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Abstract
Wepresent a compatible finite element discretisation for the vertical slice compressible
Euler equations, at next-to-lowest order (i.e., the pressure space is bilinear discontinu-
ous functions). The equations are numerically integrated in time using a fully implicit
timestepping scheme which is solved using monolithic GMRES preconditioned by a
linesmoother. The linesmoother only involves local operations and is thus suitable for
domain decomposition in parallel. It allows for arbitrarily large timesteps but with iter-
ation counts scaling linearlywithCourant number in the limit of largeCourant number.
This solver approach is implemented using Firedrake, and the additive Schwarz pre-
conditioner framework of PETSc. We demonstrate the robustness of the scheme using
a standard set of testcases that may be compared with other approaches.

Keywords Compatible finite elements · Numerical weather prediction · Monolithic
solvers · Vertical slice models

Mathematics Subject Classification 76U60 · 86A10 · 65M60 · 65Z05

1 Introduction

This article presents numerical results for a compatible finite element discretisation
of the compressible Euler equations in a vertical slice geometry (i.e. two dimensional
with one of the directions being the vertical). Vertical slice geometry provides an
opportunity to evaluate the performance and behaviour of numerical discretisations for
atmosphere dynamical cores using testcases that can be run on a laptop or workstation,
forming a useful step in the development of global atmosphere dynamical cores.
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Themotivation for compatible finite elementmethods is that they provide a naturally
stable discretisation for the equations linearised about a state of rest, i.e. no numerical
stabilisation (such as Riemann solvers, divergence damping, artificial viscosity, etc)
is required for the wave component of the solution. This stability means that they are
absent of spurious pressure modes, i.e. pressure patterns that are highly oscillatory but
lead to small numerical gradients. Further, when the Coriolis force is introduced, they
support exactly steady geostrophic states (Cotter and Shipton 2012), and they avoid
the spurious branches of inertial oscillations (Natale et al. 2016) that are present in
many finite element discretisations (such as P1DG -P2 and CR1-P0 on triangles). This
satifies the main requirements set out in (Staniforth and Thuburn 2012), which became
a wishlist for discretisations considered in the Gung Ho project designing a new atmo-
sphere dynamical core for the Met Office. Natale et al. (2016) also showed that if an
appropriate space is chosen for potential temperature as proposed by Guerra and Ull-
rich (2016) (guided by the Lorenz staggering for finite difference methods), there are
no spurious hydrostatic modes. Compatible finite element methods are also flexible in
allowing to choose finite element spaces so that there are sufficient velocity degrees of
freedom per pressure degree of freedom (avoiding the spurious inertia-gravity wave
modes present in triangular C-grid discretisations (Danilov 2010)). Finally, they are
consistent on very generalmeshes (arbitrary triangulationswith someminimumaspect
ratio, and quadrilateral meshes coming from piecewise smoothmaps applied to regular
grids) and spaces can be selected of arbitrary high order consistency. In particular, the
Coriolis term is consistent on cubed sphere meshes, avoiding an issue discovered with
the C-grid discretisation when applied to cubed sphere or dual icosahedral meshes
when formulated to satisfy the properties above (Thuburn and Cotter 2012; Thuburn
et al. 2014). The numerical weather prediction community is moving towards such
grids because they avoid the parallel bottlenecks associated with the poles in the lati-
tude longitude grids in current and previous use. It was for this reason that compatible
finite element methods were selected for the Gung Ho dynamical core, which is built
around the lowest order spaces currently (Sergeev et al. 2023; Melvin et al. 2019).

Compatible finite element methods also lend themselves to variational and conser-
vative formulations. These formulations are the result of extension of similar schemes
constructed using the C-grid finite difference staggering (Arakawa and Lamb 1981;
Gassmann 2013; Dubos et al. 2015). Taylor et al. (2020) have recently provided a
formulation using spectral element methods.

McRae and Cotter (2014) provided a scheme for the rotating shallow water equa-
tions that conserves energy and enstrophy. This has been extended to bounded domains
(Bauer and Cotter 2018), upwinded formulations that dissipate enstrophy but preserve
energy (Wimmer et al. 2020), and vertical slice model (Wimmer et al. 2021). An
alternative set of compatible finite element spaces based on splines was presented in
Eldred et al. (2019), and a related approach based on mimetic spectral elements was
presented in Lee and Palha (2018, 2020).

A variational discretisation (i.e., a discretisation derived from Hamilton’s princi-
ple) for the two dimensional incompressible Euler equations was derived in Natale and
Cotter (2018), which was further developed for more general fluid models in Gawlik
and Gay-Balmaz (2020, 2022). We are not using variational or conservative formu-
lations in this paper, but we note that our formulation is rather close to them, which
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might be expected to reduce spurious energy transfers between kinetic, potential and
internal energy.

The lowest order compatible finite element spaces (i.e., those spaces with RT0
for velocity and P0 used for pressure/density) are closely related to the C grid finite
difference method popular amongst many operational weather models (Wood et al.
2014,for example). However, these spaces are only first order accurate, so a finite
volume approach is required where one is in effect solving for cell averaged quantities,
and higher order accuracy for those cell averaged quantities must be obtained by using
finite volume transport schemes, which have a stencil over several cells. This was done
in (Melvin et al. 2019). The advantage of using the next-to-lowest-order (NLO) spaces
(RT1 is used for velocity, and P1DG used for pressure/density) is that they are naturally
second order accurate, so standard finite element formulations are sufficient. This leads
to a very clean formulationwhere assembly only requires to fetch data froma single cell
or frompairs of cells joined by facets. Thismakes it particularly amenable to automated
code generation of MPI parallel codes using tools such as Firedrake (Rathgeber et al.
2016). (Shipton et al. 2018) presented a practical scheme for the rotating shallow
water equations using NLO spaces. In this paper we present a practical scheme for the
compressible Euler equations using NLO spaces, evaluated using a standard suite of
vertical slice model testcases. A related scheme was coupled with a moisture model in
Bendall et al. (2020), but was not benchmarked against the tests considered here. We
use a fully implicit timestepping method, solved using a monolithic iterative solver
i.e. the full coupled system of all variables is solved together without elimination. The
equations are solved using GMRES, using a linesmoother which acts as an additive
Schwarz method with each patch comprising the “star” of a vertical edge, i.e. all
degrees of freedom associated with the interior of the vertical column surrounding that
edge. The columnar approach is necessary due to the thin domain geometry occuring
in atmosphere models. Numerical analysis of these schemes is difficult, but they are
motivated by finding monolithic smoothers that result in a (block) Jacobi iteration
for the density/pressure variable after elimination within the patch. For example, a
similar method (in local rather than columnar form) was proposed in Adler et al.
(2021); Laakmann et al. (2022).

There are a few reasons for including this approach here. First, it is useful to focus
on the behaviour of the spatial discretisation without clouding the issue with aspects
related to the splitting of advection andwave propagation, for example. In amonolithic
approach, the basic code becomes very simple, and the challenges are exported to the
iterative solver, which is provided here by the PETSc library. Second, the monolithic
approach is itself new, and the paper provides a useful demonstration that it is useable
in practice for numerical weather prediction.

The rest of the article is structured as follows. Section2 presents the discretisation in
space and time, together with the iterative solution strategy for the resulting implicit
system of equations, and our strategy for obtaining hydrostatic balance reference
profiles. Section3 presents the numerical examples, and Sect. 4 provides a summary
and outlook.
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2 Discretisation

2.1 Governing equations

Our description of the two-dimensional nonhydrostatic dry Euler equations can remain
quite brief because our approach discretises the equations in Cartesian coordinates
(even on terrain following coordinates or in spherical geometry). We write the equa-
tions in θ − � (potential temperature-Exner pressure) form,

∂u
∂t

+ (u · ∇)u + f k̂ × u + cpθ∇� + g k̂ = 0, (1)

∂θ

∂t
+ u · ∇θ = 0, (2)

∂ρ

∂t
+ ∇ · (uρ) = 0, (3)

�(1−κ)/κ = R

p0
ρθ, (4)

where u is the velocity, θ is the potential temperature, ρ is the density, � is the Exner
pressure, f is the Coriolis parameter, k̂ is the unit vector pointing upwards, cp is the
specific heat at constant pressure, R is the gas constant, p0 is the reference pressure, g is
the acceleration due to gravity and κ = R/cp. Here, we have presented the equations
as they would be read in three-dimensional form. In the vertical slice model, one
restricts the spatial dependence of the fields to the x − z plane, whilst retaining three
Cartesian components of the vector field, i.e. u(x, t) : R2 ×[0, T ] → R

3. In a code, a
simple way to implement this is to use a three dimensional mesh that is one cell wide
in the y-direction, and periodic in that boundary condition. If a higher order finite
element is used, it is still possible to represent variations in the y-direction. We expect
y-independent solutions should be preserved by symmetry, but care should be taken
to check that this is the case. In fact this is an advantageous approach, since the same
code can be used for vertical slice and full 3D models, and validation in the vertical
slice case adds to confidence in the full 3D model.

In this paper, we use the vector-invariant form of the advection term,

(u · ∇)u = (∇ × u) × u + 1

2
|∇u|2 . (5)

Some of the test problems we will consider contain a Newtonian damping term
to absorb radiating internal waves as they reach the upper boundary, requiring the
addition of the following term,

μk̂u · k̂, (6)

to the left hand side of Eq. (1) whereμ is the (spatially-dependent) damping parameter
specific to the test problem (which we will specify later), and is otherwise zero.
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Similarly, one of the test problems requires the addition of viscous and diffusion
terms in order to observe convergence with mesh resolution, in which case the same
diffusion parameter ν is used. Then we add

− ν∇2u (7)

to the left hand side of Eq. (1), and

− ν∇2θ (8)

to the left hand side of Eq. (2). These terms are not necessary for stability and are
only included to facilitate convergence testing and comparison with other published
results.

We call the computational domain�, which in this paper is always a rectangle with
lateral periodic boundary conditions (or a deformation of a rectangle to accommodate
topography), and slip boundary conditions u · n = 0 on the bottom and sides, where
n is the unit normal to the boundary. When diffusion and viscosity are included, this
boundary condition is augmented by ∂θ

∂n = 0 and ∂u×n
∂n = 0.

2.2 Spatial discretisation

2.2.1 Meshes and finite element spaces

In this paper, we make use of two types of meshes. For problems with f = 0 and no
out-of-plane component to the velocity, we construct structuredmeshes of regular rect-
angles. For problems with f �= 0, we construct structured meshes of regular cuboids
that are one cell wide and periodic in the y-direction (to facilitate efficient solution
of y-independent problems and to allow seamless transition to fully 3D problems). In
either case, for problems with topography we apply a terrain following transformation
to themesh of the form z �→ z+φ(x, y, z), which preserves column structure (vertical
faces of cells remain vertical) but does deform rectangles into trapezia and cuboids
into trapezium prisms.

Following McRae et al. (2016), we select the finite element spaces as follows. The
velocity space V1 is the Raviart-Thomas space of degree 1 (RT1) on hexahedra (see
below for more discussion about the vertical slice case), the density space V2 is the
discontinuous trilinear space (bilinear in 2D), and temperature space Vθ is the tensor
product of quadratic functions in the vertical, and bilinear functions (linear in 2D)
in the horizontal. It is continuous in the vertical, and discontinuous in the horizontal.
This choice mirrors the structure of the vertical component of the velocity space, to
facilitate the representation of hydrostatic balance (see Natale et al. (2016) for an
analysis of this, and a more detailed description of these spaces). See Bercea et al.
(2016) for information about how finite element methods with these spaces can be
used performantly.

In 3D, the V1 space uses a biquadratic construction: the vertical component of
velocity in the reference cube is quadratic in the vertical direction, and linear in the

123



25 Page 6 of 20 GEM - International Journal on Geomathematics (2023) 14 :25

horizontal directions, with a symmetric pattern applied to the other component(s). If
an x − z planar mesh is used in a vertical slice model, then the x − z components of
velocity are represented in the RT1 space on quadrilaterals, which the y component is
discontinous and bilinear (same as the density). The RT1 functions are mapped into
physical cells using the Piolamapping (Rognes et al. 2010). This guarantees continuity
of normal components of the functions across cell facets at the expense of replacing
polynomials by rational polynomials when the cells are trapezia or trapezium prisms.

Since these finite element spaces all contain the complete space of linear poly-
nomials, classical approximation theory indicates that they can approximate smooth
functions on the reference element with second order error in the L2 norm. There
is a technicality that the Piola transformation means that V1 on mesh elements with
terrain following meshes do not contain all linear polynomials. However, Natale et al.
(2016) showed that second order approximation is still obtained if the mapping from
a rectangular domain is smooth (or, piecewise smooth provided that the number of
pieces is fixed).

The spatial discretisation of the Eqs. (1–4) is then to find (u(t), ρ(t), θ(t)) ∈
V̊1 × V2 × Vθ such that

∫
�

w · ut + μw · k̂u · k̂ + fw · k̂ × u d x + w · k̂g d x

+
∫

�

∇h × (w × u) × u d x −
∫

�

∇ · w 1

2
|u|2 d x +

∫



[[n × (u × w)]] · ũ d S
︸ ︷︷ ︸

from (u·∇)u

−
∫

�

∇h · (wθ)cp� d x +
∫


v

[[n · wθ ]]cp{�} d S
︸ ︷︷ ︸

from cpθ∇�

= 0, ∀w ∈ V̊1, (9)

∫
�

qθt − ∇h · (uq)θ d x +
∫


v

[[qn · u]]θ̃ d S
︸ ︷︷ ︸

horizontal upwinding

+
∫




C0h
2|u · n|[[∇hq]] · [[∇hθ ]] d S

︸ ︷︷ ︸
edge stabilisation

= 0, ∀q ∈ Vθ , (10)

∫
�

φρt − ∇hφ · uρ d x +
∫




[[φu · n]]ρ̃ d S
︸ ︷︷ ︸

upwinding

= 0, ∀φ ∈ V2, (11)

where

1. ∇h indicates the “broken” gradient obtained by evaluating the gradient separately
in each cell,

2. 
 is the set of interior facets (with 
v the set of vertical facets between adjacent
columns),

3. [[ψ]] is the “jump” operator applied to a quantityψ returningψ+ −ψ− where each
interior facet has sides arbitrarily labelled “+” and “-” (and noting that n is the unit
normal to a facet with n+ pointing into the − side and vice versa for n−),
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4. ψ̃ indicates the upwind value of any quantity ψ on the facet i.e. the value on the
side where u · n ≥ 0 (making an arbitrary choice not affecting the result when
u · n = 0),

5. {ψ} is the average operator returning (ψ+ + ψ−)/2 when evaluated on a facet,
6. � is defined according to (4) but now applied to the numerical approximations ρ

and θ (so that we do not separately solve for an independent variable �),
7. h is an estimate of the cross facet meshscale defined by {Ve}/A f with Ve being the

(cellwise constant) cell volume, and A f being the (facetwise constant) facet area,
8. C0 is an edge stabilisation constant (chosen here to be 2−7/2 following the suggested

scaling p−7/2 with polynomial degree p given by Burman and Ern (2007)), and
9. V̊1 is the subspace ofV1 containing all functions that satisfy the u ·n = 0 boundary

condition on the top and bottom of the domain.

The treatment of the velocity advection termwas first demonstrated (for a incompress-
ible Boussinesq vertical slicemodel) by Yamazaki et al. (2017), inspired byNatale and
Cotter (2018) but different from the energy conserving form for compressible Euler
equations proposed in Wimmer et al. (2021). The surface term deals with the fact that
the velocity space does not have continuous tangential components in general; it also
has a stabilising effect as examined in Natale and Cotter (2017). The treatment of
the pressure gradient term first appeared in Natale et al. (2016), and has been used in
a modified energy conserving form in Wimmer et al. (2021), and with lowest order
spaces in Bendall et al. (2020) and as part of the Gung Ho dynamical core formu-
lation in Melvin et al. (2019). The treatment of the potential temperature advection
term deviates here from the “SUPG” formulation proposed in Yamazaki et al. (2017),
using an edge stabilisation proposed by Burman (2005) instead, in combination with
standard discontinuous Galerkin style upwinding on vertical faces. Even though the
temperature space is only continuous in the vertical direction, we found that edge
stabilisation was necessary on all faces to achieve stable results.

It should be noted that in the case of spatially varying topography, it is not possible
to compute integrals exactly because of the det(J ) in the reciprocal appearing in
the velocity basis functions (due to the Piola mapping), where J is the Jacobian of
the reference element to mesh element mapping. Thus, we have to approximate the
integrals using numerical quadrature, and we have to select a quadrature degree for
each term so that the discretisation is stable and sufficiently accurate. Here we just take
the suggested quadrature degree from the heuristic computed in UFL (Alnæs et al.
2014) which selects a (rather generous) quadrature rule for approximate integration,
which is certainly sufficient for stability and second order consistency. In fact, many
of the integrals are nevertheless computed exactly, due to fortuitious cancellations that
are discussed in (Cotter and Thuburn 2014). Another source of inexact quadrature is
the function � which involves a noninteger power of ρ and θ .

When test cases require a viscous term, we use the symmetric interior penalty
discretisation (to deal with discontinuities in the tangential component of the velocity)
as described in (Cockburn et al. 2007), in which case the term

ν

(∫
�

∇hu : ∇hv d x −
∫




[[v ⊗ n]] : {∇u} d S −
∫




[[u ⊗ n]] : {∇v} d S
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+
∫




η

h
[[u ⊗ n]] : [[v ⊗ n]] d S

)
(12)

is added to the left hand side of Eq. (9), where ν is the dynamic viscosity, : indicates
the double contraction for tensors (so that A : B = ∑

i j Ai j Bi j ), and η is a dimen-
sionless penalty parameter, chosen here to have the value 10 which is experimentally
determined to produce a stable discretisation for both V1 and Vθ . A similar formula
(with the same parameters, but adapted to scalar fields) is used when test cases require
a diffusion term in the potential temperature equation.

2.3 Time discretisation and iterative solver

The time discretisation used is the implicit midpoint rule, a fully implicit second
order method. This is obtained by replacing time derivatives by time differences e.g.
θt �→ (θn+1 − θn)/t , and replacing all other occurrences of fields by their midpoint
values e.g. θ �→ (θn+1 + θn)/2. This nonlinear system is then solved for the n +
1 variables using the linesearch Newton method provided by PETSc (Balay et al.
2020) using Firedrake’s NonlinearVariationalSolver object. The resulting Jacobian
systems are solved using GMRES applied to the full monolithic velocity-density-
temperature system, preconditioned by an additive Schwarzmethod, which does direct
solves over column patches surrounding one vertex on the base mesh (in vertical
slice models this corresponds to forming a patch out of two neighbouring cells). In
fact, a “star” patch is used, which neglects degrees of freedom associated with the
horizontal boundaries of the patch. This patch is formed out of the “star iteration”
(see Sect. 4 in (Farrell et al. 2019)) applied to a vertex in the base mesh, before
extruding up the column. These direct solves couple all three fields, and the direct
solve uses PETSc’s own LU factorisation algorithm using a reverse Cuthill-McGee
ordering to reduce the fill in. This algorithm can be and is parallelised using domain
decomposition, which was automated in our implementation using Firedrake. In all of
our test cases, Newton’smethod converges in 2–3 iterations, andGMRES converges in
10–35 iterations depending on the flow complexity, independent ofmesh size provided
that a constant Courant number is maintained whilst decreasing the mesh size.

This solver approach is necessary because we chose to use a fully implicit timestep-
ping scheme, solved using Newton’s method. This requires us to be able to solve
systems J x = b where J is the full Jacobian obtained by linearisation about the state
at each Newton iteration. In the case where J is the linearisation about a state of
rest, J can be reduced to a positive definite Schur complement using the hybridisa-
tion technique provided the discretisation proposed in Betteridge et al. (2022) is used.
However, this technique does not work when the linearisation is calculated for states
with nonzero velocities, since these introduce additional intercell coupling.

2.4 Hydrostatic balance

The test cases that we consider here require the computation of a background density
profile ρb that is in hydrostatic balance given the specified potential temperature θb.
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We use a nonhydrostatic model, but testcases require an initialisation at a state of
hydrostatic balance, which we describe here. To avoid unphysical motion at lower
resolutions we compute this hydrostatic balance numerically, i.e. we require that

−
∫

�

∇h · (wθb)cp�b d x +
∫




[[n · wθb]]cp{�b} d S

+
∫

�

gw · k̂ d x = 0, ∀w ∈ V̊1,v, (13)

whereV1,v the vertical subspace ofV1, and V̊1,v is the corresponding vertical subspace
of V̊1.1 We note that �b is just a local nonlinear function of ρb and θb. As discussed
in Natale et al. (2016), we can solve this equation for ρb by introducing an auxiliary
variable v (which will turn out to vanish), and solving the coupled system

∫
�

w · v d x −
∫

�

∇h · (wθb)cp�b d x

+
∫

�

gw · k̂ d x +
∫

∂�0

cpw · nθb�0 d S = 0, ∀w ∈ Ṽ1,v, (14)

∫
�

∇h · (vθb)cpφ d x = 0, ∀φ ∈ V2, (15)

where ∂�0 is the surface where we have chosen to set �b = �0 as a boundary
condition (the bottom boundary for the test cases in this paper), Ṽ1,v is the subspace
of V1,v containing functions that satisfy w · n = 0 on the opposite boundary (the top
boundary for the test cases in this paper). We note that the surface integral in Eq. (13)
vanishes when w ∈ V1,v because w · n = 0 on vertical faces, and we note that the
weak boundary condition integral in (14) over ∂�0 vanishes when w ∈ V̊1,v ⊂ Ṽ1,v .
Since v vanishes at the solution, we recover the hydrostatic condition (13). The system
(14–15) decouples into independent columns, whichwe solve usingNewton’smethod.
Natale et al. (2016) showed that the linearisation around a given state of this system is
well-posed, and we solve the resulting linear systems for (ρb, v) updates directly. We
find an initial guess for ρb by first solving the corresponding linear system for (�b, v)

where �b ∈ V2 is taken as an independent variable instead of a local function of ρb
and θb. We then project the formula for ρb in terms of θb and�b intoV2. If we use the
result as an initial guess then Newton’s method converges in 2–3 iterations. Note that
this computation is only done to compute a set of initial conditions, and is not used in
the forward model which is always nonhydrostatic.

3 Computational examples

In this section we demonstrate our discretisation approach using the suite of test prob-
lems considered in Melvin et al. (2010). This suite tests the vertical slice discretiation

1 In the presence of orography, V1,v does not contain all of the vertical component of the velocity, and
solving this equation will lead to pressure gradient errors. This is described further in Natale et al. (2016).
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on a range of flows that are relevant to numerical weather prediction, including acous-
tic and gravity waves and flows driven by both buoyancy and orography. The gravity
wave and orographic wave tests are run in both the hydrostatic and nonhydrostatic
regimes. To avoid the need to refer back, we provide a brief summary of the test prob-
lems here. Some constants that are consistent across all tests are provided in Table
1. In each test we have used the same timestep t values as Melvin et al. (2010),
and double the values of x and z, which ensures the same number of degrees of
freedom (because we are using NLO spaces). A summary of resolutions, timesteps,
number of iterations, and the timings is provided in Table 2.

3.1 Gravity waves

This test case is the “Hello World!” of vertical slice test problems, first proposed in
Skamarock and Klemp (1994). There are two versions of the test case, the nonhydro-
static flow regime versionwith velocity constrained to the x−z plane and consequently
f = 0, and the hydrostatic flow regime version with 3D velocity and f = 10−4 s−1.
Note that we are solving the nonhydrostatic equations in both versions, and the naming
just describes the asymptotic flow regime and not the equations solved. The domain is
given by L/2 ≤ x ≤ L/2 and 0 ≤ z ≤ H where L = 3×105 m in the nonhydrostatic
case and L = 6×106m in the hydrostatic case. In both cases the height is H = 104m
and there are periodic boundary conditions in the horizontal direction.

In both cases, the potential temperature is initialised to a background profile

θb = Tsurf exp(N
2z/g), Tsurf = 300K , (16)

before solving for the hydrostatically balanced ρb. Then a perturbation is added to the
potential temperature,

θ = θ0
sin(π z/H)

1 + x2/a2
, (17)

where θ0 = 10−2K and a = 5 × 103m for the nonhydrostatic flow regime and
a = 105m for the hydrostatic flow regime. In both cases, the horizontal velocity
in the x-direction is initialised to 20ms−1 and the other components to zero. In the
hydrostatic case, an additional forcing term is introduced to balance the Coriolis force,
adding f × (0,−20, 0) to the left hand side of Eq. (1).

Plots of the nonhydrostatic and hydrostatic flow regime solutions are shown in
Figs. 1 and 2, respectively. These solutions closely match the results from Melvin
et al. (2010) at similar resolutions.

3.2 Density current

This test is taken from the classic intercomparison project of Straka et al. (1993),
simulating a dense bubble in an isentropic, hydrostatic atmosphere. The domain is
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Fig. 1 Contour plot of vertical velocity for the nonhydrostatic gravity wave at time t = 3000 s at resolution
x = 2000m, z = 2000m, and t = 12 s. Contours are drawn every 5 × 10−4ms−1

Fig. 2 Contour plot of vertical velocity for the hydrostatic gravity wave at time t = 60,000 s at resolution
x = 20,000m, z = 1000m, and t = 100 s. Contours are drawn every 5 × 10−4 ms−1

−L/2 ≤ x ≤ L/2 where L = 51200m, and 0 ≤ z ≤ H = 6400m with periodic
boundary conditions in the horizontal direction.

The background temperature profile is chosen to be isentropic, i.e. the potential
temperature is constant. In this case the background potential temperature is θb =
300K . The background density profile is then obtained by solving for hydrostatic
balance for this potential temperature profile, with the boundary condition � = 1 on
the bottom boundary. We then apply a perturbation to the temperature,

T =
{

0 if Lr > 1,
−15 (cos(πLr ) + 1) /2 otherwise,

(18)

at constant pressure p, where

Lr =
√(

x−xc
xr

)2

+
(
z − zc
zr

)2

, (19)

123



25 Page 14 of 20 GEM - International Journal on Geomathematics (2023) 14 :25

Fig. 3 For the density current testcase: contours of θ at 15min. Contour intervals are 1K , with the first
contour being at –1 K . From left to right and top to bottom, the resolutions are (x, t) = (800m, 4 s),
(400m, 2 s), (200m, 1 s) and (100m, 0.5 s) respectively

and (xc, xr ) = (0m, 4000m), (zc, zr ) = (3000m, 2000m). This corresponds
to making the potential temperature perturbation θ = T /�, where � is the
background Exner pressure profile, and then perturbing the density according to
(ρ +ρ)(θ +θ) = ρθ . In our implementation, θ was computed by the following
steps:

1. Project the formula T /�(ρb, θb) into Vθ , where ρb ∈ V2 and θb ∈ Vθ are the
previously computed initial conditions for density and temperature respectively.
This is the initial condition θ0 for potential temperature.

2. Project the formula ρbθ0/θb in to V2. This is the initial condition ρ0 for density.

These projections are L2 projections using incomplete but high order quadrature for
the integrals over the formulae, similar to those used in the dynamical equations.

Without viscosity, this problem becomes ill-posed after forming a singular vorticity
structure in finite time. Hence, to be able to compare between models, a viscosity of
ν = 75m2s−1 is included in the velocity equation and a diffusivity of κ = 75m2 s−1

is included in the potential temperature equation.
For this testcase, the comparison is made after 15min. Contour plots at various

resolutions are shown in Fig. 3, and some summary statistics are provided in Table 3.
There is quite a bit of variation between models for the precise solution at this point,
as there is a lot of small scale structure forming, but our contour plots look broadly
similar to those of Melvin et al. (2010). In particular, the density current has reached
a very similar location, estimated as the maximum x coordinate over all cells where
θ < 0. We see that the dissipation of the minima ofθ is much weaker at the higher
resolutions, and although there is still a substantial overshoot past the initial maxima
of 0, this may be because the solution produces finer filaments of potential temperature
at higher resolutions, which is more challenging for the advection scheme.
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Table 3 For the density current
testcase: minimum, and
maximum values of
θ = θ − θb measured at
15min, together with the front
location (estimated as the
maximum x coordinate over all
cells where θ < 0)

x (m) t (s) θmax θmin Front location

800 4 1.3448 −11.6445 14,800

400 2 1.2293 −13.4614 15,000

200 1 0.9023 −16.3183 15,300

100 0.5 1.4226 −15.0101 15,250

The image has been cropped to focus on the right-propagating current

3.3 Flow over amountain

This test problem simulating small amplitude lee waves generated by flow over a
(small) mountain also has two versions, the nonhydrostatic flow regime version with
velocity constrained to the x − z plane and consequently f = 0, and the hydrostatic
flow regime version with 3D velocity and f = 10−4 s−1. Note that we are solving the
nonhydrostatic equations in both versions, and the naming just describes the asymp-
totic flow regime and not the equations solved. The domain is given by L/2 ≤ x ≤ L/2
and 0 ≤ z ≤ H where L = 144,000m and H = 35,000m in the nonhydrostatic case
and L = 240,000m and H = 50,000m in the hydrostatic case. In both cases there
are periodic boundary conditions in the horizontal direction.

The mountain has a “Mount Agnesi” profile, with the bottom boundary moved
to zs(x) = a2

x2+a2
, giving a mountain of height 1m. In our implementation, we use

a simple terrain following mesh with the rectangular domain transformed according
to (x, y, z) �→ (x, y, z + zs(H − z)/H). In the nonhydrostatic flow regime, a =
10,000m, and in the hydrostatic regime, a = 1000m.

In the nonhydrostatic flow regime, a stratified background flow is initialised accord-
ing to the description of Sect. 3.1, with Tsur f = 300K. In the hydrostatic flow regime,
the stratification is isothermal, i.e. constant temperature at T = Tsur f = 250K. This
does still imply a varying potential temperature, with profile

θ = Tsur f exp

(
gz

Tsur f cp

)
. (20)

In both cases, the density is initialised by solving numerically for a hydrostatic profile,
with boundary condition� = 1 at z = 0. This requires additional calculation because
with the topography, the bottom boundary is not at z = 0 everywhere. To address this,
we calculate the boundary condition for � at the top of the domain that produces the
value � = 1 at z = 0, using a value on the bottom of the domain away from the
mountain.

The nonhydrostatic test is initialised with a horizontal velocity u = 10ms−1 and
the hydrostatic test is initialised with a horizontal velocity u = 20ms−1. As for the
gravity wave test, in the hydrostatic case, an additional forcing term is introduced to
balance the Coriolis force, adding f × (0,−20, 0) to the left hand side of Eq. (1). In
both cases, the initial velocity is not compatible with the boundary condition at the
mountain, so this causes a pressure wave propagating at ground level, radiating waves
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Fig. 4 Contours of vertical velocity for the nonhydrostatic mountain wave test at t = 9 × 103 s. Contour
intervals are every 5 × 10−4 ms−1 ; horizontal lines are plotted every 2000m

Fig. 5 Contours of vertical velocity for the hydrostatic mountain wave test at t = 1.5 × 104 s. Contour
intervals are every 5 × 10−4 ms−1 ; horizontal lines are plotted every 5000m

that interfere with the stationary lee wave pattern that accumulates over time. This is
often referred to as a test of robustness of the discretisation.

To prevent the lee waves (and the initial pressure waves caused by the sudden
appearance of the mountain at time 0) reflecting off the top boundary, an absorbing
term in the vertical velocity is added in the top layer, with profile

μ(z) =
{

0, z < zB,

μ̄ sin2
(

π
2

(
z−zB
H−zB

))
, z ≥ zB,

(21)

where μ̄ is a constant and zB is the height of the bottom of the absorbing layer. For
the hydrostatic test, zB = H − 2 × 104 m = 3 × 104 m and μ̄t = 0.3 s. For the
nonhydrostatic test, zB = H − 104 m = 2.5 × 104m and μ̄t = 0.15s.

Contour plots of the vertical velocity are provided in Figs. 4 and 5, respectively. We
observe good agreement with the solutions plotted in Melvin et al. (2010).
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Fig. 6 Contours of vertical velocity for the Schär mountain wave test at t = 1.8 × 104 s, with t = 8s.
Contour intervals are every 5 × 10−2 ms−1

3.4 Schär test

Schär et al. (2002) describe a more challenging mountain wave test with a mountain
range orography that varies over multiple length scales, defined as

zs(x) = hm exp

(
−

( x
a

)2)
cos2

(πx

λ

)
, (22)

where hm = 250m, λ = 4 × 103 m, and a = 5 × 103 m. The domain is given
by −L/2 ≤ x ≤ L/2 where L = 105m and 0 ≤ z ≤ H = 3 × 104m. The initial
stratification is initialised in the samemanner as for the nonhydrostatic mountain wave
and we also add an absorbing term as described in Eq. 21, with zB = H − 104 =
2 × 104m and μ̄t = 1.2 s. The velocity is initially horizontal with u = 10ms−1.
Following Melvin et al. (2010), we ran the test with two values of t , 8 s and 40s.
As might be expected from a solution that has almost reached a steady state for the
lee wave pattern and the fact that we are not using a splitting method, the numerical
solutions obtained were indistinguishable. The larger timestep requires more linear
solver iterations, as displayed in Table 2. This is offset by the larger timestep, so
the time to solution is similar (shorter for the larger timestep, in fact). This reflects
the fact that our columnwise preconditioner produces mesh independent convergence
rates when applied to the linearisation about the state of rest, but has a dependency
on Courant number in general. The solutions fit within the range of results obtained
by others e.g. Straka et al. (1993); Giraldo and Restelli (2008); Bendall et al. (2020),
given the turbulent nature of the solution (Fig. 6).
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4 Summary and outlook

In this paper we presented a compatible finite element discretisation for the compress-
ible Euler equations, and demonstrated numerical robustness using a standard suite of
vertical slice tests for numerical weather prediction. In all cases the results are very
similar to published results. In future work we will demonstrate the discretisation in
the fully three dimensional setting on the sphere.

Onenovel feature of our approach is amonolithic approach to solving a fully implicit
system. This approach shows promise for producing robust timestepping approaches.
In experiments with the shallow water equations we have used the additive Schwarz
approach as a smoother for a multigrid scheme, which has led to faster convergence
of the iterative solver. We were unable to do that in this work because Firedrake does
not currently support mesh hierarchies on periodic meshes which are required for this
suite of tests. We will rectify this in further work.

One reason for our interest in fully implicit methods is that these are required for
the time parallel algorithms that we are currently developing. It is also interesting
to consider Rosenbrock methods that only require the solution of linear systems (as
opposed to the nonlinear systems coming from the implicit midpoint rule) linearised
about the state at the start of the timestep. In particular, we plan to experiment with
a Rosenbrock version of the TR-BDF2 timestepping scheme, previously applied to
numerical weather prediction in Tumolo and Bonaventura (2015).
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