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Abstract 
Background and Aims: We sought to determine whether six commonly used immunosuppressive regimens were associated with lower anti-
body responses after seasonal influenza vaccination in patients with inflammatory bowel disease [IBD].
Methods: We conducted a prospective study including 213 IBD patients and 53 healthy controls: 165 who had received seasonal influenza 
vaccine and 101 who had not. IBD medications included infliximab, thiopurines, infliximab and thiopurine combination therapy, ustekinumab, 
vedolizumab, or tofacitinib. The primary outcome was antibody responses against influenza/A H3N2 and A/H1N1, compared to controls, adjusting 
for age, prior vaccination, and interval between vaccination and sampling.
Results: Lower antibody responses against influenza A/H3N2 were observed in patients on infliximab (geometric mean ratio 0.35 [95% con-
fidence interval 0.20–0.60], p = 0.0002), combination of infliximab and thiopurine therapy (0.46 [0.27–0.79], p = 0.0050), and tofacitinib (0.28 
[0.14–0.57], p = 0.0005) compared to controls. Lower antibody responses against A/H1N1 were observed in patients on infliximab (0.29 [0.15–
0.56], p = 0.0003), combination of infliximab and thiopurine therapy (0.34 [0.17–0.66], p = 0.0016), thiopurine monotherapy (0.46 [0.24–0.87], 
p = 0.017), and tofacitinib (0.23 [0.10–0.56], p = 0.0013). Ustekinumab and vedolizumab were not associated with reduced antibody responses 
against A/H3N2 or A/H1N1. Vaccination in the previous year was associated with higher antibody responses to A/H3N2. Vaccine-induced anti-
SARS-CoV-2 antibody concentration weakly correlated with antibodies against H3N2 [r = 0.27; p = 0.0004] and H1N1 [r = 0.33; p < 0.0001].
Conclusions: Vaccination in both the 2020–2021 and 2021–2022 seasons was associated with significantly higher antibody responses to 
influenza/A than no vaccination or vaccination in 2021–2022 alone. Infliximab and tofacitinib are associated with lower binding antibody re-
sponses to influenza/A, similar to COVID-19 vaccine-induced antibody responses.
Key Words: JAK-inhibitor; anti-TNF; humoral immunity; immunisation

1.  Introduction
Patients with inflammatory bowel disease [IBD] are in a 
clinical risk group recommended for yearly seasonal influ-
enza immunization. IBD, comprising ulcerative colitis [UC] 
and Crohn’s disease, are immune-mediated inflammatory 
disorders estimated to affect one in 125 people in the UK,1 
with rising prevalence worldwide.2 Many patients with IBD 
require long-term immunosuppressive therapy to control in-
flammation, at the potential cost of increased susceptibility 
to infectious diseases, an issue which has been brought into 
sharp focus by the threat from the COVID-19 pandemic. 
The array of immunosuppressive treatments used in IBD in-
cludes immunomodulators [most commonly thiopurines], 
anti-cytokine therapies (including anti-tumour necrosis factor 
[anti-TNF] and anti-IL-12/23 drugs), anti-integrin therapies 
[vedolizumab], and small-molecule inhibitors of signalling 
(e.g. tofacitinib, a Janus Kinase [JAK] inhibitor). In addition 
to the risk of increased susceptibility to infection, immuno-
suppressive therapies may reduce the efficacy of immuniza-
tion against vaccine-preventable infections. Indeed, anti-TNF 
and JAK inhibitors are associated with reduced vaccine-
induced antibody-binding and viral neutralization following 
SARS-CoV-2 [severe acute respiratory syndrome coronavirus 
2] vaccination and anti-TNF therapy is associated with in-
creased risk of post-vaccination breakthrough infection.3–6

Influenza is an acute viral infection which attacks the cili-
ated epithelial cells in the upper or lower respiratory tract.7 
In most cases the illness is self-limiting, but influenza remains 
a particular threat to vulnerable individuals, including people 
who are immunocompromised, with an estimated 650 000 
global deaths per year.8 Patients with IBD are at higher risk of 
influenza and influenza-related complications including hos-
pitalization.9 As of January 13, 2023, the Centers for Disease 
Control and Prevention estimated that there have been at 
least 24 million illnesses, 260 000 hospitalizations, and 16 
000 deaths from influenza in the USA this season, with over 
98% of laboratory-confirmed cases caused by influenza A vir-
uses H3N2 and H1N1.10

Upon influenza virus infection, both the innate and adaptive 
immune systems are activated.11 The innate system, involving 
cells such as macrophages and neutrophils, quickly initiates 
a defensive response, recruiting additional immune cells via 
cytokines and chemokines. Subsequently, the adaptive im-
mune response is engaged. B cells produce antibodies to neu-
tralize the virus, while T cells assist B cells, and cytotoxic T 

cells eliminate infected cells. Vaccination against influenza 
aims to stimulate this adaptive response without causing se-
vere infection. The vaccine introduces antigens, derived from 
a weakened, killed, or fragmented virus, into the body. This 
triggers an immune response, leading to the production of 
memory B and T cells that respond more efficiently to future 
infections. The immune response to vaccination is similar to 
natural infection but without the disease symptoms. However, 
response strength and duration vary depending on the vac-
cine, individual immune health, age, and other factors. As the 
influenza virus frequently mutates, the vaccine is updated an-
nually, necessitating yearly vaccination for maintained pro-
tection. Annual influenza vaccination is recommended for 
patients with IBD receiving immunosuppressive therapies.12 
Whilst immune responses to SARS-CoV-2 vaccination have 
been the subject of intensive research over the last 2 years, 
responses to influenza vaccination are less well characterized, 
particularly in patients on newer agents used in IBD. Previous 
studies have shown that the anti-TNF treatment infliximab 
is associated with reduced immunogenicity to influenza vac-
cination.13–16 However, data on responses to influenza vaccin-
ation in patients with IBD receiving thiopurine monotherapy, 
ustekinumab [anti-IL-12/23], vedolizumab, and tofacitinib 
are scarcer. Here, we aimed to determine relative antibody 
responses against influenza in patients receiving seasonal in-
fluenza vaccination whilst on the spectrum of key immuno-
suppressive drug regimens commonly used in IBD.

2.  Materials and Methods
2.1.  Study design and participants
This study included participants recruited to the VIP 
study [SARS-CoV-2 Vaccination immunogenicity in 
Immunosuppressed inflammatory bowel disease Patients], 
which is a UK multi-centre prospective observational study 
[registration number: ISRCTN13495664] aiming to evaluate 
the immunogenicity of COVID-19 vaccination in IBD pa-
tients on six different immunosuppressive treatment regimens 
[infliximab, thiopurine, infliximab and thiopurine combin-
ation therapy, ustekinumab, vedolizumab, or tofacitinib]. 
Participant recruitment, and inclusion and exclusion cri-
teria have been described previously.3 In addition to the 
pre-specified inclusion criteria for our COVID-19 vaccine 
response analyses, additional inclusion criteria were applied 
for the current influenza vaccine response analysis as follows. 
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Participants were surveyed prospectively on whether they re-
ceived vaccination against influenza in the 2020–2021 and/
or the 2021–2022 influenza seasons and the date of vaccin-
ation was recorded. Only participants who responded posi-
tively or negatively to whether they received vaccination 
against influenza in the 2021–2022 season were included in 
the analysis. Participants who did not respond to this ques-
tion were excluded. In the 2021–2022 season, influenza 
vaccination in the UK was with a quadrivalent vaccine con-
taining an A/Victoria/2570/2019 [H1N1] pdm09-like virus 
or an A/Wisconsin/588/2019 [H1N1] pdm09-like virus; 
an A/Cambodia/e0826360/2020 [H3N2]-like virus; a B/
Washington/02/2019 [B/Victoria lineage]-like virus; and 
a B/Phuket/3073/2013 [B/Yamagata lineage]-like virus. 
Demographics were recorded as variables: age, gender, eth-
nicity, comorbidities, height and weight, smoking status, 
postcode, IBD disease activity (defined by patient-reported 
outcomes [PRO2]),17,18 and date of blood collection. Data 
were entered electronically into a purpose-designed REDCap 
database hosted at the Royal Devon University Healthcare 
NHS Foundation Trust.19 Participants without access to the 
internet or electronic device completed their questionnaires 
on paper case record forms that were subsequently entered by 
local research teams. Blood was collected from participants at 
two time points: 53–92 days after the second COVID-19 vac-
cine dose and 28–49 days after the third COVID-19 vaccine 
dose. The study protocol is available online [https://www.
vipstudy.uk]. In the influenza analysis, we included partici-
pants who had a serum sample taken between 7 and 90 days 
after influenza vaccination in the 2021–2022 season.

2.2.  Antibody measurement
Antibody binding responses against four influenza strains [A/
Hong Kong H3N2, A/Michigan H1N1, B/Phuket HA, and 
B/Brisbane HA] were measured with a multiplexed Meso 
Scale Discovery [MSD] immunoassay [cat. no: K15365U, 
MSD]. Multiplex MSD assays were performed as per the 
manufacturer’s instructions [detailed in the Supplementary 
Material]. Viral neutralizing responses were not measured in 
this study.

We previously measured the binding antibody concentra-
tions against SARS-CoV-2 wild-type virus in the VIP cohort.4 
Here we performed Spearman correlation analysis between 
antibodies against SARS-CoV-2 wild-type virus and each of 
the influenza strains measured in this study.

2.3.  Outcome measures
Our primary outcome was antibody responses against A/
H3N2 and A/H1N1 influenza viruses 7–90 days after vac-
cination, stratified by baseline immunosuppressive therapy 
compared to healthy controls, adjusting for age, vaccination 
against influenza in the previous [2020–2021] season, and the 
interval between vaccination and blood sampling. Secondary 
outcomes included antibody responses in influenza-vaccinated 
vs unvaccinated individuals, antibody responses against influ-
enza B viruses, and correlations between responses to influ-
enza vaccination and COVID-19 vaccination.

2.4.  Statistics
A statistical analysis plan was approved by the Study 
Management Group [available at https://www.vipstudy.uk/
info]. Analyses were undertaken using R 4.1.0 [R Foundation 
for Statistical Computing]. Values of p < 0.05 with two-tailed 

tests were considered significant. We included patients with 
missing clinical data in analyses for which they had data and 
specified the denominator for each variable. Antibody con-
centrations are reported as the geometric mean and standard 
deviation. Other continuous data are reported as a median 
and interquartile range, and discrete data as numbers and per-
centages, unless otherwise stated. For the univariate analysis 
comparing antibody levels among groups, a Kruskal–Wallis 
test was performed to test significance.

Multivariable linear regression models were used to iden-
tify factors independently associated with antibody con-
centrations. Backward stepwise regression was used to test 
whether these variables were covariates: age, gender, ethni-
city, body mass index [BMI], height, weight, smoking, IBD 
subtype, IBD disease activity (defined by patient-reported 
outcomes [assessed by PRO2 score]),17,18 vaccination against 
influenza in the previous [2020–2021] season, and interval 
in days between vaccination and blood sampling. Results are 
presented after exponentiation so that the model’s coefficients 
correspond to the geometric mean ratio associated with each 
covariate. The linearity, homogeneity of variance, collinearity, 
influential observations, and normality of residuals of each 
multivariate model were tested in R. Spearman correlation 
analysis was performed between antibodies against SARS-
CoV-2 wild-type virus and each of the influenza strains meas-
ured in this study. We also performed a Spearman correlation 
analysis between the antibody concentration with days after 
vaccination to show the antibody decay against time.

2.5.  Ethical considerations and role of funders
VIP is an investigator-led UK National Institute for Health 
Research COVID-19 study. Financial support was provided 
as an independent research grant by Pfizer Ltd. Pfizer Ltd had 
no role in study design, data collection or analysis, writing, 
or decision to submit for publication. Participants were in-
cluded after providing informed, written consent. The Wales 
Research Ethics Committee 5 approved the study [REC refer-
ence 21/WA/0105] in March, 2021. The study was registered 
with the ISRCTN [No: 13495664] registry, and the protocol 
is available online at https://www.vipstudy.uk.

3.  Results
Between May 28, 2021 and March 29, 2022, 561 adult in-
dividuals were recruited to the VIP study, of whom 266 [213 
IBD, 53 healthy controls; 166 vaccinated against influenza 
in the 2021–2022 season and 100 unvaccinated] were eli-
gible for inclusion in the current analysis. Patients with IBD 
were established for at least 12 weeks on immunosuppressive 
treatment regimens, including infliximab [n = 39], thiopurines 
[n = 42], infliximab and thiopurine combination therapy 
[n = 38], ustekinumab [n = 34], vedolizumab [n = 38], or 
tofacitinib [n = 22]. Participant characteristics are shown in 
Table 1. Self-reported rates of influenza vaccination were 
≥60% across the six groups of patients with IBD.

Influenza vaccine-induced antibody levels in patients with 
IBD and healthy controls were measured by means of MSD 
analysis and those self-reporting influenza vaccination were 
compared with those without vaccination in the 2021–2022 
season [Figure 1]. Against A/Hong Kong H3N2 vaccinated 
patients with IBD had higher geometric mean [GM] anti-
body concentrations (GM 71 370 AU/mL [95% CI 60 421, 
84 302]) than unvaccinated patients with IBD (42 736 AU/
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mL [31 315, 58 323], p = 0.0068). Vaccinated healthy con-
trols (105 289 AU/mL [69 521,159 459]) also had higher 
GM antibody concentrations against A/Hong Kong H3N2 
than unvaccinated controls (29 481 AU/mL [16 692, 52 
072], p = 0.0003). Against A/Michigan H1N1 vaccinated 
patients with IBD had higher GM antibody concentra-
tions (165 312 AU/mL [133 482, 204 732]] than unvaccin-
ated patients with IBD [53 108 AU/mL [36 755, 76 736], 
p < 0.0001). Vaccinated healthy controls (334 541 AU/mL 
[232 892, 480 556]) also had higher GM antibody con-
centrations against A/Michigan H1N1 than unvaccinated 
controls (38 534 AU/mL [16 942, 87 647], p < 0.0001). GM 
antibody concentrations against B Phuket and B Brisbane 
were also significantly higher in vaccinated patients with 
IBD than unvaccinated patients and in vaccinated controls 
than unvaccinated controls [Supplementary Figure S1; all p 
values <0.05].

We then investigated how different immunosuppressive 
treatment regimens in patients with IBD impacted unadjusted 
influenza vaccine-induced antibody responses. Including 166 
participants who were sampled 7–90 days after receiving 
the 2021 flu vaccine, different treatments displayed dis-
tinct attenuation in antibody responses [Figure 2]. Patients 
treated with infliximab (GM 46 475 [95% CI 29 940, 72 
142], p = 0.0056) or tofacitinib (41 198 [25 178, 67 411], 
p = 0.013) had significantly lower GM antibody concentra-
tions against A/Hong Kong H3N2 relative to healthy con-
trols (105 289 [69 521, 159 459]; Figure 2A). Patients treated 
with infliximab (109 202 [65 370, 182 423], p = 0.0008), 
thiopurine (164 733 [97 489, 278 359], p = 0.049), combin-
ation of infliximab and thiopurine (141 684 [87 849, 228 
509], p = 0.012), and tofacitinib (94 322 [52 129, 170 665], 
p = 0.0016) had significantly lower GM antibody concentra-
tions against A/Michigan H1N1 relative to controls (334 541 

Table 1. Demographics of the cohort in this study. Continuous variables are presented as median [IQR]. The other variables are presented as 
percentages within each group.

Characteristics Control 
[N = 53, 20%]

Infliximab 
[N = 39, 15%]

Infliximab + thiopurine 
[N = 38, 14%]

Thiopurine 
[N = 42, 16%]

Tofacitinib 
[N = 22, 8%]

Ustekinumab 
[N = 34, 13%]

Vedolizumab 
[N = 38, 14%]

p-value

Age 40.80 [32.60, 
52.10]

47.20 [35.30, 
55.95]

39.10 [31.80, 53.80] 45.25 [37.73, 
56.70]

46.00 [37.90, 
54.72]

45.30 [34.58, 
55.80]

45.50 [37.45, 
61.57]

0.23

Gender 0.0060

 � Female 35 [66.04%] 15 [38.46%] 18 [47.37%] 25 [60.98%] 6 [27.27%] 18 [52.94%] 13 [34.21%]

 � Male 18 [33.96%] 24 [61.54%] 20 [52.63%] 16 [39.02%] 16 [72.73%] 16 [47.06%] 25 [65.79%]

Ethnicity 0.83

 � Non-white 8 [15.09%] 8 [20.51%] 8 [21.05%] 9 [21.95%] 4 [18.18%] 6 [17.65%] 11 [28.95%]

 � White 45 [84.91%] 31 [79.49%] 30 [78.95%] 32 [78.05%] 18 [81.82%] 28 [82.35%] 27 [71.05%]

BMI 23.57 [21.76, 
25.76]

25.15 [23.21, 
27.16]

24.63 [21.61, 26.66] 23.88 [22.09, 
26.88]

25.53 [23.35, 
28.04]

25.37 [22.72, 
29.61]

24.76 [22.19, 
29.46]

0.22

Diagnosis 0.00050a

 � CD 0 27 [69.23%] 21 [55.26%] 22 [52.38%] 0 33 [97.06%] 18 [47.37%]

 � IBDU 0 2 [5.13%] 2 [5.26%] 1 [2.38%] 0 0 1 [2.63%]

 � UC 0 10 [25.64%] 15 [39.47%] 19 [45.24%] 22 [100%] 1 [2.94%] 19 [50%]

PRO2 active 
disease

0 1 [2.56%] 1 [2.63%] 3 [7.14%] 2 [9.09%] 3 [8.82%] 5 [13.16%] 0.067

Smoking 0.29

 � Currently 1 [1.89%] 2 [5.13%] 2 [5.26%] 1 [2.44%] 2 [9.09%] 2 [5.88%] 5 [13.16%]

 � Not cur-
rently

14 [26.42%] 9 [23.08%] 12 [31.58%] 14 [34.15%] 11 [50%] 13 [38.24%] 10 [26.32%]

 � Never 38 [71.70%] 28 [71.79%] 24 [63.16%] 26 [63.41%] 9 [40.91%] 19 [55.88%] 23 [60.53%]

Days after 
vaccination

49.00 [42.00, 
74.00]

42.00 [31.00, 
54.00]

40.00 [29.00, 47.00] 44.00 [33.00, 
66.00]

29.00 [21.50, 
45.00]

34.50 [22.00, 
46.25]

36.00 [29.00, 
55.00]

0.0070

Vaccinated 
partici-
pants in 
2020–2021

14 [26.41%] 22 [56.41%] 22 [57.89%] 23 [54.76%] 11 [50.00%] 17 [50.00%] 18 [47.37%] 0.029

Vaccinated 
partici-
pants in 
2021–2022

31 [58.49%] 25 [64.10%] 25 [65.79%] 27 [64.29%] 11 [50.00%] 22 [64.71%] 25 [65.79%] 0.89

Heart disease 0 1 [2.63%] 0 1 [2.44%] 0 0 2 [5.26%] 0.41

Lung disease 3 [5.77%] 6 [15.79%] 4 [10.53%] 2 [4.88%] 3 [13.64%] 3 [9.09%] 3 [7.89%] 0.63

Kidney disease 0 2 [5.26%] 0 0 0 0 1 [2.63%] 0.17

Diabetes 0 2 [5.26%] 0 2 [4.88%] 0 2 [6.06%] 2 [5.26%] 0.28

Cancer 0 1 [2.63%] 0 1 [2.44%] 0 0 1 [2.63%] 0.75

Kruskal–Wallis rank sum test and Fisher’s exact test were used to test the significance. BMI, body mass index; CD, Crohn’s disease; UC, ulcerative colitis; 
IBDU, inflammatory bowel disease unclassified.
aFisher’s test was performed among all groups excluding healthy controls.
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Figure 1. Antibody responses in healthy controls and patients with IBD against [A] A/H3N2 and [B] A/H1N1 [n = 266]. Geometric means are shown with 
95% confidence intervals. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 2. Unadjusted vaccine-induced antibody responses against [A] A/H3N2 and [B] A/H1N1 in patients with inflammatory bowel disease who 
received influenza vaccination in the 2021–2022 season, stratified by treatment group. Horizontal lines indicate geometric means.
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[232 892, 480 556]; Figure 2B). Unadjusted vaccine-induced 
antibody concentration data against B strains, stratified by 
IBD treatment regimen, are shown in Supplementary Figure 
S2.

Time between influenza vaccination and blood sampling in 
this study was variable across the cohort. However, analysis of 
correlations between influenza vaccine-induced antibody con-
centrations and time in days between vaccination and blood 
sampling did not indicate a significant effect of antibody decay 
over the 83-day sampling window [Supplementary Figure S3]. 
Next, we performed multivariable linear regression to deter-
mine whether adjusting for participant age [a well-established 
factor in diminishing immune responses to vaccination], prior 
vaccination against influenza in the 2020–2021 season and 
time between vaccination and blood sampling impacted in-
fluenza vaccine-induced immune responses [Figure 3]. Lower 
antibody responses against A/Hong Kong H3N2 were ob-
served in patients with IBD on infliximab (geometric mean 
ratio [GMR] 0.35 [95% CI 0.20–0.60], p = 0.0002), combin-
ation of infliximab and thiopurine therapy (0.46 [0.27–0.79], 
p = 0.0050), and tofacitinib (0.28 [0.14–0.57], p = 0.0005) 
[Figure 3A]. Thiopurine monotherapy (0.68 [0.41–1.15], 
p = 0.15), ustekinumab (0.81 [0.46–1.41], p = 0.45), and 
vedolizumab (0.68 [0.40–1.16], p = 0.15) were not associ-
ated with lower antibody responses against H3N2. A longer 
interval between vaccination and sampling was associated 
with lower antibody concentrations against A/Hong Kong 
H3N2 (0.94 [0.89, 0.99], p = 0.029), and prior vaccination 
against influenza in the previous 2020–2021 season was asso-
ciated with higher antibody concentrations (1.49 [1.02–2.19], 
p = 0.040). Reduced antibody responses against A/Michigan 

H1N1 were observed in patients on infliximab (0.29 [0.15–
0.56], p = 0.0003), combination of infliximab and thiopurine 
therapy (0.34 [0.17–0.66], p = 0.0016), thiopurine mono-
therapy (0.46 [0.24–0.87], p = 0.017), and tofacitinib (0.23 
[0.10–0.56], p = 0.0013) relative to controls. Ustekinumab 
(0.70 [0.35–1.41], p = 0.31) and vedolizumab (0.69 [0.36–
1.34], p = 0.27) were not associated with reduced antibody 
responses against A/Michigan H1N1 [Figure 3B]. We per-
formed a sensitivity analysis to check if the presence of active 
disease had an impact on our models [Supplementary Figure 
S4]. Including active disease as a variable in the multivariable 
models did not alter the significant associations found be-
tween IBD therapies and antibody responses. Infliximab 
therapy was associated with reduced antibody responses 
against both B/Phuket and B/Brisbane and tofacitinib was 
associated with lower antibody responses against B/Phuket 
[Supplementary Figure S5].

Previously, we reported antibody responses against SARS-
CoV-2 wild-type virus in this cohort. Next, we performed a 
Spearman correlation analysis between SARS-CoV-2 binding 
antibody concentrations and influenza binding antibody con-
centrations in study participants who had received both influ-
enza vaccination in the 2021–2022 season and the full primary 
schedule [three doses] of COVID-19 vaccination [Figure 4]. 
There was a statistically significant correlation between anti-
SARS-CoV-2 antibody concentration and antibody concen-
trations of A/Hong Kong H3N2 [r = 0.27; p = 0.0004] and A/
Michigan H1N1 [r = 0.33; p < 0.0001]. Similar correlations 
observed between anti-SARS-CoV-2 antibody concentrations 
and B/Phuket [r = 0.16; p = 0.034] and B/Brisbane [r = 0.17; 
p = 0.029] were more modest [Supplementary Figure S6]. 

A B
Variable

Flu A/Hong Kong H3 Flu A/Michigan H1

In�iximab
In�iximab+Thiopurine
Thiopurine
Tofacitinib
Ustekinumab
Vedolizumab
Age (per decade)
Weeks after vaccine
Had �u vaccine previous year

0 0.5 1 1.5
GMR

2 0 0.5 1 1.5
GMR

2

Variable
In�iximab
In�iximab+Thiopurine
Thiopurine
Tofacitinib
Ustekinumab
Vedolizumab
Age (per decade)
Weeks after vaccine
Had �u vaccine previous year

GMR(95% CI)
0.35(0.20~0.60)
0.46(0.27~0.79)
0.68(0.41~1.15)
0.28(0.14~0.57)
0.81(0.46~1.41)
0.68(0.40~1.16)
0.92(0.82~1.03)
0.94(0.89~0.99)
1.49(1.02~2.19)

P value
0.00018
0.005
0.15

0.00051
0.45
0.15
0.15

0.029
0.04

GMR(95% CI)
0.29(0.15~0.56)
0.34(0.17~0.66)
0.46(0.24~0.87)
0.23(0.10~0.56)
0.70(0.35~1.41)
0.69(0.36~1.34)
0.93(0.81~1.08)
0.98(0.91~1.04)
1.34(0.84~2.15)

P value
0.00031
0.0016
0.017

0.0013
0.31
0.27
0.35
0.46
0.22

Figure 3. Multivariable models of vaccine-induced antibody responses against [A] A/H3N2 and [B] A/H1N1 in patients with inflammatory bowel disease 
who received influenza vaccination in the 2021–2022 season, stratified by treatment group [n = 166]. GMR, geometric mean ratio.
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responses [y-axis].
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Correlations between responses against influenza strains 
were overall stronger between different influenza strains 
than between corresponding responses against SARS-CoV-2 
[Supplementary Figure S7].

4.  Discussion
With the widespread use of immunosuppressive therapies 
for patients with IBD, it is important to understand how the 
off-target effects of these therapies might influence immune 
responses to common respiratory infections. We have previ-
ously shown that vaccine-induced humoral responses against 
SARS-CoV-2 are impaired in patients with IBD receiving 
infliximab or tofacitinib therapy, but are relatively preserved 
in patients receiving thiopurine monotherapy, ustekinumab, 
or vedolizumab.3–5

In the current study, we observed that influenza vaccine-
induced antibody concentrations are diminished in patients 
receiving infliximab or combined infliximab and thiopurine 
therapy. TNF is a critical cytokine in multiple aspects of 
the immune response, including T-cell-dependent antibody 
production and the formation of B cell follicles in germinal 
centres.20 Thiopurines reduce intracellular synthesis of pur-
ines, leading to decreased circulating T and B cells and dimin-
ished immunoglobulin production.21 Our data corroborate 
other studies13,15,16,22 and suggest that the impact of anti-TNF 
therapy on vaccine-induced immunity may be manifested 
across antigen and vaccine platforms.23 In keeping with this 
concept, we found correlations between humoral responses to 
influenza and COVID-19 vaccinations, although the relative 
weakness of these correlations suggests that other factors are 
playing a role in modulating immune responses to different 
vaccine antigens, including genetics, nutrition,24 and the com-
position and function of the gut microbiota.25,26

We also observed diminished antibody responses against 
A/H1N1 and A/H3N2 in tofacitinib recipients. There are 
no existing studies on responses to influenza vaccination 
in tofacitinib-treated patients with IBD, although a trial in 
rheumatoid arthritis found that fewer patients treated with 
tofacitinib, as compared to placebo, developed protective 
vaccine-induced influenza antibody titres.27 Tofacitinib is a 
pan-JAK inhibitor with most activity against JAK1 and JAK3 
signalling, which play a key role in innate and adaptive im-
mune function, including B-cell responses.28–30 Ustekinumab 
[anti-IL12/23] and vedolizumab [anti-integrin] are biological 
therapies thought to have more favourable safety profiles 
and thus are increasingly used preferentially in older and 
co-morbid patients with IBD in whom the risk of infections 
is higher. Existing data relating to the impact of ustekinumab 
and vedolizumab on immune responses to influenza vaccin-
ation in IBD are scarce, limited to small studies including 
fewer than 20 patients on the respective treatment regimen 
of interest.31–33 There is limited mechanistic understanding on 
the effects of these two agents on immune responses to vac-
cination. Ustekinumab selectively inhibits IL-12 and IL-23, 
and might theoretically influence responses to influenza via 
its impact on the Th1 and Th17 pathways.34 Vedolizumab 
inhibits trafficking of T cells to the gut, and is not thought 
to impact on the immune response to systemically adminis-
tered vaccines or infections outside the gut.35 Reassuringly, 
our data suggest that ustekinumab and vedolizumab do not 
have a significant impact on influenza vaccine-induced hu-
moral responses.

The age-adjusted relative risk (Mantel–Haenszel age-
adjusted rate ratio [RR], 95% CI) of death for influenza in im-
munosuppressed individuals is 47.3 [35.5–63.1].36 Vulnerable 
individuals, including patients with IBD taking immunosup-
pressive therapies, are advised to receive annual influenza 
vaccination to reduce their risk. Our data reinforce the ex-
isting guidance, showing that patients with IBD receiving vac-
cination against influenza in the 2021–2022 season mount 
significantly higher antibody responses to a range of influ-
enza viral strains than do their unvaccinated counterparts. 
Moreover, vaccination in the previous 2020–2021 season was 
associated with higher responses to vaccination in the 2021–
2022 season, suggesting that annual vaccination confers a 
significant boost in antibody responses over one-off vaccin-
ation. Yet rates of vaccination in eligible patients with IBD 
have historically been low at around a third, raising the ques-
tion of how vaccination rates can be improved.37 Providing 
an IBD clinic on-site vaccination service has been shown to 
enhance vaccination rates,38 but there is also evidence that 
simple healthcare provider recommendation for vaccination 
is strongly associated with the likelihood of vaccine uptake.37

We acknowledge several limitations in our study. First, the 
VIP study was designed to investigate responses to COVID-
19 vaccination. Thus, although our analysis adjusted for time 
interval to sampling and many participants received simultan-
eous influenza vaccination, blood samples were timed with 
respect to COVID-19 vaccine doses rather than influenza 
doses, leading to heterogeneity in sampling intervals across 
our cohort. Second, given the lack of baseline pre-vaccination 
samples, we cannot comment directly on the magnitude of 
humoral responses as a result of vaccination, although by 
comparing antibody concentrations between unvaccinated 
and vaccinated individuals [Figure 1], we are able to observe 
cross-sectional differences in antibody responses. Third, we 
relied on self-reported influenza vaccination status rather 
than healthcare record data to determine eligibility for this 
study, although studies have demonstrated that self-reported 
status is a reliable surrogate of gold-standard administrative 
record data.39,40 Fourth, we do not have data on influenza in-
fections prior to or during the study period, nor influenza vac-
cinations before 2020, both of which might have influenced 
antibody concentrations. We note that rates of influenza in-
fection were unusually low at the time of our study and thus 
unlikely to have been an important confounder. Fifth, the 
number of influenza-vaccinated patients was modest for each 
therapeutic sub-group, particularly for tofacitinib, limiting 
the confidence of our results. Finally, this study looked at hu-
moral and not cell-mediated immunity, and our results are 
observational with no insights into the immunological mech-
anisms underlying our findings.

In conclusion, our study shows antibody responses to 
Influenza/A were higher in patients with IBD who received 
influenza vaccination in 2021–2022 than in those patients 
who did not receive vaccination, and vaccination in both 
the 2020–2021 and 2021–2022 seasons was associated 
with significantly higher responses than one-off vaccination 
in 2021–2022 alone. However, infliximab and tofacitinib 
are associated with lower binding antibody responses to 
Influenza/A, similar to COVID-19 vaccine-induced antibody 
responses, and we suggest adherence to guidelines advising 
annual vaccination against common respiratory infections is 
particularly important in patients with IBD receiving these 
treatments.
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