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Summary

A theory is presented of the way in which hypercolumns in primary visual cortex (V1) are

organized to detect important features of visual images, namely local orientation and spatial

frequency. Given the existence in V1 of dual maps for these features, both organized around

orientation pinwheels, we construct a model of a hypercolumn in which orientation and spatial

frequency preferences are represented by the two angular coordinates of a sphere. The two

poles of this sphere are taken to correspond, respectively, to high and low spatial frequency

preferences.

In Part I of the paper we use mean–field methods to derive exact solutions for localized

activity states on the sphere. We show how cortical amplification through recurrent interactions

generates a sharply tuned, contrast–invariant population response to both local orientation and

local spatial frequency, even in the case of a weakly biased input from the lateral geniculate

nucleus (LGN). A major prediction of our model is that this response is non–separable with

respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning

is weaker around the pinwheels, and there is shift in spatial frequency tuning towards that of

the closest pinwheel at non–optimal orientations.

In Part II of the paper we show that a simple feedforward model of spatial frequency pref-

erence, unlike that for orientation preference, does not generate a faithful representation when

amplified by recurrent interactions in V1. We then introduce the idea that cortico–geniculate

feedback modulates LGN activity to generate a faithful representation, thus providing a new

functional interpretation of the role of this feedback pathway. Using linear filter theory we show

that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal

of the corresponding feedforward receptive field (in the two–dimensional Fourier domain), then

the mismatch between the feedforward and cortical frequency representations is eliminated. We

therefore predict that cortico–geniculate feedback connections innervate the LGN in a pattern

determined by the orientation and spatial frequency biases of feedforward receptive fields. Fi-

nally, we show how recurrent cortical interactions can generate cross–orientation suppression.
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1 Introduction

A prominent feature of the functional architecture of visual cortex (V1) is the existence of

an orderly retinotopic mapping of the visual field onto its surface, with left and right halves

of the visual field mapped onto left and right V1 respectively. Superimposed upon this

are additional maps reflecting the fact that neurons respond preferentially to stimuli with

particular features such as orientation and ocularity (Hubel & Wiesel, 1977; Obermayer

& Blasdel, 1993; Swindale, 1996). Maps of both ocularity and orientation preference have

been well characterized in cat and monkey, via microelectrode recording (Hubel & Wiesel,

1962, 1968, 1977), autoradiographic studies using proline (Wiesel, Hubel, & Lam, 1974) or

2–deoxyglucose (2–DG) (Hubel, Wiesel, & Stryker, 1978), and optical imaging (Blasdel

& Salama, 1986; Bonhoeffer & Grinvald, 1991; Blasdel, 1992). The topography revealed

Figure 1: Iso–orientation (light) and ocular dominance (dark) contours in a small region of

Macaque V1. [Redrawn from Blasdel (1992)].

by these methods has a number of characteristic features (Obermayer & Blasdel, 1993).

(i) Orientation preference changes continuously as a function of cortical location, except

at singularities or pinwheels. (ii) There exist linear zones, approximately 750× 750 µm2

in area (in Macaque), bounded by pinwheels, within which iso–orientation regions form

parallel slabs. (iii) linear zones tend to cross the borders of ocular dominance stripes at

right angles; pinwheels tend to align with the centers of ocular dominance stripes. All

these features can be seen in the optical image shown in figure 1.

These observations suggest that the microstructure of V1 is spatially periodic with a

period of approximately 1 mm (in primates). The fundamental domain of this tiling of the

cortical plane is the hypercolumn (Hubel & Wiesel, 1974), which contains the full range of

orientation preferences φ ∈ [0, π) organized around pinwheels, with one set of preferences

for each ocular dominance column. The identification of the hypercolumn as a basic

cortical module is still somewhat controversial (LeVay & Nelson, 1991). However, it has

proved a very useful conceptual tool in the development of large scale dynamical models

of cortical function. In its original form the hypercolumn was organized in terms of linear

zones of orientation preference slabs and ocular dominance columns, as shown in figure

2a. This was later modified to include the cytochrome oxidase (CO) blobs observed in

Macaque by Horton & Hubel (1981) (see figure 2b) and only later found in Cat (Murphy,
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Figure 2: (a) Hubel and Wiesel’s original Icecube model of a V1 hypercolumn, redrawn for Cat;

(b) The Icecube model with CO blobs for Macaque V1.

Jones, & Sluyters, 1995). The blobs are regions of cells that are more metabolically

active and hence richer in their levels of CO. They tend to be located in the centers of

ocular dominance stripes and have a strong association with about half the orientation

singularities.

The fact that orientation preference is a periodic quantity suggests that the internal

structure of a hypercolumn can be idealized as a ring of orientation selective wedges

or patches. In the last decade a number of network models have appeared based on

such an idealization (Somers, Nelson, & Sur, 1995; Ben-Yishai, Bar-Or, & Sompolinsky,

1995; Vidyasagar, Pei, & Volgushev, 1996; Mundel, Dimitrov, & Cowan, 1997; Ben-Yishai,

Hansel, & Sompolinsky, 1997; Somers, Todorov, Siapas, Toth, Kim, & Sur, 1998; Li, 1999;

Dragoi & Sur, 2000; Stetter, Bartsch, & Obermayer, 2000; Bressloff, Bressloff, & Cowan,

2000; Bressloff & Cowan, 2002a). These models have been used to investigate the role

of intra-cortical interactions in orientation selectivity and tuning. The classical model of

Hubel & Wiesel (1962) proposes that the orientation preference of a cortical neuron arises

primarily from the geometric alignment of the receptive fields of thalamic neurons in the

lateral geniculate nucleus (LGN) projecting to it. This has been confirmed by a number

of recent experiments (Reid & Alonso, 1995; Ferster, Chung, & Wheat, 1997). However,
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there is also growing experimental evidence suggesting the importance of intra–cortical

feedback for orientation tuning. For example, the blockage of extracellular inhibition in

cortex leads to considerably broader tuning (Sillito, 1975; Nelson, Toth, Seth, & Sur,

1994). Moreover, intracellular measurements indicate that direct inputs from the LGN

to neurons in layer 4 of the visual cortex provide only a fraction of the total excitatory

inputs relevant to orientation selectivity (Douglas, Koch, Mahowald, Martin, & Suarez,

1995). A number of modeling studies have shown how local recurrent interactions within

an isolated cortical hypercolumn (idealized as a ring network) can amplify certain Fourier

components of network activity leading to sharp orientation tuning curves, even when the

LGN inputs are weakly biased (Somers et al., 1995; Ben-Yishai et al., 1995, 1997; Bressloff

et al., 2000). Such an amplification mechanism provides one possible explanation for the

approximate contrast invariance of the tuned response. More large-scale models of cortex

based on a system of coupled ring networks have subsequently been used to investigate

how orientation tuning is modulated by long-range interactions between hypercolumns

(Mundel et al., 1997; Somers et al., 1998; Li, 1999; Dragoi & Sur, 2000; Stetter et al.,

2000; Bressloff & Cowan, 2002a)

Although ring models have been quite successful in accounting for some aspects of

the response properties of hypercolumns, they have a number of limitations. For exam-

ple, they do not take into account the two dimensional structure illustrated in figure 1,

in which iso–orientation pinwheels alternate with linear zones, nor the presence of ocu-

lar dominance columns. More significantly for our interest, they also neglect the spatial

frequency selectivity of V1 neurons. Such selectivity has been observed in many physio-

logical experiments. Recordings from cat and monkey striate cortex have established that

a large number of cells are narrowly tuned to spatial frequency. Figure 3, for example,

shows the responses of a number of macaque monkey V1 cells to oriented gratings. The

Figure 3: Spatial frequency and orientation selectivity of cells in macaque V1. The thresholded

response of a number of cells is plotted as a function of stimulus spatial frequency and orientation.

The results are shown in log-polar coordinates with orientation given by the polar angle and

spatial frequency by the radius (on a logarithmic scale). [Redrawn from De Valois et al. (1982)]

average bandwidth is between 1 and 2 octaves, which covers a small fraction of the total

range of spatial frequencies (around 6 to 8 octaves in the fovea) to which the macaque is

sensitive (De Valois & De Valois, 1988). As in the case of psychophysical studies (Kelly &
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Magnuski, 1975), two dimensional stimuli such as checkerboards provide strong evidence

that neurons are tuned to two dimensional spatial frequencies. In fact there is consider-

able physiological evidence to suggest that cortical neurons act like bandpass filters for

both orientation and spatial frequency, so that a hypercolumn implements a localized or

windowed two dimensional spatial frequency filtering of a stimulus rather than simply

performing local edge detection (Webster & De Valois, 1985; Jones & Palmer, 1987).
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Figure 4: (a) De Valois and De Valois’ modified icecube model of a Cat V1 hypercolumn. (b)

The modified icecube model with CO blobs for Macaque V1. Redrawn from De Valois & De

Valois (1988).

The distribution of spatial frequency preference across cortex is less clear than that

of orientation preference. Nevertheless, based on the 2–DG studies available at the time

[see Tootell, Silverman, & De Valois (1981)], De Valois & De Valois (1988) introduced the

models of V1 hypercolumns shown in figure 4. In the macaque it was found that the CO

blob regions were sites of cells that responded preferentially to low spatial frequencies,

which suggested that spatial frequency increased radially away from the blobs. This

picture has been extended by recent optical studies of the spatial frequency map in cat

(Bonhoeffer, Kim, Malonek, Shoham, & Grinvald, 1995; Hübener, Shoham, Grinvald, &

Bonhoeffer, 1997; Issa, Trepel, & Stryker, 2000) which indicate that (a) both orientation

and spatial frequency preferences are distributed almost continuously across cortex, (b)

spatial frequency preferences at the both extremes of the continuum tend to be located at
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orientation pinwheels (i.e. the pinwheels that do not coincide with CO blobs correspond

to regions of high spatial frequency), and (c) around the pinwheels iso–orientation and

iso–frequency preference contours are approximately orthogonal (See figure 5). Note that

in most local neighborhoods of the region of V1 shown in figure 5 one can identify a low

and a high spatial frequency pinwheel connected by a linear zone. There are also a few

cases in which high spatial frequency pinwheels are connected by linear zones. However

they tend to be sited in different ocular dominance columns.

Figure 5: Map of iso–orientation preference contours (black lines), ocular dominance boundaries

(white lines), and spatial frequency preferences of cells in cat V1. Redrawn from Issa et al. (2000).

Red regions correspond to low spatial frequency preference, violet to high.

Motivated by such considerations, we introduce a minimal model of a hypercolumn

that (i) includes both orientation and spatial frequency preferences, (ii) incorporates the

orientation preference pinwheels, and (iii) exhibits sharply tuned responses in the pres-

ence of recurrent interactions and weakly biased LGN inputs. For simplicity we restrict

ourselves to a singular ocular dominace column and a single cortical layer. In the ring

model of orientation tuning the synaptic weights are taken to depend on the difference

between the orientation preference of pre– and post–synaptic neurons, which naturally

leads to a ring or circular network topology. Given that spatial frequency is not a periodic

variable within a hypercolumn, we cannot extend the ring model by including a second

ring so that the network topology becomes a torus. The simplest choice is to take the

topology to be a cylinder as shown in figure 6. This leads to a network response that is

separable with respect to the two stimulus features. However, recent experimental results
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suggest that although separability appears to hold in the linear zones of the orientation

map, there is significant non–separability close to the orientation pinwheels (Maldonado,

Gödecke, Gray, & Bonhoeffer, 1997; Issa et al., 2000; Mazer, Vinje, McDermott, Schiller,

& Gallant, 2002). Combining this with the assumption that each hypercolumn typically

contains two orientation pinwheels per ocular dominance column, and that these cor-

respond respectively to the two extremes of spatial frequency within the hypercolumn,

we introduce the network topology of a sphere to model a hypercolumn, with its two

pinwheels identified as the north and south poles respectively, see figure 7.

Figure 6: A cylindrical network topology. Spatial frequency preference decreases from top to

bottom whereas orientation preference varies around the circumference of the cylinder.

Figure 7: A spherical network topology. High and low spatial frequency pinwheels are located

at the poles of the sphere.

It is important to distinguish between the network topology shown in figures 6 or

7, which deal with synaptic weights as a function of orientation and spatial frequency

preference labels, and the actual two dimensional spatial arrangement of neurons within

a single cortical layer [see figure 4]. As in the ring model, the spherical model of a

hypercolumn is an abstraction from a complicated set of experimental results such as

those presented in figures 1 and 5. The model does not account for all of the details

apparent in these figures. In fact it should also be noted that optical imaging data is

inherently noisy so that some of the conclusions regarding the spatial frequency map and

the nature of orientation pinwheels are still quite controversial. Nevertheless, we believe
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that the analysis of conceptual models such as the one presented in this paper can lead

to insights into the true nature of the action of V1.
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Part I

Mean–field theory

In Part I of this paper, we present a dynamical theory of orientation and spatial frequency

tuning in a cortical hypercolumn whose network topology is taken to be spherical. As

we have already indicated in the introduction, this topology naturally accommodates the

two orientation preference pinwheels (within a single ocular dominance column), which are

located at the poles of the sphere, as well as the two dimensional curvilinear coordinate

system we choose to represent orientation and spatial frequency preferences within a

hypercolumn. Explicit solutions for localized activity states on the sphere are obtained

using a mean–field approach (Ben-Yishai et al., 1995; Hansel & Sompolinsky, 1997). We

thus show how cortical amplification through recurrent interactions generates a sharply

tuned, contrast invariant population response to both orientation and spatial frequency.

A major prediction of our model is that this response is non–separable with respect to

these stimulus features due to the presence of the pinwheels1.

2 Details of the spherical model

We assume that a hypercolumn is parameterized by two cortical labels, which represent

the orientation preference φ ∈ [0, π) and spatial frequency preference p ∈ [pmin, pmax] of

a local patch or column of cells. Typically, the bandwidth of a hypercolumn is between

three and four octaves, that is, pmax ≈ 2npmin with n = 4. This is consistent with

the observations of Hubel & Wiesel (1974), who found a two octave scatter of receptive

field sizes at each cortical region they mapped. Motivated by the optical imaging data

described in the introduction, we assume that the network topology is a sphere S2 with

the two pinwheels identified as the north and south poles respectively, see figure 7. If we

take (θ, φ) to be the angular coordinates on the sphere with θ ∈ [0, π), φ ∈ [0, π) then θ

1A preliminary version of the spherical model has been reported briefly elsewhere (Bressloff & Cowan,

2002b). In particular, we used a perturbative amplitude equation approach to establish the basic principle

of cortical amplification via spontaneous symmetry breaking. However, our analysis was restricted to the

weakly nonlinear regime. Here we greatly extend the analysis using the mean–field approach



12

Figure 8: Spherical network topology. Orientation and spatial frequency labels are denoted by

(φ, p) with 0 ≤ φ < π and pmin ≤ p ≤ pmax.

determines the spatial frequency preference p according to

θ ≡ Q(p) = π
log(p/pmin)

log(pmax/pmin)
(2.1)

That is, θ varies linearly with log p. This is consistent with experimental data that

suggests a linear variation of log p with cortical separation (Issa et al., 2000). This leads

to the spherical coordinate system shown in figure 8.

Let a(θ, φ, t) denote the activity of a local population of cells on the sphere with

angular coordinates (θ, φ). The evolution equation for the state a(θ, φ, t) is taken to be

of the form

∂a(θ, φ, t)

∂t
= −a(θ, φ, t) + [I(θ, φ, t)− κ]+ (2.2)

where κ is a threshold and I(θ, φ, t) is the total synaptic current,

I(θ, φ, t) =

∫
S2

w(θ, φ|θ′, φ′)a(θ′, φ′, t)D(θ′, φ′) + h(θ, φ) (2.3)

with D(θ, φ) = sin θdθdφ/2π the integration measure on the sphere. Here w represents

the distribution of recurrent interactions within the hypercolumn and h(θ, φ) is a weakly

biased input from the LGN. Equation (2.2) is the natural extension of the activity based

ring model of orientation tuning considered by Ben-Yishai et al. (1995, 1997). In order to

generalize the amplification mechanism of the ring model to the spherical model, equation

(2.2), we first construct a weight distribution that is invariant with respect to coordinate

rotations of the sphere, that is, the symmetry group SO(3). This rotational symmetry,

which generalizes the O(2) circular symmetry of the ring model, implies that the pattern

of connections within the hypercolumn depends only on the relative distance of cells on

the sphere as determined by their angular separation along geodesics or great circles.

That is, given two points on the sphere (θ, φ) and (θ′, φ′) their angular separation α is

(see figure 8)

cosα = cos θ cos θ′ + sin θ sin θ′ cos(2[φ− φ′]) (2.4)

This suggest that the simplest non–trivial form for the weight distribution w is

w(θ, φ|θ′, φ′) = W0 +W1 (cos θ cos θ′ + sin θ sin θ′ cos(2[φ− φ′])) (2.5)
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In figure 9 we plot w as a function of (θ, φ) for θ′ = θ, φ′ = 0 and W1 > W0. It can be

seen that away from the pinwheels (poles of the sphere at θ = 0, π), cells with similar

orientation excite each other whereas those with differing orientation inhibit each other.

This is the standard interaction assumption of the ring model (Somers et al., 1995; Ben-

Yishai et al., 1995), which has recently received experimental support (Roerig & Chen,

2002). On the other hand, around the pinwheels, all orientations uniformly excite, which

is consistent with the fact that although the cells around a pinwheel can differ greatly in

their orientation preference, they are physically close together within the hypercolumn.

Figure 9: Two-dimensional plot of w(θ, φ|θ′, φ′) given by the SO(3) invariant weight distribution

(2.9) with W0 = −1, W1 = 1 and Wn = 0 for n ≥ 2. We set φ′ = 0, θ′ = θ and plot w as a

function of θ and φ. (a) Contour plot of w on the sphere with light and dark regions correspond

to excitation and inhibition respectively. (b) Surface plot of w in the (θ, φ)–plane.

It is possible to construct a more general form of SO(3)-invariant weight distribution

using spherical harmonics. Any sufficiently smooth function a(θ, φ) on the sphere can be

expanded in a uniformly convergent double series of spherical harmonics

a(θ, φ) =
∞∑
n=0

n∑
m=−n

anmY
m
n (θ, φ) (2.6)

The functions Y m
n (θ, φ) constitute the angular part of the solutions of Laplace’s equation

in three dimensions, and thus form a complete orthonormal set. The orthogonality relation

is ∫
S2

Y m1
n1

∗(θ, φ)Y m2
n2

(θ, φ)D(θ, φ) =
1

4π
δn1,n2δm1,m2 (2.7)

The spherical harmonics are given explicitly by

Y m
n (θ, φ) = (−1)m

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ)e2imφ (2.8)

for n ≥ 0 and −n ≤ m ≤ n, where Pm
n (cos θ) is an associated Legendre function. (Note

that we have adjusted the definition of the spherical harmonics to take into account

the fact φ takes values between 0 and π). The action of SO(3) on Y m
n (θ, φ) involves

(2n+ 1)× (2n+ 1) unitary matrices associated with irreducible representations of SU(2)
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(Arfken, 1985). From the unitarity of these representations, one can construct an SO(3)

invariant weight distribution of the general form

w(θ, φ|θ′, φ′) = 4π
∞∑
n=0

Wn

n∑
m=−n

Y m
n
∗(θ′, φ′)Y m

n (θ, φ) (2.9)

with Wn real. For simplicity, we shall neglect higher harmonic constributions to w by

setting Wn = 0 for n ≥ 2 so that equation (2.9) reduces to equation (2.5) on rescaling

W1.

Finally, the weakly biased LGN input h(θ, φ) is assumed to be of the form

h(θ, φ) = C [1− ε+ ε (cos Θ cos θ + sin Θ sin θ cos(2[φ− Φ]))] (2.10)

This represents a unimodal function on the sphere with a single peak at (Θ,Φ). Here C

is the effective contrast of the input and ε measures the degree of bias. In fact, equation

(2.10) is the projection of the feedforward input from the LGN onto the zeroth and first

order spherical harmonics. The a posteriori justification for this is based on the idea that

recurrent interactions within the hypercolumn amplify these particular components of the

feedforward input so that higher order harmonics can be neglected (Bressloff & Cowan,

2002b). We also note that recent optical imaging experiments provide strong support

for the role of recurrent interactions in cortical amplification (Sharon & Grinvald, 2002).

Rectification arising from the firing rate characteristics of cortical cells then leads to a

sharply tuned, contrast invariant response to both orientation and spatial frequency (see

§3). The peak response, which is located at (Θ,Φ), is assumed to faithfully encode the

spatial frequency ps and orientation φs of an external visual stimulus, that is, Θ = Q(ps)

and Φ = φs. However, as we discuss in Part II, the relationship between Θ and ps is

far from straightforward. The transformation from visual stimulus to cortical input is

typically described in terms of a convolution with respect to a feedforward receptive field

modeled, for example, as a difference of Gaussians (Hawken & Parker, 1987). If the low

order spherical harmonic components of the resulting feedforward input to a hypercolumn

are now amplified, one finds that the cortical spatial frequency is shifted relative to the

stimulus frequency—there is no corresponding shift in orientation. In other words, the

network does not faithfully encode the stimulus spatial frequency unless an additional

filtering operation is introduced. We suggest in Part II that feedback from V1 back to

LGN (Murphy, Duckett, & Sillito, 1999) can modulate LGN activity to produce a faithful

encoding of spatial frequency. However, we ignore these subtleties here and proceed with

the form of LGN input given by equation (2.10).
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3 Stationary localized states

It is convenient to introduce real versions of the first-order harmonics,

f0(θ, φ) = cos θ, f+(θ, φ) = sin θ cos 2φ, f−(θ, φ) = sin θ sin 2φ (3.1)

so that equations (2.5) and (2.10) can be rewritten in the form

w(θ, φ|θ′, φ′) = W0 +W1

∑
m=0,±

fm(θ, φ)fm(θ′, φ′) (3.2)

and

h(θ, φ) = C

[
1− ε+ ε

∑
m=0,±

fm(Θ,Φ)fm(θ, φ)

]
(3.3)

with
∑

m=0,± fm(θ, φ)fm(θ′, φ′) equal to the angular separation of (θ, φ) from (θ′, φ′). Sub-

stituting equations (2.3), (3.2), and (3.3) into the evolution equation (2.2) then gives

∂a(θ, φ, t)

∂t
= −a(θ, φ, t) +

[
I0(t) +

∑
m=0,±

Im1 (t)fm(θ, φ)

]
+

(3.4)

where

I0(t) = C(1− ε) +W0R0(t)− κ (3.5)

Im1 (t) = Cεfm(Θ,Φ) +W1R
m
1 (t) (3.6)

and R0, R
m
1 are the order parameters

R0(t) =

∫
S2

a(θ, φ, t)D(θ, φ) (3.7)

Rm
1 (t) =

∫
S2

a(θ, φ, t)fm(θ, φ)D(θ, φ) (3.8)

Following along similar lines to the analysis of the ring model (Ben-Yishai et al., 1995;

Hansel & Sompolinsky, 1997), we study fixed point solutions of equation (3.4) in which

the activity surface is centered at the peak of the LGN input (Θ,Φ). That is,

a(θ, φ) =

[
I0 +

∑
m=0,±

Im1 fm(θ, φ)

]
+

(3.9)
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Such a solution is self–consistent provided that at the fixed point Rm
1 = R1fm(Θ,Φ) for

some R1. Given such a fixed point solution, we define the network gain G to be the ratio

between the maximal activity and the contrast relative to threshold

G =
a(Θ,Φ)

C − κ
. (3.10)

It is useful to distinguish between broad and narrow activity profiles a(θ, φ). We say that

the profile is broad when all the cells are above threshold. That is, I(θ, φ) ≥ κ and hence

a(θ, φ) > 0 for all (θ, φ) ∈ S2. On the other hand, a narrow profile is one for which a(θ, φ)

is only non–zero over a subdomain Σ = {θ, φ|0 ≤ θ < θ0(φ), 0 ≤ φ < π} ⊂ S2—this is

what we mean by a localized state. The closed curve θ = θ0(φ) determines the boundary

of the localized state on the sphere. Note that although the two dimensional activity

profile on the sphere is localized, it is not necessary that the resulting orientation tuning

curves are themselves localized (see §4).

3.1 Broad activity profile

The analysis of a broad activity profile is relatively straightforward, since the fixed point

equation (3.9) reduces to

a(θ, φ) = I0 +
∑
m=0,±

Im1 fm(θ, φ) (3.11)

which can be substituted into equations (3.7) and (3.8) to give R0 = I0 and Rm
1 = Im1 /3.

It follows from equations (3.5) and (3.6) that

R0 =
C(1− ε)− κ

1−W0

, Rm
1 = R1fm(Θ,Φ), R1 =

Cε/3

1−W1/3
(3.12)

and

a(θ, φ) = R0 + 3R1

∑
m=0,±

fm(Θ,Φ)fm(θ, φ) (3.13)

Since
∑

m fm(Θ,Φ)2 = 1, we deduce that the gain is

G = (C − κ)−1
[
C(1− ε)− κ

1−W0

+
Cε

1−W1/3

]
(3.14)

In terms of the effective stimulus tuning

Γ =
εC

C − κ
(3.15)
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we can re–express the gain as

G =
1− Γ

1−W0

+
Γ

1−W1/3
(3.16)

Note that in the absence of any tuning or bias in the LGN input (ε = 0), we have Γ = 0

and the broad activity profile reduces to the homogeneous state

a(θ, φ) =
C − κ
1−W0

(3.17)

with gain G = 1/(1−W0).

The existence and stability of a broad activity profile will depend on both Γ and the

weights W0,W1. First, since amin = R0 − 3R1 must be positive we require Γ < Γc where

1

Γc
= 1 +

1−W0

1−W1/3
(3.18)

(When Γ > Γc the state is narrowly tuned, see below). Second, a simple linear stability

analysis shows that the broad activity profile is only asymptotically stable provided that

W0 < 1, W1 < 3 (3.19)

At W0 = 1 the system undergoes a bulk amplitude instability in which the activity across

the network uniformly diverges. On the other hand, at W1 = 3 there is a pattern forming

instability associated with the bifurcation to a narrowly tuned or localized state. Indeed,

as we establish below, when the spatial modulation of cortical recurrent interactions is

sufficiently large, such a localized state can emerge spontaneously from the homogeneous

state in the absence of any bias from the LGN input (ε = 0).

3.2 Narrow activity profile

In order to simplify our analysis, we assume for the moment that the center of the activity

profile is fixed at the low frequency pinwheel, that is, Θ = 0. (The general solution can

then be generated by carrying out an SO(3) rotation on the sphere). In this particular

case, a state is narrowly tuned if there exists θc < π such that a(θ, φ) = 0 for all θc ≤ θ ≤ π,

0 ≤ φ < π. The cut–off angle θc satisfies the equation

I0 +
∑
m

Im1 fm(θc, φ) = 0, 0 ≤ φ < π (3.20)
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Taking moments of the fixed point equation (3.9) with respect to the zeroth and first

order spherical harmonics,

R0 = I0

∫ θc

0

∫ π

0

D(θ, φ) +
∑

m=0,±1

Im1

∫ θc

0

∫ π

0

fm(θ, φ)D(θ, φ) (3.21)

and

Rn
1 = I0

∫ θc

0

∫ π

0

fn(θ, φ)D(θ, φ) +
∑
m=0,±

Im1

∫ θc

0

∫ π

0

fn(θ, φ)fm(θ, φ)D(θ, φ) (3.22)

and performing the integration over θ, φ then gives

R0 =
I0[1− cos θc]

2
+
I01 [1− cos 2θc]

8
(3.23)

R0
1 =

I0[1− cos 2θc]

8
+
I01 [1− cos3 θc]

6
(3.24)

and

R±1 =
I±1 [2− 3 cos θc + cos3 θc]

12
(3.25)

It is useful to introduce the functions

A0(θc) =
1− 2 cos θc + cos2 θc

4
(3.26)

and

A1(θc) =
2− 3 cos θc + cos3 θc

12
(3.27)

Since f±(0,Φ) = 0 for all Φ, it follows from equations (3.6) and (3.25) that

R±1 [1−W1A1(θc)] = 0 (3.28)

Provided that W1A1(θc) 6= 1, we deduce that R±1 = 0 and hence I±1 = 0. Setting I01 = I1

and R0
1 = R1, the condition for θc reduces to

I0 + I1 cos θc = 0 (3.29)

with (see equations (3.5) and (3.6))

I0 = C(1− ε) +W0R0 − κ, I1 = Cε+W1R1 (3.30)
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Substituting into equations (3.23) and (3.24) gives R0 = A0(θc)I1 and R1 = A1(θc)I1 so

that

R0 =
εCA0(θc)

1−W1A1(θc)
(3.31)

and

R1 =
εCA1(θc)

1−W1A1(θc)
(3.32)

Given the critical angle θc and the effective input I1, the resulting localized state takes

the form

a(θ, φ) = [I1(cos θ − cos θc)]+ (3.33)

when centered about the Θ = 0 pinwheel. The corresponding gain defined by equation

(3.10) is

G =
I1(1− cos θc)

C − κ
(3.34)

By performing an SO(3) rotation, it immediately follows that a localized state centered

at the point (Θ,Φ) on the sphere is

a(θ, φ) =

[
I1

( ∑
m=0,±

fm(Θ,Φ)fm(θ, φ)− cos θc

)]
+

(3.35)

Thus a is only non-zero if the angular separation of (θ, φ) from (Θ,Φ) is less than the

critical angle θc. It follows that the boundary of the localized state θ = θ0(φ) is given by

the equation ∑
m=0,±

fm(Θ,Φ)fm(θ0(φ), φ) = cos θc. (3.36)

We now determine properties of the localized state in different parameter regimes using

a similar analysis to that of the ring model (Hansel & Sompolinsky, 1997).

Figure 10: Critical angle θc for the width of the localized state as a function of the stimulus

tuning parameter Γ in the case of weak cortical modulation W1 ≈ 0.
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Weak cortical modulation (W0 < 1,W1 < 3) For sufficiently weak cortical modu-

lation as defined by the condition W1 < 3, a non–trivial activity profile only exists in

the presence of a biased LGN input (ε > 0). Whether or not this state is broadly or

narrowly tuned will depend on the stimulus parameter Γ. We have already established

that the broadly tuned state exists only if Γ < Γc, see equation (3.18). On the other

hand, when Γ > Γc there exists a narrowly tuned state with critical angle θc determined

self–consistently from equations (3.29) and (3.30),

− cos θc ≡
I0
I1

=
C(1− ε)− κ

Cε
[1−W1A1(θc)] +W0A0(θc)

which can be rearranged to give

1

Γ
= 1− W0A0(θc) + cos θc

1−W1A1(θc)
(3.37)

Note that θc ≤ π for Γ ≥ Γc. In figure 10 we plot the critical angle θc as a function of Γ.

The corresponding gain of the localized state is

G = Γ

[
1− cos θc

1−W1A1(θc)

]
(3.38)

where we have used equations (3.34) and (3.30).

It follows from equation (3.18) that if W0,W1 ≈ 0 then Γc ≈ 1/2 so that a stimulus

with ε < 1/2 and contrast C � κ will necessarily generate a broad activity profile.

Introducing global inhibition by taking W0 < 0 and W1 ≈ 0 can sharpen the response

by lowering Γc: Γc ≈ 1/(2 + |W0|). However, the gain is also lowered when the level

of inhibition is increased since G ≈ Γ(1 − cos θc) and the cortical inhibition reduces θc.

Increasing the degree of cortical modulation W1 for fixed W0 also reduces Γc such that

beyond the critical value W1 = 3 we have Γc = 0 and a localized state can be generated

even in the absence of a feedforward bias ε.

Figure 11: Phase diagram for spherical model in the case of a homogeneous input ε = 0.

Marginal phase and strong cortical modulation (ε = 0, W0 < Wc, W1 > 3) When

W1 > 3 the unique broadly tuned state (3.13) is unstable, so that any inhomogeneous
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state must be narrowly tuned. In the absence of an LGN bias (ε = 0) the former reduces

to an unstable homogeneous state (3.17). Inspection of equation (3.32) shows that a

localized state persists when ε = 0 provided that

1 = W1A1(θc) (3.39)

Since A1(θc) < 1/3 for 0 ≤ θc ≤ π, it follows that W1 > 3 is a necessary condition for

a narrowly tuned activity profile to occur when ε = 0. The location (Θ,Φ) of the center

of the localized state is now arbitrary since the LGN input is homogeneous. In other

words, there is a continuum of localized states on the sphere which form a manifold of

marginally stable fixed points, and the system is said to be in a marginal phase. In such

a phase, a narrowly tuned state spontaneously breaks the underlying SO(3) symmetry of

the network, which is possible because the spatial modulation of the cortical interactions

is sufficiently strong.

Figure 12: Variation of critical angle θc (dashed curve) and gain G (solid curve) as a function

of cortical modulation W1 in the case of a homogeneous input ε = 0. The gain is shown for

W0 = −10.

In the marginal phase, the critical angle θc is determined by equation (3.39) and is

thus independent of W0. Equations (3.31) and (3.32) imply that

R0

R1

=
A0(θc)

A1(θc)
= W1A0(θc) (3.40)

Combining this with equations (3.30) and (3.20) and setting ε = 0 then gives

I1 = − C − κ
cos θc +W0A0(θc)

(3.41)

and R1 = I1/W1. The corresponding gain (3.34) is

G = − 1− cos θc
cos θc +W0A0(θc)

(3.42)

which can be rewritten as

G = −1− cos θc
A0(θc)

1

Wc −W0

(3.43)
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where

Wc = − cos θc
A0(θc)

(3.44)

Equation (3.43) imples that a second condition for the existence of a marginal localized

state is that W0 < Wc. Performing a stability analysis shows that as W0 approaches

Wc the system undergoes an amplitude instability analogous to that of the homogeneous

state when W0 = 1 and W1 < 3 (see appendix A). The phase diagram for the stability

of the various states in the presence of a homogeneous input is shown in figure 11. The

variation of the critical angle θc and gain G as a function of W1 is plotted in figure 12.

Figure 13: Two dimensional plot of the tuning surface on the sphere associated with the

localized solution (3.35). The activity a(θ, φ) is plotted as a function of (θ, φ) for fixed width

θc = π/3 and various optimal spatial frequencies Θ and orientations Φ: (a) Θ = π/4,Φ = 90o.

(b) Θ = π/2,Φ = 135o. (c) Θ = 0,Φ = 0o. Light and dark regions denote high and low activities

respectively. The figures are related to each other by a rotation of the sphere.

In the case of strong cortical modulation, the presence of a weak input bias (0 < ε� 1)

will not affect the width of the activity profile but will explicitly break the hidden SO(3)

symmetry by locking the center of the response (Θ,Φ) to the peak of the LGN input.

This establishes a recurrent mechanism for the joint contrast invariance of orientation

and spatial frequency tuning curves (see §4). Particular examples of localized states on

the sphere are illustrated in figure 13 for θc = π/3 and various optimal spatial frequencies

Θ and orientations Φ. It can be seen that the differing solutions are related by a rotation

of the sphere, which reflects the underlying SO(3) symmetry.

Finally note that in order to simplify our analysis of the spherical model, we have

considered a one population model in which inhibitory and excitatory cell populations

have been collapsed into a single equivalent population. Such a simplification greatly

reduces the number of free parameters of the system. The basic insights gained from the

one population model can be used to develop the mean field theory of a more realistic

two population model. This is presented in appendix B.
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Figure 14: Plot of localized tuning surface in the (p, φ)–plane in response to a weakly biased

LGN input (ε� 1) with Φ = 90o and (a) Θ = π/2 (b) Θ = π/3. The width of the localized state

is taken to be θc = π/3. The activity a is shown relative to its maximal value. We have assumed

that θ is related to spatial frequency p according to equation (2.1) with pmin = 0.5c/deg and

pmax = 8c/deg.

4 Orientation and spatial frequency tuning curves

Our mean field analysis of the spherical model has generated exact solutions for two di-

mensional localized states on the sphere, which correspond to population tuning surfaces

for orientation and spatial frequency preferences within a hypercolumn. A useful represen-

tation of the response is obtained by projecting the localized states onto the (p, φ)–plane.

Surface plots of the resulting activity profiles in the marginal phase are shown in figure 14

for Φ = 90o and either (a) Θ = π/2 (corresponding to an intermediate spatial frequency

p = 2c/deg.) or (b) Θ = π/3 (corresponding to a lower spatial frequency p ≈ 1.2c/deg.).

Tuning curves for orientation and spatial frequency can then be extracted by taking ver-

tical cross-sections through the tuning surface. Various examples are presented in figures

15–17. In particular, figure 15 illustrates the contrast invariance of the response with

respect to both orientation and spatial frequency. In the marginal phase contrast invari-

ance is exact since both the width θc and the gain G are independent of contrast, see

equations (3.39) and (3.43). Interestingly, approximate contrast invariance also holds for

weak cortical modulation (small W1), since θc is a slowly varying function of the synaptic

parameter Γ over a broad parameter regime (see figure 11).

Figure 15: Contrast invariance of (a) orientation and (b) spatial frequency tuning curves for

W1 = 19.2 and W0 = −10 and a homogeneous input (ε = 0). The critical angle θc = π/3 and

the gain G = 4. Curves correspond to contrasts (i) C = 0.2, (ii) C = 0.1 and (iii) C = 0.05

relative to threshold κ.

Figure 14 shows that projecting the spherical tuning surface onto the (θ, φ)–plane

breaks the underlying SO(3) symmetry of the sphere. Consequently, the shape of the pla-

nar tuning surface is not invariant under shifts in the location of the peak of the tuning

surface. This distortion is a direct consequence of the existence of pinwheels, which are
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incorporated into our model using a spherical topology, and implies that the responses to

orientation and spatial frequency are non-separable. That is, the activity profile cannot be

written in the form a(θ, φ) = U(θ)V (φ). However, we expect approximate separability to

occur at intermediate spatial frequencies (away from the pinwheels). The non-separability

of the response generates behavior that is consistent with some recent experimental ob-

servations:

Figure 16: (a) Orientation tuning curves showing broadening as the optimal spatial frequency

Θ changes from intermediate to high or low spatial frequencies: Θ = π/6 (thin dashed curve),

Θ = π/3 (thin solid curve), Θ = π/2 (thick solid curve) and Θ = π/8 (thick dashed curve).

The optimal orientation is fixed at Φ = 90o and θc = π/3. The activity a is shown relative

to its maximal value. (b) Spatial frequency tuning curves showing invariance of the degree of

tuning with respect to Θ. Same parameter values as (a) except Θ = 2π/3 (thick dashed curve).

We have assumed that θ is related to p according to equation (2.1) with pmin = 0.5c/deg and

pmax = 8c/deg.

Figure 17: Spatial frequency tuning curves a(θ, φ) as a function of θ for various orientations

φ = Φ + δφ: (i) δφ = 0o (ii) δφ = 14o (iii) δφ = 28o. In the case of a low optimal frequency

Θ = π/3, figure (a), there is a downward shift in the peak of the response, whereas there is an

upward shift in the case of a high optimal frequency Θ = 2π/3, figure (b).

(a) At high and low spatial frequencies (towards the pinwheels) there is a broadening

of the tuned response to orientation. This is illustrated in figure 16(a) where we plot

orientation tuning curves a(Θ, φ) as a function of φ for various optimal spatial frequencies

Θ. It can be seen that the width increases towards the low (and high) orientation pin-

wheel. No such broadening occurs for the corresponding spatial frequency tuning curves

as shown in figure 16(b). In our model the reduction of orientation selectivity around

the pinwheels is an aggregate property of a population of cells. Interestingly, it has been

found experimentally that individual neurons close to pinwheels are actually orientation

selective (O’Keefe, Levitt, Kiper, Shapley, & Movshon, 1998), but there is a broad distri-

bution of orientation preferences within the pinwheel region so that the average response

of the population is only weakly orientation selective. Note that our results differ from
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those of (McLaughlin, Shapley, Shelley, & Wielaard, 2000) who find a sharpening of ori-

entation tuning near pinwheels. We attribute this difference to the SO(3) symmetry we

impose on the weighting function w(θ, φ|θ′, φ′).
(b) There is a systematic shift and narrowing of spatial frequency tuning curves at

non–optimal orientations – the shift is towards the closest pinwheel, see figure 17. There

is some suggestion of spatial frequency shifts in recent optical imaging data (Issa et al.,

2000). Note, however, that one difference between our model prediction and the data is

that the latter appears to indicate a downward rather than an upward shift in response at

high spatial frequencies. (A downward shift is also consistent with feedforward receptive

field properties, see figure 21). We suggest in §7 that the downward shift could be reversed

by cortico–geniculate feedback (after some delay).

Figure 18: Polar plots of localized activity state a(θ, φ) for fixed width θc = π/3, fixed optimal

orientation Φ = 0o and increasing optimal spatial frequency Θ: (a) Θ = π/6 (b) Θ = π/3 (c)

Θ = π/2 (d) Θ = 2π/3. Here φ is taken to be the polar angle and θ the radius in the plane

such that the origin represents the low frequency pinwheel at θ = 0, whereas the outer circle

represents the high frequency pinwheel at θ = π. Darker regions correspond to higher levels of

activity. In each figure, ∆θ = 2θc is indicated by the thick horizontal line and ∆φ is indicated

by the thick arc, reaching a minimum at Θ = π/2.

Another useful representation of the response is to consider contour plots of the activity

profile in the (θ, φ)–plane as shown in figure 18. Here we use polar coordinates with radius

θ and polar angle φ. This figure further illustrates the non-separability of the response.

Define ∆θ as the width of the activity profile at the optimal orientation Φ and ∆φ as the

width of the activity profile at the optimal spatial frequency Θ. It follows from equation

(3.35) that ∆θ = 2θc irrespective of the position of the center of the localized state.

On the other hand, ∆φ varies with the optimal frequency Θ, reaching a minimum at

Θ = π/2. Sufficiently close to the pinwheels, Θ < θc/2 or Θ > π− θc/2, we have ∆φ = π,

which implies that although the response is localized on the sphere it is broadly tuned for

orientation. Finally, in figure 19 we show a log-polar plot of various localized responses,

which is at least suggestive of the single-cell data reproduced in figure 3. We select a

narrow tuning width for ease of illustration and since the data in figure 3 is thresholded.

We emphasize that the results presented in this section describe the response of a

cortical hypercolumn to a fixed visual stimulus (population tuning curves) rather than
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Figure 19: Log-polar plot of various localized activity states for fixed width θc = π/6 and

various optimal orientations Φ and spatial frequencies P = Q−1(Θ) fixed optimal orientation

Φ = 0o: (a) P = 1c/deg,Φ = 0o (b) P = 2c/deg,Φ = 90o (c) P = 3c/deg,Φ = 135o (d)

P = 4c/deg,Φ = 45o. Here φ is taken to be the polar angle and log2 p the radius.

the response of a single cell to a range of stimuli (single cell tuning curves). The non–

separability arising from the pinwheels is thus a population effect and may be reduced or

even absent at the single cell response. Interestingly, recent single cell recordings suggest

that there is approximate separability of orientation and spatial frequency tuning curves

except at low and high spatial frequencies (Mazer et al., 2002), which is consistent with

our population results.
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Part II

Receptive fields and

cortico–geniculate feedback

In Part II of this paper we show that if the low order spherical harmonic components of

the filtered feedforward input to a hypercolumn are amplified by recurrent interactions,

then the spatial frequency at which the cortical response is optimal is shifted relative to

the stimulus frequency—there is no corresponding shift in orientation. In other words,

the network does not faithfully encode the stimulus spatial frequency. This shift in spa-

tial frequency is not an artifact of the particular spherical network topology. A similar

conclusion would obtain for any recurrent mechanism that amplifies both orientation and

spatial frequency components of the LGN input. We propose that the feedback pathway

from V1 back to LGN, recently investigated in cats (Murphy et al., 1999), modulates LGN

activity to produce a faithful encoding of spatial frequency. Using linear filter theory we

show that if the feedback from a cortical cell is taken to be approximately equal to the re-

ciprocal of the corresponding feedforward receptive field (in the two–dimensional Fourier

domain), then the mismatch between the feedforward and cortical frequency representa-

tions is eliminated (at least at the linear level). We predict that for intermediate spatial

frequencies, the cortico–geniculate innervation pattern is oriented in a direction related

to the orientation bias of its V1 origin. However for high and low spatial frequencies, no

direction of innervation should exist.

5 Feedforward receptive fields

One possible model of the two dimensional receptive field of a simple cell (in retinal

co–ordinates r = (x, y)) is the difference of Gaussians (Hawken & Parker, 1987)

u(r) =

√
κ

2πσ+
exp

[
− 1

2σ2
+

(
κ2x2 + y2

)]
− α

2πσ−
exp

[
− 1

2σ2
−

(
x2 + y2

)]
(5.1)

This represents a center–surround profile in which the excitatory center is an ellipse with

eccentricity κ > 1 whose major axis runs along the y–direction. The inhibitory surround

is taken to be circular but with a larger half width, σ− > σ+. The parameter κ is a

measure of the degree of feedforward orientation selectivity due to the alignment of LGN
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circular receptive fields along the vertical direction (φ = 0). Taking the two dimensional

Fourier transform of u gives

U(k) = exp

[
−
σ2
+k

2

2

(
κ−2 cos2 ϕ+ sin2 ϕ

)]
− α exp

[
−
σ2
−k

2

2

]
(5.2)

for k = (k, ϕ) in polar coordinates. The function U has a maximum at p = (p, φ) so that

U(p) ≥ U(k) for all k, with φ = 0, π and

p =

√
4

σ2
− − κ−2σ2

+

ln

[√
ακσ−
σ+

]
(5.3)

Setting σ+ = σ and σ− = κ̂σ and taking κ̂, κ, α to be fixed, it follows that the spatial

frequency preference p is inversely proportional to the size σ of the receptive field,

p =
A

σ
, A =

√
4

κ̂2 − κ−2
ln
[√
ακκ̂

]
(5.4)

and we can rewrite u as

u(r|p) =
p
√
κ

2πA
exp

[
− p2

2A2

(
κ2x2 + y2

)]
− αp

2πκ̂A
exp

[
− p2

2A2κ̂2
(
x2 + y2

)]
(5.5)

Now consider a cell with receptive field profile centered at the retinal coordinate r̂

with (feedforward) orientation preference φ and spatial frequency preference p. Given a

visual stimulus of intensity i(r), the effective input from the LGN to the cell will be of

the form

hLGN(r̂|p) =

∫
i(r)u(r̂− r|p)dr (5.6)

where u(r|p) = u(Tφr|p) and

Tφ =

(
cosφ − sinφ

sinφ cosφ

)
(5.7)

Taking the Fourier transform of equation (5.6) gives

HLGN(k|p) = I(k)U(k|p) (5.8)

where

U(k|p) = exp

[
−A

2k2

2p2
(
κ−2 cos2(ϕ− φ) + sin2(ϕ− φ)

)]
− α exp

[
− κ̂

2A2k2

2p2

]
(5.9)
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In the particular case of a sinusoidal grating of contrast Cs, spatial frequency ps and

orientation φs,

i(r) = Cs cos[ ps(x cosφs + y sinφs)] , (5.10)

we have

hLGN(r̂|p) = Cs U(ps|p) cos(ps · r̂) (5.11)

Thus, when the grating is centered in the receptive field of the neuron, so that r̂ = 0,

hLGN(0|p) = Cs U(ps|p), i.e., the resulting LGN input is given by the Fourier transform

of the receptive field multiplied by the stimulus contrast Cs, as expected.

Figure 20: LGN input hLGN to a single cell obtained by filtering a sinusoidal grating with the

difference–of–Gaussian receptive field (5.5) for a range of stimulus spatial frequencies ps and

orientations φs (with zero spatial phase). Parameters of the LGN receptive field are κ = 1.5,

κ̂ = 3 with a variable level of surround inhibition α. Figure (a) shows the input (in units of

the stimulus contrast Cs) as a function of stimulus frequency ps for a fixed spatial frequency

preference p = 1 and φ = φs. The units of spatial frequency are taken to be cycles/deg. Figure

(b) shows the corresponding input as a function of stimulus orientation φs for a fixed orientation

preference φ = 900 and p = ps.

Figure 21: Shift in spatial frequency peak of the LGN input at non-optimal orientation φ 6= φs.

Here p = 4, φ = 0o and κ = 2. All other parameters as in figure 20.

In figure 20(a) we plot the resulting LGN input as a function of stimulus frequency

ps for φ = φs, p = 1 and various levels of surround inhibition α. It can be seen that

for relatively low levels of inhibition, the LGN acts like a lowpass spatial frequency filter

with a shallow maximum at ps = p. When the inhibition is increased, however, the profile

is sharpened and the LGN acts more like a bandpass filter. The corresponding input

profile as a function of orientation preference φ is shown in figure 20(b) for φs = 90o.

The response has a shallow maximum at φ = φs, with a relatively large DC component

that decreases with increasing surround inhibition and increasing κ. There is also a

spatial frequency shift in the LGN input at non–optimal orientations (φ 6= φs), which

is always to lower frequencies. This follows from equations (5.9) and (5.11), since when

φ 6= φs there is an effective reduction in the anisotropy parameter κ of the form κ−2 →
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κ−2
(
cos2(φs − φ) + sin2(φs − φ)

)
. Such a reduction reduces the spatial frequency at which

the input reaches a maximum, see equation (5.3), and this is true for all spatial frequencies

as shown in figure 21 for p = 4c/deg. This should be contrasted with the corresponding

shift in the cortical response, which is to higher frequencies (see figure 17(b)).

6 Spherical harmonic projection of the LGN input

Now consider a cortical hypercolumn whose cells are parameterized by the orientation

preference φ ∈ [0, π] and spatial frequency preference p ∈ [pmin, pmax], with the pair (p, φ)

determined by the feedforward receptive field properties of the cells (see §5). Follow-

ing Part I, we assume that the network topology is a sphere with angular coordinates

(θ, φ), where θ is related to the spatial frequency preference p according to equation (2.1).

We have already shown how amplification and rectification of certain spherical harmonic

components of a weakly biased LGN input can generate orientation and spatial frequency

tuning. We are now interested in the consequences of selecting out these particular har-

monic components without worrying about the additional rectification stage. Therefore,

we restrict our analysis to linear theory and treat the cortex as a linear filter carrying out

the transformation hLGN → PhLGN where P denotes the projection onto the zeroth and

first order spherical harmonic components and hLGN is the total feedforward input from

the LGN2 (see figure 22).

Figure 22: Schematic diagram of feedforward pathways. A visual stimulus i is convolved with a

feedforward receptive field u to generate a cortical input hLGN = u◦i. (The convolution operator

◦ is defined in equation (7.3)). Recurrent interactions within V 1 amplify low order spherical

harmonic components to generate a response h = PhLGN . The contour plot of a difference of

Gaussians receptive field profile is shown in retinal coordinates. The length scale is in units of

the range of feedforward excitation. Dark and light regions represent excitatory and inhibitory

afferents respectively. Parameters of the LGN receptive field are κ = 1.5, κ̂ = 3 and α = 0.5.

Suppose, for the moment, that the receptive field centers of all neurons within a given

hypercolumn are located at the same retinal coordinate r̂. Then hLGN(r̂|p), for fixed

2At first sight, this may be confusing since we took h = PhLGN to be the input to the cortex in Part

I. We are essentially decomposing the operation of cortex into two distincts parts: (i) selection through

amplification hLGN → PhLGN and (ii) tuning through amplification and rectification PhLGN → a.
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r̂, determines the LGN input distribution across the hypercolumn. Projecting onto the

first-order harmonics, it follows that

h(θ, φ) ≡ PhLGN(r̂|Q−1(θ), φ)

= h0 +
∑
m=0,±

hm1 fm(θ, φ) (6.1)

where

h0 =
1

2π

∫ π

0

∫ π

0

hLGN(r̂|Q−1(θ), φ) sin θdθdφ (6.2)

and

hm1 =
3

2π

∫ π

0

∫ π

0

fm(θ, φ)hLGN(r̂|Q−1(θ), φ) sin θdθdφ (6.3)

Note that in order for the resulting distribution h(θ, φ) to be a well defined function on

the sphere, it must be independent of φ at θ = 0, π. Equations (5.6) and (5.9) then require

that κ = 1 at the pinwheels, in other words, the average orientation preference of receptive

fields at the pinwheels must be zero. Hence, the existence of a non–zero preference away

from the pinwheels, implies that the orientation selectivity parameter κ has to be spatial

frequency dependent. For concreteness, we take

κ = κ(θ) ≡ κ0 sin2(θ) + cos2(θ) (6.4)

with κ0 > 1 so that the selectivity is maximal at intermediate spatial frequencies and zero

at the pinwheels.

We now calculate h(θ, φ) for a sinusoidal grating with stimulus frequency ps, orienta-

tion φs and zero spatial phase (r̂ = 0). We use the identities cos(2φ) = 2 cos2 φ − 1 =

1− 2 sin2 φ and

ex cos 2φ = I0(x) + 2
∑
n≥1

In(x) cos(2nφ) (6.5)

where In(x) is the modified Bessel function of integer order n. Equation (5.9) can then

be expanded as

U(k|p) =
∞∑
n=0

Un(k|p) cos 2n(ϕ− φ) (6.6)

where

U0(k|p) = exp

[
−κ

+A2k2

2p2

]
I0

(
κ−A2k2

2p2

)
− α exp

[
− κ̂

2A2k2

2p2

]
(6.7)
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and

Un(k|p) = 2 exp

[
−κ

+A2k2

2p2

]
In

(
κ−A2k2

2p2

)
(6.8)

for n > 0 with κ± = (1 ± κ−2)/2. Setting hLGN(0|p) = CsU(ps|p) and using equations

(6.1)–(6.3) and (6.6), we find that

h0 = Csh0(ps), h01 = Csh1(ps) (6.9)

and

h+1 = Csh2(ps) cosφs, h
−
1 = Csh2(ps) sinφs (6.10)

with

h0(ps) =
1

2

∫ pmax

pmin

U0(ps|p) sin(Q(p))dQ(p) (6.11)

h1(ps) =
3

4

∫ pmax

pmin

U0(ps|p) sin(2Q(p))dQ(p) (6.12)

and

h2(ps) =
3

4

∫ pmax

pmin

U1(ps|p) sin2(Q(p))dQ(p) (6.13)

Figure 23: Plot of cortical spatial frequency Θ = Q̃(ps) as a function of stimulus spatial

frequency ps for the difference of Gaussians receptive field with κ0 = 1.5, κ̂ = 3 and various

levels of inhibition α. The dotted line Θ = Q(ps) corresponds to a faithful encoding of spatial

frequency.

Substitution of equations (6.9) and (6.10) into equation (6.1) recovers the form as-

sumed for h in equation (2.10) of Part I, namely,

h(θ, φ) = C

[
(1− ε) + ε

∑
m=0,±

fm(Θ,Φ)fm(θ, φ)

]
(6.14)

= C(1− ε) + εC (cos Θ cos θ + sin Θ sin θ cos(2[φ− Φ]))

where

Θ = Q̃(ps), Φ = φs (6.15)
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C(1− ε) = Csh0(ps), Cε = CsΓ(ps) (6.16)

and

Q̃(ps) = tan−1
h2(ps)

h1(ps)
, Γ(ps) =

√
h1(ps)2 + h2(ps)2 (6.17)

The phase Q̃(ps) is plotted as a function of stimulus frequency in figure 23 for various

levels of feedforward inhibition α. This clearly shows that Θ = Q̃(ps) 6= Q(ps)—there

is a strong magnification of the representation of spatial frequency in the intermediate

range, with small changes in ps inducing large changes in the location Θ of the peak of the

tuned response. Thus, there is a mismatch between the spatial frequency encoded by the

hypercolumn (given by Θ) and the input spatial frequency ps of the stimulus. In figure

24 we plot the variation of h0(ps) and Γ(ps) with stimulus frequency. These functions

determine the effective contrast C and bias ε according to equation (6.16) so that, in

particular, the contrast C = h0(ps) + Γ(ps). In the mean–field analysis of §3 we showed

that under amplification and rectification a localized activity state is generated whose

amplitude varies as εC (weak cortical modulation) or as C (strong cortical modulation,

weak bias ε � 1). We see from figure 24 that the projection onto spherical harmonics

leads to a non–trivial dependence of the reponse amplitude on stimulus frequency. This

appears to be inconsistent with physiological (Issa et al., 2000) and psychophysical (De

Valois & De Valois, 1988) data, which indicates that the response amplitude is a unimodal

function that peaks at a single intermediate frequency. Another interesting observation

regarding figure 24, is that the LGN bias ε cannot be assumed to be small across the

whole spatial frequency range.

Figure 24: Plot of h0(ps) (thin curve), Γ(ps) (dashed curve) and the contrast C (thick curve) as

a function of stimulus spatial frequency ps for (a) α = 0.5 (b) α = 1.0. Other parameter values

as in figure 23

The origin of the mismatch Θ 6= Q(ps) is the assumption that recurrent cortical

interactions amplify both orientation and spatial frequency components of the LGN input.

Such a mismatch would not occur if Fourier modes with respect to the orientation label φ

alone were amplified, as in the ring model of orientation tuning (Ben-Yishai et al., 1995).

In such a case one can represent the effective LGN input for a fixed spatial frequency

preference p by

h(φ) = C(1− ε) + Cε cos(2[φ− φs)] (6.18)
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with, see equation (6.6),

C(1− ε) = U0(ps|p), Cε = U1(ps|p) (6.19)

Suppose that the stimulus frequency ps is fixed and we plot U0,1(ps|p) as a function of

the spatial frequency preference p. The results are shown in figure 25. At the optimal

orientation φ = φs the spatial frequency dependence of the input is given by the effective

contrast C = U0(ps|p) + U1(ps|p). It can be seen from figure 25 that C peaks when the

spatial frequency preference is approximately equal to the stimulus frequency, p = ps, so

that the network response now faithfully encodes the stimulus. However, the resulting

spatial frequency tuning curves are neither sharply tuned nor contrast invariant. (These

tuning curves are directly given by C since there is no amplification with respect to p).

One way to achieve more realistic tuning curves is to posit that recurrent interactions also

amplify spatial frequency components of the LGN input along the lines of the spherical

model. One then has to tackle the resulting mismatch between stimulus frequency and

response frequency.

Figure 25: Plot of U0(ps|p) (dashed curve), U1(ps|p) (thin curve) and contrast C (thick curve)

as a function of spatial frequency preference p for fixed stimulus frequency ps: (a) ps = 1c/deg

and (b) ps = 4.0c/deg. Other parameter values as in figure 23 for α = 0.5.

7 Renormalizing the LGN input

It follows from the above analysis that if the cortex amplifies the first order spherical

harmonic components of a stimulus, then in order to generate a faithful representation of

spatial frequency, Θ = Q(ps), the LGN input cannot be determined only by the feedfor-

ward receptive field properties of single neurons. In other words, there must exist another

filtering operation P that converts Q̃(ps) into Q(ps). Of course, an alternative possibil-

ity is that the proposed amplification mechanism is itself invalid. However, we expect

a similar conclusion to hold for any feedforward or recurrent mechanism that amplifies

two dimensional Fourier components of the stimulus—the basic problem lies with the fact

that the response is non–separable with respect to the orientation and spatial frequency

labels. It therefore remains to discuss possible mechanisms for the filtering action P that

effectively renormalizes the feedforward LGN input.
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7.1 Feedforward mechanisms

One possible feedforward mechanism is patch averaging. For simplicity, we have assumed

that every cortical cell within a local patch has the same receptive field profile u, equation

(5.5), with identical parameters α, κ, κ̂ and receptive field centers r̂. In reality there will

be a distribution of receptive fields so that the filter action P could arise from some form

of patch averaging. For example, figure 23 suggests that if there were some variation

in the level of feedforward inhibition α, then this would smooth out the response. A

more realistic source of variation is that of receptive field positions within each cortical

column. Let the distribution of centers within a patch be ρ(r̂|p), where the degree of

scatter may depend on p, the spatial frequency preference of the patch. Equation (6.3) is

then modified according to

hm1 =
3

2π

∫ π

0

∫ π

0

fm(θ, φ)

[∫
dr̂ρ(r̂|Q−1(θ))hLGN(r̂|Q−1(θ), φ)

]
sin θdθdφ (7.1)

and similarly for equation (6.2). Such averaging may be expected to smooth cortical

responses.

A second feedfoward mechanism is a nontrivial mapping of the cortical labels. The

projection of the LGN input onto the low order spherical harmonics given by equations

(6.2) and (6.3) assumes that the cortical labels for orientation and spatial frequency (p, φ)

are determined completely by properties of the feedforward receptive fields (see §5). This

is the classical Hubel–Wiesel mechanism for generating the feature preferences of a cell.

We have shown that such an identification leads to a mismatch in the representation

of spatial frequency within the cortex. One possible way to eliminate such a mismatch

is to allow for a nontrivial mapping between properties of the receptive field and the

cortical labels that regularizes the projection of the LGN input and, hence, generates a

faithful representation of spatial frequency. This mapping reflects the fact that the actual

spatial frequency and orientation preference of a cell is determined by a combination of

feedforward and recurrent interactions. A renormalization scheme of this form would

require the development of a pattern of innervation from LGN to cortex that involves

some form of feedback from cortex to LGN in order to implement an error correcting

procedure. But such feedback can itself provide a direct mechanism for renormalizing the

LGN input, as we describe below.
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7.2 Cortico–geniculate feedback

We construct a recurrent filter that converts the feedforward or bare receptive field u into

an effective or renormalized one, namely u∗, such that the renormalized LGN input

h∗LGN(r̂|p) =

∫
i(r)u∗(r̂− r|p)dr (7.2)

projects faithfully onto its spherical harmonic components. Inverse Fourier transforming

the recurrent filter then determines the pattern of feedback connections from V1 to LGN.

First, suppose that a cortical cell with receptive field center r̂, spatial frequency preference

p and orientation preference φ, has a distribution of feedback connections v(r − r̂|p) to

LGN cells that innervate cortical cells with the same feature preference and shifted center

at r, i.e. the LGN cells make cortical connections with a weighting function u(r̂−r|p). In

other words, we assume that localized patches in cortex and LGN are reciprocally related

(Murphy et al., 1999; Guillery, Feig, & van Lieshout, 2001), see figure 26. Such a principle

also seems to hold with respect to feedback from extrastriate to striate areas (Angelucci,

Levitt, & Lund, 2001).

Figure 26: Schematic diagram showing reciprocally related regions in V1 and LGN: (a) feed-

forward projections (b) feedback projections.

Within the framework of linear filter theory, we take the output activity of cortex to

consist of the spherical harmonic components of the renormalized LGN input. (A more

complete calculation would need to take into account amplification and rectification of

PhLGN). We write this output activity in the form Pu∗◦i(r̂), where i is the input stimulus

and f ◦ g for arbitrary functions f, g denotes the convolution

[f ◦ g](r) =

∫
R2

f(r)g(r− r′)dr′. (7.3)

We then assume that (see figure 27)

u∗ ◦ i = u ◦ [i+ v ◦P (u∗ ◦ i)] (7.4)

Taking the Fourier transform of this equation using the convolution theorem,

U∗(k|p)I(k) = U(k|p)I(k) [1 + V (k|p)PU∗(k|p)] (7.5)
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for k = (k, ϕ) in polar co-ordinates. Rearranging this equation leads to the result

V (k|p) =
U∗(k|p)− U(k|p)

U(k|p)PU∗(k|p)
(7.6)

As a further simplification, suppose U∗ − U = P[U∗ − U ] so that

V (k|p) =
1

U(k|p)

[
1− PU(k|p)

PU∗(k|p)

]
(7.7)

Both PU(k|p) and PU(k|p) can be expressed in terms of zeroth and first-order spherical

harmonics:

PU(k|p)

PU∗(k|p)
=

[
C(k)

C∗(k)

]
(7.8)

× (1− ε(k)) + ε(k) (cos Θ(k) cos θ + sin Θ(k) sin θ cos(2[φ− ϕ]))

(1− ε∗(k)) + ε∗(k) (cos Θ∗(k) cos θ + sin Θ∗(k) sin θ cos(2[φ− ϕ]))

The unrenormalized functions C(k), ε(k),Θ(k) satisfy equations (6.15) and (6.16). In

particular, Θ(k) = Q̃(k). Hence, the feedback distribution V is determined once we have

specified the k–dependence of the renormalized functions C∗(k), ε∗(k) and Θ∗(k). It also

follows that the mismatch in spatial frequencies highlighted in §6 is eliminated provided

that Θ∗(k) = Q(k).

Figure 27: Schematic diagram of feedforward, recurrent and feedback pathways that could be

involved in the generation of a faithful representation of spatial frequency. The contour plot

of a feedforward (difference of Gaussians) receptive field profile is shown in retinal coordinates,

together with the corresponding pattern of feedback connections. The latter is calculated using

linear filter theory. The length scale is in units of the range of feedforward excitation. Dark and

light regions represent excitatory and inhibitory synapses respectively.

Further insight into the nature of the feedback connections can be obtained under the

additional assumption that C � C∗ over the frequency bandwidth of the hypercolumn.

The lowest order approximation is then

V (k|p) ≈ A
U(k|p)

(7.9)
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where A < 1 is a constant. Using equation (6.6) and keeping only the lowest–order terms,

V (k|p) ≈ A
U0(k|p) + U1(k|p) cos(2[ϕ− φ])

≈ A
U0(k|p)

[
1− U1(k|p)

U0(k|p)
cos(2[ϕ− φ])

]
(7.10)

Taking the inverse Fourier transform of this equation shows that

v(r|p) = Re

∫ pmax

pmin

∫ 2π

0

V (k|p)eir·k
kdkdϕ

4π2
(7.11)

where we have assumed that the feedback is restricted to lie within the frequency band-

width [pmin, pmax] of the hypercolumn. In order to evaluate this integral, introduce polar

coordinates x = r cosψ, y = r sinψ so that k · r = kr cos(ϕ − ψ). The Bessel function

expansion

cos (x cosψ) = J0(x) + 2
∞∑
n=1

(−1)nJ2n(x) cos(2nψ) (7.12)

then gives

v(r|p) = v0(r|p) + v1(r|p) cos(2[φ− ψ]) (7.13)

where

v0(r|p) =

∫ pmax

pmin

A
U0(k|p)

J0(kr)
kdk

2π

v1(r|p) = A
∫ pmax

pmin

U1(k|p)
U0(k|p)2

J2(kr)
kdk

2π
. (7.14)

We have thus specified an approximate form of the recurrent filter that effectively renor-

malizes the LGN input. We see from equations (7.9) and (7.11) that this filter is approxi-

mately the inverse Fourier transform of the reciprocal of U(k|p), the Fourier transform of

the feedforward receptive field u(r|p) located at r with spatial frequency bias p = (φ, p).

Figure 27 shows the form of such a filter in case the feedforward filter is tuned to φ = 0. It

will be seen that the patterned feedback found in the model appears to be consistent with

that observed by Murphy et al. (1999) in that it depends on the orientation preference of

its V1 origin.
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8 Cross–orientation suppression

A consistent experimental finding is that when a hypercolumn is stimulated with a pair

of orthogonal gratings or bars there is considerable suppression of the response to either

stimulus. In particular, DeAngelis, Robson, Ohzawa, & Freeman (1992) show that this

cross–orientation suppression originates within the receptive field of most cat neurons

examined, and is a consistent finding in both simple and complex cells. Here we present

a possible cortical mechanism for cross–orientation suppression, based on the idea that

the local circuits of a hypercolumn amplify the first spherical harmonic components of a

stimulus. Consider a stimulus consisting of the sum of two gratings with identical spatial

frequency ps and distinct orientations Φ and Φ′ respectively:

i(r) =
Cs
2

cos (ps[x cos Φ + y sin Φ]) +
Cs
2

cos (ps[x cos Φ′ + y sin Φ′]) (8.15)

When this stimulus is filtered by the receptive field (5.5), the resulting LGN input is

(neglecting spatial phase)

hLGN =
Cs
2

exp

[
−A

2p2s
2p2

(
κ−2 cos2(Φ− φ) + sin2(Φ− φ)

)]
+

Cs
2

exp

[
−A

2p2s
2p2

(
κ−2 cos2(Φ′ − φ) + sin2(Φ′ − φ)

)]
− Csα exp

[
− κ̂

2A2p2s
2p2

]
=

Cs
2

∞∑
n=0

Un(ps|p) [cos 2n(Φ− φ) + cos 2n(Φ′ − φ)] (8.16)

where we have used equations (6.7) and (6.8). If we now project out the first order

spherical harmonic components we obtain an effective LGN input of the form

h(θ, φ) = C(1− ε) + Cε

[
cos Θ cos θ + sin Θ sin θ

cos(2[φ− Φ]) + cos(2[φ− Φ′])

2

]
(8.17)

where Θ = Q(ps) (assuming some form of renormalization along the lines of §7).

Suppose that Θ 6= 0, π. If Φ′ = Φ then we recover the case of a single grating with

h(θ, φ) = C(1− ε) + Cε [cos Θ cos θ + sin Θ sin θ cos(2[φ− Φ])] (8.18)

so that the peak cortical response is at θ = Θ and φ = Φ. On the other hand, in the case

of an orthogonal grating, Φ′ = Φ + π/2, there is exact cancellation of cosines such that

h(θ, φ) = C(1− ε) + Cε cos Θ cos θ (8.19)
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and the maximal cortical response will occur at either the low frequency pinwheel θ = 0

(when cos Θ > 0) or the high frequency pinwheel θ = π (when cos Θ < 0). More generally,

we can rewrite equation (8.17) as

h(θ, φ) = C(1− ε) + εC
[
cos Θ cos θ + sin Θ sin θ cos(2[φ− Φ])

]
(8.20)

where

Φ =
Φ + Φ′

2
(8.21)

tan Θ = cos(Φ− Φ′) tan Θ (8.22)

and

C = C(1− ε+ εκ), ε =
εκ

1− ε+ εκ
(8.23)

with

κ =
√

cos2 Θ + sin2 Θ cos2(Φ− Φ′) (8.24)

Figure 28: Cross orientation suppression: shift in optimal spatial frequency of cortical response

due to a pair of sinusoidal gratings with relative orientation ∆Φ and the same spatial frequency

ps = Q−1(Θ). Here the shifted spatial frequency Θ is plotted as a function of ∆Φ for various

values of Θ and ε = 0.2. Note that the peak is shifted to lower spatial frequencies when

0 < Θ < π/2 and higher spatial frequencies when π/2 < Θ < π.

Figure 29: Cross orientation suppression: reduction in LGN bias and contrast due to a pair of

sinusoidal gratings with relative orientation ∆Φ and the same spatial frequency ps = Q−1(Θ).

(a) Relative LGN contrast C/C is plotted as a function of ∆Φ for various Θ. (b) Shifted LGN

bias ε is plotted as a function of ∆Φ for various Θ. Here ε = 0.2.

The variation of Θ, C and ε with orientation difference ∆Φ = Φ−Φ′ is shown in figures

28 and 29. Two separate effects of cross orientation suppression can be identified. First,

there is a shift in the peak response Θ → Θ and Φ → Φ, which means that there will

be local cortical suppression since cells that respond optimally at (Θ,Φ) will have their

response suppressed. However, other cells will have their response enhanced. Second,

there is a reduction in both the effective contrast and bias of the LGN input, which
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implies that there is also global suppression due to a reduction in the cortical gain G

defined by equation (3.10). Both effects increase with ∆Φ, reaching a maximum when

the gratings are orthogonal. On the other hand, the degree of suppression decreases as Θ

approaches one of the pinwheels. (The point Θ = π/2 is a singular case, since there is no

shift in spatial frequency with ∆Φ but the LGN bias vanishes when ∆Φ = π/2).

Cross orientation suppression is also expected to occur for a checkerboard pattern, which

is constructed by taking the product of two orthogonal sinusoidal gratings, one vertical

and the other horizontal, say

i(r) = Cs cos (psx) cos (psy)

=
Cs
2

cos (ps(x+ y)) +
C

2
cos (ps(x− y)) (8.25)

Such a stimulus decomposes as a sum of two gratings at ±450 and effective spatial fre-

quency
√

2ps. Of course, it is possible to perceive checkerboards, crosses and other more

complex stimuli. Hence, the occurrence of cross orientation suppression suggests that this

is achieved at a more global level by combining the responses of many hypercolumns. It

might also be possible that a hypercolumn amplifies higher order harmonic components

of a stimulus, and uses this to resolve certain aspects of composite stimuli. However, as

discussed by Carandini & Ringach (1997) within the context of the ring model, this could

lead to the undesirable side effect of spurious peaks in the tuning curves.
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9 Discussion

The main conclusion of this paper is that orientation and spatial frequency can be rep-

resented as the surface coordinates of a sphere in each region of V1 that corresponds to

a Hubel–Wiesel hypercolumn. We re–emphasize that this proposed spherical or SO(3)

symmetry is an internal symmetry of the network topology, or equivalently, of the corti-

cal labels for orientation and spatial frequency preferences, and is not a symmetry of the

actual spatial arrangment of neurons in a hypercolumn. Such a spherical coordinate sys-

tem naturally accommodates the existence of orientation preference pinwheels and their

association with regions of both low and high spatial frequency preference. It follows that

pattern formation on the sphere generated essentially by a symmetry breaking instability,

in which the first few spherical harmonics are excited by incoming stimuli, can provide a

mechanism for the existence of localized orientation and spatial frequency preferences and

tuning, very much as suggested by De Valois & De Valois (1988). A major consequence

of the spherical topology and its association with orientation preference pinwheels is that

orientation and spatial frequency tuning curves are not separable.

The inclusion of spatial frequency preference and tuning as a property of V1 neurons

is not as straightforward as in the case of orientation. If a local visual stimulus is filtered

by the action of the geniculo–cortical pathway, as originally suggested by Hubel & Wiesel

(1962) for the orientation preference label, then the representation of spatial frequency is

not faithful. Thus figure 23 shows that the spatial frequency encoded by the hypercolumn

in general differs from the actual spatial frequency of the stimulus. We conclude that in

order to obtain a faithful representation of spatial frequency, we must insert another fil-

tering operation. The most plausible and interesting possibility is that cortico–geniculate

feedback generates such a filter. Thus we propose a role for the back–projection from V1

to the LGN: it exists, in part, to provide a means to continually update and modify the

LGN input to V1 so that the representation of spatial frequency remains faithful when

signalled by the projection onto the first order spherical harmonics. Interestingly, we find

that the cortico–geniculate filter that results from our calculations is approximately the

reciprocal of the feedforward filter. Thus it innervates the LGN in a pattern determined

by the orientation and spatial frequency biases of the feedforward receptive field. We note

that Murphy et al. (1999) found such patterns, at least in the case of orientation pref-

erences. Recent observations by Sharon & Grinvald (2002) also appear to be consistent

with the model. They found that orientation tuning is amplified during a cortical evoked



43

response. They also established that the time course of this amplification is not smooth

but slows down about 50 msec after onset and then accelerates again. This is consistent

with the postulated feedback process coming online after some 50 msec.

Our suggestion about the function of the cortico–geniculate feedback pathway differs

considerably from many others, which have been concerned with such functions as gating

retino–geniculate transmission, improving the precision of spike timing in LGN cells,

enhancing the spatial frequency tuning of LGN cells, and synchronizing slow oscillations

between V1 and LGN [see Funke, Kisvárdy, Volgushev, & Wörgötter (2001)]. Our model

is closest in concept to that of Rao & Ballard (1999) who suggested that, in general,

feedback connections carry predictions of lower level activities, whereas the corresponding

feedforward connections carry the residual errors between the predictions and the actual

lower level activities. It remains to determine what the connection is, if any, between our

ideas and those concerning such predictive coding.

More specific results and predictions of our spherical model are as follows:

(a) Orientation preference and tuning should become weaker at low and high spatial

frequencies, in part since, by hypothesis, such frequencies are located at the poles of the

sphere. This is consistent with the early recordings of Hubel & Wiesel (1962), who found

numerous cells with poor or no tuning for orientation, many of which they later located

in CO–blob regions of V1 (Livingstone & Hubel, 1984), now known to be regions of low

spatial frequency tuning (Hübener et al., 1997).

(b) Spatial frequency preference shifts occur at both ends of the frequency spectrum.

The direction of the shifts is always toward the high or low frequency poles. Thus low

spatial frequencies tend to be signalled as even lower, high spatial frequencies as even

higher. Issa et al. (2000) report such shifts at the low end of the spectrum. However,

these authors also report high frequency shifts in the opposite direction to our predictions.

We hypothesize that feedback could be responsible for the predicted change in direction

of shifts in spatial frequency preferences. That is, downward shifts are consistent with the

properties of the geniculo–cortical pathways before the effects of the cortico–geniculate

feedback have time to act. We predict that the earliest responses of cortical neurons should

all exhibit downward shifts in spatial frequency tuning, but for high spatial frequencies

such shifts should eventually disappear or even reverse, when measured at later times.

Some observations appear to be consistent with this prediction (Bredfeldt & Ringach,

2002).
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(c) The contrast invariance of tuning curves for both orientation and spatial frequency

is a natural property of our model, and indeed, of any model with an amplification mecha-

nism. In this respect it differs somewhat from the quadratic threshold mechanism recently

suggested by Miller & Troy (2002), in that even the linear rectifier defined in eqn.( 2.2)

will generate contrast invariant responses if there is an amplification process.

(d) Finally we remark that cross orientation suppression is also a natural property

of our model that also follows from the amplification process. However the suppression

mechanism is complicated. Firstly, there is a local suppression effect—cells that respond

optimally at (Θ,Φ) will have their response suppressed by an orthogonal input. However,

other cells will have their response enhanced. Secondly, there is also global suppression

due to a reduction in the cortical gain G defined by equation (3.10). Both effects increase

with ∆Φ, reaching a maximum when the gratings are orthogonal. On the other hand, the

degree of suppression decreases as Θ approaches one of the pinwheels.
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Appendix A

We analyze the stability of the localized state (centered at the Θ = 0 pinwheel) by

linearizing equation (3.4) about the fixed point solution (3.9). First, we set

I0(t) = I0 + γ0(t)

I01 (t) = I1 + γ1(t)

I±0 (t) = γ±(t) (A.1)

with I0 and I1 determined by the self-consistency conditions (3.30)–(3.32) and write

da

dt
= −a+

[
I0 + I1 cos θ + γ0(t) +

∑
m=1,±

γm(t)fm(θ, φ)

]
+

(A.2)

At a given time t, the boundary condition for the vanishing of the total synaptic drive is

J(θ, φ, t) ≡ I1 cos θ + γ0(t) +
∑
m

γm(t)fm(θ, φ) = 0 (A.3)

This equation can be linearized by setting θ = θc + δθ(φ, t) with

δθ(φ, t) =
γ0(t) +

∑
m=1,± γm(t)fm(θc, φ)

I1 sin θc
(A.4)

We have used the fact that I0+I1 cos θc = 0. The next step is to take moments of equation

(A.2) with respect to the zeroth and first order harmonics:

dR0

dt
= −R0 +

∫ π

0

∫ θc+δθ

0

J(θ, φ, t)D(θ, φ)

(A.5)

and

dRn
1

dt
= −Rn

1

∫ π

0

∫ θc+δθ

0

fn(θ, φ)J(θ, φ, t)D(θ, φ) (A.6)

In order to linearize these equations set R0(t) = R0 + r0(t), R
0
1(t) = R1 + r1(t) and

R±1 (t) = r±(t) with R0, R1 given by equations (3.31) and (3.32). It follows from equations

(3.5), (3.6) and (3.30) that

γ0(t) = W0r0(t), γm(t) = W1rm(t) (A.7)
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for m = 1,±. Here r0(t) and r1(t) represent “longtitudinal” fluctuations of the localized

state whereas r±(t) represent “transverse” fluctuations.

It turns out that the longtitudinal and transverse fluctuations decouple at the lin-

ear level. Expanding equations (A.5) and (A.6) to first order in δθ we find that the

longtitudinal modes satisfy the pair of equations

dr0
dt

= −r0 +
1

4
(2I0 sin θc + I1 sin 2θc)δθ +

γ0[1− cos θc]

2
+
γ1[1− cos 2θc]

8
(A.8)

and

dr1
dt

= −r1 +
1

4
(I0 sin 2θc + 2I1 cos2 θc sin θc)δθ +

γ0[1− cos 2θc]

8
+
γ1[1− cos3 θc]

6
(A.9)

where

δθ ≡ 1

π

∫ π

0

δθ(φ)dφ =
γ0 + γ1 cos θc
I1 sin θc

(A.10)

Equation (3.29) then implies that the coefficients multiplying δθ actually vanish. Thus

we have the simple matrix equation

d

dt

(
r0

r1

)
= W(θc)

(
r0

r1

)
(A.11)

where

W(θc) =


−1 +

W0[1− cos θc]

2

W1[1− cos 2θc]

8

W0[1− cos 2θc]

8
−1 +

W1[1− cos3 θc]

6

 (A.12)

Hence, we obtain an eigenvalue equation of the form

λ2 − λTrW(θc) + detW(θc) = 0 (A.13)

One can show that the localized state undergoes an amplitude instability as W0 is in-

creased for fixed W1 due to a single real eigenvalue becoming positive. The condition

for such an instability is detW(θc) = 0. In the particular case of a homogeneous input

(ε = 0), one finds from equations (3.26) and (3.27) that

detW(θc) = −W1

8
[1− cos 2θc][cos θc +W0A0(θc)] (A.14)
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so that the condition for an amplitude instability is

W1 = Wc ≡ −
cos θc
A0(θc)

(A.15)

Finally, expanding equation (A.6) to first order in δθ for the transverse modes, we find

that

dr±
dt

= −r± +
1

2
(I0 sin2 θc + I1 sin2 θc cos θc)δθ± + γ±W1A1(θc)r± (A.16)

where

δθ± ≡
1

π

∫ π

0

(
cos θc

sin θc

)
δθ(φ)dφ =

W1r±
2I1

(A.17)

Equation (3.29) implies that the coefficient multiplying δθ± vanishes. Hence

dr±
dt

= [−1 +W1A1(θc)] r± (A.18)

It immediately follows that in the case of a homogeneous input, the localized state is

marginally stable with respect to excitation of the transverse modes since 1 = W1A1(θc).

Appendix B

In order to simplify our analysis of the spherical model, we collapsed the inhibitory and

excitatory cell populations into a single equivalent population. Such a simplification

greatly reduces the number of free parameters of the system. However, the basic insights

gained from the one population model can now be used to develop the mean field theory

of a more realistic two population model.

Let us denote the activity of the excitatory (e) and inhinitory (i) populations by

ar(θ, φ, t) with r = e, i. A two population version of equation (2.2) is then

∂ar(θ, φ, t)

∂t
= −ar(θ, φ, t) + βr [Ir(θ, φ, t)− κr]+ (B.1)

where κr is the threshold and Ir(θ, φ, t) is the total synaptic current of the rth population,

Ir(θ, φ, t) = hr(θ, φ) +
∑
s=e,i

∫
S2

wrs(θ, φ|θ′, φ′)as(θ′, φ′, t)D(θ′, φ′) (B.2)
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We have also introduced input gains βr The weight distributions wrs connecting the

various cell populations are taken to be SO(3) invariant, and are constructed out of

zeroth and first-order spherical harmonics according to

wee(θ, φ|θ′, φ′) = wie(θ, φ|θ′, φ′) = We,0 +We,1

∑
m=0,±

fm(θ, φ)fm(θ′, φ′) (B.3)

and

wei(θ, φ|θ′, φ′) = wii(θ, φ|θ′, φ′) = −Wi,0 −Wi,1

∑
m=0,±

fm(θ, φ)fm(θ′, φ′) (B.4)

with Wr,1,Wr,0 ≥ 0. As in the one population model, the weakly biased LGN input

hr(θ, φ) is assumed to be of the form

hr(θ, φ) = αrh(θ, φ) (B.5)

with h given by equation (2.10 and αr determining the relative strength of the input to

the two populations.

Introducing the order parameters

Rr,0(t) =

∫
S2

ar(θ, φ, t)D(θ, φ) (B.6)

Rm
r,1(t) =

∫
S2

ar(θ, φ, t)fm(θ, φ)D(θ, φ) (B.7)

equation (B.1) can be rewritten in the form

∂ar(θ, φ, t)

∂t
= −ar(θ, φ, t) +

[
Ir,0(t) +

∑
m=0,±

Imr,1(t)fm(θ, φ)

]
+

where

Ir,0 = βr [αrC(1− ε)− κ+We,0Re,0 −Wi,0Ri,0] (B.8)

and

Imr,1 = βr
[
αrCεfm(Θ,Φ) +We,1R

m
e,1 −Wi,1R

m
i,1

]
(B.9)

We focus on a fixed point solution of equation (B.8) in which both the excitatory and

inhibitory populations are in a stationary localized state of the form

ar(θ, φ) = Ir,1

[ ∑
m=0,±

fm(Θ,Φ)fm(θ, φ)− cos θc,r

]
+

(B.10)
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Taking moments of equation (B.8) with respect to the zeroth and first order spherical

harmonics and proceeding along identical lines to the one population model (see §3), one

finds that such a solution exists provided that

Rm
r,1 = Rr,1fm(Θ,Φ), Imr,1 = Ir,1fm(Θ,Φ), (B.11)

with

Rr,0 = Ir,1A0(θc,r), Rr,1 = Ir,1A1(θc,r) (B.12)

and

Ir,0 + Ir,1 cos θc,r = 0 (B.13)

The functions A0, A1 are defined by equations (3.26) and (3.27). Combining equations

(B.11) and (B.12) with equations (B.8) and (B.9) leads to the mean–field equations

Rr,0 = βr [αrCε+We,1Re,1 −Wi,1Ri,1]A0(θc,r) (B.14)

and

Rr,1 = βr [αrCε+We,1Re,1 −Wi,1Ri,1]A1(θc,r) (B.15)

Marginal phase (ε = 0) In the case of a homogeneous input, equation (B.15) reduces

to the matrix equation

W(θc,e, θc,i)

(
Re,1

Ri,1

)
= 0 (B.16)

where

W(θc,e, θc,i) =

(
−1 + βeWe,1A1(θc,e) −βeWi,1A1(θc,e)

βiWe,1A1(θc,i) −1− βiWi,1A1(θc,i)

)
(B.17)

A necessary condition for the existence of a non–trivial localized state can then be ex-

pressed as det W(θc,e, θc,i) = 0, that is,

βeWe,1A1(θc,e)− βiWi,1A1(θc,i) = 1 (B.18)
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Hübener, M., Shoham, D., Grinvald, A., & Bonhoeffer, T., 1997. Spatial Relationships

among Three Columnar Systems in Cat Area 17. J. Neurosci. 17 (23): 9270–9284.

Issa, N. P., Trepel, C., & Stryker, M. P., 2000. Spatial frequency maps in cat visual

cortex. J. Neurosci. 20: 8504–8514.

Jones, J. P. & Palmer, L. A., 1987. An evaluation of the two–dimensional Gabor filter

model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58 (6): 1233–1258.

Kelly, D. H. & Magnuski, H. S., 1975. Pattern detection and the two–dimensional Fourier

transform: Circular targets. Vision Res. 15: 911–915.

LeVay, S. & Nelson, S. B., 1991. Columnar organization of the visual cortex. In The

neural basis of visual function, (ed. A. G. Leventhal), pp. 266–315. Boca Raton : CRC

Press.

Li, Z., 1999. Pre–attentive segmentation in the primary visual cortex. Spatial Vision 13:

25–39.

Livingstone, M. S. & Hubel, D. H., 1984. Anatomy and physiology of a color system in

the primate visual cortex. J. Neurosci. 4: 309–356.



53
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