directional
measure, mutual information, has been applied for character-
ization of AF organization [31]. Additionally, there is no
informative guide on how to apply information theory based
causality measurement for fibrillation characterization or
classification, especially when applied to high-dimensional
data of advanced imaging modalities such as optical imaging
or ECG imaging data.

In the present study, we aimed to apply recently developed
information theory-based causality measures to describe
myocardial fibrillation mechanisms in individual subjects. We
consider the application of the direct directional measure of
partial mutual information from mixed embedding (PMIME)
to classify fibrillation dynamics. To understand the applicability
of PMIME given limited and confounded data, we empirically
assess the performance of PMIME against fully conditioned
GCusing simulated electrograms. To address the computational
load issue, we extend the CGC and PMIME analysis to the sub-
space projections of high-dimensional synthetic data, and
validate if fibrillation driver regions could be distinguished
based on coupling network analysis. We then apply the analysis
to experimental cardiac optical mapping data and clinical
non-invasive ECG imaging (ECGI) data for organization
characterization and classification of fibrillation dynamics.
2. Methods
2.1. Simulation
The synthetic signals were generated using the Fenton–Karma
model in two dimensions [32,33]. Briefly, an explicit Euler



Table 1. Model parameters used for simulation. Simulations 1 and 2 were
paced experiments. Simulation 3 was a stable vortex induced by cross-field
pacing.

parameter
paced ECGs
Simulations 1 and 2

stable vortex
Simulation 3

Cm 1 1

vc 0.13 0.13

tþu 3.33 10

t�w 11 65

tþw 667 1000

τd 0.25 0.1149

tCaþ 45 22

vCa
þ

c 0.85 0.85

τ0 8.3 12.5

τr 50 25

vu 0.055 0.025

t�u1 1000 333

t�u2 19.2 40

k 10 10
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scheme and a central difference scheme were used to solve the
following system of PDEs:

@V
@t

¼ r � ðDrVÞ þ INaþðV, uÞ þ ICaþðV, wÞ � IKþðVÞ
Cm

, ð2:1Þ

@u
@t

¼ Hðvc � VÞð1� uÞ
t�u ðVÞ

�HðV � vcÞv
tþu

ð2:2Þ

and
@w
@t

¼ Hðvc � VÞð1� wÞ
t�w

�HðV � vcÞw
tþw

; ð2:3Þ

where V is the dimensionless membrane potential and u and w
are gating variables for sodium current INaþ and calcium current
ICaþ respectively. H denotes the Heaviside step function and
D is the diffusivity tensor. In all simulations, the tissue is
assumed to be isotropic so that D was a diagonal matrix where
diagonal elements were set to 0.001. The currents (INaþ , ICaþ , IKþ )
and the voltage-dependent time constant t�u are updated
according to

INaþ ðV, uÞ ¼ u
td

HðV � vcÞð1� VÞðV � vcÞ, ð2:4Þ

ICaþðV, wÞ ¼
w

2tCaþ
ð1þ tanh ðkðV � vCa

þ
c ÞÞÞ, ð2:5Þ

IKþ ðVÞ ¼ V
t0

Hðvc � VÞ þ 1
tr
ðV � vcÞ ð2:6Þ

and t�u ðVÞ ¼ HðV � vuÞt�u1 þHðvu � VÞt�u2: ð2:7Þ

For all simulations, Neumman boundary conditions are
assumed, and the schemes were iterated over a time step
difference of 0.1 ms and a spatial difference of 0.25 μm. For
experiments with high-dimensional data, the membrane poten-
tials were used directly as the signal closely resembles typical
optical and ECGI signals. For other simulations, uni-polar elec-
trograms F were calculated by evaluating the following
integral [34]:

Fðxc, ycÞ ¼
ðð r :DrVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xcÞ2 þ ðy� ycÞ2
q dxdy, ð2:8Þ

where (xc, yc) are Euclidean coordinates of the electrode. The elec-
trograms are then filtered with a notch filter (10–200 Hz),
squared, and the moving averages over a window length of 20
frames were used for subsequent analysis by either PMIME or
CG [19]. Note that to avoid numerical problems, xc, yc are not
integers. Parameters used for simulation experiments can be
found in table 1.
2.2. Conditioned Granger causality index
For estimation of conditional Granger causality index, the
convention of vector auto-regression via QR decomposition
was adopted. For the multivariate conditional Granger
causality conditioned on Z1, Z2, . . .ZM�2, variables. Estimating
the conditioned Granger causality index of variable Y and
variable X of N samples involves first fitting the data to
the unrestricted and restricted models (asterisk) and are specified
as follows:

Xt ¼
Xp

k¼1

½bk�X,XXt�k þ
Xp

k¼1

½bk�Y,XY t�k þ
Xp

k¼1

½bk�Z1,XZ1,t�k

þ � � � þ
Xp

k¼1

½bk�ZM�2,XZM�2,t�k þ 1t ð2:9Þ
and

Xt ¼
Xp

k¼1

½b�
k �X,XXt�k þ

Xp

k¼1

½b�
k �Z1,XZ1,t�k þ � � �

þ
Xp

k¼1

½b�
k �ZM�2,XZM�2,t�k þ 1�t ; ð2:10Þ

where p is the model order, bk is the regression coefficient matrix
for lag k∈ {1, 2, 3,… , p} and 1 is 1 × (N− p) vector which collects
the Gaussian innovations. The conditioned Granger causality
index can then be computed as the log-likelihood ratio of the
restricted and unrestricted model, i.e.

CGCIY�!X ¼ ln
S�

S

� �
¼ lnðcovð1�ÞÞ � lnðcovð1ÞÞ: ð2:11Þ

To decide on a suitable model order p, to avoid underfit or
overfit, the Akaike information criterion (AIC) was adopted to
balance the complexity of the model and the fit of the model.
Models of orders 1–15 were fitted, and the model with the lowest
AIC was selected. After the selection of a model, the F-test
was used to assess the significance of the Granger causal index,
where the significance level α has been set at either 0.05 or 0.01.
Other information criteria may be used in place of AIC; however,
in our testing AIC appeared to be most robust among other
common information criteria such as Bayesian information criterion
(BIC) [35] and corrected Akaike information criterion (cAIC) [36]
(electronic supplementary material, figures S4 and S5), while it is
less conservative than other information criteria for choosing p
(electronic supplementary material, figure S6).

2.3. Partial mutual information from mixed embedding
PMIME was used to detect linear and nonlinear direct coupling
between signals. Notably, the algorithms progressively build an
embedding vector from top correlated components in the sense
of estimated mutual information with the future of the driven
component. The final causal effect is only conditioned on and esti-
mated from components in the embedding vector, thus avoiding
issues with high dimension and ‘over-conditioning’ in the case
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of fully conditional GC [21]. For mutual information estimation,
the k nearest neighbour method was used. For the parameter k
of 5, 10, 15, the performance of PMIME is stable (electronic sup-
plementary material, figure6) and the default (k = 5) was used.

Given theM components system, defineXt, Yt, Z1,t, . . . , ZM�2,t

to be the sets containing the respective lagged and original
components, i.e. Xt ¼ fXt, Xt�1, . . . , Xt�Lg, and let Wt denote the
union of all sets, where L is the maximum time lag tested and is
set to 15 for all analyses. The algorithm startswith an emptyembed-
ding vectorV0

t where the superscript denotes the embedding cycle.
At each embedding cycle, the embedding vector is then augmented
by the component in Wt that maximally explains the future of the
driven componentXtþ1 byKNNmutual information (MI) estimates
conditioned on previous embedding vector, i.e. for the nth
embedding cycle the new componentWn

t can be identified by

Wn
t ¼ arg max

W[Wt

IðXtþ1; WjVn�1
t Þ: ð2:12Þ

And the new embedding vector is

Vn
t ¼ ½Vn�1

t , Wn
t �: ð2:13Þ

The embedding scheme is repeated subject to a termination
criterion:

IðXtþ1; Vn�1
t Þ

IðXtþ1; V tÞ . A: ð2:14Þ

Here A is either a fixed constant set manually or an adaptive
threshold based on the MI estimates statistic of surrogate data.
For a set significance level α, A is the 1− α quantile of surrogate
mutual information estimates. Given the final embedding vector
V t, let V i,t denote the ith component of V t, i.e. V t ¼ fV i,tgni¼1. The
PMIME causal effects of Y to X is defined as

PMIMEY!X ¼ IðXtþ1; fV i,tjV i,t [ Ytgni¼1jfV i,tjV i,t [ Ytgni¼1Þ
IðXtþ1; fV i,tgni¼1Þ

:

ð2:15Þ

An adaptive threshold based on temporal shuffled surrogate
data was used for all experiments, except for the analysis of opti-
cal data, where a fixed threshold (0.95) was used to save
computation time [27,29].
2.4. Benchmark definition
Let Ai,j be the ground truth matrix where the ith row jth column
element equals 1 if there is true direct directed coupling from ith
signal to jth signal and anywhere else equals zero. And true
direct directed coupling is defined as the jth signal recorded
from the immediate next electrode from the one that records
ith signal along the pacing direction. In other words, for uniform
propagation, Ai,j ¼ 1 if j − i = 1 and Ai,j ¼ 0 for other cases. Let
A�

i,j be the matrix containing the Granger causality or PMIME
estimates with diagonal elements equal to zero, i.e.
A�

i,j ¼ GCIi!j or A�
i,j ¼ PMIMEi!j. In benchmark tests, we did

not consider the coupling strength given by either CGCI or
PMIME; therefore the A�

i,j matrices are evaluated in the sense
that all non-zero elements were mapped to ones. True positives
(TP), false positives (FP) and false negatives (FN) are counted
according to

TP ¼
X
i

X
j

Ai,j1x=0ðA�
i,jÞ, ð2:16Þ

FP ¼
X
i

X
j

1x¼0ðAi,jÞ1x=0ðA�
i,jÞ ð2:17Þ

and FN ¼
X
i

X
j

Ai,j1x¼0ðA�
i,jÞ; ð2:18Þ
where 1x=0 is an indicator function whose value is one 8x = 0.
After summation of the counts over all simulations the F1 score
was used as benchmark:

F1 ¼ 2TP
2TP

þ FPþ FN: ð2:19Þ
2.5. Causality network analysis and surrogate testing
To quantify the amount of influence a single signal contributes to
the global dynamic, we quantified degree contrast as the total
causal effects caused subtracted total causal effects affected.
Given the causal effects matrix A�, the degree contrast (Ccontrast)
of the ith signal is defined as

Ccontrast ¼
X
j

½A� � A�̀ �i,j: ð2:20Þ

For application to high dimensional data, it was necessary to
correct for multiple testing of the coupling measures. In our
study to identify the dominant source and sink among poten-
tially spurious causal effects, we followed a threshold
procedure based on surrogate data statistics [13,37]. Surrogate
data were generated from the original signals via phase ran-
domization [38], which breaks the cross-correlation between
signals while retaining the Fourier spectrum and moments stat-
istics. A permutation of the surrogate data across subjects was
used for the same analysis as the real data. This process was
repeated for 500 permutations. From the Ccontrast of phase ran-
domized permuted data, we obtain an empirical cumulative
distribution function (CDF) of the Ccontrast estimates. Two
thresholds can then be identified as the 2:5% and 97:5% quantiles
of the CDF. For the real data estimates, we identify the signals
below the lower threshold as sinks and the signals above the
higher threshold as sources.

For spatial–temporal characterization, the connectance (ρ) of
a network has m vertexes was defined as

r ¼
P

i,j 1x=0ðA�
i,jÞ

2� m
2

� � : ð2:21Þ

For spectral clustering on a network, we used a heuristic
algorithm that maximizes the modularity of the network [39].

2.6. Regions of interest and dimension reduction
High-dimensional data were projected to lower dimension linear
subspace for analysis. The base region was removed from the
whole heart shell and then the remaining vertexes were projected
to a bullseye plot. Regions of interest (ROIs) were spatially defined
based on the bullseye plot, the ventricular was split into 9 regions
with the centre apex as a single region, and middle and basal
sections each horizontally and vertically split into four regions.
For the matrix containing the signals from a single ROI, the
mean was subtracted from each signal followed by the singular
value decomposition of the matrix. Provided the matrix is M by
T, the first two components of the right singular matrix scaled
by the corresponding eigenvalues were identified and used as
representative time series for that ROI [13,40]. Causal effects
were estimated for all representative time series, then summed
for each ROI in order to calculate the inter-regional causality.

2.7. Rat ventricular fibrillation data collection
Our rat VF data collection protocol has been previously
described [19]. Briefly, Sprague–Dawley rats were humanely
killed and rapidly perfused ex vivo on a Langendorff apparatus.
Programmed electrical stimulation was used to induce and
sustain VF. Optical mapping was performed of the epicardial
surface of the left ventricular anterior wall. The transmembrane
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voltage was recorded from optical mapping fluorescence data
using our custom-made complementary metal-oxide semicon-
ductor camera (Cairn Research, Faversham UK) using the
potentiometric dye RH237 (25 μl of 1 mg ml−1 dimethyl sulfox-
ide; Thermo-Fisher, MA) and excitation-contraction uncoupler
blebbistatin (10 μmol l−1; Tocris Bio-Sciences, Cambridge, UK)
in 160� 128 pixel resolution for a 10 s duration.

2.8. Clinical ventricular fibrillation electrocardiogram
imaging data collection and ethics

Patients were recruited to undergo ECGI recordings during
induced VF. Patients scheduled to undergo clinically indicated
defibrillator threshold testing involving induction of VF were
invited to wear a 252-electrode ECGI vest (Medtronic, USA) for
the duration of their defibrillator implant procedure. Patients
underwent low dose CT thorax to determine electrode positions
and cardiac anatomy. Patients were recruited on basis of meeting
clinical indications for cardiac resynchronization therapy defibril-
lator implantation for heart failure with left bundle branch block.
VF was induced at the end of the implant procedure using either
a shock-on-T or 50 Hz stimulation. The defibrillator sensed VF
and delivered a shock. The shock was repeated at higher
energy if the device failed to defibrillate initially and if this
failed cutaneous defibrillator pads were on standby to defibril-
late. All patients had successful sensing of VF and were
successfully defibrillated using their implanted defibrillator
lead. The study was approved by the local ethics board (13/
LO/1440). The reconstructed epicardial electrograms were
extracted from the ECGI system using custom made software
and subsequently were analysed offline as described above.
3. Results
3.1. Evaluation of estimation performance with limited

data availability
For multivariate analysis of M signals, the maximum dimen-
sion of the explanatory vector is M × p, where p is the
maximum VAR modal order (CGC) or the maximum time
lag (PMIME). Higher dimensions directly affect the model rep-
resentation in (2.9) and (2.10) by additional terms, so more
parameters need to be estimated and require longer data.
This can be problematic for cardiac electrophysiology signals,
as long duration time-invariant data can be difficult to
obtain due to constraints on the collection of clinical data.
Poor performance of CGC has been reported for ECG analysis
[21]. A novel bottom-up approach for dimension reduction is
an inherent part of the PMIME algorithm [29,41], which
allows it to maintain high performance even when applied
to data of high-dimensional neural mass systems [30].

In this section, we evaluate and compare the amount
of data required for CGC and PMIME in the context of
cardiac fibrillation. Periodic stimulation was delivered at
the left end of the simulated tissue lattice, and electrodes
were placed equally spaced along the wavefront propagation
direction (figure 1a). We fixed the order and maximum lag
to 15 and varied the number and duration of electrograms.
F1 scores were calculated from pooled counts for each
combination of number of electrodes and time series
duration. The full results are shown in electronic supple-
mentary material, figure S1. We tested the number of
electrograms ranging from 5 to 25, where the duration of elec-
trograms ranged from 2 s to 14 s with two significance levels
(α = 0.05, 0.01) and two sampling frequencies (100 Hz, 50 Hz).
Averaged results are shown in figure 1b to clarify the effect of
a single factor. The performance of all algorithms monotoni-
cally decreases as the number of electrodes increases.
Conversely, the performance increases as the duration of
the time series increases. For both CGC and PMIME, across
all parameter sets tested, a trade-off relationship can be
observed between the number of electrograms and dur-
ation—accurate inference of coupling between a high
number of electrograms is only possible with longer time
series. For CGC, a sharper performance drop can be observed
for conditions that fall outside the optimal range. CGC is out-
performed by PMIME when data are limited or a large
number of signals need consideration. The effects of the
choice of critical threshold are minimal, while reduction in
sampling frequency from 100 to 50Hz negatively impacts
PMIME but only affects CGC minimally. However, PMIME
still outperforms CGC even at low sampling frequency.

3.2. Evaluation of estimation performance under
Gaussian noise and far-field mixing

To evaluate the performance of CGC and PMIME under
potential confounding conditions, we generated electrograms
that were corrupted by Gaussian noise from a tissue lattice
with two independent sources of activation. As shown in
figure 2a, electrodes were placed similarly to the previous
set-up; however, a compartmentalized second domain was
paced separately and the wavefront was orthogonal to the
electrode alignment. Stronger far-field mixing effects were
simulated by bringing the electrodes closer to the second
domain. The number of electrograms was fixed to 10 and
the duration is 8 s; signal-to-noise ratios (SNR) from 30 dB
to 6 dB were tested. Far-field mixing strength was measured
by the natural log-ed distance from the compartmentalization
edge, the unit is in simulation units and ranges from 1 to 6.

Averaged results for individual confounding factors are
shown in figure 2b. The performance of all algorithms
decreased while PMIME was relatively more tolerant to pro-
found mixing of a second source or Gaussian noise.
Unexpectedly CGC increased slightly in performance under
low Gaussian noise conditions before a sharp dropoff (50
Hz up to 18 dB, 100 Hz up to 12 dB). This has also been
reported in a similar task [21]. While PMIME at 100Hz still
outperforms CGC at most settings, the performance of
PMIME dropped significantly when the sampling frequency
was decreased to 50Hz. Full results calculated from 500
experiments are shown in electronic supplementary material,
figure S2. Notably, lowering the critical threshold positively
affects PMIME under confounding factors where it pre-
viously had no effects on the performance of PMIME in
unconfounded conditions.

3.3. Validation of analysis applied to subspace
projections of high-dimensional data

Reliable characterization of fibrillation dynamics in optical
imaging or ECG imaging data requires accurate delineation
of the hierarchy among thousands of signals. PMIME
implements a forward selection scheme and is applicable to
high-dimensional data; however, the computation time
to iterate through the complete set of variables imposes
challenges for application, where often a large number of
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Figure 1. Sensitivity of CGC and PMIME to data availability. Performance evaluated by F1 scores of 100 simulations. (a) Schematic of the simulation protocol.
(b) Signal processing steps for CGC and PMIME. (c) Performance results averaged over two critical values (α = 0.01, 0.05) and the range of the other factor;
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surrogates must be analysed as the negative control for the
signal processing pipeline [22,37]. Singular value decompo-
sition (SVD) can be applied to a small number of regions of
interest; the analysis is then applied to data in a lower dimen-
sional subspace spanned by the top few eigenvectors of the
decomposition [13,42]. Intuitively, this summarizes the
dynamic in a few activation patterns that are often termed
modes or principal components. The time-series analysis
can then be applied to trajectories that correspond to each
activation pattern. In the context of cardiac electrophysiology,
this has been applied with the bi-variate GC to show rotor
dynamics driving fibrillation in optically mapped tissue
cultures [40]. However, spurious reciprocal causality is also
reported. We extend this to multivariate analysis CGC and
PMIME and validate their use for identifying fibrillation
drivers in simulation experiments.

Experiment set-up and SVD-based analysis are depicted
in figure 3a. As shown in the left section, the vortex dynamic
is induced at the top of a 500 × 200 rectangle tissue lattice.
The first second of the simulation has been cut off to
exclude the initialization and crossfield pacing phase. The
resulting data for analysis had a total length of 8 s. The
data are then split into three equal-sized domains while the
rotational driver is always located in the top domain
(domain 1). SVD is then applied to each domain and the
top 2 modes are selected for analysis. The number of selected
modes was set to 2 based on their importance measured
in the total variance explained by them. The explained
variance of the top 5 modes for each domain is shown in
the histogram, which clearly identifies that the first two
modes are the only modes that explained more than 5% of
the data variance. Multivariate analysis is then applied
to the selected mode trajectories and obtains the causal
effect matrix of all modes. The causal effects are then
combined for modes of the same domain to obtain the
inter-regional measurement.
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Inter-regional causal effects of 10 experiments and 100
surrogate data are summarized in figure 3b, and complete
results are in electronic supplementary material, figure S3.
To identify the causal region pairing, we follow the conven-
tion of surrogate data testing for both CGC and PMIME.
The surrogate data in this experiment were generated using
spatial and subject-wise permutations of the real data [13].
The surrogate data serve as the negative control for the
spurious causal effect here. Notably, causal effects estimated
by CGC of real data are statistically significantly higher
than surrogates for all possible pairs (p < 0.01, Mann–
Whitney U-test). By contrast, for causal effects estimated by
PMIME, real estimates are higher than the surrogate for
direct pairs along the propagation direction (positive
Z-score for 1→ 2 and 2→ 3, p = 0.017 and p < 0.01, respect-
ively, Mann–Whitney U-test). For all other pairs, PMIME
real estimates are lower than the surrogate or non-significant.
PMIME can eliminate indirect cause (negative Z-score for
1→ 3 in electronic supplementary material, figure S3;
p < 0.01, Mann–Whitney U-test) and is immune to spurious
results for most reciprocal pairs (negative Z score for 2→ 1,
3→ 1 but 3→ 2 in electronic supplementary material,
figure S3; p < 0.01, p < 0.01 and p = 0.56, respectively;
Mann–Whitney U-test).

We then examined if the hierarchy of the three domains
could be distinguished based on the network measure of
the causal networks. Degree contrast (Ccontrast) was calculated
for each domain from the causal network of either CGC or
PMIME and employed as a hierarchy measure (2.20). The
results for the 10 experiments are summarized in figure 3c.
Ccontrast estimated from CGC networks showed a trend
where the measurement is higher for the driver domain
(domain 1) and lower for domains that are further away
from the driver. However, the results were not statistically
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significantly different between any domains (one-way
ANOVA). Ccontrast derived from PMIME networks also
showed the same trend with larger margins between the
domains. The driver domain had a significantly higher
Ccontrast when compared to the other two domains (domain
1 versus 2 and 1 versus 3, p = 0.047 and p < 0.01, respectively,
one-way ANOVA followed by Tukey’s HSD).

3.4. Spatial–temporal characterization by PMIME
network measures

Network measures of causal effects networks or correlation
networks have been applied for spatial–temporal characteriz-
ation of fibrillation organization [17,19,31]. To examine if
basic network measures of PMIME network can characterize
the spatio-temporal organization of fibrillation dynamics
given spatially down-sampled data, we made use of high-
resolution optical mapping data of ventricular fibrillation,
where phase mapping was employed as the ground truth
measure of organization. The number of locations occupied
by phase singularities (LPS) were tracked historical locations
of rotational activities or breakups of wavefronts, and is a
measure of the degree of disorganization of fibrillation
[19,43]. By correlating the phase mapping measurement in
high-resolution optical imaging rat VF data (figure 4a), we
examined network measures in two spatial down-sample
settings (16×, 64×). PMIME network measures correlated
well with the fibrillation organization spectrum, such that
nodes within network of disorganized heart are associated
with higher number of bidirectional couplings, owing to
changing wavefronts through the time course of imaging.
This is shown by regression analysis of network theoretical
measures in figure 4a. The columns are network measures
regressed on LPS and rows corresponded to the down-
sample settings (top: 16×; bottom: 64×). Connectance
describes how well the nodes are connected by the network
and is found to be positively correlated to LPS in either set-
ting. Next, we examined the network topology via spectral
clustering. We found the number of clusters is negatively cor-
related with LPS whereas the size of the largest cluster is
positively correlated with LPS. Such results are consistent
for different spatial sampling settings. Hearts at the extremi-
ties of the organization spectra are shown in figure 4b, where
the phase map and node degree (number of bidirectional
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Table 2. Ventricle region acronyms and their full forms.
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couplings) highlight the association of phase measure and
network measure. The network measure shown was esti-
mated from 16× down-sampled data.
acronym full form

AP apex

RMA right mid anterior

LMA left mid anterior

LMI left mid inferior

RMI right mid inferior

RBA right basal anterior

LBA left basal anterior

LBI left basal inferior

RBI right basal inferior
3.5. Hierarchy characterization of clinical fibrillation data
As a proof-of-concept for identifying hierarchical fibrillation
dynamics, we applied our analysis to a unique set of
human ventricular fibrillation data acquired via non-invasive
ECG imaging. Currently, the study of human ventricular
fibrillation is limited due to the scarcity of data. Clinically
observed VF is unlikely explained by a single mechanism,
as either organized or disorganized dynamics have been
reported [1,3], and spatially confined drivers could be ident-
ified subjectively. We demonstrate that it is possible to
identify drivers objectively by comparing the theoretical
measure Ccontrast of patient data versus phase randomized
surrogates. The ventricular shell was divided into 9 regions
according to the projections to the bullseye plot. The region
names and their acronyms are in table 2. Regional Ccontrast

was calculated based on the unique causality network of
each patient or each permutation of surrogate. In total, 500
phase randomized surrogates were generated as the negative
control for spurious causality, and the distribution of
surrogates Ccontrast were compared against the real data in
figure 5a. The Ccontrast distribution difference in real and sur-
rogate data is shown by the quantile–quantile plot. The real
data Ccontrast distribution are skewed to the tails, suggesting
overall the VF dynamics are more hierarchical than random
data. The distribution of regional Ccontrast for each individual
patient was compared against surrogate distribution. It can
be found that for patients 3 and 5, Ccontrast of three regions
(1 for patient 5, 2 for patient 3) falls clearly outside of the
2.5–97.5th inter-percentile range of the surrogate distribution,
and these regions can be identified as a fibrillation driver
region or sink, depending on whether they were above or
below the range. Based on this definition, the LBI region
was the fibrillation driver in both patients. The RMA is a
sink for patient 3, whereas patient 5 did not have a dominant
sink below the threshold. By contrast, regional Ccontrast for
patients 1, 2 and 4 all lie within the surrogate inter-percentile
range and a hierarchical organization could not be clearly
defined. Figure 5b shows example phase traces from the
source and sink regions of the hierarchical cases. Note that
the LMA trace was included as it is the region with the
lowest Ccontrast for that patient. The traces are of the beginning
2 s of VF, where it can be seen that the source trace maintains
the lead of the phase cycle.



(a)

(b)

1.0 1200
patient 1 patient 2

F(
x)

 =
 0

.0
25

F(
x)

 =
 0

.0
25

F(
x)

 =
 0

.9
75

F(
x)

 =
 0

.0
25

F(
x)

 =
 0

.9
75

1000

800

600

co
un

t

400

200

0

0.5

–0.5

re
al

 q
ua

nt
ile

s

–1.0
–1.0 1.0–0.5

surrogate quantiles

patient 3 patient 4 patient5

0.50 –1.0 –0.5
Ccontrast

0.50

1200

1000

R
M

A

L
B

I

L
B

I

800

600

co
un

t

400

pa
tie

nt
 3

 p
ha

se
pa

tie
nt

 5
 p

ha
se

200

0
–1.0 –0.5

Ccontrast

0.50

F(
x)

 =
 0

.0
25

F(
x)

 =
 0

.9
75

1200

1000

800

600

co
un

t

400

200

0
–1.0 –0.5

Ccontrast

0.50

F(
x)

 =
 0

.0
25

F(
x)

 =
 0

.9
75

F(
x)

 =
 0

.9
75

1200

1000

800

600

co
un

t

400

200

0
–1.0 –0.5

source
sink

source

100 ms

100 ms

sink

Ccontrast

0.50

1200

1000

800

600

co
un

t

400

200

0
–1.0 –0.5

Ccontrast

0.50

0

Figure 5. Applying network analysis for identifying driver region in clinical VF data. (a) Quantile–quantile plot of real (n = 5) versus surrogates (n = 500) Ccontrast
distribution, and real regional Ccontrast for each patient (black vertical line) compared to surrogate Ccontrast distribution (grey box). The upper and lower bound of 2.5–
97.5th percentile range of surrogate distribution is indicated by red dashed lines. Regions outside the range are labelled. (b) Example signal phase traces from the
source and sink regions identified.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230443

10
To shed light on the potential driving mechanism of VF, we
correlated the hierarchical measure Ccontrast with dominant
frequency (DF), which is often regarded as an empirical
marker for a fibrillation driver region [44,45]. The DF maps
and the corresponding PMIME network adjacency matrix for
the hierarchical cases are shown in figure 6a. DF has been
z-scored to highlight the gradient within the patient. In
either case, the main causal direction seems to be from high
DF regions to low DF regions. Figure 6b shows the correlation
coefficients of Ccontrast versus DF for each patient and the 500
surrogates. The DF and Ccontrast were moderately positively
correlated in real data, which is statistically significantly
higher than surrogate (p < 0.01, two-sample t-test). Examining
each patient individually, the correlation coefficient of all but
patient 4 was above the 2.5–97.5th inter-percentile range of
the surrogate. Our results suggest for most cases high DF
regions may indeed have a driving role in sustaining VF; how-
ever, the non-hierarchical case could not be ruled out and
requires further study with a larger dataset.
4. Discussion
In this study, we describe the novel application of PMIME
to detect direct directional nonlinear coupling of cardiac
electrophysiology signals, specifically during cardiac fibrilla-
tion. Clinical recordings of cardiac fibrillation often have
several challenges, including high dimensionality, short
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duration and far-field activity. We show that PMIME has
several advantages over fully conditioned GC in analysing
fibrillation dynamics. PMIME performs better when given
short and high-dimensional data and the performance of
PMIME is robust to mixing of Gaussian noise and far-field
activity. We extended the analysis to subspace projections
of high-dimensional data, and validated that PMIME,
but not CGC, network correctly captures the hierarchy
between different regions of a cardiac chamber in fibrillation.
We found that PMIME network measures correlate well
with standard organization measures and are consistent
even when applied to spatially down-sampled data. By test-
ing the network measures against phase randomized
surrogates, we demonstrate that fibrillation drivers could
be identified in clinical VF in our analysis. The analysis also
provides supporting evidence that early VF could be driven
by high DF sources.
High-dimensional data, such as intracardiac EGM record-
ings with multipolar catheters, in general require longer
recordings in order to estimate the large number of par-
ameters. Given the time constraints of a clinical procedure,
long recordings in multiple areas of the chamber of interest
(left atrium for AF, ventricles for VF) are not feasible.
PMIME is therefore theoretically an ideal analysis technique
to overcome the limitations of clinical data. In our analysis,
PMIME was vulnerable to low sampling frequency; however,
this is not an issue clinically, as sampling frequencies of 1000
Hz or more are common in clinical recording systems.
Additionally, PMIME is able to identify direct causality and
eliminate indirect causality with higher accuracy than CGC.
In our testing in simulated electrogram data, CGC performed
comparable to testing performed by other groups [21]. Under
the same setting, PMIME vastly outperformed CGC given
adequate sampling frequency. The difference between the



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230443

12
two algorithms could not be explained by the data require-
ment for high-dimensional data alone. As we have shown,
even when implemented with dimensionality reduction, the
CGC still detects spurious reciprocal causal pairs, similar to
those reported by Biton et al. [40]. In our in silico validation,
the reciprocal causal pairs from non-rotational domains to
rotational domains are either non-significant or rejected by
PMIME. This appears to be due to PMIME being sensitive
to the nonlinearity of the system where CGC fails and reaf-
firms the advantage of PMIME when applied to signals
of nonlinear systems [30]. Our study has assessed PMIME
and CGC only using two-dimensional simulated ground
truth. While PMIME appears to be robust across all settings,
the application of PMIME in clinical settings may benefit
from additional three-dimensional simulation assessment,
which may incorporate personalized geometry or cardiac
electrophysiology properties.

In applying PMIME to optical mapping data of rat VF,
we demonstrated that network measures correlated well
with existing organization markers. Unexpectedly, the corre-
lation is inverse to what the nomenclatures imply when
applied to undirected unconditioned analysis [31]. Specifi-
cally, the coupling of multiple disorganized wavefront
events was sufficient to elicit a high network degree and is
characterized by higher connectance, larger and fewer clus-
ters. Finally, using a clinical dataset of electrocardiographic
imaging in human VF we show that PMIME correlates
with DF in determining causality and could be used to
identify driver regions that could guide ablation. There
are some limitations to our clinical VF data. Firstly, ECGI
has not been validated for VF and may not fully capture
the complexity of epicardial wavefronts in VF [46]. Addition-
ally, as the subjects were undergoing defibrillation testing,
our analysis was limited to the first few seconds of VF. We
therefore were unable to describe the pattern of VF in more
ischaemic conditions.

Clinical VF has not been extensively studied given the
challenges of obtaining data from what is invariably a
fatal rhythm if not promptly treated. Haissaguerre et al. have
recently described non-invasive and intracardiac mapping
in 54 patients with clinical VF [3]. They described drivers
arising from the Purkinje network and myocardial
substrate in early organized VF before degeneration into
disorganized VF. Our data support the early period of orga-
nized VF in our distinct clinical context. These findings
are in broad agreement with previous descriptions of VF
intraoperatively during cardiac surgery [1,47–49], and in
pre-clinical study [50].

While our analysis focuses on VF data, the signal analysis
process is also applicable to AF, where there is more potential
for clinical application. The current one-size-fits-all approach
in ablation for persistent AF has limited efficacy [7]. Many
additional lesion sets have been described and tested; how-
ever, although some have shown promise, none have been
found to be universally effective [9]. A more personalized
approach based on AF mechanisms or spatio-temporal
organization is a potential alternative strategy [2]. The chal-
lenge with an individualized strategy however is accurate
description of AF mechanisms with the limitations of clinical
data. We have shown that PMIME-based signal analysis has
the potential to overcome some of the limitations of other
strategies and may be suitable to guide mechanism-based
treatments, which may include ablation of fibrillation drivers
in some cases. Further studies are needed to evaluate PMIME
in clinical AF data.

Data accessibility. The simulation steps and parameters used are
described in detail in the Methods section. Experimental data are
available from the Zenodo repository: https://doi.org/10.5281/
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Ethics Committee (REC reference: 13/LO/1440; harrow.rec@hra.nhs.
uk). Data cannot be shared outside the scope of this strict approval.
For any data access, a new application would have to be made to
the research ethics committee and have approval of the principal
investigator, and would also require new consent from each patient
for use of data for other purposes. Implementation of the PMIME
analysis is available from the website of its author [29].
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