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Abstract

We propose a generic model for the capacitated vehicle routing problem (CVRP) under de-

mand uncertainty. By combining risk measures or disutility functions with complete or partial

characterizations of the probability distribution governing the demands, our formulation bridges

the popular but often independently studied paradigms of stochastic programming and distri-

butionally robust optimization. We characterize when an uncertainty-affected CVRP is (not)

amenable to a solution via a popular branch-and-cut scheme, and we elucidate how this solvabil-

ity relates to the interplay between the employed decision criterion and the available description

of the uncertainty. Our framework offers a unified treatment of several CVRP variants from the

recent literature, such as formulations that optimize the requirements violation or the essential

riskiness indices, while it at the same time allows us to study new problem variants, such as

formulations that optimize the worst-case expected disutility over Wasserstein or φ-divergence

ambiguity sets. All of our formulations can be solved by the same branch-and-cut algorithm

with only minimal adaptations, which makes them attractive for practical implementations.

Keywords: Capacitated Vehicle Routing Problem; Stochastic Programming;

Distributionally Robust Optimization; Branch-and-Cut.
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1 Introduction

The capacitated vehicle routing problem (CVRP; Christofides 1976), originally coined the truck dis-

patching problem (Dantzig and Ramser, 1959), asks for the cost-optimal delivery of a single product

to geographically dispersed customers through a fleet of homogeneous and capacity-constrained ve-

hicles. It is one of the fundamental problems in logistics, and its variants have found manifold

applications, among others, in the delivery and collection of goods and waste, dial-a-ride services

as well as the routing of engineers, school buses and snow plow trucks (Toth and Vigo, 2014).

The classical CVRP assumes that all problem parameters, most notably the customer demands

and travel times or costs, are known precisely. In many applications, however, the customer de-

mands are unknown for aleatoric (e.g., in collection problems, where the waste to be collected is

unknown prior to arrival at the customer site) and/or epistemic reasons (e.g., in delivery problems,

where the actual demand for vehicle space induced by a customer’s order differs from the demand

predicted by simplified models). Likewise, the travel times (and hence, costs) are typically affected

by uncertain traffic conditions. In response to these challenges, and following a wider trend to

integrate data into the model building process of operations research, a wide variety of CVRPs un-

der uncertainty have been proposed in recent decades. In this paper, we focus on the CVRP with

uncertain customer demands and make the simplifying assumption that the travel times are known.

This does not represent a judgment on the relative importance of the two types of uncertainty; it

merely facilitates a more concise treatment of what turns out to remain a challenging problem.

Research on the CVRP under uncertainty can be categorized along two dimensions: the avail-

able information about the uncertainty and the decision maker’s attitude towards the uncertainty.

To date, three of the predominant approaches for capturing the available information about the

uncertainty are stochastic programming (Birge and Louveaux, 2011; Shapiro et al., 2014), which

assumes that the uncertain parameters follow a known probability distribution, robust optimiza-

tion (Ben-Tal et al., 2009; Bertsimas et al., 2011), which stipulates that the uncertain parameters

are only known to be realized within an uncertainty set, and distributionally robust optimization

(Delage and Ye, 2010; Wiesemann et al., 2014), which assumes that the probability distribution

governing the uncertain parameters is only known to belong to an ambiguity set of rival distri-

butions. The decision maker’s attitude towards uncertainty is characterized by the choice of a

risk measure (such as the expected value or the value-at-risk) or an expected disutility functional,
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both of which make random variables comparable in terms of their desirability by mapping them

to deterministic quantities. In distributionally robust optimization, where the precise probability

distribution is not known, a robust decision is sought that optimizes the worst risk or disutility

over all distributions contained in the ambiguity set. The combinations of different informational

assumptions and attitudes towards uncertainty have led to a plethora of papers that investigate

different variants of the CVRP under uncertainty and propose tailored solution approaches. This

wealth of alternative methods can easily overwhelm both researchers and practitioners.

In this paper, we develop a unifying framework for the uncertainty-affected CVRP that bridges

the paradigms of stochastic programming and distributionally robust optimization. Our framework

combines a versatile ambiguity set with a rich class of risk measures and disutility functions, all

combinations of which can be solved by minor variations of a well-known branch-and-cut scheme for

the deterministic CVRP that eliminates subtours and capacity violating routes through rounded

capacity inequalities (Laporte and Norbert, 1983; Lysgaard et al., 2004). Contrary to the determin-

istic CVRP, where the right-hand sides of the rounded capacity inequalities constitute cumulative

demands over subsets of customers, the right-hand sides in our framework are determined by the

optimal values of efficiently solvable optimization problems. As a result, the performance of our

branch-and-cut scheme for the stochastic and distributionally robust CVRP is broadly comparable

to that of the standard branch-and-cut schemes for the deterministic CVRP. This is in stark con-

trast to many existing solution approaches for the distributionally robust CVRP, which account for

uncertainty via model reformulations that scale primarily to small and medium sized instances.

More specifically, the contributions of the present work can be summarized as follows.

(i) We study which classes of vehicle routing problems are (not) amenable to a solution via a pop-

ular branch-and-cut scheme based on rounded capacity inequalities, as well as how the right-

hand sides of these inequalities should be selected. This part of our investigation is generic and

may find applications in vehicle routing problems other than the CVRP under uncertainty.

(ii) We apply our findings to the CVRP under demand uncertainty. To this end, we consider an

ambiguity set that encompasses the stochastic CVRP, certain classes of moment-based distri-

butionally robust CVRPs as well as data-driven CVRPs over Wasserstein and φ-divergence

based ambiguity sets, and we combine our ambiguity set with rich classes of risk measures and

disutility functions. We show how the emerging variants of the uncertainty-affected CVRP
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can all be solved by the same branch-and-cut scheme with only minimal adaptations.

(iii) We present numerical results which demonstrate that the considered classes of uncertainty-

affected CVRPs possess similar solvability characteristics as those of the deterministic CVRP.

The source code of our implementation is made available open source to facilitate reuse in

applications, extensions as well as computational comparisons.1

To our best knowledge, we propose the first framework for the stochastic and distributionally

robust CVRP that combines multiple ambiguity sets with different risk measures and disutility

functions. Since we account for uncertainty via adaptations of the rounded capacity inequalities,

our formulations also appear to scale more gracefully to larger problem instances. Although we focus

on branch-and-cut schemes in the present work, we emphasize that our findings can be employed

in branch-and-cut-and-price schemes for the uncertainty-affected CVRP as well.

Our paper relates to the rich and rapidly growing area of vehicle routing under uncertainty.

For the sake of brevity, we restrict our review of the related literature to exact approaches for the

robust and distributionally robust CVRP; for reviews of the stochastic CVRP as well as heuristic

methods, we refer to Gendreau et al. (2014, 2016) and Oyola et al. (2018).

The robust CVRP has first been studied by Sungur and Ordóñez (2008), who assume that

the customer demands and travel times are uncertain. The authors determine vehicle routes that

satisfy the vehicle capacities and delivery time windows even when all customer demands and

travel times can attain their worst-case realizations simultaneously. Under this assumption, the

problem simplifies to a deterministic CVRP, which is computationally attractive but may result

in overly conservative solutions. Subsequent works have addressed this conservatism by specifying

uncertainty sets that preclude such pathological scenarios and solving the resulting robust opti-

mization problems via model reformulations (Ordóñez, 2010; Agra et al., 2012; Gounaris et al.,

2013), branch-and-cut schemes (Agra et al., 2013a; Gounaris et al., 2013) as well as branch-and-

cut-and-price schemes (Lee et al., 2012; Lu and Gzarao, 2019; Munari et al., 2019; Pessoa et al.,

2021). Model reformulations, which are typically based on duality results from classical robust

optimization, tend to result in large-scale mixed-integer programs without any readily exploitable

problem structure and thus apply primarily to small and medium sized problems. In contrast,

the branch-and-cut-and-price schemes currently seem to display the best performance on large in-

1The source code is available at: http://wp.doc.ic.ac.uk/wwiesema/sourcecodes/.
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stances. That said, branch-and-cut-and-price schemes typically require the repeated solution of

robust shortest path problems with resource constraints (Pessoa et al., 2015; Pugliese et al., 2019)

to generate candidate routes, and efficiently solvable versions of this problem have thus far been

identified only for specific classes of uncertainty sets, such as budget uncertainty sets (Bertsimas

and Sim, 2004). Branch-and-cut schemes, finally, appear to generalize more easily to larger classes

of uncertainty sets. A noteworthy exception to this observation is the recent work of Wang et al.

(2021), who combine a branch-and-cut-and-price algorithm for the deterministic CVRP with robust

versions of rounded capacity inequalities and thus combine the strengths of the branch-and-cut as

well as branch-and-cut-and-price schemes. Lastly, we also note the related works of Agra et al.

(2013b) and Eufinger et al. (2020), which study the robust CVRP with deterministic demands but

uncertain travel times, as well as Subramanyam et al. (2021), who study a variant of the robust

CVRP where the presence of customers is uncertain.

The distributionally robust CVRP appears to have been first studied by Gounaris et al. (2013),

who extend their results for the robust CVRP to a distributionally robust chance constrained CVRP

over a moment ambiguity set. The authors reformulate the problem as a robust CVRP and solve it

approximately using a model reformulation. Results are reported for standard benchmark instances

with up to 23 customers. Major progress has been made by Adulyasak and Jaillet (2015), Jaillet

et al. (2016) and Zhang et al. (2019, 2021), who study the traveling salesman problem and the

CVRP with known demands but uncertain travel times. The authors propose stochastic and distri-

butionally robust models that minimize the violation of pre-specified time windows via a lateness, a

requirements violation, a service fulfillment risk and an essential riskiness performance index. The

distributionally robust formulations consider all probability distributions characterized by moment

conditions or the Wasserstein distance to a reference distribution. The resulting problems are solved

via Benders decomposition, branch-and-cut schemes and a variable neighborhood search heuristic.

While the reported runtimes are difficult to interpret since the authors propose new instances, it

appears that the approaches are mainly suitable for small and medium sized problems. Dinh et al.

(2018) study a stochastic and a distributionally robust version of the chance constrained CVRP

where the customer demands are uncertain and the vehicles’ capacity constraints need to be met

with high probability. Their distributionally robust formulation assumes that the unknown true

distribution is characterized through the means and the covariances of the customer demands. The
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authors propose a branch-and-cut-and-price algorithm for both formulations, and they successfully

solve a large fraction of the standard benchmark instances. The distributionally robust chance con-

strained CVRP with uncertain customer demands has also been studied by Ghosal and Wiesemann

(2020), who characterize the distribution governing the customer demands through moment condi-

tions and develop a branch-and-cut solution scheme that performs well on the standard benchmark

instances. Similar to the present work, the algorithm of Ghosal and Wiesemann (2020) uses adap-

tations of the rounded capacity inequalities to account for uncertainty. In contrast to this paper,

however, Ghosal and Wiesemann (2020) restrict themselves to two closely related moment ambi-

guity sets, and their approach to compute the right-hand sides of the rounded capacity inequalities

does not seem to easily extend to other ambiguity sets or risk measures. We also note the related

works of Carlsson and Delage (2013), Carlsson and Behroozi (2017) and Carlsson et al. (2018),

which characterize the worst-case distributions of distributionally robust vehicle routing problems

where the customer locations are unknown i.i.d. realizations from a distribution that is specified

either through moment conditions or the Wasserstein distance to a reference distribution. Finally,

Hoogeboom et al. (2021) consider a variant of the CVRP where both routes and time window

assignments need to be determined such that the expected travel times and the risk of violating

the time windows are minimized simultaneously.

The remainder of the paper unfolds as follows. After defining the problem of interest in Section 2,

Sections 3 and 4 investigate which VRP variants are amenable to a solution with a branch-and-

cut scheme based on rounded capacity inequalities. Section 5 specializes our findings to the CVRP

under uncertainty, Section 6 reports numerical results, and we offer concluding remarks in Section 7.

Notation. We denote by R, R` and R`` the sets of real numbers, non-negative real numbers

as well as strictly positive real numbers, respectively. For S Ď t1, . . . , nu we denote by 1S P t0, 1u
n

the vector that satisfies p1Sqi “ 1 if i P S and p1Sqi “ 0 otherwise. Moreover, e is the vector of all

ones, and ei is the i-th canonical basis vector; in both cases, the dimension will be clear from the

context. The p-norm of a vector, p ě 1, is denoted by ‖¨‖p, and we use ‖¨‖8 to denote the infinity

(maximum) norm. We denote by r¨s` “ maxt¨, 0u the non-negative part of a scalar, which we also

apply to vectors in a component-wise fashion.
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2 Problem Formulation

Consider a complete, directed and weighted graph G “ pV,A, cq with nodes V “ t0, . . . , nu, arcs

A “ tpi, jq P V ˆ V : i ‰ ju and transportation costs c : A Ñ R`. Here, 0 is the depot node

and VC “ t1, . . . , nu represents the set of customer nodes. The vehicle routing problem we wish to

study asks for a cost optimal route plan for a set K “ t1, 2, . . . ,mu of vehicles starting and ending

at the depot node 0 such that a given set of constraints is met. Firstly, we require the route plan

to form an m-partition of the customer set VC , that is, the route plan R has to belong to the set

PpVC ,mq “

#

R “ tR1, . . . ,Rmu :Rk “ pRk,1, . . . , Rk,nkq with nk ě 1 and Rk,i P VC @k, i,

Rk,i ‰ Rl,j @pk, iq ‰ pl, jq,
ď

kPK

Rk “ VC

+

.

Each route plan R is a set of m routesRk, which are themselves nonempty ordered lists of customers

that the vehicles visit sequentially. Here and in the following, we apply set operations to lists

whenever their interpretation is clear. In particular, intersections and unions of ordered lists are

interpreted as the application of the respective operators on the sets formed from the involved lists.

In addition to the aforementioned partition requirement, we assume that each route Rk of the

route plan R has to satisfy some (technological, economic, ecological, quality-related or other)

intra-route constraints (Irnich et al., 2014, §1.3.3), which we describe by the set

C Ď tR “ pR1, . . . , Rνq : ν ě 1 and Ri P VC @i “ 1, . . . , νu.

To be feasible, a route plan has to reside in the set PpVC ,mqXCm, where Cm “ tR “ tR1, . . . ,Rmu :

Rk P C @ku. Note that we do not consider inter-route (or global) constraints (Irnich et al., 2014,

§1.3.5) that tie the feasibility of a route to the characteristics of other routes (as is the case, e.g.,

in the presence of globally constrained resources or fairness considerations).

With the above notation, we are interested in solving the problem

minimize
ÿ

kPK

nk
ÿ

l“0

cpRk,l, Rk,l`1q

subject to R P PpVC ,mq X Cm.
(VRP(C))

Here we use the convention that Rk,0 “ Rk,nk`1 “ 0, which ensures that each vehicle starts and

ends at the depot. To avoid trivially infeasible problem instances, we assume throughout the paper
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that for all customers i P VC , there is R P C such that i P R. In other words, every customer’s

demand can principally be served by a single vehicle in every problem instance.

For the results in this paper, we will typically impose the following two assumptions:

(D) C is downward closed, that is, if R P C for R “ pR1, . . . , Rνq, then S P C for all S “

pRi1 , . . . , Riσq with 1 ď σ ď ν and 1 ď i1 ă i2 ă . . . ă iσ ď ν.

(P) C is permutation invariant, that is, if R P C then S P C for all permutations S of R.

Condition (D) implies that we cannot model problems that disallow routes in which vehicles serve

“too few” customers, since a subset of the customers of a feasible route can always be served as

well (modulo the requirement imposed by PpVC ,mq that the omitted customers need to be served

by the other vehicles). Condition (P) implies that the order of customers within a route does not

matter for its feasibility (but it will normally still matter in terms of its optimality). Here and in

the following, we say that a set S is contained in a set of lists S if and only if every permutation of

S, expressed as a list, is contained in S. Thus, condition (P) is equivalent to requiring that S P C

only if S P C for the set S formed from the elements of S.

Example 1 (Instances of VRP(C)). VRP(C) recovers the classical CVRP if we set

C “

#

R “ pR1, . . . , Rνq :
ÿ

iPR

qi ď Q

+

, (1)

where qi is the demand of customer i and Q is the capacity of each vehicle. The set C satisfies

(P) by definition, and it satisfies (D) whenever the customer demands q are nonnegative. More

generally, we obtain a variant of the VRP with compartments if we set

C “

#

R “ pR1, . . . , Rνq :
ÿ

iPR

qip ď Qp @p “ 1, . . . , P

+

, (2)

where qip now denotes the demand of customer i for space in compartment p and Qp is the capacity

of compartment p in each vehicle. Again, both (D) and (P) are satisfied as long as q is nonnegative.

We recover the chance constrained CVRP if we set

C “

#

R “ pR1, . . . , Rνq : P

«

ÿ

iPR

q̃i ď Q

ff

ě 1´ ε

+

,

where we assume that the customer demands q̃i are random variables that are governed by the

probability distribution P, and where ε is a risk threshold selected by the decision maker. Both the
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chance constrained CVRP and its extension to multiple compartments satisfy the assumptions (D)

and (P) as long as the customer demands satisfy q̃ ě 0 P-almost surely.

While Example 1 shows that the CVRP and some of its variants satisfy the assumptions (D) and

(P), it is worth pointing out that several important VRP variants do not fall under our framework.

The distance constrained CVRP, for example, imposes the constraints
řν
l“0 tpRl, Rl`1q ď T for

some distance function t, and these constraints violate (P) since different permutations of the

customers along a route lead to different route lengths in general. For the same reason, the CVRP

with time windows, which requires each customer i P VC to be visited at some time ti P rti, tis,

violates (P), and it additionally violates (D) if we do not permit idle times. As we will see in

Section 5, however, the assumptions (D) and (P) are satisfied for a broad range of stochastic and

distributionally robust formulations of the CVRP, which form the focus of this paper.

To solve VRP(C) numerically, we consider its reformulation as the well-known two-index vehicle

flow model (Laporte and Norbert, 1983; Lysgaard et al., 2004)

minimize
ÿ

pi,jqPA

cpi, jqxij

subject to
ÿ

jPV :
pi,jqPA

xij “
ÿ

jPV :
pj,iqPA

xji “ δi @i P V

ÿ

iPV zS

ÿ

jPS

xij ě dpSq @H ‰ S Ď VC

xij P t0, 1u @pi, jq P A,

(2VF(d))

where δi “ 1 for i P VC and δ0 “ m. We call the function d : 2VC Ñ R` the demand estimator,

and the set of constraints involving d are called the capacity constraints. By writing the set S in

regular (non-bold) font, we emphasize that S is unordered (as opposed to the ordered list Rk, for

example). We assume that dpSq “ 0 ô S “ H. Note that the value of dpHq can be chosen freely

as it does not affect the formulation. Moreover, the choice dpSq ą 0 for S ‰ H ensures that route

plans containing short cycles are excluded from the feasible region of 2VF(d).

Solving VRP(C) via 2VF(d) enjoys several potential advantages. Firstly, mature (and open

source) solvers are available to solve 2VF(d), see, e.g., Lysgaard et al. (2004) and Semet et al.

(2014). These algorithms introduce the capacity constraints iteratively as part of a branch-and-cut

algorithm. Thus, if we can show that VRP(C) is equivalent to 2VF(d) for some demand estimator d,

then we can solve VRP(C) as long as we can evaluate d efficiently. Secondly, 2VF(d) offers a unified
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solution framework for different problem variants where only the demand estimator d needs to be

adapted. In other words, minor variations of the same branch-and-cut algorithm can be employed to

solve different variants of the problem. This is an important consideration for adoption in practice,

where it is unreasonable to expect that fundamentally different algorithms will be developed and

maintained to solve different variants of the same problem. Finally, the capacity constraints of

2VF(d) constitute an important building block in modern branch-and-cut-and-price algorithms,

and efficiently separable cuts for 2VF(d) can be applied to that algorithm class as well.

We want to investigate when VRP(C) is equivalent to 2VF(d), which is amenable to a solution

via standard branch-and-cut algorithms. To this end, we first formalize our notion of equivalence.

Equivalence. VRP(C) and 2VF(d) are said to be equivalent whenever they satisfy:

(a) Every feasible route plan R in VRP(C) induces a feasible solution x in 2VF(d) via

xij “ 1 ðñ Dk P K, Dl P t0, . . . , nku : pi, jq “ pRk,l, Rk,l`1q. (3)

(b) Every feasible solution x in 2VF(d) induces a feasible route plan R in VRP(C) via (3).

Note that if VRP(C) and 2VF(d) are equivalent, then any feasible route plan R in VRP(C)

induces a unique feasible solution x in 2VF(d) via (3) and vice versa. In the remainder of the

paper, we refer to these unique solutions as xpRq and Rpxq, respectively. Note also that the

objective functions of VRP(C) and 2VF(d) coincide, which justifies our notion of equivalence.

3 Equivalence of VRP(C) and 2VF(d)

We first show that the assumptions (D) and (P) are sufficient for VRP(C) and 2VF(d) to be equiv-

alent under a range of demand estimators d, which we characterize explicitly. We then demonstrate

that the assumptions (D) and (P) are tight in the sense that there are VRP(C) instances violating

either assumption for which no demand estimator d results in an equivalent 2VF(d) instance.

A seemingly natural choice for the demand estimator d in 2VF(d) is

d
m
pSq “ inf

#

J P N : S Ď
ď

k“1,...,J

Rk for tR1, . . . ,RJ , . . . ,Rmu P PpVC ,mq X Cm

+

for H ‰ S Ď VC , as well as d
m
pHq “ 0. This demand estimator records the minimum number

of vehicles required to serve the customers in S in any feasible route plan R P PpVC ,mq X Cm.
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Note that d
m
pSq “ 8 is possible if the problem instance is infeasible, which motivates our use of

the infimum operator. The capacity constraints under the demand estimator d
m

are commonly

referred to as generalized capacity constraints. Since d
m

is difficult to compute even for simple

sets C, however, it is not typically used in practice. Instead, research has focused on relaxations

(i.e., lower bounds) of this demand estimator that are easier to calculate while still tight enough

to establish an equivalence between VRP(C) and 2VF(d). One such demand estimator is

d
1
pSq “ min

#

I P N : S Ď
ď

k“1,...,I

Rk for some R1, . . . ,RI P C

+

for H ‰ S Ď VC , as well as d
1
pHq “ 0. This demand estimator determines the minimum number

of vehicles required to serve the customers in S Ď VC , but—in contrast to d
m

—it ignores the

customers in VCzS. Note that d
1
pSq is always finite by our earlier assumption that i P R for some

R P C, i P VC , and thus the use of the minimum operator is justified. The capacity constraints

under the demand estimator d
1

are commonly referred to as weak capacity constraints. Although

d
1

tends to be easier to calculate than d
m

, its computation is still NP-hard for most commonly

employed sets C, and thus it is not normally used to identify violated capacity constraints in a

branch-and-cut scheme. On the other end of the spectrum, we have the naive demand estimator

dpSq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if S “ H,

1 if H ‰ S P C,

2 otherwise.

Remember that S P C if and only if S P C for every list S that can be formed from the elements

of S, and under (P) we have S P C if and only if S P C. While the demand estimator d is

typically easy to compute, the resulting capacity constraints are weak and thus slow down the

branch-and-cut scheme significantly. In the remainder of this section, we will see that the above

three demand estimators characterize the range of demand estimators under which VRP(C) and

2VF(d) are equivalent; in the next section, we will discuss two demand estimators within this range

that are preferable to d
m

, d
1

and d due to their favourable tightness-tractability trade-off.

Under the assumptions (D) and (P), the three demand estimators form a natural order.

Proposition 1. Assume that (D) and (P) are satisfied. Then for any S Ď VC , we have

dpSq ď d
1
pSq ď d

m
pSq.
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Here (D) and (P) are necessary and sufficient for d ď d
1
, whereas d

1
ď d

m
holds by construction.

It is easy to construct instances where the three demand estimators in Proposition 1 produce

the same values for all S Ď VC . The following example is inspired by Cornuejols and Harche (1993)

and shows that the inequalities in Proposition 1 can also all be strict.

Example 2. Consider the VRP(C) instance with n “ 5 customers, m “ 5 vehicles and C “ tp1q,

. . . , p5q, p1, 5qu. For S “ t1, 2, 3, 5u, we have dpSq “ 2 since S R C, d
1
pSq “ 3 since S is covered by

the routes p2q, p3q and p1, 5q, and d
m
pSq “ 4 since no route plan can serve customers 1 and 5 in

the same route and at the same time utilize all 5 vehicles.

The natural ordering from Proposition 1 typically ceases to hold when the assumptions (D)

and (P) are violated. We now show that under the assumptions (D) and (P), VRP(C) and 2VF(d)

are equivalent essentially if and only if the demand estimator d satisfies d ď d ď d
m

. We qualify

this equivalence with ‘essentially’ as there are pathological cases in which demand estimators d ğ d

also result in equivalent formulations, as we will discuss further below in Proposition 2.

Theorem 1. VRP(C) is equivalent to 2VF(d) for any d satisfying d ď d ď d
m

.

Note that while the assumptions (D) and (P) are not required for the statement of Theorem 1,

they are typically required for the function interval rd, d
m
s to be nonempty (cf. Proposition 1).

Proposition 2. Fix any feasible VRP(C) instance satisfying (D) and (P).

(i) If PpVC ,mq Ď Cm and d ď d
m

, then VRP(C) is equivalent to 2VF(d) even if d ğ d.

(ii) If PpVC ,mq Ę Cm and d ď d
m

, then there are d ğ d such that VRP(C) and 2VF(d) are

equivalent, but there are also d ğ d such that VRP(C) and 2VF(d) are not equivalent.

(iii) VRP(C) fails to be equivalent to 2VF(d) for every d ę d
m

.

From Theorem 1 and Proposition 2 we conclude that under the assumptions (D), (P) and

d ě d, the requirement d ď d
m

is necessary and sufficient for the equivalence of VRP(C) and

2VF(d). In contrast, under the assumptions (D), (P) and d ď d
m

, the requirement d ě d is

sufficient but not necessary for the equivalence of the two formulations.

We close this section by showing that there are VRP(C) instances violating either (D) or (P)

for which no demand estimator d results in an equivalent 2VF(d) instance. This establishes that

the assumptions (D) and (P) are not only sufficient, but also (in the aforementioned sense) tight.
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Theorem 2. There are VRP(C) instances violating either of the assumptions (D) or (P) that

have no equivalent 2VF(d) instances.

On the flipside, however, there are VRP(C) instances violating both (D) and (P) for which

there still exist demand estimators d under which VRP(C) and 2VF(d) are equivalent.

In summary, we have shown that under (D) and (P), we have d ď d
1
ď d

m
(cf. Proposition 1),

and any demand estimator d P rd, d
m
s makes VRP(C) and 2VF(d) equivalent (cf. Theorem 1). In

contrast, if a VRP(C) instance violates either (D) or (P), then there may not be any demand

estimator d that leads to an equivalent 2VF(d) formulation (cf. Theorem 2). In the remainder of

this paper, we will focus on VRP(C) instances that satisfy both assumptions (D) and (P).

4 Demand Estimators for 2VF(d)

In this section, we represent the intra-route constraints as

C “
!

R “ pR1, . . . , Rνq : ν ě 1 and Ri P VC @i, ϕ p1Rq ď B
)

, (4)

where ϕ : r0, 1sn Ñ R. To recover the classical CVRP, for example, we can choose ϕpxq “
ř

iPVC
qixi

and B “ Q. Note that any class of intra-route constraints from Section 2 that satisfies (P) admits

a representation of the form (4), for example by selecting B “ 0 and ϕpxq “ 0 if x “ 1R for some

R P C, ϕpxq “ 1 otherwise. However, we will be particularly interested in sets C and functions

ϕ that satisfy certain properties. First and foremost, the assumptions (D) and (P) should be

satisfied in order to ensure that the VRP(C) instance has an equivalent 2VF(d) instance.

Proposition 3. A VRP(C) instance with intra-route constraints expressible in the form of (4)

satisfies (P) by construction, and it satisfies (D) whenever ϕ is monotone.

Recall that ϕ is monotone if ϕpxq ď ϕpyq for all x,y P r0, 1sn satisfying x ď y.

We now consider two demand estimators that turn out to be of special interest due to their

tractability as well as their versatility. The summation demand estimator dS is defined as

dSpSq “ max t1, rϕ p1Sq {Bsu @H ‰ S Ď VC ,

as well as dSpHq “ 0. For the classical CVRP with ϕpxq “
ř

iPVC
qixi and B “ Q, the use of the

summation demand estimator dS in 2VF(d) reduces to the well-known rounded capacity inequalities.
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Recently, Ghosal and Wiesemann (2020) have used dS with ϕpxq “ WC-VaRpq̃Jxq, the worst-case

value-at-risk of the customer demands, to solve a 2VF(d) formulation of the distributionally robust

chance constrained CVRP. The packing demand estimator dP is defined as

dPpSq “ min
 

I P N : DX P r0, 1snˆI such that Xe “ 1S , ϕpxkq ď B @k “ 1, . . . , I
(

for all H ‰ S Ď VC , as well as dPpHq “ 0. Here, xk P Rn is the k-th column of the matrix

X, k “ 1, . . . , I. To our best knowledge, the packing demand estimator dP has not been studied

previously. It can be interpreted as the optimal value of a fractional bin packing problem; this

interpretation is formalized in the following proposition.

Proposition 4. If ϕ is monotone and we restrict ourselves to binary assignment matrices X P

t0, 1unˆI in dP, then dP coincides with the demand estimator d
1

defined in Section 3.

The evaluation of the packing demand estimator dP requires the solution of an assignment

problem, which can become computationally prohibitive if dP has to be evaluated frequently. It

turns out, however, that dP admits a closed-form solution when ϕ is convex.

Proposition 5. If ϕ is convex, then the packing demand estimator dP evaluates to

dPpSq “ min tI P N : ϕp1S{Iq ď Bu @H ‰ S Ď VC .

One can construct counterexamples which show that the statement of Proposition 5 ceases to

hold when ϕ is not convex. In summary, the summation demand estimator dS requires a single

evaluation of ϕ. Assuming that ϕ is convex, the packing demand estimator dP requires Oplogmq

evaluations of ϕ since the the minimizer I‹ in Proposition 5 can be determined via a binary (if ϕ

is also monotone) or trisection search. Thus, both demand estimators can be computed efficiently

whenever ϕ allows for an efficient evaluation. As we will see in the next section, this is the case for

a broad range of CVRP variants under stochastic and distributionally robust descriptions of the

uncertainty governing the customer demands.

We now study the applicability of the two demand estimators dS and dP.

Theorem 3. Assume that ϕ is monotone.

(i) If ϕ is subadditive, we have d ď dS ď dP ď d
m

. If ϕ is also positive homogeneous then

dS “ dP; otherwise, dS “ dP does not hold in general.
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(ii) If ϕ is additive, we have d ď dS “ dP ď d
m

. Furthermore, VRP(C) can be reformulated as

a deterministic CVRP instance, and every deterministic CVRP instance can be reformulated

as a VRP(C) instance with additive ϕ.

(iii) If ϕ is not subadditive, then d ď dP ď d
m

, whereas dS ď d
m

does not hold in general.

Recall that ϕ is subadditive whenever ϕpx ` yq ď ϕpxq ` ϕpyq for all x,y P r0, 1sn satisfying

x ` y P r0, 1sn, and that ϕ is additive if the inequality holds as equality. Likewise, ϕ is positive

homogeneous if ϕpλxq “ λϕpxq for all λ ą 0 and all x P r0, 1sn satisfying λx P r0, 1sn. A subadditive

and positive homogeneous function is also called sublinear.

Theorem 3 shows that for a subadditive and positive homogeneous function ϕ, the summation

and packing demand estimators coincide, and we should use the summation demand estimator

due to its favorable complexity. We will see in the next section that examples of subadditive and

positive homogeneous ϕ include all coherent risk measures (such as the conditional value-at-risk and

expectile risk measures) as well as the underperformance risk index under a stochastic as well as a

distributionally robust description of the uncertainty. If, on the other hand, ϕ is subadditive but not

positive homogeneous, then the packing demand estimator can result in tighter capacity constraints.

An example of a subadditive function ϕ that fails to be positive homogeneous is the ramp disutility

function (discussed in the next section) under a stochastic as well as a distributionally robust

description of the uncertainty. Figure 1 (left) illustrates how the packing demand estimator can

yield tighter capacity constraints than the summation demand estimator for this risk measure.

An example of an additive function ϕ is the expected loss over a stochastic description of the

uncertainty. Examples of functions ϕ that fail to be subadditive include, as the next section shows,

the expected disutility, entropic risk measures, the essential riskiness index, the service fulfillment

risk index and the requirements violation index. Figure 1 (right) illustrates that in this case, we

have to use the packing demand estimator as the summation demand estimator may fall outside the

interval rd, d
m
s and thus cut off feasible route plans. Since all of the aforementioned risk measures

are convex, the packing demand estimator can be computed efficiently for all of them.
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Figure 1. Demand estimators for a stochastic CVRP instance with n “ 6 customers

and the demand distribution Prq̃ “ 5es “ 0.05, Prq̃ “ 16es “ 0.9 and Prq̃ “ 30es “ 0.05

using (a) the expected ramp disutility EPrmaxt
ř

iPS q̃i, 30us with B “ 30 (left) and (b)

the entropic risk 10 logEPrexpp0.1
ř

iPS q̃iqs with B “ 17.2 (right).

5 VRP(C) under Risk and Ambiguity

From now on, we focus on the intra-route constraints of the distributionally robust CVRP, where

the uncertain customer demands q̃ can be governed by any distribution P from the ambiguity set

P, and the feasibility of a route depends on its worst-case risk over all distributions P P P:

C “

#

R “ pR1, . . . , Rνq : ν ě 1 and Ri P VC @i, sup
PPP

ρP

«

ÿ

iPR

q̃i

ff

ď Q

+

(5)

We call the collection ρ “ tρPuPPP of risk measures an ambiguous risk measure, and we define

ϕpxq “ supPPP ρP
“

xJq̃
‰

for x P r0, 1sn as the worst-case risk measure. Each individual risk measure

ρP maps scalar random variables to real numbers with the interpretation that larger numbers

correspond to greater risks, and the ambiguous risk measure ρ allows us to quantify the worst-case

risk over all distributions P P P. The upper bound Q represents either the homogeneous capacity

of all vehicles (if the risk measure maps to quantities that have the same unit as the customer

demands, such as the worst-case expectation or the worst-case (conditional) value-at-risk) or more

generally a bound on the acceptable risk (e.g., if the risk measure corresponds to the expected

disutility). The intra-route constraints (5) are readily recognized as a special case of the intra-route
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constraints (4) studied in Section 4. Note that the intra-route constraints (5) of the distributionally

robust CVRP generalize those of the stochastic CVRP, which correspond to instances of (5) with

singleton ambiguity sets, as well as those of the robust CVRP, which emerge if the ambiguity set

P contains all Dirac distributions supported on a subset of Rn` (the uncertainty set).

We assume that q̃ ě 0 P-almost surely for all P P P and that each individual risk measure

ρP, P P P, is monotone. This implies that the worst-case risk measure ϕ is monotone, that

is, ϕpxq ď ϕpyq whenever x ď y, and VRP(C) satisfies the assumptions (D) and (P) due to

Proposition 3. Additionally, we will be interested in cases where the worst-case risk measure is

subadditive and/or convex so that we can apply the demand estimators dS and dP from Section 4 to

solve the corresponding instance of 2VF(d). Finally, we will be interested in worst-case risk measures

that can be evaluated quickly so that the resulting 2VF(d) instances can be solved efficiently.

Throughout the remainder of the paper, we consider the scenario-wise first-order ambiguity set

P “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

P P P0pRn` ˆWq : Ds P S such that

»

—

—

—

—

—

—

–

P
“

qw ď q̃ ď qw | w̃ “ w
‰

“ 1

EP rq̃ | w̃ “ ws “ µw

EP r|q̃ ´ µ
w| | w̃ “ ws ď νw

P rw̃ “ ws “ sw

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

@w PW

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

(6)

proposed by Chen et al. (2019) and Long et al. (2020). Here, w̃ is a random scenario supported

on the set W “ t1, . . . ,W u, rqw, qws is the support of the uncertain demands q̃ under scenario

w P W, µw P pqw, qwq and νw ą 0 represent the expectation and the mean absolute deviation of

the demand vector under scenario w, respectively, s denotes the scenario probabilities that are only

known to be contained in the subset S of the probability simplex in RW , and P0pRn`ˆWq is the set

of all probability distributions supported on Rn` ˆW. We allow for the mean and mean absolute

deviation conditions to be absent in (6), in which case some of the computations considered below

simplify. All of our results also extend to ambiguity sets in which the mean absolute deviation

is replaced by the expectation of a piecewise affine convex function (cf. Long et al. 2020), which

allows us to stipulate, among others, approximate upper bounds on the marginal variances or the

Huber losses of the customer demands (Wiesemann et al., 2014).

As we show in the following, the ambiguity set (6) is very versatile and allows us to model a

range of well-known ambiguity sets from the literature.
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Example 3 (Ambiguity Set P). The ambiguity set (6) recovers a stochastic CVRP

P “
 

P P P0pRn`q : P rq “ q̂ws “ ŝw @w PW
(

if we set qw “ qw “ q̂w, w P W, S “ tŝu and disregard the expectation and mean absolute

deviation constraints. Likewise, we obtain a distributionally robust CVRP over the marginalized

moment ambiguity set (Ghosal and Wiesemann, 2020)

P “
 

P P P0pRn`q : P
“

q ď q̃ ď q
‰

“ 1, EP rq̃s “ µ, EP r|q̃ ´ µ|s ď ν
(

if we set W “ 1 and S “ t1u. We recover a distributionally robust CVRP over the type-8 Wasser-

stein ambiguity set (Mohajerin Esfahani and Kuhn, 2018; Kuhn et al., 2019; Bertsimas et al., 2021)

P “

#

P P P0pRn`q : dW
8

˜

P,
1

W

ÿ

wPW
δq̂w

¸

ď θ

+

,

where 1
W

ř

wPW δq̂w is the empirical distribution over the historical demands q̂1, . . . , q̂W and

dW
8 pP,Qq “ inf

$

&

%

Π-ess sup
∥∥∥ξ̃ ´ ξ̃1∥∥∥

8
:

»

–

Π is a joint distribution over ξ̃ and ξ̃1

with marginals P and Q

fi

fl

,

.

-

is the type-8 Wasserstein distance with the 8-norm as ground metric, by setting q “ rq̂w ´ θ ¨ es`

and q “ q̂w ` θ ¨ e for all w PW, S “
 

1
W ¨ e

(

and disregarding the expectation and mean absolute

deviation constraints, see Proposition 3 of Bertsimas et al. (2021). A distributionally robust CVRP

over the Kullback-Leibler (KL) divergence ambiguity set (Bayraksan and Love, 2015, §3.1)

P “

#

P P P0pRn`q : supppPq “
 

q̂1, . . . , q̂W
(

, dKL

˜

P,
1

W

ÿ

wPW
δq̂w

¸

ď θ

+

,

where supppPq denotes the support of the distribution P and

dKL

˜

ÿ

wPW
pw ¨ δq̂w ,

ÿ

wPW
qw ¨ δq̂w

¸

“
ÿ

wPW
pw log

ˆ

pw
qw

˙

is the KL divergence between two discrete distributions over the common support
 

q̂1, . . . , q̂W
(

, is

recovered if we fix qw “ qw “ q̂w for all w PW, S “
 

s P RW` :
ř

wPW sw log pswW q ď θ, eJs “ 1
(

and disregard the expectation and mean absolute deviation constraints. We recover a distributionally

robust CVRP over the total variation ambiguity set (Bayraksan and Love, 2015, §3.1)

P “

#

P P P0pRn`q : supppPq “
 

q̂1, . . . , q̂W
(

, dTV

˜

P,
1

W

ÿ

wPW
δq̂w

¸

ď θ

+

,

18



where supppPq denotes the support of the distribution P and

dTV

˜

ÿ

wPW
pw ¨ δq̂w ,

ÿ

wPW
qw ¨ δq̂w

¸

“
ÿ

wPW
qw ¨

ˇ

ˇ

ˇ

ˇ

pw
qw
´ 1

ˇ

ˇ

ˇ

ˇ

is the total variation between two discrete distributions over the common support
 

q̂1, . . . , q̂W
(

,

finally, if we fix qw “ qw “ q̂w for all w P W, S “
 

s P RW` :
∥∥s´ 1

W ¨ e
∥∥

1
ď θ, eJs “ 1

(

and

disregard the expectation and mean absolute deviation constraints.

Real-life logistics problems—especially those of consumer-facing businesses—tend to be large in

scale, and they are typically solved in two stages: In a first stage, a districting problem partitions the

overall problem into several smaller problems based on geographic proximity. Subsequently, each

smaller problem—which may contain of the order of 50-100 customers—is solved as a CVRP. Even

for such CVRP instances, however, a model-free characterization of the underlying probability

distribution using scenarios, be it in a stochastic programming or a data-driven framework (as

in the Wasserstein, KL-divergence and total variation ambiguity sets above), would require an

unrealistically large number of scenarios due to the curse of dimensionality. Instead, we propose

to use the scenarios w PW in our ambiguity set (6) to model macroscopic effects, such as demand

shocks that affect all customers in a particular region, and to characterize the residual variability

of the individual customer demands using the supports rqw, qws and the first-order information

pµw,νwq. The resulting instances of the ambiguity set (6) may then contain of the order of tens of

scenarios, and our numerical experiments in Section 6 will show that such problems can be solved

in runtimes that are comparable to those of the corresponding deterministic CVRP instances.

Section 5.1 discusses how VRP(C) with the intra-route constraints (5) can be solved via its

reformulation 2VF(d) when the set of scenario probabilities S in the ambiguity set (6) is a singleton,

that is, when S “ tŝu. Section 5.2 extends our results to the more general setting where S is a convex

subset of the probability simplex in RW . Section 5.3, finally, discussed the chance constrained

CVRP, whose underlying risk measure is non-convex and thus requires a special treatment.

5.1 Ambiguity Sets With Known Scenario Probabilities

Long et al. (2020) optimize the worst-case expectation in two-stage distributionally robust opti-

mization problems where the uncertain parameters affect the constraint right-hand sides of the

second-stage problem. They show that for ambiguity sets of the form (6) with known scenario
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probabilities ŝ, the worst-case expectation is attained by a discrete distribution that does not

depend on the first-stage decisions, and thus the two-stage distributionally robust optimization

problem reduces to a two-stage stochastic program. Our setting differs from theirs in the following

aspects: (i) we consider the random quantity xJq̃ that is parametric in the weights x, rather than

the optimal value of a second-stage problem that is parametric in the first-stage decisions; (ii) we

consider a broad range of risk measures, whereas Long et al. (2020) focus on the expected value, the

expected disutility and the optimized certainty equivalent; and (iii) the random vector q̃ multiplies

the parameters x in our context, whereas it is isolated on the constraint right-hand sides in their

setting. Nevertheless, we can adapt the arguments of Long et al. (2020) to show that the worst-case

risk ϕpxq is attained by a finite demand distribution that is independent of ρ and x.

Theorem 4 (Long et al. (2020)). Fix an ambiguity set P of the form (6) where S “ tŝu, and

assume that ϕpxq can be represented as a worst-case expectation supPPP EP
“

fpxJq̃q
‰

of a convex

function f : R Ñ R. Then Algorithm 1 in Appendix B identifies a W p2n ` 1q-point worst-case

distribution P‹ “
ř

wPW
ř2n`1
j“1 ŝwp

‹
wj ¨ δq‹wj P P such that ϕpxq “ EP‹rfpx

Jq̃qs for all x P r0, 1sn.

Moreover, the parameters p‹wj and q‹wj characterizing P‹ do not depend on f and x.

The intuition underlying Theorem 4 is as follows. If we condition on the event w̃ “ w, then the

resulting ambiguity set Pw becomes rectangular in the customers i P VC in the sense that

Pw “
 

P P P0pRn`q : DQ P P such that P r¨s “ Q r¨ | w̃ “ ws
(

“
ą

iPVC

!

P P P0pRq : P
”

qw
i
ď q̃i ď qwi

ı

“ 1, EP rq̃is “ µwi , EP r|q̃i ´ µ
w
i |s ď νwi

)

. (7)

One can then verify that for a convex function f , supPPPw EP
“

fpxJq̃q
‰

is attained by a distribution

P‹ that only places positive probability on demand realizations q P
Ś

iPVC

 

qw
i
, µwi , q

w
i

(

, and that

these probabilities do not depend on f or x. This, however, only allows us to conclude that there

is a worst-case distribution with an exponentially large number 3n of realizations. Next, fix any

worst-case distribution P‹ supported on the demands q P
Ś

iPVC

 

qw
i
, µwi , q

w
i

(

, and assume that

P‹rqs, P‹rq1s ą 0 for an unordered pair of demands q and q1, that is, q and q1 satisfying neither

q ď q1 nor q ě q1. In that case, we can move equal amounts of probability mass from the demand

realizations q and q1 to their join maxtq, q1u and meet mintq, q1u without affecting the marginal

distributions of P‹ and thus guaranteeing, by the rectangularity of Pw, that the new distribution

is also in Pw. On the other hand, one can show that the new distribution has a weakly larger
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expected value since fpxJmaxtq, q1uq ` fpxJmintq, q1uq ě fpxJqq ` fpxJq1q. We can repeat

this procedure iteratively until P‹ no longer places positive probability on any unordered pairs,

in which case all probability is concentrated on at most 2n ` 1 demand realizations. Of course,

this iterative mass transportation procedure is impractical as it may require exponentially many

iterations depending on the initial distribution. Instead, Algorithm 1 in Appendix B computes a

worst-case probability distribution over Pw in Opnq iterations. Applying the same principle to each

marginal ambiguity set Pw, w PW, we obtain in OpWnq iterations a W p2n` 1q-point distribution

P‹ that maximizes the expectation of fpxJq̃q over all P P P. Since P‹ does not depend on x, it

only needs to be computed once for each 2VF(d) instance.

Theorem 4 implies that for suitable ambiguous risk measures ρ, the distributionally robust

CVRP over the ambiguity set (6) with known scenario probabilities S “ tŝu reduces to a stochastic

CVRP over a probability distribution that does not depend on ρ or x. Note, however, that the risk

itself depends on the choice of ρ and x, and hence the feasible region of the distributionally robust

CVRP varies for different risk measures ρ.

In the remainder of this section, we review a number of popular risk measures, we show how

their worst-case risk can be computed efficiently, and we discuss which of the demand estimators

dS and dP can be employed in their associated reformulations 2VF(d).

Theorem 5 (Expected Disutility-Based Risk Measures). Fix an ambiguity set P of the form (6)

with S “ tŝu.

1. Expected Disutility. The worst-case expected disutility ϕEDpxq “ supPPP P-EDpxJq̃q with

P-EDpxJq̃q “ EP
“

UpxJq̃q
‰

,

where the disutility function U is monotonically non-decreasing and convex with Up0q ě 0,

affords a W p2n` 1q-point worst-case distribution that can be computed with Algorithm 1 and

that is independent of x. Moreover, ϕED is monotone, convex and not subadditive.

2. Essential Riskiness Index (Zhang et al., 2019). The essential riskiness index ϕERI with

ϕERIpxq “ inf

"

α ě 0 : sup
PPP

EP
“

max
 

xJq̃ ´ ρ, ´α
(‰

ď 0

*

,

where ρ is the acceptable demand threshold, can be computed in time Opn2W ` nW log nW q.

Moreover, ϕERI is monotone, convex and not subadditive.
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3. Expectiles. The worst-case expectile risk measure ϕE with

ϕEpxq “ arg min
uPR

"

α ¨ sup
PPP

EP

”

“

xJq̃ ´ u
‰2

`

ı

` p1´ αq ¨ sup
PPP

EP

”

“

u´ xJq̃
‰2

`

ı

*

,

where α P r1{2, 1q, can be computed in time Opn2W ` nW log nW q. Moreover, ϕE is mono-

tone, convex and subadditive.

4. Entropic Risk. The worst-case entropic risk ϕentpxq “ supPPP P-entpxJq̃q with

P-ent
`

xJq̃
˘

“
1

θ
logEP

“

exp
`

θ ¨ xJq̃
˘‰

,

where θ ą 0, affords a W p2n ` 1q-point worst-case distribution that can be computed with

Algorithm 1 and that is independent of x. Moreover, ϕent is monotone, convex and not

subadditive.

5. Requirements Violation Index (Jaillet et al., 2016) The requirements violation index ϕRV with

ϕRVpxq “ inf
 

α ě 0 : Cαpx
Jq̃q ď ρ

(

,

where Cα is the worst-case certainty equivalent under an exponential disutility,

Cαpx
Jq̃q “

$

’

’

&

’

’

%

sup
PPP

α logEP

„

exp

ˆ

xJq̃

α

˙

if α ą 0

lim
γÑ0

Cγpx
Jq̃q if α “ 0,

and ρ is the acceptable demand threshold, can be computed to ε-accuracy via bisection search.

Moreover, ϕRV is monotone, convex and not subadditive.

Since the worst-case expectiles are subadditive as well as positive homogeneous (Bellini and

Bignozzi, 2015, Theorem 4.9(b)), Theorem 3 (i) implies that both demand estimators dS and dP

can be applied and yield the same results. We thus prefer dS for its ease of computation. In

contrast, the other risk measures of Theorem 5 fail to be subadditive, and Theorem 3 (iii) implies

that we have to use the demand estimator dP. Fortunately, since all of these risk measures are

convex, dP can be computed efficiently thanks to Proposition 5.

Two commonly used risk measures are variants of the worst-case expected disutility. The worst-

case expected demand supPPP EPr¨s emerges as a special case of the worst-case expected disutility if

we set Upxq “ x. Since the worst-case distribution P‹ from Theorem 4 does not depend on x and
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the expectation EP‹rx
Jq̃s is linear in x, Theorem 3 (ii) implies that the corresponding worst-case

distributionally robust CVRP instance reduces to a deterministic CVRP. The worst-case expected

ramp disutility supPPP EPrmaxt¨, τus, where τ P R` is a parameter, is monotone, subadditive and

not positive homogeneous. While both demand estimators dS and dP are applicable in this case,

we prefer to use dP as it can offer tighter bounds, see Theorem 3 (i) as well as Figure 1 (left). The

convexity of the expected ramp disutility allows us to evaluate dP efficiently.

Theorem 6 (CVaR-Based Risk Measures). Fix an ambiguity set P of the form (6) with S “ tŝu.

1. Conditional Value-at-Risk. The worst-case conditional value-at-risk (CVaR) at level 1 ´ ε,

ϕCVaRpxq “ supPPP P-CVaR1´εpx
Jq̃q with

P-CVaR1´εpx
Jq̃q “ inf

uPR
u`

1

1´ ε
EP

“

xJq̃ ´ u
‰

`
,

where ε P r0, 1q, can be computed in time Opn2W ` nW log nW q. Moreover, ϕCVaR is mono-

tone, convex and subadditive.

2. Service Fulfillment Risk Index (Zhang et al., 2021). The service fulfillment risk index ϕSRI

with

ϕSRIpx
Jq̃q “ inf

 

α ě 0 : ϕCVaR

`

max
 

xJq̃ ´ ρ, ´α
(˘

ď 0
(

,

where ρ is the acceptable demand threshold and the worst-case CVaR is evaluated at level 1´γ

with γ being the the service level, can be computed in time Opn2W `nW log nW q. Moreover,

ϕSRI is monotone, convex and not subadditive.

Since the worst-case CVaR is subadditive and positive homogeneous (Rockafeller and Uryasev,

2002, Corollary 12), Theorem 3 (i) implies that we can use either dP or dS, and the values of

both demand estimators coincide. We thus prefer dS as it is easier to evaluate. In contrast, the

service fulfilment risk index is not subadditive, and Theorem 3 (iii) implies that we have to use dP.

Fortunately, dP can be evaluated efficiently since the service fulfilment risk index is convex.

Theorem 7 (Other Risk Measures). Fix an ambiguity set P of the form (6) with S “ tŝu. The

underperformance risk index ϕURI (Hall et al., 2015) with

ϕURIpxq “ inf

"

1

α
: sup

PPP
ψP

`

α
`

xJq̃ ´ ρ
˘˘

ď 0, α ą 0

*

,
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where ψP is a monotone, translation invariant and convex risk measure satisfying ψPp0q “ 0 that can

be expressed as the expectation of a convex function and ρ is the acceptable demand threshold, can be

evaluated to ε-accuracy via bisection search. Moreover, ϕURI is monotone, convex and subadditive.

Since the underperformance risk index in Theorem 7 is subadditive and positive homogeneous

(cf. Hall et al. 2015, Definition 3), Theorem 3 (i) implies that dS and dP are both applicable and

yield the same results. We thus prefer dS for its ease of computation.

One readily verifies that when the expectation and mean absolute deviation conditions in the

ambiguity set (6) are absent, all the worst-case risk measures in this section are optimized by

the W -point distribution P‹ “
ř

wPW ŝw ¨ δqw under which the customer-wise largest demands are

attained almost surely in each scenario w P W. Since this worst-case distribution is supported on

W instead of W p2n ` 1q points (cf. Theorem 4), the computational complexity of evaluating the

worst-case risks in Theorems 5–7 reduces accordingly in this case.

Remark 1 (Incremental Evaluation of Risk Measures). In branch-and-cut implementations, ϕpxq

rarely needs to be computed from scratch; instead, it is computed iteratively for vectors x that

differ in one or a few components. In this case, incremental evaluations of the worst-case risks in

Theorems 5–7 can reduce the runtime for the cut evaluation by up to a factor of n.

5.2 Ambiguity Sets With Ambiguous Scenario Probabilities

We now consider a more general setting where the set S of scenario probabilities in the ambiguity

set (6) is one of the following convex subsets of the probability simplex ∆W “ ts P RW` : eJs “ 1u:

1. 1-Norm Ambiguity Set. S “ ts P ∆W : }s´ ŝ}1 ď θu with θ P R` and ŝ P ∆W .

2. 8-Norm Ambiguity Set. S “ ts P ∆W : }s´ ŝ}8 ď θu with θ P R` and ŝ P ∆W .

3. Ellipsoidal Ambiguity Set. S “ ts P ∆W : ps ´ ŝqJΣ´1ps ´ ŝq ď θu with θ P R``, Σ ą 0

and ŝ P ∆W .

4. Axis-Parallel Ellipsoidal Ambiguity Set. Ellipsoidal ambiguity set with Σ “ diagpσ1, . . . , σW q.

5. Entropy Ambiguity Set. S “ ts P ∆W :
ř

wPW sw logpsw{ŝwq ď θu with θ P R`` and ŝ P ∆W .

Norm-based and ellipsoidal ambiguity sets are used extensively to characterize the scenario prob-

abilities in robust Markov decision processes (Iyengar, 2005; Nilim and El Ghaoui, 2005; Wiesemann
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et al., 2013) and, more broadly, distributionally robust optimization (Erdoğan and Iyengar, 2006;

Zhu and Fukushima, 2009). Norm-based and entropy-based ambiguity sets are frequently used to

characterize distances between probability distributions in data-driven optimization (Ben-Tal et al.,

2013; Bayraksan and Love, 2015). Indeed, the total variation and KL divergence ambiguity sets

from Example 3 are special cases of the 1-norm and the entropy ambiguity sets, respectively, if we

set qw “ qw “ q̂w, w P W, ŝ “ 1
W ¨ e and disregard the expectation and mean absolute deviation

constraints. Finally, ellipsoidal uncertainty sets are used characterize the uncertain customer de-

mands (as opposed to their probabilities) in the classical robust CVRP, see Gounaris et al. (2013),

Subramanyam et al. (2020) and Wang et al. (2021).

Proposition 6. Let ρ “ tρPuPPP be an ambiguous risk measure whose worst-case risk ϕ satisfies

ϕpxq “ max
sPS

N

min
sPS

f
`

sJπpxq
˘

@x P r0, 1sn

for f : RÑ R monotonically increasing and tsJπpxq : s P Su Ď dompfq. If πpxq P RW is known,

then ϕpxq can be computed:

1. in time OpW logW q for the 1-norm and the 8-norm ambiguity set;

2. to ε-accuracy in time OpW logrπ{εsq for the entropy ambiguity set, where π “ maxtπwpxq :

w PWu;

3. to ε-accuracy in time OpW logW ¨ log ε´1q for the axis-parallel ellipsoidal ambiguity set;

4. to ε-accuracy in polynomial time via the Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA) for the ellipsoidal ambiguity set.

Corollary 1. The expected disutility and the entropic risk satisfy the conditions of Proposition 6.

The proof of Corollary 1 shows that the components πwpxq in Proposition 6 relate to the worst-

case risk over the marginal ambiguity sets Pw, w PW, and those quantities can be computed from

Theorems 5–7. In practical applications (cf. Section 6) we expect the number W of scenarios to be

small, in which case the overhead caused by the incorporation of ambiguous scenario probabilities

can be considered to be a constant factor for the expected disutility and the entropic risk.
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Proposition 7. Let ρ “ tρPuPPP be an ambiguous risk measure whose worst-case risk ϕ satisfies

ϕpxq “ inf
uPU

N

arg min
uPU

#

f0puq `
L
ÿ

`“1

max
sPS

f`
`

sJπ`px, uq, u
˘

+

@x P r0, 1sn

or

ϕpxq “ inf
uPU

N

arg min
uPU

#

gpuq : f0puq `
L
ÿ

`“1

max
sPS

f`
`

sJπ`px, uq, u
˘

ď 0

+

@x P r0, 1sn,

where U Ď R is a left-bounded, right-bounded or unbounded interval, u ÞÑ gpuq is a monotonic

mapping, and u ÞÑ f0puq and u ÞÑ f`ps
Jπ`px, uq, uq, ` “ 1, . . . , L, are convex mappings. Assume

further that the embedded maximization problems over s P S can be solved in time OpT q for any

fixed values of x and u. Then ϕpxq can be computed to ε-accuracy in time OpLT log ε´1q.

Sufficient conditions for u ÞÑ f`ps
Jπ`px, uq, uq to be convex are that (i) each f` is jointly convex

and non-decreasing and π` is convex in u; (ii) each f` is jointly convex and non-increasing and π`

is concave in u, see (Boyd and Vandenberghe, 2004, Page 86).

Corollary 2. The essential riskiness index, the expectiles, the requirements violation index, the

CVaR, the service fulfilment index and the underperformance risk index satisfy the conditions of

Proposition 7.

For the risk measures considered in Corollary 2, the representation in Proposition 7 satisfies L P

t1, 2u. The computational overhead caused by the incorporation of ambiguous scenario probabilities

thus amounts to a multiplicative factor of Oplog ε´1q in the compuation of the demand estimators.

5.3 The Chance Constrained CVRP

In this section, we consider the ambiguous chance constrained CVRP with technology sets

CCC “

#

R “ pR1, . . . , Rνq : ν ě 1 and Ri P VC @i, P

«

ÿ

iPR

q̃i ď B

ff

ě 1´ ε @P P P

+

,

where the ambiguity set P is of the form (6), B denotes the vehicles’ capacities and ε P p0, 1q is a

risk threshold selected by the decision maker. Throughout the following, we assume that ε ă 1{m.

Observation 1. For any S Ď VC , we have

P

«

ÿ

iPR

q̃i ď B

ff

ě 1´ ε @P P P ðñ ϕVaRp1Rq ď B,

where ϕVaRpxq “ supPPP P-VaR1´ε

“

xJq̃
‰

and P-VaR1´ε denotes the p1´ εq-value-at-risk (VaR).
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Observation 1, whose statement is well known and immediately follows from the properties

of the value-at-risk, allows us to use technology sets of the form (5) with ϕ “ ϕVaR to model

the ambiguous chance constrained CVRP. Recall that in order to solve the corresponding 2VF(d)

formulation, ϕVaR has to satisfy certain properties as outlined in Section 4. We examine this next.

Observation 2. For an ambiguity set of the form (6), ϕVaR is monotone and positive homogeneous,

but it is neither subadditive nor convex in general.

The discussion surrounding Theorem 3 implies that we cannot use the demand estimator dS in

conjunction with ϕVaR, and the demand estimator dP is difficult to evaluate.

Example 4. Consider an ambiguous chance constrained CVRP instance with n “ 2 customers

and m “ 2 vehicles. Fix an ambiguity set of the form (6) with W “ 3, ŝ “ 1
3e, expectation and

mean absolute deviation constraints disregarded as well as q1 “ q1 “ p1, 3qJ, q2 “ q2 “ p8, 3qJ and

q3 “ q3 “ p1, 11qJ. For ε “ 0.3 and B “ 3, we have CCC “ tp1q, p2qu and thus d
m
pVCq “ 2, while

the technology sets (5) with ϕ “ ϕVaR yield dSpVCq “ maxt1, r11{3su “ 4 ą d
m
pVCq. On the other

hand, note that Y with y1 “ p1, 0q
J and y2 “ p0, 1q

J is a feasible solution for dP, which implies

that dPpVCq ď 2 “ d
m
pVCq.

Laporte et al. (1989) use the demand estimator dS in conjunction with ϕVaR for chance con-

strained CVRPs where the customer demands follow independent normal distributions. This ob-

servation has later been generalized to normally distributed customer demands (that are not nec-

essarily independent) by Dinh et al. (2018). Theorem 3 reveals why this is possible: one readily

verifies that in these specific cases, ϕVaR is subadditive, and part (i) of the theorem shows that

dS is indeed admissible. Ghosal and Wiesemann (2020) combine dS with ϕVaR to solve ambiguous

chance constrained CVRPs over moment ambiguity sets. Again one can show that in this special

case, ϕVaR is subadditive, and Theorem 3 (i) offers a justification for the use of dS. Our theory from

Sections 3 and 4 thus provides a theoretical understanding why the value-at-risk is applicable under

these specific circumstances. In contrast, our scenario-wise ambiguity sets (6) require a different

approach, which we develop in the following.

Following Dinh et al. (2018), we define the modified VaR ϕmVaR : r0, 1sn Ñ R as

ϕmVaRpxq “ B ¨max
kPK

apx, kq

27



where apx, 1q “ 1 and apx, kq “ mintk, rsupPPP P-VaR1´pk´1qεpx
Jq̃q{Bsu otherwise, as well as

CmVaR “ tR “ pR1, . . . , Rνq : ν ě 1 and Ri P VC @i, ϕmVaRpxq ď Bu .

Although we have ϕmVaR ‰ ϕVaR, it turns out that both worst-case risk measures lead to the same

technology sets.

Proposition 8. We have CmVaR “ CCC.

In contrast to ϕVaR, however, ϕmVaR has desirable features in view of our demand estimators.

Proposition 9. The function ϕmVaR is monotone and subadditive, but it is neither convex nor

positive homogeneous in general.

The monotonicity of ϕmVaR guarantees via Proposition 3 that the technology sets (5) with

ϕ “ ϕmVaR satisfy (D) and (P). Since ϕmVaR is subadditive but not positive homogeneous,

Theorem 3 implies that dS ď dP and that dS “ dP does not hold in general. However, dP appears

difficult to evaluate due to the non-convexity of ϕmVaR, and we thus prefer to use dS.

Example 4 (cont’d). We have ap1VC , 1q “ 1 by definition and ap1VC , 2q “ mint2, 4u “ 2, implying

that ϕmVaRp1VC q “ 2B “ 6 and thus dSp1VC q “ 2 “ d
m

.

Dinh et al. (2018) introduce ϕmVaR as a valid lower bound for the minimum number of vehicles

required to serve a set of customers in the context of stochastic chance constrained CVRPs with

normally distributed customer demands as well as ambiguous chance constrained CVRPs over

moment-based ambiguity sets where the chance constraints admit deterministic representations

as individual second-order cone constraints. Their justification of ϕmVaR is derived from first

principles, whereas our derivations in this section leverage Theorem 3 to apply ϕmVaR to a broader

class of ambiguity sets that comprise, among others, scenario-based as well as Wasserstein and

φ-divergence based representations of the ambiguous demand distribution.

In the remainder, we discuss how dS can be evaluated efficiently for the technology set CmVaR.

Theorem 8. For an ambiguity set of the form (6) with S “ tŝu, ϕmVaRpxq can be evaluated to

κ-accuracy in time OpWn ¨ logm ¨ log n ¨ log κ´1q.

We note that the accuracy κ in Theorem 8 is measured relative to the maximally possible

demand; to obtain a complexity estimate for an absolute accuracy, the term log κ´1 has to be
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increased to logpκ´1 ¨ maxwPW eJqw). We close this section with the computation of ϕmVaR for

instances of the ambiguity set (6) where the scenario probabilities are ambiguous.

Proposition 10. For an ambiguity set of the form (6), ϕmVaRpxq can be computed to κ-accuracy:

1. in time OppWn log n`W logW q ¨ log κ´1 ¨ logmq for the 1-norm and the 8-norm ambiguity

set;

2. in time OppWn log n ` W logrπ{κsq ¨ log κ´1 ¨ logmq for the entropy ambiguity set, where

π “ maxtπwpxq : w PWu;

3. in time OppWn log n ` W logW ¨ log κ´1q ¨ log κ´1 ¨ logmq for the axis-parallel ellipsoidal

ambiguity set;

4. in polynomial time via FISTA for the ellipsoidal ambiguity set.

For ease of notation, Proposition 10 again uses a relative accuracy κ.

6 Numerical Experiments

Our numerical experiments use the standard CVRP benchmark instances compiled by Dı́az (2006).

Each instance label ‘X-nY -kZ’ indicates the literature source X of the instance, the number Y of

nodes (including the depot) as well as the number Z of vehicles. Since our ambiguity set construc-

tion below is based on geographic information, we disregard instances that do not provide Euclidean

coordinates for the nodes. Following the literature convention, we identify the transportation costs

cij with the 2-norm distance between i and j, rounded to the nearest integer number.

The customer demands in the CVRP benchmark problems are deterministic. To construct

stochastic demands whose distribution is characterized by an ambiguity set of the form (6), we

subdivide each instance into 4 quadrants (northwest, northeast, southwest and southeast) according

to the nodal coordinates. We then create W “ 4 scenarios with equal probabilities ŝ “ e{4, each

of which is associated with one of the quadrants. In each scenario we set the expected demands of

the customers in the associated quadrant to 110%, of the customers in the horizontally or vertically

adjacent quadrants to 100%, and of the customers in the diagonally opposite quadrant to 90%

of the nominal demands from the deterministic instance. The lower and upper demand bounds
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Figure 2. Runtimes and optimality gaps for our branch-and-cut schemes. Shown are the

runtimes (left graph) and optimality gaps after 12 hours (right graph) for the determin-

istic branch-and-cut scheme (color) as well as the distributionally robust branch-and-cut

schemes with known (color) and unknown (color) scenario probabilities.

undercut and exceed these expected demands in each scenario by 10% of the nominal demands.

The mean absolute deviations of the customer demands are set to those of a Normal distribution

that is centered at the mean demands and that places 90% of its probability mass onto the demand

interval. Since the CVRP benchmark instances tend to have little slack in the vehicle capacities, we

follow Gounaris et al. (2013) and Ghosal and Wiesemann (2020) and increase the vehicle capacities

Q by 20% to ensure that the distributionally robust instances are feasible.

We implemented a ‘vanilla’ CVRP solution scheme that augments the branch-and-cut capacil-

ity of CPLEX Studio 20.1.0 with an RCI cut separation procedure that follows the tabu search

algorithm outlined by Augerat et al. (1998). Our method is implemented in C++, and the source

code is available on the authors’ webpages (see Footnote 1). All problems are solved in single-core

mode on an Intel Xeon 2.66GHz processor with 8GB main memory and a runtime limit of 12 hours.

6.1 Runtime Comparison

In our first experiment, we compare the runtimes and optimality gaps of our branch-and-cut al-

gorithm for the deterministic CVRP with those of our algorithm for the distributionally robust

CVRP under the 90%-CVaR risk measure. To this end, we consider two variants of the determinis-
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tic CVRP: one (‘deterministic’) where the original vehicle capacities are employed, and another one

(‘relaxed deterministic’) where the vehicle capacities are increased by 20% as in the uncertainty-

affected CVRP. We also consider two variants of our ambiguity set (6): in the ‘stochastic’ case, the

scenario probabilities are known to be ŝ “ e{4, whereas in the ‘ambiguous’ case these probabilities

are only known to be contained in a 1-norm ambiguity set of radius θ “ 0.1 that is centered at the

nomial probabilities ŝ. The ambiguous setup thus models a total variation ambiguity set with a

uniform empirical distribution (or ‘prior’), see Example 3. The results are summarized in Figure 2

and presented in further detail in Table 1 in Appendix C.

The results show that, as expected, increasing the vehicles’ capacity by 20% in the determin-

istic CVRP substantially simplifies the problem instances. If the price to paid by accounting for

uncertainty was to be small, we would expect the runtimes and optimality gaps for the stochastic

and ambiguous instances to be contained in the interval spanned by the deterministic and relaxed

deterministic instances. In fact, although the stochastic and ambiguous instances enjoy a capacity

increase of 20% (akin to the relaxed deterministic instances), the incorporation of demand variabil-

ity and distributional ambiguity as well as risk and ambiguity aversion reduce the factually available

vehicle capacity. On the other hand, our construction of the stochastic and ambiguous instances

guarantees that the uncertain customer demands never exceed 20% of their nominal values from

the deterministic instances. The results show that, broadly, the runtimes and optimality gaps for

the stochastic and ambiguous instances are upper and lower bounded by those of the deterministic

and the relaxed deterministic instances, which indicates that the computational price to be paid is

mainly determined by the slack in the vehicle capacities and less so by the incorporation of risk and

ambiguity. We thus conclude that the same branch-and-cut algorithm can solve all three problem

classes in runtimes and optimality gaps that are of the same order of magnitude.

6.2 The Impact of Risk Aversion

In our second experiment, we focus on the benchmark instance A-n32-k5 and solve the distri-

butionally robust CVRP associated with the family of exponential disutility functions Uapqq “

pexppaqq ´ 1q{a, a ą 0, and U0pqq “ q. The scalar parameter a P R` controls the risk aversion

of the decision maker: a “ 0 reflects a neutral stance towards demand variability, whereas larger

values correspond to an increasing risk aversion. For every value of a, we set the budget B in (5) to
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Figure 3. Minimum number of vehicles and optimal transportation costs for A-n32-k5

with an exponential class of disutility functions parameterized by a. The vertical lines

indicate the parameter ranges covered by 5, 6, . . . , 11 vehicles (from left to right).

Figure 4. Optimal route plans for A-n32-k5 with exponential disutilities a “ 0 (left; 5

vehicles), a “ 3.41E-3 (middle; 7 vehicles) and a “ 7.81E-3 (right; 9 vehicles).

B “ Uap1.2Qq, where Q is the nominal vehicle capacity from the deterministic CVRP instance and

the factor 1.2 corresponds to the 20% capacity increase described earlier. This choice ensures that

the feasibility of route plans for deterministic demands is unaffected by the choice of the risk aver-

sion a and coincides with that of the deterministic instance (apart from the 20% capacity increase).

Figure 3 visualizes how the minimum number of vehicles required to serve the customer demands,

as well as the resulting transportation costs, vary as a function of the risk aversion a. Moreover,

Figure 4 illustrates the optimal route plans for three different choices of a. We observe that higher

degrees of risk aversion require larger numbers of vehicles to serve the customer demands, which in

turn tends to increase the transportation costs (apart from two dips where the necessity to increase

the number of vehicles results in smaller overall costs).

32



7 Conclusions

The use of ambiguity sets and risk measures to reflect different degrees of knowledge and attitudes

towards ambiguity and risk is well established in stochastic programming and distributionally robust

optimization. In this paper, we propose a framework that studies a broad variety of ambiguity sets

and risk measures for the CVRP. An attractive feature of our framework is that all emerging

combinations can be solved with minimal adaptations of the same branch-and-cut scheme, and the

resulting algorithms perform broadly on par with those for the deterministic CVRP, thus allowing

practitioners to incorporate uncertainty without incurring an excessive computational burden.

In the stochastic and distributionally robust CVRP, uncertain demands are qua definitione high-

dimensional, and therefore the standard model-free characterizations of the underlying probability

distribution result in optimization problems that can be overly conservative (e.g., if pure moment-

based descriptions are being employed) or computationally prohibitive (e.g., if pure data-driven

characterizations are being used). Our framework attempts to alleviate this issue by combining a

scenario-based description (which characterizes systematic effects that affect multiple customers)

with moment information (that describes the idiosyncratic variability of individual demands). A

promising avenue for future research, in our view, is the study and comparison of alternative

model-based ambiguity sets for the uncertainty-affected CVRP that offer realistic descriptions of

the uncertain customer demands while avoiding the curse of dimensionality that plagues direct

characterizations of high-dimensional probability distributions.
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Appendix A: Proofs

Proof of Proposition 1. In view of the first inequality, we note that dpHq “ 0 “ d
1
pHq by

definition and dpSq “ 1 ď d
1
pSq for any H ‰ S P C since at least one route R P C is required in

d
1

to cover a non-empty set S. To see that dpSq “ 2 ď d
1
pSq for H ‰ S R C, we observe that

S R C implies that there is at least one list S formed from the elements of S such that S R C.

Assumptions (D) and (P) then imply that C cannot contain any route R that contains all of the

customers of S (in any order). We thus conclude that S Ę R for any R P C and thus d
1
pSq ě 2.

To show that (D) and (P) are necessary for the first inequality, assume first that assumption

(D) is violated. Then there is R P C such that S R C for some subsequence S of R. One readily

verifies that dpSq “ 2 but d
1
pSq “ 1 for the set S formed from the elements of S; the latter holds

since the route covering R in the definition of d
1

also covers S. If assumption (P) is violated, on

the other hand, then there is R P C such that S R C for some permutation S of R. One again

verifies that dpSq “ 2 yet d
1
pSq “ 1 for the set S formed from the elements of S; the latter holds

since the route covering R in the definition of d
1

also covers any permutation of R.

As for the second inequality, assume that d
m
pSq “ θ for some H ‰ S Ď VC ; the case S “ H is

trivial. The definition of d
m

implies that there is tR1, . . . ,Rθ, . . .Rmu P PpVC ,mq X Cm such that

S Ď R1 Y . . .YRθ. Since R1, . . . ,Rθ P C by definition of Cm, we have d
1
pSq ď θ as desired.

Proof of Theorem 1. Fix any demand estimator d. The statement follows if we show that:

(i) Any R P PpVC ,mq X Cm induces a solution xpRq feasible in 2VF(d) if d ď d
m

.

(ii) Any solution x feasible in 2VF(d) induces Rpxq P PpVC ,mq X Cm if d ě d.

In view of (i), fix any R P PpVC ,mq X Cm. The definition of xpRq in (3) implies that xpRq

satisfies the binarity and degree constraints of 2VF(d). To see that xpRq satisfies the capacity

constraints of 2VF(d), we note that for any H ‰ S Ď VC , we have that

dpSq ď d
m
pSq “ inf

$

&

%

J P N : S Ď
ď

k“1,...,J

R1k for
 

R11, . . . ,R
1
J , . . . ,R

1
m

(

P PpVC ,mq X Cm

,

.

-

ď inf

$

&

%

J P N : S Ď
ď

k“1,...,J

Rjk for j1, . . . , jJ P t1, . . . ,mu

,

.

-

“ |k P K : Rk X S ‰ H| ď
ÿ

iPV zS

ÿ

jPS

xijpRq,
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where the second inequality holds since R P PpVC ,mqX Cm. The second equality is due to the fact

that the minimum number of routes in R required to cover S is precisely the number of routes Rk,

k “ 1, . . . ,m, that have a nonempty intersection with S. In view of the last inequality, finally, fix

k P K with RkXS ‰ H and let jk P RkXS be the first customer on the route Rk that is contained

in S. By definition of jk, we have
ř

iPV zS xijkpRq “ 1. The inequality now follows from the fact

that there are |k P K : RkXS ‰ H| different customer nodes jk with this property.2 In summary,

we have shown that xpRq satisfies the capacity constraints—and thus all constraints—of 2VF(d).

As for (ii), fix any feasible solution x in 2VF(d). We construct a route plan Rpxq, in the

following abbreviated as R, satisfying (3) as follows. Since
ř

jPVC
x0j “ m, there is j1, . . . , jm P VC ,

j1 ă . . . ă jm, such that x0,j1 “ . . . “ x0,jm “ 1. For each route Rk, k P K, we set Rk,1 Ð jk and

nk Ð 1. Since
ř

jPV xRk,nk ,j “ 1, we either have xRk,nk ,j “ 1 for some j P VC or xRk,nk ,0 “ 1. In

the former case, we extend route Rk by the customer Rk,nk`1 Ð j, we set nk Ð nk ` 1 and we

continue the procedure with customer j. In the latter case, we have completed the route Rk. By

construction, the route plan R thus created satisfies (3).

We show that R P PpVC ,mq. Note that nk ě 1 due to the existence of the customers j1, . . . , jm.

The degree constraints in 2VF(d) ensure that Rk,i ‰ Rl,j for all pk, iq ‰ pl, jq. It remains to be

shown that
Ť

kRk “ VC . Imagine, to the contrary, that there is a customer j P VC such that

j R
Ť

kRk. By construction of the above algorithm, j must lie on a short cycle S Ă VC that is not

connected to the depot node 0. Since S ‰ H, its associated capacity constraint would require that
ř

iPV zS

ř

jPS xij ě dpSq ě dpSq ě 1. However,
ř

iPV zS

ř

jPS xij “ 0 because S is a short cycle not

connected to the depot node 0. Thus, the capacity constraint associated with S would be violated.

We finally show that tR1, . . . ,Rmu P Cm as well. We have
ř

iPV zRk

ř

jPRk
xij “ 1 ě dpRkq ě

dpRkq for all k P K, where Rk is the set formed from the customers inRk. Here, the equality follows

from the construction of the routes Rk, and the two inequalities hold due to the feasibility of x in

2VF(d) and the fact that d ě d, respectively. Since Rk ‰ H, we thus conclude that dpRkq “ 1,

that is, Rk P C, for all k P K. This implies that tR1, . . . ,Rmu P Cm, and consequently we have

R P PpVC ,mq X Cm as desired.

Proof of Proposition 2. In view of assertion (i), fix any VRP(C) instance and demand estimator

2Note that the same vehicle may enter and leave the set S multiple times, hence we cannot strengthen the inequality

to an equality in general.
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d as described in the statement. The first part of the proof of Theorem 1 implies that any route

plan R feasible in VRP(C) induces a solution xpRq that is feasible in 2VF(d). Thus, we only need

to show that any solution x feasible in 2VF(d) also induces a route plan Rpxq that is feasible in

VRP(C). Indeed, the route plan Rpxq considered in the second part of the proof of Theorem 1

satisfies nk ě 1 due to the degree constraint for the depot node and Rk,ipxq ‰ Rl,jpxq for all

pk, iq ‰ pl, jq by virtue of the degree constraints for the customer nodes, respectively. Moreover, we

have
Ť

kRkpxq “ VC since our earlier assumption that dpSq ą 0 for all nonempty S Ď VC disallows

any short cycles in x. We thus conclude that Rpxq P PpVC ,mq. Since PpVC ,mq Ď Cm, it follows

that Rpxq P Cm as well.

As for assertion (ii), we first show that for any VRP(C) instance with PpVC ,mq Ę Cm the

demand estimator d defined through dpSq “ 0 if S “ H and dpSq “ 1 otherwise satisfies d ğ d and

implies that VRP(C) and 2VF(d) are not equivalent. To see that d ğ d, we note that dpVCq ą 1

since otherwise VC P C, which would in turn imply by (D) that S P C for all S Ď VC and hence

PpVC ,mq Ď Cm in contradiction to our assumption. To see that VRP(C) and 2VF(d) are not

equivalent, fix any R P PpVC ,mqzCm. We show that the solution xpRq defined through (3) is

feasible in 2VF(d), which implies that VRP(C) and 2VF(d) are not equivalent. Indeed, xpRq

satisfies the binarity and degree constraints in 2VF(d) by construction, and it satisfies all capacity

constraints since
ř

iPV zS

ř

jPS xijpRq ě 1 “ dpSq for all nonempty S Ď VC .

We now show that for any VRP(C) instance with PpVC ,mq Ę Cm the demand estimator d

defined through dpSq “ 1 if S “ VC and dpSq “ dpSq otherwise satisfies d ğ d and makes VRP(C)

and 2VF(d) equivalent. To see that d ğ d, we note that dpVCq “ 1 whereas dpVCq “ 2 according to

our discussion from the previous paragraph. To see that VRP(C) and 2VF(d) are equivalent under

d, the first part of the proof of Theorem 1 implies that we only need to show that any solution

x feasible in 2VF(d) induces a route plan Rpxq that is feasible in VRP(C). The route plan Rpxq

constructed in the second part of the proof of Theorem 1 satisfies nk ě 1, Rk,ipxq ‰ Rl,jpxq for

all pk, iq ‰ pl, jq and
Ť

kRkpxq “ VC . Thus, we have Rpxq P PpVC ,mq. To see that Rpxq P Cm,

we first note that no single route Rkpxq can contain all customers since otherwise m “ 1 and the

assumption that PpVC , 1q Ę C1 implies that the VRP(C) instance is infeasible, which contradicts

the assumptions of the theorem. Next, we note that Rkpxq P C for all k P K as the capacity

constraints
ř

iPV zRkpxq

ř

jPRkpxq
xij “ 1 ě dpRkpxqq “ dpRkpxqq are satisfied; the last equality
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follows from the fact that Rkpxq does not contain all customers. By definition of Cm, we have

Rpxq P Cm, that is, VRP(C) and 2VF(d) are indeed equivalent.

In view of assertion (iii), fix any VRP(C) instance and demand estimator d as described in

the statement. We prove the assertion by constructing a route plan R1 feasible in VRP(C) such

that the associated solution xpR1q is not feasible in 2VF(d). To this end, fix S Ď VC such that

dpSq ą d
m
pSq, and let R “ tR1, . . . ,Rmu be such that S Ď

Ť

k“1,...,d
m
pSqRk. Such a route plan

exists since the feasibility of VRP(C) implies that d
m
pSq ‰ 8. We now construct the desired route

plan R1 “ tR11, . . . ,R
1
mu from R as follows. We setR1k “ Rk for any route k satisfyingRkXS “ H.

For the other routes Rk, we obtain R1k by reordering the customers in Rk such that those in RkXS

appear first (in any order). The assumption (P) implies that R1 P PpVC ,mq X Cm as well. For the

solution xpR1q constructed from (3), however, we observe that

ÿ

iPV zS

ÿ

jPS

xijpR
1q “

ÿ

iPV zS

ÿ

kPK:
SXR1k‰H

ÿ

jPSXR1k

xijpR
1q “

ÿ

kPK:
SXR1k‰H

ÿ

iPV zS

ÿ

jPSXR1k

xijpR
1q

“
ÿ

kPK:
SXR1k‰H

1 “ |k P K : S XR1k ‰ H| “ d
m
pSq,

where the third equality follows from the reordering of the customers in R1. Since dpSq ą d
m
pSq,

the solution xpR1q is infeasible in 2VF(d) even though R1 is feasible in VRP(C).

We split the proof of Theorem 2 into the following two lemmas.

Lemma 1. There exist VRP(C) instances violating (D) but satisfying (P) such that VRP(C) and

2VF(d) are not equivalent under any demand estimator d.

Proof. Consider the VRP(C) instance with n “ 4 customers, m “ 2 vehicles and C consisting of

all routes that comprise 1, 3 or 4 customers. This instance satisfies the assumption (P), but it

violates the assumption (D) since, for example, p1, 2q R C even though p1, 2, 3q P C. The feasible

route plans of VRP(C) are all partitions in PpVC , 2q where one vehicle serves one customer and the

other vehicle serves the remaining three customers.

We claim that there is no demand estimator d such that 2VF(d) has the same set of feasible

solutions. Indeed, note that any admissible d must satisfy dpSq ď 2 for all S Ď VC in order to

result in a feasible 2VF(d) instance. Moreover, to allow for the feasible solutions xptp1, 2, 3q, p4quq

and xptp1q, p2, 3, 4quq, any admissible d must satisfy dpSq ď 1 for all nonempty subsets of t1, 2, 3u
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and t2, 3, 4u. This implies, however, that any admissible demand estimator must result in a 2VF(d)

instance that also allows for the infeasible solution xptp1, 2q, p3, 4quq.

Lemma 2. There exist VRP(C) instances violating (P) but satisfying (D) such that VRP(C) and

2VF(d) are not equivalent under any demand estimator d.

Proof. Consider the VRP(C) instance with n “ 2 customers, m “ 1 vehicle and C “ tp1q, p2q,

p1, 2qu. This instance satisfies (D), but it violates (P) since p2, 1q R C even though p1, 2q P C. The

only feasible route plan for VRP(C) is tp1, 2qu.

We claim that there is no demand estimator d such that 2VF(d) has the same set of feasible

solutions. Indeed, for the solution xptp1, 2quq to be feasible in 2VF(d), any admissible demand

estimator d must satisfy dpt1uq, dpt2uq, dpt1, 2uq ď 1. However, any such demand estimator d

would then also allow the infeasible route plan xptp2, 1quq.

Proof of Theorem 2. The proof follows immediately from Lemmas 1 and 2.

Proof of Proposition 3. For any permutation S of R P C, we have 1S “ 1R and thus

ϕp1Sq “ ϕp1Rq ď B, implying that S P C, that is, assumption (P) is satisfied. To prove that C

satisfies (D) whenever ϕ is monotone, consider any R “ pR1, . . . , Rνq P C and S “ pRi1 , . . . , Riσq

such that 1 ď σ ď ν and 1 ď i1 ă i2 ă . . . ă iσ ď ν. We then have 1S ď 1R, and the monotonicity

of ϕ implies that ϕ p1Sq ď ϕ p1Rq ď B. Thus, S P C, and assumption (D) holds.

Proof of Proposition 4. We have dPpHq “ d
1
pHq “ 0, and any H ‰ S Ď VC satisfies

d
1
pSq “ min

$

&

%

I P N : S Ď
ď

k“1,...,I

Rk for some R1, . . . ,RI P C

,

.

-

“ min

$

&

%

I P N : S Ď
ď

k“1,...,I

Rk such that ϕ p1Rkq ď B for all k “ 1, . . . , I

,

.

-

“ min
 

I P N : DX P t0, 1unˆI such that Xe ě 1S , ϕpxkq ď B @k “ 1, . . . , I
(

“ min
 

I P N : DX P t0, 1unˆI such that Xe “ 1S , ϕpxkq ď B @k “ 1, . . . , I
(

“ dPpSq,

where the second identity follows from the definition of C in (4). The union on the right-hand side

of the second identity corresponds to the constraint Xe ě 1S where xk P t0, 1u
n for k “ 1, . . . , I
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so that a customer can be assigned to more than one route. Choose any X that is feasible in the

right-hand side of the third identity. Since ϕ is monotone, for each i P S, we can arbitrarily choose

one of the k’s for which xik “ 1 and set xik1 “ 0 for all k1 ‰ k. The monotonicity of ϕ guarantees

that this new solution xk, k “ 1, . . . , I, is also feasible, which leads to the fourth identity.

Proof of Proposition 5. We denote the two expressions for the packing estimator dP as

d1pSq “ min
 

I P N : DX P r0, 1snˆI such that Xe “ 1S , ϕpxkq ď B @k “ 1, . . . , I
(

and

d2pSq “ min tI P N : ϕp1S{Iq ď Bu ,

where H ‰ S Ď VC . We want to show that d1pSq “ d2pSq for all H ‰ S Ď VC . One readily verifies

that d1pSq ď d2pSq since for any I P N feasible in the minimization problem that defines d2pSq,

pI 1, X 1q “ pI, 1S eJ{Iq is feasible in the minimization problem that defines d1pSq and achieves the

same objective value I. To see that d1pSq ě d2pSq, fix any solution pI, Xq that is feasible in the

minimization problem that defines d1pSq. In the following, we prove that ϕp1S{Iq ď B, which

shows that I is also feasible in the minimization problem that defines d2pSq.

Let Π be the group of all permutations π : t1, . . . , Iu Ñ t1, . . . , Iu of the set t1, . . . , Iu, and

define πpXq “ pxπp1q, . . . ,xπpIqq for π P Π. By construction, pI, πpXqq is feasible in d1pSq for any

π P Π. Moreover, since for any fixed I P N the projection of the feasible region of d1pSq onto X is

convex by assumption, pI, X 1q with

X 1 “
1

|Π|

ÿ

πPΠ

πpXq

is also feasible in d1pSq. However, the k-th column of X 1 satisfies

x1k “
1

I!
¨
ÿ

πPΠ

xπpkq “
1

I!
¨

I
ÿ

l“1

ÿ

πPΠ:
πpkq“l

xπpkq “
1

I!
¨

I
ÿ

l“1

pI ´ 1q! ¨ xl “
1S
I
,

where the first and penultimate equalities follow from the fact that a set with ` elements admits `!

permutations, and the last identify holds since Xe “ 1S as X is feasible in d1pSq.

Proof of Theorem 3. We first show that d ď dP ď d
m

, irrespective of whether ϕ is sub- or

superadditive. The fact that dP ď d
m

follows from Proposition 4, which implies that dP ď d
1
, and
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Proposition 1, which shows that d
1
ď d

m
. To see that dP ě d, we note that dPpSq ě 1 “ dpSq for

all H ‰ S P C by construction, while dPpSq ě 2 “ dpSq for all H ‰ S R C since ϕp1Sq ą B.

As for statement (i), we note that dS ě d by construction. To see that dS ď dP when ϕ is

subadditive, we observe that for any H ‰ S Ď VC and any I P N, we have

I ě dPpSq ðñ DX P r0, 1snˆI such that Xe “ 1S , ϕpxkq ď B @k “ 1, . . . , I

ùñ DX P r0, 1snˆI such that Xe “ 1S , ϕpx1q ` . . .` ϕpxIq ď I ¨B

ùñ ϕp1Sq ď I ¨B

ðñ I ě dSpSq.

Here, the first line holds by construction of dP. The third line follows from the subadditivity of ϕ

and the fact that Xe “ 1S , and the last line holds by definition of dS and since I P N.

If ϕ is subadditive and positive homogeneous, then it is indeed convex, and for any H ‰ S Ď VC

and I P N, Proposition 5 implies that I ě dPpSq if and only if ϕp1S{Iq ď B, that is, ϕp1Sq ď I ¨B.

By definition of dS and since I P N, we thus have I ě dPpSq if and only if I ě dSpSq.

To see that dP “ dS does not hold in general when ϕ is subadditive but not positive homo-

geneous, consider the VRP(C) instance with n “ 3 customers, m “ 3 vehicles and a set C of the

form (4) with ϕpx1, x2, x3q “
?
x1 ` x2 ` x3 as well as B “ 1. Note that ϕ is subadditive but not

positive homogeneous. One readily verifies that dPpVCq “ 3 but dSpVCq “ 2.

In view of statement (ii), we first show that dS “ dP whenever ϕ is additive. We know

from statement (i) that dS ď dP in this setting, so we only need to show that dS ě dP as well.

Imagine, to the contrary, that dSpSq “ I 1 ă dPpSq for some H ‰ S Ď VC . In that case, we have

ϕp1Sq{B ď I 1. The additivity of ϕ implies that I 1 ¨ ϕp1S{I
1q “ ϕp1Sq ď I 1 ¨ B, however, and the

solution pI, Xq “ pI 1, 1SeJ{I 1q is feasible in the minimization problem that defines dP. We thus

have dPpSq ď I 1, which contradicts the assumption that dSpSq ă dPpSq.

When ϕ is additive, we have ϕp1Sq “
ř

iPS ϕpeiq. Thus, any VRP(C) instance with additive

ϕ can be reformulated as a deterministic CVRP instance with customer demands qi “ ϕpeiq and

vehicle capacity Q “ B. Likewise, one readily verifies that any deterministic CVRP instance can

be formulated as an instance of VRP(C) with ϕpxq “ qJx and B “ Q.

As for statement (iii), we only need to show that dS ď d
m

does not hold in general when ϕ is

not subadditive. Indeed, consider the VRP(C) instance with n “ 3 customers, m “ 3 vehicles and
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the set C of the form (4) with ϕpx1, x2, x3q “ exppx1 ` x2 ` x3q ´ 1 as well as B “ 2. Note that ϕ

is not subadditive. One readily verifies that dSpVCq “ 10 but d
m
pVCq “ 3.

Proof of Theorem 4. Fix any x P r0, 1sn. Since f is convex and x ě 0, it follows from

Theorem 2.2.6(a) of Simchi-Levi et al. (2005) that the mapping q ÞÑ fpxJqq is supermodular. The

rectangularity of P then allows us to re-express the worst-case expectation as

sup
PPP

EP
“

fpxJq̃q
‰

“ sup
PwPPw:
wPW

ÿ

wPW
ŝw ¨ EPw

“

fpxJq̃q
‰

“
ÿ

wPW
ŝw ¨ sup

PwPPw
EPw

“

fpxJq̃q
‰

, (8)

where Pw is defined in (7) and the first identity holds because S is a singleton set.

We can then apply Proposition 3 of Long et al. (2020) to evaluate supPwPPw EPw
“

f
`

xJq̃
˘‰

for

each w PW. Note that this proposition assumes that the function inside the worst-case expectation

constitutes the second-stage cost of a two-stage distributionally robust optimization problem; since

the proof of that result only makes use of the supermodularity of the second-stage cost function,

however, the proposition extends to our setting. We thus conclude that supPwPPw EPw
“

fpxJq̃q
‰

“

ř2n`1
j“1 p‹wj ¨ fpx

Jq‹wjq, where p‹wj , q
‹
wj are obtained from Algorithm 1, j “ 1, . . . , 2n` 1 and w PW.

Combining this with (8), we obtain

sup
PPP

EP
“

fpxJq̃q
‰

“
ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj ¨ fpx
Jq‹wjq,

which implies the statement of the theorem.

Many of the results from Section 5.1 rely on properties that the worst-case risk measure ϕ

inherits from its constituent risk measures ρP, P P P. We summarize those findings next.

Lemma 3. The worst-case risk measure ϕ is (i) monotonic, (ii) positive homogeneous, (iii) subad-

ditive or (iv) convex whenever each of its constituent risk measures ρP, P P P, is.

Proof. In view of (i), we note that any x,y P r0, 1sn with x ď y satisfy

ρPpx
Jq̃q ď ρPpy

Jq̃q @P P P ùñ ρPpx
Jq̃q ď sup

PPP
ρPpy

Jq̃q @P P P

ðñ sup
PPP

ρPpx
Jq̃q ď sup

PPP
ρPpy

Jq̃q ðñ ϕpxq ď ϕpyq,

where the first inequality follows from the monotonicity of ρP for all P P P.
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As for (ii), we observe that any λ ě 0 and x P r0, 1sn satisfy

ϕpλxq “ sup
PPP

ρPpλ ¨ x
Jq̃q “ λ ¨ sup

PPP
ρPpx

Jq̃q “ λ ¨ ϕpxq,

where the second identity follows from the positive homogeneity of ρP for all P P P.

In view of (iii), we observe that any x,y P r0, 1sn satisfy

ρPppx` yq
Jq̃q ď ρPpx

Jq̃q ` ρPpy
Jq̃q @P P P

ùñ ρPppx` yq
Jq̃q ď sup

PPP

 

ρPpx
Jq̃ ` ρPpy

Jq̃q
(

@P P P

ùñ ρPppx` yq
Jq̃q ď sup

PPP
ρPpx

Jq̃q ` sup
PPP

ρPpy
Jq̃q @P P P

ðñ sup
PPP

ρPppx` yq
Jq̃q ď sup

PPP
ρPpx

Jq̃q ` sup
PPP

ρPpy
Jq̃q

ðñ ϕpx` yq ď ϕpxq ` ϕpyq,

where the first inequality follows from the subadditivity of ρP for all P P P and the second impli-

cation is due to the subadditivity of the supremum operator, respectively.

As for (iv), finally, we note that any λ P r0, 1s and x,y P r0, 1sn satisfy

ρPpλx
Jq̃ ` p1´ λqyJq̃q ď λ ¨ ρPpx

Jq̃q ` p1´ λq ¨ ρPpy
Jq̃q @P P P

ùñ ρPpλx
Jq̃ ` p1´ λqyJq̃q ď sup

PPP

 

λ ¨ ρPpx
Jq̃q ` p1´ λq ¨ ρPpy

Jq̃q
(

@P P P

ùñ ρPpλx
Jq̃ ` p1´ λqyJq̃q ď λ ¨ sup

PPP
ρPpx

Jq̃q ` p1´ λq ¨ sup
PPP

ρPpy
Jq̃q @P P P

ðñ sup
PPP

ρPpλx
Jq̃ ` p1´ λqyJq̃q ď λ ¨ sup

PPP
ρPpx

Jq̃q ` p1´ λq ¨ sup
PPP

ρPpy
Jq̃q

ðñ ϕpλx` p1´ λqyq ď λ ¨ ϕpxq ` p1´ λq ¨ ϕpyq,

where the first inequality follows from the convexity of ρP for all P P P and the second implication

is due to the subadditivity of the supremum operator, respectively.

We split the proof of Theorem 5 into the following five lemmas.

Lemma 4 (Expected Disutility). Fix an ambiguity set P of the form (6) with S “ tŝu. The

worst-case expected disutility ϕEDpxq “ supPPP P-EDpxJq̃q with

P-EDpxJq̃q “ EP
“

UpxJq̃q
‰

,

where the disutility function U is monotonically non-decreasing and convex with Up0q ě 0, af-

fords a W p2n` 1q-point worst-case distribution that can be computed with Algorithm 1 and that is

independent of x. Moreover, ϕED is monotone, convex and not subadditive.
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Proof. The first part of the statement directly follows from Theorem 4, which applies since U is

convex. In view of the second part, Lemma 3 implies that ϕ inherits monotonicity and convexity

from EPrUp¨qs, P P P. To see that ϕED is not subadditive, consider an ambiguity set of the form (6)

with W “ 2, ŝ “ p0.3, 0.7qJ, q1 “ q1 “ p5, 7qJ and q2 “ q2 “ p6, 3qJ, and assume for ease of

exposition that the expectation and mean absolute deviation constraints in the definition of P are

absent. For Upxq “ x2, x “ p1, 0qJ and y “ p0, 1qJ, we have

ϕEDpxq
loomoon

“ 32.7

` ϕEDpyq
loomoon

“ 21

ă ϕEDpx` yq
loooooomoooooon

“ 99.9

,

which shows that ϕED is indeed not subadditive.

Lemma 5 (Essential Riskiness Index). Fix an ambiguity set P of the form (6) with S “ tŝu. The

essential riskiness index ϕERI with

ϕERIpxq “ inf

"

α ě 0 : sup
PPP

EP
“

max
 

xJq̃ ´ ρ, ´α
(‰

ď 0

*

,

where ρ is the acceptable demand threshold, can be computed in time Opn2W ` nW logNW q.

Moreover, ϕERI is monotone, convex and not subadditive.

Proof. Note that the worst-case expectation embedded in the expression for ϕERI satisfies the

conditions of Theorem 4 since the mapping x ÞÑ maxtx, ´αu is convex. We can thus express the

essential riskiness index as

ϕERIpx
Jq̃q “ inf

#

α ě 0 :
ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj ¨max
 

xJq‹wj ´ ρ, ´α
(

ď 0

+

,

where p‹wj and q‹wj , w PW and j “ 1, . . . , 2n` 1, do not depend on α or x. The expression

ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj ¨max
 

xJq‹wj ´ ρ, ´α
(

(9)

is piecewise affine and monotonically non-increasing in α with breakpoints ρ´xJq‹wj , w PW and j “

1, . . . , 2n`1. We can calculate these breakpoints in time Opn2W q, sort them in time OpnW log nW q

and conduct a binary search over them to determine the smallest root of the expression (9). The

binary search requires Oplog nW q iterations, and the evaluation of (9) in each iteration requires time

OpnW q. Note that since the worst-case distribution P‹ is independent of α and x, the parameters

p‹wj and q‹wj can be determined once per 2VF(d) instance.
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Convexity of ϕERI follows from Proposition 3 of Zhang et al. (2019). One readily verifies that

ϕERI is monotone since q̃ ě 0 P-a.s. for all P P P. To see that ϕERI is not subadditive, finally,

consider an ambiguity set of the form (6) with W “ 2, ŝ “ p0.2, 0.8qJ, q1 “ q1 “ p5, 10qJ and q2 “

q2 “ p10, 5qJ, and assume for ease of exposition that the expectation and mean absolute deviation

constraints in the definition of P are absent. For ρ “ 12, x “ p1, 0qJ and y “ p0, 1qJ, we have

ϕERIpxq
looomooon

“ 0

` ϕERIpyq
looomooon

“ 0

ă ϕERIpx` yq
loooooomoooooon

“`8

,

which shows that ϕERI is indeed not subadditive.

Lemma 6 (Expectiles). Fix an ambiguity set P of the form (6) with S “ tŝu. The worst-case

expectile risk measure ϕE with

ϕEpxq “ arg min
uPR

"

α ¨ sup
PPP

EP

”

“

xJq̃ ´ u
‰2

`

ı

` p1´ αq ¨ sup
PPP

EP

”

“

u´ xJq̃
‰2

`

ı

*

,

where α P r1{2, 1q, can be computed in time Opn2W ` nW log nW q. Moreover, ϕE is monotone,

convex and subadditive.

Proof. Both worst-case expectations in the definition of ϕE satisfy the conditions of Theorem 4,

which implies that the expression inside the minimum defining ϕE simplifies to

ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj

„

α
´

“

xJq‹wj ´ u
‰

`

¯2
` p1´ αq

´

“

u´ xJq‹wj
‰

`

¯2


, (10)

where p‹wj and q‹wj , j “ 1, . . . , 2n ` 1 and w P W, do not depend on u or x. The expression (10)

is piecewise affine and convex in u with breakpoints xJq‹wj , w P W and j “ 1, . . . , 2n ` 1. We

can calculate these breakpoints in time Opn2W q, sort them in time OpnW log nW q and conduct a

trisection search over them to determine a value of u that minimizes (10). The trisection search

requires Oplog nW q iterations, and the evaluation of (10) in each iteration requires time OpnW q

since the breakpoints have been computed previously. Note that since the worst-case distribution

P‹ is independent of u and x by Theorem 4, the parameters p‹wj and q‹wj can be determined once

per 2VF(d) instance.

The above discussion implies that

ϕE

`

xJq̃
˘

“ arg min
uPR

"

EP‹

„

α
´

“

xJq̃ ´ u
‰

`

¯2


` EP‹

„

p1´ αq
´

“

u´ xJq̃
‰

`

¯2
*

for the worst-case distribution P‹ of Theorem 4. Proposition 6 of Bellini et al. (2014) then implies

that ϕE is coherent and thus, a fortiori, monotone, convex and subadditive.
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Lemma 7 (Entropic Risk). Fix an ambiguity set P of the form (6) with S “ tŝu. The worst-case

entropic risk ϕentpxq “ supPPP P-entpxJq̃q with

P-ent
`

xJq̃
˘

“
1

θ
logEP

“

exp
`

θ ¨ xJq̃
˘‰

,

where θ ą 0, affords a W p2n`1q-point worst-case distribution that can be computed with Algorithm 1

and that is independent of x. Moreover, ϕent is monotone, convex and not subadditive.

Proof. Since x ÞÑ logpxq is monotonically increasing, we can exchange the order of the supremum

and logarithm operators in the definition of ϕent and conclude that

ϕentpxq “
1

θ
log

ˆ

sup
PPP

EP
“

exp
`

θ ¨ xJq̃
˘‰

˙

.

The worst-case expectation embedded in the above expression satisfies the conditions of Theorem 4,

which implies the first part of the statement.

By Definition 2.3 of Föllmer and Knispel (2011), P-ent is monotone and convex for every P P P,

and Lemma 3 implies that both properties carry over to the worst-case entropic risk ϕent. To see

that ϕent is not subadditive, finally, fix θ “ 1 and consider the ambiguity set from the proof of

Lemma 4 together with x “ p1, 0qJ and y “ p0, 1qJ. We then have

ϕentpxq
loomoon

“ 5.79

` ϕentpyq
loomoon

“ 5.84

ă ϕentpx` yq
looooomooooon

“ 17.81

,

which shows that ϕent is indeed not subadditive.

Lemma 8 (Requirements Violation Index). Fix an ambiguity set P of the form (6) with S “ tŝu.

The requirements violation index ϕRV with

ϕRVpxq “ inf
 

α ě 0 : Cαpx
Jq̃q ď ρ

(

,

where Cα is the worst-case certainty equivalent under an exponential disutility,

Cαpx
Jq̃q “

$

’

’

&

’

’

%

sup
PPP

α logEP

„

exp

ˆ

xJq̃

α

˙

if α ą 0

lim
γÑ0

Cγpx
Jq̃q if α “ 0,

and ρ is the acceptable demand threshold, can be computed to ε-accuracy via bisection search.

Moreover, ϕRV is monotone, convex and not subadditive.
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Proof. Following similar arguments as in the proof of Lemma 7, one can show that the worst-case

certainty equivalent Cα can be computed for any fixed value of α in time OpnW q, with an initial

computation of time Opn2W q to compute the worst-case distribution P‹ as well as the expressions

xJq‹wj . Note that the worst-case certainty equivalent Cα is monotonically non-increasing in α

(Jaillet et al., 2016, Lemma 1). We can thus conduct a bisection search to determine the smallest

value of α that satisfies Cαpx
Jq̃q ď ρ. The bisection search can be started with the lower bound

α “ ε, where ε is a sufficiently small positive quantity, and any upper bound α satisfying α ě xJq‹wj

for all w PW and j “ 1, . . . , 2n` 1 as well as

α ě

pexpp1q ´ 2q
ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj ¨ px
Jq‹wjq

2

ρ´
ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj ¨ x
Jq‹wj

,

which guarantees that Cαpx
Jqq ď ρ. Details are omitted for the sake of brevity.

As for the second part of the statement, the convexity of ϕRV follows from Proposition 1 of Jaillet

et al. (2016). One readily verifies that ϕRV is monotone since q̃ ě 0 P-a.s. for all P P P. To see

that ϕRV is not subadditive, finally, fix ρ “ 12 and consider the ambiguity set from the proof of

Lemma 5 together with x “ p1, 0qJ and y “ p0, 1qJ. We then have

ϕRVpxq
loomoon

“ 0

` ϕRVpyq
loomoon

“ 0

ă ϕRVpx` yq
looooomooooon

“`8

,

which shows that ϕRV is indeed not subadditive.

Proof of Theorem 5. The proof directly follows from the Lemmas 4–8.

We split the proof of Theorem 6 into the following two lemmas.

Lemma 9 (CVaR). Fix an ambiguity set P of the form (6) with S “ tŝu. The worst-case condi-

tional value-at-risk at level 1´ ε, ϕCVaRpxq “ supPPP P-CVaR1´εpx
Jq̃q with

P-CVaR1´εpx
Jq̃q “ inf

uPR
u`

1

1´ ε
EP

“

xJq̃ ´ u
‰

`
,

where ε P r0, 1q, can be computed in time Opn2W ` nW log nW q. Moreover, ϕCVaR is monotone,

convex and subadditive.
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Proof. Proposition 3.1 of Shapiro and Kleywegt (2002) implies that

sup
PPP

P-CVaR1´εpx
Jq̃q “ sup

PPP
inf
uPR

u`
1

1´ ε
EPrx

Jq̃ ´ us` “ inf
uPR

u`
1

1´ ε
sup
PPP

EPrx
Jq̃ ´ us`.

Since the worst-case expectation in the right-most expression above satisfies the conditions of

Theorem 4, the worst-case CVaR further simplifies to

inf
uPR

u`
1

1´ ε

ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj ¨
“

xJq‹wj ´ u
‰

`
,

where p‹wj and q‹wj , w P W and j “ 1, . . . , 2n ` 1, do not depend on u or x. The function

inside the above minimization is piecewise affine and convex in u with breakpoints xJq‹wj , w PW

and j “ 1, . . . , 2n ` 1. We can thus obtain a minimizer by computing the breakpoints in time

Opn2W q, sorting the breakpoints in time OpnW log nW q and performing a trisection search over

the breakpoints. The trisection search requires Oplog nW q iterations, and each iteration requires

time OpnW q since the breakpoints have been computed previously.

By Corollary 12 of Rockafeller and Uryasev (2002), each constituent risk measure P-CVaR,

P P P, is coherent and thus, a fortiori, monotone, convex and subadditive. Lemma 3 then implies

that these properties carry over to the worst-case CVaR ϕCVaR.

Lemma 10 (Service Fulfilment Risk Index). Fix an ambiguity set P of the form (6) with S “ tŝu.

The service fulfillment risk index ϕSRI with

ϕSRIpx
Jq̃q “ inf

 

α ě 0 : ϕCVaR

`

max
 

xJq̃ ´ ρ, ´α
(˘

ď 0
(

,

where ρ is the acceptable demand threshold and the worst-case CVaR is evaluated at level 1´γ with

γ being the the service level, can be computed in time Opn2W ` nW log nW q. Moreover, ϕSRI is

monotone, convex and not subadditive.

Proof. Theorem 1 of Zhang et al. (2021) allows us to equivalently express ϕSRI as

ϕSRIpxq “ inf

"

α ě 0 : sup
PPP

EP
“

xJq̃ ´ ρ` α
‰

`
ď p1´ γqα

*

,

The worst-case expectation embedded in this expression satisfies the conditions of Theorem 4, and

the overall expression thus simplifies to

ϕSRIpxq “ inf

#

α ě 0 :
ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj ¨
“

xJq‹wj ´ ρ` α
‰

`
ď p1´ γqα

+

,
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where p‹wj and q‹wj , w PW and j “ 1, . . . , 2n` 1, do not depend on α or x. The expression

ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj ¨
“

xJq‹wj ´ ρ` α
‰

`
´ p1´ γqα

is piecewise affine and convex in α with breakpoints ρ ´ xJq‹wj , w P W and j “ 1, . . . , 2n ` 1.

We can thus obtain the smallest root of this expression by computing the breakpoints in time

Opn2W q, sorting the breakpoints in time OpnW log nW q and performing a trisection search over

these breakpoints. The trisection search requires Oplog nW q iterations, and each iteration requires

time OpnW q since the breakpoints have been computed previously.

Proposition 1 of Zhang et al. (2021) implies that ϕSRI is convex. Moreover, only readily verifies

that ϕSRI is monotone. To see that ϕSRI is not subadditive, finally, fix γ “ 1 and ρ “ 12 and

consider the ambiguity set from the proof of Lemma 5 together with x “ p1, 0qJ and y “ p0, 1qJ.

We then have

ρSRIpxq
looomooon

“ 0

` ρSRIpyq
loomoon

“ 0

ă ρSRIpx` yq
loooooomoooooon

“`8

,

which shows that ρSRI is indeed not subadditive.

Proof of Theorem 6. The proof directly follows from the Lemmas 9 and 10.

Proof of Theorem 7. By assumption, each risk measure ψP, P P P, can be expressed as the ex-

pectation of a convex function and thus satisfies the conditions of Theorem 4. We thus obtain that

ϕURIpxq “ inf

#

1

α
:

ÿ

wPW
ŝw

2n`1
ÿ

j“1

p‹wj ¨ fpα ¨ rx
Jq‹wj ´ ρsq ď 0, α ą 0

+

,

where p‹wj and q‹wj , w P W and j “ 1, . . . , 2n ` 1, do not depend on α or x. Note that the

summation on the left-hand side of the first inequality above inherits convexity from f , and we

can thus conduct a bisection search to determine the maximum α that satisfies the inequality. The

bisection search can be started with the lower bound α “ ε, where ε is a sufficiently small positive

quantity, and any upper bound α satisfying

ψP
`

α ¨ reJq̃ ´ ρs
˘

ď 0 for P satisfying P
„

q̃i “ max
wPW

qwi



“ 1, i P VC ,

which can be determined once per 2VF(d) instance via bisection search.

By Definition 3 of Hall et al. (2015), ϕURI is monotone, convex and positive homogeneous, and

convexity and positive homogeneity of ϕURI imply that ϕURI is subadditive as well.
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The proof of Proposition 6 relies on five auxiliary lemmas which we state and prove first.

Lemma 11. For the 1-norm ambiguity set, the function sJπpxq in Proposition 6 can be maximized

and minimized over s P S in time OpW logW q.

Proof. The problem amounts to solving

max {min sJπpxq

subject to }s´ ŝ}1 ď θ

eJs “ 1, s P RW` ,

and this problem has been studied in the literature (Petrik and Subramanian, 2014, Theorem 3.2).

In the remainder of the proof, we simplify the exposition and focus on the maximization case; the

minimization problem can be solved by a straightforward adaptation of the arguments below.

The core idea behind the algorithm is to start with the initial solution s “ ŝ and then iteratively

shift probability mass from the smallest components of πpxq to the largest one (respecting non-

negativity of all probability weights) until the uncertainty budget θ has been exhausted. This

algorithm requires the components of πpxq to be sorted in ascending order. This sorting, which

dominates the runtime of the algorithm, can be achieved in time OpW logW q.

Lemma 12. For the 8-norm ambiguity set, the function sJπpxq in Proposition 6 can be maximized

and minimized over s P S in time OpW logW q.

Proof. The problem amounts to solving

max {min sJπpxq

subject to }s´ ŝ}8 ď θ

eJs “ 1, s P RW` ,

and this problem has been studied in the literature (Megiddo and Ichimori, 1985, page 3). In

the remainder of the proof, we simplify the exposition and focus on the maximization case; the

minimization problem can be solved by a straightforward adaptation of the arguments below.

The core idea behind the algorithm is to start with the initial solution s “ rŝ´ θes` and then

iteratively increase these probability weights, starting with the weight corresponding to the largest

component of πpxq and moving towards the weight corresponding to the smallest component of
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πpxq, until either eJs “ 1 or the uncertainty budget θ has been exhausted for the particular

weight. This algorithm requires the components of πpxq to be sorted in ascending order. This

sorting, which dominates the runtime of the algorithm, can be achieved in time OpW logW q.

Lemma 13. For the axis-parallel ellipsoidal ambiguity set, the function sJπpxq in Proposition 6

can be maximized and minimized over s P S to ε-accuracy in time OpW logW ¨ log ε´1q.

Lemma 2 of Pessoa and Poss (2015) and Corollary 4 of Ghosal and Wiesemann (2020) study the

related problems of maximizing a linear function over the intersection of a 2-norm ball with an 8-

norm ball as well as the intersection of an axis-parallel ellipsoid with a hyperrectangle, respectively.

Both of those approaches consider the Lagrange relaxation of the 8-norm and hyperrectangle

constraints (while keeping intact the ellipsoidal constraint), which admits a closed-form solution.

In our context, this approach would require the dualization of both the non-negativity and the

probability simplex constraints, which would result in two sets of Lagrange multipliers that appear

difficult to handle. Instead, our proof below relies on a reduction of the dual problem.

Proof of Lemma 13. The problem amounts to solving

max {min sJπpxq

subject to ps´ ŝqJΣ´1ps´ ŝq ď θ

eJs “ 1, s P RW` .

(11)

In the remainder of the proof, we simplify the exposition by suppressing the dependence of πpxq on x

and focusing on the maximization case; the minimization problem can be solved by a straightforward

adaptation of the arguments below.

Strong convex duality, which is guaranteed by the existence of a Slater point due to the as-

sumptions θ ą 0 and Σ ą 0, implies that

max
sPRW

min
αPR`, βPR,
γPRW`

sJπ ` α
“

θ ´ ps´ ŝqJΣ´1ps´ ŝq
‰

` β
`

eJs´ 1
˘

` γJs

“ min
αPR`, βPR,
γPRW`

max
sPRW

´αsJΣ´1s` sJ
`

π ` βe` γ ` 2αΣ´1ŝ
˘

` α
`

θ ´ ŝJΣ´1ŝ
˘

´ β, (12)

where the dual multipliers α, β and γ correspond to the ellipsoidal, the probability simplex as

well as the non-negativity constraints in (11), respectively. We conduct a case distinction that
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determines the best solutions to problem (12) under the additional constraint that α “ 0 or α ą 0,

respectively. The lower of the two corresponding optimal values then coincides with the optimal

value of problem (12), which in turn is equal to the optimal value of problem (11).

Under the additional constraint that α “ 0, problem (12) reduces to

minimize ´β

subject to π ` βe` γ “ 0

β P R, γ P RW` .

Eliminating the slack variables γ from this problem, the first constraint becomes ´β ě maxtπw :

w PWu, and the optimal objective value is thus readily identified as maxtπw : w PWu.

Under the additional constraint that α ą 0, the first-order necessary optimality conditions of

the maximization problem embedded in (12) imply that

´2αΣ´1s‹ ` π ` βe` γ ` 2αΣ´1ŝ “ 0 ðñ s‹ “
1

2α
Σpπ ` βe` γ ` 2αΣ´1ŝq.

Substituting this solution into the outer minimization problem in (12), we obtain

min
αPR`, βPR,
γPRW`

1

4α
pπ ` βe` γ ` 2αΣ´1ŝqJΣpπ ` βe` γ ` 2αΣ´1ŝq ` α

`

θ ´ ŝJΣ´1ŝ
˘

´ β

“ min
αPR`, βPR,
γPRW`

1

4α
pπ ` βe` γqJΣpπ ` βe` γq ` pπ ` βe` γqJŝ` αθ ´ β

“ min
αPR`, βPR,
γPRW`

1

4α
pπ ` βe` γqJΣpπ ` βe` γq ` pπ ` γqJŝ` αθ.

Since Σ “ diagpσ2q, the above problem reduces to

min
αPR`, βPR,
γPRW`

αθ ` πJŝ`
ÿ

wPW

σ2
w

4α
pπw ` β ` γwq

2 ` γwŝw

“ min
αPR`, βPR

αθ ` πJŝ`
ÿ

wPW
min
γwPR`

σ2
w

4α
pπw ` β ` γwq

2 ` γwŝw

“ min
αPR`, βPR

αθ ` πJŝ`
ÿ

wPW

σ2
w

4α

ˆ

πw ` β `

„

´πw ´ β ´
2α

σ2
w

ŝw



`

˙2

`

„

´πw ´ β ´
2α

σ2
w

ŝw



`

ŝw,

where the last equality holds since for any fixed α P R` and β P R, the optimal solution γ‹ satisfies

γ‹w “ ´πw ´ β ´ 2α
σ2
w
ŝw if πw ` β ` 2α

σ2
w
ŝw ă 0 and γ‹w “ 0 otherwise. For any fixed α P R`, the

above optimization problem is convex in β with at most W breakpoints, which can be solved using
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a trisection search. The trisection search requires OplogW q iterations of complexity OpW q each.

By applying an outer trisection over α we obtain the overall complexity OpW logW ¨ log ε´1q.

Lemma 14. For the ellipsoidal ambiguity set, the function sJπpxq in Proposition 6 can be maxi-

mized and minimized over s P S to ε-accuracy in polynomial time via FISTA.

Theorem 7 of Ghosal and Wiesemann (2020) studies the related problem of maximizing a linear

function over the intersection of an ellipsoid with a hyperrectangle. Our proof of Lemma 14 follows

a similar strategy as that result: We dualize the optimization problem, simplify the dual through

a variable elimination and subsequently solve the simplified problem with FISTA.

Proof of Lemma 14. We focus on the maximization variant and follow the same strategy as in

the proof of Lemma 13: We dualize the optimization problem and distinguish the two cases where

α “ 0 and α ą 0. In the latter case, the dual problem is

min
αPR`, βPR,
γPRW`

1

4α
pπ ` βe` γqJΣpπ ` βe` γq ` pπ ` γqJŝ` αθ,

and the first-order necessary optimality conditions as well as the non-negativity of α imply that

´
1

4pα‹q2
pπ ` βe` γqJΣpπ ` βe` γq ` θ “ 0 ðñ α‹ “

c

1

4θ
pπ ` βe` γqJΣpπ ` βe` γq.

Eliminating α, the problem thus simplifies to

minimize
?
θ
∥∥∥Σ

1
2 pπ ` βe` γq

∥∥∥
2
` pπ ` γqJŝ

subject to β P R, γ P RW` .

The objective function of this problem constitutes the sum of a non-smooth norm expression and a

smooth function of pβ,γq. We can solve the problem using FISTA (Beck and Teboulle, 2009) with

adaptive restarts (O’Donoghue and Candès, 2015) if we move the non-negativity constraints to the

objective function through indicator functions and apply a Moreau proximal smoothing (Beck and

Teboulle, 2012) to the norm term in the objective function.

Lemma 15. For the entropy ambiguity set, the function sJπpxq in Proposition 6 can be maximized

and minimized over s P S to ε-accuracy in time OpW logrπ{εsq, where π “ maxtπwpxq : w PWu.
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Proof. The problem amounts to solving

max {min sJπpxq

subject to
ÿ

wPW
sW log

ˆ

sw
ŝw

˙

ď θ

eJs “ 1, s P RW` ,

and this problem has been studied in the literature (Nilim and El Ghaoui, 2005, Section 6.2). In

the remainder of the proof, we simplify the exposition and focus on the maximization case; the

minimization problem can be solved by a straightforward adaptation of the arguments below.

The core idea behind the algorithm is to dualize the problem and simplify it to the form

min
λą0

λ log

«

ÿ

wPW
ŝw exp

ˆ

πwpxq

λ

˙

ff

` θλ.

The objective function of this problem is convex, and we can thus conduct a trisection search to

obtain an ε-optimal solution λ‹. Section 6.3 of Nilim and El Ghaoui (2005) shows that the optimal

solution λ‹ satisfies λ‹ ď rπ ´ πpxqJŝs{θ, which implies the stated complexity estimate.

Proof of Proposition 6. Since f is monotonically increasing, we can first determine the optimal

value θ‹ of the problem maxsPS{minsPS s
Jπpxq and then compute ϕpxq “ fpθ‹q. The proof of the

statement then follows directly from the Lemmas 11–15.

Proof of Corollary 1. In view of the expected disutility, we note that the rectangularity of the

scenario-wise ambiguity sets Pw, w PW, allows us to rewrite the risk measure as

ϕEDpxq “ max
sPS

sup
PwPPw:
wPW

ÿ

wPW
sw ¨ EPw

“

UpxJq̃q
‰

“ max
sPS

ÿ

wPW
sw ¨ sup

PwPPw
EPw

“

UpxJq̃q
‰

loooooooooooomoooooooooooon

“πwpxq

,

which satisfies the conditions of Proposition 6 if we set fpxq “ x.

As for the entropic risk, similar arguments allow us to rewrite the risk measure as

ϕEDpxq “ max
sPS

sup
PwPPw:
wPW

1

θ
log

ÿ

wPW
sw ¨ EPw

“

exppθ ¨ xJq̃q
‰

“ max
sPS

1

θ
log

ÿ

wPW
sw ¨ sup

PwPPw
EPw

“

exppθ ¨ xJq̃q
‰

looooooooooooooomooooooooooooooon

“πwpxq

,

which satisfies the conditions of Proposition 6 if we set fpxq “ 1
θ logpxq.
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Proof of Proposition 7. Under the stated assumptions, one can minimize the convex function

f0puq `
L
ÿ

`“1

max
sPS

f`
`

sJπ`px, uq, u
˘

over u P U in Oplog ε´1q iterations of complexity OpLT q each using a trisection search. This shows

the statement for the first worst-case risk measure ϕ.

In view of the second worst-case risk measure ϕ, we can first employ the aforementioned tri-

section search to minimize the left-hand side of the inequality constraint. This establishes whether

or not the minimization problem is feasible, and it provides a lower (if g is monotonically decreas-

ing) or upper (if g is monotonically increasing) bound on the constrained minimizer of g. We can

subsequently identify the constrained minimizer of g by a bisection search. Both the trisection and

the bisection search require Oplog ε´1q iterations of complexity OpLT q each.

Proof of Corollary 2. In view of the essential riskiness index, we note that the rectangularity

of the scenario-wise ambiguity sets Pw, w PW, allows us to rewrite the risk measure as

ϕpxq “ inf

$

&

%

u ě 0 : max
sPS

sup
PwPPw:
wPW

ÿ

wPW
sw ¨ EPw

“

max
 

xJq̃ ´ ρ, ´u
(‰

ď 0

,

.

-

“ inf

#

u ě 0 : max
sPS

ÿ

wPW
sw ¨ sup

PwPPw
EPw

“

max
 

xJq̃ ´ ρ, ´u
(‰

looooooooooooooooooooomooooooooooooooooooooon

“π1wpx,uq

ď 0

+

,

which satisfies the conditions of Proposition 7 if we set U “ R`, gpuq “ u, f0puq “ 0, L “ 1 and

f1px, uq “ x.
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As for expectiles, similar arguments allow us to rewrite the risk measure as

ϕpxq “ arg min
uPR

#

α ¨max
sPS

sup
PwPPw:
wPW

ÿ

wPW
sw ¨ EPw

”

“

xJq̃ ´ u
‰2

`

ı

`

p1´ αq ¨max
sPS

sup
PwPPw:
wPW

ÿ

wPW
sw ¨ EPw

”

“

u´ xJq̃
‰2

`

ı

+

“ arg min
uPR

#

α ¨max
sPS

ÿ

wPW
sw ¨ sup

PwPPw
EPw

”

“

xJq̃ ´ u
‰2

`

ı

looooooooooooooomooooooooooooooon

“π1wpx,uq

`

p1´ αq ¨max
sPS

ÿ

wPW
sw ¨ sup

PwPPw
EPw

”

“

u´ xJq̃
‰2

`

ı

looooooooooooooomooooooooooooooon

“π2wpx,uq

+

,

which satisfies the conditions of Proposition 7 if we set U “ R, f0puq “ 0, L “ 2, f1px, uq “ α ¨ x

and f2px, uq “ p1´ αq ¨ x.

In view of the requirements violation index, we observe that

ϕpxq “ inf

$

&

%

u ą 0 : max
sPS

sup
PwPPw:
wPW

u log

˜

ÿ

wPW
sw ¨ EPw

„

exp

ˆ

xJq̃

u

˙

¸

ď ρ

,

.

-

“ inf

#

u ą 0 : ´ρ`max
sPS

u log

˜

ÿ

wPW
sw ¨ sup

PwPPw
EPw

„

exp

ˆ

xJq̃

u

˙

loooooooooooooooomoooooooooooooooon

π1wpx,uq

¸

ď 0

+

,

and the convexity of the log-sum-exp function, together with the fact that convexity is preserved

under affine compositions as well as perspectives, shows that the last expression satisfies the con-

ditions of Proposition 7 if we set U “ R``, gpuq “ u, f0puq “ ´ρ, L “ 1 and f1px, uq “ u ¨ logpxq.

As for the CVaR, we note that

ϕpxq “ max
sPS

sup
PwPPw:
wPW

inf
uR

#

u`
1

1´ ε

ÿ

wPW
sw ¨ EPw

“

xJq̃ ´ u
‰

`

+

“ inf
uR

max
sPS

sup
PwPPw:
wPW

#

u`
1

1´ ε

ÿ

wPW
sw ¨ EPw

“

xJq̃ ´ u
‰

`

+

“ inf
uR

#

u`max
sPS

1

1´ ε

ÿ

wPW
sw ¨ sup

PwPPw
EPw

“

xJq̃ ´ u
‰

`
loooooooooooooomoooooooooooooon

“π1wpx,uq

+

,

which satisfies the conditions of Proposition 7 if we set U “ R, f0puq “ u, L “ 1 and f1px, uq “

x{p1´ εq.
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In view of the service fulfilment index, similar arguments show that

ϕpxq “ inf
 

u ě 0 : ϕCVaR

`

max
 

xJq̃ ´ ρ, ´u
(˘

ď 0
(

“ inf

$

&

%

u ě 0 : ´p1´ γqu`max
sPS

sup
PwPPw:
wPW

ÿ

wPW
sw ¨ EPw

“

xJq̃ ´ ρ` u
‰

`
ď 0

,

.

-

“ inf

#

u ě 0 : ´p1´ γqu`max
sPS

ÿ

wPW
sw ¨ sup

PwPPw
EPw

“

xJq̃ ´ ρ` u
‰

`
loooooooooooooooomoooooooooooooooon

“π1wpx,uq

ď 0

+

,

which satisfies the conditions of Proposition 7 if we set U “ R`, gpuq “ u, f0puq “ ´p1 ´ γq ¨ u,

L “ 1 and f1px, uq “ x.

For the underperformance risk index, finally, we note that

ϕpxq “ inf
uPR``

$

&

%

1

u
: max
sPS

sup
PwPPw:
wPW

ÿ

wPW
sw ¨ EPw

“

f
`

u
“

xJq̃ ´ ρ
‰˘‰

ď 0

,

.

-

“ inf
uPR``

#

1

u
: max
sPS

ÿ

wPW
sw ¨ sup

PwPPw
EPw

“

f
`

u
“

xJq̃ ´ ρ
‰˘‰

loooooooooooooooooomoooooooooooooooooon

“π1wpx,uq

ď 0

+

which satisfies the conditions of Proposition 7 if we set U “ R``, gpuq “ 1{u, f0puq “ 0, L “ 1

and f1px, uq “ x.

Proof of Observation 1. The proof is immediate and left out for the sake of brevity.

Proof of Observation 2. The constituent risk measures P-VaR, P P P, are monotone and

positive homogeneous (Föllmer and Schied, 2010, p. 3), and Lemma 3 implies that both properties

carry over to ϕVaR. To see that ϕVaR is neither convex nor subadditive, note that ambiguity sets of

the form (6) with qw “ qw, w PW, and expectation as well as mean absolute deviation conditions

absent constitute singleton sets that contain single distributions, and that the value-at-risk is known

to violate convexity and subadditivity in that case (Föllmer and Schied, 2010, p. 3).

60



Proof of Proposition 8. We show that R P CCC if and only if R P CmVaR. Indeed,

R P CCC ðñ P

«

ÿ

iPR

q̃i ď B

ff

ě 1´ ε @P P P

ðñ sup
PPP

P-VaR1´εp1R
Jq̃q ď B

ðñ

R

sup
PPP

P-VaR1´εp1R
Jq̃q{B

V

ď 1

ðñ

R

sup
PPP

P-VaR1´pk´1qεp1R
Jq̃q{B

V

ď 1 for k “ 2

ðñ

R

sup
PPP

P-VaR1´pk´1qεp1R
Jq̃q{B

V

ď 1 @k P K : k ě 2

ðñ min

"

k,

R

sup
PPP

P-VaR1´pk´1qεp1R
Jq̃q{B

V*

ď 1 @k P K : k ě 2

ðñ max
k“2,...,m

ap1R, kq ď 1 ðñ max
kPK

ap1R, kq “ 1

ðñ ϕmVaRp1Rq “ B ðñ R P CmVaR,

where the first two equivalences follow from the definition of the set CCC and Observation 1,

respectively, while the fifth equivalence holds since the worst-case value-at-risk is monotonically

non-decreasing in its risk threshold. The eighth equivalence holds since ap1R, 1q “ 1 by definition,

the penultimate equivalence follows from the definition of ϕmVaR, and the last equivalence holds

since any R P CmVaR must satisfy ϕmVaRp1Rq “ B as ap1R, 1q “ 1.

The proof of Proposition 9 relies on five auxiliary results, which we state and prove first.

Lemma 16. Let k‹ “ min arg maxtapx, kq : k P Ku. Then apx, k‹q “ k‹.

Proof. If k‹ “ 1, then we have apx, k‹q “ 1 by definition of a. In the remainder of the proof, we thus

assume that k‹ ě 2. Define Zk “ rsupPPP P-VaR1´pk´1qε

`

xJq̃
˘

{Bs so that apx, kq “ mintk, Zku.

The statement of the lemma follows if we show that k‹ ď Zk‹ .

Assume to the contrary that Zk‹ ă k‹, which implies that apx, k‹q “ Zk‹ . Then Zk‹ ď k‹ ´ 1

because Zk‹ P Z, as well as Zk‹ ď Zk‹´1 since the worst-case value-at-risk is monotonically non-

decreasing in its risk threshold. We consider two possible cases, both of which will lead to a

contradiction: If k‹ ´ 1 ď Zk‹´1, then apx, k‹ ´ 1q “ k‹ ´ 1 ě Zk‹ “ apx, k‹q. If k‹ ´ 1 ą Zk‹´1,

on the other hand, then apx, k‹ ´ 1q “ Zk‹´1 ě Zk‹ “ apx, k‹q. Either case, however, violates the

assumption that k‹ is the smallest maximizer of apx, ¨q.
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Lemma 17. Let k‹ “ min arg maxtapx, kq : k P Ku. Then supPPP P-VaR1´k‹εpx
Jq̃q ď k‹B.

Proof. Note that

apx, k‹ ` 1q “ min

"

k‹ ` 1,

R

sup
PPP

P-VaR1´k‹εpx
Jq̃q{B

V*

ď apx, k‹q “ k‹,

where the first identity holds by definition, the inequality holds since k‹ maximizes apx, ¨q, and the

second identity follows from Lemma 16. Since k‹ ` 1 ą k‹, the above equation implies that

R

sup
PPP

P-VaR1´k‹εpx
Jq̃q{B

V

ď k‹,

which immediately implies the statement of the lemma.

Lemma 18. For any two random variables X̃1 and X̃2 and risk thresholds ε1, ε2 P p0, 1q, we have

supPPP P-VaR1´ε1´ε2pX̃1 ` X̃2q ď supPPP P-VaR1´ε1pX̃1q ` supPPP P-VaR1´ε2pX̃2q.

Proof. Define ϑi “ supPPP P-VaR1´εipX̃iq for i “ 1, 2. We need to show that PpX̃1`X̃2 ď ϑ1`ϑ2q ě

1´ ε1 ´ ε2 for all P P P. To this end, fix any P P P and observe that

PpX̃1 ` X̃2 ď ϑ1 ` ϑ2q ě PpX̃1 ď ϑ1 and X̃2 ď ϑ2q “ 1´ PpX̃1 ą ϑ1 or X̃2 ą ϑ2q

ě 1´ rPpX̃1 ą ϑ1q ` PpX̃2 ą ϑ2qs “ 1´ ε1 ´ ε2,

where the second inequality is due to Bonferroni’s inequality. Since P P P was selected arbitrarily,

the statement of the lemma follows.

Lemma 19. The worst-case risk measure ϕmVaR is monotone.

Proof. Fix any x,y P r0, 1sn with x ď y and define Zk “ rsupPPP P-VaR1´pk´1qεpx
Jq̃q{Bs as well

as Z 1k “ rsupPPP P-VaR1´pk´1qεpy
Jq̃q{Bs. Since P-VaR is monotone (Föllmer and Schied, 2010,

p. 3) and q̃ ě 0 P-a.s. for all P P P, Lemma 3 implies that

Zk ď Z 1k @k P K ðñ mintk, Zku ď mintk, Z 1ku @k P K

ðñ mintk, Zku ď max
kPK

mintk, Z 1ku @k P K

ðñ max
kPK

mintk, Zku ď max
kPK

mintk, Z 1ku,

and the last inequality immediately implies that ϕmVaRpxq ď ϕmVaRpyq.

Lemma 20. The worst-case risk measure ϕmVaR is subadditive.
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Proof. Assume to the contrary that ϕmVaR is not subadditive, that is, there are x1,x2 P r0, 1s
n,

x1 ` x2 ď e, with corresponding maximizers k‹1, k‹2 of function a (cf. Lemma 16) such that

ϕmVaRpx1 ` x2q ą ϕmVaRpx1q ` ϕmVaRpx2q

ðñ B ¨max
kPK

apx1 ` x2, kq ą B ¨ pk‹1 ` k
‹
2q

ðñ max
kPK

apx1 ` x2, kq ą k‹1 ` k
‹
2

ðñ apx1 ` x2, k
1q ą k‹1 ` k

‹
2 for some k1 P tk‹1 ` k

‹
2 ` 1, . . . ,mu

ðñ min

"

k1,

R

sup
PPP

P-VaR1´pk1´1qε

`

px1 ` x2q
Jq̃

˘

{B

V*

ą k‹1 ` k
‹
2

ðñ

R

sup
PPP

P-VaR1´pk1´1qε

`

px1 ` x2q
Jq̃

˘

{B

V

ą k‹1 ` k
‹
2

ðñ sup
PPP

P-VaR1´pk1´1qε

`

px1 ` x2q
Jq̃

˘

ą B ¨ pk‹1 ` k
‹
2q,

(13)

where the third equivalence follows from the fact that apx1 ` x2, k
1q ď k1 for all k1 P K.

Define ε1 “ k‹1ε and ε2 “ k‹2ε. Our assumption ε ă 1{m implies that ε1, ε2 P p0, 1q. We have

sup
PPP

P-VaR1´pk1´1qε

`

px1 ` x2q
Jq̃

˘

ď sup
PPP

P-VaR1´pk‹1`k
‹
2qε

`

px1 ` x2q
Jq̃

˘

“ sup
PPP

P-VaR1´ε1´ε2

`

px1 ` x2q
Jq̃

˘

ď sup
PPP

P-VaR1´ε1

`

xJ1 q̃
˘

` sup
PPP

P-VaR1´ε2

`

xJ2 q̃
˘

ď B ¨ pk‹1 ` k
‹
2q,

where the first inequality holds since k1 ě k‹1 ` k‹2 ` 1, while the other two inequalities are due to

Lemmas 18 and 17, respectively. Since this inequality chain violates (13), the statement follows.

Proof of Proposition 9. The monotonicity and subadditivity of ϕmVaR follow from Lemmas 19

and 20, respectively. Moreover, ϕmVaR cannot be positive homogeneous since its image is restricted

to integer numbers. To see that ϕmVaR is not convex either, consider an ambiguity set P of the

form (6) with W “ 1 and n “ 3, q1 “ p1, 5, 1qJ and q1 “ p30, 20, 30qJ, µ1 “ p16, 10, 16qJ as well

as ν1 “ p2, 0.5, 2qJ. For ε “ 0.1, B “ 20.6 as well as x “ p1, 0, 1qJ and y “ p0, 1, 0qJ, we have

ϕmVaRp0.67 ¨ x` 0.33 ¨ yq
loooooooooooooooomoooooooooooooooon

“ 2¨B

ą 0.67 ¨ ϕmVaRpxq
loooomoooon

“ 2¨B

`0.33 ¨ ϕmVaRpyq
loooomoooon

“B

,

which shows that ϕmVaR is indeed not convex.
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Proof of Theorem 8. Define Zk “ rsupPPP P-VaR1´pk´1qεpx
Jq̃q{Bs such that apx, 1q “ 1 and

apx, kq “ mintk, rZksu for k ě 2. Let k‹ “ min arg maxtapx, kq : k P Ku. We claim that for all

k P K, (i) if k ą Zk, then k ą k‹; and (ii) if k ď Zk, then k ď k‹. This will imply that k‹ can be

determined via binary search as long as we can compute Zk, k P K, efficiently.

In view of (i), assume to the contrary that there is k1 ą Zk1 such that 1 ď k1 ď k‹. We then

have Zk1 ă k1 ď k‹ ď Zk‹ , where the last inequality follows from Lemma 16. This, however,

contradicts the fact that Zk‹ ď Zk1 since k1 ď k‹ by assumption and Zk is monotonically non-

increasing in k. As for (ii), assume to the contrary that there is k1 ď Zk1 such that k1 ą k‹. We

then have k‹ ă k1 ď Zk1 ď Zk‹ , where the last inequality again holds since Zk is monotonically

non-increasing in k. This implies that apx, k1q “ k1 ą apx, k‹q, which contradicts the fact that

k‹ P arg max apx, kq.

It remains to be shown how Zk can be evaluated efficiently. To this end, we note that

sup
PPP

P-VaR1´pk´1qεpx
Jq̃q “ inf

uPR

"

u : inf
PPP

PpxJq̃ ď uq ě 1´ pk ´ 1qε

*

“ inf
uPR

$

&

%

u : inf
PwPPw:
wPW

ÿ

wPW
ŝw ¨ PwpxJq̃ ď uq ě 1´ pk ´ 1qε

,

.

-

“ inf
uPR

#

u :
ÿ

wPW
ŝw ¨ inf

PwPPw
PwpxJq̃ ď uq ě 1´ pk ´ 1qε

+

,

where the first equality holds by definition and the other two identities are due to the law of total

probability as well as the rectangularity of the ambiguity set, respectively. Verifying whether a

fixed u under- or overestimates the worst-case value at risk thus reduces to computing the quantity

inf
PwPPw

PwpxJq̃ ď uq “ sup
θwPr0,1s

"

1´ θw : sup
PwPPw

Pw-VaR1´θwpx
Jq̃q ď u

*

“ sup
θwPr0,1s

#

1´ θw :
ÿ

iPVC

xi

ˆ

µwi `min

"

qwi ´ µ
w
i ,

ˆ

1´ θw
θw

˙

pµwi ´ q
w
i
q,

νwi
2θw

*˙

ď u

+

,

for all w P W and verifying whether their ŝ-weighted sum weakly exceeds 1 ´ pk ´ 1qε. Here,

the first identity follows from the definition of the value-at-risk, whereas the second identity is

due to Proposition 2 of Ghosal and Wiesemann (2020). Note that the sum embedded in the final

maximization problem above is monotonically non-increasing and piecewise smooth in θw with at

most 3n breakpoints pµwi ´q
w
i
q{pqwi ´q

w
i
q, νwi {p2rq

w
i ´µ

w
i sq and pµwi ´q

w
i
´νwi {2q{pµ

w
i ´q

w
i
q, i P VC .
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We can sort these breakpoints in time Opn log nq and compute the maximizer via a binary search.

The binary search takes Oplog nq iterations of time Opnq. We can embed the binary searches over

θw, w PW, in a binary search over u P R to compute Zk. The outer binary search can be initialized

with the lower bound u “ 0 and the upper bound u “ maxwPW eJqw, and it can be terminated

once the bounds differ by less than the accuracy κ. Finally, we need to conduct a binary search

over the number of vehicles k P K to compute the maximizer of apx, ¨q.

Proof of Proposition 10. A similar reasoning as in the proof of Theorem 8 applies; the main

difference lies in the computation of supPPP P-VaR1´pk´1qεpx
Jq̃q. We now have

sup
PPP

P-VaR1´pk´1qεpx
Jq̃q “ inf

uPR

"

u : min
sPS

sJπpx, uq ě 1´ pk ´ 1qε

*

, (14)

where each component πwpx, uq “ infPwPPw PwpxJq̃ ď uq, w P W, can be computed in time

Opn log nq as detailed in the proof of Theorem 8, and Proposition 6 provides the complexity esti-

mates for the computation of minsPS s
Jπpxq.

A mathematical subtlety arises for the entropy and (axis-parallel as well as generic) ellipsoidal

ambiguity sets, where the quantities minsPS s
Jπpxq are only computed to a limited accuracy δ ą 0.

We need to choose δ small enough so that for any u outside the κ-neighborhood of a minimizer u‹

in (14), the δ-neighborhood of minsPS s
Jπpx, uq is either fully contained in the interval r0, 1´pk´

1qεq or fully contained in the interval r1´pk´1qε, 1s, as this guarantees that the bisection decisions

are not influenced by the inaccurate computation of minsPS s
Jπpxq. Since π is monotonically non-

decreasing in u, any u outside the κ-neighborhood of a minimizer u‹ satisfies

ˇ

ˇ

ˇ

ˇ

min
sPS

sJπpx, uq ´ min
sPS

sJπpx, u‹q

ˇ

ˇ

ˇ

ˇ

ě κ ¨min
uPR

ˇ

ˇ

ˇ

ˇ

d

du
min
sPS

sJπpx, uq

ˇ

ˇ

ˇ

ˇ

ě κ ¨ min
uPR, wPW

ˇ

ˇ

ˇ

ˇ

d

du
πwpx, uq

ˇ

ˇ

ˇ

ˇ

.

Straightforward but tedious calculations show that

d

du
πwpx, uq ě πw :“

mintµwj ´ q
w
j

: j P VCu

maxteJqw : w PWu2

uniformly across u P R, and it is thus sufficient to select δ ď κ ¨mintπw : w P Wu, which implies

the stated complexity estimates.
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Appendix B: Worst-Case Distribution for Theorem 4

Algorithm 1 computes the worst-case probabilities pp‹wjqw,j with associated demand realizations

pq‹wjqw,j for Theorem 4. The intuition behind this algorithm is outlined in Section 5.1, and the

correctness of the algorithm is proven by Long et al. (2020).

Algorithm 1: Algorithm for determining the worst-case distribution (Long et al., 2020)

Input: pqw, qwq, µw and νw, w PW, for the ambiguity set (6).

for w PW do

Compute for all customers i P VC the marginal worst-case distribution:

• Pw
“

q̃wi “ qw
i

‰

“
ν̂wi

2pµwi ´q
w
i
q

• Pw
“

q̃wi “ µwi
‰

“ 1´
ν̂wi pq

w
i ´q

w
i
q

2pqwi ´µ
w
i qpµ

w
i ´q

w
i
q

• Pw
“

q̃wi “ qwi
‰

“
ν̂wi

2pqwi ´µ
w
i q

, where ν̂wi “ min
!

νwi ,
2pqwi ´µ

w
i qpµ

w
i ´q

w
i
q

qwi ´q
w
i

)

Set q‹w,1 “ q
w and m “ pmiqiPVC “ pPwrq̃wi “ qw

i
sqiPVC

for j “ 1, 2, . . . , 2n do

Let k “ min arg min tmi : i P VCu

Set p‹wj “ mk, q
‹
w,j`1 “ q

‹
w,j and m “m´ p‹wje

If q‹w,j`1,k “ qw
k

then set q‹w,j`1,k “ µwk else set q‹w,j`1,k “ qwk

Set mk “ Pwrq̃wk “ q‹w,j`1,ks

end

end

Output: Worst-case probabilities pp‹wjqw,j with associated demand realizations pq‹wjqw,j .
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Appendix C: Detailed Numerical Results

Table 1 reports the best feasible solution (‘Opt’; accompanied by an asterisk if it is confirmed to be

optimal) and the best lower bound (‘LB’; value in brackets unless solved to optimality) identified by,

as well as the runtime (‘t’; unless not solved to optimality, in which case the runtime is 12h) incurred

by our branch-and-cut scheme for the deterministic CVRP (‘Deterministic’), the distributionally

robust CVRP with known (‘Stochastic’) and unknown scenario probabilities (‘Ambiguous’).

Problem

Deterministic Stochastic Ambiguous
———————– ———————– ———————–

Opt
t (sec)

Opt
t (sec)

Opt
t (sec)

[LB] [LB] [LB]

A-n32-k5 745.0‹ 0.1 745.0‹ 0.32 747.0‹ 0.26
A-n33-k5 617.0‹ 0.09 639.0‹ 5.14 639.0‹ 4.85
A-n33-k6 703.0‹ 0.4 707.0‹ 31.94 711.0‹ 27.86
A-n34-k5 701.0‹ 0.1 701.0‹ 1.26 702.0‹ 1.34
A-n36-k5 732.0‹ 0.15 743.0‹ 13.35 758.0‹ 231.02
A-n37-k5 651.0‹ 0.16 653.0‹ 3.6 655.0‹ 4.22
A-n37-k6 861.0‹ 1.8 877.0‹ 232.77 879.0‹ 96.01
A-n38-k5 648.0‹ 0.07 654.0‹ 1.08 654.0‹ 0.98
A-n39-k5 735.0‹ 0.42 758.0‹ 47.12 762.0‹ 67.48
A-n39-k6 774.0‹ 0.6 774.0‹ 11.65 774.0‹ 11.1
A-n44-k6 891.0‹ 29.07 892.0‹ 692.84 897.0‹ 970.76
A-n45-k6 869.0‹ 1.93 872.0‹ 87.95 873.0‹ 26.96
A-n45-k7 1034.0‹ 5.42 1051.0‹ 514.83 1064.0‹ 2226.95
A-n46-k7 851.0‹ 0.52 871.0‹ 43.66 874.0‹ 59.06
A-n48-k7 967.0‹ 0.91 967.0‹ 10.91 979.0‹ 57.31
A-n53-k7 954.0‹ 2.22 959.0‹ 159.08 968.0‹ 423.89
A-n54-k7 1051.0‹ 65.48 1068.0‹ 3821.02 1080.0‹ 19054.7
A-n55-k9 985.0‹ 1.2 992.0‹ 21.01 1013.0‹ 195.39
A-n60-k9 1202.0‹ 24.35 1214.0‹ 4693.07 1228.0‹ 29396.3
A-n61-k9 939.0‹ 5.48 942.0‹ 257.96 948.0‹ 589.91
A-n62-k8 1132.0‹ 9.2 1153.0‹ 1283.46 1161.0‹ 1396.45
A-n63-k9 1446.0‹ 1975.6 1476.0 [1444.05] 1493.0 [1444.22]
A-n63-k10 1176.0‹ 34.68 1178.0‹ 234.11 1219.0 [1206.15]
A-n64-k9 1290.0 [1277.83] 1333.0 [1267.2] 1349.0 [1265.06]
A-n65-k9 1082.0‹ 56.79 1085.0‹ 1150.0 1089.0‹ 2614.33
A-n69-k9 1076.0‹ 190.54 1082.0‹ 10061.2 1091.0 [1083.65]
A-n80-k10 1612.0 [1587.4] 1641.0 [1587.1] no-feas [1587.42]

Table 1. Runtimes and optimality gaps for the benchmark instances of Dı́az (2006).

Optimally solved instances are highlighted with an asterisk and accompanied by the

runtime t. For all other instances, we report the upper and lower bound after 12 hours.
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Problem

Deterministic Stochastic Ambiguous
———————– ———————– ———————–

Opt
t (sec)

Opt
t (sec)

Opt
t (sec)

[LB] [LB] [LB]

B-n31-k5 645.0‹ 0.08 651.0‹ 0.82 651.0‹ 0.84
B-n34-k5 703.0‹ 0.18 737.0‹ 0.62 740.0‹ 1.34
B-n35-k5 866.0‹ 0.04 866.0‹ 0.11 866.0‹ 0.03
B-n38-k6 726.0‹ 0.09 730.0‹ 18.46 731.0‹ 23.29
B-n39-k5 517.0‹ 0.14 521.0‹ 0.17 521.0‹ 0.64
B-n41-k6 786.0‹ 0.08 786.0‹ 4.26 789.0‹ 1.78
B-n43-k6 655.0‹ 0.87 662.0‹ 717.52 678.0‹ 9.81
B-n44-k7 819.0‹ 4.5 835.0‹ 1598.4 841.0‹ 81.71
B-n45-k5 630.0‹ 0.11 666.0‹ 3.61 669.0‹ 2.81
B-n45-k6 616.0‹ 0.42 626.0‹ 6.2 626.0‹ 9.77
B-n50-k7 657.0‹ 0.13 661.0‹ 0.83 661.0‹ 0.27
B-n50-k8 1145.0‹ 2.62 1202.0 [1158.33] 1212.0 [1179.61]
B-n51-k7 913.0‹ 0.06 917.0‹ 0.32 921.0‹ 1.28
B-n52-k7 673.0‹ 0.14 673.0‹ 0.53 674.0‹ 0.79
B-n56-k7 621.0‹ 0.43 622.0‹ 14.44 622.0‹ 6.52
B-n57-k9 1511.0‹ 9.16 1535.0‹ 5829.33 1538.0‹ 3979.0
B-n63-k10 1347.0‹ 137.91 1361.0‹ 8751.78 1364.0‹ 4281.32
B-n64-k9 790.0‹ 1.06 796.0‹ 10.3 797.0‹ 24.36
B-n66-k9 1170.0‹ 573.06 1202.0‹ 32405.8 1206.0‹ 4203.8
B-n67-k10 946.0‹ 3.01 974.0‹ 1499.96 978.0‹ 3519.29
B-n68-k9 1114.0‹ 20.66 1117.0‹ 394.49 1124.0‹ 6341.28
B-n78-k10 1079.0‹ 28.7 1101.0 [1089.5] 1105.0‹ 17351.5
E-n101-k8 780.0‹ 159.12 787.0 [783.05] 797.0 [780.978]
E-n101-k14 1012.0 [991.132] 1048.0 [984.161] 1057.0 [984.503]
E-n22-k4 370.0‹ 0.01 370.0‹ 0.25 370.0‹ 0.07
E-n23-k3 564.0‹ 0.0 564.0‹ 0.0 564.0‹ 0.0
E-n30-k3 475.0‹ 0.02 475.0‹ 0.02 475.0‹ 0.02
E-n33-k4 791.0‹ 0.15 791.0‹ 0.36 791.0‹ 0.41
E-n51-k5 510.0‹ 4.77 514.0‹ 364.7 515.0‹ 614.99
E-n76-k7 656.0‹ 97.12 660.0‹ 10538.1 661.0‹ 16929.2
E-n76-k8 699.0‹ 6245.56 703.0 [694.866] 704.0 [694.913]
E-n76-k10 772.0 [769.85] 784.0 [759.652] 790.0 [761.586]
E-n76-k14 939.0 [912.383] 960.0 [900.633] 959.0 [904.464]
F-n135-k7 1069.0‹ 348.29 1076.0‹ 4619.5 1081.0‹ 14412.2
F-n45-k4 706.0‹ 0.16 710.0‹ 1.11 711.0‹ 0.52
F-n72-k4 232.0‹ 0.28 232.0‹ 0.43 232.0‹ 0.59
M-n101-k10 795.0‹ 4.71 798.0‹ 108.72 798.0‹ 255.62
M-n121-k7 962.0 [949.444] 981.0 [949.303] 975.0 [951.297]
M-n151-k12 no-feas [935.76] no-feas [932.814] no-feas [932.771]

Table 1. (Continued from previous page.)
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Problem

Deterministic Stochastic Ambiguous
———————– ———————– ———————–

Opt
t (sec)

Opt
t (sec)

Opt
t (sec)

[LB] [LB] [LB]

P-n19-k2 195.0‹ 0.0 195.0‹ 0.0 195.0‹ 0.0
P-n20-k2 208.0‹ 0.0 208.0‹ 0.01 208.0‹ 0.01
P-n21-k2 208.0‹ 0.0 208.0‹ 0.01 208.0‹ 0.0
P-n22-k2 213.0‹ 0.01 213.0‹ 0.02 213.0‹ 0.03
P-n22-k8 549.0‹ 0.01 549.0‹ 0.02 549.0‹ 0.02
P-n23-k8 486.0‹ 0.19 491.0‹ 15.09 491.0‹ 12.08
P-n40-k5 448.0‹ 0.23 449.0‹ 1.52 449.0‹ 1.86
P-n45-k5 496.0‹ 0.52 496.0‹ 15.73 500.0‹ 41.4
P-n50-k7 531.0‹ 3.56 539.0‹ 480.6 540.0‹ 483.5
P-n50-k8 580.0‹ 19.7 584.0‹ 748.81 585.0‹ 860.38
P-n50-k10 649.0‹ 25.32 652.0‹ 1221.82 657.0‹ 2681.08
P-n51-k10 686.0‹ 19.01 688.0‹ 1116.65 688.0‹ 526.73
P-n55-k10 656.0‹ 43.25 658.0‹ 1719.87 659.0‹ 3215.28
P-n55-k7 539.0‹ 0.71 543.0‹ 120.47 548.0‹ 678.55
P-n55-k8 571.0‹ 3.01 572.0‹ 276.58 573.0‹ 273.35
P-n55-k15 868.0‹ 176.34 871.0‹ 6372.02 872.0‹ 4492.75
P-n60-k10 703.0‹ 434.76 704.0‹ 14903.3 709.0‹ 35829.7
P-n60-k15 904.0‹ 275.71 911.0‹ 34400.8 921.0 [908.389]
P-n65-k10 750.0‹ 449.65 757.0 [748.853] 760.0 [748.066]
P-n70-k10 773.0 [769.264] 781.0 [760.688] 776.0 [760.304]
P-n76-k4 588.0‹ 1.61 588.0‹ 21.87 588.0‹ 20.13
P-n76-k5 608.0‹ 8.49 612.0‹ 4477.6 613.0‹ 5235.28
P-n101-k4 673.0‹ 0.99 673.0‹ 25.56 673.0‹ 21.65
att-n48-k4 38634.0‹ 0.59 38637.0‹ 7.58 38637.0‹ 16.07

Table 1. (Continued from previous page.)
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