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Abstract

We extend recent work on the analysis of synchronization in a pair of bio-
chemical oscillators coupled by linear bulk diffusion, in order to explore the
effects of discrete delays. More specifically, we consider two well-mixed, identi-
cal compartments located at either end of a bounded, one-dimensional domain.
The compartments can exchange signaling molecules with the bulk domain,
within which the signaling molecules undergo diffusion. The concentration of
signaling molecules in each compartment is modeled by a delay differential equa-
tion (DDE), while the concentration in the bulk medium is modeled by a partial
differential equation (PDE) for diffusion. Coupling in the resulting PDE-DDE
system is via flux terms at the boundaries. Using linear stability analysis,
numerical simulations and bifurcation analysis, we investigate the effect of dif-
fusion on the onset of a supercritical Hopf bifurcation. The direction of the
Hopf bifurcation is determined by numerical simulations and a winding number
argument. Near a Hopf bifurcation point, we find that there are oscillations
with two possible modes: in-phase and anti-phase. Moreover, the critical delay
for oscillations to occur increases with the diffusion coefficient. Our numerical
results suggest that the selection of the in-phase or anti-phase oscillation is sen-
sitive to the diffusion coefficient, time delay and coupling strength. For slow
diffusion and weak coupling both modes can coexist, while for fast diffusion and
strong coupling, only one of the modes is dominant, depending on the explicit
choice of DDE.
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1. Introduction

Recently, a class of compartmental model of synchronized biochemical oscil-
lators coupled by bulk diffusion has been analyzed by Gou et al [1, 2, 3, 4] and
Sancho et al. [5]. Specifically, the models in [1, 2, 3, 4] consider two or more well
mixed identical compartments and a bulk medium between the compartments
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where signaling molecules undergo diffusion. The concentration of signaling
molecules within each compartment is modeled by a system of nonlinear ordi-
nary differential equations (ODEs) while the concentration in the bulk medium
is modeled by a partial differential equation (PDE) for diffusion and degradation.
Gou et al. assume that each isolated compartment is a conditional oscillator.
That is, in isolation a compartment’s dynamics is at a stable fixed point, but
can exhibit sustained oscillations in a different parameter regime. Each isolated
compartment is modeled in terms of a planar dynamical system without delays.
Using linear stability analysis, the authors showed that diffusive coupling can
induce in-phase or anti-phase oscillations for a pair of active compartments. One
application of this type of PDE-ODE model is to intercellular signaling mecha-
nisms such as quorum sensing, where each compartment is a microbial cell and
the bulk is the extracellular medium between cells [6, 7, 8, 9, 10, 11]. Quorum
sensing involves the production and extracellular secretion of certain signaling
molecules called autoinducers. Each cell also has receptors that can specifically
detect the signaling molecule via ligand-receptor binding, which then activates
transcription of certain genes, including those for inducer synthesis. However,
since there is a low likelihood of an individual bacterium detecting its own se-
creted inducer, the cell must encounter signaling molecules secreted by other
cells in its environment in order for gene transcription to be activated. When
the cell density is low, diffusion reduces the concentration of the inducer in the
surrounding medium to almost zero, resulting in small amounts of inducer being
produced. On the other hand, as the population grows, the concentration of
the inducer passes a threshold, causing more inducer to be synthesized. This
generates a positive feedback loop that fully activates the receptor, and induces
the up-regulation of other specific genes. Hence, all of the cells initiate tran-
scription at approximately the same time, resulting in some form of coordinated
behavior such as synchronized oscillations.

PDE-ODE models can also be applied at the single cell level [12], with each
compartment a dynamically active membrane and the bulk domain correspond-
ing to the cytoplasm. In many cases, a complicated multi-step chemical reac-
tion within the membrane can be reduced to a simpler single-step model with
discrete delays, see Ref. [13, 14]. This motivates the current study, namely,
to investigate the effects of bulk diffusive coupling on the synchronization of
a pair of biochemical compartments evolving according to a delay-differential
equation (DDE) rather than a planar ODE. For concreteness, we focus on a
pair of delayed logistic equations coupled by bulk diffusion, but establish that
similar results hold for another classical DDE, namely, the Mackey-Glass equa-
tion [15]. Although the delayed logistic equation has been well studied (see
[16, 17, 18, 19, 20]), there has been relatively little work on the interaction
of time delays and diffusion under the framework of PDE-DDE models. One
notable exception concerns a PDE-DDE model of genetic control [21, 22, 23].
These authors model the concentration of mRNA and a repressor protein in
two compartments: a well-mixed compartment (the nucleus) where mRNA is
produced and the cell cytoplasm where ribosomes are randomly dispersed and
translation occurs. In this paper, we follow the PDE-ODE framework of Gou et
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al. [1, 2, 3, 4] by considering diffusive coupling between two well mixed compart-
ments whose intrinsic reaction dynamics includes a time delay. In particular,
we explore how diffusion affects the critical time delay for a Hopf bifurcation
and the nature of oscillatory solutions in the parameter region above the Hopf
bifurcation point. In contrast to a single, well-mixed compartment, one has to
distinguish between in-phase and anti-phase oscillatory modes along the lines
of Gou et al. [1, 2, 3]. Note that one other major difference between the PDE-
ODE models of Gou et al. and our PDE-DDE model is that we do not include
a degradation term within the bulk diffusion equation. This is a reasonable ap-
proximation if the degradation time is much longer than the typical time delay.
Moreover, our main interest in this paper is how diffusion affects oscillations that
already exist in the absence of diffusion, rather than exploring diffusion-induced
oscillations; the latter appear to require non-zero degradation rates [1, 2, 3]. A
more pragmatic reason for ignoring degradation is that the introduction of a
delay introduces another time-scale into the system, and we want to restrict the
number of parameters that we vary.

The paper is organized as follows. In section 2, we introduce the one-
dimensional PDE-DDE model for the delayed logistic equation. We then use
linear stability analysis to derive a characteristic equation that depends non-
linearly on the associated eigenvalue. We use the characteristic equation to
derive necessary conditions for a Hopf bifurcation. We then numerically calcu-
late the critical time delay as a function of various model parameters, including
the time delay, the bulk diffusivity and the strength of diffusive coupling at the
boundaries. We plot Hopf bifurcation curves as a function of these different pa-
rameters, and then use numerical simulations to explore the switching between
in-phase and anti-phase oscillations with changes in parameters (section 3). We
also use the bifurcation tool DDE-BIFTOOL [24] to plot the amplitude of the
periodic solutions. One limitation of our linear stability analysis is that we don’t
check that the pair of pure imaginary eigenvalues crosses over to the right-half
complex plane above the Hopf bifurcation point, nor determine whether or not
there are already other eigenvalues in the right-half complex plane. Therefore,
in section 4 we apply the winding number method to detect the number of
eigenvalues in the right-half plane for different parameter regimes. In section 5
we briefly explore extensions of our analysis to (i) asymmetric coupling and (ii)
a PDE-DDE model based on the Mackey-Glass equation [15].

Note that the PDE-DDE model considered in this paper is distinct from our
recent model of cell polarization in fission yeast [25]. The latter model describes
bulk diffusion of a signaling molecule Rho GTPase Cdc42 in the cytoplasm,
which is coupled to a pair of delay differential equations (DDEs) at the ends of
the cell via boundary conditions. The latter represent the binding of Cdc42 to
the cell membrane and re-release into the cytoplasm via unbinding. The non-
trivial nature of the dynamics arises from the fact that both the binding and
unbinding rates at each end are taken to depend nonlinearly on the local mem-
brane concentration of Cdc42. In particular, the association rate is regulated
by positive feedback and the dissociation rate is regulated by delayed negative
feedback. From a mathematical perspective, the fission yeast model differs from
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our current PDE-DDE model, since in the former case each compartment does
not have its own intrinsic dynamics, rather it is solely driven by the diffusive
flux into the compartment.

2. Oscillations in a PDE-Logistic Model

Consider the concentration of a single chemical species in a one-dimensional
finite domain [0, L]. The boundaries x = 0 and x = L represent dynamically
active membrane whose dynamics is governed by a DDE. For concreteness, we
take the DDE to be the delayed logistic equation; we consider the Mackey-
Glass DDE in section 5. The bulk region (0, L) represents the cytoplasm of a
cell within which molecules undergo diffusion with diffusion coefficient D. The
bulk region and the two end compartments are coupled by a linear diffusive flux
with coupling parameter β. Denoting the concentration at the boundaries as
X1(t), X2(t) and the concentration in the bulk as C(x, t), the model is given by

∂C

∂t
(x, t) = D

∂2C

∂x2
, 0 < x < L, t > 0

D∂xC(0, t) = β(C(0, t)−X1(t)),

−D∂xC(L, t) = β(C(L, t)−X2(t)) (1)

and

dX1

dt
= β(C(0, t)−X1(t)) + f(X1(t), X1(t− τ)), (2a)

dX2

dt
= β(C(L, t)−X2(t)) + f(X2(t), X2(t− τ)) (2b)

where
f(x(t), x(t− τ)) = rx(t)(1− x(t− τ)/M). (3)

Here τ is the time delay, r is the growth rate and M is the carrying capacity.
A steady-state solution of the above PDE-DDE satisfies

C(x) =
CL − C0

L
x+ C0, D

CL − C0

L
= β(C0 −X1) = −β(CL −X2). (4)

Rewriting C0 and CL in terms of X1 and X2 gives

C0 =
(1 + α)X1 + αX2

1 + 2α
, CL =

αX1 + (1 + α)X2

1 + 2α
,

with α = D/(Lβ). It follows that

C0 −X1 =
α(X2 −X1)

1 + 2α
, CL −X2 =

α(X1 −X2)

1 + 2α
. (5)

Suppose X1 > X2, then C0 − X1 < 0 and CL − X2 > 0. Thus f(X1, X1) =
−β(C0 − X1) > 0. Hence 0 < X1 < M . Similarly, we have f(X2, X2) =
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−β(CL−X2) < 0. Hence X2 < 0 or X2 > M . Since X1 > X2, we have X2 < 0.
This implies that any nonnegative steady state solution (X1, X2) must satisfy
X1 = X2. It then follows that

C(x) = C0 = X1 = X2, f(X1, X1) = 0.

The function F (x) = f(x, x) has a trivial root at x = 0, which is unstable, and
a positive root at x = M .

2.1. Linear stability analysis

We will investigate the occurrence of oscillations in the PDE-Logistic model
by carrying out a linear stability analysis of the positive steady state,

C(x) = C0 = X1, X1 = X2 = M,

and deriving conditions for a Hopf bifurcation. An investigation of linear sta-
bility means that we want to determine the spectrum of the linear operators
obtained by linearizing about the fixed point. Therefore, we consider perturbed
solutions of the form

C(x) = C0 + eλtη(x), Xi = M + φie
λt, i = 1, 2.

The condition for linear stability then reduces to the requirement that all eigen-
values λ have negative real part. Substituting into the linearized system near
the steady state then gives

Dη′′(x) = λη(x),

Dη′(0) = β(η(0)− φ1)

−Dη′(L) = β(η(L)− φ2)

(6)

and {
λφ1 = β(η(0)− φ1)− re−λτφ1

λφ2 = β(η(L)− φ2)− re−λτφ2

(7)

Using Eq. (7), we can rewrite (φ1, φ2) in terms of η(0) and η(L). That is,

φ1 =
βη(0)

λ+ β + re−λτ
, φ2 =

βη(L)

λ+ β + re−λτ
. (8)

Substituting it into the boundary conditions of η(x) gives
Dη′′(x) = λη(x),

Dη′(0) = B(λ, τ)η(0)

−Dη′(L) = B(λ, τ)η(L)

(9)

where

B(λ, τ) = β

[
1− β

λ+ β + re−λτ

]
. (10)
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The eigenvector η(x) can be expressed in the form

η(x) =
η0 + η1

2

cosh(
√
λ/D(x− L

2 ))

cosh(
√
λ/DL

2 )
+
η1 − η0

2

sinh(
√
λ/D(x− L

2 ))

sinh(
√
λ/DL

2 )
, (11)

where η0 and η1 are unknown coefficients. The boundary conditions require(
A+(λ) +B(λ, τ) A−(λ)

A−(λ) A+(λ) +B(λ, τ)

)(
η0

η1

)
= 0. (12)

where

A±(λ) =

√
λD

2

[
tanh(

L

2

√
λ/D)± coth(

L

2

√
λ/D)

]
.

Since the matrix in Eq. (12) is cyclic and symmetric, it follows that equation
(12) has the solutions η0 = η1 = 1 (in-phase) and η0 = −η1 = 1 (anti-phase)
with λ satisfying the corresponding pair of equations

B(λ, τ) = −
√
λD tanh

(
L

2

√
λ

D

)
(in-phase), (13a)

B(λ, τ) = −
√
λD coth

(
L

2

√
λ

D

)
(anti-phase). (13b)

Note that the presence of terms involving
√
λ/D means that we have to intro-

duce a branch cut in the complex λ-plane along (−∞, 0] with −π < Arg(λ) < π.
Fortunately, for finite D,L this does not affect the eigenvalue relation (13) since,
as λ → 0, we have tanh(

√
λ/4D) →

√
λ/4D and coth(

√
λ/4D) →

√
4D/λ,

that is, any square roots in (13) cancel. However, care has to be taken in the
limit D → 0, since one can no longer eliminate the square roots and there is
a continuous spectrum in addition to a discrete spectrum. We will avoid these
complexities here by taking D > 0.

We now use Eqs. (13) to derive necessary conditions for a Hopf bifurcation.
That is, we look for pure imaginary solutions λ = iω with ω real and construct
Hopf bifurcation curves as a function of D, τ and β. Note, however, that in
order to ensure the emergence of limit cycle oscillations via a primary Hopf
bifurcation, one also has to check that a pair of eigenvalues cross over to the
right-half complex plane as one crosses the Hopf curve and that there are no
other eigenvalues already in the right-half plane. One way to keep track of
the number of eigenvalues in the right-half complex plane is to use a winding
number argument (see section 4). One issue that cannot be addressed using
linear stability analysis is whether or not a Hopf bifurcation is supercritical.
However, all of our numerical simulations suggest that the bifurcation is indeed
supercritical (see section 3).

For simplicity, we first consider Eq. (13) as D → 0. Noting that

lim
D→0

√
λD tanh

(
L

2

√
λ

D

)
= lim
D→0

√
λD coth

(
L

2

√
λ

D

)
= 0,

6



we have

B(λ, τ) = β

[
1− β

λ+ β + re−λτ

]
= 0.

It follows that

λ+ re−λτ = 0. (14)

This is the characteristic equation of the delayed logistic equation

dx

dt
= f(x(t), x(t− τ)) = rx(t)(1− x(t− τ)/M).

At a Hopf bifurcation point, the critical time delay τ and the frequency ω satisify

cos(ωτ) = 0, ω − r sin(ωτ) = 0.

It follows that

τ =
π

2r
+

2nπ

r
, ω = r > 0, n = 0, 1, 2, · · · (15)

In the slow diffusion limit, the Hopf point occurs at τ = π/(2r), and is inde-
pendent of the coupling parameter β. The diffusion is too slow to affect the
concentration at the membrane.

Next, we consider the solution of Eq. (13) as D → ∞. Assuming |λ| =
O(1)� D, we have

lim
D→∞

√
λD tanh

(
L

2

√
λ

D

)
=
λL

2
,

and
√
λD coth

(
L

2

√
λ

D

)
≈ 2D

L
= O(D)→∞.

Hence the solution (τ, ω) of Eq. (13) in the fast diffusion limit satisfies

B(λ, τ) = −λL
2
, or B(λ, τ) = O(D)→∞. (16)

The first equation in Eq. (16) gives the characteristic equation

β

[
1− β

λ+ β + re−λτ

]
= −λL

2
. (17)

Noting that for any λ > 0 real and τ > 0,

1− β

λ+ β + re−λτ
> 0 > −λL

2β
,
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thus Eq. (17) has no positive real root. In fact, there is a negative real root. A
Hopf bifurcation can occur as the eigenvalue crosses the imaginary axis. Setting
λ = iω, the critical time delay and frequency at a Hopf point satisfy

1 + i
ωL

2β
=

β

iω + β + re−iωτ
=

β

β + r cosωτ + i(ω − r sin(ωτ))
. (18)

This equation can be solved numerically and the critical time delay is the same
as the asymptote of the Hopf curve (in-phase) in Fig. 1(a).

The second equation in (16) does not have a solution unless

λ+ β + re−λτ = 0. (19)

This type of characteristic equation has been studied in detail in [26, 27]. Setting
λ = iω, and taking ω > 0 without loss of generality gives

β + r cosωτ = 0, ω − r sinωτ = 0. (20)

It follows that

cosωτ = −β
r
, ω = r sinωτ =

√
r2 − β2.

If β > r, there is no solution of (ω, τ). This implies that the critical time delay
(associated with the anti-phase oscillation) does not exist for strong coupling
β in the fast diffusion limit. On the other hand, if β < r, then there are
denumerably many solutions

ω =
√
r2 − β2 > 0, τn =

(2n− 1)π − arccos(β/r)

ω
, n ∈ N.

2.2. Hopf bifurcation curves

Using the above linear stability analysis, we now construct Hopf bifurcation
curves with respect to different model parameters. In Fig. 1 Hopf bifurcation
curves for the critical time delay τc are plotted as a function of the diffusion
coefficient D for fixed coupling β. The critical time delay is computed by taking
the real and imaginary parts of the two eigenvalue relations in (13) and solving
the resulting system using Maple. There are two branches of Hopf curves cor-
responding to in-phase and anti-phase oscillations; they intersect at Hopf-Hopf
points, which act as organizing centers for more complex oscillatory solutions.
It is difficult to resolve which branch is dominant as D → 0, since both the
in-phase and anti-phase branches approach the critical time delay of the uncou-
pled delayed logistic equation. However, away from the origin, we find that as
the diffusion coefficient D increases the critical time delay increases, and the
primary bifurcation switches from an anti-phase to an in-phase oscillation. It
can be checked that the asymptotic limit of the in-phase branch agrees with the
solution (λ, τ) = (iω, τ) of Eq. (17). In Fig. 2, we plot the corresponding Hopf
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Figure 1: Hopf bifurcation curves in (D, τ) plane for different values of the coupling parameter
β. (a,c) Critical time delay τc vs D with β = 1, 0.5, respectively. Solid curves show Hopf
bifurcation points, whereas dashed curves are continuations through a double Hopf point
(H-H). Below the primary branch, the steady state is stable. (b, d) Frequency ω (imaginary
eigenvalue) vs D with β = 1, 0.5, respectively. As D increases the primary bifurcation switches
from an anti-phase to an in-phase limit cycle oscillation. Blue: in-phase. Green: anti-phase.
Other parameters: L = 1, r = 1, M = 1.
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Figure 2: Hopf bifurcation curves in (β, τ) plane for (a) D = 0.2 and (b) D = 1. Solid curves
show Hopf bifurcation points, whereas dashed curves are continuations through a double Hopf
point (H-H). Below the primary branch the steady-state solution is stable. As β increases the
primary bifurcation switches from an anti-phase to an in-phase limit cycle oscillation. Blue:
in-phase. Green: anti-phase. Other parameters: L = 1, r = 1, M = 1.

bifurcation curves in the (β, τ) plane for fixed D Now there is a switch from
anti-phase to in-phase oscillations as β is increased away from zero.
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Figure 3: Phase diagram in (D, τ) plane with different time delays. Anti-phase (in-phase)
oscillations exist for (β,D) below the green (blue) line. (a) For τ = 2, the steady-state is
stable in region 1©, and an anti-phase oscillation exists in regions 2©. In region 3©, both
in-phase and anti-phase oscillations exist, however, numerical simulations suggest that the in-
phase oscillation is unstable, see Fig. 4(a). (b) τ = 2.4. The blue and green curves intersect.
Our numerical plot in Fig. 4(b) suggests there is possibly an unstable torus bifurcation.
(c) τ = 2.45. Anti-phase oscillations exist for parameters below the green line. In-phase
oscillations exist for any choice of (β,D). In the coexistence region, i.e., below the green line,
we find that an in-phase oscillation can evolve to an anti-phase oscillation, see Fig. 4(c). (d)
The asymptote of the critical time delay (solution of Eq. (18)) as a function of the coupling
strength as D → ∞. The two points (β, τ) = (0.25, 2.0) and (0.6, 2.4) implies the asymptote
of β for τ = 2, 2.4, see Fig (a, b).

Next, we take the time delay to be fixed and plot the phase diagram in the
(β,D) plane, see Fig. 3. This is computed by numerically solving the eigenvalue
equations (13) for the solution λ = iω and D with a varying β. For τ = 2, anti-
phase (in-phase) oscillations exist for parameters below the green (blue) line.
Above these lines, i.e., region 1©, the steady state is stable. This indicates
that for sufficiently large (β,D), the fixed time delay τ = 2 is below a Hopf
bifurcation. This result is consistent with the numerical results shown in Fig. 1
and Fig. 2. In the coexistence region 3©, the in-phase oscillation is observed to
be unstable, see Fig. 4(a). For τ = 2.4, similar results are observed. However,
one difference between τ = 2 and τ = 2.4 is that the blue and green curves
intersect in the latter case. Numerical solutions for (β,D) chosen within the
coexistence region shows there is an unstable torus bifurcation, see Fig. 4(b).
For τ = 2.45, the time delay is sufficiently large so that in-phase oscillations
exist for any (β,D). This can be explained by the plot of the asymptote of the
critical time delay in the limit D →∞, which has a maximum around 2.43, see
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to points A,B,C, repectively, in Figs. 3(a-c). Initial condition: C(x, 0) = 1, X1(0) =
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Fig. 3(d). On the other hand, anti-phase oscillations exist for parameters below
the green line. Again, we find that the in-phase oscillation can lose its stability
in the coexistence region, see Fig. 4(c).

In summary, our linear stability analysis suggests that the existence of os-
cillations depends on the diffusion coefficient, coupling strength and time delay.
First, the critical time delay at a Hopf bifurcation increases as the diffusion co-
efficient or coupling strength increases. Second, for a fixed time delay, the effect
of diffusion or coupling on the stability of steady state is sensitive to the value
of the time delay. In particular, for a small time delay (τ < π/2), changing the
diffusion coefficient or coupling strength will not destabilize the steady state.
For a sufficiently large time delay, oscillations always exist for any (D,β). For
a moderate time delay, decreasing the diffusion coefficient or coupling strength
can give rise to in-phase or anti-phase oscillations.
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solution is stable. (b) τ = 2.1. Anti-phase oscillations occur given the initial condition
C(x, 0) = 1, X1(0) = 1.1, X2(0) = 0.9. (c) τ = 2.3. An in-phase oscillation changes to an
anti-phase oscillation for the initial condition C(x, 0) = 1, X1(0) = 1.1, X2(0) = 1.09.(d)
Amplitude of the periodic solutions as a function of time delay. Numerical result shows that
the in-phase periodic solution has Floquet multipliers outside the unit circle and thus it is
unstable. On the other hand, the anti-phase periodic solution has Floquet multiplier inside
the unit circle. Other parameters: L = 1, r = 1, M = 1. Spatial step size h = 0.05.

3. In-phase vs anti-phase oscillations

In this section, we numerically explore the occurrence of in-phase and anti-
phase oscillations. The full PDE-DDE system given by Eqs. (1) and (2) is
simulated by discretizing the PDE into a system of ODEs using a method of
line approach with a spatial step size h = 1/20. The resulting ODE-DDE
system is solved using the DDE solver dde23 in MATLAB. The amplitude plots
and Floquet multipliers are computed for the DDE-ODE system using DDE-
BIFTOOL.

First, suppose that the gain is β = 1 as in Fig. 1(a,b). For D = 0.1 and the
initial condition

C(x, t) = 1, X1(t) = 1 + 0.1, X2(t) = 1− 0.1, −τ ≤ t ≤ 0, (21)

the numerical solution with different time delays is shown in Fig. 5(a,b). We
find that the primary Hopf bifurcation to an anti-phase solution is supercritical
at the predicted critical time delay τ = τhp ≈ 1.99 (see the inset of Fig. 1(a)).
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Figure 6: Stable in-phase solutions solutions for D = 0.6, β = 1.0 and different delays τ .
Corresponding bifurcation curves are shown in Fig. 1(a). (a) Amplitude of the periodic
solutions as a function of time delay. Numerical result shows that the anti-phase periodic
solution has Floquet multipliers outside the unit circle and thus it is unstable. On the other
hand, the in-phase periodic solution has Floquet multiplier inside the unit circle. (b, c)
τ = 2.3, 3.2, respectively. Initial condition: C(x, 0) = 1, X1(0) = 1.1, X2(0) = 0.9. Other
parameters are L = 1, r = 1, M = 1.

As τ increases to 2.3, although the in-phase oscillation is observed for the initial
condition X1 = X2 = 1.1 (indicating that the blue curve in the inset of of Fig.
1(a) has been crossed), we find that it is unstable for initial conditions that are
not symmetric. For the sake of illustration, we choose the initial condition

C(x, t) = 1, X1(t) = 1 + 0.1, X2(t) = 1 + 0.09, −τ ≤ t ≤ 0.

The numerical solution starts near an in-phase oscillation but evolves to an
anti-phase oscillation, see Fig. 5(c). The instability of in-phase oscillations is
also observed when we plot the amplitude of the periodic solutions using DDE-
BIFTOOL, see Fig. 5(d). The stability is determined by computing the Floquet
multipliers using DDE-BIFTOOL. We find that the in-phase oscillations have
Floquet multipliers outside the unit circle. On the other hand, the anti-phase
oscillations have Floquet multipliers inside the unit circle. Plottng the amplitude
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Figure 7: Stability of the anti-phase oscillation for D = 0.5 and sufficiently large time delay.
(a) Amplitude of the periodic solutions with the number of unstable Floquet multipliers.
Blue: number of unstable Floquet multiplier (# unst)=0, Red: number of unstable Floquet
multiplier (# unst)=2. (b) Plots of Floquet multipliers (anti-phase branch) with τ = 2.7
and τ = 2.8. There are a pair of complex Floquet multipliers (red markers) outside the unit
circle for τ = 2.7. (c) For τ = 2.7, the anti-phase oscillation is unstable. (d) For τ = 2.9,
the anti-phase oscillation is stable. Initial condition: C(x, 0) = 1, X1(0) = 1.1, X2(0) = 0.9.
Other parameters: L = 1, β = 1, r = 1, M = 1.

as a function of delay for β = 1 and fixed D corresponds to taking a vertical
slice through Fig. 1(a).

Now suppose that the diffusion coefficient is increased toD = 0.6. Consistent
with Fig. 1(a,b) we now find that the anti-phase oscillation is unstable and the
in-phase oscillation is stable, see Fig. 6. This feature was also observed in the
PDE-ODE model of Ref. [1]. More complex behavior can be obtained if the
system operates close to the double-Hopf point in Fig. 1(a), as has also been
found for a PDE-ODE system [2]. For example, if D = 0.5 then the anti-phase
oscillation can change from unstable to stable as the time delay τ is increased
from 2.7 to 2.9, see Fig. 7(b, c). The numerical stability analysis of the anti-
phase periodic solution suggests that there exists a pair of complex Floquet
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multipliers outside the unit circle for τ > τtr ≈ 2.8, see Fig. 7(a). This implies
there is a torus bifurcation near (D, τ) ≈ (0.5, 2.8).
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Figure 8: Switch from an anti-phase oscillation to an in-phase oscillation as D increases
from 0.1 to 0.6 with a fixed time delay τ = 3.2. (a) D = 0.1, (b) D = 0.5, (c) D = 0.6.
As the diffusion coefficient increases from 0.1 to 0.6, the solution changes from anti-phase
oscillations to in-phase oscillations, see (a) and (d). For D = 0.5, a new type of oscillatory
mode (torus) emerges due to the double Hopf bifurcation. However, the new mode disappears
at a sufficiently large time (t ≈ 300, see (b)), and the oscillations are again anti-phase. For
D = 0.6, the oscillation starts as anti-phase but ends up as in-phase. Initial conditions:
C(x, 0) = 1, X1(0) = 1.5, X2(0) = 0.5.
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A change of oscillation modes is also observed when the diffusion coefficient
changes for a fixed time delay. For τ = 3.2, as the diffusion coefficient D changes
from 0.1 to 0.6, the oscillation switches from anti-phase to in-phase, see Fig. 8.
A similar result is observed for τ = 2.5, as the diffusion coefficient D changes
from 0.1 to 0.4, see Fig. 9.

4. Winding number argument

In this section, we use the winding number argument studied in [1] to count
the number N0 of roots of the characteristic Eq. (13) with Reλ > 0. If N0 =
0, then the steady state is linearly stable. Otherwise, it is linearly unstable.
Moreover, there is a Hopf point if there exists a root on the imaginary axis. We
start with the eigenvalue λ associated with the in-phase oscillation and consider
the function

F (λ) = B(λ, τ) +
√
λD tanh

(
L

2

√
λ

D

)

= β

[
1− β

λ+ β + re−λτ

]
+
√
λD tanh

(
L

2

√
λ

D

)
. (22)

Recall that we are taking the primary branch of
√
λ, whilst the first term on the

right-hand side is analytic except for a countable set of simple poles when D > 0.
Replacing the tanh function by coth gives the eigenvalue λ associated with the
anti-phase oscillation. To find the number of roots of F on the right-half complex
plane {z,Re(z) > 0}, we construct the counterclockwise contour Γ consisting
of the semi-circle ΓR = {z = Reiθ,−π/2 < θ < π/2} and the imaginary axis
ΓI = {z = iy,−R ≤ y ≤ R}, see Fig. 10. Applying the argument principle to

ΓR

ΓI
+

ΓI
-

R

Figure 10: Counterclockwise contour Γ consisting of the semi-circle ΓR = {z = Reiθ,−π/2 <
θ < π/2} and the imaginary axis ΓI = ΓI− ∪ ΓI+ = {z = iy,−R ≤ y ≤ R}
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of trajectories that do not pass through the negative real axis and ∆ArgF = 0−π/4. (b) Hopf
bifurcation. There exists a y0 ∈ (0, R) such that F (iy0) = 0. (c) F (iy) crosses the negative
real x-axis, ∆Γ

I+
ArgF = (π−π/4) + 0− (−π) = 7π/4. Noting that the square root function

does not appear in the function B(iy, τ), it is possible that F (iy) crosses the negative x-axis.

the function F (λ) on the contour Γ gives

N0 −N∞ =
1

2π
∆ΓArgF (λ), (23)

where N0(N∞) is the number of zeros (poles) of F inside Γ and ∆ΓArgF (λ)
is the change of the argument of F along the contour Γ. In the following, we
perform the classical analysis to calculate N∞ and ∆ΓArgF (λ) and determine
N0.

For the path ΓR, as R = |λ| → ∞, we have

|B(λ, τ)| = β|1− β

λ+ β + re−λτ
| ≤ β +

β2

|λ| − β − r
= β +O(

1

R
), Re(λ) > 0,

and

√
λD tanh

(
L

2

√
λ

D

)
≈
√
λD.

Hence

F (λ) ≈ β +
√
λD ⇒ |F (λ)| ≈

√
RD 6= 0, for |λ| = R� 1. (24)

So there are no zeros nor poles on ΓR. Furthermore, we have

∆ΓR
ArgF (λ) = ArgF (iR)−ArgF (−iR)

= 2[ArgF (iR)−ArgF (0)] ≈ π

2
, R� 1. (25)
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It follows that

N0 = N∞ +
1

2π
∆ΓR

ArgF (λ) +
1

2π
∆ΓI

ArgF (λ)

= N∞ +
1

4
+

1

2π
∆ΓI

ArgF (λ)

= N∞ +
1

4
+

1

π
∆Γ+

I
ArgF (λ) (26)

where ΓI+ = {z = iy, 0 ≤ y ≤ R}. It remains to calculate ∆Γ+
I
ArgF (λ). Noting

that

F (iR) ≈
√
iDR =

√
DReiπ/4, F (0) =

βr

β + r
> 0, (27)

the change of argument along the half imaginary axis ΓI+ can be π/4 + 2kπ or
−π/4 + 2kπ. In Fig. 11, we sketch some possible images of F (ΓI+). For a given
set of parameter values, we need to determine numerically whether or not the
image F (ΓI+) crosses the negative real axis, and if it does then the number of
times it crosses.

We also need to check if there are any poles or zeros on the path ΓI . The
number of poles or zeros is dependent on the parameters (β, τ, r). Note that if
F (λ) has a zero λ = iy, then there is a Hopf bifurcation. Since we are interested
in the parameter regime above the Hopf curve, where an oscillatory solution
has already emerged, we choose parameters so that there are no zeros on the
imaginary axis. It can be checked that F has a pole where B(λ, τ) is singular.
That is, B(λ, τ) has a pole on the imaginary axis ΓI if there exists λ = iy such
that

H(λ) = λ+ β + re−λτ = 0. (28)

Setting λ = iy and separating the imaginary and real parts of H(λ) gives

y − r sin(yτ) = 0, (29a)

β + r cos(yτ) = 0. (29b)

It follows that cos(yτ) = −β/r and sin(yτ) = ±
√

1− β2/r2. Note that if r < β,
there is no solution of y to the Eq. (29b). That is, there are no poles on ΓI
provided r < β.

If r ≥ β, we can eliminate y from Eq. (29b) using y = r sin(yτ) =
±r
√

1− β2/r2. That is,

β + r cos(τ
√
r2 − β2) = 0. (30)

For any fixed β, τ > 0, and r ≥ β, Eq. (30) has denumerably many positive
solutions {ri(β)}, see Fig. 15. For any r 6= ri(β), Eq. (30) does not have a
solution, i.e., there is no zeros of H(λ) on the imaginary axis. That is, there are
no poles of F on ΓI .

In order to find the number of poles N∞ inside the contour Γ, we cite the
Lemma 3 in [26] below.

18



Lemma 4.1. (Hadeler and Tomiuk [26]) Let ν > 0 be given. Then equation

ν + α cos
√
α2 − ν2 = 0

has denumerably many positive solutions

α1(ν) < α2(ν) < α3(ν) < . . .

with sin
√
α2 − ν2 > 0, such that αk(ν)→∞ as k →∞. For α ∈ (αk(ν), αk+1(ν)],

equation
H(λ;α, ν) = ν + λ+ αe−λ = 0

has exactly k solutions λ1, λ2, · · · , λk in Reλ > 0, Imλ > 0, and

Reλl > 0, (2l − 3/2)π < Imλl < (2l − 1)π, l = 1, . . . , k.

4.1. Winding number for β ≥ r
Set α = rτ and ν = βτ in Lemma 4.1, if β ≥ r, then there are no poles on

ΓI nor inside the contour Γ. That is

N∞ = 0. (31)

In the particular case D = β = r = 1, the critical time delay (in-phase) is
τhp ≈ 2.436. For τ = 2.3 < τhp and τ = 2.5 > τhp, we plot ReF (iy) and
ImF (iy) in Fig. 12. It follows from these plots that

N0 =
1

4
+

1

π
∆Γ+

I
ArgF (λ) =

{
1
4 −

1
4 = 0, if τ = 2.3 < τhp,

1
4 + 7

4 = 2, if τ = 2.5 > τhp.
(32)

Therefore, there are two eigenvalues associated with the in-phase oscillation
in Reλ > 0 when τ > τhp. This holds until τ is further increased to the
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Figure 12: Numerical plots of F (iy) (in-phase) as y changes from R to 0 for different values
of the delay τ . (a) Below the Hopf point. τ = 2.3 < τhp,∆Γ

I+
ArgF = −π/4. (b) τ = τhp =

2.435. (c) τ = 2.5 > τhp,∆Γ
I+
ArgF = 7π/4. Other parameters: L = 1, D = 1, β = 1, r =

1, M = 1, R = 10
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continuation of the anti-phase Hopf curve, see Fig. 1(a). A similar result for
the eigenvalues associated with the anti-phase oscillation is shown in Fig. 13.
The critical time delay (anti-phase) is τhp ≈ 3.15. Finally, in Fig. 14, we plot
the real parts of the eigenvalues associated with the in-phase and anti-phase
mode for different D and τ . We see that for a diffusion coefficient D ≥ 0.3 and
sufficiently large time delay, the eigenvalue corresponding to the synchronous
mode has a larger positive real part, indicating that it is the dominant mode.
This indicates that for an arbitrary perturbation near the steady-state we would
expect to see in-phase oscillations for most initial conditions.

4.2. Winding number for β < r.

Following from Lemma 4.1, for any β > 0 and r ∈ (rk(β), rk+1(β)], fixed,
there are k solutions in Reλ > 0, Imλ > 0. Here {rk(β)}k are solutions to the
Eq. (30), see Fig. 15. Since the conjugate λ̄ is also an eigenvalue, it follows that

N∞ = 2k, for r ∈ (rk(β), rk+1(β)], k = 0, 1, 2, · · · . (33)

For simplicity, we will focus on the parameter regime with r ≤ r2, for which the
number of poles is

N∞ =

{
0, if r ∈ (0, r1(β)],

2, if r ∈ (r1(β), r2(β)].
(34)

For the sake of illustration, suppose that β = 0.6, τ = 3. We find that there
are two types of critical values of r:

(1) the critical value at a Hopf point of F occurs at rhp ≈ 0.81. If r < rhp, then
the eigenvalue has negative real part and the steady state is linearly stable.

(2) the first two positive solutions of Eq. (30): r1 ≈ 0.96 and r2 ≈ 1.56. If
0 < r < r1, there are no poles inside the contour Γ, i.e., N∞ = 0; whereas
if r1 < r < r2, there are two poles in conjugate pairs, i.e., N∞ = 2.
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For 0 < r < rhp, rhp < r < r1 and r1 < r < r2, we plot the real and imaginary
part of F in Fig. 16. The numerical result suggests

∆Γ+
I
ArgF (λ) =


−π4 , if r ∈ (0, rhp),
7π
4 , if r ∈ (rhp, r1),

−π4 , if r ∈ (r1, r2).
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Hence the formula of the Argument Principle (26) gives

N0 = N∞ +
1

4
+

1

π
∆Γ+

I
ArgF (λ) =


0 + 1

4 −
1
4 = 0, if r ∈ (0, rhp),

0 + 1
4 + 7

4 = 2, if r ∈ (rhp, r1),

2 + 1
4 −

1
4 = 2, if r ∈ (r1, r2).

(35)

The numerical result suggests that for the parameter r above the Hopf curve in
(β, r) plane, see Fig. 17, and r ∈ [rhp, r2], there are two eigenvalues with positive
real parts. For r = 0.9, 1, the eigenvalues are λ = 0.058 ± 0.6i, 0.029 ± 0.588i,
respectively.

5. Extensions of the analysis

So far we have focused on one example of a DDE, the delayed logistic equa-
tion, and assumed that the coupling between each compartment and the bulk
is the same (symmetric coupling). In this section, we briefly explore extensions
of our analysis to (a) asymmetric coupling and (b) a PDE-DDE model based
on the Mackey-Glass equation [15]. In the latter case, we show that most of our
results still hold, but that the dominant mode for large D is now the anti-phase
solution rather than the in-phase solution.

5.1. Asymmetric coupling

Let β1 and β2 denote the diffusive coupling between the two compartments
and the bulk. In previous sections we took β1 = β2 = β (symmetric coupling).
Here we briefly explore what happens in the case of asymmetric coupling, β1 6=
β2, see also section 5 of [1]. Equations (1) and (2) become

∂C

∂t
(x, t) = D

∂2C

∂x2
, 0 < x < L, t > 0

D∂xC(0, t) = β1(C(0, t)−X1(t)),

−D∂xC(L, t) = β2(C(L, t)−X2(t)) (36)
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to 0.01. (a) r = 0.75 < rhp = 0.81. Since ImF > 0, we have ∆Γ
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Figure 18: Change of the phase and amplitude of the oscillations with different values of the
coupling parameter β1. The other coupling parameter β2 is fixed to be 1. (a,b) β1 = 0.1
and β1 = 0.5. The oscillator with a weaker coupling has a larger amplitude. The difference
between the amplitudes becomes smaller as β1 increased from 0.1 to 0.5. (c) Symmetric
coupling β1 = β2. The two oscillators have the same amplitude and phase. (d) Strongly
coupled oscillators with β1 = 2. The difference of the amplitude or phase is small when the
coupling strength is strong at both ends. Initial condition: X1(t) = X2(t) = 1.1, C(x, t) = 1.
Parameters: D = 0.2, τ = 2.5, β2 = 1. Other parameters are the same as in Fig.1.

and

dX1

dt
(t) = β1(C(0, t)−X1(t)) + f(X1(t), X1(t− τ)), (37a)

dX2

dt
(t) = β2(C(L, t)−X2(t)) + f(X2(t), X2(t− τ)) (37b)
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is linearly stable. In Region 2, there are periodic solutions of X1,2(t) with different phases.
In Region 3, when β1 = β2, there is an in-phase periodic solution, see Fig. 18(c). The first
two Hopf branches do not intersect for β1 ∈ [0, 2]. (b) Hopf bifurcation curves with D = 0.3.
There is a Hopf-Hopf point. (c,d) Numerical solution with D = 0.2, β1 = 0.1 and τ = 1.6, 1.7,
respectively. Initial condition: X1(t) = X2(t) = 1.2, C(x, t) = 1.

It can be checked that the nonnegative steady-state solutions are X1 = X2 =
C(x) = 0 and X1 = X2 = C(x) = 1. Although the steady-state solution is the
same as the case when β1 = β2, the amplitude and phase of the oscillations at
the two end compartments are sensitive to the coupling parameters β1 and β2,
see Fig. 18. For asymmetric coupling, the two oscillators are less likely to be
synchronized. Firstly, the phases of the solutions can be different. Secondly, the
weakly coupled oscillator has a relatively larger amplitude, see Fig. 18(a, b, d)
and Fig. 11 of Ref. [1]. The difference of the amplitudes decreases when the
asymmetry of the two coupling strengths gets smaller, see Fig. 18(a, b).

To explore the effect of asymmetric coupling on the Hopf bifurcation, we take
β2 = 1 and plot the Hopf bifurcation curves in the (β1, τ) plane for different
values of D in Fig. 19. For D = 0.2 and D = 0.3, there are two Hopf branches,
which have different limiting values of time delay as β1 goes to 0, see Fig.
19(a). As β1 → 0, the Hopf bifurcation curve (blue) has the critical time delay
τ → π/2 which is the critical time delay of the delayed logistic equation. This
suggests that diffusion has a weak effect on the time delay of the weakly coupled
compartment X1. As β1 → 0, the time delay on the second Hopf branch (dashed
green line) is the same as the critical time delay of the model given by equations
(36) and (37) with β1 = 0. The two Hopf branches separate the (β1, τ) plane
into three different regions, see Fig. 19(a). In region 1, below the Hopf curve,
the steady state solution is stable. In region 2, above the Hopf curve, the steady
state solution is unstable and there are periodic solutions of X1,2 with different
phases and amplitudes. For the sake of illustration, we take β1 = 0.1, and plot
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τ = 2.2, 2.5, respectively. The solution converges to the steady state for a smaller time
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the numerical solution with time delay below or above the critical time delay
in Fig. 19(c,d). In region 3, there exist an in-phase oscillation and oscillations
with different phases, see Fig. 18(b,c). In particular, the in-phase oscillation
occurs when β1 = β2.

In Fig. 20, we compare the numerical solutions for β1 < β2 and β1 = β2.
For β1 = β2, if τ is below the second Hopf branch, then the numerical solution
with initial condition X1 = X2 converges to the steady state; if τ is above
the second Hopf branch, then the solution changes to periodic solutions with
different phases, see Fig. 20(a,b). For β1 < β2, the numerical solution of X1,2

starts with the same phase and amplitude but ends up with different phases
and amplitudes, see Fig. 20(c,d).

5.2. PDE coupled with the Mackey-Glass Equation

In this section, we replace the delay Logistic equation (3) by another classical
delay differential equation, namely, the Mackey-Glass equation [15]. Let

f(x(t), x(t− τ)) = a1
x(t− τ)

1 + xn(t− τ)
− a2x(t). (38)

If a2/a1 > 1, then f has a positive solution at

x =
n
√
a1/a2 − 1.
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Figure 21: Numerical result of PDE-DDE model with Mackey Glass model. (a) Hopf bi-
furcation in (a2, τ) plane with n = 10, 15. (b, c) Hopf bifurcation curves of the PDE-
Mackey Glass model in (D, τ) plane with a2 = 2. (d,e) Numerical solution for D = 0.5 and
τ = 0.57, 0.6. Initial condition: C(x, 0) = 1, X1(0) = 1.1, X2(0) = 1.2. Other parameters:
a1 = 2, a2 = 1, β = 1, L = 1.

Suppose that we set a2 = 1. Example Hopf bifurcation curves of the Mackey
Glass equation

dX

dt
= a1

X(t− τ)

1 +Xn(t− τ)
− a2X(t)

are shown Fig. 21(a). For both n = 10 and n = 15, the critical time delay
decreases as a1 increases. For a1 = 2 and n = 10, 15, the critical time delay is
τ ≈ 0.47, 0.27, respectively.

We then take a2 = 2 and consider the full PDE-Mackey Glass model (1-2)
with f given by the equation (38). The Hopf bifurcation curves are plotted
in Fig. 21(b,c). The critical time delay increases as the diffusion coefficient
increases, which is similar to our result of the PDE-Logistic model, see Fig.
1. On the other hand, in contrast to the PDE-Logistic equation, the mode of
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the oscillation emerging from a Hopf bifurcation is anti-phase rather than in-
phase for a wide range of diffusion coefficients. This result suggests that the
oscillation mode depends on the explicit form of the delay differential equations.
For D = 0.5 and n = 10, the numerical solution with different time delays near
the critical time dely τhp ≈ 0.55 is shown in Fig. 21(d-e). The existence of
oscillation for τ = 0.57 > τhp suggests that the Hopf bifurcation is supercritical.
The oscillation modes are both anti-phase for τ = 0.57 and τ = 0.6. Although
an in-phase oscillation is also observed for τ = 0.6, we find that it is unstable
with respect to perturbations near the initial condition X1 = X2 = 1.

6. Conclusions

In this paper, we analyzed a one-dimensional PDE-DDE model consisting
of a pair of delayed logistic equations or Mackey-Glass equations coupled by
one-dimensional bulk diffusion. We used linear stability analysis to derive the
associated characteristic equation and then solved this equation numerically to
plot the Hopf curves as a function of various model parameters. In the parameter
regions above the Hopf bifurcation curves, our numerical results suggest that
there are two different oscillation modes (reflecting the exchange symmetry of
the system): in-phase and anti-phase. The selection of these modes is sensitive
to the diffusion coefficient, the time delay and the explicit form of delayed
feedback.

Certain care has to be taken in directly comparing our results to those of
Gou et al. for one-dimensional PDE-ODE systems [1, 2, 4], since we do not
include a degradation term in the bulk diffusion equation. Nevertheless, a num-
ber of similarities can be noted. First, both PDE-DDE and PDE-ODE systems
support oscillations that can be in-phase or anti–phase. Second, the onset of
oscillations and the selection between the two oscillation modes is sensitive to
the value of the diffusion coefficient. In the PDE-DDE case without degrada-
tion, we found that increasing the diffusivity tends to stabilize the stead-state
solution, thus delaying the onset of a Hopf bifurcation. On the other hand, for
a PDE-ODE model with degradation and conditional oscillators [4], oscillations
occur over a bounded range of diffusivities that excludes D = 0, so that increas-
ing D from zero can induce an oscillation. For the PDE-ODE models studied
in Refs. [1, 2, 4], the in-phase solution tended to be dominant over a wide
range of parameters. We also found this to be true in the case of the logistic
delayed equation, but found the anti-phase solution to be dominant in the case
of Mackey-Glass. Finally, both the PDE-DDE and PDE-ODE models exhibit
parameter regimes where in-phase and anti-phase oscillations coexist due to the
presence of a Hopf-Hopf bifurcation point, which also acts as the organizing
center for more complex oscillations indicative of a torus bifurcation [3].

There are number of issues worth further exploration. First, it would be
interesting to carry out a more detailed study of the double Hopf bifurcation
arising from the PDE-DDE model and to determine the basin of attractions of
coexistent in-phase and anti-phase solutions, see also [3]. Second, in this paper
we considered a few common scalar DDEs to develop the basic theory. However,
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we are ultimately interested in understanding the effects of diffusive coupling on
complex multi-species biochemical oscillators. As part of this, we would like to
compare the behavior of the resulting PDE-ODE system to the corresponding
PDE-DDE system, with the latter obtained by reducing each multi-component
ODE by a DDE along the lines of Ref. [13].
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