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Abstract 

Kawasaki disease (KD) is an acute inflammatory disorder of early childhood. It causes coronary artery 

aneurysms, due to the vasculitis which underlies much pathology. 

Despite epidemiological evidence supporting an infectious trigger in predisposed individuals, decades 

of research have found no strong evidence to implicate an individual organism. A diverse range of 

organisms have been suggested as the cause, frequently with limited or contradictory evidence. 

Studies are typically small and consider a narrow range of organisms, mostly pathogens. 

Two promising sites to search for microbial material are the oropharynx and immune complexes (IC). 

The former is the main microbial entry portal, and the latter form in the subacute phase of illness and 

may include microbial antigen. 

I present bioinformatic analyses aiming to identify microbes associated with KD from these two 

sources. Data comprises oropharyngeal metagenomics (116 cases; 101 controls) and metaproteomics 

of ICs (112 cases; 128 controls). 

Extensive method development was required, with a focus on mitigating against laboratory and 

reference database contamination for metagenomics and finding database search methods which 

could cope with a vast metaproteomic search space. 

Metaproteomic analyses yielded no strong evidence of microbial associations, though the data 

allowed novel, exploratory analysis of immunoglobulin peptides and germline immunoglobulin locus 

usage. Since immunoglobulin is strongly implicated both genetically and pathologically in KD, the 

methods developed here show potential for further development and application. 

Metagenomic analyses found organisms associated with KD, including Abiotrophia defectiva and 

Lautropia mirabilis (six-fold higher abundance, Q values 0.06 and 0.05 respectively).  The 

strengthening of relationships when age-profiles are modelled, and previous implication of A. 

defectiva in infective endocarditis add to the potential significance of the findings. 

I interpret the results in the light of the epidemiology of KD and consider the limitations of this study, 

and challenges inherent in the search for causes of KD.  
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1 |  Introduction 

Kawasaki disease (KD) is an acute auto-inflammatory disorder predominantly affecting preschool 

children. KD has a worldwide distribution, with incidence estimates (per 100 000 children under 5 

years old) ranging from 8 in England and New Zealand, to 18 and 22 in the USA and Canada, and 83, 

134 and 264 in Taiwan, Korea and Japan respectively (Singh, Vignesh & Burgner, 2015). While the 

incidence in Western countries appears stable, numbers of cases in Japan and Korea continue to rise, 

with most recent estimates in Japan of 300 per 100 000 (Makino et al., 2018).  

The disease presents with prolonged fevers, misery and a range of clinical features (McCrindle et al., 

2017). Many organ systems are typically involved, predominantly the skin, mucosa, lymphatic system 

and blood vessels. 

The inflammation of blood vessels (vasculitis) is responsible for the major complication of KD: coronary 

artery aneurysms (CAA). These dilatations of the vessels supplying the myocardium occur in up to 30% 

of untreated patients in historical cohorts, and can have lifelong consequences (see Figure 1). 50% of 

those with giant coronary artery aneurysms will require vascular intervention within 30 years of 

follow-up (Newburger, Takahashi & Burns, 2016). Around 1% of untreated patients die, usually from 

Figure 1 Aneurysm formation and complications in Kawasaki Disease. Reproduced from Newburger, Takahashi and Burns 
(2018). 
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cardiac complications. Outside of low resource settings, KD represents the commonest cause of 

acquired heart disease in children, and children with CAA require lifelong follow-up (McCrindle et al., 

2017). 

It is not well understood why the vasculitis in KD has a predilection for the coronary arteries. 

Vasculitides more generally are often classified according to the size of vessels they target, but 

Hoffman & Calabrese (2014) highlight the nuances of anatomical specificity in vasculitis. They describe 

the diversity of vessel phenotypes, with varied protein expression (including Toll-like receptors and 

adhesion molecules), matrix composition and interactions with circulating cells. They posit that 

anatomical specificity may be driven by autoantibodies to anatomically-restricted antigens, or 

restricted deposition of circulating antigen or immune complexes. Mice can be driven to exhibit 

disease which recapitulates similar coronary artery inflammation and dilatation as in KD following 

intraperitoneal injection of a Lactobacillus casei cell wall extract or Candida albicans water-soluble 

fraction (Noval Rivas & Arditi, 2020). Despite this, it is not known why these triggers drive 

inflammation specifically in coronary arteries. 

Clinical features and diagnosis 

KD has remained a syndromic diagnosis (i.e. based on a combination of symptoms, signs and 

investigations) from its first published description (Kawasaki, 1967), and there remains no diagnostic 

test. Current diagnostic criteria from the American Heart Association (McCrindle et al., 2017) rest upon 

prolonged fevers and the principal clinical features: inflammatory changes of the oral mucosa; 

bilateral non-purulent conjunctivitis; generalised erythematous rash; swelling or erythema of hands 

or feet with later desquamation, and cervical lymphadenopathy. Four or more of these features with 

fever for 5 or more days are the main way to meet the criteria, though diagnoses can be made with 

fewer criteria, especially in the presence of CAA (“incomplete” or “partial” KD). A range of other clinical 

features are recognised, while not forming part of the criteria – perhaps most interestingly, 

inflammation of the Bacille Calmette-Guérin (BCG) scar. This feature, though rare in Western practice, 

is highly specific for KD (Uehara et al., 2010). 

The prevalent clinical features of KD are shared with other disorders, mostly of an infectious or 

inflammatory nature, making diagnosis difficult. Further, many children do not present with the full 

set of clinical features, and the diagnosis is only made by the detection of CAA, often at a late stage 

(Pilania, Bhattarai & Singh, 2018). Scarlet fever (a disease caused by group A streptococcus), measles 

or adenovirus infection and Stevens-Johnson syndrome are common differential diagnoses in children 

with suspected KD. 
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In Japan, the diagnosis of KD is often made early, even before the fifth day of fever. However, in the 

UK, the diagnosis is made a median of 7 days after symptom onset (Tulloh et al., 2019). 

Gene-expression based diagnostics have been developed, but await clinical validation and 

implementation. These include a 13-transcript based classifier to distinguish from children with fever 

of diverse causes developed within our group (Wright et al., 2018). Other groups have presented 

classifiers that discriminate KD from adenovirus infection and group A streptococcus infection (Jaggi 

et al., 2018) and from viral and bacterial infections (Hu et al., 2020). 

Treatment 

Effective treatments for KD include a range of anti-inflammatory medicines, foremost intravenous 

immunoglobulin (IVIG). This has been shown to reduce the incidence of CAA if given within the first 

10 days of illness (Oates-Whitehead et al., 2003). There is good evidence for adjunctive treatment with 

corticosteroids in patients whose response to IVIG is inadequate, and it is increasingly being 

considered as part of first-line therapy (Wardle et al., 2017). Other treatments include 

immunomodulators like anti-tumour necrosis factor (TNF) (Tremoulet et al., 2014) and anti-interleukin 

1 (IL-1) biologics (Koné-Paut et al., 2021), though there is limited evidence especially for primary 

treatment (Yamaji et al., 2019). 

Current outcomes 

Despite a range of available treatments, children still experience adverse outcomes. A recent UK 

surveillance study found that 19% of children had CAA on initial echocardiogram (Z-score ≥ 2.5) with 

8% having persistent CAA beyond 30 days and 1.5% with giant CAA (Tulloh et al., 2019). The mortality 

rate was 0.4% (contributed by cases diagnosed at post-mortem). 

Younger patients are at higher risk for both delayed diagnosis and poor outcomes. This is related in 

part to the greater proportion of children under 1 year who present with atypical disease (fewer than 

four of the major clinical features while still having CAA): 21% vs 6% in older children. 

Importance of understanding aetiology 

From its recognition, researchers have sought to understand the aetiology of KD, from genetic 

predisposition through to precipitating triggers or causative agents. A microbial triggering aetiology 

has long been hypothesised, most likely prompted by the resemblance of KD to scarlet fever and viral 

exanthemous illnesses, though there has been limited evidence of any response to antimicrobial 

agents. 

Identification of precipitating triggers of KD would be a major advance in scientific understanding of 

this modern disease. Such knowledge would aid further understanding of the pathogenesis of KD and 
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the explanation of its epidemiology. More clinically, routes to prevention, better treatment and 

diagnostics could be opened. Transferable insights could be developed into other inflammatory 

disorders. 

Current state of knowledge of KD aetiology 

History 

The first patient in the series which prompted Dr Tomisako Kawasaki (1925-2020) to recognise KD 

presented in 1961, but it took until 1970 to publish a series of 50 patients. In retrospect, cases have 

been identified as early as the 1950s. It was only around 1970 that cardiac involvement, including 

vasculitis of the coronary arteries, was recognised as part of the syndrome. This still preceded the 

English language publication of Kawasaki’s case series in 1974. Interestingly, KD was independently 

being recognised by clinicians in Hawaii around the same time, although it was on seeing photographs 

of cases in Japan that the link was established (Burns et al., 2000). 

To this day, it is not certain whether KD represents a genuinely modern disease, or a longstanding 

condition, whose recognition was prompted by changing epidemiology and the lack of response to 

antibiotic treatment seen in clinically similar conditions like scarlet fever. One hypothesis, based on 

the identification of cases in the West as far back as the 1870s, but the absence of similar cases in 

Japan, is that KD has been endemic in the West for a long time but was new in Japan (Kushner et al., 

2008). The premise is that in the West, the condition was frequently classified as unusual forms of 

other illnesses (including scarlet fever and Stevens-Johnson syndrome) or labelled as infantile 

polyarteritis nodosa. The earliest identifiable cases in Japan in the 1950s were classified on the basis 

of similar reports in the western literature, due to the lack of precedent in Japan. Oral history reveals 

a consensus among contemporary Japanese paediatricians that children with the full symptom cluster 

of KD were a novelty to them.  

Genetics 

The genetics of KD has been widely studied from the 1980s onwards. Early studies were predominantly 

family based, using sibling cases of KD (Onouchi, 2018). Findings included increasing sharing of human 

leukocyte antigen (HLA) haplotypes, a single nucleotide polymorphism (SNP) in the IL-4 gene, and 10 

chromosome regions identified by genome-wide linkage. Subsequent case-control population studies 

were hypothesis driven and frequently failed to replicate findings; however valid risk alleles of ITPKC, 

CASP3 and ORAI1 were found. 

The most confident findings awaited the application of microarray-based genome-wide association 

studies. These have included replicated identification of risk alleles of FCGR2A, BLK and CD40. 
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Identical, or co-located, SNPs in BLK and CD40 have also been associated with rheumatoid arthritis 

and systemic lupus erythematosus. In contrast, ITPKC and CASP3 SNPs have not been associated with 

other diseases and may therefore give specific insight into KD pathogenesis. 

Recently, researchers sought to increase power by pooling studies of children with both IgA vasculitis 

and KD, in the hope of finding shared risk alleles. A SNP in the NAGPA intron was found to be positively 

associated with KD and IgA vasculitis in the discovery cohort, but could only be validated in the latter 

condition (Carmona et al., 2021). 

No monogenic causes of KD have been identified. There are rare monogenic disorders (Jain et al., 

2018) which give rise to vasculitis, including STING-associated vasculopathy of infancy (SAVI) and 

deficiency of adenosine deaminase 2 (DADA2), but coronary artery vasculitis is not specifically 

reported. 

Less studied is the genetics of outcomes in KD. In addition to potentially guiding therapy, such findings 

could also help elucidate aetiopathogenesis. Patients with the risk alleles of ITPKC and CASP3 are at 

higher risk for resistance to IVIG (Onouchi et al., 2013). More recently, among European populations, 

a SNP in an intergenic region of chromosome 20, with potential long-range interactions with PLCB1, 

has been identified to confer higher risk of CAA (Hoggart et al., 2021). 

Unsurprisingly, findings are not completely consistent between different regions and ethnicities. 

Although rendering the pooling and meta-analysis of results challenging, greater insight may be added 

by the heterogeneity. CASP3 and CD40 risk alleles are more common, for example, in the lower risk 

European population than the high risk Japanese, and ITPKC is not found as an association in Korean 

populations (Onouchi, 2018). In the previous study, significant associations with CD40 could not be 

found in European patients (Hoggart et al., 2021). This same study estimated the heritability of KD in 

Europeans to be between 5 and 20%, of which only a small fraction is explained. Although heritability 

in high risk populations may be higher, it is clear that much remains to be discovered about the 

genetics of KD, and environmental factors may be of greater importance. 
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Aetiological studies 

Over decades, there have been myriad 

studies looking for factors involved in the 

aetiology of KD, and more specifically, the 

proximal triggers of KD. The methodologies 

are diverse and results frequently conflicting 

or difficult to integrate. In 2005, Burgner & 

Harnden reviewed proposed causes of 

Kawasaki Disease, listing 16 infectious 

organisms or groups of organisms and four 

environmental causes (see Figure 2).  

A broad search of PubMed (see above right) produces 164 results relevant to KD aetiology, including 

case reports, case series, case-control studies and epidemiological studies. 63 of these have been 

published from 2006. 

Thirty-seven studies are comparative cohort studies, four are case-control studies and 21 are 

epidemiological or registry studies, which have the potential to detect associations. The remainder 

comprise case reports, case series, single cohorts, post-mortem studies and reviews. Culture, serology 

and polymerase chain reaction (PCR) methods predominate. 

Proposed causative organisms span both RNA and DNA viruses and a diverse range of bacteria. DNA 

viruses comprise adenovirus (Jaggi et al., 2013), cytomegalovirus 

(CMV; Catalano-Pons et al., 2005), Epstein-Barr virus (EBV; most 

frequently as a negative association; Fuse et al., 2010), Human 

Herpesvirus (HHV) 6 (Okano et al., 1989) and HHV7 (Burns et al., 

1994:p.7), varicella zoster virus (VZV; Lee & Huang, 2004) and 

parvovirus B19 (Nigro et al., 1994). RNA viruses comprise 

coronaviruses (NL63, 229E, SARS-CoV-2) (Shirato et al., 2014; 

Cazzaniga et al., 2020), bocavirus (Bajolle et al., 2014), enteroviruses 

(Weng et al., 2018), dengue (Guleria et al., 2018), influenza (Joshi et 

al., 2011), measles (Kuijpers et al., 2000), parainfluenza 3 (Moreira 

et al., 2010) and retroviruses (Lin et al., 1992). Arboviruses as a class 

have also been epidemiologically linked (Paniz-Mondolfi et al., 

2020), and a series of studies implicate an as-yet unidentified virus 

(Rowley et al., 2004, 2005, 2008, 2011). Bacteria comprise group A 

Search terms: "kawasaki disease"[title] AND 
(aetiology[title] OR etiology[title] OR causative[title] OR 
trigger*[title] OR origin[title] OR agent[title] OR 
association[title] OR infection) 

Filters: Case reports, classical article, clinical study, 
comparative study, corrected and republished article, 
journal article, letter, meta-analysis, multicentre study, 
observational study, review, systematic review 

Date: 2 August 2021 

Results: 1089 

Figure 2 Agents and exposures 
implicated in the aetiology of 
Kawasaki Disease. Reproduced from 
Burgner and Harnden (2005). 
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Streptococci and Staphylococcus aureus (primarily considered through toxin or superantigen 

production) (Matsubara & Fukaya, 2007; Shen et al., 1990), Streptococcus sanguis (Shinomiya et al., 

1987), Mycoplasma pneumoniae (Lee et al., 2011), Cutibacterium (formerly Propionibacterium) acnes 

(Kato et al., 1983), Yersinia pseudotuberculosis (Horinouchi et al., 2015), Chlamydia pneumoniae (Strigl 

et al., 2000), Coxiella burnetii (Swaby et al., 1980), Ehrlichia canis (Edlinger, Benichou & Labrune, 1980) 

and Rickettsiae (Shishido, 1979). Overall, it appears that the focus has shifted from bacterial to viral 

causes over the last four decades. 

Importantly, the evidence for any of these organisms having a causative role in KD is generally weak 

and initial reports are frequently contradicted by further studies. To give an example of a relatively 

well-studied association, a novel coronavirus was first reported as a potential trigger in 2005 (Belay et 

al., 2005) in parallel with its identification as a cause of respiratory illness (Esper et al., 2005). These 

authors used archived respiratory tract secretions from 11 children with KD and 22 matched controls 

(only secretions from those negative by direct immunofluorescence for other respiratory viruses were 

included in the archive). They found the “New Haven” coronavirus (a strain of the HCoV-NL63 lineage) 

in 8 of 11 KD patients and 1 of 22 controls, giving an odds ratio of 16.0 (95% confidence interval 3.4-

74.4). 

Ebihara et al. (2005) subsequently screened 19 children with KD in Japan and 208 children with 

respiratory illnesses, finding only 5 positive samples among the controls and none among the children 

with KD. Shimizu et al. (2005) studied 57 respiratory samples from 48 KD patients at centres in the 

USA and Netherlands, finding only one positive sample. 

Another group studied 21 children with complete and incomplete KD and 33 healthy controls in 

Germany (Lehmann et al., 2009). HCoV-NL63 was found in one healthy child and no cases, with similar 

rates of IgG positivity. Kim et al. (2012) conducted a larger study in South Korea of 55 children with KD 

and 78 age-matched healthy controls without recent respiratory symptoms. The overall detection rate 

of respiratory viruses was similar, and HCoV-NL63 was identified in only one control patient. 

In contrast, Chang et al. (2014) found a strong association of respiratory virus detection with KD (50.4% 

vs 16.4% in healthy controls), with 12 of 226 KD (5%) positive for HCoV-NL63 and none of 226 in the 

control group. However, rhinovirus, followed by enterovirus, was responsible for the bulk of the 

excess virus detections among KD cases. Shirato et al. (2014) studied 15 KD cases and 52 controls 

serologically, and found no excess of seropositivity to HCoV-NL63 among cases before treatment with 

intravenous immunoglobulin and in recovery. However, they noted an excess of seropositivity to 

HCoV-229E. 
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At an epidemiological level in South Korea no association was be found between monthly rates of 

coronavirus detection in sentinel hospitals and monthly incidence of KD in the subsequent month 

(Choe, An & Choe, 2021). In a study published after the literature search described, Patra et al. (2022) 

conducted a systematic review comprising eight case-control and two prospective studies (including 

most cited above) and concluded with low certainty that there is an “increased risk of KD in children 

infected with HCoV.” 

The recent discovery of an inflammatory disorder precipitated by exposure to SARS-CoV-2 is clearly 

relevant, and will be considered extensively in the discussion (page 142). 

A smaller number of studies have applied less targeted molecular approaches to the problem. The 

earliest used DNA hybridisation to detect parvovirus and herpesvirus DNA in serum, and 16S rRNA PCR 

to detect bacterial sequences in buffy-coat, synovial fluid and post-mortem tissue samples (Rowley et 

al., 1994). 

In the last decade, there have been 7 published studies applying next-generation sequencing 

techniques. No metaproteomic studies have been identified. Four studies have investigated the gut 

microbiome in KD. Chen et al. (2020) assessed the faecal microbiome of 30 children with KD (acutely 

and in convalescence) and 30 age- and sex- matched controls using 16S ribosomal ribonucleic acid 

(rRNA) sequencing. They reported lower biodiversity in acute KD than healthy controls, but no 

differences in richness. The greater difference in microbiome composition was noted in 

convalescence, and the authors noted the majority of patients had received antibiotics. Several genera 

were found to be overabundant in acute KD cases, including Staphylococcus. 

Shen et al. (2020) studied fecal microbiota of 48 children with KD and 46 healthy controls, finding 

reduced richness and diversity. Bacteriodetes and Dorea were found to be less abundant in KD 

patients, and no organisms were reported to be over-abundant. Kinumaki et al. (2015) applied 

metagenomic sequencing to 28 KD patients alone acutely and 4-6 months later. At genus level, 

abundance of Rothia and Staphylococci were associated with the acute phase, and at species level, 

several streptococcus species, including Streptococcus pneumoniae. Khan et al. (2020) similarly 

studied 5 KD patients and 3 healthy controls, though the small numbers and lack of measures of 

precision or hypothesis tests renders the results uninformative. 

Thissen et al. (2018) conducted a pilot study of 11 patients with KD and 22 controls. For each patient, 

DNA was extracted from whole blood. Other sample types were pooled across sample groups and are 

therefore uninformative. A torque tenovirus was identified in two KD patients. 
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Hamada et al. (2016) made mixed DNA and cDNA libraries from serum and pharyngeal swabs during 

two episodes of KD in a single patient, obtaining two acute serum libraries, one acute pharyngeal 

library and one convalescent serum. Streptococcal reads were identified in many samples, but further 

reporting is limited. 

Anne Rowley and colleagues’ painstaking work investigating a possible novel viral aetiology was 

triggered by the finding of a KD-associated antigen in the cytoplasm of bronchial epithelium from 

children with KD (10/13) and not control subjects (n=9). A synthetic antibody derived from IgA-

secreting plasma cells in the vascular tissue of a KD patient was used as a probe (Rowley et al., 2004). 

Further work identified that the detected material resides in cytoplasmic inclusion bodies with staining 

consistent with the presence of protein and nucleic acid (Rowley et al., 2005) and antigen was 

detected in the gastrointestinal tract of some deceased KD patients (Miura et al., 2005). Studies of 

late-stage KD fatalities and non-infant control fatalities showed high prevalence of antigen detection 

(6/7 KD cases and 7/27 controls), and staining was specific for RNA and not DNA. This would be 

consistent with an RNA virus. 

In a subsequent study (Rowley et al., 2011) electron microscopy (EM) and laser capture was applied 

to inclusion bodies. EM findings suggested the inclusion bodies are virus-like particles and 

pyrosequencing revealed no known viral sequences. It was suggested that unknown sequences 

required further analysis, though no further reports can be found. Most recently, the group report 

identification of a specific protein epitope from inclusion body-binding monoclonal antibodies (Rowley 

et al., 2020). 

Broader epidemiological studies 

The studies described in the previous section focus on potential infectious aetiologies of KD, rendering 

them epidemiological in nature. However, many other epidemiological studies of KD have been 

broader, including environmental, meteorological and other phenomena. 

Seasonal patterns have been observed worldwide, generally with peaks between January and March 

in the extra-tropical northern hemisphere and May through June in the tropics and southern 

hemisphere (Burns et al., 2013). Japan has seen three nationwide KD epidemics between 1979 and 

1986, with “wave-like” spread across the country (Rowley & Shulman, 2018). Spatio-temporal 

clustering has been demonstrated in Japan (Sano et al., 2016), Canada (Hearn et al., 2018) and San 

Diego (Burns et al., 2021a). Sequential onset of KD within 10 days have been reported in around 1% 

of siblings in Japan (Fujita et al., 1989). 
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In a series of studies using decades of KD registry data, Burns and colleagues have demonstrated that 

periods of high KD incidence in Japan, Hawaii and San Diego correlate with specific tropospheric wind 

directions (Rodó et al., 2011, 2014). In models of air transport, these winds were shown to originate 

in north-eastern China, suggesting possible long-distance transport of an airborne agent. Most 

recently, the group has shown that the KD cases which cluster in space and time in San Diego also 

share more clinical features than expected by chance alone (Burns et al., 2021a). This raises the 

hypothesis that distinct triggering agents are associated with differences in clinical features. 

Manlhiot et al. (2018) ambitiously attempted to integrate demographic, household, environmental, 

atmospheric and climatological factors utilising data from a single hospital, Canadian registry and 

worldwide KD incidence. In their hospital cohort, they found independent associations between KD 

and larger family size, reduced environmental allergy exposure, recent house construction and 

reduced tree coverage. The also replicated an earlier finding of an association with recent deep carpet 

cleaning (Patriarca et al., 1982). Children with KD were reported more frequently to be unwell up to a 

month before diagnosis, and illnesses in household members were also increased. Nationally, 

associations with wind direction and atmospheric particles from plants and fungi were identified. 

Internationally the authors were able to explain 84% of the variation in KD incidence using proportion 

of population of Asian ancestry, urbanisation and gross national product, and distance west and south 

of North-east China. However, it is unclear how much Asian ancestry alone may have contributed to 

this model. 

Evidence supporting a microbial origin 

The greatest efforts in KD aetiology research have gone into identifying genetic risk factors and 

causative microbial agents. Overall, genetic studies have yielded far more confident causal 

associations, and provided implications for pathogenesis. It is helpful to consider whether the 

hypothesis of a microbial cause is a reasonable one. 

Superficially, KD has similarities of presentation and laboratory features to many other infectious 

illnesses, including measles, adenovirus infection and scarlet fever. Prominent and common 

symptoms of mucosal changes, red lips and cervical adenopathy focus on the upper respiratory tract, 

which is the main route by which children encounter pathogens. Nonetheless, some other diseases 

which can appear similar, including Stevens-Johnson syndrome, are not infectious, or represent post-

infectious immune-mediated syndromes. 

The peak incidence between 6 months and 5 years of age (lower in Japan) coincides with the window 

of lowest adaptive immunity, between the loss of passive protection of material antibodies, and a 

time when many infectious diseases have already been encountered for the first time. Coupled with 
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the relative rarity of recurrent KD (3-4% in Japan and 1.7% in the USA; Medaglia et al., 2021), compared 

with, for example, IgA vasculitis (around a third), this is consistent with triggering by first exposure to 

a ubiquitous microbe in a genetically susceptible individual. 

Indeed, in Japan the cumulative incidence of KD during childhood is around 1.4%, so the risk of 

recurrence is only 2-3 times higher than the background rate. Based on the incidence ratio between 

Japan and the USA, the cumulative incidence of KD in the USA is likely to be around 0.1% (Maddox et 

al., 2015), suggesting a greater relative risk of recurrence. If multiple ubiquitous triggers could cause 

disease in susceptible individuals, recurrence would be expected a common phenomenon, unless 

protection from recurrent KD is not based on specific immunity to a pathogen (e.g., exhaustion of a 

pool of KD-driving adaptive immune cells). 

As described earlier in the chapter, the temporal and spatial dynamics of KD are consistent with an 

infectious agent. Finally, many of the genetic risk factors identified lie firmly within the adaptive 

immune system, and more specifically the B cell and antibody response. 

It is striking that despite decades of research with no single causative microbial agent demonstrated, 

the paediatric community mostly remains convinced that KD represents an abnormal immune 

response to a microbe. It is thus important to consider why it has not yet been possible to confidently 

identify such an agent. 

The studies cited are frequently limited by reliance on small sample sizes, especially for studies based 

on laboratory analyses. Further, identification of infections frequently depended upon targeted 

serological, culture or PCR-based tests. Serological tests can lack sensitivity, and those for 

immunoglobulin M (IgM) are frequently non-specific due to cross-reactivity. Culture methods restrict 

identifications only to culturable organisms with the selected medium, and frequently only certain 

organisms are considered. 

Heterogeneity 

There is debate as to whether KD is a single disease process with single aetiopathogenesis, or multiple 

diseases with distinct triggers and pathophysiology but overlapping phenotypes. Incomplete KD 

(where coronary artery aneurysms develop in the absence of the full symptomatic criteria) and KD 

with myocardial shock represent clearly demarcated subgroups (McCrindle et al., 2017). Both of these 

atypical phenotypes are seen more frequently in KD patients presenting outside of the main pre-

school age range (1-5y). 

It is not known why phenotypes may differ at the extremes of age. If the main age range of KD is 

determined by a period in which the immune system is most primed for the KD response, it could be 
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expected that a greater genetic and environmental "push" is needed for KD to develop in those outside 

this window. It is also possible that different triggers predominate at different ages. 

Sim et al. (2018) explored the association of two known polymorphisms (in BLK and FCGR2A) among 

different KD subgroups (age strata, complete vs incomplete, gender, coronary artery aneurysms, 

family history, recurrent, IVIg responding, though not presence of shock). They report lack of 

associations in those over 5 years old and those with incomplete KD, suggesting that genetic factors 

may be distinct. However, formal testing of heterogeneity was not undertaken, and effect sizes 

overlap. 

Jackson et al. (2021) clustered KD patients based on blood proteomic and transcriptomic signatures, 

finding clusters which each shared more in common with bacterial or viral responses. Burns et al., 

(2021a) found that KD cases occurring within spatiotemporal clusters shared more clinical features 

than would be expected by chance. These provide some support for the existence of multiple triggers 

with variations in pathophysiology. 

Sites to seek causative agents 

The portal of entry for most systemic infections in children is the upper respiratory tract. Coupled with 

this, some early features of KD concern the upper airway and associated tissues (i.e. mucosal changes 

and cervical lymphadenopathy). The upper respiratory tract therefore shows promise as a site to 

search for possible infectious causes of KD. 

Shotgun metagenomics can allow detection of bacteria, archaea, DNA viruses and fungi (the latter 

with appropriate sample preparation; Ghannoum et al., 2010), as opposed to 16S/18S rRNA-based 

microbiome profiling, which are limited to bacteria and fungi respectively. Additionally, taxonomic 

identification is typically more precise, and specific genes and strains can be recognised from reads or 

assemblies, allowing detection of potential toxins and virulence factors. 

My supervisor reported the presence of immune complexes (ICs) in the blood of children with KD 

(Levin et al., 1985) and multiple other studies have confirmed their presence (Salo et al., 1987; Koike, 

1991). Initial studies established that high-molecular-weight (HMW) IC were present in the plasma 

from the first week of illness and peaked in concentration in the second to third weeks. The complexes 

were shown to contain IgG, IgA and IgM, and to bind and activate platelets, causing release of 

inflammatory mediators. The time course suggests that KD may have an initial phase in which an 

infectious agent or its antigens are present in high concentration, followed by the production of 

specific antibodies resulting in formation of IC, leading to clearance of the agent. 
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Additionally, there is interest in understanding what the specific antibody/B-cell receptor and T-cell 

receptor profiles in infectious and inflammatory disorders can tell us about antigens, superantigens 

and the degree to which convergent or divergent receptor responses are produced between 

individuals. 

Work on which this study depends 

The group designed a study in collaboration with Prof Jane Burns’ group at the University of California 

San Diego (UCSD), in which children presenting at Rady Children’s Hospital with KD and 

contemporaneous febrile controls from the Emergency Department (ED) would have dry throat swabs 

and plasma or serum collected, with the aim of identifying microbial agents associated with KD within 

IC and the pharyngeal metagenome. 

Throat swabs were shipped to Imperial College and additional swabs from UK KD patients added. My 

colleague, Dr Stephanie Menikou, managed and undertook all of the necessary laboratory procedures, 

working up extraction methodologies to optimise DNA recovery, especially from fungi, and achieve 

optimal library preparation. Sequencing data was obtained from the Imperial Genomics Facility (IGF). 

Similarly, Dr Menikou managed and undertook laboratory procedures for plasma and serum samples. 

Earlier work supported the feasibility and effectiveness of polyethylene glycol (PEG) precipitation to 

concentrate immune complexes. Precipitates underwent mass spectrometry (MS) on Orbitrap 

instruments in Bristol and Oxford. 

Aims, objectives and hypotheses 

My hypothesis is that KD is triggered in genetically susceptible individuals by one or more microbial 

agents. 

The primary aim of my work presented in this thesis is to identify and characterise microbial agents 

which are associated with KD, and may be involved in triggering the disease. Furthermore I propose 

that the causative agent may have remained undetected previously because it may be difficult to 

distinguish from, or represent a component of the normal mucosal flora. By using metagenomic 

sequencing analysis I will be able to examine both culturable and non-culturable organisms, and 

distinguish the many organisms that are normally considered commensals. 
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Key objectives are detailed below. Additional and more specific objectives will be included in relevant 

chapters. 

Pharyngeal metagenome Immune complex metaproteome 

Identify organisms in the pharyngeal 

metagenome associated with Kawasaki 

Disease: 

• Considering bacteria, archaea, fungi 

and DNA viruses as far as possible 

• Considering species and higher-level 

taxonomic units, as well as specific 

strains and organisms carrying 

accessory genes. 

Identify microbial protein antigens associated 

with KD in circulating immune complexes by 

shotgun metaproteomics: 

• Considering bacteria, archaea, fungi 

and viruses as far as possible 

• Considering individual proteins, species 

and higher-level taxonomic units 

 

Explore the peptide sequences of antibody 

variable regions within circulating ICs and the 

association between locus utilisation and KD 
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2 |  Metagenomic data, quality and contaminant identification 

Introduction 

The data analysed for this chapter was provided by the Imperial Genomics Facility (IGF) with libraries 

provided by Dr S Menikou, and library preparation at the Cambridge Genomics Facility. I was involved 

in the experimental design of the process and in particular the determination of sequencing depth 

targets and liaision with IGF during sequencing. 

The aims of the metagenomic analysis are to identify features whose prevalence is specifically 

associated with KD, taking into account relevant covariates. However, before such analyses can be 

undertaken, the quality and depth of sequencing data need to be explored, and taxonomic profiling 

optimised and finalised. Further, artefactual findings and contaminants need to be accounted for. 

In this chapter, the objectives are: 

1. Describe the sequencing data quality and relative contributions of bacterial, fungal, viral, 

archaeal and human DNA 

2. Optimise read binning 

3. Identify and mitigate effects of contaminated reference genomes 

4. Identify potential contaminants and spurious identifications 

Methods 

Patients and controls 

The studies contributing samples to both the metagenomic and metaproteomic (p92 onwards) 

analyses are described fully in Appendix A (p180) along with details of ethical approval. 

Prior to my involvement in the project, samples from children with KD and febrile controls were 

selected in a single batch from UCSD, where a long-term cohort study of KD is ongoing with extensive 

clinical data and sample collection. A smaller number of KD cases from children recruited at St Mary’s 

Hospital were also selected. Although precise details of recruitment differ, both studies utilised the 

American Heart Association guidance to diagnose KD (McCrindle et al., 2017). As described in the 

Appendix, febrile controls were adjudicated not to have KD, but did have at least one of the KD clinical 

criteria. 

DNA extraction 

Dry human throat swab samples were collected in 2 ml Eppendorf tubes and frozen immediately.  Two 

negative control throat swabs were also included. Because the aetiology of KD is unknown, Dr 

Menikou aimed to develop a DNA extraction method to capture DNA from organisms including 
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viruses, bacteria and fungi. The QIAmp PowerFecal DNA kit (Qiagen) was used with some modification. 

A frozen sample of each throat swab was placed into the bead tube (mixture of glass and dry gamet 

beads) along with the lysis buffer and microbial DNA extraction was performed. The modified protocol 

involved changes in the beads used, using a FastPrep machine and longer incubation time. This 

resulted in a sample of 50 µl elution volume. The total DNA concentration, purity and integrity was 

assessed using Nanodrop (Thermo Scientific), Qubit (Thermo Scientific) and Bioanalyzer (Agilent 

Technologies, Santa Clara, CA). 

All experiments were performed in a microbiological safety cabinet that was UV irradiated before 

every experiment to offer protection from aerosols and exogenous contamination. 

Library preparation 

DNA Iibraries were constructed using KAPA Hyper Prep Kit according to the manufacturer’s 

instructions (Kapa Biosystems, Inc., Wilmington, MA) at Cambridge Genomic services. The workflows 

from KAPA were used to perform end repair and A-tailing, adapter ligation, post-ligation cleanup, 

library amplification and post-amplification cleanup. 

Libraries were normalised to 20nM for HiSeq using values from Tapestation (Agilent Technologies, 

Santa Clara, CA). Libraries from batches of 28 samples were pooled in equimolar ratios to a final 

concentration of 20 nM. 

Multiplexing, sequencing and quality control 

Samples were sequenced on the HiSeq 4000 platform within the Imperial Genomic Facility of Imperial 

College London. 2×150 base pair (bp) paired-end reads were requested, with half a lane’s depth per 

sample targeted. Based on estimated throughput of 650-750 giga bp (Gbp) per 8-lane flow cell, this 

would be expected to achieve an average of 135-156 million paired reads. 

Given the uncertain accuracy of the final sample molarity, IGF were requested to multiplex and 

sequence adaptively, targeting 140 million reads per sample. This was important because of the high 

variability in expected proportion of microbial DNA per sample (preliminary data not shown), which 

would be further compounded by variations in sequencing depth. 

IGF performed the demultiplexing according to their standard pipeline, which uses bcl2fastq and 

produces FastQC, MultiQC and FastQScreen reports. 

Read binning and reallocation 

A custom database was prepared for Kraken2 (Wood & Salzberg, 2014) comprising the National Center 

for Biotechnology Information (NCBI) RefSeq human genome, viruses and fungal sequences and 
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taxonomy, and Genome Taxonomy Database (GTDB) (Parks et al., 2018) bacterial and archaeal 

representative sequences and taxonomy (release 95). NCBI Genome Download (Blin, 2022) was used 

to obtaining the RefSeq sequences. Flextaxd was used to replace the NCBI bacterial and archaeal 

taxonomies with those from GTDB, and compile Kraken sequence and taxonomy files. The Kraken2 

database was constructed according to the default settings (kmer size 35). 

Untrimmed reads were initially binned with Kraken 2 according to the default settings, with no 

confidence threshold. 

Conifer (Silamikelis, 2021) was applied to summarise confidence scores for each non-human species 

within a single sample, and aid selection of a reasonable confidence threshold for Kraken 2. 

Reads were reallocated with Bracken 2 (Lu et al., 2017) at species level. Reads were summarised by 

organism group (human, bacteria, fungal, viral and archaeal) and proportions presented by sample 

group. The relationship between extracted sample DNA concentration and organism groups was 

explored graphically. 

It is known that there is widespread contamination of bacterial reference genome sequences with 

human genome sequences (Breitwieser et al., 2019; Steinegger & Salzberg, 2020; Merchant, Wood & 

Salzberg, 2014; Kryukov & Imanishi, 2016). These contaminant sequences are frequently poorly 

represented in the human reference genome, and therefore less likely to be filtered out by host-

removal processes. 

In order to identify species containing contaminant sequences, species whose abundances had a 

strong positive linear correlation with human abundances were identified by generalised linear 

regression. Kraken read counts both with and without a confidence threshold were used, since the 

lack of confidence threshold may increase sensitivity. Those with adjusted R2 greater than 0.1 and a 

positive correlation co-efficient were removed, and the reads reallocated to Homo sapiens. 

These species were cross-checked with a list of reference genomes known to contain human 

sequences (Breitwieser et al., 2019), both with and without direct reference human genome matches. 

Contaminant detection 

Sample-species count matrices were generated for each organism group (bacteria, fungi, viruses and 

archaea) and converted to relative abundance (RA) matrices. Decontam (Davis et al., 2018) was 

applied to identify potential contaminants using the frequency-based approach. In this process, taxa 

whose abundance increases with diminishing sample biomass are considered as potential 

contaminants. 
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Multiple approaches were considered. The input DNA concentration was taken either to be: (a) the 

measured DNA concentration in the swab extraction multiplied by the proportion of reads allocated 

to the relevant group, or (b) the proportion of reads allocated to the relevant group. The first scenario 

accounts for contaminants from the swab and to the point of DNA extraction. The second scenario 

accounts for contaminants from the point of making equimolar solutions after DNA extraction. 

Potential contaminants were identified at a threshold p≤0.05. 

All organisms which ever achieved relative abundance over 10% were manually reviewed as potential 

contaminants. A list of known proteobacterial genera contributing common laboratory contaminants 

was also included (Salter et al., 2014), excluding genera which include known constituents of the oral 

flora. 

Indexing reagent contamination was sought by regressing species relative abundance (within the 

whole sample) against the P5 and P7 index tags. Thresholds were reviewed manually. 

Contaminant identification methods were compared through weighted Euler diagrams. The 

proportion of a sample’s reads within a group contributed by potential contaminants was plotted 

against the estimated input DNA concentration and human DNA proportion. 

Human genome alignment 

Sample reads were aligned against the human genome (GRCh37) using Bowtie 2 with maximum insert 

size of 1000 and other default settings. Read pairs for which neither partner was aligned were 

extracted with samtools. 

GC content bias estimation 

GC content was measured for each sample’s reads which aligned to the first million bases of 

chromosome 1 and plotted against the number of PCR cycles to check for potential amplification bias. 

Coverage estimation 

Nonpareil was used to generate curves for unaligned reads from each sample, and estimate effective 

metagenome coverage. 

Taxonomic survey 

The phyla with the greatest median relative abundance were summarised. 
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Results 

Samples and data 

231 throat swabs and 2 blank control throat swabs underwent DNA extraction (Figure 3). Six swabs 

provided insufficient DNA or failed library preparation. Within the febrile group, one febrile sample 

was mislabelled and corresponded to an unknown patient, one sample had missing consent, and two 

swabs were taken 10 days apart from the same febrile patient. Figure 3 displays a flowchart of the 

process from DNA extraction to sequencing. DNA sequencing was undertaken over 12 months, 

Figure 3 Flow diagram from throat swab samples to metagenomic sequencing 
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interrupted due to the COVID pandemic, and ultimately sequencing data was available for 116 KD 

patients and 101 Febrile patients. 

Demographic and clinical data is shown in Table 1. 

 

Table 1 Demographic and clinical details of patients with available metagenomic data 

 Febrile KD  
USA 

(N=101) 
UK 

(N=19) 
USA 

(N=97) 

Sex 
   

  Female 45 (44.6%) 6 (31.6%) 33 (34.0%) 

  Male 56 (55.4%) 13 (68.4%) 64 (66.0%) 

Age (y) 
   

  Mean (SD) 4.19 (3.00) 4.04 (4.70) 4.19 (3.17) 

  Median [Min, Max] 3.60 [0.100, 14.0] 2.80 [0.300, 17.5] 3.10 [0.300, 15.3] 

Ethnicity 
   

  American Indian/Alaska Native 1 (1.0%)  1 (1.0%) 

  Asian 9 (8.9%) 1 (5.3%) 8 (8.2%) 

  Black/African American 3 (3.0%) 7 (36.8%) 2 (2.1%) 

  Caucasian 22 (21.8%) 7 (36.8%) 23 (23.7%) 

  Hispanic 33 (32.7%)  39 (40.2%) 

  Multiple 20 (19.8%) 2 (10.5%) 21 (21.6%) 

  Unknown 8 (7.9%) 0 (0%)  

  Other 
 

2 (10.5%) 2 (2.1%) 

  Missing 5 (5.0%) 
 

1 (1.0%) 

Day of illness 
   

  Mean (SD) 6.33 (3.53) 7.06 (3.83) 6.53 (4.03) 

  Median [Min, Max] 6.00 [1.00, 27.0] 7.00 [2.00, 14.0] 5.00 [2.00, 25.0] 

  Missing 5 (5.0%) 2 (10.5%) 0 (0%) 

CRP (mg/dL) 
   

  Mean (SD) 57.7 (82.5) 119 (91.3) 93.7 (83.1) 

  Median [Min, Max] 31.0 [5.00, 524] 90.0 [5.00, 301] 60.0 [5.00, 363] 

  Missing 7 (6.9%) 
 

1 (1.0%) 

WBC (109/L) 
   

  Mean (SD) 10.2 (6.92) 17.1 (6.31) 13.8 (5.17) 

  Median [Min, Max] 9.05 [2.60, 48.9] 16.0 [7.90, 28.8] 12.7 [5.00, 32.4] 

  Missing 5 (5.0%)   

PMNs (109/L) 
   

  Mean (SD) 5.32 (5.88) 11.1 (4.82) 8.07 (4.15) 

  Median [Min, Max] 3.89 [0.114, 45.0] 11.6 [2.00, 18.2] 7.32 [0.700, 24.9] 

  Missing 5 (5.0%) 1 (5.3%) 
 

Antibiotics before sampling    

  Yes 45 (44.6%)  52 (53.6%) 

Coronary Artery Aneurysm    

  Yes 21 (21.6%)  3 (15.7%) 



 Metagenomic data, quality and contaminant identification 

 Page 41 

A total of 37.3 billion read pairs were obtained, with a mean of 171 million read pairs per non-control 

sample and median of 158 million (interquartile range [IQR] 149-180 million). Eight of 210 non-control 

samples provided fewer than 135 million read pairs. 

The proportion of bases with a quality score of 20 and above (first 100 000 reads) exceeded 95% in 

read one and 85% in read two for the majority of samples (Figure 4). Read two is expected to have 

lower quality. 

Based on reads aligned to the first million bases of chromosome 1, there was no association between 

PCR cycles and GC proportion (p=0.93) with a median of 47.7% for each of 8, 10 and 12 cycles. 

Read binning and reallocation 

Overall, Kraken classified 96% of reads: 74.8% of reads were classified as human, 20.9% of as bacterial, 

0.2% as fungal, 0.02% as viral (including bacteriophage) and 7 in 100 000 as archaeal. 

The median proportion of human reads was higher in the KD group, and correspondingly the 

proportion of bacterial reads lower by more than 50%. 

Conifer was applied to a single sample to explore the confidence with which reads were assigned to 

each microbial species. The confidence score for each read is calculated as the proportion of 

  

  

  

  

  

   

             

          

 
 
  

 
 
  
 
      

       

  

                

Figure 4 Proportion of bases exceeding Q20 quality score in read 1 (R1) and read 2 (R2) 
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assignable k-mers assigned to the selected node for the read. The median confidence score per non-

human read was 0.19. A confidence value of 0.05 was exceeded by 84% of reads. 

Only 1.4% of the 33 328 non-human taxa identified exceed 0.01% of identified reads, though 96% of 

non-human assigned reads belong to these taxa. The median of median confidence scores only begins 

to rise appreciably at the 1 000-read threshold – reaching 0.035 for taxa with between 950 and 1 050 

reads (Figure 5). Confidence scores are expected to be lowered when not applying any base quality 

threshold with Kraken, since erroneous nucleotides may render k-mers unidentifiable. 

The same sample was rerun with a confidence threshold of 0.05 (corresponding to minimum 12 of 232 

possible 35-mers per read pair assigned to the reported node) and quality threshold of 20 

(corresponding to 1% chance of error – if every base in a 35-mer has this quality score, there would 

be a 30% chance of one or more erroneous bases). 94.5% of bases exceed this quality score in this 

sample (first 100 000 reads); low quality bases are likely to cluster at the beginning and end of reads. 

From the first 100 000 read pairs, a median of 168 35-mers were provided (IQR 115-229) by each pair. 

No 35-mers were available from 3 845 (4%) of read pairs. 

Figure 5 Analysis of species-level read binning within a single sample. The top panel shows a quantile regression plot (5th, 
25th, 50th, 75th and 95th percentiles) of median read binning confidence value by species read count. The lower panel shows 
the distribution of species by read count, with vertical marks indicating 25th, 50th and 75th percentiles. 
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Unclassified reads and those assigned to Opisthokonta or Cellular Organisms increased from 3.8 to 

9.4%. Human reads fell from 71.3 to 67.9% and bacterial reads from 24.8 to 22.7%. Fungal reads fell 

by 62%, viral reads by 46% and archaeal reads by 91%. The number of taxa fell to 27 559, with 0.8% 

exceeding 0.01% of identified reads, and an increased 99% of assigned reads to these taxa. 

The proportion of bacterial reads assigned at species level fell from 88 to 70%, with genus level 

assignments rising from 11 to 27%. Assignments above genus level increased from 1.8 to 3.5%. 

When reads were reallocated with Bracken, the total number of species identified dropped, with the 

largest reduction among bacterial and archaeal species: 2 933 of 16 174 bacterial species remained, 

17 of 378 archaeal species, 155 of 324 fungi and 32 of 68 viruses. The preferential removal of low 

abundance species (<1000 reads, ~2 in 100 000 bacterial reads) prompted selection of this approach 

(Figure 6). 

Human-contaminated references 

Ideally, the microbial genome sequences used in database construction would be accurate and 

complete. However, the known contamination of reference bacterial genomes with human sequences 

 

    

     

     

               

                  

 
 
 
 
 
  
 
  
 
 
 
 
  
 

          

 

    

Figure 6 Exploration of the effects on species read count distributions by applying a Kraken confidence threshold. Bracken-
reallocated read counts are shown, to ensure the reduced proportion of reads allocated at species level does not drive the 
difference. 
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(Breitwieser et al., 2019), coupled with the high and variable proportion of human DNA in these 

samples raised a severe risk of spurious signal if human reads could be mislabelled as bacterial. 

It is implausible that a true pharyngeal organism would increase in relative abundance within the 

sample as the proportion of human reads increases (since the total proportion of microbial reads will 

diminish). In the case that specific human sequences can be misclassified as belonging to one or more 

species, those species should increase linearly in abundance with human sequences. 

Using a generalised linear model (to protect from outlier influence) I identified 90 species with 

significant positive correlation with human read proportion (R2 ≥ 0.1) from either Kraken run (data not 

shown). Of these, 40 organisms have reference genomes identified to be contaminated with human 

sequences by Breitwieser et al. (2019). These species were flagged for removal from Bracken-adjusted 

read counts and reads were reallocated to Homo sapiens. 

Reallocation 

Bracken reallocated reads to species level. The species reallocated to Homo sapiens accounted for a 

median of 0.1% of reads per sample (range 0.02 to 0.4%), and 1% of bacterial reads (range 0.02 to 

86%). 

84% of bacterial species had some reads reallocated. The median proportionate increase in reads by 

bacterial species was 23% (IQR 4-63%). Read allocations by group are shown in Table 2. 

Contaminant detection 

Extracted DNA concentration was available for 212 samples, recorded as below the limit of detection 

for 5 samples, and missing for three.  Values below the limit of detection were replaced with the 

minimum value of 2 ng mL-1. The effective concentration of bacterial DNA was calculated by 

multiplying the sample DNA concentration by the proportion of reads allocated to bacteria. 

Organism group Febrile KD 

Homo sapiens 67.4% (45.9-84.3) 82.0% (59.2-89.3) 

Bacteria 16.4% (5.81-36.0) 7.50% (1.85-25.4) 

Fungi 51 (43-61) 49 (43-57) 

Viruses 44 (20-150) 17 (9-36) 

Archaea 3 (1-8) 2 (0.5-5) 

Table 2 Summary of read allocations to top-level organism groups. Numbers shown are percentages or reads per 100 000, 
with interquartile range. 
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Since the abundance of contaminant DNA is unlikely to be related to the quantity of non-contaminant 

DNA transferred onto the swab and extracted in the laboratory, Decontam uses a linear model to 

detect features whose relative abundance increases with reducing DNA input (Davis et al., 2018). 

Per-group sample-species matrices were processed by Decontam in frequency mode, with two 

approaches. Firstly, bacterial DNA proportion was used as DNA input, to account for contamination 

during library preparation, when samples are equimolar. Secondly, the estimated bacterial DNA 

concentration was used (both with and without previously identified contaminants removed), to 

account for contamination arising onto the swab or during extraction. In this way the possible two 

stages of contaminant introduction were considered. 

Common proteobacterial laboratory contaminant genera were taken from Salter et al. (2014) 

excluding genera known to be part of the normal oral flora (Kingella, Pseudomonas and Acinetobacter) 

and also used to annotate potential contaminants. 

Associations between relative abundance of each bacterial species (of total sample reads) and P5 and 

P7 tags were also assessed by generalised linear regression. A q-value threshold of 0.0005 was 

selected so as to identify organisms with strong tag-related patterns by visual inspection of matrix 

plots (data not shown). 

Dominant residual contaminant organisms in some samples will drive the apparent relative abundance 

of other organisms down (e.g. a contaminant with 10% RA will reduce other organisms’ RAs by the 

same proportion). Fifty-four species were ever present at 10% or greater RA (1-13 instances) following 

removal of other contaminants. Likely contaminants in this list comprised only Sphingobacterium 

multivorum, Bifidobacterium breve and Syntrophomonas methylbutyratica. These organisms were 

also annotated as potential contaminants. 

Contaminant genera were reviewed for potential false positives, since the human DNA proportion 

potentially reflects throat inflammation and may therefore be associated with pathological changes 

in the microbiome. The 87 of 1 406 genera with 10 or more species identified as contaminants were 

manually reviewed. Five genera were identified as part of the normal pharyngeal flora (Table 3). Most 

species (240/259) were redundantly identified by Decontam using bacterial proportion as the biomass  
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measure. All relative abundance relationships with bacterial proportion were highly significant (linear 

regression of log(RA) against log(bacterial proportion); p<0.001), whether utilising the total genus 

abundance or only contaminant species.  

Euler diagrams were generated to demonstrate the contribution of each method to identifying sets of 

contaminant species (Figure 7) using a variety of weights: species count, species median RA and 

species mean RA. The approach with Decontam using the microbial DNA proportion identifies the 

largest number of potential contaminants. The candidate genus approach adds the next largest 

number, followed by the concentration approach. With mean abundance weighting, the dominant 

approach remains Decontam proportion though there is more balance. The Decontam concentration 

approach is dominated by the Decontam proportion approach when considering median abundance 

weighting. The genus approach adds considerable contaminant abundance when the median 

approach is considered, and other means contribute little. In total 4 707 potential contaminant species 

were identified. 

Genus Frequent 
contaminants 

Number of 
species 
identified as 
contaminants 

Median 
proportion of 
genus relative 
abundance 

R2 total RA 
(contaminant 
RA) 

Acinetobacter Yes 49 of 130 85% 0.43 (0.51) 

Pseudomonas Yes 99 of 444 65% 0.27 (0.44) 

Corynebacterium Yes 60 of 146 6% 0.11 (0.39) 

Staphylococcus No 31 of 68 99% 0.33 (0.37) 

Moraxella No 20 of 24 81% 0.22 (0.31) 

    

    

   

     

     

Figure 7 Three Euler diagrams summarising the median amount of contaminant identification within samples using different 
approaches. The left block shows number of species; the middle block shows mean relative abundance proportion; the right 
block shows median relative abundance proportion (conc=Decontam concentration/biomass approach; prop=Decontam 
proportion approach; tag=Index tag reagent identified contaminants; abund=highly abundant organisms identified as likely 
contaminants; genus=Abundant proteobacterial laboratory contaminant genera from Salter et al [2014]). 

Table 3 Known pharyngeal-resident genera with 10 or more species identified as contaminants by Decontam. For each genus 
and sample, the proportion of relative abundance (RA) classified as belonging to contaminant species is calculated, and the 
mean presented per genus. The R2 value is shown for a simple linear regression model of genus RA (and genus contaminant 
species’ RA) versus log10(bacterial read proportion). 
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In the samples with the lowest bacterial DNA proportions (<2%), the proportion of reads contributed 

by potential contaminants can exceed 50%. Eighteen of 218 clinical samples exceed 25% bacterial 

contaminant proportion (14 KD and 4 febrile). 

Bacterial contaminants contributed a median 0.05% of reads per sample (IQR 0.03-0.1%), with a small 

difference in favour of KD patients (median 0.04 vs. 0.06%). However, due to the lower bacterial 

proportion in KD samples, the proportion of bacterial reads attributed to contaminants is higher in KD 

patients (median 0.5 vs 0.3%). 

Samples with absolute bacterial contaminant proportion (of total reads) ≥ 0.5% were inspected to 

ensure dominant contaminants were unlikely to represent usual flora. Fifteen samples were 

represented. Seven were dominated by obvious contaminants: two by Lactobacilli and Bifidobacteria; 

one by a Ruminococcus; another by Acinetobacteria and Enterobacteria; one by Stenotrophomonas; 

one by Pseudomonas and Cutibacterium; another by Mycobacteria. Three samples were dominated 

by Staphylococci and five by Moraxella. 

Contaminants cannot be resolved with certainty, and some of the above may represent true 

Moraxella- or Staphylococcus-dominated microbiomes. Nonetheless, there is potential to re-include 

contaminants at later stages of analysis. 

Potential contaminants were shared between 41 phyla (NCBI definitions) and represented a mean of 

7% of bacterial relative abundance. 95% of mean contaminant relative abundance was provided by 

four phyla: Firmicutes (43%), Proteobacteria (33%), Actinobacteriota (16%), and Bacteroidota (2%). 

Within these phyla, 6, 14, 6 and 2% of phylum relative abundance (respectively) was contributed by 

contaminant species. 

The same four phyla contributed 95% of non-contaminant relative abundance, but the order differed: 

Firmicutes (48%), Actinobacteriota (19%), Bacteroidota (16%) and Proteobacteria (14%). 

If contaminants and non-contaminants are well separated, no correlation would be expected between 

the paired relative abundances of phyla within contaminants and non-contaminants. Although all four 

phyla demonstrate positive correlations between contaminant and non-contaminant abundances, 

adjusted R2 values are 0.07 or below. This suggests that contaminants and non-contaminants may be 

imperfectly separated. 

With contaminants flagged, the depth of metagenomic sequencing per sample can be summarised. 

Median non-contaminant read depth is 17.2 (IQR 4.7-49.3) million for bacteria, 1 798 (IQR 1 010-

4 053) for fungi, 12 311 (IQR 4 513-46 469) for viruses and 172 (IQR 34-492) for archaea. This is broken 

down by disease group in Table 4, revealing the difference in microbial read depths between KD and 
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febrile patients (due to the greater human proportion in the KD group). The most striking difference 

is for bacteria, where the median depth was nearly three times as high for febrile patients. 

Residual effects of contamination 

Potential residual effects from unidentified contaminants could be considered by summing the total 

proportion of non-contaminant bacterial reads contributed by the most abundant genera overall – 

excluding those genera known to colonise skin. Thus, for each sample the total relative abundance of 

Prevotella, Veillonella, Rothia, Neisseria, Pauljensenia, Haemophilus, Gemella and Granulicatella was 

summarised. A transition was evident at around 3% contamination with a drop in the proportion of 

reads from dominant genera from median 57% (IQR 51-64%) to 41% (29-51%, p<0.001 by Wilcoxon 

test; Figure 8). 

Organism group Febrile KD 

Bacteria 28 667 (9 860-60 324) 10 619 (2 342-37 962) 

Fungus 2.4 (1.4-5.4) 1.5 (0.8-2.8) 

Virus 20.6 (9-104.6) 7.5 (2.8-21.4) 

Archaea 0.3 (0.1-0.7) 0.1 (0.0-0.4) 

Table 4 Median and interquartile range of non-contaminant read counts (×1 000) by organism group and sample group. 

    

    

    

                    

                      

 
  
 
 
  
  
 
  
 
 
  
  
 
  
 
  
 
  
 
 
  
 
 
  
 
 
 
 
  

     

       

  

Figure 8 The proportion of each sample's non-contaminant relative abundance contributed by the eight dominant genera. 
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This suggests the possibility that above 3% identified contaminant proportion there could still be 

significant unidentified contaminants with the potential to falsely reduce the RA of non-contaminant 

species. Given that both the potential effect and the disparity in proportions of KD vs febrile samples 

is most apparent above contaminant proportion of 10% (15% of KD samples vs. 9% of febrile samples), 

this gives a potential group to exclude in sensitivity analyses. 

Drivers of variation in bacteria DNA proportion 

The variable balance of human and microbial DNA between samples and groups could be explained 

by variation in either or both of human DNA and microbial DNA load on throat swabs. 

Considering only non-contaminants, the estimated concentrations of bacterial and human DNA in 

samples was explored. Bacterial and human DNA were present at median concentrations of 2.7 (IQR 

0.8-6.5) and 17 (IQR 7.1-51) ng mL-1 respectively. Median bacterial DNA concentrations were similar 

between KD and Febrile groups at 2.2 and 2.8 ng mL-1 respectively (p=0.33, Wilcoxon rank sum). In 

contrast human DNA concentrations were different at 24.9 and 11.2 ng mL-1 respectively (p=0.001). 

There was no relationship between the human and bacterial DNA concentrations (p=0.56 by linear 

regression). 

The proportion of a sample’s non-contaminant reads represented by bacteria was associated with 

both the estimated human and bacterial concentrations in multivariable linear regression (adjusted 

R2 0.42). The bacterial proportion fell as the human concentration rose (-0.11% mL ng-1) and rose as 

the bacterial concentration rose (+1.0% mL ng-1). Sequential analysis of variance shows the bacterial 

DNA concentration explains more of the variance (25 vs 17%) overall. 

Negative control samples 

The two negative control samples comprised few reads had very few reads (6.9 million and 735 000 

in sample A and B respectively). The proportion of human reads was typical at 82 and 90% of reads 

respectively, and the remainder mostly bacterial. In sample A, the most abundant bacterial species 

was classified as a contaminant (Syntrophomonas methylbutarica) but subsequent organisms were 

part of the oral flora. In sample B, most abundant bacterial species were part of the oral flora. 

Human genome alignment 

The proportion of read pairs aligning at least once to the human genome approached the proportion 

assigned as human by Kraken 2 (median difference -4.2%, range -1 to -34%). 

Read pairs with neither pair aligned were extracted (“unaligned reads”) and used in further analyses.  
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Coverage estimation 

Nonpareil 3 (Rodriguez-R et al., 2018) is a database-independent k-mer based tool which estimates 

metagenomic coverage. Coverage estimates are abundance weighted, therefore relate to coverage of 

organisms, not the range of species represented. 

Nonpareil proceeds through two stages. The first is redundancy estimation, in which sequences are 

subsampled and k-mer redundancy measured each time. Abundance-weighted average coverage is 

estimated at different depths by fitting a sigmoidal model to the data. 

Nonpareil was run on the first pair of each sample’s reads, with alignment length of 100 (maximum). 

Reads were first trimmed with trimmomatic (parameters LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:50). 103 of 116 samples produced warnings that the curves “reached 

near saturation and coverage estimations could be unreliable” – the only step would be to increase 

the minimum similarity value beyond the tested 0.95. Fitted Nonpareil curves are shown in Figure 9. 

The median coverage of samples was estimated to be 96% (IQR 92-99%), with 129 of 174 samples 

having coverage of 90% or above. One KD sample (1510181) has a dramatically low estimated average 

coverage. 

Within-sample diversity estimates were a median of 16.5 (IQR 15.6-17.0, range 10.8-27.9). The 

medians differed slightly by group, with slightly greater diversity in the febrile group (KD 16.2, Febrile 

Figure 9 Nonpareil curves (Rodriguez-R et al., 2018) coloured by sample group. Average coverage (estimated by k-mer 
redundancy) is shown against sequenced bases, with the points representing the actual sequence available for the sample.  
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16.8, p<0.001 Kruskal-Wallis). The outlying low-coverage sample (1510181) has outlying high diversity 

and is unusual in other aspects. 23% of reads are assigned directly to the root node (next largest 8%; 

median 0.2%). Once human-associated species have been reallocated, 99.9% of reads are human – 

only two other samples exceed this. Read quality is low: fifth lowest for the first mate (14% of bases 

Q20 or below) and second lowest for the second mate (19% of bases Q20 or below). Only 72 364 non-

contaminant bacterial reads are allocated. This sample is excluded from further analyses. 

Dominant phyla 

Firmicutes are the dominant phylum both by median and mean relative abundance (48 and 47% 

respectively). However, there is a very wide spread of distribution of RA, with IQR 35-59% and range 

0.7-93%. 

Figure 10 shows the top 10 phyla by median abundance with other phyla grouped. Phyla from 5th to 

10th most abundant represent likely contaminants, since Campylobacterota are gut organisms and the 

others predominantly environmental. Median relative abundance of these five phyla together is 0.5% 

(IQR 0.2-1.2%; maximum 8.8%). Adding the remaining minority phyla does not materially change these 

estimates. Assuming these represent residual contamination, the impact upon relative abundance of 

non-contaminant organisms should be minimal. 

         

                    

    

    

    

    

    

      

 
 
  
   
 
  
 
 
 
 
 
 
 
 

      

          

                

            

              

              

                

               

             

             

                

              

Figure 10 Distribution of relative abundances of the top 10 phyla across all samples ordered by decreasing abundance of 
firmicutes. 
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Discussion 

In this chapter I have described the large quantity of shotgun metagenomic data obtained from our 

cohort of over 200 individuals, assessing quality and taxonomic classifications. Critically, I have 

undertaken extensive analyses to identify spurious identifications due to contaminated reference 

sequences, and the small amount of likely laboratory contamination. 

Quality control 

The adaptive method of multiplexing undertaken by the sequencing facility has ensured that the 

sampling depth was sufficiently evenly distributed between samples, and the vast majority of samples 

exceeded the average depth targeted. 

Sequencing quality is adequate for the majority of samples. Downstream tools including Kraken 2, 

Bowtie 2 and MEGAHIT are quality aware, and adapter removal was included as part of the in-house 

demultiplexing pipeline. For this reason, I selected not to trim reads for this analysis. 

PCR is a helpful step to facilitate successful library preparation, especially for low concentration 

samples. However, PCR introduces a risk of guanine-cytosine (GC) bias. With 8-12 cycles of PCR per 

sample, dependent on DNA concentration, it was important to ascertain whether this introduced any 

GC bias. 

Since GC content varies throughout the human genome in a predictable manner, I opted to measure 

bias within reads aligning to a region of the human genome. Selecting bulk bacterial (or non-human) 

reads could confuse any signal due to inter-sample variation in bacterial average GC content. The GC 

content was remarkably consistent between samples with 8, 10 and 12 cycles of PCR. This is consistent 

with the findings of Chafee, Maignien & Simmons (2015) who showed only a marginal reduction in GC 

content (59.6 to 58.6%) when increasing from 8 to 24 cycles of PCR. 

Taxonomic identification 

Various methods exist for measuring the taxonomic profile of samples by shotgun metagenomics. 

These can broadly be classified into those based on sequence alignment, k-mer composition or 

marker-gene identification. K-mer based approaches, exemplified by Kraken and Centrifuge, are 

computationally efficient (though memory hungry) and usually sensitive.  Marker gene-based 

approaches, like MetaPhlAn, are more specific, though the trade-off is a higher coverage threshold to 

detect organisms. 

In work conducted during this fellowship, I reanalysed data from a study investigating the effects of 

variable sequencing depth and host DNA contribution on taxonomic profiling (Pereira-Marques et al., 

2019). This study used a known mixture of bacterial DNA spanning a wide range of concentrations, 
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and varying proportions of murine DNA. The authors applied MetaPhlAn 2 and found that the lowest 

abundance organisms became undetectable when host DNA content was high (90-99%). Motivated 

by the requirements for this study, I reanalysed their data with Kraken and found that all organisms 

could be detected in all samples, with a stable taxonomic profile (McArdle & Kaforou, 2020; see 

Appendix B). I noted that likely contaminating organisms were detected at greater relative 

abundances (among bacteria) in the samples with the highest host DNA content, and applied 

Decontam to successfully identify a large proportion of these organisms. 

Since any microbial trigger of KD may not be present in high abundance (or may only be residually 

present following recent active infection), sensitivity is a strong requirement for this study. Kraken 2 

(Wood, Lu & Langmead, 2019) builds upon Kraken 1, with k-mer minimisers reducing the database 

size. It has reduced memory usage (compared to Kraken 1), allows custom databases and provides 

control over base-quality and identification confidence thresholds. Additionally, with Bracken 2 (Lu et 

al., 2017), reads can be reallocated from higher taxonomic levels to provide more accurate relative 

abundances and the most appropriate denominator. 

KrakenUniq extends the approach of Kraken by counting unique k-mers identified per taxon, which 

provides additional confidence in identifications (Breitwieser, Baker & Salzberg, 2018). However, it is 

built around the approach of Kraken 1, requiring greater amounts of random-access memory (RAM), 

and without confidence and base-quality thresholds. Usefully, k-mer minimiser counting has been 

incorporated into Kraken 2. 

Ganon (Piro et al., 2020) allows for continuous, quick updating of sequence databases, however in my 

tests the memory required exceeded 200 Gb and would not be suitable for high-throughput operation 

on Imperial’s High Performance Computing (HPC) infrastructure. 

Kraken 2 has favourable results in recent benchmarks on both short reads and assembled contigs 

(Meyer et al., 2021). It was the fastest read binner, and the top performer for contigs. At the time of 

writing in the LEMMI continuous benchmark of metagenomic classifiers (Seppey, Manni & Zdobnov, 

2020) Kraken 2 with Bracken obtains the highest score for species detection (>100 reads) and for 

relative abundance of organisms. For low abundance detections and read binning accuracy, Ganon 

and MetaCache overtake. However, once computational resources are weighted at all, Kraken 2 also 

leads for read binning accuracy. 

Based on its efficiency, flexibility and favourable evaluations, I implemented Kraken 2 for read binning, 

with Bracken for reallocation. In line with the authors’ recommendations, I found that a confidence 

threshold of 0.05 (selecting the lowest taxonomic level with 5% or more of a read’s k-mers in a read, 
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or marking the read as unidentifiable if this is not possible) selectively reduced very low count 

identifications of a large number of likely spurious identifications. Additionally, I implemented a liberal 

quality threshold corresponding to 95% confidence of base identification. 

With this configuration, over 90% of reads were classified below the level of cellular organisms or 

Opisthokonta, and over two-thirds of bacterial reads were assigned at species level. 

Human genome contamination of reference genomes 

A small set of studies from the last decade have identified and quantified the problem of 

contamination of reference genomes in public databases. Merchant, Wood & Salzberg (2014) showed 

that the draft genome assembly of Bos taurus contained multiple contigs of bacterial origin, and that 

a Neisseria gonorrhoeae genome contained cow and sheep sequences. Breitwieser et al. (2019) 

identified human contamination in 2 250 RefSeq bacterial genomes. Most recently, Steinegger & 

Salzberg (2020) reported more than 2 million sequences in GenBank with cross-kingdom 

contamination, including 51 thousand bacterial sequences, and nearly 100 thousand RefSeq bacterial 

sequences. 

In designing this analysis, I had little awareness of this problem. However, in refining the approach I 

noted a Marinomonas species lost over 95% of its reads when implementing the Kraken 2 thresholds. 

This species had been moderately abundant when no Kraken thresholds were applied, and was 

associated with KD. Its abundance was strongly positively correlated with human abundance (r2=0.15; 

p<10-8). 

This prompted me to identify species with strong positive correlations with human read proportions 

– something biologically unexpected given that the total proportion of bacterial reads declines as the 

human proportion rises. I identified 90 species with such suspicious associations – reassuringly 40 of 

them had previously been identified in the 2019 study. 

To my knowledge, no other post-analytic mitigations against host-contaminated reference genomes 

has been demonstrated in the literature. The ideal approach would have been to clear the reference 

database of human contaminated sequences before construction. However, release 95 of GTDB post-

dates the 2019 publication and therefore contamination in newer genomes would be missed. 

Conterminator (Steinegger & Salzberg, 2020) could be applied to identify cross-kingdom 

contamination in the database, however there was not sufficient time within the fellowship to apply 

this, rebuild the database and rerun analyses. Unfortunately, there are no plans for GTDB to identify 

and remove such contamination (Donovan Parks, personal communication). Work is underway to 

mitigate the problem at NCBI (Terence Murphy, personal communication). 
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Contaminant detection 

Laboratory and reagent contamination of samples undergoing amplicon and metagenomic analyses, 

especially those with low biomass, has received increasing attention. A recent review (Eisenhofer et 

al., 2019) covered both laboratory/reagent contamination and cross-contamination, and highlighted 

the frequent omission of analyses to identify and account for contamination. They review instances 

where contamination is suspected to drive significant findings in published studies, including studies 

of the placental microbiome (where it is feasible that the placenta is sterile since blank controls are 

indistinguishable), and raise concern about a profusion of studies of low-biomass samples without 

appropriate controls. They make a series of recommendations, reproduced in Figure 11. 

In our case, it is important to note that samples underwent extraction in disease groups, due to 

concerns by group members to minimise potential between-group cross-contamination. PCR and 

library preparation also occurred in systematic layouts on 96-well plates. For this reason, identification 

and mitigation of contamination is of extreme importance in this study. 

Figure 11 Recommendations for reducing the impact of contaminants in microbiome and metagenomic experiments, 
reproduced from Eisenhofer et al. (2019) 
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Karstens et al. (2019) benchmarked four computational approaches to identifying contaminants in 16S 

amplicon experiments, using a mock microbial community across four orders of magnitude of dilution. 

The simplest were filters based on either presence in a negative control or abundance below specified 

thresholds. Two published tools were also tested. 

SourceTracker (Knights et al., 2011) utilises community profiles from known sources (whether internal 

controls, or external samples) to predict the probability of taxonomic units arising from defined 

sources. Decontam (Davis et al., 2018) uses one or both of a frequency (i.e. abundance) and prevalence 

approach. The frequency approach identifies taxonomic units whose abundance increases with 

reducing sample biomass. The prevalence approach requires negative controls, and identifies 

taxonomic units whose prevalence is higher in negative controls than samples. In the benchmark, 

SourceTracker performed well when source environments were well defined. However, with poor 

definition, performance was poor. Decontam, tested in frequency mode, did not misclassify mock 

community members, whilst correctly classifying 70-90% of contaminant Operational Taxonomic Units 

(OTUs). A large proportion of contamination by relative abundance remained in the lowest 

concentration samples (1:729-1:6 561) at the standard threshold (p≤0.1). However, up to 1:27 

dilution, the residual contaminant proportion was less than 5%. 

In our study, contamination must be considered for these reasons: 

1. Contaminants may contribute a high proportion of bacterial reads in some samples. The 

bacterial biomass in our samples varies across four to six orders of magnitude, whether one 

considers the estimated concentration of extracted bacterial DNA (2 pg mL-1 to 113 ng mL-1) 

or the proportion of each sample which is contributed by bacterial DNA (range 0.08 to 87%). 

2. Contaminants may be spuriously associated with KD. Bacterial biomass (by proportion) is 

strongly associated with group (median 8 vs 19% for KD and febrile respectively), thus 

contamination arising following equimolar dilution of extracted DNA would be 

proportionately greater for KD samples. Additionally, the systematic extraction and library 

preparation renders samples vulnerable to contamination in a biased pattern whether by 

reagent batches, or environmental contamination varying in time and space. 

3. High abundance contamination will artificially lower the relative abundance of non-

contaminant organisms and could mask true signal. For example, if contaminants account 

for 50% of the bacterial reads in a sample, non-contaminant relative abundances will be 

reduced by 50%. This greater abundance of contaminants in KD samples could mask true 

signals from organisms associated with KD. 
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4. A large number of contaminant organisms will reduce power. Even were contamination 

randomly distributed between KD and febrile samples, the added statistical tests for these 

organisms will reduce power to detect true associations at a fixed false-discovery rate. 

In addition to the encouraging results of Karstens et al. (2019), I obtained favourable results applying 

Decontam (in frequency mode) to the aforementioned host-associated mock community data 

(McArdle & Kaforou, 2020, as presented in Appendix B). Decontam was able to remove 61% of off-

target species and 79% of off-target reads (92% in the lowest biomass sample). I therefore selected 

Decontam as a means of detecting contaminants. In our case, only the frequency method was 

applicable as only two negative control swabs were sequenced, and their taxonomic profiles were 

remarkably similar to human samples. 

The likely scenario is that these reads mostly resulted from “index hopping”, due to free index tags in 

these samples with minimal input DNA (Sinha et al., 2017). Sample A shared its indices with five other 

samples and sample B with six, and both shared an index tag. Because these negative controls will 

potentially have been enriched for free index tags, index hopping may be a greater problem for them. 

Nonetheless, on the HiSeq 4000, Sinha et al. (2017) measured 5-7% rates of index hopping with both 

negative controls and cDNA-containing samples. 

Decontam was applied using two biomass measures. Contaminants were considered as those with p 

values ≤ 0.05, more stringent than the 0.1 default. Contaminants were also sought through association 

with specific index tags, by applying a shortlist of common proteobacterial laboratory contaminants, 

excluding those typical of pharyngeal flora and manual searching of high abundance organisms. 

Together these methods identified over 4 000 potential contaminants, accounting for a small 

proportion of reads per sample, but a modest, and sometimes very high, proportion of bacterial reads. 

Notably, contaminant reads are similar in number to those from likely human-contaminated reference 

genomes (46 vs. 42 million). 

The lower total abundance of prevalent genera in samples with over 3% of bacterial reads assigned to 

contaminants suggests that residual contamination could still contribute a significant bulk in these 

samples. However, given the likely underlying cause of high contamination is throat inflammation, 

biological causes are also possible. The small contributions from phyla outside the top five likely 

represents residual contamination (median total relative abundance 0.5%). 

There remains a possibility of falsely rejecting true organisms of the oropharynx, as well as incorrectly 

including contaminants. Caution was taken to avoid over-aggressive rejection by selecting a more 
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conservative threshold with Decontam (p≤0.05 rather than 0.1). Species which represent a mix of both 

true pharyngeal colonisers and laboratory contaminant pose the greatest challenge. 

Within the Staphylococci, S. epidermidis is confidently identified as a contaminant (p=1×10-8), whereas 

S. aureus despite sometimes occurring at high abundance, is identified with less confidence (p=0.002). 

S. epidermidis is not known to colonise the oropharynx, and as a coloniser of skin, is a common 

laboratory contaminant. In contrast, S. aureus is known to colonise both moist skin and the 

oropharynx (Mertz et al., 2009; Sollid et al., 2014) – the lower confidence identification as a 

contaminant may signify this. 

Steps to mitigate against incorrect assignment of contaminant status will be considered in further 

analyses. 

Conclusions 

This chapter described preparatory work to explore the quality and high-level composition of the 

sequencing data, and mitigate against computational artefacts and contamination. 

This extensive work is necessary to reduce the chances of spurious associations with KD, prevent 

distortion of true signals, and increase statistical power. The lack of clear consensus and ready-made 

pipelines to achieve these goals meant much laborious and creative work was required. Using findings 

from the literature and my own published investigation, I have applied published tools to these data 

and generated some of my own solutions to recognised problems. 
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3 |  Metagenomics – identifying species associated with Kawasaki 
Disease 

Introduction 

Having analysed sequencing quality and developed a process to mitigate against sample and reference 

database contamination, the primary analyses could be undertaken. These comprise descriptive 

analysis of the microbiomes, with exploration of microbiome variation between KD and controls, and 

the search for species associated with KD. 

Objectives are: 

1. Summarise microbiome profiles of bacteria, community-level metrics and top-level 

associations with KD 

2. Search for statistically significant associations between KD and organism prevalence and 

abundance across taxonomic levels within bacteria 

Methods 

Top-level analyses 

Highly abundant non-contaminant bacterial species were summarised across samples and described. 

Organisms with the greatest absolute spread of relative abundances (5-95th percentiles) were 

described. Diversity and evenness metrics were calculated using the vegan package. 

Non-metric multidimensional scaling (MDS) and hierarchical clustering were used to visualise the 

overall similarity between KD and febrile samples. MDS is an approach to dimensionality reduction 

and is commonly applied in ecology and psychometrics (Groenen & van de Velden, 2004). Relationship 

with sequencing depth was investigated, to allow consideration of potential bias. Weighted UniFrac 

distances (Lozupone & Knight, 2005) based on logged relative abundances were used, with zero 

abundances replaced with half the species’ minimum. Only species with maximum relative abundance 

0.001 or greater were included. MDS was applied as implemented by vegan with two dimensions and 

500 maximum iterations. 

Analysis of covariance (ANCOVA) as implemented within the vegan package (Dixon, 2003) was used 

to test the significance of inter-group differences and estimate the proportion of variance explained 

by group and other covariates. 
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Search for bacteria associated with KD 

Sample-species relative abundance matrices were loaded into a TreeSummarizedExperiment object 

in R, along with the relevant taxonomy. Non-species nodes’ relative abundances were calculated as a 

sum of the child species. Zero counts were replaced with half the taxonomic units’ minimum. 

The standard modelling approach of MaAsLin 2 (Mallick et al., 2021) was re-implemented and applied 

across all nodes of the taxonomy with maximum abundance 0.1% or greater and present in 10% or 

more samples. This comprised a fixed-effects generalised linear model with outcome of logarithm of 

relative abundance, and group and other clinical features as covariates. Two sensitivity analyses were 

undertaken, either adding log(bacterial proportion) to the model, or excluding samples with greater 

than 10% contamination. These complementary approaches sought to mitigate against spurious signal 

from unidentified contaminants. 

A separate dichotomised analysis was undertaken, with dynamic thresholding of OTUs. For each 

feature, potential thresholds were considered at any nadirs in the density curve (against log[RA]) and 

the 75th percentile. Any threshold which gave a positive proportion between 12.5 and 50% was 

considered as acceptable. The nadir threshold with positive proportion closest to 25% was selected. 

If no nadir thresholds were acceptable, then the 75th percentile was used. For each feature a binomial 

family generalised linear model was fitted modelling presence as a function of the same covariates as 

above, and using the same sensitivity analyses. 

In both cases, treeclimbR was applied to p values for each predictor to select the taxonomic level at 

which to report values from each lineage, and apply false-discovery rate (FDR) control, presented as 

Q values. Sensitivity analyses underwent independent processing by treeclimbR, though Q values were 

also reported for each node selected by the primary analyses. 

Associations with age were analysed separately, and models adjusted where non-linear relationships 

were encountered. The relative contributions of predictors to explaining variance was explored with 

the relaimpo package (Groemping & Matthias, 2021). 

Additional analyses were undertaken with dichotomous data on antibiotic exposure for children 

recruited at UCSD. 

Results 

Bacterial microbiome 

Non-contaminant Bracken species counts were used to describe the microbiome. 
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19 555 bacterial species from 5 325 GTDB genera (5 274 when GTDB genus splits merged) were 

identified by one or more reads. Only 637 species ever had a relative abundance 0.1% or higher, and 

305 species exceed this in at least 10% of samples. 

The median Shannon diversity index is 4.5 (IQR 4.3-4.8) with a small but significantly greater diversity 

in the Febrile group (median 4.7 vs. 4.4, p<0.001, Wilcoxon test). Evenness (Shannon-Weaver, ignoring 

zeroes) was similar between groups (p=0.80, Wilcoxon test), with overall median 0.63 (IQR 0.57-0.70). 

Estimates by phylum show considerable agreement between this study and the shotgun metagenomic 

arm of the Human Microbiome Project (HMP; Huttenhower et al., 2012; Oliveira et al., 2018), though 

firmicutes have greater dominance and proteobacteria and fusobacteria demonstrate somewhat 

lower abundance (Table 5). There is considerable disagreement with the nasopharyngeal microbiome 

of children aged 18 months, where a much higher proportion of proteobacteria was found (Bogaert 

et al., 2011). 

Table 6 shows the most abundant genera by median relative abundance compared with HMP. 

Phylum This study Human Microbiome 

Project 

Nasopharyngeal 

microbiome 

Firmicutes 47 (35-59) 38 (21-62) 21 

Actinobacteria 17 (9-25) 14 (5-27) 3 

Bacteriodota 14 (7-23) 12 (3-20) 11 

Proteobacteria 10 (2-22) 18 (11-28) 67 

Fusobacteriota 2 (0.5-3) 3 (1-6) 1 

Table 5 Comparison of relative abundance (%; median, and where available, interquartile range) of five major phyla in this 
study, oral metagenomic samples of the Human Microbiome Project (Huttenhower et al., 2012; Oliveira et al., 2018) and 
nasopharyngeal samples from an amplicon approach (Bogaert et al, 2011). 
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Rarefaction analysis shows that the median number of species which account for at least 75% of 

bacterial reads is 55 (IQR 40-70; Figure 12). Top species by median relative abundance are shown in 

Table 7, with and without merging of species and genera split by GTDB. 

Genus Median relative abundance 

(RA%) 

Human Microbiome 

Project (RA%) 

Streptococcus 27 19 

Prevotella 8.8 3 

Veillonella 7.2 5 

Rothia 5.6 3 

Neisseria 3.8 5 

Pauljensenia 3.4 - 

Haemophilus 2.5 5 

Gemella 1.6 2 

Actinomyces 1.3 5 

Granulicatella 1.2 0.1 

Table 6 Relative abundance (RA) of most abundant genera in this study compared with oral metagenomic samples in the 
Human Microbiome Project (Huttenhower et al., 2012; Oliveira et al., 2018). 

Species Median relative 

abundance (%) 

 Species Median relative 

abundance (%) 

Rothia mucilaginosa 1.4  Streptococcus mitis 6.4 

Prevotella melaninogenica 1.2  Rothia mucilaginosa 3.8 

Rothia sp001808955 1.0  Streptococcus 

pseudopneumoniae 

2.0 

Veillonella atypica 0.8  Prevotella melaninogenica 1.5 

Rothia mucilaginosa_B 0.7  Streptococcus 

parasanguinis 

1.3 

Streptococcus salivarius 0.6  Streptococcus oralis 1.1 

Rothia mucilaginosa_A 0.5  Rothia sp001808955 1.0 

Streptococcus 

sp001556435 

0.5  Streptococcus infantis 0.9 

Veillonella dispar_A 0.4  Haemophilus 

parainfluenzae 

0.9 

Prevotella histicola 0.4  Streptococcus 

pneumoniae 

0.8 

Table 7 Most abundant species by relative abundance. Left table shows original GTDB species and right table with split 
taxa merged. 
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Merging subdivided GTDB species reveals dominance by streptococcal species (Strep. mitis, 

pseudopneumoniae, parasanguis, oralis, pnuemoniae, infantis and pneumoniae), Rothia mucilaginosa, 

Prevotella melaninogenica and Haemophilus parainfluenzae. Indeed, at genus level, median relative 

abundance of Streptococcus is the highest at 27%, followed by Prevotella (9%), Veillonella (7%), Rothia 

(6%) and Neisseria (4%) (see Table 6, Chapter 3, p62). 

The species with the greatest spreads (5-95th percentile) comprise Streptococcus mitis and other 

species, Rothia mucilaginosa, Prevotella melaninogenica and histicola and Gemella haemolysans, 

ranging between 7 and 32 percentage points. 

MDS of weighted UniFrac distances (excluding species which never exceeded 0.1% relative 

abundance) revealed broad overlap between KD and Febrile samples (Figure 13 left). Two dimensions 

and 500 iterations were sufficient to allow convergence. KD and Febrile samples broadly overlap, and 

distance from the centroid appears to have no relationship with the bacterial proportion (Figure 13 

right). 

    

    

    

    

    

                

              

 
 
 
 
  
   

 
  
  
 
 
  
  
 
  
  
 
 
  
 
 
 
  
 
  
 
 
  
  
 
 
 

Figure 12 Rarefaction curves showing the cumulative proportion of relative abundance comprised by species from most 
abundant to least abundant. 
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Eight of the 11 samples exceeding the 95% percentile for distance from the centroid belonged to the 

KD group. Three had non-contaminant bacterial depth below 1 million reads. Reviewing the most 

abundant five species present in these 11 samples revealed samples dominated by known oral flora, 

except for one low-depth sample which was dominated by Pseudomonas helleri (first identified in raw 

cows’ milk) and Acinetobacter junii (which has been reported to cause infections in humans). 

Notably the two negative control samples cluster close to the centroid and are dominated by similar 

organisms to other samples. Their mean distance to the centroid of samples sharing indices is 42-44% 

of the mean distance for other samples. This is consistent with “index hopping” where free tag from 

control samples with minimal library DNA has been spliced with other samples’ DNA. 

The weighted UniFrac distance between the samples from the same febrile patient (10 days apart) 

was 40% of the mean pairwise distance. 

Sources of variation 

Univariable ANCOVA of weighted UniFrac distances showed KD to explain 2.7% of the variance in 

community structure (p=0.001). Multivariable ANCOVA incorporating country, sex, age and group did 

not materially alter this, but country, gender and age were also associated (respectively p=0.03, 0.007 

and 0.001; 1%, 1% and 5% of variance; R2=0.10). Within UCSD samples (n=199) prior antibiotic 

exposure explained 2.8% of variance (p=0.001), with R2 of 0.13 combining the clinical covariates. 

Neither predicted ancestry (as determined from human sequences by Evangelos Bellos, personal 

communication) nor season were significantly associated with microbiome (p=0.28 and 0.80 

respectively). 

     

    

    

             

    

 
 
 
 

     

       

  

                

               

       

       

       

     

     

     

     

                    

                    

 
  
  
 
 
 
  
  
 
  
 
 
  
 
  

Figure 13 Non-metric multidimensional scaling (MDS) plot (left) of weighted UniFrac distances between samples showing no 
clustering by disease group. On the right, each sample's distance from the MDS centroid is shown against the proportion of 
bacterial reads in the sample. 
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Adding the logarithm of bacterial DNA proportion to the model increased R2 to 0.12 and 3.5% of the 

variance was explained by this (p=0.001). Adding the logarithm of the ratio between contaminant and 

non-contaminant bacterial DNA increased R2 to 0.14, with this variable explaining 1.0% of the variance 

(p=0.046).  

Given the clear relationship between species-level microbiome and the bacterial DNA proportion, 

independent of sample group, it was considered relevant to incorporate these into sensitivity analyses 

of multivariable analyses of KD association. 

Pathogens 

Six bacterial respiratory tract pathogens were identified in the sequencing data across a range of 

abundance and prevalence values (Table 8). 

Agreement with clinical classifications of febrile control children as adenovirus or Streptococcus 

pyogenes infection was explored. Streptococcus pyogenes was present at relative abundance ≥ 0.1% 

in all seven patients with this clinical classification, 18/95 other febrile patients and 7/115 KD cases. 

Total mastadenovirus abundance (using non-human reads as denominator, since the virome is 

dominated by bacteriophage reads) meets or exceeds 0.1% in nine of eleven patients with a positive 

RT-PCR reported, 17/91 without and 8/115 KD cases. 

Identification of organisms associated with KD 

Relative abundances of species were aggregated through ascending levels of the GTDB taxonomy, and 

the default statistical approach of MaAsLin 2 (Mallick et al., 2021) applied by operational taxonomic 

unit (OTU) with a generalised linear model measuring the association of group, age, country and sex. 

Species Present (one or more read) Median non-zero relative abundance 
(×10 000) (max, %) 

Febrile KD Febrile KD 

Streptococcus 
pneumoniae 

102/102 (100%) 113/115 (98.3%) 81.1 (43%) 72.5 (82%) 

Haemophilus 
influenzae 

100/102 (98%) 106/115 (92.2%) 3.84 (6%) 4.36 (7%) 

Neisseria 
meningitidis 

101/102 (99%) 108/115 (93.9%) 2.17 (5%) 2.74 (3%) 

Mycoplasmoides 
pneumoniae 

2/102 (2%) 1/115 (0.9%) 0.332 (<0.01%) 1.16 (0.01%) 

Streptococcus 
pyogenes 

97/102 (95.1%) 98/115 (85.2%) 0.230 (4%) 0.113 (0.03%) 

Legionella 
pneumophila 

2/102 (2%) 1/115 (0.9%) 0.006 (<0.01%) 0.001 (0.01%) 

Table 8 Presence and abundance of bacterial pathogens. 
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GTDB OTUs include conventional taxonomic levels (e.g. species and genus) as well as hierarchical 

groups of taxa between levels. Two sensitivity analyses were undertaken. The first added log(bacterial 

DNA proportion) as a parameter (similar to the Decontam model). The second excluded samples with 

greater than 10% contamination. 

OTUs which never exceeded 0.1% relative abundance or were present in fewer than 10% of samples 

were disregarded, but still contributed to abundances higher up the taxonomy. Zero abundances were 

replaced with half the taxon’s minimum. A dynamic thresholding approach was also taken, prioritising 

nadirs in the relative abundance distribution curves with between 12.5 and 50% of samples above this 

threshold.  

For each approach and predictor, the treeclimbR algorithm was applied to determine the specific level 

at which to report p values in every part of the taxonomy, and apply false-discovery rate control. For 

the primary analyses, corresponding sensitivity analysis p values were reported. However, sensitivity 

analysis p values were also aggregated independently by treeclimbR and presented separately. 

In the differential RA approach, positive associations with KD were found for 10 species (negative 

associations for 243) at a false-discovery rate of 0.2, and one at 0.05 (Table 9). No p values were 

reported from higher taxonomic levels. Coefficients correspond to the logarithm of relative 

abundance, thus a coefficient of 0.78 corresponds to a 6-fold increase in mean RA. 

Organism Coefficient 
(log10 
scale) 

Q value Median 
relative 
abundance 
(%) 

Q value 
sensitivity 1 

Q value 
sensitivity 
2 

Lautropia mirabilis 0.78 0.06 0.66 0.32 0.06 

Rothia dentocariosa 0.76 0.05 0.28 0.32 0.08 

Neisseria sp000090875 0.65 0.11 0.05 0.20 0.32 

Prevotella oris 0.62 0.06 0.21 0.24 0.14 

Abiotrophia defectiva 0.62 0.13 0.13 0.34 0.03 

Abiotrophia sp001815865 0.58 0.18 0.19 0.49 0.06 

Streptococcus 
sp000831085 

0.50 0.07 0.06 0.08 0.03 

Streptococcus 
pseudopneumoniae O 

0.49 0.11 0.55 0.42 0.04 

Streptococcus sanguinis G 0.47 0.15 0.03 0.23 0.21 

Streptococcus mitis AD 0.43 0.14 0.30 0.25 0.06 
Table 9 Species with relative abundance positively associated with KD in MaAsLin 2 generalised linear model (Mallick et al., 
2021) accounting for age, sex and country as additional covariates (FDR=0.2). TreeclimbR was applied to allow reporting of 
signal at higher taxonomic levels, though no aggregation occurred (Huang et al., 2021). Two sensitivity analyses are 
presented. The first includes an additional contaminant signal covariate of log10(bacterial proportion). The second excludes 
samples with greater than 10% of bacterial reads assigned to identified contaminants. Q values under 0.2 are underlined and 
those under 0.05 are emboldened. 
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With both sensitivity analyses, 5 positive associations with KD were reported at Q value threshold of 

0.2, with some aggregation of p values at higher taxonomic levels (Table 10). 

In the differential prevalence (dichotomous) approach (Table 11) 13 species or groups of species, 

genera or orders have positive associations with KD reported at a Q value threshold of 0.05 (22 

negative). In sensitivity analyses, Q values fell between 0.08 and 0.22. 

Analysis Organisms Coefficient Q value Median relative 
abundance (%) 

Sensitivity 1 Neisseria sp000090875 0.61 0.20 0.05 

Sensitivity 1 Streptococcus 
sp000831085 

0.54 0.08 0.06 

Sensitivity 1 Streptococcus oralis W 0.43 0.15 0.02 

Sensitivity 1 Streptococcus oralis AC 0.43 0.14 0.03 

Sensitivity 1 Albidiferax, Hylemonella, C04, 
Rhodoferax 

0.34 0.20 0.0006 

Sensitivity 2 Lautropia, UBA4615, 

UBA3064, SCN-69-89 
0.85 0.12 0.68 

Sensitivity 2 Abiotrophia, Dolosicoccus 

paucivorans, Aerococcus, 
Facklamia, Globicatella, 
Eremococcus coleocola, 
Ignavigranum ruoffiae, 
Facklamia A, Facklamia B 

0.82 0.08 0.33 

Sensitivity 2 Streptococcus 
pseudopneumoniae O, 
Streptococcus mitis BE 

0.57 0.11 0.89 

Sensitivity 2 Streptococcus oralis, 
Streptococcus oralis (AB, 
R, D, M, N, S), 
Streptococcus 
sp000831085, 
Streptococcus 
sp900546335 

0.46 0.12 0.54 

Sensitivity 2 Streptococcus oralis W 0.42 0.12 0.02 

Table 10 Species and groups of species with relative abundance positively associated with KD in MaAsLin 2 generalised linear 
model (Mallick et al., 2021) sensitivity analyses with TreeclimbR applied to allow reporting of signal at higher taxonomic 
levels (Huang et al., 2021) with FDR = 0.2. Species in italics fell below the 0.1% relative abundance threshold and were not 
tested individually. Both analyses accounted for age, sex and country as additional covariates. Sensitivity 1 includes an 
additional contaminant signal covariate of log10(bacterial proportion). Sensitivity 2 excludes samples with greater than 10% 
of bacterial reads assigned to identified contaminants. 
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With sensitivity analyses, six positive associations were reported when bacterial proportion was taken 

into account, and twelve when samples with 10% or more contamination were excluded (Table 12). 

Organisms Coefficient Q 
value 

Median 
relative 
abundance 
(%) 

Q value 
sensitivity 1 

Q value 
sensitivity 2 

Streptococcus mitis (AC, AD, 
AF, AG, AH, AI, AK, BE, BH, S), 
Streptococcus 
pseudopneumoniae (G, O), 
Streptococcus sp001650315, 
Streptococcus sp003627155 

1.4 0.02 3.2 0.08 0.12 

Abiotrophia, Dolosicoccus 
paucivorans, Aerococcus, Facklamia, 
Globicatella, Eremococcus coleocola, 
Ignavigranum ruoffiae, Facklamia A, 
Facklamia B 

1.3 0.02 0.33 0.09 0.10 

Lautropia, UBA4615, UBA3064, 

SCN-69-89 
1.2 0.03 0.68 0.09 0.13 

Cardiobacteriales, PS1, GCA-

002705445, UBA11654, SAR86 
1.2 0.03 0.023 0.12 0.23 

Streptococcus oralis BH 1.2 0.03 0.022 0.08 0.13 
Streptococcus oralis (H, L, V) 1.2 0.03 0.18 0.14 0.17 
Streptococcus oralis (E, F, Y) 1.2 0.03 0.099 0.14 0.17 
Streptococcus oralis W 1.1 0.04 0.016 0.09 0.16 
Streptococcus oralis Z 1.1 0.04 0.017 0.09 0.13 
Streptococcus oralis, 
Streptococcus oralis 
(AB, D, M, N, R, S) 
Streptococcus sp000831085, 
Streptococcus sp900546335 

1.1 0.04 0.54 0.14 0.14 

Streptococcus 
pseudopneumoniae J, 
Streptococcus sp002355895, 
Streptococcus mitis AZ, 
Streptococcus oralis O 

1.1 0.04 0.13 0.17 0.19 

Streptococcus oralis AC 1.0 0.04 0.031 0.14 0.22 
Neisseria sp001809325 1.0 0.04 0.11 0.13 0.20 

Table 11 Species with dynamically dichotomised relative abundance associated with KD in generalised linear model 
accounting for age, sex and country as additional covariates (FDR=0.05). TreeclimbR was applied to allow reporting of signal 
at higher taxonomic levels (Huang et al., 2021). Species in italics fell below the 0.1% relative abundance threshold and were 
not tested individually. Two sensitivity analyses are presented. The first includes an additional contaminant signal covariate 
of log10(bacterial proportion). The second excludes samples with greater than 10% of bacterial reads assigned to identified 
contaminants. Q values under 0.05 are emboldened. 
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Consistent results were found in favour of Lautropia mirabilis and Abiotrophia defectiva. The 

differences in relative abundance by group are shown in Table 13. The differences in means are greater 

than the medians, indicating a greater positive skew in the KD abundances.  

Analysis Organisms Taxonomic 
level 

Coefficient Q 
value 

Median relative 
abundance (%) 

Sensitivity 1 Streptococcus mitis BE Species 1.3 0.04 0.33 

Sensitivity 1 Streptococcus sp001650315 Species 1.3 0.04 0.20 

Sensitivity 1 Abiotrophia sp001815865 Species 1.3 0.05 0.19 

Sensitivity 1 Abiotrophia defectiva Species 1.2 0.05 0.13 

Sensitivity 1 Streptococcus mitis S Species 1.2 0.04 0.23 

Sensitivity 1 Lautropia mirabilis Species 1.2 0.05 0.66 

Sensitivity 2 Abiotrophia, Dolosicoccus 

paucivorans, Aerococcus, Facklamia, 
Globicatella, Eremococcus coleocola, 
Ignavigranum ruoffiae, Facklamia (A, 
B) 

Genus 1.6 0.012 0.33 

Sensitivity 2 Streptococcus mitis (AC, AD, 
AF, AG, AH, AI, AK, BE, BH, S), 
Streptococcus 
pseudopneumoniae (G O), 
Streptococcus sp001650315, 
Streptococcus sp003627155 

Species 1.5 0.013 3.2 

Sensitivity 2 Lautropia, UBA4615, UBA3064, 

SCN-69-89 
Genus 1.3 0.017 0.68 

Sensitivity 2 Streptococcus oralis (H, L, V) Species 1.3 0.032 0.18 

Sensitivity 2 Streptococcus oralis, 
Streptococcus oralis (AB D M 
N R S), Streptococcus 
sp000831085, Streptococcus 
sp900546335 

Species 1.3 0.026 0.54 

Sensitivity 2 Streptococcus oralis Z Species 1.2 0.032 0.017 

Sensitivity 2 Streptococcus 
pseudopneumoniae J, 
Streptococcus sp002355895, 
Streptococcus mitis AZ, 
Streptococcus oralis O 

Species 1.2 0.032 0.13 

Sensitivity 2 Streptococcus oralis BH Species 1.2 0.043 0.022 

Sensitivity 2 Streptococcus mitis BJ, 
Streptococcus oralis (C, E, F, 
T, W, Y), Streptococcus 
sp900550895, Streptococcus 
halitosis 

Species 1.1 0.046 0.26 

Sensitivity 2 Streptococcus sp900104285 Species 1.1 0.043 0.026 

Sensitivity 2 Neisseria sp001809325 Species 1.1 0.047 0.11 

Sensitivity 2 Streptococcus oralis AC Species 1.1 0.046 0.031 
Table 12 Species with dynamically dichotomised relative abundance positively associated with KD in generalised linear model 
sensitivity analyses. TreeclimbR was applied to allow reporting of signal at higher taxonomic levels, though no aggregation 
occurred (Huang et al., 2021). FDR = 0.05. Both analyses accounted for age, sex and country as additional covariates. 
Sensitivity 1 includes an additional contaminant signal covariate of log10(bacterial proportion). Sensitivity 2 excludes samples 
with greater than 10% of bacterial reads assigned to identified contaminants. 
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Antibiotic associations 

Antibiotic exposure was not included in the main model because of missing data for the UK KD patients 

(n=18). Antibiotic exposure was slightly more frequent in the KD group (54 vs 45%, see Table 1, page 

40). The differential RA analysis was rerun with only samples from UCSD (n=199) adding antibiotic 

exposure as a covariate. 

191 OTUs had negative associations with antibiotic exposure, and 3 positive (FDR=0.05). The positive 

associations comprised Lautropia mirabilis, Lautropia sp003892345 and Streptococcus sp001808705 

(coefficients=1.4, 0.99 and 0.55, Q values<0.001, 0.03 and 0.02 respectively). Abiotrophia 

sp001815865 had a weaker positive association with antibiotic usage (coefficient=0.59, Q value=0.12). 

Abiotrophia defectiva had less evidence of any positive association (coefficient=0.47, Q value=0.21). 

Neither association with Abiotrophia species had nominal significance (p=0.054 and 0.11 respectively). 

The genus Streptococcus possessed the largest number of organism groups with significant negative 

associations, with 72 of 179 tested (FDR 0.05). Eleven other genera with smaller numbers of organism 

groups tested had high rates of negative associations and accounted for most of the negative 

associations (Table 14). Aggregating these genera showed overall a modest reduction in mean RA from 

37 to 29%. 

Species/genus Mean Median 

KD Febrile KD Febrile 

Abiotrophia 
defectiva 

0.2% 0.05% 0.05% 0.03% 

Abiotrophia 0.5% 0.1% 0.1% 0.07% 

Lautropia mirabilis 1% 0.3% 0.2% 0.1% 

Lautropia 1% 0.3% 0.2% 0.1% 
Table 13 Mean and median relative abundances of Abiotrophia defectiva, Lautropia mirabilis and parent genera in disease 
groups. 
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Five positive associations with KD were found (FDR=0.2), reduced from 10 in the earlier model. The 

KD association with Lautropia mirabilis remained, though now reported at genus level and weaker (Q 

value 0.19, coefficient 0.68). Antibiotic exposure explained more variance than disease group (8.6 vs 

3.0%). The association with Abiotrophia defectiva was also reported at genus level and weakened (Q 

value 0.24, coefficient 0.57). For both organisms nominal significance remained (p=0.024 and 0.042 

respectively). Rothia dentocariosa, Prevotella oris and Streptococcus sp000831085 also remained at 

the FDR threshold. Parvimonas micra (grouped with Parvimonas sp000214475) arose as a new finding 

(coefficient 0.91, Q value 0.09). 

Age associations 

In the original differential RA analysis, 74 OTUs had significant associations with age (Q value ≤ 0.05) 

from species up to order level. The strongest positive associations were with a group of Prevotella 

species, the genus Alloscardovia, family Dialisteraceae, Lancefieldella rimae, Tannerellacaea and the 

genera Alloprevotella and Prevotellamassilia. To illustrate, the group of Prevotella species had a 

median relative abundance of 0.2% under 2 years of age, and 0.6% from age 2 to 9 and 1.7% in children 

10 years of age and older. 

The genera Abiotrophia and Lautropia also have positive associations with age (Q=0.04 for both). 

TreeclimbR aggregated the Parvimonas species’ positive association to the level of family 

(Helococcacaea; Q=0.01), though P. micra itself had a stronger positive signal (coefficient 0.27 vs. 

0.14). Median quantile regression shows RA of both A. defectiva and L. mirabilis rising exponentially 

from three months to around 18 months for both organisms (Figure 14). For A. defectiva, median RA 

Genus Number 
of 
species 
groups 
tested 

Number of 
species 
groups 
with 
negative 
coefficients 

Number of 
species groups 
with negative 
associations 
(FDR=0.05) 

Mean (Median) 
RA with no 
antibiotic 
exposure 

Mean (Median) 
RA with 
antibiotic 
exposure 

TM7x 8 8 (100%) 8 (100%) 0.6% (0.1%) 0.2% (0.02%) 

UMGS1907 3 3 (100%) 3 (100%) 0.2% (0.02%) 0.08% (0.01%) 

Actinomyces 17 17 (100%) 15 (88%) 2.9% (1.8%) 1.9% (0.8%) 

F0422 8 8 (100%) 6 (75%) 0.7% (0.09%) 0.3% (0.03%) 

Rothia 7 7 (100%) 6 (86%) 8.6% (6.0%) 6.6% (4.4%) 

Fusobacterium 14 14 (100%) 9 (64%) 1.5% (0.7%) 1.0% (0.4%) 

Leptotrichia 12 12 (100%) 7 (58%) 0.9% (0.3%) 0.6% (0.2%) 

Campylobacter 21 21 (100%) 10 (48%) 0.5% (0.3%) 0.4% (0.2%) 

Granulicatella 5 4 (80%) 1 (20%) 1.6% (1.3%) 1.5% (1.1%) 

Pauljensenia 22 22 (100%) 4 (18%) 7.0% (5.3%) 5.3% (3.0%) 

Prevotella 45 41 (91%) 5 (11%) 12% (10%) 11% (7.5%) 

Total 162 158 (97%) 74 (46%) 37% (38%) 29% (29%) 
Table 14 Genera with high prevalence or species groups having reduced relative abundance (RA) with antibiotic exposure. 
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below 1 year is 0.001% and from 1 year is 0.04%. For L. mirabilis, median RA below 1 year is 0.002% 

and from 1 year is 0.2%. For the Parvimonas species there is a slower exponential rise to age 5, with 

RA 0.0005% below 1 year, 0.003% from 1 year to below 5 years, and 0.02% age 5 and above. 

The associations with age, especially of A. defectiva and L. mirabilis, would not have been well-

modelled by a simple linear relationship, nor by any simple transformation. In the primary relative 

abundance model, transforming age to have a ceiling of 18 months increases the strength of 

association between KD and Lautropia mirabilis (unadjusted p value changed from 0.02 to 0.004 and 

coefficient from 0.78 to 0.83) and KD and Abiotrophia defectiva (unadjusted p value changed from 

0.04 to 0.02 and coefficient from 0.62 to 0.66). For the Parvimonas species, a ceiling of 5 years 

increases the strength of association with KD (unadjusted p value changes from 0.008 to 0.004 and 

coefficient from 0.91 to 0.96). In each case, age accounts for higher proportions of the variance (11% 

vs 3.5% for Parvimonas species, 23 vs. 1.9% for A. defectiva, and 27% vs 2.1% for L. mirabilis). 

The strongest negative associations were Streptococcus peroris, two other individual Streptococcal 

species, a Porphyromonas species and the F0422 genus (Veillonellacaea). To illustrate, median relative 

abundance of F0422 is 0.3% under 2 years of age, 0.04% from age 2 to 9 and 0.03% in children 10 years 

of age and older. 

                                

                   

                     

                     

     

     

     

     

     

     

     

     

     

   

 
 
  
   
 
  
 
 
 
 
 
 
 
 

     

       

  

Figure 14 Relative abundance versus age of three organisms positively associated with Kawasaki Disease and age. Overlaid 
lines indidate 25th, 50th and 75th percentiles by quantile regression (smoothed spline). 
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Covariance of KD-associated taxa 

A. defectiva and L. mirabilis RAs were correlated (R2=34%), and most of this correlation persisted when 

the associations with age were taken into account (R2 of residuals=0.20).  The Parvimonas species’ 

total RA was less strongly correlated with A. defectiva and L. mirabilis, and this was lost when age was 

taken into account (R2=0.07 and 0.10, R2 of residuals=0.01 and 0.03). 

Using the residuals of RAs to predict KD in a logistic generalised linear model, all three were significant 

individually (p=0.006, 0.008, 0.02 for A. defectiva, L. mirabilis and Parvimonas species respectively). In 

a multivariable model all three lost significance. 

Scaled principal component analysis of species and groups with associations with KD showed strong 

covariation with 43% of variance explained by the first principal component (data not shown).  

Discussion 

In this chapter, I have described the metagenomic data by species and genus composition, analysed 

overall variation with clinical covariates and sought species and higher-level taxonomic units 

associated with KD. The previous chapter illustrated the wide variation in samples by phylum, and 

here I show that species abundances vary by up to 32 percentage points (5-95th percentile). 

Comparisons with existing knowledge of the pharyngeal microbiome 

The top genera by median relative abundance comprise typical oral flora. Direct comparison with data 

from oral samples in the shotgun metagenomic arm of the HMP (Huttenhower et al., 2012) using 

MicrobiomeDB (Oliveira et al., 2018) revealed similarity, though it should be noted that these were 

adult oral samples, including throat, dental, tongue and palate samples. 

The majority of paediatric pharyngeal microbiome studies use amplicon sequencing-based 

approaches. These cannot be used for direct comparison with our shotgun metagenomic approach, 

since genome size and 16S operon count weight the read counts in each approach. Despite much 

effort, current approaches to normalise 16S counts for copy number have not proven effective (Starke, 

Pylro & Morais, 2021). 

Comparison with a study of the nasopharyngeal microbiome of healthy 18-month old children showed 

great differences, with a clear dominance of Proteobacteria instead of Firmicutes. Mean 16S operon 

copy number is higher in Firmicutes (6.8 vs 5.4) and the mean genome size is smaller (3.3 vs 4.6 million) 

(Stoddard et al., 2015; Westoby et al., 2021). Both of these differences would be expected to lead to 

16S-based studies to estimate higher abundances for Firmicutes and lower for Proteobacteria.  
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Man et al. (2019) studied children up to 6 months of age and show that the nasopharyngeal and oral 

(buccal and sublingual) microbiomes are distinct from a week of age and that the oral microbiome is 

more stable over time. They show that the oral microbiome is consistently dominated by Firmicutes. 

In contrast, the nasopharyngeal dominance of firmicutes rapidly wanes by two months, with 

proteobacteria supplanting. 

A search of the European Bioinformatics Institute’s MGnify database provides only one study allocated 

to the pharyngeal biome – a 16S amplicon study of children with Cystic Fibrosis. 133 studies are 

allocated to the mouth biome – searching for “throat” and “pharynx” adds only one set of assemblies 

including throat samples among a wider range of oral samples. A PubMed search1 identifies only one 

published shotgun metagenomic study of the paediatric oropharynx, but this included only neonates. 

Although relative abundances cannot easily be compared directly between shotgun metagenomic and 

amplicon studies, differences in relative abundances should remain comparable. However, in regards 

of the changes shown with age, few studies provide comparative data. Mortensen et al. (2016) studied 

the establishment of the hypopharyngeal microbiome of infants using 16S amplicon sequencing at 

one week, one month and three months. However, with only one patient in our study under 3 months 

of age, this is of limited relevance. Streptococcacaea increased in relative abundance from 17 to 

around 30% by a month and Moraxellacaea rose from 9 to 24% by 3 months, while Staphylococcacaea 

fell from 49 to 10%. 

Clustering and covariation 

No clustering was evident by disease group, nor within the febrile group, and only a small portion of 

the variation could be explained by clinical covariates (R2=10% rising to 13% including antibiotic 

exposure). 

This is an interesting finding given the clear clustering of infant hypopharyngeal microbiomes 

(Mortensen et al., 2016). Nonetheless the nasopharyngeal microbiome did not demonstrate such clear 

clustering in children with Respiratory Syncytial Virus illness, though there were clear associations with 

disease severity (de Steenhuijsen Piters et al., 2016). 

Associations with KD 

Multiple approaches were considered for identifying organisms associated with KD. It would be most 

ideal to have unequivocal dichotomous results for presence or absence of organisms. However, the 

                                                             
1 ((child* OR paediatr* OR pediatr*) AND (throat OR oropharyn* OR pharyn*) AND shotgun AND metagenom*) 
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nature of metagenomic sequencing and read binning gives rise to potential false classifications of 

reads due to genetic relatedness of organisms and errors in sequencing and databases. 

A conventional differential relative-abundance approach was applied, as this would detect signal from 

both differential abundance and prevalence, with noisy read classification. The modelling approach 

selected is the default implemented by MaAsLin 2, since it performed best in benchmarking 

approaches (Mallick et al., 2021) in spite of not accounting for the compositional nature of the data 

(Gloor et al., 2017). 

A dichotomous approach was also implemented, recognising that a static threshold (e.g. “non-zero 

relative abundance”) would not be expected to perform well. For example, of 637 species which ever 

exceed 0.1% relative abundance, only 150 are undetected in 25% or more samples. Potential 

thresholds considered for each species included zero, the 75th percentile (fixing the proportion 

positive at 25%) and any troughs in the relative abundance distribution. These latter distributional 

measures were prioritised, though only 33 of 536 nodes reported in the primary analysis utilised these 

thresholds. 

Many microbiome and metagenomic studies are limited by selecting a single taxonomic level at which 

to undertake differential analyses. When multiple levels are analysed, methods to control false 

discovery rates have been limited, and it is unclear how to select which results to report. TreeclimbR 

is a novel approach to select levels of the taxonomic hierarchy to report in a data-dependent manner. 

Applying it here increases the potential to detect associations with KD, regardless of the breadth or 

narrowness of organisms involved. 

Positive associations with KD were found in both approaches, though the stronger associations were 

found in the dichotomous approach (lowest Q value 0.02 vs 0.05). Abiotrophia defectiva (or genus) 

was identified in both the continuous and dichotomous approaches (Q=0.13 and 0.02 respectively), 

the coefficients indicating a four-fold increase in mean relative abundance, or 3.7-fold increase in odds 

of relative abundance over the 75th percentile. The four-fold difference is evident in the crude 

estimates of mean relative abundance by group for both Abiotrophia and Abiotrophia defectiva. 

Abiotrophia was identified by relative abundance in the independent sensitivity analysis excluding 

samples with ≥ 10% contamination (Q=0.08) with an increased co-efficient. However, in the sensitivity 

analysis adding bacterial proportion to the model, its significance diminished, though coefficient 

remained positive (Q=0.34, coefficient=0.45). It should be considered that this analysis is intended to 

account for organisms whose association with KD may be spuriously mediated by contamination, 
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through a shared relationship with sample bacterial proportion. Abiotrophia defectiva convincingly 

does not have an inverse association with bacterial proportion in the Decontam model (p=0.90). 

In the sensitivity analyses for the dichotomous approach, Abiotrophia defective (or genus) retains its 

positive association both when bacterial proportion is included in the model or samples with 10% or 

more contamination are included (Q=0.05 and 0.08). 

Abiotrophia defectiva is a known cause of infectious endocarditis and has been shown to adhere to 

vascular endothelium (Senn, Entenza & Prod’hom, 2006; Sasaki et al., 2020). More recently it has been 

shown that the protein DnaK assists in endothelial adhesion and is pro-inflammatory (Sasaki et al., 

2021). One case of the inflammatory disorder haemophaghocytic lymphohistiocytosis has been 

associated with A. defectiva endocarditis (Kiernan et al., 2008). Abiotrophia is identified at very low 

abundance in infants from one week to three months (average relative abundance 0.002% compared 

to 0.1% in this study) (Mortensen et al., 2016). 

Lautropia mirabilis (or genus) also demonstrated a positive association with KD (Q=0.06 and 0.03 in 

continuous and dichotomous approaches respectively), with coefficients corresponding to a six-fold 

increase in mean relative abundance or three-fold increase in probability of exceeding the 75th 

percentile. The crude estimates of mean relative abundance by group however showed only a three-

fold difference. 

The association with relative abundance was similarly maintained when excluding samples with high 

contamination (Q=0.06) and though reduced when adding bacterial proportion to the model (Q=0.32, 

coefficient=0.49), Lautropia mirabilis was again an unlikely contaminant (p=0.89). Its dichotomous 

association was maintained when bacterial proportion was added to the model or high-contaminant 

samples excluded (Q=0.09 and 0.13 respectively). 

Lautropia mirabilis has no known disease associations, but its isolation from the oral cavity was noted 

to be strongly associated with human immunodeficiency virus (HIV) infection in children born to HIV-

infected mothers in the USA (Rossmann et al., 1998). It is not identified in the study of infants up to 

three months (Mortensen et al., 2016). 

The non-linear relationship of both of these organisms with age – with median relative abundance 

plateauing at 18 months – suggests that abundance of these organisms may relate to primary 

dentition. It is notable that the strength of the association with KD only increases when the 

relationship with age is better modelled. 

That KD may be caused by exposure to ubiquitous micro-organisms in genetically susceptible hosts is 

a well-established hypothesis (Rowley & Shulman, 2018). The age-related incidence of KD could then 
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relate to both age at first exposure, and an immunological window of susceptibility, whether related 

to temporal development of the immune system, immune training or cross-reactive adaptive immune 

responses. Recent evidence through the pandemic adds credence to immunological windows of 

susceptibility and these results will be considered in context in the final discussion (p142). 

Antibiotic associations 

The analysis of associations with antibiotic exposure provides biologically plausible evidence of broad 

reductions in RA across a range of taxa, with some genera being particularly impacted. Although the 

fold decreases for some organism groups is very large, the aggregate effect is modest – this fits with 

the small proportion of microbiome variance explained by antibiotic exposure. 

It is interesting to see three species with moderate signals of increased RA in association with 

antibiotic exposure – with coefficients corresponding to increases in mean RA of 73 to 322%. The 

strongest signal was from Lautropia mirabilis, which is intriguing since two studies show susceptibility 

to penicillin, ampicillin, erythromycin and gentamicin (Gerner-Smidt et al., 1997; Dekhil et al., 1997). 

Positive causal associations with antimicrobial exposure would give rise to potential confounding 

given the more frequent exposure to antibiotics in the KD group, and negative associations could mask 

true associations. Reassuringly, the positive KD associations are not abrogated by the inclusion of this 

covariate, and nominal significance is maintained. One new potential association is found with the 

dental organism Parvimonas micra. 

Cohort 

The majority of patients providing samples were from the USA, and all febrile controls. The AHA 

criteria were followed for both US and UK recruitment. Clinical characteristics of US and UK KD 

patients are similar, though ethnic compositions differ (Table 1, p40). Reassuringly, country explained 

only 1% of the variance in microbiome composition, less than age, disease status or antibiotic 

exposure. This supports the inclusion of UK patients, though it would have been ideal to also include 

UK febrile controls. Geographical diversity has some potential to impede the identification of causative 

agents if they differ between regions, since statistical associations may be weaker when shared across 

more agents. 

Negative associations with KD 

Far more species had negative associations with KD, with 166 species at an FDR of 0.05 (data not 

shown). The most significant associations included Streptococcus, Roseburia, Pauljensenia, Veillonella 

and Lachnoaerobaculum species. Of greatest clinical relevance is Streptococcus pyogenes (coef=-2.0, 
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q=0.001), which was already noted to have greater abundance in febrile patients, and likely represents 

the contribution of this organism to a proportion of non-KD febrile presentations. 

Conclusions 

In this chapter I present extensive exploration of the oropharyngeal microbiome in our children with 

KD and other febrile illnesses, and a range of approaches to identify organisms associated with KD, 

whether through increased prevalence or abundance. 

No signal is identified from an organism which is low prevalence in febrile controls and higher 

prevalence in children with KD. This would have been represented by significant results from 

organisms dynamically thresholded at zero, or at a distributional trough representing a boundary 

between low-level false positive identifications, and true identifications. Indeed the minimum 

unadjusted p values from 33 trough-thresholded organisms is 0.88, and from 61 zero-thresholded 

organisms is 0.11. 

The signals identified for Abiotrophia defectiva and Lautropia mirabilis are driven by differential 

abundance of these highly prevalent organisms, independent of the strong non-linear association with 

age. The pathological relevance of these differences requires further exploration. 

Epidemiologically an organism which is almost universally prevalent after 3 months and acquired early 

in life seems unlikely to be causatively associated with KD. However, abrupt and dramatic changes in 

abundance relating to primary dentition could be hypothesised as a trigger of the immune system. 

Alternatively, the abundance signal could relate to acquisition of distinct strains of these organisms 

which harbour genes driving virulence. 

In the next chapter I present pangenome and strain analyses of these two organisms to elucidate 

subspecies differences. I also produce de novo assemblies and metagenome assembled genomes from 

samples, in order to more broadly characterise subspecies differences across organisms. 
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4 |  Metagenomics – identifying genes and strains associated with 
Kawasaki Disease 

Introduction 

The former chapter presented analyses focusing on identifying organisms associated with KD at the 

level of species and above. A key advantage of the metagenomic approach here, as compared with 

amplicon-based approaches, is the ability to look at higher specificity, including strains and accessory 

genes. 

In this chapter I apply off-the-shelf tools to search for strain and pangenome differences in candidate 

organisms between KD patients and controls. I also present a bespoke approach to look for bacterial 

genes over-represented in KD patients. 

While KD might be caused by a novel bacterial species, there are a number of examples of diseases 

where a common species or strain, acquires or evolves a single gene or group of genes which drive 

specific diseases. Examples of this include Diarrhoea-associated Haemolytic Uraemic Syndrome, which 

is now known to be caused by E. coli possessing a verotoxin gene (Karmali et al., 1983). Another 

example is the staphylococcal Toxic Shock Syndrome, caused by S. aureus possessing superantigen 

toxin genes in non-immune individuals (Kulhankova, King & Salgado-Pabón, 2014).  

 In this Chapter I attempted to explore the metagenomic data to identify a novel gene or toxin that 

might be enriched in KD vs febrile controls. 

Objectives are: 

1. Search for statistically significant associations between strain profiles and pangenomes of 

Lautropia mirabilis and Abiotrophia defectiva 

2. Identify clusters of highly homologous bacterial genes from assembled sequence data and 

search for associations between KD and gene prevalence using unique kmers 

Methods 

Assembly and binning of unaligned reads 

Unaligned reads generated following human genome alignment were assembled de novo using 

MEGAHIT (Li et al., 2015) and the meta-large preset, which is optimised for large metagenomes. Each 

sample’s reads were aligned to the corresponding contigs. MetaBAT 2 (Kang et al., 2019) was run per 

sample with default settings to bin contigs into metagenome assembled genomes (MAGs) according 

to tetranucleotide frequencies and coverage. 
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MAG quality was assessed with CheckM (Parks et al., 2015). Completeness of ≥90% and contamination 

of <5% were considered to represent high quality MAGs and ≥50% and <10% to represent medium 

quality. 

Taxonomic identification of contigs and MAGs 

MAGs were identified using sourmash (Pierce et al., 2019), which is a k-mer hash-based indexing and 

serarching tool. Sourmash was run in lowest common ancestor mode, using pre-built database of 31-

mers for GTDB release 202 (release 95 unavailable). 

Contigs were mostly too short for identification by sourmash, and were instead identified by Kraken 

against the custom database, with confidence threshold 0.05. 

Contigs and MAG taxonomic identifications were cross-referenced with potential contaminants. 

Generation of species-specific pangenomes 

MAGs identified by sourmash corresponding to Lautropia mirabilis and Abiotrophia defectiva (or 

identified at genus level) and of at least medium quality were identified. Reference genomes for the 

species were also obtained from NCBI. The PanPhlAn genome exporter was used to predict, identify 

and cluster genes to form the pangenome for each species. 

PanPhlAn analyses 

Non-human reads from each sample were analysed with PanPhlAn 3 (Beghini et al., 2021) against each 

pangenome, and profiled in sensitive mode (min_coverage 1, left_max 1.70, right_min 0.30, 

th_non_present 0.25, th_present 0.5) according to the author’s advice (Dubois L, personal 

communication). 

Gene presence-absence matrices were analysed by Principal Components Analysis (PCA). Genes with 

differential prevalence between KD and Febrile patients were sought by Fisher’s exact test, and by 

Firth logistic regression, accounting for total gene count. 

A permutation-based approach was used to detect significant contiguous gene sets with concordant 

signal. Sample labels were permuted 500 times. Across each permutation, and the original labelling, 

clusters of contiguous genes with nominally significant p values and similar direction of effect were 

identified. Cluster mass was defined as the sum of -log10(p) values. The 95th percentile of maximum 

cluster mass was defined as the threshold for reporting significant clusters. 

StrainPhlAn analysis 

Non-human reads from each sample were analysed with MetaPhlAn 3 (Beghini et al., 2021) to produce 

bowtie2 alignment files against the marker gene database. Consensus reference sequences were 
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extracted, and alignments generated for Lautropia mirabilis and Abiotrophia defectiva. Distance 

matrices were created using distmat from the EMBOSS package with Kimura scoring (Rice, Longden & 

Bleasby, 2000). Distances were subject to principal co-ordinates analysis (PCoA). 

Global gene prediction 

Prodigal was applied to unbinned contigs to predict genes and write their corresponding nucleotide 

sequences. Bedtools was used to write nucleotide sequences for predicted genes from MAGs, 

according to genome feature files produced by CheckM above, also using Prodigal. 

Predicted gene clustering and unique kmer generation 

All predicted genes were clustered with mmseqs2 (Steinegger & Söding, 2017) to 95% identity using 

cluster mode 2, minimum coverage of 80%, coverage mode 1 and cluster reassignment. 

Unique 32-mers were identified from cluster representative genes using Jellyfish. Overlapping 32-

mers were filtered by aligning them against the source sequences to 100% identity (minimum score 

zero) with bowtie 2 and filtering any aligned 32-mers <33 nucleotides 3′ from a previous alignment. A 

maximum of two alignments were allowed, to confirm uniqueness. 32-mers were written into a tab 

separated values (TSV) file with one column for the 32-mer and one for the source sequence. A 

numbered 32-mer fasta file was also generated. 

Representative gene detection 

Jellyfish was applied to count the shortlist of unique kmers per sample, and the resulting Javascript 

Object Notation file converted to tab separated values. Further bash scripts appended the 

corresponding representative genes and summarised 32-mer counts per representative gene. Each 

sample’s file was read into R separately and combined into a matrix of 32-mer detection counts by 

sample and representative gene, dichotomised to presence or absence. 

Since the odds of detection of low abundance sequences will vary linearly with sequencing depth, 

logistic regression by gene was applied with presence as the outcome and covariates comprising group 

(KD or Febrile) and the logarithm of the number of genes detected. Benjamini-Hochberg FDR-control 

was applied. Model-fitting was accelerated across multiple cores with the parallel package. 

Results 

Assembly of unaligned reads 

Unaligned reads were assembled on a sample-wise basis with MEGAHIT. For contigs over 2500 bp, the 

median N50 (contig size threshold above which 50% of bases in the assembly reside) was 13 150 (IQR 

9 767-18 292) and assembled length 66 million (IQR 25-111 million) bp. Median N50 was 12 832 and 
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13 476 in Febrile and KD groups respectively (p=0.30 by Wilcoxon test) and assembly length 90 million 

and 44 million (p<0.001). 

A median of 64% of each sample’s reads were aligned to corresponding assemblies (IQR 37-77%, range 

3-91%) – 69% in the febrile group and 61% in KD (p=0.02 by Wilcoxon test). 

Binning of contigs 

Contigs from each sample were binned with metaBAT 2 with default settings. 12 870 metagenome 

assembled genomes (MAGs) were generated of any quality. By checkm, 2 825 were of at least medium 

quality (completeness ≥ 50% and contamination < 10%) and 604 of high quality (completeness ≥ 90% 

and contamination < 5%). 

Taxonomic identification of contigs and MAGs 

Contigs over 2500 bp numbered 2.1 million. Kraken gave a taxonomic label to 92% of these. Of 

identified contigs, 97% were bacterial, 3% human, 0.1% fungal and an even smaller proportion viral or 

archaeal. The most numerous bacterial contigs by genus were Streptococcus, Prevotella, Pauljensenia 

and Veillonella, together comprising 47% of bacterial contigs. 

Where human contigs were binned, these primarily made purely human MAGs (n=134). Only 22 MAGs 

mixed human and bacterial contigs. 

MAGs were identified by sourmash in lowest common ancestor mode, with 82% receiving an identity. 

Of these, 66% were identified at species level and 31% at genus level. The most numerous MAGs by 

genus were Prevotella, Streptococcus, Pauljensenia and Rothia, comprising 46% of MAGs. 

Contaminants 

Previously identified contaminant species, and genera with over 50% of mean relative abundance 

contributed by contaminants were identified. Contigs were identified as potential contaminants, and 

MAGs containing potential contaminant contigs, or identified by sourmash as potential contaminants. 

Only 0.4% of contigs and 2.6% of MAGs were identified as potential contaminants. 

Generation of species-specific pangenomes 

Abiotrophia defectiva and Lautropia mirabilis MAGs of at least medium quality were identified by 

sourmash taxonomic labelling. Genus-level matches were also included. 

Seventeen Abiotrophia defectiva and Abiotrophia MAGs were identified, of which 26% of contigs were 

classified as Abiotrophia defectiva, 73% as Abiotrophia sp001815865 and the remainder at higher 

levels or unclassified. A. sp001815865 is a closely-related species – distance 0.008. Two A. defectiva 
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reference genomes (GCF_000160075.2 and GCF_013267415.1) and one of the closely-related GTDB 

species (GCF_001815865.1) were added. 

Fifty-four Lautropia mirabilis and Lautropia MAGs were identified, of which 99% of contigs were 

classified as Lautropia mirabilis, the remainder as a moderately-closely related species (distance 0.09), 

higher-level taxonomic labels or unclassified. Two L. mirabilis reference genomes (GCF_000186425.1 

and GCF_900637555.1) were added.  

PanPhlAn pangenomes were generated for both genome collections. The A. defectiva pangenome 

comprised 3 390 clusters of orthologous genes (COGs), of which 1 823 were present within any of the 

three genome references and 1 302 were unknown COGs. The two A. defectiva reference genomes 

were highly similar with only one COG distinct to each genome. The close relative was missing 291 

COGs and provided no additional COGs. Of 285 known COGs not derived from the reference genomes, 

12 derived from strains of A. defectiva and 232 from A. sp. HMSC24B09. The largest proportion of the 

remainder derived from Streptococcus sp.  

The L. mirabilis pangenome comprised 11 765 COGs, of which 2 500 were present within the two 

genome references. All COGs were shared between the two references. Of 205 known COGs not 

derived from the reference genomes, 66 derived from strain ATCC 51599 of L. mirabilis, 16 from L. 

mirabilis and 51 from L. dentalis. 

Pangenome comparisons 

In order to identify whether the gene content of A. defectiva and L. mirabilis differs between KD and 

febrile children, PanPhlAn 3 was run with non-human reads from each sample. PanPhlAn identifies 

COGs as present or absent within a sample, based on coverage. For both species, 64 KD and 65 febrile 

patients gave results. 

For A. defectiva, a median of 1 339 of 1 823 (maximum 1 571) reference genome COGs could be 

detected per sample. Detection rates clearly varied between reference genome COGs, with some 

detected in all samples and some in no samples (median 84%). Ninety-one percent of MAG COGs could 

be identified by PanPhlAn in the sample reads, with similar numbers of additional COGs detected 

which had not been assembled or binned together. No difference was observed between KD and 

Febrile patients by PCA (11% of variance explained by first two components). 

For L. mirabilis, a median of 1 933 of 2 500 (maximum 2 077) reference genome COGs could be 

detected per sample. Detection rates again varied widely between reference genome COGs (median 

93%). Eight-four percent of MAG COGs could be identified by PanPhlAn in the sample reads. No 
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difference was observed between KD and Febrile patients by PCA (9% of variance explained by first 

two components). 

For both species, the number of COGs detected varied between samples (L. mirabilis 1 870 to 2 611; 

A. defectiva 1001 to 1 829). It is notable how close the maximum is in each case to the number of 

reference genes. More COGs were detected in KD patients than febrile patients (median 1602 vs 1494 

for A. defectiva and 2 447 vs. 2 377 for L. mirabilis). 

COGs significantly over-represented in KD were sought by Fisher’s exact test with KD numerators 

divided by the ratio of median COG counts by group, to account for depth effects. Only COGs which 

were detected 10 or more times were included. For A. defectiva, no over-represented COGs were 

found at FDR 0.2. Eight COGs were under-represented. Four of these were known COGs: an 

uncharacterised protein from strain ATCC 49176, ltrA from Streptococcus cristatus ATCC 51100, mco 

from Oribacterium sp. oral taxon 108 str. F0425 and cadC from Kurthia sp. 11kri321. Three of these 

COGs were also identified by Firth logistic regression with adjustment for the logarithm of core gene 

count. 

For L. mirabilis, no over- or under-represented COGs were found by Fisher’s exact test at an FDR of 

0.2. 

Since accessory gene differences within a species are often driven by loss or acquisition of regions of 

DNA, signals from genes may be better resolved across the series of genes within genomes. Thus 

permutation testing was used to identify the presence of significant clusters of genes with differential 

prevalence between KD and febrile patients. For L. mirabilis no significant gene clusters were 

identified at p=0.05, and for A. defectiva the only significant result was the single most under-

represented COG (above). 

Strain-level comparisons 

For A. defectiva, 28 febrile and 35 KD patients could be analysed, with minimum sample marker 

threshold reduced to 15 and marker prevalence threshold reduced to 60%. Samples were a median of 

8.1 (IQR 5.9-10.9) units apart, and 9.9 (IQR 8.2-11.9) units from the nearest reference genome. PCA 

explained 67% of the variance and no relationship with sample group was apparent. 

For L. mirabilis, 55 febrile and 53 KD patients could be analysed, with one patient sampled twice, using 

default settings. Samples were a median of 5.2 (IQR 4.0 to 6.4) units apart and 7.0 (IQR 5.6-8.2) units 

from the reference genomes. The paired samples were very close (0.07). PCoA explained 22% of the 

variance and no relationship with sample group was apparent (PERMANOVA p=0.97 A. defectiva, 
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p=0.21 L. mirabilis; Figure 15). In neither case did samples from the UK cluster distinctly to the USA 

(data not shown), although for L. mirabilis PERMANOVA was significant at p=0.03 (p=0.25 for A. 

defectiva). 

Gene prediction and clustering 

Combining genes predicted for MAGs as part of the checkm pipeline and genes predicted from 

unbinned contigs, almost 17.4 million individual genes were available. Just over 2.3 million clusters 

were generated at 95% sequence identity and 80% coverage, with the longest sequence used as 

representative. Clusters ranged in size from one to 901 sequences, with median 2 and 27% of clusters 

with 5 or more sequences. 

Unique 32-mers were reduced from 1.2 billion to 7.3 million when overlapping sequences were 

removed. Only 3% of cluster representatives did not have a unique 32-mer. 

Clusters were cross-referenced with kraken taxonomic labels of contigs. Only 73 clusters mixed human 

and non-human sequences, and 144 511 clusters comprised human sequences alone. Cross-

referencing contaminant classifications, 59 652 clusters had 90% or more sequences classified as 

contaminants. Over 2.1 million clusters remained for further analysis. 

Representative gene detection 

Jellyfish (Marçais & Kingsford, 2011) was used to count the specific 32-mers in each sample, which 

were then summed per representative gene as a proxy for gene presence. Exclusively human clusters 

were removed from further analyses. 

Fifty-six percent of representative genes could be detected at least once, and 43% of representative 

genes in 10 or more samples. Representative genes could be detected in their corresponding samples 

55% of the time among a random sample of 10 000 representatives. 

                               

 
 
 
 
  
  
 
  

  
 
  
 
 
 
 
  
 
 
  
  
 
  

     

       

  

         

                               

 
 
 
 
  
  
 
  

  
 
  
 
 
 
 
  
 
 
  
  
 
  

     

       

  

         

Figure 15 Principal component analysis of Abiotrophia defectiva and Lautropia mirabilis (left and right, respectively). 
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A mean of 232 684 representative genes were detected per sample, 284 943 in febrile samples and 

190 027 in KD samples. This difference represents the greater bacterial sequencing depth in febrile 

samples, and potentially the slightly greater diversity. 

Representative genes with differential prevalence 

In a Firth logistic regression model with the logarithm of number of genes detected, to account for 

varying diversity and sequencing depth, no representative genes were significantly over-represented 

in KD patients at FDR 0.2, and only two genes over-represented in febrile patients. 

One of these representative genes was from a singleton cluster, and a contig identified as deriving 

from Catonella morbi (37/102 Febrile vs 7/115 KD; q=0.16). Another was from a cluster of 16 genes, 

with each source contig identified as deriving from Moraxella catarrhalis (31/102 febrile vs 2/115 KD; 

q=0.002); the representative gene shares 99% homology with the MscS mechanosensitive ion channel 

family gene of M. catarrhalis. Catonella morbi relative abundance has a significant crude association 

with febrile patients (coef=1.1, p=0.004) though reduced once age, gender and country are considered 

(coef=-0.77, p=0.04). Moraxella catarrhalis relative abundance has very little association with febrile 

patients (coef=0.28, p=0.58). 

Discussion 

The former two chapters focused on taxonomic composition of samples at species-level and above, 

for the purpose of descriptive analysis, contaminant identification and identification of species with 

differential abundance and prevalence in KD. 

L. mirabilis and A. defectiva have significantly higher RA in the oropharyngeal microbiome of children 

with KD compared to febrile controls. It is highly relevant to explore whether there are genetic 

differences between the genomes of respective strains in different individuals which could influence 

susceptibility and pathogenesis. Such analyses can be broadly considered under the concept of 

pangenomics. 

Pangenomics 

Pangenomics and strain-resolved metagenomics are somewhat overlapping terms. Pangenomics is 

concerned with the total genetic content of a species, across strains, and resolving the specific 

structure of species by sample. Most frequently, this refers to presence or absence of orthologous 

gene groups, although some approaches consider sequence-level diversity (Iranzadeh & Mulder, 

2019). As outlined in the introduction, pathogenic organisms sometimes comprise all members of a 

species, but sometimes only specific members harbouring one or more specific virulence factors. 

Segata (2018) argues that strain-level resolution is needed to achieve the full potential of comparative 
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metagenomics, since “many microbial phenotypes are strain specific” and strains are the “building 

blocks of a microbial community.” The possibility that strain-level genotypes and phenotypes matter 

in any microbial aetiology of KD is real, and therefore my metagenomic analysis must account for this. 

A variety of methods exist to interrogate gene composition differences and sequence level diversity 

within species in metagenomes. Compositional approaches are exemplified by PanPhlAn, part of the 

bioBakery suite of metagenomic tools (Beghini et al., 2021). A PanPhlAn pangenome species reference 

comprises orthologous UniRef clusters of orthologous (predicted) genes (COGs) from reference 

genomes, with data on the composition of each reference, and ready-made indices for sequence 

alignment. The PanPhlAn pipeline aligns sample reads against all reference genomes and sums aligned 

reads by COG. Samples which provide enough depth of coverage to report composition are 

determined, and a matrix of COG presence by sample produced. StrainPhlAn exemplifies a sequence-

based approach to strain typing, producing sequence alignments and phylogenetic trees of species-

specific marker genes. 

A limitation of both approaches is the modelling of a single dominant strain per sample – PanPhlAn 

adjudicates COGs as present or absent, but does not allow for heterogeneity with multiple distinct 

species genomes. Similarly, StrainPhlAn extracts a single consensus marker gene sequence for each 

sample. Nonetheless, StrainPhlAn analysis of gut metagenomes (Truong et al., 2017) supported the 

presence of dominant strains for a large majority of species. Whether this is replicated in the oral 

microbiome is unknown. 

Approaches which consider multiple strains within a species have been developed. ConStrains (Luo et 

al., 2015) uses MetaPhlAn 2 bacterial marker gene reference sequences and detects and phases single 

nucleotide variants to identify and quantify strains within samples, however it has not been under 

active development since 2016. pStrain achieves the same and is compatible with MetaPhlAn 3 (Wang, 

Jiang & Li, 2020). DESMAN (Quince et al., 2017) extends this approach to MAGs from de novo 

assemblies. Most recently, STRONG (Quince et al., 2021) has been developed to resolve and phase 

strain-level variation directly upon the assembly graphs of co-assembled samples. Both of these 

approaches depend upon co-assembly, which is computationally intractable with a dataset of this size 

and standard HPC infrastructure. Finally, inStrain (Olm et al., 2021) detects and quantifies single 

nucleotide variants based on sequence alignments to reference genomes and/or dereplicated MAGs. 

Its utility is limited by the lack of phasing of variants. 
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Strain and pangenome analyses 

StrainPhlAn and PanPhlAn were applied here because together they consider two important 

dimensions of strain-level variation within species, and are established, supported tools under active 

development. 

The application of PanPhlAn to A. defectiva and L. mirabilis was limited by the paucity of reference 

genome sequences. Fortunately, it was still possible to generate pangenome references using sample-

derived MAGs, with the attendant caveat that both the assembly and binning processes could include 

sequences from outside of the species. Indeed, based on contig classifications, the Abiotrophia MAGs 

were dominated by contigs assigned to a very closely related species, whose median RA modestly 

exceeds that of A. defectiva, but shares the same association with KD. It is unclear to what extent this 

genuinely reflects the presence of two closely-related species with the same biological association, or 

simply sharing of read and contig classifications from a single organism (per sample) between two 

closely related references. 

The pangenome sizes (3 320 and 11 765 COGs respectively) are not unusual. In a study of bacterial 

pangenomes across a range of species, Maistrenko et al. (2020) identified core genome sizes from 443 

to 5 946 genes and pangenomes from 959 to 17 739 genes, with a strong pangenome size dependence 

on the number of genomes sequenced. 

Pangenome compositions showed no clustering by disease group, and COG-wise prevalence identified 

no genes significantly over-represented in KD patients, and only a small number of genes under-

represented in the Abiotrophia pangenome. Those which were from identifiable COGs were labelled 

as originating from non-Abiotrophia species, thus the signals may be driven by differential abundance 

of other organisms. 

StrainPhlAn analysis of marker gene consensus sequences showed no clustering of disease groups by 

PCA, and no significant differences by PERMANOVA. 

Gene-level analysis 

The above approach is limited to the consideration of candidate organisms, here selected on the basis 

of associations of RA with KD. However, this would be blind to a scenario where a coloniser is similarly 

abundant/prevalent in KD and febrile controls, but a toxin gene is over-represented in KD and has an 

aetiological role. 

I sought to develop an approach which could identify over-represented genes (defined by sequence 

similarity) in KD vs febrile controls. This was algorithmically and computationally challenging, requiring 

de novo assembly of each sample and consideration of a vast number of predicted genes. 
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A quick and scalable method of clustering genes was required. This need was met by the linear time 

clustering algorithm of mmseqs2 (Steinegger & Söding, 2017). There remained the problem of 

determining presence of absence of gene clusters in samples. The presence of genes in assemblies 

could not be taken as a fair representation since de novo assembly is typically only possible for well-

covered sequences. Sequence alignment against 2.1 million representative gene sequences (or the 17 

million underlying genes) is intractable with present tools. 

An alternative approach applied here was to identify unique k-mers within representative genes and 

then count the occurrence of these k-mers within sample reads. Such an approach has been developed 

and applied before in a tool named fastv (Chen et al., 2021). However, my own testing was 

discouraging, with unique k-mers undercounted and no response to an issue raised on GitHub. 

For this reason, I developed a novel pipeline using jellyfish (Marçais & Kingsford, 2011) as a fast k-mer 

counter both to identify unique k-mers in representative genes and to count their occurrences in 

sample reads. It was surprising that representative genes could be detected in corresponding samples 

only 55% of the time –unique k-mers belonging to an assembled gene should also be present in the 

corresponding sample reads. Absences could be explained by a k-mer only occurring in parts on reads 

and only in full when assembled, or the k-mer being present with sequencing errors each time, never 

corresponding to the consensus sequence, and therefore going uncounted. However, both of these 

should be unlikely occurrences given the depth of coverage necessary for assembling sequences de 

novo. This deserves further investigation. 

Despite adjusting for sample sequencing depth, no gene groups could be found with significant over-

representation among KD patients. 

Conclusions 

In this chapter, I continued the search for differences in the KD microbiome at finer resolution, 

considering two candidate organisms whose RA is increased in KD, as well as developing a gene-based 

approach across organisms. The approaches leveraged the additional strengths of shotgun 

metagenomics over amplicon-based approaches because of the availability of sequences from whole 

bacterial genomes. 

The two complementary approaches to candidate organisms presented in this chapter do not 

demonstrate plausible differences between strains of these two organisms. 

The StrainPhlAn analysis suggests that there is no evolutionary distance between the core genomes 

of A. defectiva and L. mirabilis species in children with and without KD. The only significant results 
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from the PanPhlAn analysis may be confounded by inclusion of COGs from outside the genus No COGs 

were found to be over-represented in KD for either species. 

Since acquisition of these organisms is likely to occur in infancy and predate KD for the majority of 

patients, the lack of significant differences by disease group is potentially unsurprising. There is no 

literature on the long-term strain-level stability of the oropharyngeal microbiome, though one study 

demonstrates stability of dental plaque strains in adults over three months (Utter, Mark Welch & 

Borisy, 2016). 

In the absence of overt strain-level differences between these KD-associated organisms of the healthy 

microbiome, conclusions about any role they may play in KD are limited. I consider here a number of 

hypotheses: 

1. The increased RA of these organisms in KD is a consequence of disease or its treatment. For 

example, pharyngeal inflammation or altered oral intake and dental hygiene driving increased 

RA of some bacteria. Additionally, for L. mirabilis I found evidence of an increased abundance 

with antibiotic exposure among these patients, though the mechanism is unclear. Although 

this is mostly independent of the relationship with KD, differences in characteristics of 

antibiotic exposures (e.g. timing, dosing and drug choice) could account for more of the 

relationship than currently observed. 

2. These organisms (though not their acquisition) are part of the causal pathway of KD, with 

environmental or microbial factors triggering proliferation and a phenotype which triggers KD 

in susceptible individuals. 

3. Primary acquisition of these organisms triggers KD in a subset of susceptible infants. 

4. Acquisition of secondary strains of these organisms triggers KD in a subset of susceptible 

individuals. 

The increased RA of these organisms in KD is not specific to the infant population, which provides 

evidence against hypothesis 3. Further, the coefficients obtained correspond to more than a doubling 

in the mean RA of these organisms in KD – if this occurred due to acquisition of a new strain, it would 

be the dominant strain and should be detected with the tools applied in this chapter. Investigating 

hypothesis 2 would require study of the biological activity of these organisms in the oropharynx, 

whether through transcriptomic or proteomic approaches. 

The representative gene detection approach also did not show genes significantly over-represented 

in KD when considering all microbial genes. The approach developed clearly warrants further 

optimisation. An ideal approach would have identified unique k-mers from orthologous gene groups 
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rather than representative genes alone – where possible k-mers which are present in all members and 

no non-members. This would have required much more development work, and would not be as 

amenable to shell scripting solutions with jellyfish. 

This chapter marks the end of the metagenomic analyses and a switch to the metaproteomics of ICs. 
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5 |  Metaproteomics – analysis of pilot data 

Introduction 

As described in the introduction, IC provide a tantalising window into the aetiology and pathogenesis 

of KD. In my project, I am primarily interested in the potential carriage of microbial antigens within IC, 

which could help to explain the aetiology of the disease. 

This work commenced years before my fellowship and involved my colleague, Dr Stephanie Menikou, 

in painstaking experiments to test and compare techniques for purifying IC from serum and plasma, 

and preliminary proteomic experiments with artificially generated ICs (Menikou, 2016). 

Aside from the experimental challenge of purifying ICs at scale, multiple challenges could be 

anticipated in metaproteomic analysis. These include the challenge of searching large metaproteomic 

databases while maintaining power to confidently detect valid peptide and protein matches and 

managing the computational cost. 

In this chapter I undertake detailed analysis of these proteomic data to describe the constituents of 

IC-enriched fractions, and test a novel database-reduction strategy for improved metaproteomic 

searching. The first part of this has been published as part of a recent manuscript (Menikou et al., 

2020). 

Objectives are: 

1. Describe protein and immunoglobulin content of purified IC 

2. Quantify the specific detection and abundance of spiked influenza proteins in purified IC 

Methods 

Sample collection and laboratory methods 

Laboratory experimental work was designed and undertaken by Dr Menikou, comparing two methods 

of immune complex extraction. 

For testing size exclusion chromatography and affinity purification (SEC-AP), serum from seven healthy 

adult donors (Central Office for Research Ethics Committees, Imperial College Healthcare NHS Trust, 

reference number REC 12/WA/0196, Imperial College Healthcare Tissue Bank project R13062) was 

obtained. All volunteers had been routinely vaccinated with influenza vaccine Split Virion BP 

2014/2015 (strains: A/California/7/2009(H1N1), A/Texas/50/2012(H3N2) and 

B/Massachusetts/2/2012 from Sanofi Pasteur) 6–10 weeks earlier. Ten patients with KD recruited 

within 7 days of onset of fever were recruited at University of California San Diego (UCSD) with 
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parental consent (as described in Appendix A), with acute and convalescent serum combined in equal 

ratios. 

For testing polyethylene glycol (PEG) precipitation, serum was obtained from two healthy adults 

immunised in the previous six months with the influenza vaccine Split Virion BP 2015/2016 (strains: 

A/California/7/2009(H1N1) virus, A/Switzerland/9715293/2013(H3N2) virus, B/Phuket/3073/2013 

virus from Sanofi Pasteur). 

In vitro ICs were created from healthy serum by adding 40 μl of the corresponding influenza vaccine 

to 160 μl of serum. Serum and influenza vaccine were mixed, incubated at 37°C for 1 hour to allow 

antibody-antigen binding, and then processed by SEC-AP on Protein G columns, or by PEG 

precipitation. KD samples had identical volumes of phosphate-buffered saline added and underwent 

the same processing. For PEG precipitation, healthy samples were processed twice, with influenza 

vaccine or saline added. 

SEC-AP resulted in two high-molecular weight (HMW) fractions, with the first (HMW 1) corresponding 

to IgM and its complexes and second (HMW 2) to IgG. Each fraction was separated into a protein G 

eluant and wash-through. The process is illustrated in Figure 16. 

Following protein quantification, the SEC-AP purified and PEG precipitated samples underwent in-gel 

digestion and liquid chromatography tandem mass spectrometry (LC-MS/MS) at the University of 

Bristol Proteomics Facility on an Orbitrap Elite instrument. Precursors (MS1) were analysed on the 

Orbitrap and fragments (MS2) on the ion trap. 

Figure 16 Fractionation of precipitated immune complexes by size-exclusion chromatography and affinity purification with 
Protein G. Reproduced from Menikou et al. (2020). 
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Descriptive bioinformatic analysis 

Mass spectrometry data were analysed using MaxQuant 1.6.6.10 (Tyanova, Temu & Cox, 2016). 

Spectra were searched against the UniProt human proteome (February 2019), immunoglobulin 

sequences (January 2018 Kabat and NCBI databases) from the abYisis database (Prof Andrew Martin, 

Personal Communication and Swindells et al., [2017]), and MaxQuant’s standard contaminant 

database. Trypsin was selected as the enzyme with full specificity and up to two missed cleavages. 

Peptide precursor mass tolerance was set at 10 ppm, and MS/MS tolerance was set at 0.5 Da. Search 

criteria included carbamidomethylation of cysteine (+57.0214) as a fixed modification and oxidation 

of methionine (+15.9949) as a variable modification. 

Intensity based absolute quantification (iBAQ) was enabled and match-between-runs activated with 

default settings. False discovery rate (FDR) was set at 0.01 for peptides. FDR was set at 1 for proteins 

to prevent exclusion of immunoglobulin variable peptides which would be distributed between many 

protein sequences. 

Downstream analysis was undertaken in R for Windows 3.5.1. Full gene names for UniProt proteins 

were determined by InterMineR. Individual proteins were classified using string matching as keratin, 

trypsin, complement, albumin, fibrinogen, immunoglobulin, other, contaminant and influenza. 

Individual peptides were then classified according to their corresponding protein(s). Where multiple 

classes matched, the first in the list preceding was selected. 

iBAQ normalises total MS1 intensity per protein based on the number of theoretical tryptic peptides, 

approximating molar ratios of proteins within samples. I sought to calculate mass ratios and 

recalculate immunoglobulin results using constant region peptides only (due to anticipated more 

reliable detection). I therefore calculated modified iBAQ-based values at peptide level. 

Immunoglobulin peptides were classed as belonging to the constant region based on edit distance of 

two or below to a UniProt human constant immunoglobulin sequence (approximate Levenshtein 

distance algorithm as implemented in the base R function adist). 

For each protein, including immunoglobulin constant sequences, the number of tryptic peptides per 

kDa was calculated. Normalised peptide intensities were calculated by dividing the original intensities 

by the corresponding ratios. Non-constant region immunoglobulin peptide intensities were set to 

zero. Normalised constant immunoglobulin peptide intensities were then multiplied by the ratio 

between the molecular weight (MW) of the (sub)class and its constant region. Where a peptide 

corresponded to multiple immunoglobulin subclasses, the mean of each correction was taken. 
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Normalised intensities were summarised by class and sample, with the total for each sample 

normalised to correspond to the proportion of MS1 intensity belonging to identified features. In this 

way, differences in identification rates between samples remain informative. 

Database reduction testing 

MetaNovo (Potgieter et al., 2019) is a database reduction tool designed for metaproteomics as part 

of a two-stage approach. It uses sequence tags generated from fragment spectra to search a sequence 

database, respecting enzymatic cleavage rules. Proteins are ranked according to joint protein and 

organism posterior probabilities based on size-normalised match counts. Proteins are sequentially 

inspected, and all those which match at least one unmatched spectrum are included in a final reduced 

database. This can then be used with any conventional proteomic search engine (though x!tandem is 

included within the default workflow). 

I constructed a metaproteomic database comprising UniProt reference proteomes for bacteria, fungi, 

viruses and archaea, the UniProt human proteome, and influenza vaccine sequences for the strains 

included in the Northern hemisphere in 2014-15 and 2015-16 as detailed earlier. The database was 

9.7 billion amino acids in size, comprising 28 045 072 proteins from 12 443 microbial organisms, and 

Homo sapiens. 

Serum from two additional healthy individuals who had been immunized with the Split Virion BP 

2015/2016 vaccine (A/California/7/2009 (H1N1)pdm09, A/Switzerland/971593/2013(H3N2), 

B/Phuket/3073/2013) at most 6 months prior to serum collection was used for PEG precipitation 

experiments, with addition of 40 µl influenza vaccine or PBS. These samples underwent proteomic 

analysis as part of the first batch of febrile and KD samples (as described in the subsequent chapter). 

The metaproteomic database was reduced using MetaNovo and searched against using MaxQuant 

1.6.17 

Results 

Protein classes 

The proportion of MS1 intensity belonging to identified features is lowest (around 30%) in the samples 

with the highest proportion of immunoglobulin (Control & V HMW2 eluant and Febrile HMW2 eluant 
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columns in Figure 17 left), which is expected due to the limited feature identification expected for 

variable immunoglobulin peptides. 

Although no serum comparison is included here, results could be compared to laboratory reference 

ranges. The normal range of serum albumin concentration is 3.5-5 g dL-1 and of immunoglobulin is 2.3-

3.4 g dL-1 (Anon, 2021). In contrast, modified iBAQ estimates in PEG precipitates were 5-10 times 

greater for immunoglobulin than albumin. 

Alpha-2-macroglobulin is a very large serum protein with molecular weight similar to IgM (725 kDa vs. 

~900 kDa) and serum concentration of around 270 mg/dL, around ten times lower than 

immunoglobulin (Yoshino et al., 2019). Modified iBAQ estimates in PEG-precipitates were 100-300 

times lower, suggesting alpha-2-macroglobulin was much less preferentially precipitated. 

Complement content 

The complement fraction in PEG samples is dominated by three proteins which contribute 60-70% of 

modified iBAQ estimates: Complement Factors 3 (C3; 185 kDa) and 4 (C4; 203 kDa), and Complement 

Factor 4 Binding Protein A (CF4BPA; 570 kDa). These three proteins typically have a total serum 

concentration of around 1.5 g/L, around half the concentration of immunoglobulin. The total modified 

iBAQ estimates in PEG precipitates were 40-74% relative to immunoglobulin, suggesting these 

components were precipitated in a similar manner. 

Within SEC-AP samples, the largest quantities of complement proteins were seen in the HMW2 wash-

throughs, and dominated by C3 and C4 (81 and 83% in each wash-through). Complement was not 

Figure 17 Quantification of different protein classes and identification of immunoglobulins. V indicates samples to which 
influenza vaccine was added. Febrile samples are not spiked with vaccine. (Left) Relative quantities of different classes of 
protein as calculated through a modified iBAQ-based approach. The total height of each bar is the proportion of MS1 intensity 
belonging to each identified feature. Samples come from two donors (Donor 1 and Donor 2). (Right) Proportion of 
immunoglobulin mass by class as estimated using a modified iBAQ-based approach and extrapolated from constant peptides 
only. HA: IgA heavy chain, HD: IgD heavy chain, HE: IgE heavy chain, HG: IgG heavy chain and HM: IgM heavy chain; iBAQ: 
intensity-based absolute quantification; MS: mass spectrometry. 
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retained well in eluant, suggesting very little stable complex formation with immunoglobulins, even in 

the presence of viral antigen. 

Immunoglobulin content 

The highest proportion of immunoglobulin is identified in the HMW2 peak from SEC that was eluted 

from the affinity column (94% and 98%). The unbound fractions have low proportions of IgG (11% and 

29%) indicating that the HiTrap Protein G column efficiently bound IgG. Complement effectively 

passed into the wash-through (0.2% and 0.5% in eluant vs. 21% and 34% in wash-through). 

The HMW1 eluants, which should be enriched for IgM and ICs also had high proportions of 

immunoglobulin (76% and 82%), and the wash-throughs were similarly depleted (19% and 27%). 

Complement components were in low abundance overall and mostly passed into the eluant (0.4% and 

0.9% vs. 7% and 10%). 

The PEG precipitates contained intermediate proportions of immunoglobulin (38–47%) with 

complement being the other major constituent (27–44%). The proportion of immunoglobulin was 

increased in the vaccine-spiked samples compared to controls (46% and 47% vs. 38% and 41%). 

Immunoglobulin classes and subclasses 

IgG dominated in the HMW2 eluants (99.4% and 99.7% of immunoglobulin). It was nearly absent in 

the febrile wash-through (2%), though in the influenza spiked wash-through a larger proportion of 

immunoglobulin was IgG (36%), suggesting that the column may have been saturated (Figure 17 right). 

The remainder in both cases was predominantly IgM. IgG also dominated in the HMW1 eluants (85% 

and 89%), with IgM (6% and 9%), and IgA (4% and 6%) present. The wash-throughs were dominated 

by IgM and IgA. 

The identification of IgG subclasses (HG1, HG2, HG3, HG4) was further explored (Figure 18). Some 

peptides could not be uniquely assigned to a subclass (accounting for 51–80% of estimated mass). 

IgG1, as expected, was in the greatest abundance across all samples. Notably, in the PEG precipitates 

the proportion of IgG1 was increased in the influenza vaccine spiked samples vs the PEG Donor 1 and 

2 samples that were not spiked (83% and 90% vs. 68% and 58% respectively). 
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Identification of Influenza proteins. 

Influenza peptides were detected in all vaccine-spiked samples (Figure 19), the greatest number of 

spectra being in the PEG precipitates. More spectra mapping to influenza peptides were identified in 

the eluant of the HMW1 fraction. The estimated mass contribution of influenza protein was also 

higher in the spiked PEG samples (2.4% and 3.2%) than the HMW1 eluant (0.02%). The five spectra 

that matched to influenza in unspiked samples corresponded to high abundance influenza peptides 

from spiked samples, suggesting some potential sample crossover. 

Within the SEC-AP samples, vaccine strain proteins were selected as the leading razor protein by 

MaxQuant for 15 of the 57 PSMs (A/California/07/2009 and A/Texas/50/2012). Within the PEG 

samples, vaccine strain proteins comprised 25 of 38 PSMs (B/Phuket/3073/2013 and 

A/California/07/2009). 

Database reduction 

Using LC-MS/MS data from two individuals’ samples, with and without spiked influenza vaccine, 

MetaNovo reduced the 9.7-billion amino acid metaproteomic database to 41 million amino acids 

Figure 18 Proportion of estimated IgG mass by subclass (excluding contributions by non-specific peptides). PEG 
precipitated samples come from two donors (D1 and D2) and V indicates samples to which influenza vaccine was 
added. Febrile samples were not spiked with vaccine. HG1: heavy chain of IgG subclass 1, HG2: heavy chain of IgG 
subclass 2, HG3: heavy chain of IgG subclass 3 and HG4: heavy chain of IgG subclass 4; PEG: polyethylene glycol. 
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(0.4% of the original database). Human proteins were enriched, increasing from 0.07% to 1.2% of 

protein entries (1 211 of 20 585 proteins retained). 18 of 128 influenza proteins were incorporated. 

97 442 proteins were incorporated from other organisms. The largest number of proteins from a single 

organism was 597 from a strain of Rhizophagus irregularis. 

Following search with MaxQuant using a taxonomy-restricted database comprising only human and 

influenza sequences, 239 influenza PSMs were identified at PSM and protein FDR of 1% (with an 

additional 43 MS1 features matched by run). Using the metaproteomic database reduced by 

metanovo, 421 influenza PSMs were identified (and an additional 77 features matched by run). This 

improvement was mostly due to FDR control at protein level, since without applying the protein FDR 

the reduced database identified only 9 extra PSMs (423 vs. 414). 

Without protein FDR control, the taxonomy-restricted database gave 55 248 human PSMs, falling to 

36 691 with protein FDR control. The reduced database gave 43 523 non-influenza PSMs, only falling 

Figure 19 Number of MS2 spectra assigned to influenza peptides in each sample. MS1 features matched by run are 
excluded. Samples come from two donors (D1 and D2). V indicates samples to which influenza vaccine was added. 
SEC-AP V HMW1 eluant, wash-through, and SEC-AP HMW2 eluant and wash-through are the control samples spiked 
with vaccine. SEC-AP Febrile HMW1 eluant, wash-through and SEC-AP Febrile HMW2 eluant and wash-through are 
not spiked with vaccine. MS: mass spectrometry; SEC-AP: size exclusion chromatography affinity purification; HMW: 
high molecular weight. 
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a small amount with protein FDR control, to 43 460. There were 1 269 PSMs to other species, with 267 

passing protein FDR control. These proteins comprised 51 genera, with only Streptomyces, Aspergillus, 

Clostridium, Colletotrichum and Escherichia contributing two or more individual proteins. No 

Rhizophagus irregularis PSMs were reported. 

Discussion 

IC extraction and antigen identification 

The pipeline of SEC followed by affinity purification and LC-MS/MS led to successful recovery and 

identification of spiked influenza peptides. Reassuringly, influenza peptides were not identified in the 

non-spiked febrile controls aside from five peptides in one fraction, which may represent carry-over 

from the spiked sample. 

In SEC-AP samples, the recovery of influenza vaccine antigen preferentially in HMW1 eluant supports 

their presence within large immune complexes, since Protein G specifically binds IgG, whose molecular 

weight is not within the HMW1 range. The far higher recovery of influenza peptides by PEG 

precipitation does not definitively support the superiority of the process for recovering antigen within 

ICs, as this may represent non-specific purification of unbound influenza virions. Nonetheless, in 

Western blotting experiments, PEG was not shown to recover influenza virions alone (Menikou et al., 

2020).  

PEG appears to preferentially precipitate immunoglobulin and complement regardless of the presence 

of ICs. This likely relates to their high molecular weight – though it is interesting that the very high 

molecular weight alpha-2 macroglobulin does not appear to be preferentially precipitated. 

Complement Factor 3, when hydrolysed, binds to immunoglobulin (as C3b). Complement Factor 4 

(isoform A; C4A) can be covalently bound to ICs and protein antigens. However, there is no indication 

that here that they were precipitated in complex with immunoglobulin. Notably, in the SEC-AP 

experiments, complement is enriched in the HMW2 wash-through, and not retained in the eluant. 

The addition of influenza vaccine resulted in greater precipitation of immunoglobulin and increased 

proportion of IgG1. This is consistent with the formation of ICs, since it is known that the response to 

IIV (inactivated influenza vaccine) mostly comprises the IgG1 subclass of antibodies (Manenti et al., 

2017; El-Madhun, Cox & Haaheim, 1999; Pedersen et al., 2014). 

Background to metaproteomic searching 

The specific recovery and identification of protein antigen from a single species within human 

proteomic samples using a targeted database is encouraging. However, it does not represent the 
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challenge of identifying potential protein antigens from unknown organisms within a large number of 

samples. 

Metaproteomics is the study of proteins from communities of organisms. The development and 

application of techniques began with environmental communities (Wilmes & Bond, 2004; Kan et al., 

2005) and this remains a major focus of application. However, quickly techniques were applied to the 

study of host-associated microbiomes, principally the gut (Klaassens, Vos & Vaughan, 2007). 

Shotgun mass spectrometry-based metaproteomics faces a number of challenges above proteomics 

as applied to single organisms. The field itself remains a niche, with PubMed containing 904 articles 

containing “metaproteom*” since first occurrence in 2004. Challenges have been well-reviewed by 

others (Muth et al., 2013, 2015; Muth, Renard & Martens, 2016; Heyer et al., 2017) and are 

summarised here. The protein sequence databases used must provide good coverage of the diversity 

of proteins in the sample. Since protein sequence repositories may represent only a small fraction of 

the proteins in a given sample, optimal analysis frequently requires sample- or experiment-specific 

databases of predicted proteins derived from metagenomic sequencing. These databases can be very 

large, and comprise many proteins which will likely never be observed (due to incorrect predictions, 

lack of expression or low abundance). 

Regardless of the source of sequences, metaproteomic searches typically employ protein sequence 

databases orders of magnitude larger than conventional proteomic databases. The magnitude of 

computation required increases with the size of the database since each spectrum acquired must be 

compared with predicted spectra derived from the entire sequence database to obtain PSMs. 

A further, and more significant challenge, is the control of false-discovery rate (FDR), which becomes 

more challenging as databases grow (Jagtap et al., 2013). Mass spectra are typically identified based 

on the thresholding of best-scoring matches to predicted spectra. Scores are calculated in different 

ways between software packages, but encompass some measure of how closely the experimental and 

theoretical spectra match. 

Target-decoy based approaches have become the most commonly applied type of thresholding for 

PSM and protein identifications, since these methods aim to control the FDR (Jeong, Kim & Bandeira, 

2012). They depend upon searching the experimental spectra against both the target database and a 

decoy database. The decoy database is most frequently a sequence-reversed target database with 

preservation of cleavage sites; it comprises proteins which do not exist, and whose tryptic peptides 

should therefore be unobserved. Matches between experimental spectra and decoy peptides are thus 

taken to represent false matches. The distribution of scores against the target and decoy databases 
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can be used to determine a threshold which achieves a given FDR (most frequently 1%) for PSMs. The 

process is illustrated graphically in Figure 20. 

Since false discoveries are chance events, the number of false discoveries will grow as the database 

size increases. Simultaneously, the decoy score distribution may include higher scores, due to the 

competitive selection of best-scoring matches. If the yield of target matches does not also grow 

commensurately, then the FDR will increase at a given score threshold and conversely the number of 

identifications will decrease at a given FDR (see Figure 21). 

As expected, Tanca et al. (2013) showed in a mock microbial community that a taxonomy-restricted 

database provided more PSMs at a given FDR. Similarly, Rechenberger et al. (2019) in a large study of 

human stool metaproteomes, showed over a ten-fold reduction in PSMs at the same FDR when 

replacing the SwissProt bacterial database with the more comprehensive Integrated Gene Catalog of 

the human stool microbiome. In contrast, when re-scoring PSMs with a machine learning tool 

(Percolator) there was a near 7-fold increase in identifications at the same FDR. 

Myriad approaches have been proposed for overcoming the computational and inferential challenges 

of metaproteomic searching. Some have focused on targeted database restriction on a per-

experiment or per-sample basis, for example through taxonomy restriction (based on amplicon 

Figure 20 Hypothetical Illustration of the overlapping score distributions from the target-decoy database and how this can 
be used to estimate the false discovery rate at given score thresholds (Figure reproduced from Aggarwal & Yadav, 2016) 
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sequencing, for example) (Xiao et al., 2018) or use of predicted open-reading frames (ORFs) rather 

than 6 frame translations (Tanca et al., 2016). Others have advocated for the potential benefits of 

more advanced machine-learning-based PSM rescoring approaches, utilising for example fragment 

intensity and/or retention time predictions (Verbruggen et al., 2021; Gessulat et al., 2019). De novo 

sequencing based approaches have also been promoted, since they dispense with the need for 

database searching by spectral matching, though additional problems arise, including the challenge of 

confidently identifying error-prone de novo sequences (Muth et al., 2013, 2015; Muth, Renard & 

Martens, 2016) and availability of only one tool to estimate FDR, which does not appear to be under 

active development (Leprevost et al., 2014). 

Two-stage approaches combine a first search for database restriction followed by a second search to 

identify PSMs. Jagtap et al. (2013) presented encouraging results showing two-stage approaches can 

preserve similar numbers of host-associated PSMs to a host-only single-stage database search, while 

identifying more bacterial PSMs than a single-stage approach with a comprehensive database. Two-

stage approaches have been implemented in several metaproteomic search engines (Cheng et al., 

2017; Zhang et al., 2016; Muth et al., 2018; Potgieter et al., 2019). 

Metaproteomic application to these data 

The nature of the samples being processed and the aims in this project differ vastly from those of most 

published metaproteomic studies. Metaproteomic studies generally seek to functionally characterise 

communities, whether free-living or host associated, based on their protein content. The samples 

     

 
 
 
 
  
 

Figure 21 Hypothetical illustration of the score distribution of target and decoy matches with two databases (blue and red 
respectively). The first database (bold fill and solid outline) is small but contains a large proportion of potential target 
matches. The second database (lighter fill and dotted outline) is larger. Decoy matches grow proportionately, with some 
additional growth in the right tail. Target matches grow by a smaller proportion since most potential target matches have 
already been identified. The dotted vertical line indicates a fixed score threshold. For database 1, the FDR is low at the given 
threshold. For database 2, the FDR is higher. FDR: false discovery rate. 
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utilised are typically dominated by the organisms of interest, even if host proteins are also present. 

The species present are typically well known, through amplicon or metagenomic sequencing. 

In contrast, I seek to identify a potentially small number of organisms across many samples based on 

the likely very low amounts of protein antigen which may be captured within precipitated ICs. My 

samples are not only dominated by host protein, but also enriched for antibodies, and therefore the 

vast sequence diversity of the antibody variable region. Although a hypothesis-driven approach could 

focus on a small number of candidates, there is little justification for excluding any micro-organisms 

from a primary approach and the starting sequence database is necessarily large. This search for low 

abundance microbial proteins could be called “minority metaproteomics.” 

Following expert recommendation (Prof D Tabb, personal communication), I elected to test a two-

stage database reduction approach utilising Metanovo, a tool being developed under his supervision 

(Potgieter et al., 2019). It was encouraging to find that Metanovo could reduce the large UniProt 

reference proteome database amino acid size by a factor of around 250, and concentrate human 

proteins by a factor of 17. The preservation of 17 influenza proteins in the reduced database 

demonstrated the success of the approach. 

The inclusion of such a large number of proteins from a single strain of Rhizophagus, a fungus of plant 

roots, is striking (Morin et al., 2019). It should be noted that Rhizophagus species have large genomes 

(over 100 Mbp) and the four strains included among UniRef sequences possess between 25 and 43 000 

predicted proteins, compared to 1 500 to 3 000 for Streptococcal species. The included proteins 

represent 1.4% of those in the original database. 

The final test of Metanovo was to compare the performance of its reduced database to a taxonomy-

restricted database containing only human and influenza sequences. I observed comparable detection 

of influenza PSMs with only PSM FDR control, and much improved detection with more stringent 

protein FDR control. 

Conclusions 

Both SEC-AP and PEG precipitation can concentrate antibody and corresponding antigen. Influenza 

antigens can be identified by proteomic database searching with high specificity. Metanovo allows a 

non-taxonomy restricted database to be reduced, allowing effective proteomic analyses with stringent 

FDR control. 

In the next chapter, I will present the analysis of the primary study data from children with KD and 

febrile controls using Metanovo, whilst also piloting another complementary approach. 



 Page 105 

6 |  Metaproteomics – analysis of study data 

Introduction 

The prior chapter described metaproteomic method development using pilot data. In this chapter, I 

analyse data from a large cohort of children with KD and three sets of controls in order to identify 

potential microbial protein antigens within immune complex-enriched PEG-precipitated samples, and 

associations with KD. 

I add a novel “spectra-first” approach to the data, using Quandenser (The & Käll, 2020). This tool 

reverses the typical approach of proteomic searches, which seek first to identify peptides represented 

by MS1 spectra, then quantify peptides and proteins. Instead, Quandenser identifies, quantifies and 

matches MS1 peptide features across all samples. MS2 fragment spectra are clustered, and matched 

peptide features undergo FDR control based on shared fragment clusters. 

Downstream processes can then be applied to filter features based on differential abundance or 

prevalence and extract consensus spectra from corresponding fragment spectral clusters. These 

higher-quality consensus spectra can be subjected to identification by database searches or de novo 

sequence generation. Clustering and filtering reduces the number of spectra which need to be 

searched. 

All laboratory method development and work was undertaken by Dr Menikou. 

Objectives are: 

1. Generate a reduced metagenomic database suitable for proteomic searching 

2. Identify database peptides and proteins in the samples and corresponding taxa 

3. Identify taxa with differential prevalence between KD and controls 

4. Filter peptide features with differential prevalence between KD and controls and identify 

corresponding consensus spectra 

Methods 

Patients and controls 

The studies contributing samples to both the metaproteomic and earlier metagenomic analyses are 

described fully in Appendix A (p180) along with details of ethical approval. 

Prior to my involvement in the project, samples from children with KD and febrile controls were 

selected in three batches from UCSD, where a long-term cohort study of KD is ongoing with extensive 

clinical data and sample collection. The American Heart Association guidance was used to diagnose 
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KD (McCrindle et al., 2017). As described in the Appendix, febrile controls were adjudicated not to 

have KD, but did have at least one of the KD clinical criteria. 

Healthy children were recruited from outpatient clinics and as unrelated contacts of children with 

meningococcal disease at St Mary’s Hospital, London. Adults with TB were recruited from the multi-

centre IDEA study. 

Samples 

Immune complexes are known to be detected in KD from as early as 10 days into the illness, however 

most patients present and are treated earlier than this (Levin et al., 1985). Samples earlier than 10 

days of illness (acute) may not contain ICs, though microbial antigen may be present. These samples 

were mixed in equal ratios with paired convalescent samples, which would potentially contain host-

derived antibodies to microbial agents implicated in the cause of KD, as well as pooled 

immunoglobulin from IVIg administered during the illness. This was anticipated to promote the 

formation of ICs. Samples from patients presenting later than 10 days are more likely to contain 

circulating ICs, and were used without mixing. 

Both serum and plasma samples were used, due to uncertainty about potential limitations of each. 

Proteolytic enzymes are released and platelets activated during the clotting process in serum samples, 

and these could sequester ICs. Using plasma would avoid this limitation, but adds the disadvantage of 

retaining a large mass of clotting factors, which will occupy the mass spectrometer during analysis. 

Febrile controls were similarly classified as acute and subacute. However, due to the limited 

availability of convalescent samples from children with febrile illnesses, pooled convalescent samples 

were used for mixing with acute samples. 

Serum was recovered from venous blood of 31 healthy children. Samples from 162 patients with KD 

and febrile controls were obtained (Table 15).  

Sample preparation   

Patients’ and healthy controls’ whole blood was collected in serum-separating tube II advance bottles 

(Becton Dickinson), kept at room temperature (RT) for 30 minutes and centrifuged at 4° C at 3000 g 

for 10 minutes for serum separation and recovery.   

Isolation of ICs from human sera  

Equal 200 μl volumes of serum and 6% PEG 6000 (BDH) were mixed and dissolved in borate buffer 

comprising 100 mM boric acid (Sigma Aldrich), 75 mM NaCl (BDH), 25 mM sodium tetraborate (Sigma 

Aldrich), and incubated statically at 4° C overnight. The resulting precipitate was centrifuged at 2000 g 
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for 20 minutes at 4° C. After decanting the supernatant, precipitates were washed once with a 400 μl 

PEG solution of the same final concentration (3%). Supernatant was decanted and the pellet dissolved 

in 200 μl of 1× phosphate buffer solution (PBS) (Sigma Aldrich) which was left to stand at 4° C overnight 

and stored at -80° C until analysed.  

Protein sequencing   

For total protein quantification of the precipitated samples, bicinchoninic acid (BCA) protein assays 

was used (ThermoFisher Scientific). Following protein quantification, the proteins were digested at 

70° C (denaturing condition) by thermostable trypsin using the SMART digestion kit (ThermoFisher 

Scientific). After peptide clean up, 0.5 µg peptide was injected into an Orbitrap LC-MS/MS (Lumos 

Fusion, Thermo Fisher scientific) at the Oxford proteomic facility. Samples were ordered according to 

disease group (febrile ahead of KD group). To avoid bias by system error, the performance of LC-

MS/MS (sensitivity of detection, retention time shifting, number of proteins identified) were 

monitored by running a quality control sample (pool of all individual samples) every 10 samples within 

batch. A blank sample was processed between each run to avoid sample carryover.  

An initial subset of samples (N=54) were sequenced by LC-MS/MS at the University of Bristol 

Proteomics Facility (UK) by in-gel digestion instead of in-solution digest (Calvopiña et al., 2017). 

Database reduction 

Metanovo was reimplemented as a nextflow pipeline (Di Tommaso et al., 2017), allowing much 

greater flexibility in parallelisation of tasks within nodes, and also allowing for parallelisation across 

multiple nodes. This was necessary because of bottlenecks which were encountered in writing to the 

sqlite database when scaling metanovo to hundreds of samples. During implementation, the 

Compomics PeptideMapping API was upgraded to a more recent version which handles unknown 

amino acids in reference sequences. 

In view of the narrower fragment mass tolerances in the first batch of samples analysed in Oxford, 

these were not used in the metanovo database reduction step. Instead, results from batch 1 samples 

analysed at Bristol, and batch 2 samples analysed at Oxford were run together. 

The starting database comprised the human and UniProt reference proteomes as described in Chapter 

6. 

Peptide and protein identification 

Mass spectrometry data were analysed using MaxQuant 1.6.10.43 (Tyanova, Temu & Cox, 2016) on 

the Imperial HPC environment. Data from Bristol and the second batch processed in Oxford were 

analysed separately. Spectra were searched against the reduced database and MaxQuant’s standard 
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contaminant database. Trypsin was selected as the enzyme with full specificity and up to two missed 

cleavages. Peptide precursor mass tolerance was set at 10 ppm, and MS/MS tolerance was set at 0.5 

Da. Search criteria included carbamidomethylation of cysteine (+57.0214) as a fixed modification, with 

oxidation of methionine (+15.9949) and N-terminal carbamylation (+43.0058) as variable 

modifications. 

Intensity based absolute quantification (iBAQ) was enabled and match-between-runs activated with 

default settings. False discovery rate (FDR) was set at 0.01 for peptide spectrum matches (PSM). FDR 

was set at 1 for proteins, allowing the effect of protein FDR control to be explored subsequently. 

Analysis 

The reduced database was described by contributions from human proteins and proteins from other 

species. Abundant human and contaminant proteins identified by MaxQuant with PSM and protein 

level FDR control were described. 

Non-human non-contaminant proteins were annotated by species and genus-level annotations, and 

the overall contribution by species and genus was summarised. 

Prevalence of any proteins from each genus and species within sample groups were explored by group 

using Fisher’s exact test. FDR was controlled with the method of Benjamini-Hochberg. 

Quandenser 

Raw files were converted to mzML format using msconvert (Adusumilli & Mallick, 2017) and 

Quandenser (v0.02) was run with default settings except for preventing exclusion of rare features 

(max-missing=500). MS1 matched peptide features and MS2 fragment spectral clusters were 

described. Further development of the software was required to able to successfully process the 

samples, and a development version was used (M. The, personal communication). 

Fisher’s exact test was applied at 5% FDR (Benjamini-Hochberg) to identify differentially prevalent 

feature groups and corresponding MS2 clusters. Highly-prevalent feature groups (present in 190 or 

more samples) were also identified and the largest MS2 cluster for each was extracted to provide 

identifiable control spectra. 

These spectra were together searched against the UniProt reference proteome database using comet 

and x!tandem wthin SearchGUI 4.0.0-beta. A further search was also carried out following database 

reduction with MetaNovo. 
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Results 

Samples and data 

Demographic and clinical data are shown in Table 15. 

 
Febrile Healthy KD TB  

Acute 
(N=25) 

Subacute 
(N=35) 

 
(N=31) 

Acute 
(N=56) 

Subacute 
(N=46) 

 
 (N=37) 

Sex 
      

  Female 10 (40.0%) 16 (45.7%) 12 (38.7%) 21 (37.5%) 13 (28.3%)  

  Male 15 (60.0%) 19 (54.3%) 13 (41.9%) 35 (62.5%) 33 (71.7%)  

  Missing   6 (19.4%) 
  

37 
(100%) 

Age (y) 
      

  Mean (SD) 3.12 
(2.27) 

3.93 (3.02) 6.57 (4.49) 4.61 
(3.65) 

4.25 (2.87)  

  Median [Min, 
Max] 

2.30 
[0.100, 
8.70] 

3.00 [0.700, 
12.0] 

6.17 
[0.250, 
15.2] 

2.87 
[0.222, 
15.3] 

3.80 [0.300, 
11.9] 

 

  Missing   6 (19.4%) 
  

37 
(100%) 

Ethnicity 
      

  American 
Indian/Alaska 
Native 

   1 (1.8%)   

  Asian 2 (8.0%) 2 (5.7%)  7 (12.5%) 6 (13.0%)  

  Black/African 
American 

1 (4.0%) 1 (2.9%)  2 (3.6%) 2 (4.3%)  

  Caucasian 7 (28.0%) 8 (22.9%)  9 (16.1%) 13 (28.3%)  

  Hispanic 7 (28.0%) 10 (28.6%)  27 (48.2%) 17 (37.0%)  

  Multiple 3 (12.0%) 10 (28.6%)  8 (14.3%) 5 (10.9%)  

  Other    1 (1.8%) 1 (2.2%)  

  Unknown 5 (20.0%) 4 (11.4%)  
 

1 (2.2%)  

  Missing   31 (100%) 1 (1.8%) 1 (2.2%) 37 
(100%) 

Day of illness 
      

  Mean (SD) 4.76 
(1.36) 

12.2 (2.58) - 6.45 
(3.57) 

15.3 (4.68) - 

  Median [Min, 
Max] 

5.00 [2.00, 
6.00] 

13.0 [7.00, 
16.0] 

- 6.00 [2.00, 
24.0] 

14.5 [3.00, 
25.0] 

- 

  Missing  
     

Convalescent day 
of illness 

      

  Mean (SD) - - - 48.9 (16.4 - - 

  Median [Min, 
Max] 

- - - 48.0 [26, 
124] 

- - 

  Missing    3 (5.4%)   

CRP (mg/dL) 
      

  Mean (SD) 46.6 
(56.7) 

37.6 (49.5) - 138 (150) 63.8 (66.1) - 
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Febrile Healthy KD TB  

Acute 
(N=25) 

Subacute 
(N=35) 

 
(N=31) 

Acute 
(N=56) 

Subacute 
(N=46) 

 
 (N=37) 

  Median [Min, 
Max] 

25.5 [3.00, 
212] 

16.0 [3.00, 
202] 

- 78.0 [3.00, 
990] 

43.5 [3.00, 
291] 

- 

  Missing 1 (4.0%) 4 (11.4%) 
 

1 (1.8%) 2 (4.3%)  

WBC (109/L) 
      

  Mean (SD) 10.7 
(7.86) 

13.8 (8.16) - 15.2 
(5.53) 

14.7 (6.35) - 

  Median [Min, 
Max] 

8.90 [1.60, 
43.0] 

12.8 [2.10, 
31.0] 

- 15.6 [5.70, 
27.9] 

12.9 [8.00, 
38.0] 

- 

  Missing 
 

1 (2.9%)  2 (3.6%) 1 (2.2%) 
 

PMNs (109/L) 
      

  Mean (SD) 3.80 
(2.28) 

6.49 (5.82) - 9.02 
(4.89) 

8.46 (5.42) - 

  Median [Min, 
Max] 

3.70 
[0.288, 
9.03] 

5.35 [0, 
19.9] 

- 8.95 
[0.900, 
23.2] 

6.90 [1.69, 
24.7] 

- 

  Missing 
 

2 (5.7%) 
 

2 (3.6%) 1 (2.2%)  

Lab       

  Bristol  20  10 10  

  Oxford 25 15 31 46 36 37 

Sample batch       

  06/04/2013   -  17* - 

  04/08/2016 25 35 - 32 27 - 

  08/11/2017   - 24 2 - 
Table 15 Demographic and clinical data for patients included within metaproteomic analyses. Samples from acute febrile 
patients were mixed with pooled convalescent serum. *The KD patients in the first batch of samples were late samples from 
patients already treated with IVIG. Other subacute samples came from patients presenting late and are taken before IVIG.  

Twenty-eight samples come from individuals also providing metagenomic data, 26 KD and 2 Febrile. 

Fourteen additional samples were present in the batch analysed at Bristol – comprising ten healthy 

adult controls and the two pairs of adult samples with and without spiked influenza vaccine (see 

preceding chapter). They were processed in the pipelines but not included in the presentation of 

results. 

Proteomic data 

The samples run at Bristol provided a median 78 074 MS2 scans per sample (IQR 72 987-86 703), and 

Oxford 27 308 (22 985-30 875). 

Database reduction 

Metanovo reduced the unrestricted database from 28 million sequences and 9.7 billion amino acids 

to 94 267 sequences and 45.9 million amino acids. These comprise 1 010 human sequences, and 6 752 

from other species. The greatest number of non-human sequences are provided by Rhizophagus 

clarus (324). 3 676 sequences are shared with the database produced in the preceding chapter. 
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Peptide and protein identification 

At 1% PSM FDR, 7.9% and 4.1 % of spectra were identified from samples at Bristol and Oxford 

respectively. There was a median of 3 968 (IQR 4 454-5072) and 749 (IQR 427-1 594) PSMs available 

per sample. 

More protein groups were identified in Bristol samples than Oxford (5 095 vs 2 432). This remained 

true after applying protein FDR control at 1% (589 vs 433). The retained proteins comprised 93% and 

88% of PSMs at Bristol and Oxford respectively. 

Match between runs increased the identification of MS1 features, with 58% of identifications based 

upon matching. 

The default MaxQuant contaminants database includes serum proteins from humans and other 

mammals (mostly Bos taurus). Of 79 contaminant protein groups identified across the two runs, 20 

were deemed likely true sample proteins (e.g. albumin, immunoglobulin and complement related 

proteins). 

Remaining likely true contaminants accounted for 2.9% of PSMs in Bristol and 1.6% of PSMs at Oxford. 

Within each site there was no evidence for difference in contaminant PSM proportion by group (Bristol 

p=0.18 by Wilcoxon rank sum; Oxford p=0.18 by Kruskal-Wallis). 

Human proteins 

Human protein groups passing FDR control were ranked within samples based on iBAQ values. Table 

16 shows the top 10 protein groups based upon mean ranking, stratified by laboratory (due to 

different experimental techniques which are likely to impact upon quantitation). 

Rank Bristol Oxford 

1 Immunoglobulin Kappa Chain Immunoglobulin G1 

2 Albumin Immunoglobulin Lambda Chain 
2 

3 Immunoglobulin G1 Immunoglobulin Kappa Chain 

4 Immunoglobulin G3 Complement Factor 1QB 

5 Immunoglobulin Lambda Chain 
2 

Apolipoprotein A1 

6 Immunoglobulin M Apolipoprotein C1 

7 Complement Factor 4 Binding 
Protein Subunit A 

Immunoglobulin G2 

8 Complement Factor 4B Apolipoprotein C3 

9 Complement Factor 1QC Immunoglobulin Kappa Variable 
320 

10 Complement Factor 1QB Haemoglobin subunit alpha 

Table 16 The most abundant 10 proteins per laboratory by mean iBAQ ranking. Proteins present in both rankings are 
underlined. 
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When grouped into protein families, the 5 top-ranked in Bristol were Immunoglobulin, Complement, 

Albumin, Apolipoprotein and coagulation factors. In Oxford, Immunoglobulin, Apolipoprotein, 

Complement, Haemoglobin and Amyloid were top. 

Non-human protein identifications 

Protein groups were classified at organism, species and genus levels. Where protein groups included 

multiple taxa at any level, the taxon with the larger number of razor peptide matches was retained 

(with alphabetical precedence if any tie). Identifications at each level are summarised in Table 17. 

Notably the protein FDR for microbial proteins exceeds 1% in this subset of proteins since the FDR in 

the larger number of human proteins is lower (0.4%). 

Each microbial protein group was identified in a median of 8 samples (IQR 2-22, maximum 226), rising 

to 21 (IQR 6-40) among those passing protein FDR. Match between runs was important for 

identification of microbial proteins, with 66% of protein-sample identifications by matching. 

Most microbial protein groups were identified in one laboratory only (3 928, 90%). This proportion 

was lower at species and genus levels, without protein FDR control (72 and 58% respectively). Perhaps 

surprisingly, the proportion was higher after protein FDR control (85 and 80%). 

The majority of microbial protein identifications depended upon only one distinct peptide (97%). As 

expected, this proportion was lower with protein FDR control (47%). Microbial proteins failing FDR 

control almost all had only one identified peptide (3863/3898). Microbial protein coverage was low, 

with median 2.6% (IQR 1.5-4.5%, maximum 64%). Twenty-six Rhizophagus proteins were detected, 

though none passed protein FDR control. 

Twenty-one microbial protein groups were identified in at least half of samples and passed protein 

FDR control. All but one were identified from both laboratory’s samples, however only one protein 

was identified by more than two peptides. Each originated from distinct species, though two genera 

possessed two proteins each (Phialocephala and Streptomyces). Other genera comprised Bacillus, 

Level Number identified (FDR) 

No protein FDR 1% Protein FDR 

Protein 3 660 (52%) 121 (6%) 

Organism 2 275 (60%) 115 (6%) 

Species 2 221 (60%) 113 (6%) 

Genus 1 216 (69%) 92 (8%) 

Table 17 Number of proteins, organisms, species and genera identified with and without protein false discovery rate (FDR) 
control. For each number, the corresponding FDR is given. 
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Bdellovibrio phage, Chaetomium, Elizabethkingia, Fonsecaea, Insolitispirillium, Paenibacillus, 

Penicillium, Polaribacter, Pseudomonas, Rozella, Sphingobacteriales, Sphingobacterium, 

Syntrophobotulus, Trichoderma and Variovorax. 

Twelve microbial protein groups surpassed 25% coverage in one laboratory and passed protein FDR 

control. Seven of these were influenza proteins with MS1 features matched between runs to spiked 

samples in at most six samples. The others included a thioredoxin protein with razor species identified 

as Klebsiella pneumoniae (though razor protein identification is to E. coli) identified from 5 peptides 

across 40 samples and a Shigella flexneri glutaredoxin identified by 4 peptides across 18 samples. Both 

were identified in Bristol alone. Other proteins were identified by one or two peptides only. 

All microbial peptides belonging to protein groups identified at 1% FDR with at least one PSM in the 

samples were submitted to UniPept (Mesuere et al., 2015) to explore the taxonomic profile of lowest 

common ancestor identifications (Figure 22). Of 199 peptides, 189 could be identified. 

Under half of identified peptides were specific to genus level or lower (n=75; 40%), while 81 (43%) 

were assigned to the root node. Three genera possessed four distinct peptides: Penicillium, 

Tenacibaculum and Tilletiopsis. The remainder possessed two or fewer. 

Microbial protein counts were similar between KD and febrile samples in Bristol (median 9 vs. 10; 

p=0.26 by Wilcoxon rank sum). Differences were evidence between groups in Oxford, with KD highest, 

Figure 22 UniPept analysis (Mesuere et al, 2015) of taxonomic profile of microbial peptides identified at 1% protein FDR in 
patient samples by at least 1 PSM. The area of the circle is proportional to the number of peptides contained within each 
taxon. The segment shows the proportion of those peptides assigned to the taxon. FDR: false discovery rate; PSM: peptide 
spectral match. 
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followed by febrile, healthy then TB samples (29, 23.5, 14.5 and 11.5 respectively; p=0.09, <0.001 and 

<0.001 for KD compared to each). 

Microbial peptides had similar intensities to non-microbial peptides from proteins passing FDR control 

(Figure 23). 

Microbe-KD associations 

Microbes with prevalence associated with KD were sought at species and genus level. Analyses were 

conducted within laboratory groups for taxa restricted to a single laboratory. Comparisons were made 

by Fisher’s exact test and adjusted (Benjamini-Hochberg) between KD and febrile and healthy controls 

separately and combined, and with the TB group included. 

Four species demonstrated increased prevalence in KD compared to healthy controls at 1% protein 

FDR. However, no species, including these, were significant when KD was compared to febrile controls, 

or both controls together. Table 18 shows that the prevalence of these species is similar or higher 

among febrile controls and TB samples. Identical results were recapitulated at genus level. 

             

                                        

   

   

   

   

             

 
 
 
 
   

         

     

    

Figure 23 MS1 intensity of peptides from proteins at 1% false discovery rate by microbial status. MS: mass spectrometry. 
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Quandenser 

242 samples could be processed by this “spectra first” approach, as one sample could not be 

converted to mzML format and another consistently prevented the software from running to 

completion. MS1 feature groups numbered 3.0 million. From 9.4 million MS2s, 4.9 million MS2 clusters 

were identified, 81% of which were singletons. 

A significant proportion (55%) of MS2 clusters were not assigned to MS1 features, preventing their 

detection by matching in other samples. These mostly originated from the Bristol samples. 

MS1 features were frequently specific to laboratory (only 23% of features present in 10% or more of 

either labs’ samples were shared), presumably due to loading differences and the challenge of aligning 

retention times. MS2 clusters similarly were frequently lab-specific (4% of clusters of size 10 or above 

included MS2s from both labs). 

Fisher’s exact test at 5% FDR identified 1 488 feature groups with increased prevalence in KD with 

29 646 corresponding MS2 clusters. 3 544 highly-prevalent feature groups (190 or more samples) 

were identified and the largest MS2 cluster for each was extracted (n=3 484) to include MS2s with a 

high likelihood of being identifiable. 

KD-associated features were detected in a median of 73 samples (IQR 61-86) and largest MS2 clusters 

contained a median of 3 spectra (IQR 2-5). Control features were detected in a median of 202 samples 

(IQR 191 to 218) and largest MS2 clusters contained a median of 9 spectra (IQR 3-39). Mean intensities 

of KD-associated features was low compared to control features – median 8.4×105 vs. 9.2×107. 

Consensus spectra were extracted for all 33 130 clusters and searched against the reference proteome 

database with comet and x!tandem using SearchGUI 4.0.0-beta (Eng, Jahan & Hoopmann, 2013; Fenyö 

& Beavis, 2003; Barsnes & Vaudel, 2018). This tool was selected since it is not possible to search 

Species Lab KD Healthy Febrile TB KD vs healthy 
adjusted p value 

Hyaloscypha 
variabilis 

Both 59/102 
(57.8%) 

2/31 
(6.5%) 

39/60 
(65%) 

37/37 
(100%) 

<0.001 

Polaribacter sp. 
ALD11 

Both 67/102 
(65.7%) 

7/31 
(22.6%) 

39/60 
(65%) 

37/37 
(100%) 

0.003 

Pseudomassariella 
vexata 

Oxford 29/82 
(35.4%) 

0/31 
(0%) 

26/40 
(65%) 

4/37 
(10.8%) 

0.002 

Sphingobacteriales 
bacterium 

Both 58/102 
(56.9%) 

5/31 
(16.1%) 

56/60 
(93.3%) 

37/37 
(100%) 

0.007 

Table 18 Species with significantly higher prevalence in KD versus healthy controls. Results for other comparisons are not 
shown, as there are no species significantly more prevalent in KD. P values are adjusted by the method of Benjamini 
Hochberg. 
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spectra alone with MaxQuant. The distribution of PSM scores within target and decoy databases were 

similar, likely due to the size of the database (data not shown). 

To mitigate against this, database reduction was carried out using MetaNovo, resulting in a database 

of 179 972 amino acids, of which human proteins comprised 26%. Only one organism (Hanseniospora 

osmophila) contributed more than 2 proteins. 

567 of 3 484 (16%) consensus MS2 spectra from highly prevalent feature groups had PSMs at 1% FDR, 

of which 559 were confident. 96 of 126 proteins were human and comprised known constituents of 

PEG eluant (including immunoglobulin and complement). 

In contrast, only 45 of 29 646 (0.2%) consensus MS2 spectra from differentially-prevalent feature 

groups had PSMs, 39 of which were confident. Five of 14 proteins were human (expected proteins, as 

above). Nine were single peptides from distinct organisms, whose genera comprised Aspergillus, 

Cohaesibacter, Coniochaeta, Dendrosporobacter, Gloebacter, Kitasatospora, Phenylobacterium, 

Pseudogymnoascus and Xenorhabdus. 

Discussion 

In this chapter, I undertook the challenge of identifying potential microbial protein antigens in a large 

cohort of samples from children with KD and multiple sets of controls. Experimental design and data 

acquisition preceded my involvement in the project. 

Healthy controls provide samples in which circulating microbial antigen will not be expected. Febrile 

samples provide alternative controls, where antigen from pathogens may be expected though KD-

related organisms should not be enriched. Subacute KD and febrile cases (≥7 days from fever onset) 

were included to cover to the period during which circulating immune complexes are detected in KD. 

It was considered that in acute cases (<7 days) microbial antigens may be more abundant both in 

febrile illnesses and KD, thus increasing the potential to detect them. Convalescent serum was added 

(paired, in the case of KD) to encourage formation of ICs for precipitation. TB samples were included 

because the finding of BCG scar inflammation in some children with KD raises the possibility of a 

shared antigen. 

In the preceding chapter I explored the particular challenges posed by the “minority metaproteomics” 

analysis to identify microbial proteins over-represented in KD ICs. Metanovo was able to reduce a 

large reference database, concentrating both human sequences and those from the influenza viruses 

known to be present. Indeed, the performance of the subsequent MaxQuant search was better with 

this database than an a priori taxonomy-restricted database. 
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Database reduction and conventional search approach 

Metanovo required reimplementation to run at the scale required for these samples. Nextflow (Di 

Tommaso et al., 2017) was critical to the feasibility of this, allowing the bash scripts and Python code 

to be orchestrated across multiple nodes of the HPC infrastructure, taking advantage of almost 200 

machines. 

The reduced database was of a similar size to that from the preceding chapter with a similar number 

of human proteins. Metanovo adds a protein to the database when it matches a sequence tag from a 

spectrum which does not have a higher-ranking match (Potgieter et al., 2019). This suggests that 

saturation may have occurred with a relatively small number of spectra. 

Rhizophagus proteins were again abundant within the database but not detected after protein FDR 

control. It is likely that their strong representation relates to the large number of proteins in the 

reference database. 

Only 3% of microbial proteins with peptide identifications passed protein FDR control. This contrasts 

with a rate of 86% for human proteins. This is consistent with the much higher protein FDR estimated 

within the microbial protein subset (52% without protein FDR, and 6% with). 

Contaminants are a ubiquitous problem in metagenomics and metaproteomics. Contaminant 

databases in proteomics typically focus on high-abundance proteins present in the laboratory 

environment, mostly proteins used in experimental processes and skin and hair proteins. Microbial 

contamination is not typically considered. This may be because typical microbial contaminants are 

present at very low abundances, and are unlikely to be detectable. Even should microbial contaminant 

proteins be detected and fragmented within the mass spectrometer, they are unlikely to be 

represented within single-species databases typically used. 

It is possible that some of the microbial protein signal, which is detected in all sample groups, 

represents background contamination. However, there is little overlap between the spectrum of 

organisms detected and typical metagenomic laboratory contaminants, as considered in chapter 3, 

This also applies when considering proteins with high sequence coverage or present across a high 

proportion of samples. The strikingly similar peptide intensity profile for microbial and non-microbial 

proteins is unexpected if the majority of this signal represents low abundance contaminants and/or 

circulating microbial antigen. 

Taken together, this raises the concern that a sizable proportion of putative microbial protein 

identifications could be erroneous labels given to human peptides not identified by the sequence 

database. Concerns have been raised that two-step approaches to proteomic searching can invalidate 
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FDR control (Everett, Bierl & Master, 2010; Bern & Kil, 2011). Estimates presented here may be best 

taken as a lower bound. 

Even should true microbial protein signals be buried among a range of spurious identifications, the 

stochastic nature of the latter should allow detection of valid signals – provided a sufficiently large 

sample for the strength of the signal. Thus, the prevalence of species and genera by sample group 

(largely on the basis of single proteins) was compared. 

Significantly over-represented organisms were identified only when comparing KD samples to healthy 

controls. These organisms were each identified by single proteins, and detections were similarly 

prevalent among febrile controls and samples from children with TB. This illustrates the importance 

of selecting appropriate controls, and the potential for multiple controls to assist in interpretation of 

results. 

Any causative agent of KD is unlikely to be highly prevalent among both children with other febrile 

illnesses and TB. The possibility looms large of spurious signal linked to misidentified human peptides 

from proteins which are at low abundance among healthy controls. 

The organisms identified are environmental, and with no known association with human infection or 

disease from literature searches.  Two are fungal. Hyloscypha is a genus of dimorphic fungi, of family 

Hyaloscyphacaea and order Heliotiales. Heliotales are described as “morphologically very variable and 

[exhibiting] saprobic, parasitic as well as mycorrhizal life strategies” (Kosonen, Huhtinen & Hansen, 

2021). Pseudomassariella vexata is the only recorded species of Pseudomassariella, also a fungus of 

the clade Leotiomyceta, and no specific literature on its ecology can be identified. 

Polaribacteria are marine organisms with important environmental roles (Bowman, 2018). 

Sphingobacteriales are an order of Sphingobacteriia, which were determined to be a major 

component of lake water and sediment in a study in China (Qu et al., 2015). 

Spectra-first approach with Quandenser 

Traditional database searches are computationally expensive because of the large numbers of 

experimental and theoretical spectra that must be compared. This is exacerbated in metaproteomic 

searches. Quandenser proposes to “focus on the spectra that matter” by implementing advanced MS1 

feature identification, quantification and matching between runs (with FDR control informed by MS2 

spectral clustering). In this way relevant features and their corresponding spectral clusters can be 

selected based on signals of differential abundance or prevalence, only then undergoing identification. 

Processing the large number of samples through this novel approach was challenging due both to 

computational resources required and the need for further development by the author. Limitations 
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were imposed by the dependence on matching features between two groups of samples, which 

underwent preparation and mass spectrometry in different laboratories, with different procedures 

and mass spectrometers. The segregation of most features present in 10% or more samples to either 

laboratory suggests that feature matching between laboratories is limited. 

The high prevalence of MS2 spectra (mostly from Bristol samples) which could not be paired with MS1 

features is a further challenge. Notably, a much lower proportion of MS2 spectra identified by 

MaxQuant (12%) lacked a corresponding MS1 feature, though again this was similarly higher in Bristol 

(19 vs 4%). The author of Quandenser suggested the feature detection algorithm may have struggled 

due to higher peptide loading and consequent detector saturation in Bristol (M The, personal 

communication).  

Nonetheless, it was possible to identify nearly 1 500 MS1 features which were significantly over-

represented among KD samples and extract corresponding consensus MS2s. The consensus-spectrum 

approach is intended to result in the highest quality spectrum being used for identification. A control 

group of consensus spectra from high prevalence features was also included for comparison. 

The massive reduction achieved in the number of spectra to be identified made it computationally 

tractable to search an unreduced reference database. However, this led to very poor discrimination 

between quality of matches to the target and decoy databases – likely relating to the increased 

probability of better quality matches to the large decoy database. 

Consequently, database reduction became a necessary step. Disappointingly, following this reduction 

a very low proportion of KD-associated MS2s could be identified, as compared to the MS2s from high-

prevalence features. Among those few identified MS2s were human peptides and an array of isolated 

matches to single organisms. 

The reasons for the low identification rate of these spectra remains to be determined. Spectral quality 

is a likely reason. The control spectra are derived from high prevalence and intensity peptides, which 

give rise to many MS2 fragment spectra which are expected to have high signal-to-noise ratio. This 

large number of high-quality spectra should produce high quality consensus spectra. In contrast, KD-

associated spectra are derived from peptides with lower prevalence and intensity, and with fewer 

MS2 spectra, likely with lower signal-to-noise ratio, from which to generate consensus spectra. It is 

also possible that they represent peptides which are not found in the reference database. 
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Conclusions 

Despite the extensive depth of proteomic sequencing undertaken over a large number of samples, 

significant computational and inferential challenges were faced in the search for microbial proteins 

associated with KD. 

Results from two complementary computational approaches were distinct and neither gave rise to 

consistent or strong signals towards one or more organisms. 

There is considerable potential in further analysis of these data. Experimental approaches could also 

be optimised. Regarding sample preparation, methods to remove abundant immunoglobulins without 

depleting cognate antigen would allow the mass spectrometer to focus on fragmenting and identifying 

non-antibody peptides. Further potential improvements, including mass spectrometry and analytic 

methods will be considered in detail in chapter 9 (p142). 
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7 |  Antibody proteomics 

Introduction 

My work in the preceding chapters has focused on direct identification of microbes at the levels of 

protein and DNA sequence. Both of the datasets furnish data which can be used to answer different 

questions. 

Firstly, as illustrated in chapter 3, the metagenomic data provides more human whole genome 

sequence (WGS) data than microbial data. There are no published WGS analyses in KD and only one 

published whole exome sequencing study of 159 KD patients with controls (Kim et al., 2021) and two 

small WGS studies of a family (Kim et al., 2017) and a child (Kanda et al., 2021). At the time of writing, 

a colleague has begun to explore Human Leukocyte Antigen (HLA) haplotypes based on these data 

(Evangelos Bellos, personal communication). 

Secondly, the PEG-precipitates are enriched for immunoglobulins (see Figure 17, p96), as would be 

expected. Thus, the diversity of variable region tryptic peptides, as well as those from the constant 

region can be anticipated within the proteomic data. These data are perhaps more relevant to the 

search for microbial antigens which could trigger KD, given the genetic evidence supporting a role for 

the B-cell response and immune complexes, as reviewed in the introduction. 

Existing data from a range of illnesses supports the association of distinct patterns of antibody variable 

region responses, usually at the level of bulk sequencing of the B-cell receptor (BCR), or 

complementarity determining region (CDR) 3. Convergent antibody signatures have been 

demonstrated in human Dengue fever (Parameswaran et al., 2013), hepatitis B and influenza 

vaccination (Galson et al., 2015; Jackson et al., 2014; Adamson et al., 2017). 

Proteomic analysis of antibodies is challenging due to the high diversity of the variable region and 

poor representation in sequence databases. The most frequent application of proteomics is to 

monoclonal antibodies, where post-translational modifications, including glycosylation, can be 

explored (Guthals et al., 2017; Cheung et al., 2012; Sato et al., 2012). Database-independent de novo 

approaches can be used, with specialised approaches in commercial software (Tran et al., 2016). 

Some groups have made progress in the proteomic analysis of bulk or affinity-purified 

immunoglobulin, frequently in tandem with BCR sequencing in the context of vaccination. In one 

example, Lee et al. (2016) obtained peripheral blood samples from four individuals prior to influenza 

vaccination and at three subsequent timepoints. IgG antibody binding fragments (F(ab’)2 were 

extracted and underwent affinity purification with influenza antigen. Sample-specific antibody 

sequence databases were generated for proteomic searching. They demonstrated that the post-
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vaccination repertoire was dominated by pre-existing antibody clonotypes, and found a number of 

clonotypes with cross-reactivity for haemagglutinin 1 and 3. Several other groups have studied the 

antibody response to vaccination using proteomics (VanDuijn et al., 2017; Adamson et al., 2017; 

Lavinder et al., 2014) 

No proteomic studies have been conducted of antibodies in KD, though one group studied BCR 

sequences and identified clonotypes shared by IVIG-resistant KD cases and not present in controls (Ko 

et al., 2018). More recently Chang et al. (2022) explored the clonotypes underlying a large expansion 

in IGHV4-34 usage among plasmablasts in a single KD patient. They were unable to identify a specific 

antigen bound by the antibodies. 

In this chapter, I undertake secondary analyses of the proteomic data from PEG-precipitated samples 

used in chapters 6 and 7, with the aim of detecting variable region immunoglobulin peptides in KD 

patients and controls and exploring quantitative differences in V and J segment usage. 

Objectives are: 

1. Detect antibody heavy and light chain peptides in PEG-precipitates 

2. Structurally align antibody peptides to the immunoglobulin molecule and classify according to 

isotype and loci 

3. Describe coverage of the antibody molecule 

4. Compare V and J locus usage between KD cases and controls 

Methods 

Preprocessing of abYsis database 

In the first step, structural numbering of antibody sequences required processing. The abYsis XML 

databases gives amino acid sequences, structural numbering and region co-ordinates for human and 

non-human antibodies according to Kabat, Chothia and modified Chothia (Martin) definitions 

(Swindells et al., 2017; Abhinandan & Martin, 2008). 

The abYsis Kabat and EMBLIg databases were processed in R. Human antibodies with heavy and/or 

light chain amino acid sequences available were selected. Residue numbering was processed to 

identify insertions (indicated with alphabetical termination, e.g. H52A) and deletions (indicated by 

non-consecutive numbering (e.g. H29-H32). These were summarised in an edit string (e.g. “6[-

1]:95[2]” signifying one amino acid deletion following residue 6 and 2 insertions following residue 95). 

Residues exceeding the standard range of heavy and light chain amino acids (i.e. H114, L110-111) were 

renamed to become insertions (H113A, L09A-B) to prevent inconsistency in canonical length. 
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Proteomic database searching 

As described, 40 samples together with 14 method development samples underwent mass 

spectrometry at both Bristol and Oxford. The remaining 153 samples were analysed only in Oxford. 

For this analysis, all Raw files were included and analysed together in MaxQuant 1.6.10.43. The human 

reference proteome and abYsis database was used, with MBR enabled. Other settings were as 

described in Chapter 7. 

For downstream analysis, peptide identifications in Oxford for samples analysed in Bristol were 

disregarded – in this way, these mass spectrometry runs acted as a source of additional identifications 

through MBR. 

Structural alignment and sequence classification of antibody peptides 

Peptides identified by MaxQuant and matching to the abYsis database sequences (including both 

constant and variable regions) were identified, herein referred to as abYsis peptides. Individual abYsis 

peptides could match with sequences from one or more references. Sequences were classified as 

heavy or light chain based on at least a two-fold excess of matches to one chain. 

Each abYsis peptide was positionally located within matching reference sequences to determine 

Martin numbering of the first and last residues. The consensus value was taken. Some peptides could 

not be given structural numbering because no reference sequence was numbered, due to failure of 

AbNum (Abhinandan & Martin, 2008). These reference sequences were structurally numbered with 

ANARCI where possible (Dunbar & Deane, 2016) and the process repeated. 

Classification of antibody peptides 

abYsis peptides including at least 7 amino acids belonging to the constant region of heavy or light 

chains were identified. Constant region sequences were extracted and partial edit distances calculated 

to UniProt reference sequences for IgG1-4, IgM, IgE, IgA1-2, IgD, and kappa and lambda light chain 

constant regions. abYsis peptides were classified according to the closest class(es). 

abYsis peptides covering the variable region were queried by BLAST against the Immunogenetics 

(IMGT) RefSeq amino acid database of Variable, Diversity and Joining (V, D and J) regions. Peptides 

were classified according to the best match(es) (lowest E value), including multiple assignments where 

necessary. Assignments were summarised at locus and locus group levels (e.g. “IGHV4-4,IGHV4-59” 

and “IGHV4”). Locus groups were further simplified by grouping lettered groups (e.g. “IGKV3,IGKV3D” 

and “IGKV3/D”). 
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Relative contributions of constant peptides by antibody class and subclass and variable peptides by 

locus were summarised. For the purpose of summarising protein and protein class contributions by 

sample, modified iBAQ intensities were calculated as described in the preceding chapter. 

Analysis of antibody coverage 

Coverage of the heavy and light chains were summarised by unique peptides and MS1 intensity. 

Differential analysis 

Variable region peptides were quantile normalised. Separately for V and J loci, normalised intensities 

were summarised by sample and locus and scaled to achieve identical sums per sample. Summarised 

intensities were log2 transformed. 

Two-dimensional principal co-ordinates analysis (PCoA) was used to explore overall differences 

between sample groups, concatenating the normalised V and J locus matrices. ANCOVA (as 

implemented within vegan) was used to explore factors explaining variance (Dixon, 2003). 

Limma (Ritchie et al., 2015) was used to test for differential abundance by group for V and J loci 

separately. Contrasts were established to compare pre-IVIg KD samples with Febrile and Healthy 

samples, and with post-IVIG KD samples. FDR control was implemented with the method of Benjamini 

and Hochberg at 5%. Unadjusted confidence intervals for log2-fold changes were presented. 

Results 

abYsis database processing 

The EBMLIg and Kabat databases (dated 25 and 17 January 2018 respectively) comprised 156 104 

antibody sequences. These provided 72 935 unique heavy and light chain amino acid sequences from 

human antibodies with sequences between 70 and 627 amino acids, which provided the sequence 

database to be searched. Of these sequences, 62 384 (86%) had structural numbering applied by 

abNum. 

Peptides identified 

Almost 1.5 million peptide identifications were made across the 244 samples, comprising 31 253 

peptides and accounting for just over 700 thousand MS2 fragment spectra (of nearly 10 million 

obtained). 54% of identifications were made by MBR. 38% of identifications were antibody sequences, 

but these comprised 19 130 (61%) of the unique peptides. 

The PSM FDR was 1.0%. However, decoy identifications were all from non-antibody sequences, 

leading to an estimated 1.6% FDR for non-antibody peptides and 0% for antibody peptides. 
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Cysteine-containing peptides 

Importantly, it was noted that cysteine-containing peptides were few in data obtained in Oxford (0.6% 

of peptides vs 30% in Bristol). This led to the recognition that the SMART Digest Kit (Thermo) used for 

sample processing in Oxford did not include reducing or alkylating agents. Thus, disulfide bonds will 

be expected to be largely intact, and peptides including these bonds unidentifiable unless some 

reduction has occurred. Additionally, cysteines not participating in disulfide bonds will be 

unidentifiable, since they will not be carbamidomethylated. The FDR in the subset of peptides 

containing cysteine residues was estimated at 1% in Bristol, and 13% in Oxford. 

Three samples with the highest numbers of PSMs were re-run without carbamidomethylated cysteine 

as a fixed modification to explore whether this would materially increase the numbers of peptides 

identified. The number of cysteine-containing peptides increased from 61 to 221 (55 to 158 unique 

peptides). For antibody peptides alone, the increase was from 44 to 104 (39 to 66 unique peptides), 

corresponding to a gain of less than 1% in both peptides and unique peptides. The total intensity of 

cysteine-containing peptides was 0.6% of the intensity of peptides identified in the original analysis. 

Due to the limited gains in identifications and intensity, the analysis was not re-rerun across all 

samples. Further, since any reduction of disulfide bonds was likely to be incomplete and variable, 

intensity-based comparisons between sample groups may be uninformative even could these 

peptides be identified. 

Based on this and the empirical finding of a high FDR among cysteine-containing peptides, the 328 

distinct cysteine-containing peptides identified in Oxford, and 387 additional peptides based on MBR 

were censored from further analysis. 

Identification and structural alignment of antibody peptides 

The majority of abYsis peptides could be numbered with reference to abNum structural numbering 

(17 035; 89%) from one or more matching antibody sequences. Corresponding antibody sequences 

for unnumbered abYsis peptides were extracted and numbered with ANARCI. This allowed most 

remaining peptides to be numbered (1 654; 78%), with only 465 remaining unnumbered. 

Peptides with 7 or more constant region peptides (n=443) were identified by partial distance 

measurement to constant region reference sequences. The majority (91%, accounting for 98% of 

occurrences) could be classified with a maximum edit distance of two. IgG subclasses provided the 

largest number of distinct peptides and total identifications (Table 19). 
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Peptides including part of the variable region (n=18 233) and unlocated abYsis peptides (n=465) were 

used as queries against the IMGT RefSeq amino acid database with BLAST. 17 582 received 

identifications with variable (V) loci, and 824 with junctional (J) loci, leaving 292 without 

identifications. Identifications predominantly corresponded to a single locus group – 95% of V loci and 

90% of J loci. These are detailed in Table 20. 

 

Immunoglobulin class Distinct peptides Number of identifications 

IgG 157 56 263 

   1   31   13 543 

   2   15   3 848 

   3   23   3 833 

   4   14   1 321 

  Mixed   74   33 718 

IgM 66 18 785 

IgA 73 5 232 

IgD 22 1 254 

IgE 2 511 

Kappa constant 65 24 786 

Lambda constant 75 9 858 

Mixed 19 523 

Total 464 96 609 

Table 19 Classification of constant region peptides and number of occurrences across all samples. 

Heavy chain 
locus 

Unique 
peptides 

 Kappa light chain 
locus 

Unique 
peptides 

 Lambda light 
chain locus 

Unique 
peptides 

IGHJ1 35  IGKJ1 41  IGLJ1 14 

IGHJ2 43  IGKJ2 35  IGLJ3 33 

IGHJ3 86  IGKJ3 23  IGLJ5 1 

IGHJ4 189  IGKJ4 53  IGLJ7 4 

IGHJ5 73  IGKJ5 17  IGLV1 728 

IGHJ6 98  IGKV1/D 1 886  IGLV2 322 

IGHV1 1 804  IGKV2/D 382  IGLV3 763 

IGHV2 179  IGKV3/D 1 507  IGLV4 73 

IGHV3 6 740  IGKV4 260  IGLV5 56 

IGHV4 1 672  IGKV5 6  IGLV6 118 

IGHV5 590  IGKV6/D 27  IGLV7 44 

IGHV6 127  IGKV7 31  IGLV8 24 

IGHV7 89     IGLV9 17 

      IGLV10 7 

      IGLV11 5 

Total 11 725  Total 4 268  Total 2 209 

Identifications 255 662  Identifications 154 346  Identifications 71 252 
Table 20 Numbers of unique peptides assigned specifically to individual immunoglobulin locus groups with overall numbers 
of identifications by chain. 
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Figure 24 Unique peptides per residue of the immunoglobulin molecule. Results for heavy and light chains and each 
laboratory set are shown separately. Complementarity determining regions (CDR) are highlighted in grey. 

 

Figure 25 Mean total MS1 feature intensity per sample by residue over the immunoglobulin molecule. Results for heavy 
and light chains in each laboratory's sample set are shown separately. Complementarity determining regions (CDR) are 
highlighted in grey. The variable region is shown in blue and constant region in red. MS: mass spectrometry. 
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Coverage 

Regions of the immunoglobulin molecule exhibited variable depths of coverage, both by unique 

peptides (Figure 24) and MS1 feature intensity per sample, a proxy for peptide quantity (Figure 25). 

CDR2 of the heavy chain, and CDR1 and 2 of the light chain had high numbers of unique peptides 

identified in both laboratories. Far lower numbers of unique peptides were identified in the region of 

CDR3. 

A disulfide bond is expected in the antibody variable region between a cysteine residue N-terminal of 

CDR1 (H22/L23) to another N-terminal of CDR3 (H92/L88). Lower coverage in Oxford over H22, H92, 

L23 and L88 is seen, as expected. There is great disparity between intensity-based coverage of the 

constant regions between Oxford and Bristol, likely related to the peptides containing disulfide bonds. 

Class Proportion of modified iBAQ intensity 

Bristol Oxford 

Albumin 11.4% (8.7-16.5) 1.0% (0.4-11.2) 

Complement 36.0% (27.1-42.2) 22.0% (12.1-35.2) 

Immunoglobulin 34.4% (30.8-40.1) 37.8% (28.9-48) 

Other 13.9% (11-19.2) 29.6% (20.5-37.8) 

Figure 26 Proportion of coagulation proteins in samples estimated by modified iBAQ approach, shown by laboratory and 
sample type. Contaminants are excluded. iBAQ: intensity-based absolute quantification. 

Table 21 Proportion of protein abundance estimated by modified iBAQ approach in each lab, excluding contaminant and 
coagulation proteins. 
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Protein classes 

Overall, a median of 39 and 25% of MS1 feature intensity was identified in samples analysed at Bristol 

and Oxford respectively (IQR 36-41% and 16-38%). 

Discounting contaminants and haemoglobin, coagulation proteins represented higher proportions of 

modified iBAQ estimates in plasma samples and mixed plasma and serum than in serum samples, as 

expected (Figure 26). Setting aside coagulation proteins, immunoglobulins represented around a third 

of modified iBAQ intensity (Table 21). 

Immunoglobulin classes and subclasses 

Across all samples, IgG and IgM accounted for a median of 98.8% (IQR 97.0-99.8%) of estimated heavy 

chain abundance, with slightly lower estimates at Bristol (median 96.2 vs 99.5%). Kappa chains 

accounted for a median 54.7% of estimated light chain abundance (IQR 38.3-65.6%) with higher 

estimates at Bristol (median 70.4 vs 48.8%). 

The majority of IgG subclass abundance originated from non-subclass specific peptides (median 

71.4%, IQR 62.8-85.3%). Subclass specific breakdowns are shown in Table 22. 

IgG3 is detected at much lower abundance in Oxford samples as compared to Bristol. This corresponds 

to a low number of peptides detected (7/23 total for IgG3) and the non-detection of the most 

abundant peptide in Bristol. IgG3 contains 18 cysteine residues (other IgG isotypes 9-11), and 

inspection of the peptides showed the peptides identified in Oxford did not include cysteine residues 

(excluding low-intensity matched features already excluded). 

Reviewing the three samples from Oxford run with optimised modification settings, PSMs mapping to 

the canonical IgG3 increased from 120 to 132, and unique peptides from 7 to 14. Six of the additional 

Sub-
class 

Bristol Oxford 

Febrile KD Febrile Healthy 
(n=31) 

KD  
TB 

(n=37) 
S 

(n=20) 
A+C 
(n=7) 

S 
(n=13) 

A+C 
(n=25) 

S 
(n=15) 

A+C 
(n=46) 

S pre-
IVIG 
(n=20) 

S post-
IVIG 
(n=16) 

IgG1 72.1%  
(67.3-73.7) 

76.7%  
(73.4-79) 

79.8%  
(68.8-84.4) 

76.2%  
(68.2-80.4) 

78.6%  
(68.9-92.5) 

36.4%  
(25.7-55.7) 

78.4%  
(48.8-84.2) 

63.9%  
(53.2-77.9) 

52%  
(44.3-58.3) 

60%  
(40.8-
77.8) 

IgG2 4.2%  
(3.4-5.2) 

10.2%  
(7-13.4) 

3.7%  
(2.6-6.5) 

22.1%  
(17.6-31.5) 

19.7%  
(5.9-23.9) 

56.4%  
(40.3-66.6) 

21.4%  
(14.4-45.2) 

31.6%  
(21.4-44.3) 

46.5%  
(39.6-55.6) 

34.3%  
(19.6-
50.7) 

IgG3 24.7%  
(21.8-28.1) 

14.4%  
(6.7-16.5) 

13.8%  
(10.5-27.9) 

0.2%  
(0.1-0.3) 

0.2%  
(0-0.8) 

0.2%  
(0.1-0.3) 

0.1%  
(0-0.1) 

0.1%  
(0-0.2) 

0.1%  
(0-0.2) 

0%  
(0-0.1) 

IgG4 0.5%  
(0.3-0.7) 

0.4%  
(0.3-1.2) 

0.6%  
(0.3-0.8) 

1.5%  
(0.8-2.1) 

2%  
(0.9-4) 

4.3%  
(1.9-11) 

1.3%  
(0.4-3.2) 

2.3%  
(0.9-5.5) 

2.2%  
(0.8-3.4) 

1.6%  
(0.4-4.7) 

Table 22 Median (interquartile range) modified iBAQ abundances of IgG subclasses expressed as a proportion of subclass-
specific IgG peptides. Median subclass abundances do not need to sum to 100%. 
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peptides contained unmodified cysteine residues. However, the total intensity of matched peptides 

only increased by 13%, suggesting only a small proportion of disulfide bonds were reduced. 

IgG2 is detected at highest abundance in in healthy samples, and KD samples post-IVIG. 

Overall variation in immunoglobulin locus usage 

Intensities of peptides with V and J locus identifications were normalised. Normalised intensities were 

summarised by V locus group and J locus. Factors associated with aggregate differences in abundance 

patterns were explored between and within laboratory datasets using principal co-ordinates analysis 

(PCoA) of Euclidean distance matrices. 

Of note, subacute KD samples (n=49) include 17 from children already treated with IVIg, and 32 pre-

treatment samples from children presenting late. A single 2 g kg-1 dose of IVIg potentially more than 

triples the baseline circulating mass of immunoglobulin,2 thus the post-treatment samples likely 

contain large contributions from IVIg. 

Acute pre-treatment KD samples (n=53) were mixed with paired convalescent serum in an equal 

volume. Convalescent samples were taken at a median of 48 days (range 26 to 124) after symptom 

onset. Since the half-life of IgG (except for IgG3) is around 21 days (Vidarsson, Dekkers & Rispens, 

2014), almost a quarter of any IVIg given would be expected to remain in the circulation at 48 days. 

Assuming a 66% starting proportion, this would correspond to ~16%, further halved in the mixing of 

acute and subacute serum. 

The two principal co-ordinates show some separation of groups in samples processed in Bristol and 

Oxford (Figure 27 and Figure 28 respectively). In Bristol, excluding the two influenza-spiked samples, 

and pooling unspiked samples with other adult controls, the four groups explained 10% of the variance 

(p=0.002) by ANCOVA. No separation was evident between acute and subacute KD samples – only one 

subacute sample here was post-IVIG. 

In Oxford, segregation of groups was more clearly evident, with separation within KD samples 

between post-IVIg subacute and other samples (Figure 28). By ANCOVA, 16% of variance is explained 

by group (p<0.001) and an additional 2% by prior IVIg (p<0.001). Figure 29 shows only KD samples and 

indicates the expected proportion of sample immunoglobulin contributed by IVIg. The segregation of 

subacute post-IVIg samples is shown more clearly. No pattern is seen among mixed acute and 

convalescent samples dependent on estimated IVIg proportion.  

                                                             
2 Children’s circulating volume is estimated at 70 mL kg-1 therefore 2 g kg-1 of IVIg would contribute 28.6 g L-1 of 
immunoglobulin. The reference range for total serum immunoglobulin is 7 to 16 g L-1. 
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Figure 27 Principal co-ordinates analysis (PCoA) plot of Euclidean distances between Variable locus group and J locus 
relative abundances in samples processed at Bristol. The four Influenza samples comprise two individuals (AS and MM) 
with samples with (01) and without (02) added influenza vaccine. 

 

Figure 28 Principal co-ordinates analysis (PCoA) plot of Euclidean distances between Variable locus group and J locus 
relative abundances in samples processed at Oxford. KD patients who received intravenous immunoglobulin prior to 
sampling are indicated as a separate group. KD: Kawasaki disease. 
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Differential analysis 

Based on the overall patterns above, subacute samples post-IVIg are treated as a separate group since 

differences can likely be ascribed to the bulk of IVIg contained. Samples mixing acute and convalescent 

blood are analysed with others, since the estimated IVIg proportion is low and no differences are 

apparent by PCoA. Relative abundances for multiple comparisons are shown for the variable and 

junctional loci (Figure 30 and Figure 31, respectively). 

  

 

 

         

     

 
 
 
 
 

                         

   

   

   

   

   

   

        

                    

        

         

  

   

Figure 29 Principal co-ordinates analysis (PCoA) plot of Euclidean distances between Variable locus group and J locus relative 
abundances in KD samples processed at Oxford. Subacute samples from patients after receiving intravenous immunoglobulin 
(IVIg) are indicated. The size of points is proportional to the estimated proportion of immunoglobulin contributed by IVIg. 
This corresponds to 50% for subacute samples post-IVIg. For acute with convalescent samples, estimate is 25% with a 21-
day half-life from day 7 of illness to the day of convalescent sampling. KD: Kawasaki disease. 
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Discussion 

In this chapter I have sought to explore further potential of the extensive proteomic data from PEG-

precipitated immune complexes by analysing and comparing abundances of antibody peptides 

between KD and control samples. 

There is limited prior literature on bulk antibody proteomics and I do not have any reference data on 

which to confirm the accuracy of quantitative measures applied to either constant or variable region 

immunoglobulin peptides. The approaches employed should be viewed as exploratory and 

demonstrating proof-of-concept. The in-depth analysis of antibody peptides incorporating structural 

Figure 30 Limma comparisons of quantile-normalised variable locus peptide relative abundance by immunoglobulin locus 
group. Pre-IVIG KD samples (n=85) are compared to post-IVIG (n=17), febrile (n=60) and healthy samples (n=31). Additional 
covariates are sample type (plasma, serum or plasma and serum mixture), peptide count, laboratory, age and gender. 
Significance (false discovery rate 0.05) is indicated by asterisks and unadjusted confidence intervals are shown. Unique 
peptide counts by locus are indicated. KD: Kawasaki disease. 
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alignment and sequence similarity-based identifications has provided an excellent opportunity to 

develop bioinformatic skills. 

Encouragingly, despite the abYsis antibody sequence database contributing fewer amino acids than 

the human sequence database (8.6 vs 11.4 million, with potentially high non-redundancy among 

abYsis proteins), antibody peptides accounted for a large proportion of identifications (39%) and most 

of the unique peptides (60%). It is reassuring that the peptide FDR is exceedingly well controlled for 

antibody proteins, with decoy matches all within non-antibody proteins. It was unexpected that the 

abYsis database should provide no decoy matches, and this finding is worthy of further exploration. 

Figure 31 Limma comparisons of quantile-normalised junctional locus peptide relative abundance by immunoglobulin locus 
group. Pre-IVIG KD samples (n=85) are compared to post-IVIG (n=17), febrile (n=60) and healthy samples (n=31). Additional 
covariates are sample type (plasma, serum or plasma and serum mixture), peptide count, laboratory, age and gender. 
Significance (false discovery rate 0.05) is indicated by asterisks and unadjusted confidence intervals are shown. Unique 
peptide counts by locus are indicated. KD: Kawasaki disease; IVIG: intravenous immunoglobulin. 
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The paucity of cysteine-containing peptides is likely due to the lack of a reduction step to break 

disulfide bonds. Alkylation also did not take place. Since the search included carbamidomethyl 

cysteine as a fixed modification, peptides with free cysteine residues would not be identified. I tested 

a search without this fixed modification. The gains in peptide identifications and intensity were low 

especially when compared to the high proportion of cysteine-containing peptides in samples analysed 

in Bristol. Taken together, this supports the majority of cysteine-containing peptides retaining 

disulfide bonds. 

Intensity-based quantification of cysteine-containing peptides has the potential to be uninformative 

due to limited and likely variable reduction of disulfide bonds. Both for this reason, and due to the 

limited gains, the whole search was not repeated. Additionally, since it could be empirically 

demonstrated that cysteine-containing peptides in Oxford have a high FDR, they were censored from 

further analysis.  

MBR drives a large proportion of identifications (56%) and it should be noted that in the version of 

MaxQuant used, matching is not subject to FDR control. In a two-proteome experiment, 40% of 

identifications depended upon MBR, and “false transfers” were shown at the peptide level (Lim, Paulo 

& Gygi, 2019). Without MBR, 11 yeast peptides were identified in human samples, rising to 79 with 

MBR. However, this corresponded to only 2% of yeast peptides identified overall and typically the 

matches were to low intensity features. Thus, the unconstrained MBR FDR still appears low and the 

impact upon quantitation limited. FDR control of matches has recently been implemented in another 

software package, though too late for inclusion here (Yu, Haynes & Nesvizhskii, 2021). 

Since any cysteine-containing peptide identified in Bristol and matched with features in Oxford can be 

assumed to be a false match, this provides an opportunity to estimate the frequency of false matches 

in these data between the two laboratories. There are 6 999 unique cysteine-containing peptide 

species (unique sequence, modifications and charge state) identified in Bristol alone by MS2 fragment 

spectra. Together, these have 5 044 matches with features in the samples processed in Oxford. This 

corresponds to fewer than one match in 190 samples per unique peptide species, and seems 

encouragingly low. 

It is reassuring that coagulation proteins have such a clear stepwise association with increasing plasma 

component in both labs. Immunoglobulin represents a high proportion of estimated abundance as 

expected. 

Most antibody peptides could be structurally annotated (97%), with ANARCI as a fallback where 

abNum numbering was unavailable. As expected based on the high proportion of IgG in circulating 
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immunoglobulin, constant region peptides were dominated by IgG both in terms of unique peptides, 

number of identifications and proportion of estimated IgG abundance. 

IgG subclasses are more difficult to clearly describe due to the large proportion of peptide intensity 

corresponding to peptides shared between subclasses, and striking differences between laboratory in 

detection of IgG3. IgG3 contains many cysteine residues which take-part in inter- and intra-chain 

disulphide bonds (Schroeder & Cavacini, 2010). On manual review of the peptides detected by MS2 in 

Bristol and Oxford it was confirmed that Bristol’s peptides included many cysteine residues, but the 

few Oxford peptides did not (data not shown). 

Li (1989) studied immunoglobulins and immune complexes in KD, demonstrating elevated serum IgG1 

and IgG3 compared to healthy controls, with IgG1 and IgG3 predominating in immune complexes. 

Failure to detect appreciable levels of IgG3 in samples at Oxford precludes comparison with healthy 

controls, however IgG1 is more abundant in KD samples (pre-IVIG; median 64-78.6%) than healthy 

controls and patients with TB (36.4 and 60% respectively). The rise in IgG2 relative abundance in post- 

compared to pre-IVIG samples is consistent with the relative paucity of IgG2 in younger children 

(Bayram et al., 2019), with median IgG2 levels rising from less than a quarter of IgG1 in the third year 

of life to over a half. IVIg is obtained from pooled adult serum and Gammagard (used at Rady 

Children’s Hospital; Jane Burns, personal communication) has an IgG subclass distribution similar to 

adult serum. 

Among variable region peptides, a majority could be identified based on top-scoring BLAST match or 

matches as belonging to a specific group of V loci, or single J locus. The heavy chain variable region 

had many more unique peptides identified than the light chain (11 209 vs. 6 128), though the total 

number of peptide identifications were similar. The lambda light chain J region had the fewest unique 

peptides identified (48), with other chain-regions having 161 to 10 694 unique peptides. 

The abYsis database was selected since it contains directly sequenced monoclonal antibodies. These 

represent antibodies with functional significance – e.g. antigen or allergen specificity, pathological, 

immunological or scientific relevance. As an added benefit, the database sometimes includes data on 

antigen-specificity of antibodies (~2%), which provides a possibility of adding further significance to 

the data obtained. 

Larger databases of untargeted BCR and immunoglobulin repertoires now exist, including from 

children (e.g. Ghraichy et al., 2020). These are more likely to represent a greater breadth of the 

immunoglobulin repertoire. However a study marrying rearranged B-cell sequences and shotgun 

proteomics of circulating immunoglobulin demonstrated little overlap (Chen et al., 2017). Indeed in 
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my own test using the Bristol proteomic data, adding cluster representative sequence data from 

Ghraichy et al. (2020) (Johannes Trück, personal communication) to the human and abYsis sequence 

databases led to only a 3% increase in antibody peptide identifications and a 10% increase in unique 

antibody peptides3. 

Coverage, both by number of unique peptides and mean peptide intensity are highly uneven. The 

constant region has, by definition, a limited range of unique peptides at any given residue given the 

limited classes, subclasses and polymorphisms, however by intensity frequently exceeds the variable 

regions especially in the heavy chain. Importantly, equal intensities of different peptides cannot be 

taken to imply equimolarity since elution profiles and efficiency of electrospray ionisation vary, and 

matrix effects give rise to interactions between co-eluted peptides (Taylor, 2005). 

The most diverse range of peptides is found between the N-termini of CDR2 and CDR3 on both heavy 

and light chains. The patterns are broadly consistent between samples analysed in Bristol and Oxford, 

with differences likely related to the second cysteine residue on both heavy and light variable chains. 

CDR3 coverage is low in both heavy and light chains. This was also noted by VanDuijn et al. (2017) who 

ascribed it to the long length of predicted CDR3 peptides. However, there are further factors likely to 

contribute. CDR3 is the region of greatest diversity, due to nucleotide contributions from V, D and J 

loci as well as junctional diversity. It can thus be expected that the 77 619 abYsis amino acid sequences 

cover only a small proportion of the CD3 sequences existing in circulating immunoglobulin in any 

individual. 

Furthermore, because of the diversity of CDR3 peptide sequences in each sample, CDR3-containing 

tryptic peptide species can be expected to be very diverse and each individually of lower abundance 

than the less diverse non-CDR3 peptides. This would result in less frequent selection for fragmentation 

by the mass spectrometer. Lower abundance also corresponds to lower charge accumulation in the 

mass spectrometer and lower quality MS2 fragment spectra.  

By PCoA, V and J locus abundances show clear patterns of difference between each group of samples, 

and a clear signal relating to recent IVIg treatment. Notably, there is a lack of segregation of acute-

only and acute-with-convalescent subgroups within KD and Febrile patients. Remaining IVIg in the 

acute with convalescent samples could be expected to drive differences, but no clear pattern is seen 

with the crude estimated remaining IVIg. 

                                                             
3 3 042 additional identifications of 1 048 peptides, compared to 105 413 identifications of 10 709 peptides 
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It is interesting to note that paired adult samples with and without spiked influenza do not cluster in 

their pairs – although there are no biological replicates available to assess variance. The addition of 

influenza should preferentially draw influenza-specific antibodies into high molecular weight 

complexes and was already shown to lead to elevated IgG1 proportion (chapter 6), thus a shift in 

profiles of V and J segment peptide intensities may be well expected. 

When comparing the V locus group and J locus intensities between sample groups, considering the 

small group sizes, striking differences are seen between pre- and post-IVIg KD samples, with 9 of 28 

loci showing significant differences (all but one reduced intensity). Since IVIg is formed by pooled 

serum from many individuals, diversity and evenness are likely to be increased. 

When pre-IVIg KD samples are compared to febrile and healthy controls, distinct sets of differences 

are observed. In comparison with febrile samples, only reduced non-specific heavy chain J segment 

peptides, increased kappa chain J2 and reduced J4 are shown, with approximately one-fold change for 

all. In comparison with healthy samples, a greater number of differences are evident. Only small 

differences are observed in heavy chain V locus group intensities, but more marked increases in J1, J2, 

J4 and non-specific J locus segments. In the light chains, increased kappa V7 and J1 and reduced 

lambda V4 and V8 are observed. 

There is limited literature on B-cell receptor and antibody variable locus selection in disease states. 

Over-representation of IGHJ4 has been demonstrated in combination with a range of V segments. For 

example, with IGHV4-28 in primary immune thrombocytopenia, with IGHV1-5-7 in immune 

thrombocytopenia in chronic lymphocytic leukaemia, with IGHV3 loci in CMV infection, and with 

IGHV4-31 in expanded EBV infected lymphoblastic cell lines (Wen et al., 2020; Hirokawa et al., 2019; 

Watson & Breden, 2012; Watson, Glanville & Marasco, 2017; Visco et al., 2012; McLean et al., 2005). 

Recently, expansion of IGHV4-34 plasmablasts has been shown in a child with KD 

In these data, the smaller apparent difference between KD and febrile samples as compared to KD 

patients and healthy controls suggests that some of the observed differences in KD may be more 

general features of inflammatory and/or infectious diseases. No distinct signature has been extracted 

or demonstrated. 

There are significant limitations to the interpretation of analyses presented here. Proteomic data is 

more typically analysed at protein level with multiple levels of false discovery rate control. Here, only 

PSM-level FDR control can be applied since individual antibody variable peptides can map to an 

unlimited number of antibody proteins. 
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FDR control focuses on controlling the rate of spurious matches. However, on the spectrum from 

spurious to perfect matches, there also exist matches which are partial and imperfect. These occur 

where a theoretical peptide possesses near-identical mass to an MS1 feature, and matches sufficient 

fragments within the mass error of the ion trap (on the order of 1 Dalton) to generate a good score, 

despite not possessing the identical amino acid sequence. 

Most trivially, this can occur when isoleucine is replaced with leucine, as they share the same exact 

mass. However, within the fragment mass error, many single amino acids and two-amino acid pairs 

share similar masses. Additionally, typically not all possible fragments of a predicted peptide are 

observed. Missing fragments can render spectra consistent with multiple possible arrangements of 

certain residues. The existence of chimeric spectra (where multiple peptide precursors are fragmented 

together) can further confound accurate identification. 

Although the absence of matches to antibody decoy sequences indicates an extremely low FDR, this 

does not guarantee that all matches are correct for exact amino acid composition and ordering. 

MaxQuant will report the best match for each spectrum, and is limited by sequences represented in 

the database. Search strategies are available which re-search spectra to identify possible divergences 

from database sequences, designed for the detection of protein variants which may not be 

represented in databases and a wide range of post-translational modifications (e.g. dependent 

peptide search in MaxQuant and SPIDER in PEAKS; Tyanova, Temu & Cox, 2016; Han et al., 2011). 

However, these add significant processing time, add extra complexity to downstream analyses, and 

are limited to identifying variants of already-identified peptides. 

Beyond this, the identified peptides only scratch the surface of the complexity of peptides in the 

samples. This relates firstly to the standard intensity-based selection method of Data Dependent 

Acquisition (DDA) in which the most intense peptide precursors are selected for fragmentation (with 

time dependent exclusions to prevent repeated fragmentation of the same peptides). This is 

illustrated in Figure 32. Of features within the fifth decile of intensity, 20% are fragmented, and of 

these 3% identified. In the top decile, 66% are fragmented, and of these 16% identified. Thus, within 

a sample, identified peptides are heavily biased towards those which are high intensity. With MBR, 

identified peptides will be expected to be biased towards those which are high intensity across 

multiple samples. 

Taking this into account, it is encouraging that differences can be seen between groups, and that there 

is a biologically plausible signal of difference between post-IVIG and pre-IVIG KD samples, with IVIG-

containing samples distanced further from controls in PCoA. 
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Importantly, identified antibody peptides can’t be joined into full antibody sequences, nor linked with 

specific isotypes. This limits how the results can inform antigen specificity or effector functions. CDR3 

is of most importance to antigen specificity and is least well covered (see Figure 24 and Figure 26). 

Even if it were possible to reconstruct longer antibody sequences, our ability to make inferences about 

function using bioinformatics are limited, though growing (Kovaltsuk et al., 2017, 2018; Krawczyk et 

al., 2018; Kwong et al., 2017). 

In this sense, the identification of differences in antibody peptide signatures between phenotypic 

groups of children, with further delineation based on the presence of recent IVIg treatment, can be 

taken as a proof-of-concept for more detailed investigations. 

There are several ways in which this work could be taken forward for the investigation of antibody 

profiles in KD: 

1. Performance of proteomic methods for identifying and quantifying antibody peptides could 

be assessed in a controlled manner using individual monoclonal antibodies and mixtures 

thereof, with known sequences and relative abundances. 

2. Validation in human serum samples or precipitates could be undertaken with spike-in 

experiments, where known monoclonal antibodies are added in varying concentrations. 

3. Assessment of variance with biological and sample replicates 

 

      

       

       

               

         

 
 
 
 
 

            

              

            

          

Figure 32 Stacked histogram of MS1 feature intensity distributions in samples processed at Oxford, classified by whether the 
precursor was selected for fragmentation, and whether fragmented features were identified. MS: mass spectrometry.  
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4. Optimisation of sample preparation, for example cleavage and purification of antigen binding 

fragments, as in Liu et al. (2011). 

5. Optimisation of data acquisition on the mass spectrometer – to be considered in the following 

chapter 

6. Peptide identification could be optimised through alternative analytic approaches – to be 

considered in the following chapter. 
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8 |  Discussion 

This work has as its central focus the aim to find microbial triggers of KD. The extensive literature 

review (p26) evidences the widespread interest in this question, which is of more than academic 

significance. Knowing the triggers of KD opens the door to better exploration of aetiopathogenesis, 

especially when integrated with knowledge of genetic and other environmental factors. It also allows 

means of prevention to be considered. 

The study data analysed here are derived from over four hundred individual children, comprising 202 

KD patients and 159 febrile controls providing metagenomic or metaproteomic data (28 both), and a 

further 68 healthy controls and TB patients providing additional metaproteomic data. Organisms 

associated with KD have been sought in the oropharyngeal microbiome, and antigens within 

precipitated immune complexes from the blood. 

Both metagenomic and metaproteomic analyses have been highly involved and challenging. Careful 

method and tool selection has been required. There have been many hurdles to overcome, both in 

the application of software packages, which are frequently novel, niche and/or utilised in atypical 

ways, and in the downstream analysis. 

The key output of these analyses is evidence of a higher abundance of certain bacterial species in the 

oropharynx of patients with KD as compared to febrile controls, and no convincing evidence for any 

specific microbial proteins within immune complexes. 

Before reviewing the findings, I will describe the impact of the SARS-CoV-2 pandemic on this work 

while also introducing a new pandemic-related condition of potential relevance to understanding the 

aetiology of KD. 

SARS-CoV-2 pandemic – impact and information 

At the onset of the global SARS-CoV-2 pandemic, metagenomic sequence data was available from only 

one flow cell. It took until December 2020 to obtain the sequence data for the full cohort, due to both 

facility shutdown and the prioritisation of pandemic-related studies. Metaproteomic data was 

available at the outset of this project. 

The pandemic has provided new knowledge of relevance to the understanding of KD. In April 2020, 

clinicians in London (including colleagues from within Imperial College and Imperial College Healthcare 

NHS Trust) recognised a wave of children, mainly teenagers, and almost all over 5 years of age, 

presenting with a constellation of protracted fever, myocardial dysfunction and shock, diarrhoea, 

abdominal pain, rash and conjunctivitis (Whittaker et al., 2020). A significant proportion required 
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intensive care admission for cardiorespiratory support. Presentations appeared to be temporally 

related to SARS-CoV-2, with high rates of positive serology, and the incidence curve following the 

community epidemic of SARS-CoV-2 by a delay of around a month. Some children developed CAA. The 

condition has been termed Paediatric Inflammatory Syndrome Temporally Associated with SARS-CoV-

2 (PIMS-TS) in the UK, and multi-system inflammatory syndrome in children (MIS-C) in the USA. 

Similarities with KD were noted immediately, due to the shared occurrence of CAA and features of 

fever, rash and conjunctivitis. Notably, a minority of KD patients also develop myocardial dysfunction 

and shock (Kanegaye et al., 2009). However, very different ethnic preponderances were noted, with 

under-representation of children of East Asian ethnicity, and over-representation of children of Black 

and South Asian ethnicity. Further, the behaviour of CAA appears different with greater spontaneous 

resolution among children with MIS-C (Felsenstein et al., 2021). Children with MIS-C are typically 

several years older than children with KD, most frequently adolescents, with pre-school children and 

adults rarely affected, despite exposures to SARS-CoV-2 occurring across all age groups. 

The differences suggest that although both conditions could represent post-infectious self-limiting 

inflammatory disorders in genetically predisposed individuals, they may be aetiologically and 

pathologically somewhat distinct. It is hoped that the developing understanding of MIS-C 

aetiopathogenesis may also shed more light on KD (Sancho-Shimizu et al., 2021). Already, investigators 

have shown modest prevalence of monogenic susceptibility to inflammation (Chou et al., 2021). The 

concentration of MIS-C among adolescents suggests an age-related immune susceptibility in 

combination with genetic predisposition and SARS-CoV-2 exposure. 

In the first months of the pandemic, I contributed to paediatric clinical care through a half-time 

placement at St Mary’s Hospital, allowing more junior trainees to be redeployed to adult COVID care. 

In the early part of 2021, I took on a short-term surge role at Great Ormond Street Hospital to assist 

in the management of MIS-C patients and recruitment into a range of studies. 

I was also involved from inception in May 2020 in a global retrospective cohort study of children with 

MIS-C, the Best Available Treatment Study. The primary focus was to compare the efficacy of different 

immunomodulatory treatments. I was seconded to lead the analysis of this study for six months from 

January 2021, leading to publication in the New England Journal of Medicine (McArdle et al., 2021). 

As SARS-CoV-2 approached global endemicity and restrictions were relaxed in most parts of the world, 

outbreaks of hepatitis were noted, predominantly among pre-school children, and not explained by 

the typical infectious or non-infectious causes. Significant numbers of children required liver 

transplantation. Extensive investigation, much undertaken at Great Ormond Street Hospital, and 
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including metagenomic analyses of liver biopsies, showed strong association with adenovirus and 

adenovirus-associated virus 2 (UK Health Security Agency, 2022). Intriguingly, these viruses did not 

seem to represent novel strains, and direct viral-mediated lysis of hepatocytes was not demonstrated. 

A strong human leukocyte antigen allele association was also shown. This leads to the hypothesis that 

delayed exposure to these ubiquitous viruses (due to reduced transmission during the pandemic) can 

result in this rare outcome among predisposed children because it hits a window where a pathogenic 

immune response can be triggered. Conversely, during the pre-pandemic era, exposures would 

typically be at an earlier age when the immune system of susceptible individuals is not primed for such 

a response. 

The lessons from both MIS-C and this paediatric hepatitis outbreak are of great potential relevance to 

the search for a cause of KD, highlighting both the potential for windows of immunological 

susceptibility, and the potential for multiple microbial causes to be involved. 

In summary, the SARS-CoV-2 pandemic, while disrupting and delaying this research, has provided 

additional knowledge of relevance to the aetiology and pathogenesis of KD and broadened my 

experience during this fellowship.  

Metagenomics 

The metagenomic analyses depended upon considerable preparatory bioinformatics, including that 

presented in Appendix B. The analyses themselves followed a stepwise approach through quality 

control, identification of contaminants and spurious identifications and exploratory analyses (chapter 

2, p35) before proceeding to species level (chapter 3, p59) and strain/pangenome analyses (chapter 

4, p79). 

Read quality and depth was shown to be adequate and significant GC bias absent. Read binning with 

Kraken 2 was fine-tuned through adjustment of the confidence parameter and base quality threshold. 

Bracken was applied to reallocate reads at species level. I recognised and corrected for the under-

appreciated problem of human-contaminated reference sequences (Breitwieser et al., 2019; Kryukov 

& Imanishi, 2016), and identified potential contaminants using a range of methods, applying a publicly 

available tool (Davis et al., 2018), self-developed modelling and manual curation. Ultimately, 

contamination, although typically at very low levels in each sample (median 0.05% of reads) was 

sometimes very high as a proportion of bacterial reads. The extensive consideration of contaminants 

and database errors I present exceeds that frequently seen in the metagenomic and microbiome 

literature (Eisenhofer et al., 2019) and can be considered as a strength of this study. 
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I explored the factors underlying the low bacterial DNA proportion in KD samples, concluding this is 

driven by overabundance of human DNA, likely due to pharyngeal inflammation. This is important to 

understand for future studies of the pharyngeal metagenome. I also detected evidence of “index 

hopping” to negative control samples – since this depends upon free index tags remaining after clean-

up, it is likely to affect less the samples with extracted DNA where index tags should be consumed. 

I showed broad comparability of these microbiome data with existing data, with unsurprising 

divergence from nasopharyngeal data. In contrast with typical microbiome studies, I did not expect 

(indeed hoped not to find) large differences between the microbiome in KD and febrile controls. 

Rather, I intended to seek differences at the scale of only a small number of species. Reassuringly, KD 

explained only a small proportion of microbiome variation (2.7%) – less than age, though more than 

sex and country. Antibiotic exposure explained a similar proportion of variation. 

In the multiple approaches and sensitivity analyses undertaken, a diverse range of streptococcal 

species (consistent with normal oral flora) showed positive associations with KD, along with Rothia 

dentocariosa, Prevotella oris, unnamed Neisseria, Abiotrophia defectiva and Lautropia mirabilis. The 

taxonomic levels at which results were reported differed by approach, due to the treeclimbR 

algorithm. The most specific associations, A. defectiva, L. mirabilis, R. dentocariosa and P. oris, were 

only slightly weakened when antibiotic exposure was taken into account, despite the reduced sample 

size, and Parvimonas micra was added as another organism with relative abundance positively 

associated with KD. Notably, accounting for the specific pattern of exponential increase in RA of L. 

mirabilis and A. defectiva through early childhood increased the strength of association with KD. 

Given the high prevalence of these organisms, identifying genetic differences between organisms in 

KD patients and controls could provide additional support to any aetiological role which would be 

consistent with the epidemiology. With two complementary approaches, considering both genome 

composition (pangenomics) and nucleotide-level strain variation, no meaningful differences could be 

identified. Nonetheless, the pangenome approach was limited by the paucity of reference 

metagenomes available, leading to a dependence on potentially erroneous metagenome assembled 

genomes. The strain-level approach was limited by coverage – not all samples containing each 

organism could be included. A separate analysis looking at all predicted microbial genes from the 

assembled reads found no genes significantly over-represented in KD. 

The potential for ubiquitous and commensal organisms such as these to be involved in triggering KD 

leads requires further consideration. The lack of clear sub-species level differences reduces the 

relevance of hypotheses involving toxin genes or specific strains. Were a ubiquitous non-commensal 

(or transient) organism triggering KD and present at the time of presentation, a statistical association 
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of prevalence (or abundance) should be easy to demonstrate, whether with healthy or febrile controls. 

This stands even if genetic predisposition and a temporal window of susceptibility were also 

necessary. 

The situation becomes more challenging to study if the causation relates to the acquisition of a 

ubiquitous commensal in predisposed individuals within a window of susceptibility. In this instance, 

the organism may be highly prevalent and reasonably abundant in febrile and healthy children and 

those with KD. It may be expected that when a commensal is first acquired it could reach a high 

abundance until immune regulation and/or adaptive competition from other components of the flora 

restrict its growth. Therefore, one may expect that children with KD would have more recently 

acquired one or more of these organisms and have them in high abundance, whereas acquisition by 

age-matched controls would be likely more distant (or yet to occur) and thus abundance would be 

lower. 

The findings presented here are consistent with such a model, but any hypothesis for a causal role of 

such commensals would also need to explain seasonal, temporal, spatio-temporal, geographic and 

meteorological patterns in KD. Spatio-temporal clustering of cases could still be explained if 

acquisition of species of the oral flora occur appreciably outside the household. Seasonality could then 

be explained if such transmission occurred more readily in the Winter (in the Northern hemisphere). 

Temporal trends in incidence (rising in many regions) could be explained if the age of acquisition of 

triggering microbes was shifting over time (whether earlier or later) in such a way as to align more 

with the window of immunological susceptibility. Associations with tropospheric winds would be 

harder to fit into this framework unless it could be shown that components of the normal flora could 

be acquired by long-range airborne transport. 

The approach developed here has several strengths, including the large sample size, extensive 

consideration of contaminants, sensitive approach to organism identification and abundance 

estimation and analysis at multiple taxonomic resolutions, including strains and genes. 

However, important limitations remain. There was very limited identification of fungi, archaea and 

phage and non-phage DNA viruses, and RNA viruses could not be considered. DNA viruses causing 

clinical upper respiratory infections are few: adenovirus and herpes simplex virus being the main 

examples. Given the prior implication of coronaviruses in KD aetiology (Patra et al., 2022) and the 

novel SARS-CoV-2-associated inflammatory disorder described above, this is a significant limitation. 

The emergence of MIS-C as a SARS-CoV-2-triggered inflammatory disorder, occurring with a delay 

between infection and disease of about a month suggests an additional complexity in searching for 
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the causative pathogen. If KD were similarly triggered by a virus or bacteria, which infected the child 

a month earlier, our metagenomic study may have missed identifying the pathogen.  

Archaea have not been specifically studied in the oropharynx, though a single study developed 

archaea-specific primers and applied them to the nasopharynx, among other sites (Koskinen et al., 

2017). Most human and animal studies of archaea have focused on the gut (Borrel et al., 2020). 

Regarding fungi, Candida albicans can colonise and cause infection in the oropharynx. In the normal 

microbiome, fungi are estimated to contribute <0.1% by colony forming units. Nonetheless, a targeted 

study detected over 75 genera of fungi (Ghannoum et al., 2010). 

Future attempts to seek oropharyngeal organisms associated with KD could gain further strength in a 

number of ways. Given the lack of GC bias introduced by the low cycles of PCR applied, this could be 

increased leading to greater DNA abundance in further processing steps, and less sensitivity to 

laboratory contamination. A separate pipeline with reverse transcription could allow detection of RNA 

viruses, though again human RNA has been shown to dominate (90-95% in a study by Nakamura et al. 

[2009]). 

Approaches based on assembled metagenomes are attractive and reduce database dependence, 

however sensitivity to low-abundance organisms is likely to be very low. The sensitivity of the 

metagenomic analyses here will have been impacted by the high, variable and biased proportion of 

human DNA in samples. As mentioned in Appendix B, although laboratory methods exist to deplete 

human DNA prior to sequencing these may adversely impact detection or quantitation of some 

organisms, especially those dying or under immune attack (Oechslin et al., 2018). Perhaps more 

promising is the dynamic exclusion of host reads from the Nanopore sequencing platform, as made 

possible with tools like Readfish (Payne et al., 2021). 

Metaproteomics 

Metagenomics is an established field with 27 200 publications indexed by PubMed and nearly 5 000 

publications in 2021. By contrast, metaproteomics is a small niche, with 904 publications and only 144 

in 2021. 

This aspect of the study provided considerable challenges (chapters 5 and 6; p92 and 105 respectively), 

since it required methods to identify likely low abundance microbial antigens within exceedingly 

complex, antibody-rich samples with limited justification for prior database restriction. In this way, 

the study represents an atypical application of niche processes. 
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Much time was invested in identifying and testing potential computational approaches to database-

dependent peptide and protein identification. However, the field is dominated by tools focused on 

the gut microbiome and many packages are orphaned after first publication. 

I chose to apply two promising and complementary approaches. Metanovo provided an effective and 

computationally tractable means of reducing a large database prior to conventional proteomic 

searching (Potgieter et al., 2019). Quandenser represents a radical departure from typical proteomic 

analyses, similar in many ways to metabolomics – identifying and quantifying features first, then 

selecting those with relevant biological signals before moving to identification (The & Käll, 2020). 

These two approaches together could not provide evidence of any specific microbe being associated 

with KD. Indeed, the near identical intensity distribution of microbial and non-microbial peptides was 

not consistent with origins in background contamination and low abundance signal as expected. 

Antibody proteomics 

Comparing the profiles of antibody sequences in precipitated immune complexes between disease 

states can provide a window into the KD immune response and potentially, pathogenesis. In the 

secondary analysis presented in chapter 7 (p121) I showed clustering of KD, febrile, TB and healthy 

samples when V and J locus relative abundances were compared, and a striking signal evident with  

sampling post-IVIg treatment. Differential abundance analysis highlighted specific V and J loci with 

significant signals, with the strongest signals unsurprisingly corresponding to IVIg treatment. 

Differences were also evident between pre-IVIg KD samples and both Febrile and Healthy controls, 

though the functional interpretation of these is limited at present. 

Limitations and improvements to proteomic methods 

In both the metaproteomic and antibody proteomic chapters, I deferred discussion of most 

improvements that could be considered in the sample processing, mass spectrometry and 

bioinformatic analyses due to the shared considerations. I highlighted that both approaches could be 

improved by fractionation; that is, purification of antibody variable fragments for antibody analyses, 

and depletion of the same for metaproteomic analyses. 

The higher raw feature intensities and the high frequency of “orphaned” MS2 fragment spectra 

without identified MS1 isotopic feature clusters in samples processed in Bristol suggests that peptide 

loading may have been excessive. Overloading can widen peaks (“peak tailing”) and increase ionisation 

competition (a matrix effect) whereby some peptide species are preferentially ionised, constraining 

the ionisation of other peptide species (Maia et al., 2020). These effects can reduce the number of 

identifiable peptide species. Overloading can also impair quantitative accuracy by leading to detector 
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saturation. Nonetheless, unlike in studies where relative quantitation is vital, in this metaproteomic 

study detection is key. Improved identification of low abundance peptides would be an acceptable 

trade-off against loss of quantitative accuracy. 

For complex samples like these, depth of identification could be improved with better separation 

through peptide fractionation or two-dimensional liquid chromatography (the latter has been shown 

to increase identifications in metaproteomics, e.g. Hinzke et al. [2019]). However, both add 

considerable time, cost and material resource requirements, whilst potentially reducing 

reproducibility and simplicity. 

On the mass spectrometer, acquisition of high-resolution MS2 fragment spectra would likely provide 

a major improvement (Mann & Kelleher, 2008; Scherl et al., 2008). In this approach, MS2 fragments 

are measured with accuracies on the order of a few parts per million in the Orbitrap, rather than 

almost a Dalton on the linear ion trap. The cost of this is slower acquisition of spectra, since the 

Orbitrap is employed to scans both precursors and fragments, rather than the Orbitrap and ion trap 

operating in parallel. 

A key advantage of high fragment mass accuracy is that near-isobaric amino acids can be 

distinguished. Novel fragment-index searches can be applied, eschewing the typical search for 

peptides within the precursor mass tolerance (Yu et al., 2020; Chi et al., 2018). Rather, predicted 

fragments can be indexed and experimental fragments searched against these indices. An 

experimental spectrum may have a very good fragment-based match to a theoretical peptide, even 

though there is a large precursor mass differential (“delta mass”). This allows unanticipated 

modifications to be identified. High resolution fragments also allow for much more accurate de novo 

sequence generation, which can mitigate against database incompleteness (Muth & Renard, 2018). 

A further computational improvement is FDR-controlled matching between runs, as implemented 

within FragPipe (Yu, Haynes & Nesvizhskii, 2021) or the standalone IceR (Kalxdorf et al., 2021). The 

process is similar to that used for peptide-spectrum matches (describe on page 100) and described for 

FragPipe in Figure 33. This would improve the confidence of peptide identity propagation between 

samples. Finally, peptide-spectrum match FDR control incorporating retention time and fragment ion 
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intensity prediction with machine learning has been shown to drive large gains in confident 

identifications (Verbruggen et al., 2021; Guan, Moran & Ma, 2019).  

Limitations – the challenge of confidently identifying causative agents 

I have presented organisms with increased abundance in the oropharynx in KD, with associations that 

are robust to control for likely confounders. However, important limitations remain. The identified 

organisms are near ubiquitous, and their presence is not specific to or associated with KD. No 

differences can be found to suggest transmission of specific subspecies or strains. 

The finding of increased abundance of ubiquitous organisms does not lead to straightforward 

explanations in the context of the known epidemiology (e.g. spatial clustering and strong 

meteorological associations), unless an environmental factor can be shown to stimulate proliferation 

and activation of certain organisms. 

Beyond the technical challenges of metaproteomics and metagenomics, as encountered and 

discussed at length in the respective chapters, there remain many reasons why finding a causative 

agent of KD might be difficult in samples taken after the onset of disease (Table 23 row 5).

Figure 33 The IonQuant component of FragPipe implements FDR control for feature matching between runs (reproduced 
from Yu, Haynes & Nesvizhskii [2021]). (A) Samples (runs) are paired with the most similar runs for matching. Target (green 
circle) matches are identified within specified tolerance, and decoys with an offset m/z. Matches are scored, and the top-
scoring match selected for each acceptor peak, which could be a decoy or target peak. (B) A model is trained to discriminate 
target from decoy matches and allow FDR estimation and thresholding. FDR; False discovery rate. 
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Limitation Example/explanation Pre-analytic mitigations Analytic mitigations 

1. KD is a syndromic 
diagnosis which shares 
features with other 
infectious and infection-
related diseases. 

Cohorts of patients diagnosed with 
KD could be an admixture of a (hard-
to-define) true KD and other 
disorders. Examples of other 
diagnoses include: measles, 
adenovirus infection and scarlet 
fever (caused by group A 
streptococcus) 

• Detailed clinical data on 
participants. ✓ 

• Well-defined inclusions and 
exclusions for cases and 
controls.  ✓ 

• Multiple controls sets.  ✓ 

• Sensitivity analyses: e.g. restrict cases to 
those with more KD-specific features, e.g. 
CAA × 

2. There may not be single 
final microbial cause of KD 
for all patients. 

Multiple agents may be able to cause 
KD in isolation, and could vary 
geographically, seasonally, 
temporally and between individuals 
for reasons of exposure, immunity or 
genetics. 

• Application of techniques 
which can identify many 
microbes in parallel.  ✓ 

• Large sample size to 
strengthen signals from small 
subpopulations. × 

• Epidemiologically-informed analysis: e.g. 
incorporation of temporal/symptomatic 
clustering × 

3. There may not be a single 
microbial cause for each 
individual patient.  

Multiple microbial agents may 
interact, or a single agent may 
interact with additional 
environmental or other factors, 
whether simultaneously or 
sequentially. 

• As above • Exploration of microbiological covariation 
/ dimensionality reduction and 
associations with KD × 

4. As necessary but not 
sufficient causes, causative 
microbes could be 
prevalent in temporally-
matched controls 

If host genetics is the largest 
causative factor and causative 
agent(s) are common, they may be 
similarly prevalent between cases 
and controls. Many potential 
causative agents are frequent parts 
of the normal flora in healthy 
individuals, or cause asymptomatic 
infections. 

• Mitigation here is 
challenging, since avoiding 
temporal matching would 
give rise to confounding 
signals from seasonal 
organisms. 

• As indicated to the left. 

5. The microbial cause may 
be absent or undetectable 
at the time of presentation 

Since KD is a self-limiting 
inflammatory disorder, the arrival 
and departure of any microbial 

• Sample processing and data 
acquisition techniques to 
increase sensitivity to low 

• Analytic techniques to increase sensitivity 
to low abundance microbes or antigen, 



Discussion 

 Page 152 

Limitation Example/explanation Pre-analytic mitigations Analytic mitigations 

trigger could precede illness or 
presentation, due to an 
immunological “incubation period,” 
as clearly exhibited in MIS-C (Nakra 
et al., 2020) 

abundance microbes or 
antigen, e.g. optimise 
dynamic exclusion of already-
fragmented features. ± 

• Prospective cohort study 
design recruiting infants at 
high risk for KD and sampling 
repeatedly. Target 
sufficiently large sample size 
and prolonged follow-up to 
ensure high numbers of KD 
cases occur. × 

e.g. increase identification of low 
abundance MS1 features. ± 

6. The microbial cause may 
not be present in the 
oropharynx or ICs. 

For example, if the causative agent 
enters through the lower respiratory 
tract, it may be difficult or impossible 
to detect in the pharynx. ICs could be 
composed purely of self-antigen and 
antibody, even if specific antibody 
against a microbial antigen is 
involved. 

• More extensive sampling, 
although collection of 
sputum from children is 
challenging, and invasive 
lower respiratory sampling 
cannot be undertaken for 
research purposes alone. × 

• Irremediable 

7. The level of specificity at 
which any microbial cause 
is defined is not known. 

For example, a set of causative 
agents could be an entire genus of 
organisms, a group of related 
species, a single species, strain, or 
simply an organism or group of 
organisms carrying a particular 
pathogenic gene. For example, 
diarrhoeal diseases can be caused by 
Escherichia coli with a single 
enterotoxin gene, and haemolytic-
uraemic syndrome by the same with 
a verotoxin gene. 

• Irremediable • Multilevel analyses with appropriate 
taxonomies and effective FDR control.
 ✓ 
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Limitation Example/explanation Pre-analytic mitigations Analytic mitigations 

8. Causative agents may be 
unrepresented in existing 
sequence databases. 

Novel species of micro-organisms are 
being identified at a high rate. For 
example, the Genome Taxonomy 
Database grew from 23 458 bacterial 
and 1 248 archaeal species in August 
2019, to 45 555 bacterial and 2 339 
archaeal species in April 2021. 

• Irremediable • Future reanalysis with contemporary 
databases × 

• Less database dependent methods, e.g. 
de novo peptide sequencing, and 
metagenome assembly based analyses 
and incorporation of metagenomic 
predicted protein sequences into 
proteomic databases. ± 

9. Technologies have blind 
spots and limits of 
detection may be too high. 

For example, the metagenomic 
analyses will not detect RNA viruses. 
Data-dependent bottom-up 
proteomics acquisitions typically 
direct the mass spectrometer to 
fragment the most intense MS1 
features, leaving many features 
unfragmented (see Figure 32, p140). 

• Incorporate parallel reverse 
transcriptase PCR into 
pharyngeal analyses × 

• Sample processing and data 
acquisition techniques to 
increase sensitivity to low 
abundance microbes or 
antigen, e.g. optimise 
dynamic exclusion of already-
fragmented features. × 

• Analytic techniques to increase sensitivity 
to low abundance microbes or antigen, 
e.g. increase identification of low 
abundance MS1 features. ± 

Table 23 Limitations affecting the study of microbes aetiologically linked to KD and potential pre-analytic and analytic mitigations. × indicates mitigations not applied or not possible in this 
analysis; ✓ indicates mitigations applied, and ± indicates mitigations partially applied.
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The lack of RNA sequencing in the oropharynx is a significant limitation. Analysis of the ongoing BATS 

recruitment shows skewing to a younger demographic and a higher prevalence of KD-like features in 

recent variant waves (Mike Levin, personal communication). Evolution of the clinical features of MIS-

C over time to become closer to those of KD could add support to the existing evidence for a 

coronavirus trigger of KD. 

The emergence of MIS-C as a SARS-CoV-2-triggered inflammatory disorder, occurring with a delay 

between infection and disease of about a month, suggests an additional complexity in searching for 

the causative pathogen. If KD was similarly triggered by a virus or bacteria which infected the child a 

month earlier, our metagenomic study may have missed identifying the pathogen. Some reassurance 

is at least provided by the RT-PCR-positivity of 24% in the first analysis of BATS (McArdle et al., 2021). 

As indicated, many of these issues cannot be mitigated in the analysis of these data. Of those which 

are amenable to mitigation, not all have yet been applied. For example, Burns et al. (2021) have shown 

that temporal clusters of KD cases in San Diego share clinical features more than expected by chance. 

Many patients in this study are members of these temporal clusters, which could be classified into 

Rotated Empirical Orthogonal Function (REOF) groups based on clinical features. This opens the 

possibility of re-analysis focused on differences in organism abundance/prevalence between KD cases 

from distinct REOF clusters. 

Given the respiratory tract as the dominant portal of entry for agent(s) causing KD and the potential 

for public databases to miss relevant organisms, it could be beneficial to use metagenomic sequence 

data in the construction of protein sequence databases for proteomics. With the limited overlap of 

individuals with both metagenomic and metaproteomic data, this could not be applied on a per sample 

basis. Instead, predicted protein sequence data from all metagenomic samples would be pooled, most 

likely predicted open reading frames with deduplication of redundant sequences, as applied in the 

strain-level analyses (page 86). This is a common approach in metaproteomics, and significant gains 

in identifications have been shown as compared to public sequence databases (Tanca et al., 2016). 

Alternative approaches 

The challenges encountered here, especially in the metaproteomic approach, raise more fundamental 

questions about alternative approaches to identify causative agents in KD. 

Given the potential lag between exposure to/infection with a triggering agent, any means of sampling 

children before they develop KD could increase the potential to detect causative agents. This could be 

achieved if a large enough high-risk cohort could be obtained, for example children with strong family 

history in Japan. Respiratory samples could be taken regularly through childhood and archived. 
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Samples could then be selected for processing from the months prior to KD development, with 

potential for patients to act as their own controls, as well as availability of independent controls who 

do not develop KD during the study period. Such a study would come with considerable expense with 

human and logistical challenges. Notably, in a retrospective study of multiple sclerosis which used 

longitudinal periodic assessments for blood viruses, this approach recently led to the identification of 

Epstein-Barr virus (EBV) infection as a significant triggering factor (Bjornevik et al., 2022). 

Additional alternative approaches could leverage the immune response for clues to triggers, infectious 

or otherwise, as commenced in the preceding chapter. Immunopeptidomics involves the elution and 

sequencing of peptides from circulating T cells, and could allow resolution of sufficient distinct 

peptides to conclusively identify microbial antigen. This approach has been applied to help identify 

non-canonical candidate tumour antigens (Chong, Coukos & Bassani-Sternberg, 2022). T-cell receptor 

sequencing can also be used to predict cognate antigen (Lanzarotti, Marcatili & Nielsen, 2019), though 

this would likely only be practical with a small search space. Inference of antigen specificity from B-

cell receptor sequencing is in its infancy (Krawczyk et al., 2018; Kovaltsuk et al., 2017). The advent of 

high-accuracy deep-learning based structural modelling of proteins (Jumper et al., 2021) shows 

promise for aiding progress in this area. The complementarity determining regions of immunoglobulin 

regions prove difficult for current models, though focused training on antibody structures is reported 

to yield better accuracy (Peng et al., 2023). 

Key learning and retrospectives 

Taking into account all of the above, confidently identifying microbial triggers of KD remains highly 

challenging. Broad, untargeted approaches as I have undertaken with my colleagues account for our 

inability to exclude organisms a priori. However, they suffer from significant analytic and inferential 

challenges. Further, no methods exist for testing power in studies such as these, unless one uses a 

simulation-based approach with countless assumptions. More focused approaches have a high risk of 

missing relevant organisms, though it must be acknowledged that targeted studies of coronaviruses 

could be fruitful, given recent experience. 

If faced with the potential to repeat and redesign this study, I would prioritise the incorporation of 

methods to remove human DNA, and include RT-PCR to allow detection of RNA viruses. I would also 

consider the application of broad-range serology screening, using a technique like VirScan (Xu et al., 

2015), though no differences were shown among 37 cases and matched controls in a recent study 

(Quiat et al., 2020). 
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Future work 

As demonstrated, potentially fruitful opportunities for further analysis of the data remain through 

optimising analytic approaches. This could qualify or strengthen existing findings, and lead to new 

discoveries within these data.  

The metagenomic findings in this study should be subjected to further analysis. Within the research 

group we plan to validate the quantitative association of candidate organisms with KD by quantitative 

PCR in existing and additional samples. We also plan to measure the antibody response in KD patients 

and controls to these candidate organisms. Elevated antibodies to these prevalent organisms could 

support a role in the aetiopathogenesis. 

Regarding metaproteomics, further experiments have been conducted with samples from children 

with PIMS-TS, searching for SARS-CoV-2 antigen within extracted immune complexes. 

The proteomics of bulk antibody remains a little-explored area, and my own work here is novel. Plans 

are underway to further explore the contribution of the antibody response to KD and PIMS-TS by 

sequencing the germline immunoglobulin loci (Ford et al., 2020). 

Concluding remarks 

KD is potentially a new disease of the modern era and its aetiology remains unexplained despite 

extensive study from first discovery. I utilised data generated from throat swabs and ICs extracted 

from the blood with distinct sequencing approaches across hundreds of children with and without KD. 

I sought to identify potential aetiological agents with minimal restriction on organisms that could be 

identified and considered. 

I present evidence that some bacteria in the oropharynx are significantly more abundant in KD patients 

at presentation compared to children with other febrile illnesses. The significance of these findings 

remains to be determined. 
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Appendix A – Kawasaki disease and febrile control patient cohorts 

University of California San Diego / Rady Children’s Hospital Patients 

KD patients met the case definition of the American Heart Association for either complete or 

incomplete KD. In order to avoid the potential for misclassification or confusion with MIS-C, all KD 

subjects were enrolled from 2004-2017 prior to the SARS-CoV-2 pandemic. All KD subjects were 

diagnosed and treated by one of two highly experienced KD clinicians. Febrile control subjects were 

also enrolled from 2002-2017 and met the following case definition: previously healthy child with 

fever for at least 3 days plus at least one of the clinical criteria for KD. Over 50% of the FC were referred 

for evaluation because of a clinical suspicion for KD. The final diagnoses for the FC were adjudicated 

2-3 months after enrolment by two experienced paediatric clinicians who reviewed the clinical 

outcomes in the medical record and all available test results. A viral syndrome was defined as a self-

limited illness that resolved without treatment and without apparent sequelae. Written consent or 

assent as appropriate was obtained from parents and subjects and the study was approved by the 

Institutional Review Board at UCSD (Human Research Protection Program 140220). 

Imperial College London / St Mary’s Hospital Patients 

KD patients, febrile controls and healthy children were previously recruited, with written parental 

informed consent, under approvals by the research ethics committees of the United Kingdom (St 

Mary’s Hospital 09/H0712/58, 13/LO/0026, EC3263).  Febrile controls were drawn from the 

Immunopathology of Respiratory Infection Study (IRIS) recruiting between 2008 and 2015 (Herberg et 

al., 2013; Cebey-López et al., 2015, 2016; Wright et al., 2018). Children were recruited from the 

emergency department of St Mary’s Hospital, London if they had fever or were suspected by the 

clinical team to have an infectious or inflammatory disorder. Healthy controls were recruited from 

outpatient clinics as part of the IRIS study, and from unrelated contacts of meningococcal disease 

cases. Control samples from adults with TB (metaproteomics only) were obtained from the IGRAs in 

Diagnostic Evaluation of Active TB (IDEA) study (11/H0722/8 Hoang et al., 2021) kindly provided by 

Prof Ajit Lalvani. 

Samples from children with KD were drawn from the study “Genetic determinants of Kawasaki Disease 

for susceptibility and outcome.” As per Wright et al. (2018): “Kawasaki disease was diagnosed on the 

basis of the American Heart Association criteria, with 2-dimensional echocardiography performed 

soon after presentation (2 and 6 weeks after onset). Patients with fewer than 4 of the 5 classic criteria 

(bilateral nonpurulent conjunctivitis, oral mucosal changes, peripheral extremity changes, rash, and 

cervical lymphadenopathy >1.5 cm) were included as having incomplete KD if the maximum coronary 

artery z score (Zmax)… at any time during the illness for the left anterior descending or right coronary 



Appendix A – Kawasaki disease and febrile control patient cohorts 

 Page 181 

arteries was 2.5 or higher or if the patients satisfied the algorithm for incomplete KD in the American 

Heart Association guidelines.” 
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Appendix B – Preliminary exploration of host DNA and contamination 
in metagenomics 

Summary 

This appendix is derived from a finalised manuscript published in Access Microbiology (McArdle & 

Kaforou, 2020).  

Motivated by the need to inform the current study, and prior to the availability of our metagenomic 

data, I reviewed and reanalysed an experimental study of the impact of sequencing depth and varying 

host DNA proportion on metagenomic analyses (Pereira-Marques et al., 2019). This study reported 

that increasing host DNA abundance and reducing read depth impaired the sensitivity to low 

abundance micro-organisms. 

Importantly, the study did not consider contamination and applied a less sensitive marker gene 

approach for identification and quantification. My reanalysis using Kraken 2 identified contamination 

as an issue, and reframed the problem within the existing domain of low biomass metagenomics. 

The analysis convinced me of the critical need to account for contamination and the need to apply 

read-binning tools rather than marker gene approaches for maximum sensitivity. Importantly, during 

this analysis, I was unaware of the issue of eukaryotic contamination of microbial reference genomes. 

It is therefore possible that some of the apparent contamination detected herein relates to reference 

database errors. 

Introduction 

The study of metagenomics and microbiomes has yielded impressive insights into the microbiology of 

the environment and of multicellular organisms in health and disease (Escobar-Zepeda, Vera-Ponce 

de León & Sanchez-Flores, 2015). 

Although more expensive than amplicon-based microbiome approaches (e.g. 16S), shotgun 

metagenomics is increasingly gaining prominence. Benefits include no polymerase-chain reaction 

related bias, greater specificity of identifications and representation of diversity, and ability to detect 

organisms from all kingdoms (Ranjan et al., 2016). Additionally, metagenomic sequences can be 

analysed functionally, and whole or partial metagenomes reconstructed with greater depth of 

sequencing (Quince et al., 2017). 

However, high depth sequencing does not guarantee abundant microbial reads. Challenges most 

frequently arise when microbial biomass is low (Eisenhofer et al., 2019; Weyrich et al., 2019; Karstens 

et al., 2019). Total DNA will be limited, and few reads may be obtained. Further, the quantity of 
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contaminant organisms is likely to remain constant, thus their relative contribution will increase. The 

same problem can arise when samples are dominated by DNA from a host organism – in these cases, 

host sequencing reads may vastly outnumber those from microbes. 

Although, techniques exist to mitigate this by selectively depleting host DNA, usually by removing free 

DNA before lysis (Marotz et al., 2018; Feehery et al., 2013; Hasan et al., 2016; Nelson et al., 2019), 

they are in their infancy and could also deplete DNA from dead or damaged organisms, which would 

include those under immune attack (Oechslin et al., 2018). Depleting host DNA would not reduce the 

impact of contamination occurring prior to depletion. 

In this context, we commend Pereira-Marques et al on their insightful study into the effects of host 

DNA and read depth on microbial abundance estimates from shotgun metagenomics (Pereira-

Marques et al., 2019). 

The authors evaluated the impact of a range of amounts of host DNA and sequencing depths on 

microbiome taxonomic profiling using shotgun metagenomic sequencing, from synthetic samples 

where bacterial DNA from 20 species of varying abundances was spiked with varying amounts of 

murine DNA.  

The authors showed that increasing proportions of host DNA (10, 90 and 99%) led to decreased 

sensitivity in detecting very low and low abundant species, increasing the number of undetected 

species. 

Although not stated, we anticipate the authors may have selected MetaPhlAn2 for their analysis 

because by detecting clade-specific marker genes of known number per organism, relative 

abundances within a sample can be directly estimated (Segata et al., 2012). Despite this advantage, 

we are concerned that relying upon a small number of marker genes will render the approach more 

sensitive to reduced depth than read binning approaches. 

Consequently we applied Kraken, a fast and sensitive read binning tool (Wood & Salzberg, 2014), 

which performed well in recent benchmarks (Lindgreen, Adair & Gardner, 2016; Ye et al., 2019). 

Advantageously, a partner tool (Bracken) also exists for relative abundance estimation (Lu et al., 2017). 

We obtained the variable-length trimmed reads from the study (NCBI sequence read archive accession 

PRJNA521492) and built a Kraken database comprising bacteria, fungi, viruses, archaea and mouse 

genome sequences with core vector elements. Kraken (version 2.0.8-beta) was then run with default 

settings, followed by Bracken. 
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For each sample we categorised reads assigned to any microbial operational taxonomic unit (OTU) as 

microbial. We follow the sample naming conventions of the original analysis: MS = microbial sample; 

SS10 = 10% host DNA; SS90 = 90% host DNA; SS99 = 99% host DNA. 

Sensitivity 

All expected organisms (n=20) were detected in all samples. This contrasts with the results presented 

in Pereira-Marquez et al where 9 of the 20 species became undetectable in SS99. 

Over 75% of microbial reads were allocated to the known species (on target), except in sample SS99 

where this fell to 67%. Other species of the expected genera represented much fewer than 1% of 

microbial reads in all samples. Fewer than 2% of microbial reads were assigned to OTUs outside of the 

lineage of the expected genera (off target), except for SS99 where this was 12% (data not shown). 

Relative abundance 

Crude assigned read counts are not a guide to relative abundance because of varying genome size, 

and because reads from different organisms may be assigned at species level at differing rates due to 

homology. Bracken was developed to overcome the second limitation by reallocating reads assigned 

to higher levels. We apply Bracken here at species level to estimate abundance and then correct for 

genome size. The Bracken database was built for a read length of 150 (the median length of the 

trimmed reads). 

Bracken estimated that over 98% of microbial reads were on-target (species) in MS and SS10. In SS90 

this fell to 96.8% and in SS99 to 83.3%. 

We normalised abundances by genome size (obtained from NCBI genomes at 

https://www.ncbi.nlm.nih.gov/genome) for the target species, discounting the small proportion of 

off-target reads. In MS, the ratios of observed:expected relative abundance was between 0.5 to 2 for 
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16 of the 20 species, compared to 17 in the published study (Figure 34). Mean squared relative error 

for MetaPhlAn was 0.3 and for Bracken was 0.45. 

Changes in relative abundance due to host DNA abundance were modest, even in SS99 where 12 of 

20 organisms were within 10% of the estimate from MS (mean squared relative error 0.02). 

We found the association of variation in observed:expected ratio with genome GC content to be 

similar to the original report (r=-0.74 vs. -0.85; data not shown). 

Other species 

Using Bracken recalculated reads, off-target genera (n=1 336) could be classified into synthetic-

associated (MS:SS99 > 10:1), host-associated (SS99:MS > 10:1) or non-specific. Over 92% of reads were 

from host- or synthetic-associated genera. Synthetic-associated genera contributed 0.8% of microbial 

reads in MS, and host-associated genera less than 1:105. Host-associated genera contributed 11.5% 

Figure 34 Taxonomic profile of the synthetic metagenome samples determined with Kraken 2, and expressed as relative 
abundance of species in a heat map. The actual abundances are presented as per the original publication based on the 
theoretical number of genome copies present. Species are listed from highest to lowest expected relative abundances. MS 
= microbial sample; SS10 = 10% host DNA; SS90 = 90% host DNA; SS99 = 99% host DNA. 
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of microbial reads in SS99 (despite being only 0.2% of murine reads), and synthetic-associated genera 

1%. 

The top four synthetic-associated genera were Shigella, Salmonella, Citrobacter and Klebsiella. These 

are all likely to represent misclassified E. coli reads. The top four host-associated genera are 

Pasteurella, Halomonas, Alcanivorax and Mycobacteria. Alcanivorax and Pasteurellaceae have 

previously been reported to contaminate DNA extraction kits (Glassing et al., 2016). We note that host 

DNA was extracted in the laboratory whereas the microbial DNA was obtained commercially, thus 

different contaminants are unsurprising. 

The target genera with lowest read counts in SS99 were Schaalia and Deinococcus (36 and 37 reads 

respectively). Fifty-four off-target genera had 36 or more reads. The most abundant off-target genus 

(Pasteurella) contributed 11 530 reads, greater than 13 of 17 target genera. 

Low microbial biomass 

The greater sensitivity of this read binning approach reveals the underlying problem of high relative 

contamination in the samples with high host DNA content. The problem can now be reframed as one 

of low (proportionate) microbial biomass and potential mitigations considered. 

The challenge of low microbial biomass samples, introduced earlier, has been more extensively 

studied in rRNA-amplification based approaches than shotgun metagenomics. Nonetheless, many of 

the problems are shared, and we direct readers to a recent review by Eisenhofer et al. (2019). Pre-

analytic mitigations include appropriate controls, as described therein. 

Analytic mitigations for 16S rRNA studies were explored in a recent publication (Karstens et al., 2019). 

The authors investigated filtering based on relative abundance thresholds in negative controls; 

Decontam (Davis et al., 2018), an approach based on the inverse relationship between relative 

abundance of contaminants and total microbial DNA, and SourceTracker (Knights et al., 2011) which 

takes a Bayesian approach using external or internal community references. 

In summary, it was found that simple censoring of thresholded negative control OTUs discriminated 

contaminant and target sequence variants poorly. The Decontam approach discriminated better, 

correctly classifying all target sequence clusters, and up to 90.4% of contaminant sequence clusters. 

SourceTracker performed poorly without external references (a typical scenario), identifying less than 

1% of contaminant sequence clusters. 

Although limited by few samples and no duplicates, we applied Decontam to the Bracken-normalised 

species counts, using the frequency-based approach. Input DNA concentration was replaced with the 

total microbial read counts (since all samples had been normalized to 0.2 ng/ml). None of the 20 target 
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species were classified as contaminants. 2 636 of 4 319 (61%) of off-target species were classified as 

contaminants, and these accounted for 79% of off-target reads in SS99 and 50% in SS90. 

In SS99, the lowest abundant genera, Schaalia and Deinococcus, retained 35 and 34 reads respectively. 

Only 7 off-target genera had 34 or more reads, comprising the four synthetic-associated genera above, 

with Cronobacter, Nitrosopumilus and Enterobacter. Shigella had the most reads at 1303, exceeding 

10 of 17 target genera. 

Interpretation 

The marker gene approach employed by MetaPhlAn is very sensitive to read depth, and hence host 

DNA abundance. In contrast, the read binning approach employed by Kraken 2 detects organisms 

across the >2,000-fold range of relative abundances even with 99% host DNA content. 

Genome-size normalisation of Bracken-estimated read counts provides similarly accurate estimates 

of relative abundance to MetaPhlAn. The untrimmed reads (not available) may give better results as 

they would all be of the same length, which is expected by Bracken. 

We demonstrate that the large relative contribution of contaminants when microbial reads are in a 

minority is a greater concern, representing around 10% of microbial reads in SS99 with contaminant 

genera exceeding the counts of some target genera.  

However, the frequency-based Decontam approach allows nearly four-fifths of these off-target reads 

to be excluded. Further, many of those that remain may represent misclassified target reads. 

Concluding remarks 

The appropriate selection of analytic tools is vital for accurate and sensitive metagenome analysis. For 

samples with low microbial biomass, reducing contamination is a priority, though mitigation is 

possible. Techniques to selectively remove host DNA are required, but thorough benchmarking is 

awaited. 
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Appendix C – Tools and databases 

I compile below lists of software tools and databases used in the analyses presented. 

Tools 

Tool  Version  Reference 

R Multiple  

Nextflow 20.01.0.5264 Di Tommaso et al., 2017 

Anaconda 4.10.1  

Kraken 2  2.1.0 (compiled) Wood & Salzberg, 2014; Wood et al., 2019  

Bracken 2 2.5.3 (compiled) Lu et al., 2017  

Sourmash   4.2.1 (anaconda) Brown & Irber, 2016  

SAMtools  1.2 (HPC pre-
installed) 

Li et al., 2009  

MMseqs2  13.45111 
(anaconda)  

Steinegger & Söding, 2017  

MEGAHIT  1.2.9 (anaconda) Li et al., 2015b  

MetaBAT  2 2.15-
6 (anaconda) 

Kang et al., 2015  

CheckM 1.1.2 (anaconda) Parks et al., 2015  

Prodigal 2.6.3 (anaconda) Hyatt et al., 2010  

Jellyfish 2.3.0 
(precompiled) 

Marçais & Kingsford, 2011 

Flextaxd 0.2.4 (anaconda)  

Newick Utils 1.6 (anaconda)  

Nonpareil 3.3.3 (anaconda) Rodriguez-R et al., 2018 

VCFLib 1.0.2 (anaconda)  

NCBI Genome 
Download 

0.3.0 (anaconda) Blin, 2022 

MaxQuant 1.6.6.10, 
1.6.10.43, 1.6.17 

Tyanova, Temu & Cox, 2016 

Quandenser v0.02 (custom) The & Käll, 2020 

Msconvert 3.0.10730 Adusumilli & Mallick, 2017 

SearchGUI 4.0.0-beta Barsnes & Vaudel, 2018 

MetaNovo 1.6 Potgieter et al., 2019 

Fastv 0.9.0 Chen et al., 2021 
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Databases 

Name Source Version or date 
downloaded 

Genome 
Taxonomy 
Database 
Taxonomy and 
genome files 

https://data.gtdb.ecogenomic.org/releases/release95/95.0/ 

 

Release 95 

Sourmash 
Genome 
Taxonomy 
Database LCA 
databases 

https://osf.io/wxf9z/ 

 

Release 202 

NCBI RefSeq 
viral, fungal 
and human 
reference 
genomes 

Via NCBI Genome Download tool 8 October 2020 

UniProt 
reference 
proteomes 

Using get_uniprot.pl script of MMH (Pombert, 2021) March 2019 

abYsis database Prof Andrew Martin, personal communication  6 March 2019 

 

 

https://data.gtdb.ecogenomic.org/releases/release95/95.0/
https://osf.io/wxf9z/

