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Abstract— Two key questions in cardiac image analysis
are to assess the anatomy and motion of the heart from
images; and to understand how they are associated with
non-imaging clinical factors such as gender, age and dis-
eases. While the first question can often be addressed by
image segmentation and motion tracking algorithms, our
capability to model and answer the second question is still
limited. In this work, we propose a novel conditional gen-
erative model to describe the 4D spatio-temporal anatomy
of the heart and its interaction with non-imaging clinical
factors. The clinical factors are integrated as the conditions
of the generative modelling, which allows us to inves-
tigate how these factors influence the cardiac anatomy.
We evaluate the model performance in mainly two tasks,
anatomical sequence completion and sequence genera-
tion. The model achieves high performance in anatomi-
cal sequence completion, comparable to or outperform-
ing other state-of-the-art generative models. In terms of
sequence generation, given clinical conditions, the model
can generate realistic synthetic 4D sequential anatomies
that share similar distributions with the real data. The
code and the trained generative model are available at
https://github.com/MengyunQ/CHeart.

Index Terms— Conditional generative model, synthetic
data generation, cardiac image analysis, cardiac anatomy
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I. INTRODUCTION

CARDIAC imaging plays an essential role in cardiovas-
cular image diagnosis and management [10]. Imaging

modalities such as cine cardiac magnetic resonance (CMR) or
ultrasound scans reveals the anatomical structure of the heart
as well as its contracting and relaxing patterns [26]. A classical
but long-standing research problem is to explore the associ-
ations between the three-dimensional (3D) cardiac anatomy
and other non-imaging clinical factors, such as age, gender,
diseases [5]. Besides 3D anatomical information, the temporal
dynamic motion of the heart also contains information that is
useful for clinical diagnosis and therapy selection [20], [32],
[47]. It is of particular interest to develop computational tools
that can bridge between spatial-temporal imaging features
and non-imaging clinical factors. In this work, we aim to
improve our understanding of the spatial-temporal cardiac
anatomy and clinical factors from a generative modelling
perspective. We propose a conditional generative model to
model the interaction between imaging features and clinical
factors. Given clinical factors as conditions, the proposed
model can generate corresponding 4D spatial-temporal cardiac
anatomies. We demonstrate that the generated 4D anatomies
are realistic and consistent with real data distribution.

Lately, the field of conditional generative modelling has
made tremendous progress, greatly driven by deep learning
methods such as conditional generative adversarial networks
(GAN) [34], conditional variational autoencoders (VAEs) [29],
[48], flow-based models [41] and diffusion models [36]. These
approaches enable efficient approximation of the underlying
conditional distributions and generation of high-quality sam-
ples. Improvements in conditional generative models have
been characterised by numerous developments in different
generation tasks: image-to-image translation [13], [24], [27],
style and lyrics-to-music generation [16] and text-to-image
synthesis [12].

Apart from generating static images [36], generative models
have also been applied to sequential data, such as videos [46],
[53] and music [16]. In these applications, it is important to
learn a model that is able to capture the inner connection
of temporal sequences. To this end, long short-term memory
(LSTM) [28], [52] and transformers [56] have been explored to
learn the sequential progression of the latent representations of
the samples. Some work also introduces spatiotemporal con-
volution and attention layers to learn temporal world dynamics
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from a collection of videos [46]. Sequential data contain both
structural variations and motion information. Disentangled
representation learning approaches such as DiSCVAE [59]
have been proposed to separate representations of the motion
features from the structural features.

In the field of medical imaging, several papers have explored
incorporating non-imaging clinical factors into the image
generation process. Dalca et al. [15] proposed a learning
framework for building deformable brain image templates
conditioned on age. Xia et al. [54] developed a model to gen-
erate synthetic brain images conditioned on age and the status
of Alzheimer’s disease. For cardiac images, Biffi et al. [7]
presented LVAE for interpretable classification of anatomical
shapes into different clinical conditions. Krebs et al. [30] pro-
posed to learn a probabilistic motion model for spatio-temporal
cardiac image registration. Reynaud et al. [40] proposed a
causal generative model to generate synthetic 3D ultrasound
videos conditioned on a given input image and an expected
ejection fraction. Campello et al. [9] proposed a conditional
generative model in cardiac imaging to extract longitudinal
patterns related to aging. Duchateau et al. [17] built a scheme
for synthesizing pathological cardiac sequences from real
healthy sequences. Amirrajab et al. [1] developed a framework
for simulating cardiac MRI with variable anatomical and imag-
ing characteristics. For cardiac temporal modeling scheme,
some work [57], [60], [61] showed dynamic cardiac data could
be described by low-dimensional latent representations, i.e. a
conditional autoencoder to capture latent representations of
data [61] or temporal smoothness applied as a regularisation
term in the reconstruction loss function [60], [61]. These
works provide useful insights for conditional medical image
generation. However, the generation of a sequence of spatial-
temporal cardiac anatomies from multiple clinical factors has
been less explored.

In this work, we propose a conditional generative model
that can generate realistic cardiac anatomical sequences condi-
tioned on non-imaging factors including age, gender, weight,
height and blood pressure. We name the Conditional Heart
generation model as CHeart. The model employs a variational
autoencoder to learn the latent representations for cardiac
anatomies and a condition encoder to embed the clinical
conditions into a condition latent vector. Then, a Temporal
Module is designed to generate the condition-related sequential
latent space based on the anatomy latent representations and
the condition latent vector. The proposed model demonstrates
a high diversity and fidelity in the generation, evaluated using
structural overlaps and surface distance metrics, as well as
clinical measure (ventricular volume and mass) distributions.
The main contributions in this work are summarised as fol-
lows:

• We propose a spatial-temporal generative model for 3D
cardiac anatomy that accounts for both the spatial varia-
tions and the temporal variations i.e. motion during the
cardiac cycle.

• We leverage both imaging data and non-imaging clinical
data to train the model, which allows the model to
generate cardiac anatomical sequences conditioned on
multiple clinical factors.

• We introduce a temporal module into the latent space of
cardiac anatomy and conditions to model the complex
sequential patterns of a beating heart.

• We demonstrate that the model can generate highly
realistic and diverse cardiac anatomical sequences that
follow the real data distributions.

II. METHODS

The proposed generative model takes non-imaging clinical
factors as input and generates a cardiac anatomical sequence.
Fig. 1 illustrates the overall framework. The following sec-
tions provide more technical details. First, we introduce the
conditional generative model. Then, we describe the temporal
module for learning the sequential latent representations due to
cardiac motion. Lastly, we demonstrate two applications of the
generative model at the inference stage: anatomical sequence
completion and anatomical sequence generation.

A. Conditional generative model

Assume that we observe a dynamic sequence of anatomies
of a subject, xt(t = 0, 1, · · · , T − 1), where xt denotes the
anatomical segmentation at the t-th frame and T denotes the
total number of time frames in a sequence. We also observe
some clinical conditions c for this subject, where c could
include factors such as age, gender, weight, height, blood
pressure etc. Our aim is to learn the probability distribution of
the anatomy x conditioned on c with a chosen model, pθ(x|c),
where θ denotes the model parameters. We seek a model
pθ(x|c) which is sufficiently flexible to be able to describe the
data x. Deep neural networks have often been used for this
modelling due to its complex modelling capacity [21], [29],
[48]. Without losing generality, we first attempt to learn the
distribution of anatomy at the first time frame, pθ(x0|c), which
is often the end-diastolic (ED) frame in cardiac imaging.

We adopt the conditional β-VAE model [21], [29], [48]
to learn the data distribution. The condition c is embedded
as a condition latent vector zc by the MLP, which inte-
grates multiple clinical factors and enables exploration across
the conditional latent space. The model consists of a de-
coder pθ(x0|z0, zc) and an encoder qϕ(z0|x0, zc). The decoder
pθ(x0|z0, zc) with parameters θ maps the latent variables z0, zc
to the anatomy x0. We assume a prior distribution p(z0) over
the latent variable z0. The prior and the decoder together
define a joint distribution, denoted as pθ(x0, z0|zc), which is
parameterized by θ.

To turn the intractable posterior inference and learning
problem into a tractable problem, we introduce a parametric
encoder model qϕ(z0|x0, zc) with ϕ as the variational param-
eters, which approximates the true but intractable posterior
distribution pθ(z0|x0, zc) of the generative model, given an
input x0 and condition space zc:

qϕ(z0|x0, zc) ≈ pθ(z0|x0, zc) (1)

where qϕ(z0|x0, zc) often adopts a simpler form, e.g. the
Gaussian distribution. By introducing the approximate pos-
terior qϕ(z0|x0, zc), the log-likelihood of pθ(x0|zc) can be



QIAO et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 3

Encoder

MLP
Encoder

Decoder

Decoder

Training Inference

MLP

Decoder

Temporal Module

time

Sequence Completion

Sequence Generation

Fig. 1. Overview of the CHeart model including training and inference stages. During training, an encoder is applied to learn the latent
representations zc, z0 for the clinical conditions c and anatomy at the first time frame x0. A temporal module models the trajectory of zc

0:T−1
in the latent space across the temporal dimension from the initial latent vectors zc and z0. The decoder then generates the 4D cardiac anatomy
sequence x0:T−1 from the latent vectors on the temporal trajectory. The training process enables two inference mechanisms at test time: sequence
completion and sequence generation. In sequence completion, the model is given x0 and c, and generates the remaining sequence of anatomies
in the cardiac cycle. In sequence generation, a random latent code z0 sampled from the prior distribution and c are given to the model and the
temporal module to generate the latent vector sequence zc

0:T−1, which are used to generate synthetic cardiac anatomical sequence x′
0:T−1.

formulated as:
log pθ(x0|zc) = Ez0∼qϕ(z0|x0,zc) log [pθ(x0|zc)]

= Ez0∼qϕ(z0|x0,zc) log

[
pθ(x0, z0|zc)
qϕ(z0|x0, zc)

]
+ Ez0∼qϕ(z0|x0,zc) log

[
qϕ(z0|x0, zc)

pθ(x0|z0, zc)

] (2)

where the second term denotes the Kullback-Leibler (KL)
divergence DKL(qϕ ∥ pθ), between qϕ(z0|x0, zc) and
pθ(z0|x0, zc). It is non-negative and zero only if the ap-
proximate posterior qϕ(z0|x0, zc) equals the true posterior
distribution pθ(z0|x0, zc). Due to the non-negativity of the KL
divergence, the first term in Eq. 2 is the lower bound of the
evidence log[pθ(x0|zc)], known as the evidence lower bound
(ELBO). Instead of optimising the evidence log[pθ(x0|zc)]
which is often intractable, we optimise the ELBO:

max
θ,ϕ

ELBO = log[pθ(x0|zc)]−DKL (3)

To better control the encoding representation capacity and
encourage more efficient latent encoding, we adopt β-VAE by
modifying VAE with an adjustable hyperparameter β [21]. As
a result, the loss function of the generative model is formulated
as:

Lθ,ϕ =− Ez0∼qϕ(z0|x0) log[pθ(x0|z0, c)]
+ β ·DKL[qϕ(z0|x0, c) ∥ pθ(z0)]

(4)

where the sign is negated so as we can minimise the loss
function.

In practice, we use the reconstruction loss for the first
term., i.e. how accurate the generative model pθ(x0) can be

for reconstructing the anatomy x0 from the latent vector z0
using the decoder. The reparameterization trick is applied
to replace the subscript of the expectation and express the
random variable z0 ∼ qϕ(z0|x0, zc) as some differentiable and
invertible transformation of another random variable ϵ, so the
expectation does not rely on q itself.

B. Motion modelling in the latent space

LSTM 
cell

LSTM 
cell

LSTM 
cell

Temporal Module

LSTM 
cell

Fig. 2. The temporal module for generating the sequential latent
codes z0:T−1, constructed with a one-to-many long short-term memory
(LSTM) structure.

In the previous section, we modelled qϕ(z0|x0, zc) and
pθ(x0|z0, zc) for the first frame x0 in a sequence. Here,
to model the whole anatomical sequence x0, x1, ..., xT−1

on the clinical conditions c, we design a Temporal Module
constructed using a one-to-many LSTM structure [49] with
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parameters ω, which generates the condition-related sequential
latent codes based on z0 and zc. The detailed structure of the
temporal module is illustrated in Fig. 2.

LSTM [22] is a variant of recurrent neural networks that
consists of gating mechanisms and cell memory blocks. The
first LSTM cell of the module takes the concatenation of
the anatomy latent representation z0 and the condition latent
representation zc as input, which is denoted as zc0. With the
hidden state h0 and cell state cell0 being initialised to zero,
it infers the latent zc1 at the next time frame. Each following
LSTM cell, with shared weights, takes zct−1 as input, updates
the hidden state ht and cell state cellt, and infers the latent
zct . All the LSTM cells have shared weights. Each latent code
zct contains information of both the anatomy at time t and
the clinical conditions c. The cardiac anatomy of a dynamic
sequence forms a temporal sequence zct in the latent space,
where t = 0, 1, . . . , T . After the temporal module computes
the latent codes zc0:T−1 across all the time frames, the decoder
generates the anatomical sequence x′

t from zct , illustrated in
Fig. 1.

The overall loss function for modelling the anatomical
sequence generation is formulated based on Eq.4:

Lθ,ϕ,ω =−
T−1∑
t=0

Ez0∼qϕ(z0|x0)(log(pθ(xt|zt, zc)))

+ βDKL(qϕ(z0|x0, zc) ∥ pθ(z0))

(5)

The training loss function is composed of two parts: 1)
the reconstruction accuracy at all time frames, where we use
cross-entropy for evaluating the performance in reconstructing
the segmentation maps; 2) the KL divergence term, penalis-
ing the discrepancy between the learned prior and posterior
distributions. The whole training process is performed end-
to-end, with the encoder, temporal module and decoder be-
ing trained together. The VAE enables the model to learn
a low-dimensional latent space that captures the underlying
anatomical variations. By incorporating the temporal module,
the model can effectively model the temporal dynamics in
the cardiac images, enabling the generation of anatomically
consistent and coherent sequences over time.

C. Inference
To demonstrate the performance of the proposed generative

model at the inference stage, we carry out two benchmark
tasks, namely anatomical sequence completion and anatomical
sequence generation, as shown in the right panel of Fig. 1.

In anatomical sequence completion, the model is given the
anatomy at the first time frame x0 and clinical conditions c.
It is asked to generate the remaining sequence of anatomies
across the cardiac cycle. The model maps x0 and c to their
latent representations z0 and zc, predicts the sequential latent
codes zc0:T−1 through the temporal module and finally recon-
structs the full sequence of cardiac anatomy x′

0:T−1 using the
shared-weight decoders.

In anatomical sequence generation, the model is only
conditioned on the clinical factors c and it does not require any
anatomy as input. Since the model has learnt the distribution
of anatomical latent variable pz0 , we can draw samples z0

in the latent space from a Gaussian distribution N (0, 1) and
concatenate it with the clinical latent code zc. We then provide
the concatenated latent code zc0 to the temporal module to
predict zc0:T−1 and generate the full anatomical sequence
x′
0:T−1 using the decoder.

D. Evaluation
To evaluate the conditional generative model, we use quan-

titative measures to assess the generated anatomy, as well as
use clinical measures to assess the distribution similarity.

First, we employ the Dice coefficient, the Hausdorff distance
(HD) and the average symmetric surface distance (ASSD)
which compare the similarity of the generated cardiac anatomy
to the ground truth anatomy associated with the same clinical
conditions.

Second, we derive five imaging phenotypes including the
left ventricular myocardial mass (LVM), LV end-diastolic vol-
ume (LVEDV), LV end-systolic volume (LVESV), right ven-
tricular end-diastolic volume (RVEDV) and RV end-systolic
volume (RVESV). We evaluate differences between generated
data and real data with the same clinical conditions, denoted as
dphenotype. Furthermore, these phenotypes are closely associated
with age and gender [5]. We calculate the distributions of the
imaging phenotypes against age and gender, and compare the
generated data to the real data. The comparison is illustrated
qualitatively using density plots and quantitatively using the
Kullback–Leibler (KL) divergence and Wasserstein distance
(WD). The KL divergence [14] is an information-theoretic
measurement of the similarity between two probability mass
functions. Similarly, WD [2] measures the distance between
two probability distributions and can be computed as:

WD = inf
γ∼

∏
(P,Q)

E(u,v)∼γ [∥u− v∥] (6)

where
∏
(P,Q) is the set of all joint distributions over u

and v. WD can be seen as the minimum work needed to
transform one distribution to another, where work is defined
as the amount of mass that must be moved from u to v to
transform P to Q and the distance to be moved.

III. EXPERIMENTS

A. Data sets
A short-axis 3D cardiac MR dataset of 1,383 subjects was

used, acquired from Hammersmith Hospital, Imperial College
London. Each cardiac cine image sequence comprises 20 time
frames (T = 20) covering one complete cardiac cycle, with
a spatial resolution of 1.25 mm × 1.25 mm × 2 mm. The
temporal resolution ranges from 0.041 to 0.048 seconds per
frame, accommodating variations in the heart rate. The cardiac
anatomy is described by the image segmentation map with four
labels: background, the left ventricle (LV), myocardium (Myo)
and the right ventricle (RV). Ground truth segmentation at end-
diastolic (ED) and end-systolic (ES) frames was generated by
using a multi-atlas segmentation method [3], then quality con-
trolled and manually corrected by an experienced cardiologist
using itkSNAP [58]. A state-of-the-art nnU-net model [23] was
trained using the ED and ES segmentation and then deployed
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to all time frames generating the 3D-t segmentation, followed
by manual quality control. To eliminate the influence of image
orientations in the generation, all 3D-t segmentation were
rigidly aligned to a template space using MIRTK [42], [44]
and cropped to a standard size of 128×128×64. In this way,
the generative model will focus on learning subject-specific
variations of the anatomy instead of image orientations.

In terms of demographic information, all subjects were
healthy volunteers, with 775 females and 608 males, aged
between 18-73 years old, weighed between 33-131 kg, with
height between 142-195 cm and systolic blood pressure (SBP)
between 79-183 mm Hg. When incorporating the clinical in-
formation into the model, age was represented as a categorical
factor with seven age groups with an interval of 10 years, from
10 to 80 years old. The dataset was randomly split into three
subsets for training (n = 968), validation (n = 138) and test
(n = 277).

B. Experimental setup

1) Implementation: The model was implemented in PyTorch
[37]. The encoder qϕ consisted of four 3D convolution layers,
one flatten layer and one bottleneck layer, outputting the latent
code z0. The condition mapping network was constructed
using an MLP, outputting latent code zc for input conditions c.
A latent dimension of 32 was used for both z0 and zc, and 64
for the concatenated latent vector zc0. The decoder consisted
of one flatten layer and four 3D transposed convolution
layers. All convolution and transposed convolution layers in
the encoder and the decoder used a kernel size of 4. The
temporal module was built with one-layer LSTMCells. The
regularisation weight β in β-VAE was set to 0.001. The model
was trained using the Adam optimiser with a learning rate of
5·10−4 and a batch size of 8. It was trained for 500 epochs and
an early stopping criterion was used based on the validation
set performance. The training took 17 hours on an NVIDIA
RTX A6000 GPU.

2) Baseline methods: Currently, there is no other existing
work for performing conditional generation of 3D-t cardiac
anatomies. For comparison, we implemented the following
baseline generation methods developed in other application
domains, extending them from 2D image generation to 3D-t
data generation:

CGAN: A conditional version of the generative adversarial
network (GAN) originally developed for MNIST images [34].
Note that the model can only perform cardiac sequence
generation, not sequence completion.

CVAE: The conditional generative model CVAE [48]. It was
modified to adapt to this application. CVAE applied condition
incorporation by concatenating conditions and anatomies in
both the encoder and decoder.

CVAE-GAN: A conditional variational generative adversar-
ial network proposed in [6]. It is a general learning framework
that combines a VAE with a GAN for synthesizing natural
images in fine-grained categories.

PCA: The principal component analysis (PCA) [25]. It is
a classical method for dimensionality reduction, which aims
to preserve as much of the variation in data as possible using

the principal components. Note that the PCA is only used
for performing sequence completion, but not for sequence
generation.

C. Sequence completion

TABLE I
THE SEQUENCE COMPLETION PERFORMANCE OF DIFFERENT MODELS

IN TERMS OF DICE, HAUSDORFF DISTANCE (HD), AVERAGE

SYMMETRIC SURFACE DISTANCE (ASSD). MEAN AND STANDARD

DEVIATION ARE REPORTED. ASTERISKS INDICATE STATISTICAL

SIGNIFICANCE (∗ : P ≤ 0.05) WHEN USING A PAIRED STUDENT’S
t -TEST COMPARING THE PERFORMANCE OF THE PROPOSED METHOD

TO OTHER METHODS

Dice (unit: 1)
LV Myo RV Average

CVAE-GAN [6] 0.845∗±0.028 0.697∗±0.054 0.832∗±0.028 0.791∗±0.032

CVAE [48] 0.900±0.023 0.800∗±0.040 0.894±0.023 0.864∗±0.026

PCA [25] 0.906±0.022 0.810±0.038 0.901±0.023 0.872±0.025

Proposed 0.908±0.023 0.814±0.037 0.902±0.021 0.874±0.024

HD (unit: mm)
LV Myo RV Average

CVAE-GAN [6] 10.361∗±1.475 9.571∗±1.379 14.070∗±3.736 11.334∗±1.849

CVAE [48] 5.920∗±1.335 5.891∗±1.055 6.525±1.076 6.112∗±1.049

PCA [25] 5.517±1.029 5.710±1.125 6.165±1.072 5.797±0.978

Proposed 5.535±1.180 5.576±0.955 6.445±1.067 5.842±1.017

ASSD (unit: mm)
LV Myo RV Average

CVAE-GAN [6] 2.120∗±0.390 1.670∗±0.236 2.244∗±0.399 1.983∗±0.306

CVAE [48] 1.657∗±0.348 1.376∗±0.212 1.622±0.305 1.461±0.280

PCA [25] 1.565±0.324 1.319∗±0.221 1.519±0.301 1.490±0.305

Proposed 1.535±0.330 1.298±0.208 1.620±0.323 1.462±0.266

A well-known challenge to generative modelling is the
difficulty in evaluation, as we normally do not have access
to the ground truth data distribution, e.g. the distribution of
all possible cardiac anatomies in our case. Therefore, we
adopt anatomical sequence completion as a surrogate task for
evaluating the model performance. The sequence completion
experiments were conducted to assess the ability of capturing
the sequential information given the first frame of a cardiac
anatomy sequence. One example of sequence completion is
shown in Fig. 3. It can be seen in the figure that the generated
anatomies across time frames maintain the same heart struc-
tures as the ED frame and capture the temporal motion pattern
through time, contracting first and then expanding.

The sequence completion accuracy is evaluated between the
generated anatomy and ground truth across the whole sequence
in terms of the Dice metric, HD and ASSD for three structures:
LV, Myo and RV. Table I reports the sequence completion
accuracy of the proposed model and compares it to other
generative models including CVAE-GAN [6], CVAE [48] and
PCA [25]. It shows that the proposed model achieves a good
sequence completion accuracy with an average Dice metric
of 0.874, HD of 5.842 mm and ASSD of 1.462 mm, which
is comparable to or outperforms the other three generative
models in most metrics. In addition, we conducted evaluations
at the basal, mid-cavity, and apical slices. The proposed model



6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2023

ED (t = 0), c

         

Fig. 3. An example of sequence completion, arranged in two rows with the left-to-right and top-to-bottom order. With the end-diastolic (ED) frame
in time t = 0 and conditions c as input, the model generates the remaining anatomical sequence at time frame t = 1–19, shown within the gray
box. The top row depicts anatomy images at time frame t = 0 − 9, and the bottom row depicts at time frame t = 10 − 19.

TABLE II
COMPARISON OF SEQUENCE GENERATION PERFORMANCE BETWEEN CGAN, CVAE, CVAE-GAN AND THE PROPOSED MODEL, IN TERMS OF

MEAN AND BEST DICE METRIC AND CONTOUR DISTANCE METRICS FOR THE AVERAGE PERFORMANCE OVER LV, RV AND MYO. THE BEST VALUE

ACROSS 20 SAMPLES FOR DICE METRIC (MAXIMUM), HD (MINIMUM) AND ASSD (MINIMUM) ARE REPORTED. ASTERISKS INDICATE STATISTICAL

SIGNIFICANCE (∗ : P ≤ 0.05) WHEN USING A PAIRED STUDENT’S t -TEST COMPARING THE PERFORMANCE OF THE PROPOSED METHOD TO OTHER

METHODS.

Model
Dice (unit: 1) HD (unit: mm) ASSD (unit: mm)

mean best/max mean best/min mean best/min

CGAN [34] 0.713±0.061 0.717∗±0.061 15.533∗±2.258 13.956∗±2.326 3.004±0.714 2.862∗±0.712

CVAE [48] 0.694±0.056 0.789±0.049 11.461∗±1.809 8.321±1.536 3.380∗±0.710 2.317∗±0.540

CVAE-GAN [6] 0.645∗±0.052 0.774±0.039 16.844∗±2.008 12.105∗±1.815 3.693∗±0.709 2.185±0.394

Proposed 0.713±0.058 0.793±0.052 10.940±2.343 8.166±1.621 3.023±0.757 2.049±0.521

TABLE III
COMPARISON OF SEQUENCE GENERATION PERFORMANCE AMONG CGAN, CVAE, CVAE-GAN AND THE PROPOSED MODEL. THE CLINICAL

MEASURES DERIVED FROM EACH REAL SAMPLE ARE COMPARED TO THOSE DERIVED FROM 20 SYNTHETIC SAMPLES OF EXACTLY THE SAME

CONDITIONS. THE MEAN AND THE MINIMAL DIFFERENCES OF THE CLINICAL MEASURES ARE REPORTED HERE.

Model
dLVEDV (mL) dLVESV (mL) dRVEDV (mL) dRVESV (mL) dLVM (g)

mean best/min mean best/min mean best/min mean best/min mean best/min

CGAN [34] 35.58±20.33 15.66±16.67 20.06±9.71 19.74±9.72 51.47±25.25 14.71±17.12 17.57±12.19 17.04±12.18 38.26±19.15 10.40±11.23

CVAE [48] 35.74±16.99 4.91±9.84 13.92±6.06 1.87±3.46 44.97±21.58 6.46±12.92 19.49±9.21 2.86±5.74 23.07±9.96 2.70±4.33

CVAE-GAN [6] 51.32±20.40 6.33±11.96 19.80±6.53 1.69±2.57 48.94±28.66 8.28±17.52 25.26±10.99 2.57±4.11 51.03±11.40 8.29±7.91

Proposed 25.93±17.47 6.87±12.09 11.74±8.41 3.54±6.25 34.63±21.31 6.88±12.87 15.54±11.33 5.12±9.19 17.34±9.89 2.95±5.62

achieved an average Dice metric of 0.929, 0.927, and 0.878
for LV at the three locations, surpassing the corresponding
metrics of the other three generative models.

We also performed paired student’s t-tests between the
results generated by our method and those of competing
methods. The performance metrics of the proposed model
marked with asterisk in Table I were significantly better than
other methods at a p value smaller than 0.05. On a different
cardiac MR dataset, [4] reports an average Dice metric of 0.94,
0.88, 0.90 for LV, myocardium and RV, respectively, for inter-
observer variability in manual cardiac image segmentation (Ta-
ble 3 of [4]). The Dice metric of the proposed generative model
is close to this value, which indicates its high performance and
capability for anatomical sequence completion.

D. Sequence generation
Apart from the sequence completion task, we also perform

anatomical sequence generation and evaluate how close the
generated anatomical sequences are to the real data. In this
experiment, we generate new synthetic anatomies of the heart
by providing the clinical conditions as the only input to the
model. Given the stochastic nature of the VAE generation, for

each set of input conditions, multiple anatomical sequences
can be generated. We draw 20 random samples from the
Gaussian distribution of the latent vector, and correspondingly
generate 20 synthetic anatomical sequences for this input
condition set.

We first compare the synthetic anatomies to the real
anatomy with the same clinical conditions and evaluate the
mean similarity and the best similarity across 20 samples,
in terms of the Dice metric, HD, ASSD and differences of
clinical measures. This is similar to the random average or
random best evaluation in other recent generation works in
computer vision [38]. Table II shows that the proposed model
achieves a reasonably good sequence generation accuracy
with a mean Dice metric of 0.713, HD of 10.940 mm and
ASSD of 3.023 mm. We also reported the best value of each
measurement, with a significantly improved maximum Dice of
0.793, minimum HD of 8.166 mm, and ASSD of 2.049 mm.
This perhaps means the proposed method can capture a wide
variation of anatomies and thus draw a sample that is close to
the real sample. When we compare the differences of clinical
phenotypes, Table III shows that our model achieved the lower
measurement difference with a mean difference of 25.93 mL,



QIAO et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 7

Example 1:
female
20-30 years old
158cm
60kg
113mmHg of SBP

Conditions Real Synthetic 0 Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4

Example 2:
male
30-40 years old
170cm
87kg
113mmHg of SBP

ED

ES

ED

ES

Fig. 4. Visualisation of synthetic anatomies (last five columns) generated by the model, compared to the real anatomy (first column) with the same
clinical conditions (text annotation). The whole anatomical sequence is generated but only ED and ES frames are shown here. The first and second
rows of each example show the ED and ES frames of the cardiac anatomical sequence.

Fig. 5. Distributions of clinical measures for real data and synthetic data. Each graph displays a kernel density plot of an imaging phenotype (LVM,
LVEDV, LVESV, RVEDV, RVESV) against age. For each plot, the x-axis denotes age and the y-axis denotes the value of the imaging phenotype.
Darker areas in the plot indicate the regions where the data is more concentrated. Lighter areas show the regions where the data is sparser.
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TABLE IV
KL DIVERGENCE AND WASSERSTEIN DISTANCE BETWEEN SYNTHETIC DATA DISTRIBUTION AND REAL DATA DISTRIBUTION.

Distribution

similarity

Kullback–Leibler (KL) divergence Wasserstein Distance (WD)

LVEDV LVESV RVEDV RVESV LVM LVEDV LVESV RVEDV RVESV LVM

CGAN [34] 0.023±0.0010.019±0.0010.036±0.0040.022±0.0010.050±0.00633.687±1.17319.982±0.02541.643±4.16117.434±0.03635.395±2.933

CVAE [48] 0.039±0.0050.041±0.0040.042±0.0040.034±0.0030.030±0.00311.929±2.116 7.017±0.964 14.680±2.869 9.665±1.051 10.365±1.703

CVAE-GAN [6]0.153±0.0250.023±0.0030.046±0.0060.064±0.0080.098±0.01927.001±2.809 8.425±1.771 24.614±3.202 9.748±2.675 43.251±4.566

Proposed 0.034±0.0020.043±0.0020.034±0.0020.039±0.0020.031±0.00215.053±3.597 5.773±1.358 12.214±2.408 9.182±2.145 9.215±1.713

11.74 mL, 34.63 mL, 15.54 mL and 17.34 g and minimum
difference of 6.87 mL, 3.54 mL, 6.88 mL, 5.12 mL and 2.95 g
for LVEDV, LVESV, RVEDV, RVESV and LVM, respectively.
The results of mean and best values indicate that our model
achieves similar (Dice) or better sequence generation accuracy
(HD, ASSD, difference in clinical measures) compared to
other methods. The best values of the metrics indicate the
high fidelity of the proposed generative model, which refers
to the degree to which the generated samples resemble the
real ones [35], [43]. It is important to acknowledge that in
anatomical sequence generation, the model is not expected to
replicate existing anatomies. But instead, the model generates
a plausible anatomy that fulfils certain conditions, which is
compared to a real anatomy with the same conditions.

Further, we visualised two examples of anatomical sequence
generation in Fig. 4. For each example, we show five random
synthetic samples which share the same clinical conditions as
the real sample. It illustrates that the LV and RV structures
look realistic and their shapes share a high similarity to
the real anatomy. The contracting pattern of the ventricles
and myocardium from ED to ES frame also looks realistic
and similar to the real sample. This demonstrates our model
can capture the overall anatomy and temporal dynamics of
the heart during generation. The five samples with the same
conditions also present certain degrees of variations, which
demonstrates the diversity of synthetic data. This is due to the
Gaussian sampling part of the generation process and reflects
the individual differences between two hearts even if they are
of the same gender and age, which can be caused by genetic,
environmental, lifestyle and many other factors that are not
easily accounted for by the model.

To further evaluate whether fidelity and diversity of the
generated samples with respect to the real samples, we assess
the distance between their distributions, conditioned on age,
a common factor of interest in clinical research. In addition
to quantitative assessments, we conducted qualitative compar-
isons by evaluating the distributions of five clinical measures
for both real and synthetic anatomies against age, including
LVM, LVEDV, LVEV, RVEDV, and RVEF, illustrated in Fig. 5.
Compared to other methods, the synthetic data distributions
from our model closely resemble the real distributions and
cover the full variability of the real samples. Table IV reports
the KL divergence and Wasserstein distance between synthetic
and real data distributions. The proposed model achieves the
best KL or WD metrics in most clinical measurements, with
KL divergence values of 0.034, 0.043, 0.034, 0.039, 0.031,

and WD values of 15.053, 5.773, 12.214, 9.182, 9.215 for
LVEDV, LVESV, RVEDV, RVESV, and LVM, respectively.
These results demonstrate that the synthetic data generated by
our model maintains a distribution against age that is similar
to the real data.

E. Temporal dynamics

frame 0frame 3

frame 4

frame 6

frame 9 frame 12 frame 15

frame 18

Fig. 6. T-distributed stochastic neighbor embedding (t-SNE) visualiza-
tion of latent space for generated anatomical sequences from frame 0
to frame 18. Each dot represents a single time frame of a sample, with
colors indicating the frame index. A sequence of anatomies, decoded
from a corresponding sequence of latent codes, belonging to one
subject, is visualised in the figure.

The proposed model encoded the anatomical and clinical
information zc0 of the first frame (ED) and generated the
latent vectors zct for the following frames by the temporal
module. We use the dimensionality reduction technique, t-
distributed stochastic neighbor embedding (t-SNE) [31], to
visualise the latent space zct of the generated anatomical
sequences, as shown in Fig. 6. The sequential latent codes
zc0:T−1 start at ED (t = 0) and move along a cyclic path
in the latent space. It shows that the generative model can
capture the temporal dynamics of the anatomy during the
heartbeat and form a cyclic pattern as a real heart [45].
More overlapped areas between frames 9 to 18 show that the
variation of anatomies is smaller in the relaxation stage, which
demonstrates the nonlinear trajectories of cardiac motion. We
plotted one example of the anatomical sequence at time frame
0, 3, 4, 6, 9, 12, 15, 18 in the figure. Through the time frames,
the anatomies present first decreased and then increased LV
volumes. The thickness of Myo has the opposite trend, which
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is consistent with the contraction and relaxation pattern of the
heart [19].

F. Condition manipulation
With the conditional generative model, we are able to

simulate the change of anatomy when certain conditions
(e.g. age) change. Fig. 7(a) shows a series of generated
anatomies during ageing, when the condition age increases
but all the other conditions as well as the latent vectors drawn
from the Gaussian distribution are fixed. The difference map
comparing the aged anatomy to the anatomy at 10-20 years
old shows subtle changes to the LV and RV structures. We
further generate 200 random samples of the synthetic ageing
anatomies and derive the clinical measures. Fig. 7(b) illustrates
the longitudinal evolution of these measures, stratified by
gender. We observe a longitudinally increasing trend in LVM
during ageing and a decreasing trend in LVEDV, consistent
with findings in clinical literature [18] (Figure 3 of [18]). It
demonstrates the potential of using this model for simulating
anatomical data distributions. However, we need to be cautious
in interpreting this result, as our training data is cross-sectional
instead of longitudinal and also the mechanism of cardiac
ageing is complex, confounded by more factors (genetics,
lifestyle etc) than the five conditions we used in this work.

IV. DISCUSSION

The proposed model is built upon a β-VAE for learning the
latent space of the cardiac anatomy. It integrates a conditional
branch to model the influence of multiple clinical factors
on the generation process and uses a temporal module to
model the temporal relationship of anatomical latent vectors
during cardiac motion. The experiments demonstrate good
performance in both anatomical sequence completion and
sequence generation tasks, qualitatively and quantitatively. The
model enables condition manipulation for demonstrating the
impact of clinical factors on anatomical shape variation. When
using the common clinical measures (ventricular volumes and
mass) for evaluation, the distribution of generated anatomies
is close to the real data distribution visually (Fig. 5) and
quantitatively (Table IV), which indicate both the fidelity
and diversity of the generation. While the model performs
well in generating anatomically coherent structures, further
improvement can be made in terms of achieving a closer
similarity between the distribution of generated anatomies
and real data distribution. There is also potential for further
exploration of the relationship between cardiac motion and
clinical conditions

We foresee there are several potential downstream tasks for
the generative cardiac anatomy model, including discovering
patterns in large datasets, facilitating out-of-distribution de-
tection and generating synthetic data etc. First, by training
a generative model on a large dataset of cardiac anatomies,
the trained model can capture complex patterns and variations
of the anatomy associated with different clinical factors. This
knowledge can be valuable for understanding population-
level characteristics, identifying risk factors and informing
public health strategies. Second, by learning the distribution

of normal cardiac anatomy and dynamics, the proposed model
can identify patterns of a given anatomy that deviate from
the norm, indicating potential anomalies that require further
investigation. More importantly, the proposed method is a
conditional generative model, which means it can learn the
norm specifically for certain conditions (e.g. a gender and
age group) and evaluate the deviation from the norm in a
personalised manner. Third, the trained generative model can
provide a large amount of synthetic data for other tasks.
Synthetic data can be used for performing data augmentation
for training machine learning models [8], creating synthetic
fair data to improve the fairness of prediction models [11],
[50], or used as digital anatomies for performing in-silico trials
[55]. Diverse and realistic synthetic data will alleviate the data
scarcity issue in the medical field, where real data are often
limited or not easy to share. This includes the creation of
synthetic data for privacy-preserving research [39], [51].

There are a few limitations of this work. The first limitation
is the high computational cost during training to learn the
spatio-temporal patterns from 4D data, even after cropping
the images to 128 × 128 × 64 and using sequences of only
20 time frames. An interesting future direction is to reduce
the computational complexity of high-dimensional and high-
resolution medical imaging data. Second, here we use a
segmentation map as a representation of the anatomy so that
the generative model can focus on learning the variations of
anatomy, instead of intensity image styles. Future explorations
could be extended to the generation of intensity images for
the heart [1] or using mesh as a representation for the
anatomy [33], which may be computationally more efficient.
Third, we use a cross-sectional imaging dataset of mainly
healthy volunteers for training the generative model, due to
the challenge of curating large-scale longitudinal datasets with
high spatial resolution. It would be interesting to extend this to
longitudinal and clinical imaging cohorts with cardiac diseases
in the future.

V. CONCLUSION

In this work, we propose a novel conditional generative
model that is able to synthesise spatial-temporal cardiac
anatomies given clinical factors as input. It demonstrates
the feasibility of generating highly realistic synthetic 3D-
t anatomies for the heart that captures both the anatomical
variations and motion of the heart. The work paves the way
for further generative modelling research in cardiac imaging,
such as incorporating disease types or representing anatomy as
meshes. It also has the potential to be applied to downstream
tasks, such as performing data augmentation based on various
anatomies, building condition-specific atlases and performing
biomechanical modelling of the heart etc.
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