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Abstract We derive an activity-based developmental model of ocular dominance

p1

9

column formation in primary visual cortex that takes into account cortical growth. 10

The resulting evolution equation for the densities of feedforward afferents from 11

the two eyes exhibits a sequence of pattern forming instabilities as the size of the 12

cortex increases. We use linear stability analysis to investigate the nature of the 13

transitions between successive patterns in the sequence. We show that these tran- 14

sitions involve the splitting of existing ocular dominance columns, such that the 15

mean width of an OD column is approximately preserved during the course of 16

development. This is consistent with recent experimental observations of postna- 17

tal growth in cat. 18

Keywords A119

1. Introduction 20

The primary visual cortex (V1) is characterized by a number of spatially dis- 21

tributed feature maps, in which local populations of neurons respond preferen- 22

tially to stimuli with particular properties such as orientation and spatial frequency. 23

Neurons also tend to respond more strongly to stimuli presented in one eye rather 24

than the other, that is, they exhibit ocular dominance. Neurons sharing the same 25

ocular dominance are grouped together into non-overlapping regions that form an 26

alternating pattern of right and left eye preference across V1. Such regions have 27

a characteristic periodicity and morphology that is species-dependent. For exam- 28

ple, in the adult macaque monkey ocular dominance regions consist of branching 29

stripes that have an approximately uniform width of 0.4 mm (Hubel and Wiesel, 30

1977) whereas in cat they are more patchy. An example of the ocular dominance 31
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Fig. 1 Reconstruction of ocular dominance columns in primary visual cortex (V1) of macaque
monkey shown in tangential section. Regions receiving input from one eye are shaded black and
regions receiving input from the other eye are unshaded. The dashed line signifies the border
between areas V1 and V2 (taken from Hubel and Wiesel, 1977).

pattern in macaque is shown in Fig. 1. In the case of cats (and ferrets), ocular32

dominance columns can be visualized at a very early postnatal stage (Crowley and33

Katz, 2000; Crair et al., 2001), during which the cortex is still undergoing significant34

growth. Indeed, Duffy et al. (1998) have shown that the surface area of adult cat35

V1 is more than double that of 1-week-old kittens, with the shape of V1 remain-36

ing unaltered. Although ocular dominance columns in macaque are fully formed37

at birth, the macaque brain undergoes a much smaller degree of postnatal growth38

(around 16%) (Purves and LaMantia, 1993). On the other hand, since ocular dom-39

inance columns are now formed prenatally, it is possible that they exist during a40

period of significant prenatal growth.41

The large amount of postnatal growth in cat could have two very different effects42

on the spatial arrangement of ocular dominance columns. One possible scenario is43

that the ocular dominance map simply expands with the cortex, analogous to the44

expansion of a pattern drawn on the surface of a balloon. This would imply that the45

width of an ocular dominance column in an adult cat V1 is approximately double46

than that of a neonatal kitten. However, recent work by Rathjen et al. (2003) indi-47

cates that the spacing of adjacent ocular dominance columns in adults and kittens48

are approximately equal. This supports an alternative scenario in which new ocular49

dominance columns are added during postnatal growth in order to occupy the en-50

larged cortical surface. Since neurogenesis, neuronal migration and the ingrowth51

of thalamocortical afferents into the cortex have all ended by the third postnatal52

week in cats (Shatz and Luskin, 1986), it is likely that the addition of new columns53

would be achieved by the segregation of existing columns, rather than by the for-54

mation of completely new columns.55
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In this paper, we present an activity-based developmental model of ocular 56

dominance column formation that takes into account cortical growth. In the 57

case of a fixed cortical domain, our model reduces to the well-known Swindale 58

model (Swindale, 1980, 1996), in which lateral cortical interactions consisting 59

of short-range excitation and longer-range inhibition mediate a pattern forming 60

instability with respect to the spatial distribution of feedforward afferents from the 61

two eyes, resulting in alternating left and right eye dominated columns. The basic 62

mechanism for the formation of ocular dominance columns in the Swindale model 63

is analogous to the Turing instability in reaction–diffusion systems (Turing, 1952; 64

Murray, 2002). That is, an initial spatially homogeneous state becomes unstable 65

with respect to the growth of certain spatially periodic eigenmodes such that the 66

period of the fastest growing mode determines the wavelength of the resulting 67

pattern. It follows that the wavelength only depends on intrinsic properties of 68

the system, such as the diffusion coefficients in a reaction–diffusion model or 69

the range of lateral excitation and inhibition in the Swindale model. In the case 70

of reaction–diffusion equations, the role of domain growth in pattern formation 71

has recently been investigated by a number of authors (Painter et al., 1999; 72

Varea et al., 1999; Chaplain et al., 2001). Much of this work has been inspired 73

by experimental observations concerning the skin pigmentation of the marine 74

angelfish (Kondo and Asai, 1995). In juvenile fish, the skin color is initially grey 75

and then develops alternating white stripes on a dark blue background. New white 76

stripes are inserted between the existing older stripes resulting in a doubling of 77

the number of stripes each time the fish doubles in size. The nature of frequency- 78

doubling transitions between quasi-steady-state reaction–diffusion patterns in a 79

one-dimensional growing domain has been studied in some detail by Crampin 80

et al. (1999, 2002). They show that frequency-doubling can occur either through 81

activator peak insertions or through peak splitting. Moreover, a combination of 82

the two in the form of frequency-tripling has been observed in a piecewise linear 83

reaction–diffusion model with an additional inversion symmetry (Crampin et al., 84

2002). Motivated by the work on reaction–diffusion systems, we show in this paper 85

that incorporating domain growth into a one-dimensional version of the Swindale 86

model generates a sequence of quasi-steady-state patterns, in which existing 87

ocular dominance columns segregate so that the approximate width of an OD 88

column is preserved. We determine the transition points analytically by linearizing 89

about the steady-state patterns, and show how this predicts very well the sequence 90

of transitions observed numerically. The sequence of transitions appears similar 91

in form to the frequency-tripling transitions identified by Crampin et al. (2002), 92

although the mechanism for transitions between steady-state patterns is very 93

different from the reaction–diffusion case. The occurrence of frequency-tripling 94

rather than frequency-doubling reflects the underlying exchange symmetry 95

between left and right ocular dominance columns. 96

An important implication of our analysis is that in order for new ocular domi- 97

nance columns to occur, it is necessary that the lateral interactions are themselves 98

nontrivially modified during cortical growth. That is, a simple elongation of the lat- 99

eral interactions as the cortex grows will not induce any pattern transitions. Inter- 100

estingly, this observation is consistent with recent experimental studies concerning 101

the development of patchy long-range connections in cortex (Schmidt et al., 1999). 102

1 Springer



UNCORRECTED
PROOF

Bulletin of Mathematical Biology (2006)

These connections form a reciprocal system of axon collaterals that arborize at reg-103

ular distances of about 1 mm and link cells with similar feature preferences such as104

ocular dominance. It follows that if the approximate size of an ocular dominance105

column is preserved during postnatal cortical growth, then the distance between106

patches should also be preserved, most likely through the refinement of existing107

clusters. There is experimental evidence that the long-range connections do un-108

dergo both elongation and refinement postnatally (Luhmann et al., 1990; Callaway109

and Katz, 1991). For simplicity, rather than explicitly modeling the refinement of110

long-range connections, we introduce a scaling rule for the lateral interactions.111

Finally, note that independently of the issue of cortical growth, this paper112

presents for the first time analytical results regarding the stability of ocular dom-113

inance patterns. Our analysis not only applies to the original Swindale model but114

also to the well-known correlation-based Hebbian model of Miller et al. (1989),115

which exhibits very similar behavior. Previous analytical studies of these and re-116

lated models have focused on the linear eigenmodes associated with the growth117

from a binocular state rather than the stability of the final nonlinear pattern (Swin-118

dale, 1980, 1996; Miller et al., 1989). It is generally not possible to analyze the sta-119

bility of the patterns by carrying out a perturbation expansion about the binocular120

state, since the Turing instability appears to be subcritical, in the sense that large121

amplitude patterns are formed just beyond the bifurcation point. However, clas-122

sical bifurcation techniques could be applicable to other classes of developmental123

model that exhibit smooth transitions to ocular dominance column patterns (see,124

e.g., Harris et al., 2000), with stripe insertions occurring via secondary bifurcations125

(Ermentrout and Cowan, 1980).126

2. Developmental model on a growing domain127

In this section, we construct an extension of the Swindale model of ocular domi-128

nance column formation (Swindale, 1980) that takes into account cortical growth.129

We proceed along analogous lines to the recent study of reaction–diffusion sys-130

tems on a growing domain by Crampin et al. (1999, 2002). The Swindale model131

treats input layer 4 of cortex as a two-dimensional sheet of neural tissue and con-132

siders competition between the synaptic densities of feedforward afferents from133

the left and right eyes that are relayed from the lateral genciculate nucleus (LGN)134

of the thalamus. Such competition is mediated by lateral interactions across cor-135

tex. Let nL(r, t) and nR(r, t) denote the densities of left and right eye synaptic136

connections to a point r = (x, y) on cortex at time t . For the moment we treat the137

two-dimensional cortical domain � as fixed (no cortical growth). The feedforward138

synaptic weights evolve according to the equation (Swindale, 1980)139

∂ni (r, t)
∂t

=
 ∑

j=R,L

∫
�

w j i (|r′ − r|)nj (r′, t) dr′

 F(ni (r, t)) (1)

for i = R, L. The logistic function F(ni ) = ni (N − ni ) ensures that the growth of ni140

terminates at a maximum density N and that the weights remain positive, that is,141
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0 ≤ ni ≤ N. Same-eye lateral interactions wRR and wLL are assumed to be positive 142

for small cortical separations |r − r′| (short-range excitation) and negative for large 143

cortical separations (long-range inhibition). The opposite-eye interactions wRL 144

and wLR are assumed to be anti-correlated, in the sense that they consist of short- 145

range inhibition and long-range excitation.1 As a further simplification, suppose 146

that the total synaptic weight at any point in cortex is constant with nL + nR = N. 147

This condition implies ∂nR/∂t = −∂nL/∂t , which is guaranteed if the eyes are 148

symmetrically anti-correlated, wRR = −wRL and wLL = −wLR. We introduce a 149

new normalized density variable n = (nL − nR)/N, which determines the ocular 150

dominance at each point r. In particular, n = 0 corresponds to a binocular state 151

and n = 1 (n = −1) corresponds to a monocular state with complete left (right) 152

eye dominance. The system (1) then reduces to the scalar integro-differential 153

equation 154

∂n(r, t)
∂t

= [1 − n(r, t)2]
[∫

�

w(|r − r′|)n(r′, t) dr′ + K(r)
]

, (2)

where w = (N/2)2[wRR + wLL] and K(r) = (N/2)2
∫
�

[wLL(|r′ − r|) − wRR(|r′ − 155

r)|] dr′, which reduces to a constant in the unbounded domain � = R
2. We will 156

assume that the interactions are symmetric with respect to interchange of the 157

two eyes (wLL = wRR) so that K = 0. Swindale (1980) showed how competition 158

between short-range excitation and long-range inhibition can induce a Turing-like 159

instability of the binocular equilibrium solution of Eq. (2), leading to the sponta- 160

neous formation of ocular dominance columns. Moreover, the morphology of the 161

resulting stripe pattern is consistent with experimentally determined ocular domi- 162

nance columns in primates. 163

In order to extend the Swindale model to the case of a growing cortex, we rewrite 164

it in the integral form
165

d
dt

∫
�t

n(r, t) dr =
∫

�t

Ft [n](r, t) dr, (3)

where �t is the cortical domain at time t and (for K = 0) 166

Ft [n](r, t) = [1 − n(r, t)2]
[∫

�t

wt (|r − r′|)n(r′, t) dr′
]

. (4)

1The lateral interactions in the Swindale model are a phenomenological representation of a num-
ber of different forms of interaction. These include statistical correlations between feedforward
inputs from the thalamus, short-range and long-range intracortical synaptic connections, and pos-
sibly the diffusion of secondary messenger molecules. The reversal in sign of opposite eye inter-
actions is supposed to reflect negative statistical correlations between left and right eye inputs.
However, the existence of negative correlations is difficult to justify from a neurobiological per-
spective. The problem of negative correlations can be avoided by using a linear Hebbian model
with subtractive normalization instead of the Swindale model (Miller et al., 1989). It turns out that
both models exhibit very similar behavior and can be analyzed in almost an identical fashion. The
relationship between the two models will be discussed further in Section 5.
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The subscript t indicates that the lateral interaction function wt may vary with the167

size of the cortex. Using the Reynolds transport theorem to evaluate the left-hand168

side,
169

d
dt

∫
�t

n(r, t) dr =
∫

�t

[
∂n
∂t

+ ∇ · (u(t)n(r, t))
]

dr, (5)

where u(t) is the flow of the domain at time t , we obtain the evolution equation
170

∂n
∂t

+ ∇ · (un) = Ft [n]. (6)

The growing domain �t introduces an advection term u · ∇n, indicating that the171

feedforward afferents attached to the cortex move with the cortex, and a dilution172

term n∇ · u that takes into account changes in surface area of cortex. Following173

Crampin et al. (1999), we specify the growth of the cortex using a Lagrangian de-174

scription:175

r = �(R, t), r ∈ �t , R ∈ �0, (7)

where R is the point at time t = 0 that maps to the point r at time t according to the176

growth function �. Note that �(R, 0) = R. The velocity field for the flow is then177

given by178

u(r, t) = ∂r
∂t

= ∂�

∂t
(8)

for fixed R. On the basis of the experimental work of Duffy et al. (1998), who179

showed that between postnatal weeks 3 and 6 cat V1 undergoes a uniform ex-180

pansion in which it approximately doubles in size, we assume that the growth is181

slow and isotropic. It should be noted that our extension of the Swindale model182

is formulated in terms of the normalized synaptic density n = (nL − nR)/N where183

N = nL + nR is the fixed total density at each point in cortex. This implies that184

the total number of synapses is itself time-dependent, growing in proportion to185

the total surface area of cortex. That is, NTot(t) ≡ ∫
�t

[nL(r) + nR(r)] dr = N�t . It186

is usually assumed that the development of ocular dominance columns involves187

the rearrangement or pruning of existing connections, which would imply that the188

total number of afferent connections remains the same or actually decreases. On189

the other hand, it is also possible that the strength or efficacy of the remaining con-190

nections actually increases through the formation of more extensive arborizations.191

Since our simple developmental model does not distinguish between the number192

of synapses and their strength, it is not clear how best to model any variation of N193

with cortical growth. Given that such a variation simply introduces an additional194

slowly varying term in the dynamical equations and this does not affect the basic195

pattern formation process, we will treat N as fixed.196

In this paper, we further restrict ourselves to the simpler case of a one-197

dimensional cortical domain �t = [0, L(t)] where L(t) is the size of the cortex at
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time t . Isotropic flow can then be written in the form
198

�(X, t) = Xρ(t), ρ(0) = 1 (9)

with corresponding velocity field
199

u(x, t) = Xρ̇ = x
ρ̇

ρ
. (10)

The size of cortex grows as L(t) = L0ρ(t). Substitution into the one-dimensional 200

version of Eq. (6) gives
201

∂n
∂t

+
(

ρ̇

ρ

) (
x

∂n
∂x

+ n
)

= Ft [n], (11)

with 202

Ft [n](x, t) = [1 − n(x, t)2]

[∫ L(t)

0
wt (|x − x′|)n(x′, t) dx′

]
. (12)

Following Crampin et al. (1999), we transform Eq. (11) to the fixed interval [0, L0] 203

by performing the change of variables
204

(x, t) → (x̄, t̄) =
(

x
ρ(t)

, t
)

. (13)

Under this transformation the advection term in Eq. (11) is eliminated, since 205

∂n
∂ t̄

= ∂n
∂t

+ x
ρ̇

ρ

∂n
∂x

.

On dropping the overbars, we obtain the modified evolution equation 206

∂n
∂t

= F̂t [n] − n
ρ̇

ρ
, (14)

where 207

F̂t [n](x, t) = ρ(t)[1 − n(x, t)2]
[∫ L0

0
wt (|x − x′|ρ(t))n(x′, t) dx′

]
. (15)

It remains to specify more explicitly the form of the lateral interaction function 208

wt and how it scales with time t . As in the original Swindale model (Swindale, 209

1980), we require that the lateral interactions mediate competition through short- 210

range excitation and long-range inhibition. Therefore, we introduce a “Mexican 211

hat” function given by a difference-of-exponentials 212
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W(x) = A
[
e−σE|x| − βe−σI|x|] (16)

with A> 0, 0 < β < 1 and σE > σI. Here σE, σI are space constants that determine213

the range of excitation and inhibition. (One could equally well take W(x) to be214

a difference-of-Gaussians; we consider exponential functions for analytical conve-215

nience.) Given the function W(x), we assume the following scaling behavior for216

the lateral interaction function wt :217

wt (x) = γ1(t)W(γ2(t)x) (17)

If the lateral interactions simply grow with the cortex (the “balloon effect”) then218

γ1(t) = γ2(t) = 1/ρ(t), which takes into account both the local expansion of cortex219

and the increase in the range of interactions, that is, σE,I → σE,I/ρ(t). Equation220

(14) then reduces to the form
221

∂n
∂t

= F0[n] − n
ρ̇

ρ
.

In this case, the only effect of cortical growth is the addition of a dilution term222

nρ̇/ρ, which will be small for slow growth. If this term is dropped then we re-223

cover the original Swindale model on a fixed domain of size L0; this cannot ex-224

hibit a sequence of pattern forming instabilities in which new ocular dominance225

columns are added as the cortex grows. Therefore, we require that the lateral in-226

teractions undergo some refinement as the cortex grows that is beyond simple ex-227

pansion. It is difficult to determine from first principles the form of such a refine-228

ment, since the lateral interactions in the Swindale model are a phenomenological229

representation of a number of different forms of interaction. Here we make the230

ansatz that γ1(t) = γ2(t) = 1, which corresponds to taking the distribution of lat-231

eral interactions to be invariant with respect to cortical growth. Equation (14) then232

becomes233

∂n
∂t

= ρ(t)[1 − n(x, t)2]
[∫ L0

0
W(|x − x′|ρ(t))n(x′, t) dx′

]
− n

ρ̇

ρ
. (18)

In order to simplify our analysis we will drop the dilution term nρ̇/ρ, which is
motivated by the fact that ρ̇ is small for slow growth. This then allows us to consider
the existence and stability of steady-state solutions of the form n(x) = ±1 for all
0 ≤ x ≤ L0 (see Section 3). Numerically, we find that such an approximation does
not alter our main results (see Section 4). Incorporating an explicit dynamics for
the growth rate ρ, we finally obtain the pair of equations

∂n
∂t

= [1 − n(x, t)2]
[∫ L0

0
Wρ(|x − x′|)n(x′, t) dx′

]
, (19)

∂ρ

∂t
= ε f (ρ), (20)

1 Springer



UNCORRECTED
PROOF

Bulletin of Mathematical Biology (2006)

where 234

Wρ(x) = ρW(ρx). (21)

Since the growth of cortex saturates in the adult, we assume logistic growth by 235

taking (Crampin et al., 1999) 236

f (ρ) = ρ (1 − ρ/ξ) , (22)

so that 237

ρ(t) = eεt

1 + ξ−1(eεt − 1)
. (23)

Here ξ is the ratio of initial to final lengths, that is, limt→∞ ρ(t) = ξ . Equations 238

(19) and (20) generate a sequence of patterns in time. For slow growth ε 
 1, 239

we can identify two distinct dynamical regimes along analogous lines to the re- 240

action diffusion system of Crampin et al. (1999). If ∂n/∂t 
 1/ε then n evolves 241

to a quasi-steady-state pattern of alternating ocular dominance columns that is 242

modulated by the slowly varying parameter ρ. However, when ∂n/∂t = O(1/ε) 243

quasi-stationarity is lost, signaling the onset of a fast transition to the next pat- 244

tern in the sequence. Such a transition arises because of destabilization of an ex- 245

isting pattern when ρ reaches a critical value. Moreover, as we establish in Sec- 246

tion 3, the nature of the transition between successive patterns can be understood 247

by considering the growth of linear eigenmodes close to the point of instabil- 248

ity. In particular, away from the boundary we find frequency-tripling, in which 249

each ocular dominance column splits into three alternating columns. The occur- 250

rence of frequency-tripling rather than frequency-doubling reflects the fact that the 251

Swindale model is symmetric with respect to the exchange of left and right eye oc- 252

ular dominance columns. This is analogous to the inversion symmetry required 253

for the observation of frequency-tripling in a piecewise linear reaction–diffusion 254

system (Crampin et al., 2002). 255

3. Linear stability analysis on a fixed domain 256

The basic mechanism for ocular dominance columns formation originally pro- 257

posed by Swindale (1980) involves the growth of spatially periodic eigenmodes 258

from the homogeneous binocular state n(x) = 0 for all x ∈ � where � is a fixed 259

domain. Linearizing about the binocular state gives 260

∂n(x, t)
∂t

=
∫

�

W(|x − x′|)n(x′, t) dx′. (24)

Suppose, for the moment, that � = R. The solutions of (24) are then of the form 261

n(x, t) = eλt ei x·k and the growth factor λ satisfies the dispersion relation 262

λ = W̃(k) ≡
∫ ∞

−∞
eikxW(|x|) dx. (25)
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W(x)

x

(a)

~
W(k)

k

kc

(b)

Fig. 2 (a) Difference-of-exponentials interaction function W(x) displaying short-range excitation
and long-range inhibition. (b) Fourier transform W̃(k) with maximum at k = kc. The gray shaded
region denotes the semi-infinite band of unstable modes.

Thus, the rate of growth or decay of the linear eigenmodes is determined by263

the Fourier transform W̃ of the lateral interaction function W. An example of a264

difference-of-exponentials function W(x) and its transform W̃(k) are plotted in265

Fig. 2 for the case W̃(0) < 0. It can be seen that there is a semi-infinite band of266

eigenmodes that are unstable (positive λ). The value of k that maximizes W̃(k)267

is called the critical wavenumber kc. One finds numerically that the critical wave268

number kc determines the approximate wavelength of the pattern that emerges269

from the homogeneous initial state (or some random initial state). The result-270

ing pattern consists of alternating left and right ocular dominance columns with271

approximate width π/kc and with sharp boundaries (Swindale, 1980). The mech-272

anism for the formation of such a pattern is analogous to the Turing instability273

of reaction–diffusion systems (Turing, 1952; Murray, 2002), where competition is274

mediated by diffusing and reacting chemical species rather than nonlocal lateral275

interactions.276

Figure 2 is oversimplified, in the sense that it does not take into account bound-277

ary effects. Nevertheless, we will assume that at some critical point in development,278

ocular dominance columns spontaneously emerge through a Turing-like instability279

from a binocular state. For concreteness, suppose that this occurs when ρ = 1, that280

is, the cortex has size L0. Of course, the initial development of ocular dominance281

itself takes time so that one cannot really ignore the growth of the cortex during282

this period. However, we assume that this does not have a significant effect on the283

initial Turing instability. Once the ocular dominance pattern has formed, the cor-284

tex continues to grow, that is, ρ increases. At some critical value of ρ the pattern285

becomes unstable and a new pattern is formed. This can be understood in terms286

of a state transition between two patterns belonging to the class of steady-state287

solutions:
288

n̄(x) =
{

1, for x ∈ +
−1, for x ∈ −

(26)
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with ± ⊂ [0, L0] such that + ∪ − = [0, L0]. Here + (−) signifies the subre- 289

gion spanned by the left-eye (right-eye) ocular dominance columns. Although the 290

existence of these solutions is independent of ρ, their stability properties strongly 291

depend on ρ. Linearizing Eq. (19) about n̄(x) by setting n(x, t) = n̄(x) + c(x, t) 292

and expanding to first order in c gives 293

∂c(x, t)
∂t

= −2�ρ(x)n̄(x)c(x, t), (27)

where 294

�ρ(x) =
∫ L0

0
Wρ(|x − x′|)n̄(x′) dx′. (28)

The condition for (marginal) stability of the equilibrium solution n̄ is then 295

�ρ(x)

{
≥ 0, for x ∈ +
≤ 0, for x ∈ −

. (29)

In the following, we determine �ρ and its dependence on ρ for some simple ex- 296

amples of stationary solutions satisfying Eq. (26) including fronts, single bumps 297

and periodic patterns. We use this to gain insights into the nature of the growth- 298

induced transition between successive ocular dominance patterns. In particular, 299

we show that frequency-tripling tends to occur away from the boundary. 300

3.1. Stationary front 301

Consider the stationary front solution 302

n̄(x) =
{

−1, 0 ≤ x < x0

1, x0 < x ≤ L0
(30)

with 0 < x0 < L0. The corresponding function �ρ defined by Eq. (28) takes the
form

�ρ(x) =
∫ L0

x0

Wρ(|x − x′|) dx′ −
∫ x0

0
Wρ(|x − x′|) dx′. (31)

Substituting for Wρ using Eqs. (16) and (21) gives 303

�ρ(x) = ρ [�σ̂E (x) − β�σ̂I (x)] (32)

with σ̂E,I = ρσE,I and 304

�σ (x) =
∫ L0

x0

e−σ |x−x′ | dx′ −
∫ x0

0
e−σ |x−x′ | dx′. (33)
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Evaluating the integrals shows that305

�σ (x) =
{

�−
σ (x), 0 ≤ x < x0

�+
σ (x), x0 < x ≤ L0

(34)

with306

�+
σ (x) = 1

σ

[
2 − 2e−σ (x−x0) − e−σ (L0−x) + e−σ x

]
, (35)

and307

�−
σ (x) = 1

σ

[
2eσ (x−x0) − 2 − e−σ (L0−x) + e−σ x

]
. (36)

The general stability condition (29) implies that the stationary front is stable if308

�ρ(x) ≤ 0 for all 0 ≤ x < x0 and �ρ(x) ≥ 0 for all x0 < x ≤ L0. Since �ρ(x) is a309

continuous function of x, it follows that a necessary condition for a stable front310

is �ρ(x0) = 0. Combining this with Eqs. (32), (41), (35) and (36), we obtain the311

stability condition312

1
σE

e−x0σ̂E − β

σI
e−σ̂Ix0 = 1

σE
e−σ̂E(L0−x0) − β

σI
e−σ̂I(L0−x0). (37)

The latter is satisfied if x0 = L0/2 independently of the parameters β, σE,I and ρ.313

Therefore, we will take x0 = L0/2 in the following. (Note that for certain ranges314

of parameters there can exist other solutions x0 of Eq. (37), but the corresponding315

fronts tend to be unstable.)316

In Fig. 3, we plot �ρ(x) for a range of values of ρ with x0 = 1/2, L0 = 1 and317

fixed weight parameters σE,I, β. Note that �ρ(x) is an odd function with respect318

to reflections about x = 1/2, that is, �ρ(1 − x) = �ρ(x) for 0 ≤ x ≤ 1/2. The319

front is stable provided that the function �ρ(x) only crosses the x-axis at the320
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Fig. 3 Plot of �ρ(x) for various values of the scale factor ρ in the case of a stationary front
with center at x0 = 1/2 for L0 = 1. The parameters of the weight distribution (16) are taken to be
β = 0.5, σE = 4.4, σI = 1.9 and A= 10. (a) ρ = 1: front solution is stable since �ρ(x) < 0 for 0 ≤
x < 1/2 and �ρ(x) > 0 for x0 < x ≤ 1. (b) ρ = 4: front solution is unstable since �ρ(x) crosses the
x-axis close to the boundary of the domain. The function �ρ(x) also develops additional extrema.
(c) ρ = 6: additional regions of instability occur due to the extrema at P, P∗ crossing the x-axis.
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Fig. 4 Evolution of an unstable stationary front for fixed ρ. Other parameter values as in Fig. 3.
(a) ρ = 4: insertion of new columns at the boundary. (b) ρ = 6: frequency-tripling in which each
column splits into three alternating columns.

point x = 1/2. It can be seen that as ρ increases, zero crossings occur close to the 321

boundary of the domain. The function �ρ(x) also develops additional stationary 322

points so that as ρ is further increased, these points also cross the x-axis leading 323

to additional regions of instability. It is these latter crossings that generate the 324

splitting of ocular dominance columns via frequency-tripling. In order for this 325

to be the primary instability, however, the zero crossings at the boundary have 326

to be suppressed. Otherwise, the front destabilizes with respect to the zero 327

crossings close to the boundary leading to the insertion of new columns at the 328

boundary rather than frequency-tripling. This is illustrated in Fig. 4, where we 329

show the evolution of an unstable front for the fixed values of ρ corresponding 330

to Fig. 3(b,c). One way to remove the boundary instability would be to introduce 331

periodic boundary conditions, as shown in Section 4. It turns out that the basic 332

transitions identified for the front carry over to the case of single or multiple bump 333

solutions (see below). Hence, if boundary effects are suppressed or negligible 334

(as when starting from a large number of bumps) then increasing ρ leads to a 335

sequence of frequency-tripling transitions. On the other hand, if boundary effects 336

are significant then the sequence of transitions is more irregular. 337

3.2. Single stationary bump 338

Let us now consider a stationary bump solution of the form 339

n̄(x) =


−1, 0 ≤ x < x0

1, x0 < x ≤ x1

−1, x1 < x < L0

(38)

with 0 < x0 < x1 < L0. (The bump is the region where n̄ = +1.) The corresponding
function �ρ defined by Eq. (28) takes the form

�ρ(x) = −
∫ x0

0
Wρ(|x − x′|) dx′ +

∫ x1

x0

Wρ(|x − x′|) dx′ −
∫ L0

x1

Wρ(|x − x′|) dx′.

(39)
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Substituting for Wρ using Eqs. (16) and (21) gives Eq. (32) with340

�σ (x) = −
∫ x0

0
e−σ |x−x′ |dx′ +

∫ x1

x0

e−σ |x−x′ |dx′ −
∫ L0

x1

e−σ |x−x′ |dx′. (40)

Evaluating the integrals shows that341

�σ (x) =


�−

σ (x), 0 ≤ x < x0

�0
σ (x), x0 ≤ x < x1

�+
σ (x), x1 < x ≤ L0

(41)

with

�+
σ (x) = 1

σ

[
e−σ x − 2e−σ (x−x0) + 2e−σ (x−x1) − 2 + e−σ (L0−x)], (42)

�0
σ (x) = 1

σ

[
e−σ x − 2e−σ (x−x0) − 2eσ (x−x1) + 2 + e−σ (L0−x)], (43)

and342

�−
σ (x) = 1

σ

[
e−σ x + 2eσ (x−x0) − 2eσ (x−x1) − 2 + e−σ (L0−x)]. (44)

The general stability condition (29) implies that the stationary bump is stable if
�ρ(x) ≤ 0 for 0 ≤ x < x0, x1 < x ≤ L0 and �ρ(x) ≥ 0 for x0 < x < x1. Since �ρ(x)
is a continuous function of x, it follows that a necessary condition for a stable bump
is �ρ(x0) = �ρ(x1) = 0. Combining this with Eqs. (32), (41), (42), (43) and (44), we
obtain the stability conditions

1
σE

[
e−σ̂Ex0 + e−σ̂E(L0−x0) − 2e−σ̂E(x1−x0)]

× = β

σI

[
e−σ̂Ix0 + e−σ̂I(L0−x0) − 2e−σ̂I(x1−x0)], (45)

and

1
σE

[
e−σ̂Ex1 + e−σ̂E(L0−x1) − 2e−σ̂E(x1−x0)]

= β

σI

[
e−σ̂Ix1 + e−σ̂I(L0−x1) − 2e−σ̂I(x1−x0)]. (46)

Equations (45) and (46) can be reduced to a single equation for the intersection
point x0 in the particular case x1 = L0 − x0:

1
σE

[
e−σ̂Ex0 + e−σ̂E(L0−x0) − 2e−σ̂E(L0−2x0)]

= β

σI

[
e−σ̂Ix0 + e−σ̂I(L0−x0) − 2e−σ̂I(L0−2x0)], (47)
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Fig. 5 Plot of �ρ(x) for various values of the scale factor ρ in the case of a stationary bump with
jumps at x0, x1 for L0 = 1. The parameters of the weight distribution (16) are as in Fig. 3. (a) ρ = 4:
bump solution is stable since �ρ(x) < 0 for x ∈ (0, x0) ∪ (x1, 1) and �ρ(x) > 0 for x ∈ (x0, x1). (b)
ρ = 7.2: bump solution is unstable since �ρ(x) crosses the x-axis close to the boundary of the
domain. The function �ρ(x) also develops additional extrema. (c) ρ = 8: additional regions of
instability occur because of the extrema at P, P∗, P∗∗ crossing the x-axis.

One can then obtain an approximate solution to Eq. (47) in the large-ρ limit. 343

First, recall that σ̂E,I = ρσE,I. Since σE > σI, it follows that each term on the left- 344

hand side is much smaller than the corresponding term on the right-hand side and 345

can be neglected. Taking x0 = 1/3 − δ then leads to the following equation 346

e−σ̂I/3eσ̂Iδ + e−2σ̂I/3e−σ̂Iδ − 2e−σ̂I/3e−2σ̂Iδ = 0

Dropping the second term on the right-hand side in the large-ρ limit and solving 347

for δ we deduce that for sufficiently large ρ, 348

x0 ≈ 1
3

− ln 2
3ρσI

Hence, x0 → 1/3, x1 → 2/3 in the limit ρ → ∞. In Fig. 5, we plot �ρ(x) for a 349

range of values of ρ with L0 = 1 and fixed weight parameters σE,I, β. The bump 350

is stable provided that the function �ρ(x) only crosses the x-axis at the points 351

x = x0, x1. The behavior of �ρ as a function of ρ is similar to that of the front. 352

That is, as ρ increases, zero crossings occur close to the boundary of the domain. 353

The function �ρ(x) also develops additional stationary points so that as ρ is fur- 354

ther increased, these points also cross the x-axis leading to additional regions of 355

instability. Again these latter crossings generate the splitting of ocular dominance 356

columns via frequency-tripling as illustrated in Fig. 6, where we show the evolution 357

of an unstable bump for the fixed values of ρ corresponding to Fig. 5(b and c). 358

3.3. Periodic pattern 359

It is instructive to extend the above analysis to the case of a spatially periodic
solution of the Swindale model defined on the unbounded domain −∞ < x < ∞:

∂n
∂t

= [1 − n(x, t)2]
[∫ ∞

−∞
W(|x − x′|)n(x′, t) dx′

]
. (48)
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Fig. 6 Evolution of an unstable stationary bump for fixed ρ. Other parameter values as in Fig. 5.
(a) ρ = 7.2: insertion of new columns at the boundary. (b) ρ = 8: frequency-tripling in which each
column splits into three alternating columns.

Such a multi-bump solution is of the form360

n̄(x) =
∞∑

m=−∞
(−1)mHm(x), (49)

where361

Hm(x) =
{

1, if md < x < (m + 1)d

0, otherwise

with d being the characteristic width of each bump. Linearizing about n̄ leads to362

Eq. (27) with �ρ → �∗, where363

�∗(x) =
(∫ ∞

−∞
W(|x − x′|)n̄(x′) dx′

)
. (50)

The periodic pattern is stable provided that n̄(x)�∗(x) > 0 for all x ∈ (−∞,∞).
Substituting Eqs. (16) into Eq. (50) shows that �∗(x) = �σE (x) − β�σI (x) with

�σ (x) =
∫ x

−∞
eσ (x′−x)n̄(x′) dx′ +

∫ ∞

x
eσ (x−x′)n̄(x′) dx′. (51)

Let us calculate �σ (x) on the interval md < x < (m + 1)d. Substituting for n̄ using
Eq. (49) leads to the decomposition

�σ (x) =
m−1∑

n=−∞
(−1)n

∫ (n+1)d

nd
eσ (x′−x) dx′ +

∞∑
n=m+1

(−1)n
∫ (n+1)d

nd
eσ (x−x′) dx′

+(−1)m

[∫ x

md
eσ (x′−x)dx′ +

∫ (m+1)d

x
eσ (x−x′)dx′

]
.
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Evaluating each of these integrals and summing the resulting geometric series 364

gives 365

�σ (x) = 2
σ

(−1)m

[
1 − eσ ((m+1)d−x) + eσ (x−md)

1 + eσd

]
, md < x < (m + 1)d.

Setting y = x − md and noting that n̄(x) = (−1)m over the interval md < x < (m + 366

1)d, we deduce that 367

n̄(y + md)�σ (y + md) = �σ (y), 0 < y < d (52)

with 368

�σ (y) = 2
σ

[
1 − cosh(σ (y − d/2))

cosh(σd/2)

]
. (53)

The function �σ (y) is a positive, unimodal function that is symmetric about its 369

maximum at y = d/2. Since the right-hand side of Eq. (52) is independent of m, 370

we conclude that the periodic pattern is stable provided that 371

�(y) ≡ �σE (y) − β�σI (y) > 0, 0 < y < d. (54)

372

We now show that if inhibition is sufficiently strong then only patterns up to a 373

critical width dc are stable. Equation (53) gives �(0) = 0 and 374

� ′(0) = tanh(σEd/2) − β tanh(σId/2) > 0,

which follows from the lateral inhibition conditions σE > σI and 0 < β < 1. Hence, 375

�(y) is a positive, increasing function sufficiently close to the boundaries y = 0, d. 376

It will remain positive unless �(d/2) < 0. In the case of small d, we have 377

�(d/2) ≈ d2

8
(σE − βσI) > 0,

whereas for large d 378

�(d/2) ≈ 1
σE

− β

σI
< 0,

assuming that σE > σI/β. The latter condition is equivalent to requiring that the 379

Fourier transform of W(x) satisfy W̃(0) < 0. One finds that there exists a criti- 380

cal value of width dc for which �(dc/2) = 0 such that �(d/2) > 0 for d < dc and 381

�(d/2) < 0 for d > dc. This is illustrated in Fig. 7. Our analysis is consistent with 382

the Turing-like approach to analyzing the Swindale model (Swindale, 1980). That 383

is, linearizing about the homogeneous binocular state, one finds that for σE > σI/β 384

there exists a semi-infinite band of eigenmodes that grow to form a periodic pat- 385

tern (see Fig. 2). These modes are the ones with a sufficiently high wave number k, 386

which corresponds to small values of d. 387
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Fig. 7 Plot of �(y) for
various values of width d in the
case of a periodic pattern. The
parameters of the weight
distribution (16) are taken to
be β = 0.5, σE = 4.4, σI = 1.9.

4. Numerical results388

In this section, we describe numerical results obtained by directly simulating the389

one-dimensional model evolving according to Eq. (11), and interpret our results in390

terms of the analysis presented in Section 3. Note that we include the slowly vary-391

ing term (ρ̇/ρ)n in our simulations, although the model produces similar results392

without it. We assume slow logistic growth with ρ(t) given by Eq. (23) for ε 
 1.393

We consider two types of initial condition. The first consists of a stable front solu-394

tion, which exists provided that the initial length L0 is sufficiently small; this allows395

us to make a direct comparison with the analysis of Section 3. The second consists396

of a binocular state at a larger value of L0, which immediately undergoes a Turing397

instability leading to the formation of an ocular dominance column pattern; this is398

the more likely situation from a developmental perspective. The subsequent pro-399

gression of the pattern as the domain size grows exhibits two distinct time scales:400

the slow widening of the columns as the length of the domain increases, and the401

rapid transitions that occur when the system becomes unstable, quickly followed402

by the insertion of new ocular dominance columns. We take into account these403

two time scales by using an adaptive-step numerical scheme. That is, we take rel-404

atively large time steps, unless the value of the next step determined by Euler’s405

Method significantly differs from the value predicted by Improved Euler’s. In the406

latter case, we continually halve the time step until the two predictions are within407

a given tolerance.408

First, suppose that the initial state is a stable front solution (small L0). With409

free boundary conditions, the stability analysis from Section 3.1 indicates that this410

solution will remain stable until the cortex reaches some critical length, at which411

point columns will be inserted at the boundaries. In line with Fig. 3(b), we find412

numerically that this occurs at a critical length L = ρL0 ≈ 4. We also find that as413

the cortex continues to grow, frequency-tripling bifurcations occur in the interior414

of the domain, resulting in the formation of a multiple stripe pattern, see Fig. 8(a).415

Associated with each column insertion is a sharp reduction in the mean width of an416

ocular dominance column and a transient rise in the corresponding variance. This417
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Fig. 8 (a) A plot of the growth from a front pattern at an initial length L0 = 2 under logistic
growth with ε = 0.01 and ξ = 4. The parameters of the weight distribution (16) are taken to be
β = 0.5, σE = 4.4, σI = 1.9 and A= 10. White corresponds to left eye dominance and black cor-
responding to right eye dominance. (b) The mean ocular dominance column width against time.
(c) The standard deviation σ of the ocular dominance width against time.

is shown in Fig. 8(b and c). Note that not all of the ocular dominance columns split 418

at exactly the same time. This pattern irregularity is a consequence of the boundary 419

instabilities. However, this may not be a defect of the model, since the ocular dom- 420

inance patterns observed experimentally also tend to be rather disordered (Hubel 421

and Wiesel, 1977; Swindale, 1996). A much more regular pattern can be gener- 422

ated by using periodic boundary conditions instead of free boundary conditions, 423

as illustrated in Fig. 9. An alternative mechanism for eliminating boundary effects 424

would be to increase the growth rate ε, so that the frequency-tripling bifurcation 425

occurs before the boundary instabilities have had a chance to develop. However, 426

this appears to require an unrealistically fast growth rate. 427

Now suppose that the system starts off in a binocular state (large L0), and 428

immediately undergoes a Turing-like instability leading to the formation of an 429
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Fig. 9 Same as Fig. 8 except
with periodic boundary
conditions. Note the regularity
of the frequency-tripling
bifurcations compared to
Fig. 8.

ocular dominance pattern with mean column width d ≈ π/kc, where kc is the criti-430

cal wavenumber of the associated weight distribution (16). Note that the resulting431

pattern, which already has a certain degree of irregularity, then undergoes both432

boundary insertions and frequency-tripling bifurcations as the length of the do-433

main slowly increases, see Fig. 10. Thus, as in the previous example, frequency-434

tripling provides a mechanism for column insertion, whereby the mean column435

width is approximately preserved. This is consistent with the recent experimental436

finding that the column width in adult cats is similar to that of kittens, even though437

the cortex has at least doubled in size (Rathjen et al., 2003). In our simulations we438

find that frequency-tripling bifurcations occur when the domain size has increased439

by a factor of 2.5–3 from when ocular dominance columns first form. This is only a440

slight over estimate of postnatal growth in cat, particularly given the simplicity of441

the model. Our model actually makes the stronger prediction that if the mean col-442

umn width were sampled more frequently during postnatal development, then one443

would detect two distinct regimes: one characterized by a slow increase in column444

width and the other characterized by a relatively sharp decrease in width due to445

column insertions. Finally, note that our basic results are robust to changes in the446

various weight parameters and to changes in the rate of growth. The same quali-447

tative behavior is also seen in another well-known developmental model as shown448

below.449

5. Correlation-based Hebbian model450

For simplicity, we have formulated the problem of ocular dominance column for-
mation on a growing cortical domain in terms of Swindale’s developmental model
(Swindale, 1980). One possible limitation of this particular model is its assump-
tion that opposite eye interactions are anti-correlated. It turns out, however, that
the results of our analysis carry over to another well-known developmental model,
namely the correlation-based linear Hebbian model with subtractive normaliza-
tion (Miller et al., 1989). We first describe the construction of the model on a fixed
cortical domain. Let nL(r) and nR(r) denote the synaptic densities of feedforward
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Fig. 10 (a) A plot of the growth from a binocular state at an initial length L0 = 16 under logistic
growth with ε = 0.005 and ξ = 3.2. Other parameter values as in Fig. 8. White corresponds to left
eye dominance and black corresponding to right eye dominance. (b) The mean ocular dominance
column width against time. (c) The standard deviation σ of the ocular dominance width against
time.

afferents from the left and right eyes to a point r in cortex; for the moment these
are assumed to be fixed as well. Suppose that there are also weak intracortical
synaptic interactions between neurons at r and r′ given by the distribution J (|r −
r′|). Assuming a linear model for the cortical activity V(r, t) at time t , we take

τ0
∂V(r, t)

∂t
= −V(r, t)

+
∫

�

J (r − r′)V(r′, t) dr′ + nL(r)IL(r) + nR(r)IR(r), (55)
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where τ0 is a membrane time constant and IL(r) and IR(r) denote left and right451

eyes inputs. These inputs are generated at random from some given probability452

distribution that characterizes the input statistics. Since development takes place453

on a much slower time-scale than the dynamics of cortical activity, we can take454

V to be given by its steady-state value. Calculating this steady-state requires455

inverting the linear operator L̂V(r) = V(r) − ∫
J (|r − r′|)V(r′) dr′. In the case456

of weak cortical interactions, this inversion can be carried out by performing a457

perturbation expansion in J . The first order approximation is thus458

V(r) =
∫

�

M(|r − r′|) [nL(r′)IL(r′) + nR(r′)IR(r′)] dr′ (56)

with M(r) ≈ δ(r) + J (r) and δ is the Dirac delta function. Given the steady-state459

response to an input for fixed synaptic densities nL, nR, we now allow these460

densities to vary slowly in time according to a Hebbian rule with subtractive461

normalization (Miller et al., 1989):462

τ
∂nL

∂t
= 〈VIL〉 − γ (n), τ

∂nR

∂t
= 〈VIR〉 − γ (n), (57)

where τ � τ0, 〈. . .〉 denotes averaging over the distribution of inputs IL,R, and the463

decay term γ (n) enforces a conservation constraint.464

Suppose that the input correlations are of the form465 (
〈IL(r)IL(r′)〉 〈IL(r)IR(r′)〉
〈IR(r)IL(r′)〉 〈IR(r)IR(r′)〉

)
= Q(r − r′)C, C =

(
CS CD

CD CS

)
, (58)

where Q(r) determines the spatial dependence of the correlations, CS gives the466

same eye correlations and CD the opposite eye correlations such that CD < CS.467

Substituting Eq. (56) into (57) then leads to the equation (on setting τ = 1)468

∂ni (r, t)
∂t

=
∫

w(|r − r′|)
∑

j=L,R

Ci j n j (r′, t) dr′ − γ (n) (59)

for i = L, R, where w(r) = M(r)Q(r). Comparison with Eq. (1) shows that469

wi j (r) → Ci jw(r) and the logistic multiplicative term has been replaced by a sub-470

tractive normalization constraint. The latter is now chosen so that the total synaptic471

density nL(r) + nR(r) is conserved at each point in cortex:472

γ (n) = µ

∫
w(|r − r′|) [nL(r) + nR(r)] dr′ (60)

with µ specified below. Exploiting the fact that the input correlation matrix C
has eigenvalues µ± = CS ± CD with corresponding eigenvectors e± = (1,±1), it
is straightforward to show that Eq. (59) reduces to the pair of equations

∂ N(r, t)
∂t

= (CS + CD − 2µ)
∫

�

w(|r − r′|)N(r′, t) dr′, (61)
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∂n(r, t)
∂t

= (CS − CD)
∫

�

w(|r − r′|)n(r′, t)dr′ (62)

with N = nL + nR and n = nL − nR. (Take the inner product of Eq. (59) with e±.) 473

Finally, setting µ = (CS + CD)/2, we see that the subtractive constraint ensures a 474

constant total density N. In the absence of such a constraint (µ = 0), one would re- 475

quire negative correlations CD = −CS in order to conserve the total denisty, which 476

correponds to the anti-correlation assumption of the Swindale model. 477

One can now proceed along identical lines to Section 2. First, we derive a single 478

equation for the density n = nL − nR on a growing cortical domain, which is given 479

by Eq. (6) with 480

Ft [n](r, t) = (CS − CD)
∫

�t

wt (|r − r′|)n(r′, t) dr′. (63)

In order to have bounded solutions, it is necessary to supplement the linear equa- 481

tion with the external constraints |n(r, t)| ≤ N for all x ∈ �t . Second, restricting 482

ourselves to a one-dimensional network, we map back to a fixed domain of length 483

L0 to obtain the analog of Eq. (18): 484

∂n
∂t

= (CS − CD)
∫ L0

0
Wρ(|x − x′|)n(x′, t) − n(x, t)

ρ̇

ρ
. (64)

The interesting point to note is that this equation (on dropping the dilution term)
together with the constraint |n(x, t)| ≤ N has precisely the same set of steady-state
solutions (26) as the Swindale model. Moreover, they have the same stability con-
ditions. That is, an equilibrium solution n̄(x) is stable on x ∈ [0, L0] provided that∫ L0

0
Wρ(|x − x′|)n̄(x′) dx′ > 0, for n̄(x) = N, (65)∫ L0

0
Wρ(|x − x′|)n̄(x′) dx′ < 0, for n̄(x) = −N. (66)

This is identical to the condition for (marginal) stability derived in Section 3 for 485

the Swindale model, see Eq. (29). Thus we expect the correlation-based model 486

to exhibit the same type of frequency-tripling bifurcations, which is confirmed 487

numerically in Fig. 11. 488

6. Discussion 489

Most activity-dependent models for the development of ocular dominance 490

columns have focused on the emergence of a steady-state ocular dominance pat- 491

tern via a Turing-like instability from a homogeneous binocular state (Swindale, 492

1996). The mean width of the columns in the steady-state is determined by the crit- 493

ical wavenumber of the underlying intracortical weight function. Since the basic 494

pattern forming mechanism is highly nonlinear, bifurcation methods cannot be 495
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Fig. 11 A plot of the growth
from a binocular state for the
subtractive normalization
model under logistic growth
with ε = 0.01 and ξ = 3.5.
Here CS = 1, CD = 0.2,
A= 25, and all other
parameter values as in Fig. 10.

used to determine the amplitude and stability of the emerging pattern, and thus496

cannot be used to investigate whether or not additional instabilities occur during497

subsequent cortical growth. In this paper, we have shown that in the case of two498

well-known developmental models (Swindale, 1980; Miller et al., 1989), it is possi-499

ble to analyze how stability depends on domain size by directly linearizing about500

the steady-state ocular dominance pattern. In one spatial dimension, we have501

combined this stability analysis with numerical simulations to demonstrate how502

changes in the size of the domain can induce one or more frequency-tripling bi-503

furcations resulting in the insertion of new ocular dominance columns. Our model504

thus predicts that there are two distinct regimes of columnar growth, one char-505

acterized by a slow increase in column width and the other characterized by a506

relatively sharp decrease in width due to column insertions. This is consistent with507

the recent experimental finding that the ocular dominance column width of kittens508

and adult cats are comparable even though the cortex has doubled in size during509

postnatal growth (Rathjen et al., 2003).510

There are a number of interesting issues raised by this work that warrant further511

investigation. The first concerns how the intracortical interaction function scales512

with the size of the cortex. One of the basic results of our analysis is that a sim-513

ple elongation of the recurrent interactions as the cortex grows will not induce514

any pattern transitions (the “balloon effect”). Motivated by experimental data re-515

garding the refinement of patchy horizontal connections during postnatal growth516

(Luhmann et al., 1990; Callaway and Katz, 1991), we made the simple ansatz that517

the interaction function is actually invariant with respect to the size of cortex;518

changing such a scaling rule would modify the rate at which column insertions519

occur. An alternative to this rather ad hoc approach would be to construct a more520

detailed model that considers the joint development of feedforward afferents and521

intracortical connections. A second important issue concerns the effects of the522

boundaries. In the case of free boundary conditions and slow cortical growth, our523

one-dimensional model predicts that additional columns are inserted at the bound-524

aries of the domain leading to a more irregular sequence of frequency-tripling bi-525

furcations. Boundary effects are also likely to be important in the more realis-526

tic two-dimensional case. Indeed, one finds experimentally that ocular dominance527
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columns tend to run orthogonally to the boundary separating primary visual cor- 528

tex (V1) from extrastriate area V2. However, extending our stability analysis to 529

two dimensions is nontrivial, particularly given the greater complexity of two- 530

dimensional ocular dominance patterns due to the extra rotational degree of free- 531

dom (assuming isotropic lateral interactions). Such complexity is manifested by 532

the striking differences between the stripe-like patterns found in primates and the 533

blob-like patterns found in cat. Finally, it would be interesting to use the methods 534

outlined in this paper to construct developmental models that take into account 535

cortical growth during the formation of other cortical features maps such as orien- 536

tation preference. Indeed, the insertion of a set of ocular dominance columns could 537

coincide with the insertion of a corresponding set of hypercolumns. The hypercol- 538

umn is the basic functional unit of cortex that includes the full range of orientation 539

preferences as well as a pair of left/right ocular dominance columns. 540
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