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Symbolic Framework for Linear Active Circuits
Based on Port Equivalence Using Limit Variables
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Abstract—This paper proposes a new framework for linear active
circuits that can encompass both circuit analysis and synthesis. The
framework is based on a definition of port equivalence for admit-
tance matrices. This is extended to cover circuits with ideal active el-
ements through the introduction of a special type of limit-variable
called the infinity-variable ( -variable). A theorem is developed for
matrices containing -variables that may be utilized in both circuit
analysis and synthesis. The notation developed in this framework
can describe nonideal elements as well as ideal elements and there-
fore the framework encompasses systematic circuit modeling.

Index Terms—Active circuit analysis, active circuit synthesis,
active circuits, circuit modeling, admittance matrix, nullor.

I. INTRODUCTION

ONE of the difficulties in the field of linear active circuits
has been the lack of general mathematical techniques to

underpin the analysis and synthesis of practical designs. The
critical factor that prevents this possibility is the nonexistence
of a simple basis for which the descriptions of active circuit ele-
ments and the corresponding circuit functions exist. The pur-
pose of this paper is to show how an admittance description
can fulfill this requirement, providing that certain limiting cases
are allowed. This is made possible through the concept of port-
equivalence and a novel notation based on limit-variables.

Co-ordinate-free descriptions for nondegenerate linear active
circuits already exist, since it is recognized [1] that the behaviour
of such a circuit corresponds to an dimensional subspace of
the dimensional vector space spanned by the voltage and

current unit vectors. Linear active circuits may thus be char-
acterized as points in a Grassmannian [2]. Intrinsically nonsin-
gular co-ordinate systems exist in formalisms due to Belevitch
[1], , and Youla [3], . These
elegant approaches have been used to prove important results in
circuit theory. However, they do suffer from a lack of economy
in that the number of coordinates is greater than the dimension-
ality of the space and the nonuniqueness of the equations means
that they have to be normalized to yield canonical forms. Hence,
these descriptions for circuits have not been widely accepted for
use in design and synthesis of active circuits.

The admittance basis for describing circuits, where the node
voltages are independent variables and the node currents are
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dependent variables, is potentially an attractive candidate for a
general framework [4]. In order that a framework can accommo-
date circuit synthesis, it must be able to describe ideal circuit el-
ements, because synthesis using nonideal elements is usually in-
tractable. However, the admittance matrix representation suffers
from the problem that key ideal circuit elements, including the
nullor, which can represent the ideal transistor and op-amp, most
dependent sources, and the impedance converter, require infi-
nite matrix elements. This problem has been overcome by the
modified nodal approach (MNA) in which additional columns
and rows are incorporated into the standard admittance matrix
[4], [5]. As a consequence, the MNA has become the industry
standard for both numerical and symbolic circuit analysis. An-
other approach is to associate a series combination of a positive
resistor and a negative resistor with each problem ele-
ment and then convert the combination of the problem element
and one of the resistors into an acceptable form using source
transformations [6]. For the MNA and approaches, the di-
mensions of the matrix and the basis for the representation are
dependent on the type of elements contained in the circuit. This
does not greatly obstruct circuit analysis where the circuit el-
ements are known in advance and the matrix dimensions and
basis can be set up accordingly. However, this is a problem for
circuit synthesis where the types of elements needed in the cir-
cuit are not known a priori. For a coordinate framework encom-
passing both circuit analysis and synthesis it is necessary for the
dimensionality, and the chosen basis, to be independent of the
type of element. This condition is satisfied by the admittance
basis, as the dimensions of the matrix are determined by the
number of nodes in the circuit, but the problem of infinite ma-
trix elements remains.

The use of a variable that is initially treated as a finite variable
(such as the gain of an op-amp, ) and then at some point al-
lowed to tend to infinity in order to define a limit is well known
[7]. Talbot in 1965 used an infinite parameter in
order to describe a number of elements in admittance matrix
form, including the op-amp and the transformer [8]. Piercey
(working with Talbot) and then Sewell extended the work of
Talbot to the realm of circuit synthesis [9]–[11]. Using an infi-
nite parameter and by deploying node introduction
matrices and sometimes transformation matrices, Sewell syn-
thesized the negative impedance converter and the circulator
[10] and various single amplifier Sallen and Key-type circuits
from their admittance matrices [11]. In the field of calculus, the
hyper-real numbers ( or ) have been identified, which are
greater than any real number but less than infinity and may be
used like finite variables [12].

This paper extends previous work on the use of matrices with
infinite elements. We will study their properties systematically
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2012 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 9, SEPTEMBER 2006

and show that they imply the existence of matrix equivalences.
We will use those equivalences to derive a theorem and use that
to provide a framework for analysis and synthesis of active cir-
cuits. The paper is based on preliminary work in [13] and [14].
We begin by considering a mathematical equivalence for admit-
tance matrices of passive circuits.

II. PORT EQUIVALENCE FOR PASSIVE NETWORKS

A. Case Where All Circuit Nodes Are Accessible

Consider a circuit with nodes, apart from the reference
node. At this stage, let the circuit consist entirely of 2-terminal,
linear, passive elements. Such an element has the admittance
matrix stamp

(1)

where is the element admittance which is connected between
nodes and ; node names in (1) act as labels for the rows
and columns the matrix elements occupy. The nodal admittance
equations for the circuit may be expressed in the (homogeneous)
form

(2)

where is a column vector of node currents, ’,
is a column vector of node voltages, , and
is the nodal admittance matrix (NAM), which con-

sists of a superposition of stamps of the form of (1). The matrix
(2) defines a set of linear equations between components of
and . For a given circuit, is unique, and therefore there is a
one-to-one correspondence between the circuit and . We now
consider the case where only some of the nodes are port nodes
and the remainder are inaccessible, or internal, nodes for which
the node current is zero.

B. Case Where Internal Nodes Exist

Consider a circuit with nodes and ports . At
this stage, we still assume that the circuit consists entirely of
2-terminal, linear, passive elements. The nodal equations may
be expressed in the form

(3)

The partitioning separates rows and columns corresponding to
the port nodes, , from those corresponding to the in-
ternal nodes, . The second subscript as-
sociated with some of the sub-matrices denotes that the dimen-
sions of the complete admittance matrix are . Kirchhoff’s
current law (KCL) implies that the dependent current elements

, in rows corresponding to the internal nodes,
are zero.

We can apply row operations iteratively in (3) in order to
perform Gaussian elimination, subtracting the bottom row from
each of the other rows after scaling it by a factor which reduces

Fig. 1. The nullor. (a) Nullator. (b) Norator.

the element in the last column to zero. The bottom row and last
column may then be discarded to yield

(4)

Application of such reductions will lead to the port matrix

(5)

The reduced matrices could equally well have been obtained
by performing column operations with scaling to make the ele-
ments in the last row zero. In order to ensure that when the ma-
trices are reduced the port variables are preserved,
the source row or column for each operation must always cor-
respond to an internal node.

Since each matrix in the series that starts with the NAM in
(3) and ends with the port matrix in (5) reduces to the same port
matrix, we may state that the matrices are equivalent in the sense
that they describe the same port behaviour

(6)

The Gaussian elimination process, moving from left to right in
(6) is one of circuit analysis. A reversal of this process, pivotal
expansion, would correspond to circuit synthesis. For passive
circuits in general, the synthesis problem posed this way may
be intractable [15]. However, we have shown that the removal
or introduction of internal nodes in a circuit permits the deriva-
tion of equivalent matrices that preserve the port behaviour. We
refer to such equivalence between admittance matrices as port
equivalence.

III. PORT EQUIVALENCE FOR ACTIVE NETWORKS

A. Limit Description for the Nullor

It has been shown that a sufficient set of elements to con-
struct any active network consists of a number of passive el-
ement types and a single type of active element, the universal
active element [16]. The universal active element is also known
as the nullor and consists of a pair of 2-terminal elements called
the nullator and norator, the symbols for which are shown in
Fig. 1. The nullator imposes two constraints on its voltage and
current, and ; the norator imposes no constraint on
its voltage and current. The nullor may represent a small-signal
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Fig. 2. Nullor equivalents. (a) Ideal op-amp. (b) Ideal FET and bipolar junction
transistor.

model for the ideal op-amp and transistor as shown in Fig. 2,
[17], [18]. The nullor may also be used, by itself or in con-
junction with passive elements, to realise higher level active el-
ements such as dependent sources [17], [19] or the complete
family of current, voltage and hybrid types of op-amp [16], [20].

It is known that the nullor can be derived as a limit of any
of the four types of dependent source when its gain tends to in-
finity. Since we are working with admittance matrices and the
voltage-controlled current source (VCCS) is the only dependent
source that possesses an admittance matrix, here we shall con-
sider the nullor as a VCCS for which the transconductance gain
tends to infinity. The admittance matrix stamp for the represen-
tation of a nullor with nullator connected between nodes and
and norator connected between nodes and , as in Fig. 1, can
be considered as that for a VCCS with transconductance

(7)

where is taken to a limit of infinity. One way to preserve
finiteness in an equation containing a parameter that tends to
infinity is to divide the relationship by that parameter. Let us
apply this approach in a set of NAM equations containing pas-
sive and active element stamps as in (1) and (7). At this stage,
we assume that different nullor representations never co-exist
in the same row or column of the NAM; this restriction will be
removed later. For a nullor whose norator is connected to nodes

and , rows and of the NAM equation set have the form

(8)

where (If or are internal nodes, then or
, respectively). Now consider dividing rows and of

the matrix equation by

(9)

where . Dependent current variable terms on the LHS
and finite terms on the RHS vanish when the limit is taken

(10)

We are left with a relationship involving independent variables
only. Both rows corresponding to the norator nodes in the NAM

set of equations yield the same relationship between the inde-
pendent variables, namely

(11)

Since the nullor description in (7) has no entries in row or row
, we also have

(12)

Hence the nullor description in (7) with imposes fi-
nite relationships between the nodal voltages and currents which
correctly describe the nullator. The symmetry of the coefficients
in (7) imposes the constraint that the current entering the norator
is equal to that leaving it and (8) imposes KCL at nodes and

; however, the norator voltage and current are otherwise un-
constrained.

Thus, infinite limits of elements in the NAM (2) may be used
providing we understand that the limit applies to the NAM equa-
tion rather than the NAM elements in isolation. Formally, the
NAM port equivalence class, which defines circuit behaviour,
has a well-defined limit in this case even though the NAM itself
does not. One advantage of this formulation is that a single ex-
pression may be used to represent both a real circuit, for which
the element has a finite value, and an idealized circuit. Taking
the limit may thus be viewed as an abstraction, or approxima-
tion, operation that converts real circuits into the related ideal
circuits. We shall see that this duality allows the framework we
are developing to handle not only circuit analysis and synthesis,
but also circuit modeling.

In order to make working with limits more practical, we now
introduce a special notation.

B. Limit Variables

In the case where a matrix contains a variable that ap-
proaches a limit , we replace each instance of the variable
in the matrix by the limit-variable . In the limit variable no-
tation , the subscript denotes the variable that is involved
in the limit and denotes its limit value. The limit variable for

may be abbreviated to , providing refers unambigu-
ously to the circuit variable .

Where the limit is a limit to infinity, the limit variable is
called an infinity-variable, or -variable, and written , where

refers to the circuit element whose parameter is being taken to
infinity. Using -variables, the nullor description in (7) takes
the form

(13)

The ideal short circuit is equivalent to the parallel connection of
a nullator and norator; thus it has an admittance matrix descrip-
tion similar to that for the nullor in (13) except that the elements
are arranged symmetrically

(14)
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Replacement of regular variables in an NAM by limit-vari-
ables implies that these variables can no longer be given nu-
merical values and have to be treated as symbolic variables that
may be manipulated by hand or by using symbolic computa-
tion. Since -variables are shorthand for finite variables with
infinite limits, and algebraic transformations may be applied be-
fore taking the limit, it follows that -variables must conform
to the rules of algebra for regular variables, including Gaussian
elimination and pivotal expansion of admittance matrices.1 The
concept of port-equivalence, developed in Section II-B for pas-
sive networks, is therefore equally applicable to matrices con-
taining -variables. Using the -variable as a placeholder for a
variable that can tend to infinity at some point is just a notational
convenience. The real advantage comes from special operations
that are possible only for matrices containing -variables.

C. Operations for Matrices Containing -Variables

We begin by considering the general form that admittance
matrix elements may take during a process of Gaussian elimina-
tion. A circuit consisting of passive elements and nullors can be
described by an NAM consisting of a superposition of stamps as
in (1) and (13). Each element of the NAM must consist, in gen-
eral, of a signed sum of passive element admittances and

-variables . It may be shown that, provided the admit-
tance of each circuit element is represented by a unique vari-
able, reduction of the NAM to the port matrix leads to matrix
elements at every stage which are bilinear functions of each cir-
cuit variable [17], [21]. Thus, in terms of an -variable for a
particular nullor (nullor ), each matrix element at every stage
of the reduction has the form

(15)

where and denote the row and column the element is in and
denotes the stage of the reduction process . We

now consider taking limits in respect of such a typical matrix
element.

Provided the coefficients in (15) are finite, then taking the
limit in respect of can yield only three possible limiting
values, which are or , where and are finite.2

Hence, in the case where the element survives the limit, it
may be multiplied by a finite quantity.

In the case where the coefficients in (15) contain other -vari-
ables, a number of cases arise: 1) a finite limit is obtainable; 2)
a function of two or more -variables may be set equal to a
composite -variable (this case applies if a differential pair of
field-effect transistors (FETs) are represented and the node the
sources are connected to is eliminated [22]); and 3) known re-
lationships between -variables may be introduced in order to
reduce the number of -variables, to one (as when the geome-
tries and bias conditions of FETs have known interdependencies
[23]). It is clear that an -variable that emerges from these sce-
narios may have a finite scaling factor.

1This is true under the assumption that the circuit described is nondegenerate,
as will be the case for all physically realizable circuits.

2We exclude discussion here of the case where both denominator coefficients
are zero; this will be discussed in Section IX.

When we allow for a finite scaling factor associated with an
-variable, it is necessary to ensure that the constraints imposed

by the complete set of -variables are consistent. This require-
ment can be met by introducing, into the set of -variables de-
scribing the nullor in (13), a row scaling factor and a column
scaling factor

(16)

For this matrix, the constraint imposed by each row is iden-
tical and given by and the constraint imposed by
each column is identical and given by ,. The set
of elements in (16) is a very general one that can represent the
class of 2-port circuits which do not, in the conventional sense,
possess an admittance matrix; this class includes the nullor and
short-circuit, and all the elements whose stamps we will derive
in Sections V–VII.

Following the procedure adopted in Section III-A for inter-
preting the nullor description in (7), let us divide row and
column of the matrix equation set corresponding to (16) by

to create row and column for use in performing row
and column operations

(17)

All other elements in the row and column become zero,
including dependent currents on the LHS of the matrix equation
in the case where the source row corresponds to a port node.
If we had derived (17) starting from the second row or second
column of (16) instead of the first row and column, we would
have obtained an identical result.

Thus, the presence of -variables in an admittance matrix
permits the carrying out of special row and column operations
that preserve port equivalence; these are in addition to the
general ones for finite NAMs described in Section II-B that are
equally applicable to matrices containing -variables. The spe-
cial operations differ from the ordinary ones in that the source
row and column are not restricted to correspond to internal
nodes and in that it is only coefficients of -variables that are
scaled and added to other rows and columns of the matrix. Thus,
the admittance matrix of a circuit containing nullors where all
of its nodes are accessible is not unique, as it is in the case of a
network of passive elements. Before developing theorems from
the special row and column operations, we consider the case
where two or more sets of -variables share a row or column
of an admittance matrix.

D. Case Where Different -Variables Co-Exist in a Single
Row or Column of [Y]

We amend the first row of the admittance matrix shown in (16)
by introducing a second set of -variables with column
scaling factor

(18)
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The nodal equation for this row may be written as

(19)

where is the nodal current ( if is an internal node)
and the finite terms may exist in any columns. Let us divide (19)
by

(20)

Since and are independent variables approaching the
limit of infinity, this equation must be true for all finite values
of . Hence, in the limit, the solution to (20) yields two
separate equations

(21)

Thus, each set of -variables yields a separate row, corre-
sponding to one of the expressions in (21), that may be used as
a source row for row operations

(22)

The same outcome arises where two sets of -variables share a
column of the matrix and applies irrespective of the number of
sets of -variables that share a row or column. Thus, each set
of -variables that shares a row or column with other sets of

-variables generates its own row and column that may be used
for row and column operations.

IV. THEOREM FOR MATRICES WITH -VARIABLES

A. Arbitrary Element Theorem

From the general set of -variables in (16), we may derive
an extra row and column as in (17), scale the extra row
and column by arbitrary factors and then add them to any row
or column, respectively

. . .
(23)

Variables and are arbitrary expressions and and repre-
sent any row or column including the source rows and columns,

and . We call this equivalence the arbitrary element the-
orem. If and were to contain -variables, there would be
an inconsistency in the derivation; hence the arbitrary elements

and in (23) are restricted to be finite. We now consider a
particularly useful corollary of the arbitrary element theorem.

B. Element Shift Theorem

We apply the arbitrary element theorem in (23) in the special
case where there already exist matrix elements and and
we let and

. . . . . .
(24)

The effect is to eliminate and from their original posi-
tions and shift them as shown while scaling them by the appro-
priate row or column scaling factor or , respectively. Where

and consist of a sum of admittance terms, then the shift
theorem may be applied to any sub-set of these terms. If
or are -variables, then (24)-LH already implies some con-
straints on and ;3 since these constraints are unchanged in
(24)-RH, it follows that, in this corollary of the theorem,
and are permitted to be -variables.

C. Arbitrary Element and Element Shift Theorems for the
Nullor

The description for the nullor corresponds to setting
in (16), in which case the arbitrary element theorem in (23)

takes the form

. . .

(25)

Under the same conditions, the element shift theorem of (24)
takes the following forms for finite and for -variable elements:

. . . . . .
(26)

. . .
. . .

(27)

Davies and others [24]–[26] have suggested a method of
analysis for circuits containing nullors in which the rows of the
matrix corresponding to the nodes of each norator are com-
bined into a single row and the columns corresponding to the
nodes of each nullator are combined into a single column. The
theorems in (25), (26), and (27) are consistent with this method
of analysis, because introduction of elements or movement of

3LH and RH denote left-hand and right-hand matrices, respectively.
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Fig. 3. Nullor tree transformations. (a) For norators. (b) For nullators.

Fig. 4. Transistor circuit example.

elements, the effect of which is eliminated when the circuit is
analysed, can clearly not affect the result of the analysis.

The shift of the element in (27) is illustrated in Fig. 3(a)
and corresponds to one node of the norator shifting from node

to node of norator . Similarly, the movement of the el-
ement in (27) corresponds to one node of the nullator shifting
from node to node of nullator , as illustrated in Fig. 3(b).
Hence, (27) is a description of the well-known nullator and no-
rator tree transformations [18].

D. Arbitrary Scale Factor Theorem

The constraints imposed on node voltages and currents by the
terms in (16) are trivially unchanged if the parameter in

(16) is scaled by a finite scaling factor . Hence, there exists
the equivalence

(28)

where scaling factor is arbitrary and omitted elements not
including are unaffected.

We now present an example of the use of the equivalence
theorems for analysis and synthesis of a simple active circuit.

E. Simple Example to Illustrate Application of Theorems

1) Circuit Analysis: Consider the 2-port circuit in Fig. 4
consisting of two transistors and two resistors. Treating the
transistors as ideal and modeling each as a VCCS with
transconductance represented by a limit-variable , the
NAM of this circuit is shown in the first matrix of (29)
(unlabelled rows and columns are assumed to be in numerical
order and correspond to the node numbers in the circuit).
By virtue of the elements, we use the element shift
theorem to move element to column 1 and then to row 2
and, by virtue of the elements, we move element
to column 2 and then to row 1, which leads to the second

matrix in (29), where the arrow denotes a procedure based on
port-equivalence

(29)

In going from the second matrix to the third matrix, the -vari-
ables have been removed. This step may be made in a number of
ways, including: 1) Gaussian elimination to eliminate the
and elements in row and column 3 and 4; 2) recognition
that each set of -variables describes a nullator and norator con-
nected in series which is equivalent to an open-circuit and may
be removed; and 3) using the -variables in rows 3 and 4 to
apply the element shift theorem in order to cancel the -vari-
ables in rows 1 and 2 followed by removal of remaining ele-
ments in rows 3 and 4. The zeros in row and column 3 and 4 in
the 3 matrix of (29) represent two isolated nodes that may be
removed to obtain the 2 2 port matrix, which shows that the
circuit is a negative impedance inverter.

2) Circuit Synthesis: We start from the port admittance ma-
trix for a negative impedance inverter given in the first matrix
of (30). We will realise this matrix using ideal transistors, i.e.,
nullors, and 2-terminal passive elements, resistors in this case.
In order that the and elements are realized by resistors,
they must be moved on to the main diagonal. In order to make
room for them, we introduce two rows and columns of zeros, as
shown in the second matrix in (30)

(30)

The third matrix in (30) differs from the second one in that
and elements have been introduced. A procedure

for performing this step can be generalized as follows:

(31)
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Fig. 5. Equivalent circuits. (a) For nonideal VCVS. (b) For nonideal CCCS.

Element represents an existing matrix element that we wish
to shift. After introducing a blank row and column, element
is then augmented by a function that evaluates to zero but can be
expanded pivotally as in the last matrix in (31). Once the
and elements are in place in the third matrix in (30), the
element shift theorem may be applied to shift elements and

to their diagonal positions, as in the final matrix in (30), that
is the NAM of the circuit in Fig. 4.

An alternative way of introducing the elements in the
third matrix of (30) is to recognise that introduction of a blank
row and column, as in the second matrix, is equivalent to intro-
ducing an isolated node into the circuit [27]. The voltage at an
isolated node is unobservable and its current is zero. Since the
voltage is unobservable, we may define its voltage by linking it
to any other node by a nullator. Since the current at the isolated
node with the introduced nullator is zero, we may also link the
isolated node to any other node by a norator. The movements
of elements that we wish to make govern the nodes to which
the nullator and norator are connected. Thus, by linking the nul-
lator and norator at node 3 to nodes 1 and 2, respectively, and
the nullator and norator at node 4 to nodes 2 and 1, respectively,
we obtain the third matrix in (30).

Having presented the theorem for matrices with -variable
elements and illustrated its use, we now use -variables to write
admittance matrix descriptions for the dependent sources and
for the impedance converter.

V. ADMITTANCE MATRIX DESCRIPTIONS FOR

VCVS AND CCCS

We approach the problem of the nonexistence of admittance
matrices for the ideal voltage-controlled voltage source (VCVS)
and current-controlled current source (CCCS) by considering
the circuits in Fig. 5(a) and (b), respectively, which do have ad-
mittance matrices and which can approach the ideal VCVS and
CCCS as limiting cases. (Note that we have defined the current
gain of the CCCS as .) The admittance matrices
for the circuits in Fig. 5 are as follows:

(32)

The nonideal VCVS and CCCS circuits approach their ideal
counterparts if we let . Using -variables to imply limits
in (32), we obtain the following admittance matrices for the
ideal VCVS and CCCS:

(33)

Fig. 6. Alternative equivalent circuits for the nonideal CCVS.

The VCVS and CCCS circuits in Fig. 5 have their input and
output ports grounded. Descriptions for nongrounded dependent
sources are presented in the Appendix.

VI. ADMITTANCE MATRIX DESCRIPTIONS FOR CCVS

An equivalent circuit for a nonideal current-controlled
voltage source (CCVS) that possesses an admittance matrix is
shown in Fig. 6(a). The circuit becomes ideal when
and . Analysis of the circuit and setting and

yields the admittance matrices

(34)

The equivalent circuit for the CCVS in Fig. 6(a) can be consid-
ered to be a natural one in the sense that the elements and

that tend to infinity can be interpreted as input and output
admittances of a circuit or device that implements the CCVS.
However, the matrix description in (34) appears uneconomical
compared with those for the VCVS and CCCS in (33) that re-
quire only a single -variable. We now derive a more econom-
ical description.

The infinite input and output admittances of the ideal CCVS
can be handled by introducing into the ideal CCVS just a single
admittance provided that it is located in the connection to the
reference node, as shown in Fig. 6(b). Analysis of this circuit
and setting to leads to the admittance matrices

(35)

where . We have reduced the number of -variables
to one, but the number of nonzero elements in the matrix has
increased and we now seek a means to reduce their number.

The derivation of equivalent admittance matrix descriptions
by picking circuit models, as was done using those in Fig. 6(a)
and (b), is ad hoc in the since that it provides no mathemat-
ical link between the two circuits. A more systematic approach
would be to develop alternative models using the theorem of
Section IV, which offers the potential of mathematical proof
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since it is derived via row and column operations. We now il-
lustrate the use of the theorem.

The element in (35)-RH can be considered as a special
case of the general set of -variables in (25)-LH with nodes
and coincident with the reference node. It follows from (25)
that we can add arbitrary finite elements in the row and column
that the element occupies, i.e., in row 2 and column 1 of
(35)-RH. Let us add elements in the following positions:

(36)

We now have an admittance matrix description for the CCVS
that has two zero elements and is as simple as the descriptions
for the VCVS and CCCS. By setting in (36)-RH to a fi-
nite parameter and deriving the port equations, we can de-
termine the corresponding equivalent circuit, and this is shown
in Fig. 6(c). It can be seen that the parameter that tends to
infinity is associated with a CCVS at the input port. Although
this equivalent circuit corresponds to a simple admittance ma-
trix, it is not a natural equivalent circuit from a modeling point of
view. Thus, whereas for the VCVS and CCCS the natural equiv-
alent circuits in Fig. 5 yield the canonical admittance matrices
(33), for the CCVS there is a trade-off between having a natural
equivalent circuit model and a simple matrix description.

The three alternative admittance matrices that we have de-
rived for the CCVS in (34), (35) and (36) are equivalent at the
limit. In spite of the fact that they have different forms, they
must yield identical solutions when the same port constraint is
applied. As an example, let us use these matrices to calculate
the open-circuit trans-impedance

(37)

Using the descriptions in (34), (35), and (36), we obtain

(38)

The results are identical and correct. The analysis shows that,
for the specified network function and port constraint, and

behave in an ideal way even for finite parameters
. On the other hand for it is nec-

essary that the limit is taken. Note that the application to port-
equivalent matrices of constraints that are incompatible with the
circuit function may lead to different (but meaningless) solu-
tions. E.g., for the CCVS descriptions in (34), (35) and (36), the
incompatible constraint , yields very different input ad-
mittances of and 0, respectively.

Fig. 7. Equivalent circuit for the nonideal impedance converter.

VII. ADMITTANCE MATRIX DESCRIPTION FOR

IMPEDANCE CONVERTER

A natural equivalent circuit for a nonideal impedance con-
verter is shown in Fig. 7. The circuit becomes ideal when

. Note that the impedance converter is defined by two param-
eters, namely the forward voltage gain and the
reverse current gain . Analysis of the circuit in
Fig. 7 and letting yields the admittance matrices

(39)

With , (39)-RH describes a transformer with
turns-ratio [8]

(40)

The impedance transforming property of the transformer (load
admittance at port 2 multiplied by when shifted to port
1) follows directly from (40) using the element shift theorem of
(24)

(41)

With , the impedance converter reverts to
a unity turns-ratio transformer which is equivalent to a short-
circuit between the ports and its admittance matrix in (39)-RH
reduces to that already given for the short-circuit in (14).

A complete set of canonical admittance matrix descriptions,
or stamps, for the dependent sources, nongrounded as well as
grounded, and the impedance converter, is presented in the
Appendix.

VIII. DISCUSSION

A. Framework for Circuit Analysis and Identification

We have shown that for a circuit containing ideal active ele-
ments represented by nullors, each nullor may be represented in
the NAM by a stamp containing -variables. We then showed
that not only nullors but also all dependent sources and the
impedance converter have admittance matrix descriptions con-
taining -variables. It follows that when a circuit possesses
such higher-level active elements, the NAM may be constructed
using their -variable representations directly without the need
to make use of nullor equivalents.

Many circuits have specified voltage or current transfer func-
tions, or , which are independent of load. The 2-port
admittance matrix of such a circuit may be viewed as that for a
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Fig. 8. (a) Circuit for example. (b) Nullor equivalent.

VCVS or CCCS where the gain of the dependent source is the
voltage or current transfer function of the circuit. Hence, ma-
trices containing -variables may be used not only as stamps
for the active elements contained in a circuit in the NAM but
also as stamps which enable identification of the functional type
of a circuit from the port matrix obtained by reducing the NAM.

Thus, the concepts of port equivalence and -variables pro-
vide a framework where a circuit containing any type of linear
element may be represented in an NAM and, after reduction of
the NAM to the port matrix, the circuit functional type may be
reliably identified. To facilitate such identification, a catalogue
of alternative forms of admittance matrices for key circuit func-
tions is given in the appendix.

B. Comparison With Modified Nodal Analysis

An example circuit containing an op-amp is shown in Fig. 8,
together with the nullor equivalent valid for the case where the
op-amp is considered ideal. The nodal admittance matrices of
the circuit in Fig. 8 using -variables and the MNA may be
written by inspection

(42)

We carry out Gaussian elimination on the modified matrix
first using the element as a pivot and then discard

row 3 and column 3

(43)

The result is a stamp in modified nodal form for a VCVS of gain
[4]. The element is redundant.

Fig. 9. (a) Exact model for circuit in Fig. 8. (b) Ideal model.

Consider now the reduction of the admittance matrix
in (42). Using Gaussian elimination with as the pivot, we
obtain the 2 2 port matrix4

(44)

This description is valid for finite values of and can be rep-
resented by a nonideal model containing a VCVS as shown in
Fig. 9(a), where has replaced and denotes the finite
transconductance of the op-amp.

We can now take the limit in (44)

(45)

From Table III (in the Appendix), we can see that the matrix
obtained describes an ideal VCVS with voltage transfer function

. It yields the ideal model in Fig. 9(b) for
the circuit of Fig. 8.

This example illustrates the advantages for symbolic analysis
of the -variable approach over the MNA. These are that the
matrix dimensions are smaller, it is possible to derive a port ma-
trix, the method encompasses both ideal analysis and nonideal
analysis and modeling, and there are no redundant or arbitrary
parameters.

C. Circuit Synthesis

The existence of a framework for ideal active circuits pro-
vides a potential capability for systematic circuit synthesis. As
a means to develop the framework, the synthesis of known cir-
cuits has been considered so far. These circuits fall into three
categories that are shown in Table I, together with circuit de-
tails and references. The restriction that the synthesis process is
symbolic means that the initial specification must be in symbolic
form and this does restrict the scope of this method to circuits
where the complexity and order are limited. In spite of this, it
is anticipated that the framework is capable of yielding useful

4There is an apparent indeterminacy in determining the modified y

element. The full expression is y = �

. Hence, there is in fact no indeterminacy.
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TABLE I
WORK TO DATE ON SYSTEMATIC CIRCUIT SYNTHESIS

new circuit solutions as needs arise. Admittance matrix stamps
that are suitable starting points for circuit synthesis are given in
the Appendix.

D. Circuit Modeling

Circuit modeling can have two meanings. In the first, a cir-
cuit at device level, which can be represented by its NAM, is
represented instead by a simpler description, such as a port de-
scription, at the cost of some loss of accuracy. In the second, a
simple ideal description of a circuit function, such as an ideal
port description, is implemented by a real circuit, the NAM of
which, when reduced, approximates the ideal port matrix. These
operations correspond to analysis and synthesis operations, re-
spectively, combined with some degree of approximation.

The ability of the framework we are presenting to handle anal-
ysis and synthesis and to accommodate nonideal and ideal cir-
cuit descriptions provides a potentially powerful tool for cir-
cuit modeling. We have already seen in Section VI, that we
can obtain the equivalent circuit for the CCVS of Fig. 6.1(c)
by application of the theorem of Section IV to the description
of the CCVS equivalent circuit in Fig. 6.1(b), which although
equivalent at the limit will clearly behave differently in the ap-
proach to the limit. Use of the limit variable method means
that the model in Fig. 6(c) may be mathematically derived from
that in Fig. 6(b). This is unlike the equivalence of Fig. 6(b)
and (a), which was based on picking circuit models. Similarly,
in Section VIII-B, the circuit of Fig. 8(a) was modelled ex-
actly in Fig. 9(a) and then approximately by an ideal VCVS in
Fig. 9(b). In the authors’ view, a rigorous theory of modeling and
model-assessment for active circuits could be developed using

-variables and some preliminary work on alternative ways of
modeling the nullor is presented in [23].

E. Second and Third Theorems

It is convenient to refer to the arbitrary element theorem of
Section IV and its corollary, the element shift theorem, collec-
tively as a first theorem for matrices containing -variables.
Two further theorems have been presented in [30] that involve

more than one group of -variables. The second theorem is a
generalized description of the nullator-norator re-pairing prin-
ciple [18] and the third theorem is a generalized description
of the nullator-norator cloning principle [22]. The second and
third theorems can play a key role in the systematic synthesis of
all-transistor circuits.

IX. ZERO PIVOTS AND ZERO-VARIABLES

In this section, we consider the circumstances in which rep-
resentation of a circuit can lead to a zero pivot in the NAM.
The next most useful limit variable after the -variable is the
zero-variable (0-variable, ) and we show here how it can be
used to resolve the zero pivot problem.

Consider a general circuit consisting of passive elements and
active elements represented in the NAM using -variables. The
special case where a particular node is connected only to the
norator of one nullor and to the nullator of another nullor

is illustrated in Fig. 10. Row and column of the NAM
will have the form shown in (46)-LH

(46)

The problem of the zero pivot can be solved by replacing it
by the variable , as in (46)-centre, where is a type of
limit variable (as defined in Section III-B) called a zero-vari-
able (0-variable) which represents the parasitic admittance
at node and which has a limit value of zero. Gaussian elim-
ination leads to the last matrix in (46) which contains a set of

-variables that may be handled using the methods we have
discussed. As well as being able to solve this problem of a zero
pivot, the 0-variable can also be used to solve the problem of
matrix singularity which arises due to incompatibility between
a circuit and a basis that is due to the topology of the circuit
rather than the values of its parameters [14].

X. CONCLUSION

We have used the concepts of port equivalence and limit vari-
ables in order to develop a framework for working with linear
active circuits. The -variable notation allows the nullor, all de-
pendent sources, and the impedance converter to be symboli-
cally represented in a nodal admittance matrix alongside repre-
sentations for passive and other active elements. We have shown
that, for admittance matrices with elements containing -vari-
ables, special row and column operations apply that maintain
port equivalence and lead to theorems for matrices containing
such elements. These theorems provide the means for analysis
and synthesis of circuits containing ideal active elements. Anal-
ysis of any active circuit allows its functional type be identified.
The -variable notation encompasses nonideal as well as ideal
element and circuit behaviour and thus can play a key role in
circuit modeling, optimization and design.
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Fig. 10. Sub-circuit that leads to zero pivot in [Y].

TABLE II
STAMPS FOR NONGROUNDED DEPENDENT SOURCES

APPENDIX

ADMITTANCE MATRIX STAMPS FOR DEPENDENT SOURCES AND

THE IMPEDANCE CONVERTER

A. General

In this Appendix, we present stamps that may be used to rep-
resent elements in an NAM (Table II), stamps that may be used
to identify circuit functions when an NAM is reduced to a port
matrix (Tables III to VI) and stamps that may be used as starting
points for circuit synthesis (Tables VII to IX).

B. Stamps for Non-Grounded Dependent Sources

The stamps for VCVS, CCCS, and CCVS presented in
Sections V and VI assumed that each input and output port in-
cluded the reference node. Stamps for the general nongrounded
case can easily be derived and are as shown in Table II.5 Note that
for the VCVS, the elements occupy the rows and columns
corresponding to the output nodes and the elements are
in the same rows but in the columns corresponding to the input
nodes. A similar rule applies for the CCCS, but the elements
occupy rows and columns corresponding to the input nodes.

C. Stamps Obtained by -Variable Scaling

Admittance matrix descriptions for the VCVS and CCCS,
which we obtained in Section V, are re-stated in Table III, where
they are referred to as Type i). If in Table III we use the arbitrary
scale factor theorem of Section IV-D to scale for the VCVS
by and for the CCCS by then we obtain the
Type ii) matrices in Table III; since these matrices have, just

5In this Appendix, all -variables are denoted as for conformity.

TABLE III
STAMPS FOR THE VCVS AND CCCS OBTAINED BY -VARIABLE SCALING

TABLE IV
STAMPS FOR THE IMPEDANCE CONVERTER OBTAINED BY

-VARIABLE SCALING

like the Type i) matrices, just two elements and two parame-
ters, they form a canonic pair of matrices for the VCVS and
CCCS. The admittance matrix description for the impedance
converter, which we obtained in Section VII, is re-stated as Type
i) in Table IV. As for the dependent sources, equivalent matrices
may be obtained by scaling of , and use of scaling factors

and leads to the three alternative matrices
shown in Table IV as Types ii), iii), and iv), which have, like the
Type i) matrix, just three parameters and which may therefore
be regarded as forming the canonic set.

The Type i) matrices in Tables III and IV have natural
equivalent circuits already given in Figs. 5 and 7. The Type
iv) impedance converter matrix also has a simple equivalent
circuit which is the same as the Type i) circuit in Fig. 7 but
with terminals 1 and 2 interchanged and and replaced
by and .

D. Stamps in Transfer Function Form

In the admittance matrices for VCVS and CCCS in Table III,
we can replace the gains, and , by rational functions,

, where and are transfer function numerator and de-
nominator, respectively. This leads to the Type i) and ii) admit-
tance matrices in Table V. Scaling the parameter in the Type
i) functions in Table V for both VCVS and CCCS by
or in the Type ii) functions by , where is an arbitrary
function, yields the same matrix and this is shown as Type iii)
in Table V. The Type iii) matrices like the Type i) and Type ii)
matrices have only two nonzero 2-port admittance parameters.
Since the transfer function for the VCVS case is given by

, then the three matrices in Table A.4 represent the
three logical cases where, and are in and are in

and and are divided between and . A similar
statement applies to the CCCS matrices, but for and .
Hence, it is appropriate to regard each set of three matrices in
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TABLE V
STAMPS FOR CIRCUITS WITH VCVS AND CCCS TRANSFER FUNCTIONS

TABLE VI
STAMPS FOR THE IMPEDANCE CONVERTER IN TRANSFER FUNCTION FORM

Table V as a canonic set of admittance matrices for circuits with
given voltage and current transfer function numerator and de-
nominator functions. Note that in the Type iii) expansions we
have changed the sign of the numerator function in the ma-
trix and in the transfer function expression.

For the impedance converter with voltage and current gain
expressed as the rational functions, and

the four canonic admittance matrices in Table IV lead
to the Type i)–iv) matrices in Table VI. By carrying out several
different forms of scaling of the -variable , such as scaling
by in the Type i) matrix, we obtain the Type v)
matrix in Table VI. So for the impedance converter, the set of
canonic admittance matrices at the transfer function numerator
and denominator level consists of five matrices.

E. Expansion of Transfer Function Forms of Stamps for VCVS,
CCCS and Impedance Converter

Pivotal expansion may be used to expand the 2 2 admit-
tance matrix representations for the VCVS and CCCS in Table V
and it leads to the Type i), ii), and iii) 3 3 matrices shown in
Table VII. These expansions effectively eliminate products and

TABLE VII
EXPANDED STAMPS FOR THE VCVS AND CCCS

quotients of terms. All elements in Table VII must have the di-
mensions of admittance; so all elements other than the -vari-
ables, , are in fact divided by a common admittance func-
tion, which is arbitrary as far as the transfer function is con-
cerned and which is not shown for clarity. The expansions in
Table VII may be checked by applying Gaussian elimination to
the expanded matrices.6

In the Type iii) VCVS expansion in Table VII, the elements
and have been involved in expansion of both the and

the terms in the Type iii) matrix in Table V. These and
terms can alternatively be expanded into separate rows and

columns (3 and 4) as follows:7

(47)

If and elements were present in this matrix, Gaussian
elimination shows that they would contribute to the transfer
functions, in which case the elements are no longer arbitrary
and the transfer functions assume the form shown as the Type
iv) expansions in Table VII. Due to the terms, may be
expressed as a sum of two terms, one term of which may be
moved to the 3, 4 position for the VCVS function or to the 4,3
position for the CCCS function; therefore there is no loss of gen-
erality if we set and to zero in both Type iv) expansions,
as shown. Degrees of freedom in the choice of signs in the el-
ements in Table VII have been used to associate positive signs
with diagonal elements and negative signs with off-diagonal el-
ements without loss of generality.

In the case of the Type i) and ii) expansions in Table VII, it is
possible to interchange a element in column 3 with a or

6It might be thought that Gaussian elimination leads to some indeterminate
elements. That this is not the case may be seen by writing out the element ex-
pressions and taking out as a common factor.

7We have negated N in the matrix and in the transfer function expression.
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element in row 3 or vice versa, but this leads to two ele-
ments which are neither on the same row nor in the same column;
since such alternatives have no correspondence to a physical el-
ement, they can be ignored. It may be shown that the Type i) and
Type ii) expansions for the VCVS and CCCS are related by ter-
minal interchange transformations;8 nevertheless, it seems sen-
sible to regard them as separate expansions at this stage.

Note that all of the expansions for the VCVS in Table VII
imply the presence of a grounded norator at node 2 (by virtue of
the elements in row 2) and all of the expansions for CCCS
imply the presence of a grounded nullator at node 1 ( elements
in column 1). For the VCVS case, the intrinsic nullator connec-
tion is from node 3 to the following nodes: Type i)—to the output
node 2; Type ii)—to the input node 1; Type iii)—to the reference
node; Type iv)—to a fourth node (i.e., no constraint). Since the
intrinsic nullator may not be connected between nodes 1 and 0,
1 and 2, 2 and 0, because these connections restrict the transfer
function that can be realized, this suggests that the four expan-
sions in Table VII form a logically complete set. Constraints on
norator connections for the CCCS expansions in Table VII are
similar to those on the nullator in the VCVS expansions.

The Type iv) expansions in Table VII are more general than
the others; however, they do imply that the circuit realising the
transfer function has at least 4 nodes rather than 3, which could
be a restriction. It is possible to derive the other expansions from
the Type iv) expansion as special cases. For instance, by setting

, we obtain the Type iii) expansions. To derive the
Type i) expansions, we set and ; we then
denote by and by . To derive the Type ii) expansions,
we set and ; we then denote by
and by . Nevertheless, it is recommended to regard all four
as the set of expansions. Note that, in the Type i) and ii) VCVS
and CCCS expansions in Table VII, the element shift theorem
provides degrees of freedom in that the 3,3 diagonal element may
be expressed as the sum of two parts and one part may be moved
to another row or column by virtue of the intrinsic elements.

Pivotal expansion of the 2 2 admittance matrix representa-
tions in Table VI for the impedance converter leads to the expan-
sions in Table VIII. In the case of expansion v), both its nullator
and its norator are connected to the reference node. In expan-
sions i)–iv) the nullor is fully floating.

F. Element Stamps Without -Variables

We consider first the dependent sources, starting with the
CCVS. The 2 2 admittance matrix of (36)-RH may be ex-
panded using pivotal expansion to obtain a 3 3 matrix, after
first replacing the element by , where is a 0-variable
with dimensions of impedance

(48)

8For the VCVS, descriptions Type i) and ii) are related by interchange of
column 1 and 2 and interchange ofN andD, i.e., inversion of the transfer func-
tion; the circuits they lead to are related by a terminal interchange transformation
[31]. For the CCCS, descriptions Type i) and ii) are related by interchange of
row 1 and 2 and interchange of N and D; the circuits they lead to are also re-
lated by a terminal interchange transformation.

TABLE VIII
EXPANDED STAMPS FOR THE IMPEDANCE CONVERTER

TABLE IX
STAMPS WITHOUT -VARIABLES FOR DEPENDENT SOURCES AND THE

IMPEDANCE CONVERTER

In the 3 3 expanded matrix, and are arbitrary admit-
tance functions. The element in (48)-RH may be set
to zero to yield the matrix in the first column of Table IX. In a
similar way, element expansions for the VCVS and the CCCS
may be derived by pivotal expansion of the Type iii) 2 2 ma-
trices in Table V and they are also shown in Table IX, where
they are designated Type v). The Type v) 2 2 admittance ma-
trix for the impedance converter in Table VI may be expanded
avoiding -variables

(49)

where . The term may be set to zero to give
the matrix in the last column in Table IX.

Matrices with zero pivots, such as those in Table IX may ap-
pearsimilar toMNAmatrices.However, inTable IX, the third row
and column relate strictly to node 3 of the circuit and define re-
lationships between dependent current , independent voltage

and other variables in the way that is usual for admittance
matrices. In our formulation, the and matrix elements in
Table IX are viewed as functions that can be expanded into new
rows and columns in order to synthesise a circuit.
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The existence of the finite matrices in Table IX proves that
circuits that are said to not possess admittance matrices (in the
conventional sense) can still be members of the class of circuits
that are realizable as interconnections of transconductors with
finite transconductances.
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