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s u m m a r y   

Objectives: The amount of SARS-CoV-2 detected in the upper respiratory tract (URT viral load) is a key 
driver of transmission of infection. Current evidence suggests that mechanisms constraining URT viral load 
are different from those controlling lower respiratory tract viral load and disease severity. Understanding 
such mechanisms may help to develop treatments and vaccine strategies to reduce transmission. 
Combining mathematical modelling of URT viral load dynamics with transcriptome analyses we aimed to 
identify mechanisms controlling URT viral load. 
Methods: COVID-19 patients were recruited in Spain during the first wave of the pandemic. RNA sequencing 
of peripheral blood and targeted NanoString nCounter transcriptome analysis of nasal epithelium were 
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performed and gene expression analysed in relation to paired URT viral load samples collected within 15 
days of symptom onset. Proportions of major immune cells in blood were estimated from transcriptional 
data using computational differential estimation. Weighted correlation network analysis (adjusted for cell 
proportions) and fixed transcriptional repertoire analysis were used to identify associations with URT viral 
load, quantified as standard deviations (z-scores) from an expected trajectory over time. 
Results: Eighty-two subjects (50% female, median age 54 years (range 3–73)) with COVID-19 were recruited. 
Paired URT viral load samples were available for 16 blood transcriptome samples, and 17 respiratory epi-
thelial transcriptome samples. Natural Killer (NK) cells were the only blood cell type significantly correlated 
with URT viral load z-scores (r = −0.62, P = 0.010). Twenty-four blood gene expression modules were sig-
nificantly correlated with URT viral load z-score, the most significant being a module of genes connected 
around IFNA14 (Interferon Alpha-14) expression (r = −0.60, P = 1e-10). In fixed repertoire analysis, prosta-
noid-related gene expression was significantly associated with higher viral load. In nasal epithelium, only 
GNLY (granulysin) gene expression showed significant negative correlation with viral load. 
Conclusions: Correlations between the transcriptional host response and inter-individual variations in 
SARS-CoV-2 URT viral load, revealed many molecular mechanisms plausibly favouring or constraining viral 
replication. Existing evidence corroborates many of these mechanisms, including likely roles for NK cells, 
granulysin, prostanoids and interferon alpha-14. Inhibition of prostanoid production and administration of 
interferon alpha-14 may be attractive transmission-blocking interventions. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an 
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).   

Background 

The advent of Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) leading to the coronavirus disease 2019 (COVID-19) has 
placed an enormous burden on affected individuals, healthcare sys-
tems, and economies worldwide. SARS-CoV-2 is highly transmissible 
and causes a wide range of severity from asymptomatic infection to 
severe disease and death. The amount of SARS-CoV-2 detected in the 
upper respiratory tract of infected individuals (URT viral load) is a key 
driver of transmission of infection.1 High URT viral loads can increase 
household and non-household transmissions by up to nearly 60% and 
40%, respectively.2 Interestingly, URT viral load does not necessarily 
correlate with the severity of illness, nor is it determined by estab-
lished risk factors for poor outcome such as age and sex.3,4 This 
suggests that the host immune mechanisms involved in constraining 
the virus in the URT are different from those determining the severity 
of illness, although such mechanisms have not been fully elucidated. 
In contrast, high and persistent SARS-CoV-2 shedding in the lower 
respiratory tract (LRT) is associated with severe disease,5 indicating 
differences in the mechanisms underlying control and pathogenesis 
of SARS-CoV-2 in the URT and LRT. Understanding the mechanisms 
controlling the viral load in the URT could illuminate new strategies to 
prevent transmission from infected individuals and might also enable 
control of the localised infection before it progresses to the LRT, 
triggering more serious illness. 

URT viral load is highly dynamic. It changes over the course of 
illness due to dynamic interactions with the host immune response; 
culturable virus and viral RNA levels peak around the time of 
symptom onset and then gradually decrease to low or undetectable 
levels over the following 10 days (culturable virus) to two weeks 
(viral RNA).3,6–8 Moreover, the kinetics of viral load vary between 
individuals, presumably determined by variation in immune re-
sponses.3,8 The host response constraining viral load includes both 
an immediate innate component and a later adaptive response.3,9,10 

With limited in vivo data, researchers have attempted to mathe-
matically model and explain the viral-host interaction and host 
immune responses to better understand the dynamics of SARS-CoV- 
2 viral load. We have recently developed a within-host model that 
has been successful in interpreting URT RNA viral load kinetics in a 
wide range of data including 2172 serial measurements from 605 
subjects, collected from 17 different studies.3 

Despite the dynamic interaction between the virus and host 
immune system during SARS-CoV-2 infection and the diversity in 
such interaction observed between individuals, the immune 

response involves conserved elements which can be reflected in host 
transcriptomes.11 While gene expression is a dynamic process, and a 
single transcriptomic experiment usually captures only a “snapshot” 
in time, using robust transcriptional analyses we can pinpoint key 
biological mechanisms underlying the immune response. The host 
transcriptomic response in human infection is often studied in per-
ipheral blood leukocytes. This is because peripheral blood leukocytes 
mount cell-intrinsic responses to pathogens but also mount tran-
scriptional responses to signals arising from the organs through 
which they circulate. Evaluating the host transcriptome in the con-
text of the dynamics of host-pathogen interaction can be a powerful 
approach to elucidate mechanisms responsible for the control of 
pathogen load.12 

Many previous studies have used transcriptomics to investigate 
the pathogenesis of severe COVID-19,13,14 but less attention has fo-
cused on the mechanisms controlling the dynamics of URT SARS- 
CoV-2 viral load. Here we sought to fill this gap in knowledge by 
combining our previously derived model of the trajectory of URT 
SARS-CoV-2 viral load3 with analysis of the transcriptomic host re-
sponse. By quantifying the deviation of measured viral load from a 
population average viral load trajectory, at a given time after the 
onset of symptoms, and correlating this with peripheral blood and 
nasal epithelial transcriptomes, we identified mechanisms which 
may restrict or promote viral replication. The mechanistic correlates 
of URT viral load identified herein may be important to develop new 
therapeutic and vaccine strategies to block transmission of SARS- 
CoV-2. 

Results 

Participants 

Subjects were recruited as part of our previously published stu-
dies of the blood15 and nasal16 transcriptomes in COVID-19. Tran-
scriptome data was available for 82 COVID-19 patients (50% female, 
median age 54 years (range 3–73 years)) recruited during the “first 
wave” (February to May 2020) of COVID-19 in Spain, before vacci-
nation and natural infection became determinants of the immune 
response to SARS-CoV-2. Whole blood RNA sequencing (RNA-Seq) 
and nasal epithelium nCounter NanoString gene expression assay 
data were generated (see Methods) for 68 and 24 subjects, respec-
tively, with 10 subjects being included in both analyses (Fig. 1). 
Clinical characteristics of all subjects are provided in Supplementary 
Table 1. 
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The whole blood transcriptome profiles were used to con-
struct gene co-expression networks and detect clusters of in-
terconnected genes (Fig. 1, see below). For gene module 
discovery, to optimise the generalisability of modules, we in-
cluded all 68 COVID-19 subjects with RNA-Seq data (regardless of 
whether they had co-infections), and an additional 18 uninfected 
healthy control subjects and 9 subjects with non-COVID-19 in-
fections (4 bacterial and 5 viral) (Supplementary Table 1), all 
sequenced in the same batch. However, of the COVID-19 cases 
who were free from suspected or proven bacterial co-infections, 
only 16 had URT viral load measurement and RNA samples col-
lected on the same day and within 15 days of symptom onset 
(after which any detected viral RNA is exceedingly unlikely to 
represent culturable virus17). Only these 16 subjects were in-
cluded in analyses correlating URT viral load with the whole 
blood transcriptome (Table 1, Fig. 2A). Subjects were mostly fe-
male (57.1%), with ages ranging from 3 to 78 years (median = 55 
years) (Fig. 2B and C). The disease severity was mild (n = 3; 19%), 
moderate (n = 7; 44%), and severe (n = 6; 37%). 

We also performed a nCounter NanoString gene expression 
analysis on nasal epithelium samples from 24 COVID-19 patients, 
including 17 with URT viral load measurement on the same day as 
nasal epithelium sample collection and within 15 days from 
symptom onset (Fig. 1, Table 2). The subjects’ ages ranged from 16 to 
80 years (median = 47 years), and most had mild disease (n = 9; 53%) 
or severe disease (n = 6; 35.3%). 

Conversion of viral load measurements to z-scores using viral load 
regression model 

We recently developed a regression model fitted to viral load 
measurements within the first 15 days of symptoms across 16 

datasets, capturing the viral load variation during the course of in-
fection between different individuals.3 Here, to quantify whether 
individual subjects in the current study had higher or lower than 
average viral load measurements relative to their duration of illness, 
we used the previously published regression model to calculate a z- 
score for each viral load measurement representing the deviation of 
that measurement from the mean viral load trajectory (regression 
line) at a given time from onset of symptoms (Table 1 and 2, Fig. 2D 
and E; see Methods). 

Viral load z-scores calculated from the data in this study were 
not associated with the severity of illness (Fig. 2F). In our previous 
large-scale analysis of COVID-19 subjects,3 we showed that age and 
sex did not significantly influence URT viral load dynamics and that 
URT viral load dynamics did not affect the severity of illness. 
Therefore, in the present study, we did not adjust the viral load z- 
scores for these variables. 

Exploring molecular correlates of SARS-CoV-2 viral load using whole 
blood transcriptomics 

We aimed to identify groups of genes for which expression cor-
related with viral load z-score, providing insights into the mechan-
isms controlling viral load. We first performed a gene signature- 
based deconvolution,18 as in our previous studies.12,19 Interestingly, 
the computed proportion estimate of natural killer (NK) cell popu-
lation was negatively correlated with viral load z-score (r = −0.62 and 
P = 0.010, Fig. 2G and Supplementary Figure 1). There was in-
sufficient evidence to conclude a significant linear relationship be-
tween other leukocyte populations (B-cells, monocytes, neutrophils, 
CD4+ T-cells, and CD8+ T-cells) and viral load z-score. Gene expres-
sion counts were then adjusted for leukocyte mixture to remove the 
confounding effect of differences in blood leukocyte proportions 

Fig. 1. Subject selection for weighted correlation network analysis. The flow chart provides a breakdown of the number of subjects analysed and the selection criteria applied at 
each analysis step. 
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between individuals. To make the best use of the relatively small 
sample size of the selected 16 samples, we performed dimension-
ality reduction using weighted correlation network analysis 
(WGCNA).20 First, we clustered the RNA-Seq profiles (n = 96) and 

removed an outlier (Supplementary Figure 2). Then, a gene co-ex-
pression network was constructed, and modules (clusters of highly 
co-expressed genes) were detected using the remaining 95 whole 
blood RNA-Seq profiles. Next, we correlated the first principal 

Table 1 
Samples used to correlate URT viral load and whole blood transcriptome.         

Days of illnessa Age (year) Sex Severity Average 
Ct valueb 

Calculated viral load 
(log10 (viral load/ml)) 

Viral load 
z-scorec  

3 15 Female Mild 27.72 5.49 -0.32 
4 55 Male Moderate 37.08 2.52 -2.89 
5 70 Male Severe 31.53 4.34 -0.99 
8 73 Female Severe 35.87 5.60 0.80 
8 43 Male Moderate 27.41 2.91 -1.71 
9 55 Male Severe 35.43 3.04 -1.39 
9* 53 Male Moderate 32.36 3.83 -0.65 
9 36 Female Mild 33.1 3.98 -0.51 
10 3 Female Mild 21.03 3.23 -1.00 
10 53 Female Severe 34.39 7.45 2.94 
11 72 Female Moderate 29.97 4.77 0.64 
11 60 Male Severe 33.24 3.73 -0.33 
12 41 Female Moderate 36.64 2.90 -0.91 
13* 53 Male Severe 28.62 7.93 4 
13 71 Male Moderate 19.57 5.54 1.76 
15 71 Female Moderate 37.17 2.48 -0.69  

* These two samples are from the same subject.  
a How many days after symptom onset the viral load was measured.  
b Cycle threshold value.  
c Relative to the days of illness at the time of viral load measurement (see Fig. 2D).  

Fig. 2. Overview of peripheral blood gene expression and viral load in subjects with COVID-19. A) PCA (principal component analysis) plot of peripheral blood gene expression 
determined by RNA-Seq. Samples with paired URT viral load measurements are coloured as blue. B) and C) PCA plots represent samples with paired RNA-Seq and viral load data 
coloured by age and sex, respectively. D) Calculation of viral load z-scores. In the upper panel, the viral load data of the present study (black circles) are plotted against the time 
since symptom onset. The green line indicates a linear regression model fitted to the viral load data from 16 different datasets previously studied. The shaded green area 
represents the 95% confidence interval for the regression model. As shown in the lower panel, for each data point, a z-score is calculated as the distance of the data point from the 
mean trajectory (green line). E) PCA plot of samples with paired data coloured based on viral load z-score. F) Viral load z-score is compared between groups of different COVID-19 
severity. Red dots and whiskers represent mean and 1 standard deviation. G) The correlation between computed proportion of NK cells within blood populations and URT viral 
load is plotted. Each dot represents a sample with paired viral load and blood transcriptome data. The grey shading represents the 95% confidence interval around the line of best 
fit (red). 
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component of each module (module eigengene) to viral load 
z-scores in the group of 16 samples with paired data, reasoning that 
inducible mechanisms which restrict viral load would be enriched 

amongst the most strongly correlated modules. Twenty-four mod-
ules were significantly correlated with viral load (P  <  0.01; Fig. 3,  
Table 3, and Supplementary Table 2). To aid interpretation, we re-
presented each module by its hub gene (gene with the highest 
connectivity within the module). Fourteen modules were positively 
correlated with viral load z-score and 10 were negatively correlated 
(Fig. 3A). IFNA14 (Interferon Alpha-14) and AIPL1 (Aryl Hydrocarbon 
Receptor Interacting Protein Like 1) modules showed the strongest 
negative correlation with viral load (r = −0.60 with P = 1e-10 and 
r = −0.60 with P = 2e-10, respectively). The largest positive correla-
tion was observed for the AC011455.2 module (r = 0.60, P = 2e-10). 

We selected the top 6 significant modules for further analysis: 
IFNA14, AIPL1, AC011455.2, C7orf33 (Chromosome 7 Open Reading 
Frame 33), IFNL3 (Interferon Lambda 3), and GALNT17 (Polypeptide 
N-Acetylgalactosaminyltransferase 17). AC011455.2, C7orf33, and 
GALNT17 modules were positively correlated with viral load z-score 
and positioned very close to each other in the hierarchical clustering 
(Fig. 3B). Therefore, we merged their gene sets to form a metamo-
dule (AC011455.2/C7orf33/GALNT17; total gene count = 114) for fur-
ther data analysis, assuming that the higher gene count would 
increase power to detect biologically relevant changes. The Fig. 3C 
heatmap provides an alternative representation of the correlation 
between the modules and their association with viral load z-score. 
We used Qiagen’s Ingenuity Pathway Analysis (IPA) for biological 
understanding of the modules.21 Correlation coefficients between 
module genes and viral load z-score were used to infer the activity 

Table 2 
Subjects used to correlate URT viral load with nasal epithelium NanoString profiles.         

Days 
of 
illness 

Age (year) Sex Severity Average 
Ct value 

Calculated 
viral load 
(log10 
(viral 
load/ml)) 

Viral load 
z-score  

0 29 Female Mild 27.53 5.94 -0.74 
3 16 Female Mild 27.72 5.74 -0.32 
4 80 Female Severe 25.36 6.46 0.56 
5 70 Male Severe 31.53 4.57 -0.99 
6 43 Male Mild 38.16 2.39 -2.8 
7 47 Male Mild 29.9 5.01 -0.17 
8 73 Female Severe 27.41 5.85 0.8 
8 34 Female Mild 28.93 5.33 0.33 
8 34 Male Mild 35.06 3.41 -1.45 
9 55 Male Severe 35.43 3.26 -1.39 
9 38 Male Mild 36.67 2.45 -2.14 
10 73 Male Severe 28.86 5.32 0.72 
10 48 Female Mild 28.78 5.48 0.87 
11 26 Female Mild 36.92 2.54 -1.65 
12 30 Male Moderate 27.97 5.61 1.4 
12 62 Male Severe 32.49 4.29 0.18 
13 69 Female Moderate 25.3 6.36 2.3    

Fig. 3. Peripheral blood gene expression modules correlated with viral load z-score. A) For each module, the hub gene, Pearson correlation with viral load z-score and corre-
sponding p-value (in parentheses) are displayed. The Pearson correlation scale is depicted on the right. The modules are ranked based on the correlation between the modules and 
viral load z-score. B and C) Module network and relationship with viral load z-score. The hierarchical clustering dendrogram of the module eigengenes (B) was generated using all 
genes in the modules and shows the dissimilarity of eigengenes with the distance measure being one minus correlation. Modules coloured in red and blue are, respectively, 
positively and negatively correlated with viral load. The heatmap (C) represents module eigengene adjacency calculated as (1 + correlation)/2. 
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pattern (activation or inhibition) of the biological processes involved 
such as enriched pathways and upstream regulators. 

Fig. 4A illustrates top enriched canonical pathways for the 
IFNA14, AIPL1, AC011455.2/C7orf33/GALNT17, and IFNL3 modules 
(details provided in Supplementary Table 3). Of these, 3 pathways 
showed an enrichment P-value of below 0.001 including ‘pathogen- 
induced cytokine storm signalling’ (P = 5e-4) and ‘IL-22 (Inter-
leukin-22) signalling’ (P = 8e-4) enriched in the IFNA14 module, and 
‘melatonin degradation’ (P = 2e-4) enriched in the IFNL3 module. 
The pathogen-induced cytokine storm signalling pathway en-
compasses the highest number of genes from the tested module 
(IFNA14, IL22, CCL4 (C-C Motif Chemokine Ligand 4), CD70, and 
COL4A4 (Collagen Type IV Alpha 4 Chain) from the IFNA14 module) 
compared to the other enriched pathways identified. IFNA14 and 
IL22, two main members of the IFNA14 module (module member-
ship = 0.98 and P = 5e-64 for both genes), are key components of 
the pathway (Fig. 4B). Interestingly in our dataset both genes were 
negatively correlated with viral load z-score (r = −0.59 and P = 3e-10 
for both genes), whereas CCL4, CD70, and COL4A4 were positively 
correlated with viral load z-score (Fig. 4B). The IL-22 signalling 
pathway involves two genes, IL22 and IL22RA2 (Interleukin 22 Re-
ceptor Subunit Alpha 2), with a high contribution to the IFNA14 
module (IL22RA2 module membership = 0.75 with P = 1e-18) both 
negatively correlated with viral load z-score (for IL22RA2, r = −0.63 
and P = 7e-12; Fig. 4B). The superpathway of melatonin degradation 
includes three genes (CYP2F1 (Cytochrome P450 Family 2 Subfamily 
F Member 1), IL4I1 (Interleukin 4-induced gene-1), and UGT1A1 
(UDP Glucuronosyltransferase Family 1 Member A1) from the IFNL3 
module. 

STING1 (Stimulator of Interferon Response CGAMP Interactor 1), 
RBP3 (Retinol Binding Protein 3), and RORC (RAR Related Orphan 

Receptor C) were predicted to be the most significant upstream 
regulators of IFNA14 module genes (P = 6e-5, 3e-4, and 4e-4, re-
spectively) (Fig. 4C and D). They interact with IL22, IL22RA2, CCL4, 
CD70, and FEZ1 (Fasciculation and Elongation Protein Zeta 1), 
members of the IFNA14 module which are mapped to the pathogen- 
induced cytokine storm signalling and IL-22 signalling pathways 
(Supplementary Tables 4 and 5). None of the identified pathways 
and regulators showed reliable evidence of activation (absolute 
value of IPA activation z-score > 2) and therefore we were not able to 
infer an overall directionality (activation or inhibition) with respect 
to viral load. 

We also applied the BloodGen3Module tool22 to identify gene 
modules associated with viral load. Unlike WGCNA which detects 
modules from the analysed gene expression dataset, Blood-
Gen3Module uses fixed functionally pre-annotated modules 
characterising different biological responses of distinct blood 
cell types. We used RNA-Seq data without adjustment for leu-
kocyte-mixture and evaluated differential expression of these 
modules between samples with positive and negative viral load 
z-scores (n = 5 and n = 11, respectively). We identified an ag-
gregate of five modules showing high ‘module response’ and 
higher module expression in subjects with positive viral load z- 
score (aggregate module A34; Fig. 5A and Supplementary 
Table 6). A module response is defined as the percentage of genes 
for a given module showing significant differential expression 
between the groups. From the module aggregate, the Prostanoids 
module showed the highest module response (97%). Interest-
ingly, we observed a significant overlap between the A34 ag-
gregate module and TUBB1 (Tubulin Beta 1 Class VI) module 
which was found to be significantly positively correlated with 
viral load z-score by WGCNA (r = 0.39 with P = 9e-05; Fig. 3). 

Table 3 
Modules significantly correlated with viral load z-score. Each module is represented by its hub gene. Complete lists of module genes and their information are provided in  
Supplementary Table 2.       

Module Correlation P Gene counta Genes with highest contribution to the moduleb  

IFNA14 -0.60 1e-10 45 IFNA14, ADAD1, IL22, LIN28A, TMEM270 
AIPL1 -0.60 2e-10 43 AIPL1, CFAP100, KCNK3, MOGAT2, OR5D3P, SLC13A2, SPEM1 
AC011455.2 0.60 2e-10 41 AC011455.2, FRMD1, TTC6, KCNK18, KIF12, SNAI2 
C7orf33 0.51 1e-07 36 C7orf33, DGKB, GK2, GHRH, PDZD9, SEPTIN14, SMIM40, TTLL2 
IFNL3 0.46 2e-06 50 IFNL3, STRA8 
GALNT17 0.43 1e-05 37 GALNT17, GCSAML-AS1, IP6K3, NPY, OR6B2, SIM2, SSU72P2, SSX4 
ANGPTL7 -0.42 2e-05 43 ANGPTL7, CALML3, GFY, HNRNPCL2, SLC6A1, TPTE, UGT1A3 
CRYAA -0.42 3e-05 57 CRYAA*, AC104581.2*, ACSM4*, FABP6*, GBX2*, PASD1*, PCDHA12*, PDYN*, SSMEM1* 
TUBB1 0.39 9e-05 349 TUBB1, NRGN, SELP, MPIG6B, SPARC, GP9, PTGS1, GP6, CTTN, ABLIM3, ARHGAP6, CMTM5, GP1BB, TSPAN9, ITGB5, GUCY1B1, 

TREML1, PGRMC1, MYLK, ITGB3, ITGA2B, PTCRA 
NAGA -0.37 2e-04 638 NAGA, RASSF4, ZNF385A 
NQO1 0.37 3e-04 89 ABCG5*, AC003688.1*, AL121899.2*, CCL26*, DRD1*, SERPINB13*, SP5* 
CHRNA4 0.37 3e-04 51 CHRNA4, CPN2, EPYC, GGTLC2, HDGFL1, MARCOL, MUC21, OR1D2, OR4F15, RNASE11, SCEL, SLC35F4, XAGE2 
TRIM51 -0.36 4e-04 32 TRIM51, AL583836.1, EPHA5, KRTAP10–7, LUZP2, TCF23 
CHRDL2 -0.36 4e-04 31 CHRDL2, EGFLAM, OR51L1, PPFIA2, SKOR2, SLCO1B1, TM4SF4 
TMPRSS7 0.35 4e-04 48 AC097636.1, APOF, BPIFB2, FOXR1, MMP10, MMP12, FLG 
C1QL4 0.35 5e-04 42 C1QL4, DNMT3L, KRTAP10–8, OR14J1, OVOL3, PMIS2, PPP1R14D, TFAP2D, UBTFL1, H2AC18* 
CYP2A7 -0.35 6e-04 87 CYP2A7, DCX, NGB, NR0B1, SLC17A6, SPHKAP, SPRR2D, CEACAM18, OOSP4A 
AKR1C4 0.32 0.002 37 AKR1C4, RGS21, CCDC63, DSG1, GLRA1, IL20, TMEM174 
AL049839.2 0.31 0.002 38 AL049839.2, CCDC190, FAM236C, FAM236D, VSNL1, MAGEB1, NRAP, RHCG 
ADRA1D 0.31 0.002 54 ADRA1D, DIO3, EPHA6, H2BC1, IL31, PDE6C, SPATA31D4, TCEAL5, UNCX 
ACADL 0.30 0.003 172 ACADL, AC008770.4, ADCY8, APOA4, ASZ1, BTBD16, CASQ2, CCK, CNTN1, COMP, CYP3A7, CYP4A11, DAZ1, DCAF12L1, DSG4, 

DUX4, DYDC2, FOXG1, FOXR2, FSHR, GRIA1, GRIA2, GRM6, IFNA13, KIF2B, KLK3, KRTAP2–2, MISP, NPY2R, NRK, NTF3, NTSR2, 
NXPH1, NXPH2, OR13J1, OR14A2, OR14C36, OR1C1, OR51G2, OR5L1, OR5W2, OR7A10, OR7E24, OTX2, PAX1, PAX7, PHOX2B, 
PRAMEF7, PRDM9, PRM3, PSG7, RPTN, SCYGR2, SERPINA5, SLC19A3, SLC2A7, ST8SIA3, SULT2A1, TBPL2, TRIML1, TSPY10, 
TSPY2, TSPY3, TSPY8, UGT1A4, ZIC1, ZSCAN5C 

ZMIZ2 -0.29 0.004 711 N/Ac 

NR3C2 0.28 0.006 208 N/Ac 

AL132671.2 -0.27 0.008 97 AL132671.2, C2orf72, CCDC166, FGF23, MBL2, MUC3A, MYOG, SPINK6, STRA6  

a The number of genes involved in each module.  
b Genes with the absolute value of module membership (the correlation between the module eigengene and gene expression values) > 0.9. Genes with negative module 

membership are marked with an asterisk.  
c No genes had module membership higher than 0.9 or lower than −0.9.  
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Seventy genes including TUBB1 were common between the A34 
and TUBB1 modules (Fig. 5B and Supplementary Tables 6) while 
A34 did not overlap with any other WGCNA module correlated 
with viral load z-score. Among the A34 modules, the Prostanoids 
module showed the highest overlap with the TUBB1 module 
(from 36 genes involved in the Prostanoids module, 30 were also 
included in the TUBB1 module). 

Exploring molecular correlates of SARS-CoV-2 viral load using 
NanoString assay of nasal epithelium 

We analysed RNA isolated from nasal epithelium samples of 24 
COVID-19 patients using a NanoString panel of 579 genes involved in 
core pathways and processes of human immune responses 
(Supplementary Table 7). Seventeen subjects also had paired URT 

Fig. 4. Ingenuity pathway analyses of peripheral blood gene expression modules most strongly correlated with viral load. A) For each module, the top 5 significant pathways are 
illustrated in descending order of statistical significance as indicated by colour. For each pathway, the size of the corresponding circle represents the number of module genes that 
map to the pathway. The x-axis shows the ratio of the number of genes common between the corresponding module and pathway divided by the total number of genes that map 
to the same pathway. B) The correlations between the expression of the main IFNA14 module genes, adjusted for cell mixture, and URT viral load are plotted. Each dot represents a 
sample with paired viral load and blood transcriptome data. The grey shading represents the 95% confidence interval around the line of best fit (red). C) and D) For each module, 
the 5 most significant upstream (C) and master regulators (D) are illustrated in descending order of statistical significance as indicated by colour. For each regulator, the size of the 
corresponding circle represents the number of module genes downstream to the regulator. The x-axis shows the ratio of the number of module genes downstream to the 
corresponding regulator divided by the total number of module genes. 
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viral load measurement within 15 days from symptom onset and 
had no evidence of bacterial co-infection. Using WGCNA we identi-
fied seven gene co-expression networks which we refer to as 
“pseudo-modules” since they were detected using a relatively low 

number of genes included in the NanoString panel (Supplementary 
Table 8). Only one pseudo-module was correlated with viral load z- 
score at significance threshold of 0.05 (PTK2 (Protein Tyrosine Kinase 
2) module; r = 0.485 and P = 0.016). Additionally, correlation analysis 
between individual gene expression and viral load z-score detected 
significant correlation (absolute correlation coefficient > 0.5 and 
P  <  0.05; Fig. 6) in 12 individual genes, 11 of which were positively 
correlated and one (GNLY (Granulysin)) was negatively correlated. In 
order to gain a deeper understanding of genes that exhibit a positive 
correlation with viral load, we analysed a list of 88 genes showing 
moderate to strong positive correlations (r ≥ 0.3, Supplementary 
Table 9) using IPA. ‘NOD1/2 signalling’ (P = 1e-24) and ‘pathogen- 
induced cytokine storm signalling’ (P = 9e-23) were found to be the 
most enriched pathways. 

Discussion 

Understanding mechanisms controlling SARS-CoV-2 viral load in 
the URT can provide valuable leads towards treatment and vaccine 
strategies aimed at reducing viral transmission.8 Such strategies 
have recently been highlighted as potential “game changers” as so-
cieties adapt to living with COVID-19.23 Current evidence suggests 
that the mechanisms controlling URT viral load may be different 
from those controlling LRT viral load and disease severity.3–5 How-
ever, our current knowledge concerning control of URT viral load is 
far from complete. To unravel the biological complexity underlying 
the control of SARS-CoV-2 viral load, we sought to identify correlates 
of the variation in viral load which occurs in naturally infected in-
dividuals. Of note, we used samples from the first wave of infection 
in Europe, prior to vaccination, infection-induced immunity, and 
circulation of important variants of SARS-CoV-2. We included a wide 
age range and did not adjust for age or sex, in order to maximise 
heterogeneity and variation in control of viral load and thus detec-
tion of the mechanistic correlates. To account for the dynamic nature 
of URT viral load, which rapidly increases to a peak just before 
symptom onset and then declines more slowly, we quantified viral 

Fig. 5. Pre-annotated blood gene expression modules associated with viral load. A) Module fingerprint grid plot. The differential expression of the modules is compared between 
two groups with positive and negative viral load z-score using t-test with fold change and p-value cut-off of 0.5 and 0.05, respectively. Each module is allocated a fixed position 
(block) on the grid, where each row represents a ’module aggregate.’ The grouping of these modules into separate aggregates was determined by similarities in abundance levels 
across the 16 reference datasets used by BloodGen3Module, which correspond to different immune states. Red and blue spots represent modules with increased and decreased 
abundance in the positive vs negative viral load z-score group, respectively. The gradient represents ‘module response’ which is the percentage of genes for a given module 
showing significant change in abundance between the two groups. Only modules with at least 15% response have been shown. B) Overlap of genes between A34 and TUBB1 
module. 

Fig. 6. Correlation between nasal epithelium transcriptome and viral load z-score. 
The volcano plot illustrates correlation coefficients and corresponding p-values. Each 
dot represents a gene included in the NanoString panel. Genes strongly correlated 
with viral load z-score (absolute correlation coefficient > 0.5 and P  <  0.05) are co-
loured in red (positive correlation) and blue (negative correlation). Interferon 
pathway genes are depicted in green. 
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loads by their standardised deviation (z-scores) from a previously 
derived average trajectory.3 We correlated viral load z-scores with 
paired peripheral blood and nasal epithelium transcriptomes. 

After excluding individuals with proven or suspected bacterial 
co-infection and URT SARS-CoV-2 viral load samples taken more 
than 15 days after symptom onset, relatively small numbers of 
subjects for blood and nasal transcriptome analysis (n = 16 and 
n = 17, respectively) remained. This prompted the use of gene mod-
ules rather than individual genes for our primary analysis. This 
would reduce the complexity of large gene networks into relevant 
modules and increase the statistical power to detect those corre-
lating with viral load. An individual module compromises genes that 
are more densely connected than expected by chance and often in-
volved in the same biological functions.24 We applied two different 
methods to detect gene clusters, WGCNA and BloodGen3Module. The 
first identifies modules directly from the gene expression data and 
the later uses pre-annotated modules. 

The peripheral blood module most significantly associated with 
URT viral load, and least related to other modules, had IFNA14 as its 
hub gene. IFNA14 encodes the type I interferon, interferon α14. 
Interferons are glycoprotein cytokines made and released by various 
cell types including host lymphocytes and are known to be key ef-
fectors in antiviral responses. However, their pattern of expression 
and function during SARS-CoV-2 infection is controversial. While 
some studies suggest protective effects of interferons in severe 
COVID-19,25–27 others indicate poor clinical outcomes in those with 
increased production of interferons.28–31 There is relatively limited 
data available on the relationship between interferon expression and 
variation in human SARS-CoV-2 URT viral load dynamics. Sposito 
et al. evaluated nasopharyngeal swabs of COVID-19 patients and 
showed that the expression of type I and III interferons was sig-
nificantly associated with viral load in patients under 70 years old.31 

However, those aged over 70 years showed no association and/or 
showed a significantly lower correlation coefficient. This evaluation 
did not include IFNA14. Also, it appears that their viral load mea-
surements were not adjusted for the time between sample collection 
and symptom onset. In another study of nasopharyngeal swabs 
taken from COVID-19 patients, Ziegler et al. showed an expansion of 
ciliated cells responsive to interferon in “high” viral load COVID-19 
samples.32 IFNA14 has been shown to activate a potent antiviral re-
sponse via binding to IFNAR1 and IFNAR2 (Interferon Alpha and Beta 
Receptor Subunits 1 and 2) receptors.33,34 This triggers the activation 
of JAK/STAT (Janus Kinase/Signal Transducer and Activator of Tran-
scription) signalling complexes which subsequently induces the 
expression of ISGs (interferon-stimulated genes) that inhibit virus 
infection.35 Cheemarla et al. have shown that under specific cir-
cumstances, ISG-mediated defences can significantly inhibit the re-
plication of SARS-CoV-2.36 The strong negative correlation between 
the IFNA14 module as well as IFNA14 as an individual gene and viral 
load in our data suggests that IFNA14 signalling could play a key role 
in controlling SARS-CoV-2 viral load, i.e. increased expression of 
IFNA14 restricts viral replication. Schuhenn et al. recently showed 
that IFNA14 is one of the most potent interferon alpha subtypes 
inhibiting SARS-CoV-2 replication and can cause a significant re-
duction of SARS-CoV-2 viral titre by up to 105-fold.37 Furthermore, 
unpublished data suggest that, compared to IFNA2 (Interferon 
Alpha-2), which was used to treat COVID-19 patients in an un-
controlled exploratory study in China,38 IFNA14 is more efficient at 
preventing the infection while less detrimental to the immune 
system.39 Not only is IFNA14 important as an individual gene, but it 
also represents a network of highly connected genes in our data, the 
IFNA14 module, which showed a high enrichment of two canonical 
pathways ‘pathogen-induced cytokine storm signalling’ and ‘IL-22 
signalling’. Although SARS-CoV-2 can trigger a ‘cytokine storm’,40,41 

the changes in expression of genes in this pathway were not con-
sistently associated with activation or inhibition of the pathway, 

agreeing with previous findings that ability to control of URT viral 
load is dissociated from severity of illness.3,4 IL-22 is a cytokine re-
leased by several immune cells such as Th22 (T helper cells type 22) 
and plays an important role at mucosal barriers, orchestrating the 
interaction between the epithelial cell layer and local immune 
system in response to infections.42 IL-22 stimulates the IL-22 re-
ceptor complex on epithelial cells resulting in downstream activa-
tion of JAK-STAT signalling pathway which induces multiple antiviral 
responses and therefore can be protective during SARS-CoV-2 in-
fection.42–44 Elevated levels of IL-22 in the plasma have been im-
plicated as a hallmark of severe COVID-19.29 Taken together there is 
compelling evidence that the genes in the IFNA14 module act to 
reduce URT viral load, and add to the evidence that interferon α14 
should be considered as a candidate treatment to reduce viral load in 
the URT and decrease transmissibility of SARS-CoV-2. 

The AIPL1 module was the second top module negatively core-
lated with viral load z-score. Unlike IFNA14, AIPL1 is not known to be 
involved with the pathogenesis of COVID-19, and the enriched 
pathways for this module contained relatively few genes. 
Nevertheless, enrichment of the ‘α-tocopherol degradation’ pathway 
suggests a potential role of α-tocopherol (also known as Vitamin E) 
in the control of viral load. α-tocopherol is an antioxidant which may 
enhance the function of innate and adaptive immune cells, for ex-
ample increasing NK cell activity and the phagocytic capacity of 
leukocytes, which could bolster the immune response to reduce 
pathogen load as observed in influenza.45,46 Emerging evidence 
suggests that water soluble derivatives of α-tocopherol have potent 
antiviral properties especially when they are used synergistically 
with remdesivir to inhibit SARS-CoV-2 RNA-dependent RNA poly-
merase.47 

We also identified modules positively correlated with viral load, 
possibly indicating that these modules are induced in response to 
increasing amounts of virus or that expression of these genes favours 
an increase in viral replication. The most significant of these mod-
ules was the IFNL3 module. The hub gene, IFNL3, encodes a type III 
interferon which is a cytokine activated in response to mucosal viral 
infections and signals through the heterodimeric IFNLR (Interferon 
Lambda Receptor) that is expressed distinctly in the URT epithelial 
cells. This stimulates the activation of several transcription factors 
which upregulate ISGs. Type III interferon signalling pathway is 
considered slower and induces a weaker ISG response than type 1 
interferons.48,49 The most significant upstream regulator of the IFNL3 
module is TLR9 (Toll Like Receptor 9), which may be stimulated by 
unmethylated CpG (Cytosine-phosphate-Guanine) sequences during 
SARS-CoV-2 infection50 and result in the observed upregulation of 
IFNL3 module genes. 

Using BloodGen3Module, we identified a cluster of blood pre- 
annotated transcriptional modules (A34) positively correlated with 
viral load. This was particularly interesting as these modules showed 
a significant overlap with the TUBB1 module found to be significantly 
positively correlated with viral load by WGCNA. From the A34 
modules, the Prostanoids module showed the highest module re-
sponse and overlap with the TUBB1 module. Prostanoids are a sub-
class of eicosanoids and regulate the inflammatory response.51 The 
observed association between the prostanoids module expression 
and viral load z-score suggests that high levels of prostanoids may 
suppress processes which constrain viral load and therefore promote 
high viral load levels. This is supported by a recent study showing 
that abrogation of eicosanoid signalling reduces viral load and res-
cues mice from fatal SARS-CoV-2 infection.52 It is also intriguing that 
the top BloodGen3Module modules (modules 1, 2, 4 and 5 from ag-
gregate module A34; Supplementary Tables 6) are connected to 
platelets. TUBB1 protein is specifically expressed in platelets and 
megakaryocytes and involved in proplatelet synthesis and platelet 
release.53 Thus, these findings may indicate an interplay between 
platelets and high viral load.54 
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In addition to peripheral blood samples, we studied samples 
taken from the primary infection site, the nasal epithelium. Both 
blood and nasal transcriptomes can reflect the host immune re-
sponse to the infection. In a respiratory infection, epithelial cells are 
directly infected, and peripheral blood leukocytes also respond to 
signals arising from the site of infection.55 Rajagopala et al. showed 
that the initial immune response in the nasal mucosa to SARS-CoV-2 
infection is viral load dependent and high viral load enhances in-
terferon signalling in the upper respiratory mucosa.56 In our study, 
the difference in the transcriptomic analysis approach we used for 
the peripheral blood and nasal samples (RNA-Seq and NanoString 
assay, respectively) made it difficult to compare the results obtained 
from the two tissue types. The NanoString assay analysed a relatively 
small number of genes (579 genes involved in immune response) 
and therefore the data did not yield reliable module level results. 
However, individual genes correlated with URT viral load z-score 
were identified that may be of interest. GNLY was the only negatively 
correlated gene representing a likely role in the control of viral load. 
It is produced by a variety of killer cells such as cytotoxic T lym-
phocytes and NK cells, and it has both cytolytic and proinflammatory 
activity.57 Indeed, the expression of GNLY in lymphocytes has been 
reported to be associated with recovery in COVID-19 suggesting it 
may play a major role in clearance of infected cells and termination 
of infection.58 In agreement with the correlation between GNLY and 
viral load, we also showed that cell proportion estimates of NK cells 
in peripheral blood were negatively correlated with viral load z- 
score, highlighting the importance of this cell population in con-
straining the virus. For example, Witkowski et al. showed COVID-19 
patients with normal NK cell numbers demonstrated a more rapid 
decline of viral load compared to those with low NK cell numbers.59 

Finally, the link between the blood and nasal transcriptome results 
can be also established through the presence of interferon-mediated 
processes. An example of this is the overlap we observed between 
the enriched pathways in the IFNA14 module, and the genes posi-
tively correlated with viral load in the nasal samples, especially in 
the context of pathogen-induced cytokine storm signalling. 

Our study was limited by the relatively small sample size which 
may have reduced the statistical power and resulted in missed op-
portunities to capture some biological signals. Additionally, we 
cannot establish from this data whether the molecular mechanisms 
identified are cause or consequence of the viral load, although there 
are plausible mechanisms which suggest causal roles in some cases. 
The relevance of these mechanisms for emerging variants of SARS- 
CoV-2, in individuals with vaccination-induced or naturally-acquired 
immunity, will require further investigation. 

Our study also has several methodological limitations. We do not 
have any way to validate consistency of sampling of nasal epithelial 
transcriptomes, meaning there may be variation in sample compo-
sition. We deduced viral load from the amount of viral RNA, rather 
than the count of virions or culturable virus plaque forming units. 
We inferred the variation in viral load (z-score) using a mathema-
tical model based on data from studies employing different designs 
and participant characteristics. Lastly, the method we employed for 
blood cell deconvolution does not include minor cell populations 
such as eosinophils, which may still be important in COVID-19.60 

Conclusions 

To our knowledge, this is the most comprehensive study focusing 
on identifying molecular correlates of the SARS-CoV-2 viral load 
control in the URT. We identified numerous molecular processes 
which may contribute to the control of URT viral load. These can-
didate mechanisms can be the focus of further functional studies and 
may lead to new strategies to prevent COVID-19 and reduce SARS- 
CoV-2 transmission. 

Methods 

Study design and participants 

We studied 82 COVID-19 patients recruited through the GEN- 
COVID study (www.gencovid.eu), a multi-centre and prospective 
cohort designed to evaluate the effect of genetic factors on SARS- 
CoV-2 infection. Subjects were recruited at Hospital Clínico 
Universitario de Santiago de Compostela (Galicia, Spain) between 
March 2020 and May 2020, during the first wave of infections in 
Spain, before significant levels of infection- and vaccine-induced 
immunity in the community. COVID-19 was defined according to the 
Spanish national guidelines (https://www.mscbs.gob.es/profesio-
nales/saludPublica/ccayes/alertasActual/nCov/documentos.htm). 
The severity of the disease was defined as mild, moderate, and se-
vere based on WHO scoring for COVID-19 patients and as described 
previously.15,61 Symptom onset data were acquired by either using 
patient questionnaires or, in cases where this was not feasible (the 
most severe cases), by obtaining this information from a family 
member. We also included 18 uninfected controls and 9 subjects 
with non-COVID-19 infections recruited through the PERFORM 
Consortium. 

Sample collection 

Blood samples and nasal epithelium specimens were collected at 
the same time at hospital for moderate and severe COVID-19 sub-
jects and at home for subjects with mild disease. Whole blood was 
collected into PAXgene blood RNA tubes (PreAnalytiX) and nasal 
epithelium samples were collected in Oragene CP-190 kit (DNA 
Genotek). Nasal swabs were taken by trained healthcare staff fol-
lowing a consistent standard operating procedure. For a given 
sample, the flocked swab was inserted into the nasal passage until a 
slight resistance was met. The flocked swab was then rotated slightly 
while brushing the mucosa for 5 s to ensure maximum absorbency 
and cell recovery. Samples were processed as described pre-
viously.15,16 

One COVID-19 subject contributed two paired sets of samples 
(viral load and blood RNA-Seq; Table 1) collected 3 days apart. We 
included both as they showed a noticeable difference in viral load z- 
score and hence were informative. 

RNA isolation 

Total RNA was isolated from blood and nasal epithelium samples 
using PAXgene blood miRNA extraction and RNeasy microkit, re-
spectively, according to the manufacturer’s protocols (Qiagen). RNA 
amount and integrity were assessed using TapeStation 4200 
(Agilent). RNA quality was checked based on DV200 metric to ensure 
that sufficient percentage (over 50%) of RNA fragments were greater 
than 200 nucleotides in length and also to estimate the optimal 
sample input for the nCounter NanoString analysis. 

Viral load measurements 

Viral load quantification 
Nasopharyngeal samples were collected in Universal Transport 

Medium (UTM) tubes supplied by COPAN (www.copangroup.com) 
and assessed for the presence and viral load of SARS-CoV-2. We 
detected viral particles using a multiplex real-time PCR with the 
Allplex™SARS-CoV-2 Assay (Seegene). Viral load values (viral copies 
per ml) were computed from the Ct values as described previously.3 

Calculation of viral load z-scores 
A regression model of the average trajectory of viral load over 

time and quantification of variation between individuals, using data 

M. Moradi Marjaneh, J.D. Challenger, A. Salas et al. Journal of Infection 87 (2023) 538–550 

547 



from 16 datasets, was reported previously.3 Viral load values from 
the present study were compared to this previously derived re-
gression line to assess whether a particular viral load measurement, 
sampled a certain number of days after symptom onset, was higher 
or lower than average. A ‘z-score’ was calculated for each data point 
by calculating its deviation from the mean trajectory and dividing by 
the standard deviation of the variation in viral load around the mean 
trajectory (Fig. 2D). 

RNA sequencing 

Paired-end sequencing was performed at The Wellcome Centre 
for Human Genetics in Oxford, UK as described previously.15 Se-
quencing was carried out using Novaseq6000 platform providing 
150 bp paired end reads. 

RNA-Seq upstream analyses 
Adapter trimming and quality control of sequencing reads were 

performed with Trimmomatic version 0.36 and FastQC version 0.11.7, 
respectively.62,63 The reads were then mapped against hg38 re-
ference genome using STAR version 2.7.1a.64 RSEM version 1.3.1 was 
used for transcript quantification.65 Next, we performed a gene 
signature-based deconvolution using CellCODE as in our previous 
work and adjusted gene expression for leukocyte (B cells, mono-
cytes, neutrophils, NK cells, CD4+ T cells, and CD8+ T cells) 
mixture.12,18,19 

NanoString experiment 

NanoString nCounter assay 
We analysed immunological gene expression profiles of nasal 

epithelium using the SPRINT nCounter system (NanoString 
Technologies) with the Human Immunology V2 Panel (579 genes 
covering the core pathways and processes of the immune response, 
and 15 internal reference genes for data normalisation). The detail of 
the assay is described previously.16 

Differential gene expression analysis 
The gene expression counts adjusted for leukocyte mixture were 

correlated with viral load z-scores using glmQLFit and glmQLFTest 
functions in edgeR package.66 

Weighted correlation network analysis 
Gene counts were normalised using variance stabilising trans-

formation (VST) function of DESeq2 R package67 and adjusted for 
leukocyte mixture using removeBatchEffect function of limma R 
package.68 We used WGCNA version 1.71 R package for weighted 
correlation network analysis.20 

Module repertoire analysis 
We applied BloodGen3Module version 1.4.0 R package22 to the 

normalised gene expression counts unadjusted for cell-mixture from 
16 samples with paired viral load, collected in the absence of bac-
terial co-infection. The package encompasses 382 functionally an-
notated blood transcriptional modules which have been grouped 
into 38 “aggregates” (A1-A38). The differential expression of the 
modules was compared between two groups with positive and ne-
gative viral load z-scores (n = 5 and n = 11, respectively) using t-test 
with fold change and p-value cut-off of 0.5 and 0.05, respectively. For 
each module, we computed ‘module response’ as the percentage of 
genes for the module showing significant differential expression 
between the two groups. 

Ingenuity pathway analysis 
We employed Qiagen’s Ingenuity Pathway Analysis (IPA) to gain 

biological insights into the modules, including the identification of 

enriched pathways and potential regulators. For example, the reg-
ulators were predicted based on their expected causal effects on 
module genes, with these expectations drawn from the literature 
compiled within the IPA database. The analysis involved a thorough 
examination of the known targets associated with each regulator in 
our dataset. The inferred directions of changes in the module genes, 
as determined by their correlation coefficients with viral load z- 
score, were compared to the expectations derived from the litera-
ture, and the activity patterns (activation or inhibition) of the reg-
ulators were issued accordingly. 

Further statistical analysis 
The normality of distributions was assessed using the Shapiro- 

Wilk normality test. Pearson correlation was used to analyse the 
degree of association between two continuous variables. An in-
dependent-samples t-test and one-way ANOVA with Tukey’s post 
hoc test were used to compare continuous variables between two 
and multiple groups, respectively. 
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