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This article establishes an asymptotic theory for volatility estimation
in an infinite-dimensional setting. We consider mild solutions of semilin-
ear stochastic partial differential equations and derive a stable central limit
theorem for the semigroup-adjusted realised covariation (SARCV ), which
is a consistent estimator of the integrated volatility and a generalisation of
the realised quadratic covariation to Hilbert spaces. Moreover, we introduce
semigroup-adjusted multipower variations (SAMPV ) and establish their
weak law of large numbers; using SAMPV , we construct a consistent esti-
mator of the asymptotic covariance of the mixed-Gaussian limiting process
appearing in the central limit theorem for the SARCV, resulting in a feasible
asymptotic theory. Finally, we outline how our results can be applied even if
observations are only available on a discrete space-time grid.

1. Introduction. Estimation of volatility is of great importance for capturing the second-
order structure of a random dynamical system. In this work, we develop a feasible asymp-
totic distribution theory for the estimation of the integrated volatility operator

∫ t
0 Σsds :=∫ t

0 σsσ
∗
sds corresponding to a stochastic partial differential equation (SPDE) in a separable

Hilbert space H of the form

(1) dYt = (AYt + αt)dt+ σtdWt, t ∈ [0, T ],

based on discrete observations of its mild solution within a finite time-interval [0, T ] for
T > 0. Here A is the generator of a strongly continuous semigroup S := (S(t))t≥0 on H ,
W is a cylindrical Wiener process, α and σ are the drift- and volatility processes, respec-
tively (see Section 3 below for a detailed specification). Such SPDEs constitute a well-
established framework for describing spatio-temporal dynamics with applications in, e.g.,
finance, physics, biology, meteorology and mechanics (cf. the textbooks [40], [63], [56] or
[57]). In the context of infill-asymptotics and in the presence of time-discrete observations

Y0, Y∆n
, ..., Y⌊T/∆n⌋, ∆n :=

1

n

of a realisation of a solution to (1), the role of integrated volatility is similar to the one of the
covariance operator in the analysis of i.i.d. functional data. This becomes particularly evident
if σ is independent of W . In this case integrated volatility is the conditional covariance of the
driving noise, that is, ∫ t

0
σsdWs

∣∣σ ∼N
(
0,

∫ t

0
Σsds

)
, t≥ 0.

Hence, a feasible estimation theory for integrated volatility in this setting could allow stan-
dard functional data analysis methods to be applied to the analysis of observations of solu-
tions to SPDEs.
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Our theory is based on the semigroup-adjusted realised covariation (SARCV ), given for
n ∈N by

(2) SARCV n
t :=

⌊t/∆n⌋∑
i=1

∆̃n
i Y

⊗2 :=

⌊t/∆n⌋∑
i=1

(
Yi∆n

−S(∆)Y(i−1)∆n

)⊗2
,

which was shown to be a consistent estimator of the integrated volatility
∫ t
0 Σsds in [19]. Here

h⊗2 = ⟨h, ·⟩h denotes the usual tensor product. In this paper, we consider the more involved
task of proving, under suitable regularity conditions, the functional central limit theorem

∆
− 1

2
n

(
SARCV n

t −
∫ t

0
Σsds

)
L−s
=⇒N (0,Γt),

where L−s
=⇒ stands for the stable convergence in law as a process in the Skorokhod space

D([0, T ],H). N (0,Γt) is an infinite-dimensional continuous mixed Gaussian process1 with
values in H, the space of Hilbert-Schmidt operators on H , and with a conditional covariance
operator Γt, called the asymptotic variance. The above central limit theorem is not feasible,
as the asymptotic variance is a priori unknown, so we also derive a consistent estimator for Γ.
As this can be done conveniently by appealing to laws of large numbers for certain adjusted
power and bipower variations, we also provide consistency results for general semigroup-
adjusted realised multipower variations (SAMPV ) given by

SAMPV n
t (m1, ...,mk) :=

⌊t/∆n⌋−k+1∑
i=1

k⊗
j=1

∆̃n
i+j−1Y

⊗mj .(3)

We refer to the preliminaries below for the general tensor power notation.
Compared with the finite-dimensional theory, the semigroup adjustment in the realised

covariation and the multipower variations might seem unusual. Nevertheless, the results pre-
sented here should be understood as a direct generalisation of the theory for multivariate
semimartingales to the setting of semilinear SPDEs as in (1). This is because the semigroup
adjustment just becomes relevant if (Yt)t∈[0,T ] is not a semimartingale, which is a purely
infinite-dimensional issue. In fact, if H is finite-dimensional, (Yt)t∈[0,T ] is automatically a
semimartingale and dropping the semigroup adjustment in (2) still yields a consistent esti-
mator, namely, the quadratic covariation

(4) RV n
t =

⌊t/∆n⌋∑
i=1

(Yi∆n
− Y(i−1)∆n

)⊗2.

One can equivalently think of choosing the semigroup to equal the identity operator on H
(i.e. S ≡ I) for the sake of the limit theorems and move the part of the (in this case) strong
solution belonging to the original generator A in equation (1) into the drift α.

For over two decades, there have been many contributions to the asymptotic theory for
stochastic volatility estimation in a finite-dimensional set-up. These include the articles
[11, 12, 13, 6] and [50], amongst many others, and the textbooks [52] and [1], focusing
on the semimartingale set-up. Moreover, recently, attention has also turned towards finite-
dimensional volatility estimation in the context when the observed process is not necessarily
a semimartingale, see e.g. [37], [8], [9], [36], [35], [30], [29], [66] and [45, 61].

1Recall that a centred Hilbert space-valued random variable X is mixed Gaussian with random covariance
C : H → H if conditional on C the random variable ⟨X,h⟩ a one-dimensional centred Gaussian distributed
random variable with variance ⟨Ch,h⟩ for all h ∈H .
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There are two recent strands of research that are related to the infinite-dimensional case:
during the last decade, some effort went into the generalisation of ARCH and GARCH mod-
els for functional data, appearing at a possibly high frequent rate in [49], [7], [26], [65] and
[55]. At the same time, a lot of recent research has been devoted to the intricate problem of
estimating volatility based on observations of finite-dimensional realisations of second-order
stochastic partial differential equations (cf. [24], [27], [28], [23], [47], [4], [33], [32], [3], [60]
to mention some). We refer to [31] for a survey. In that sense, volatility estimation has been
approached either discretely in time or discretely in space. So in contrast to the high research
activity in both of these areas, to the best of the authors’ knowledge, there appear to be no
results at the intersection that allow making inference on a coherent and potentially smooth
spatio-temporal volatility structure as we do here. Such results, however, may be desirable
in many situations. We discuss some applications and relevant types of data in the following
subsection.

The presentation of our results is divided into six sections, where after a short considera-
tion of data and some brief preliminaries following this introduction, we outline the setting
for the guiding example of term structure models in Section 2 which makes the otherwise
rather abstract operator-theoretic notation more concrete. We present a detailed discussion
on limit theorems and applications of the SARCV in Section 3, where we also include a
short section on the estimation of conditional covariances in Subsection 3.2 and establish the
corresponding feasible limit theory (accounting for the unknown random covariance structure
in the basic central limit theorem for this estimator) in Subsection 3.3. A discussion about
the convergence behaviour of the naïve quadratic variation is added in Subsection 3.4. After-
wards, we outline, how the limit theory can be applied in the case of discrete observations
in time and space in Section 3.5. Section 4 addresses the laws of large numbers for the gen-
eral semigroup-adjusted multipower variations SAMPV (m1, ...,mk). Section 5 outlines the
proofs of the limit theorems, which are given in full length in an Appendix. We summarise
and further discuss the results in the concluding Section 6.

1.1. Considerations on data. As the SARCV and the SAMPV take into account the
Hilbert space-valued data (Yi∆n

, i = 1, ..., ⌊t/∆n⌋), the theory presented here is part of the
realm of functional data analysis. Functional data, which are usually sampled discretely, are
often smoothed in order to obtain an element in some suitable function space. In our case,
this means that practically every datum Yi∆n

should be considered as a smoothed version of
discretely sampled data. Assuming that data are of high resolution in the spatial dimension
as well, one can obtain fully feasible consistency results and central limit theorems for the
integrated volatility operators from our results (see Section 3.5 for how this can be done
for a regular sampling grid). This means, however, that (at least locally when estimating
functionals of the integrated volatility) we need to have dense samples in both space and
time.

Taking into account the effort that went into the development of volatility estimation in
the case of sampling the solution of an SPDE at a fixed finite number of points in space and
a high frequent rate in time, it might be worth underlining the following: the wording “high
frequent” can be misleading, as this is primarily a matter of scale.

For instance, in financial forward and futures markets, where one wants to capture price
variations for contracts with times-to-maturity of more than a year, intra-daily patterns of
variation might, for some purposes, not be as insightful as e.g., intra-monthly ones. Another
example is meteorological data, where in several regions we find a considerable number of
weather stations measuring for instance wind, temperature or rainfall at fixed time intervals
such as every hour. This leads to a reasonable volume of spatio-temporal data for a week or
a month rather than a day. Moreover, reducing volatility estimation on techniques that allow
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making inference based on fixed multivariate samples of the SPDE might make it hard to
capture spatial features like slope and curvature induced by the dynamics of neighbouring
stations via the asymptotic analysis. Dynamics that are dependent on this kind of derivative
information are of course not just relevant to meteorological applications but are for instance
considered important to describe the dynamics of term structure models in finance (c.f. [34]).
Smooth features of the volatility operator can be conveniently accessed in the functional data
framework we elaborate on here and derivative information are inherent in the estimator itself
(due to the adjustment).

On the other hand, in contrast to possibly prevalent perception, there are intraday high-
frequency financial data that should eventually be considered functional. One example can be
found in the modern structure of intraday energy markets. In the European intraday energy
markets, participants can continuously trade contracts for energy delivery each day (from
late afternoon til midnight) for all 96 quarter-hours of the day ahead. Interpreting this as a
discretisation of the curve of all potential forward contracts of the next day, this can, due
to no-arbitrage arguments, be considered as a semimartingale in a Hilbert space of func-
tions. We underline, that our results are new also in the semimartingale case S = I , lead-
ing to an infinite-dimensional theory for realised covariation of H-valued semimartingales.
Arguably, in that way, it becomes possible to estimate components of the recently treated
infinite-dimensional stochastic volatility models (c.f. [39, 38], [21], [17], [20]).

Preliminaries and notation. Throughout this work, H , is a separable Hilbert space. The
corresponding inner product and norm are denoted by ⟨·, ·⟩H and ∥ · ∥H and the identity
operator on H by IH , where we will drop the H-dependence most of the time and simply
write ⟨·, ·⟩, ∥ · ∥ and I . If G is another separable Hilbert space, h ∈H and g ∈G, we write
L(G,H) for the space of bounded linear operators from G to H and L(H) := L(H,H). We
write ∥ · ∥op for the operator norm on these spaces. LHS(G,H) denotes the Hilbert space of
Hilbert-Schmidt operators from G into H , that is B ∈ L(G,H) such that

∥B∥2LHS(U,H) :=

∞∑
n=1

∥Ben∥2 <∞,

for an orthonormal basis (en)n∈N of G. If G=H , we write H := LHS(H,H). The operator
h⊗ g := ⟨h, ·⟩g is a Hilbert-Schmidt and even nuclear operator from H to G. Recall that B
is nuclear, if

∑∞
n=1 ∥Ben∥ <∞ for some orthonormal basis (en)n∈N of G. Moreover, we

shortly write h⊗p = h⊗ (h⊗ (· · · ⊗ (h⊗ h)) and
⊗k

j=1 hj := h1 ⊗ ...⊗ hk := h1 ⊗ (...⊗
(hk−1 ⊗ hk)). We write recursively H2 =H = LHS(H,H) and Hm = LHS(H,Hm−1), for
m> 2. Thus, Hm is the space of operators spanned by the orthonormal basis (ej1 ⊗ · · · ⊗
ejm)j1,...,jm∈N, for an orthonormal basis (ej)j∈N of H with respect to the Hilbert-Schmidt
norm. As Hm is isometrically isomorphic to the space LHS(Hp,Hq) if p+ q =m and p, q ≥
2 (and LHS(H,Hq) or LHS(Hp,H) if p or q is equal to 1), we will alternate between the
notations throughout the paper. For instance, if m is even, Hm can be identified with the
space LHS(H

m

2 ,H
m

2 ), which is why we can speak without loss of generality of symmetric
operators on these spaces. Recall moreover that

(5) Σt := σtσ
∗
t ∀t ∈ [0, T ],

where σ is the stochastically integrable Hilbert-Schmidt operator-valued volatility process
(c.f. Section 3). We will also need the notation ΣSn

s := S(i∆n − s)ΣsS(i∆n − s)∗ for s ∈
((i − 1)∆n, i∆n]. We also need different concepts of convergence of stochastic processes.
Recall that a sequence of random variables (Xn)n∈N defined on a probability space (Ω,F ,P)
and with values in a Polish spaceE converges stably in law to a random variableX defined on
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an extension (Ω̃, F̃ , P̃) of (Ω,F ,P) with values inE, if for all bounded continuous f :E→R
and all bounded random variables Y on (Ω,F) we have E[Y f(Xn)]→ Ẽ[Y f(X)] as n→
∞, where Ẽ denotes the expectation with respect to P̃. If, for a Hilbert space-valued process
Xn, we have that it converges stably in law as a process in the Skorokhod space D([0, T ];H),
we write Xn L−s

=⇒X . Here and throughout we always assume the space D([0, T ];H) to be
endowed with the classical Skorokhod topology, making it a Polish space (c.f. for instance
chapter VI in [25]). Moreover, by Xn u.c.p.−→ X we mean convergence uniformly on compacts
in probability, i.e. for all ϵ > 0 it is P[supt∈[0,T ] ∥Xn(t)−X(t)∥> ϵ]→ 0 for T > 0.

2. A motivating example: term structure models. In this section, we discuss the exam-
ple of term structure models from mathematical finance arising in bond and energy markets.
Term structure models, which can conveniently be expressed in form of stochastic partial
differential equations, relate the time to maturity of financial contracts to their empirical and
theoretical characteristics. For an introduction to the SPDE approach to modelling forward
curve evolutions we refer to [43] in the case of instantaneous forward rates in bond markets
and to [18] in the case of instantaneous forward prices in energy and commodity markets.

Forward curves, respectively forward prices, are usually considered to take their values
in some suitable Hilbert space of functions. Besides the space of square-integrable functions
L2(0,1), reproducing kernel Hilbert spaces (RKHS) and in particular Sobolev spaces such as

H1(0,1) := {h : [0,1]→R : h is absolutely continuous and h′ ∈ L2(0,1)}

equipped with the norm ∥h∥ := h(0)2 +
∫ 1
0 (h

′(x))2dx are a reasonable choice for a state
space of instantaneous forward curves. The compact interval [0,1] contains all observable
times to maturity (normalised by the maximal time to maturity observable). The arbitrage-
free dynamics of forward curves can then be expressed in terms of the Heath-Jarrow-Morton-
Musiela equation

dft = (∂xft + α(σs))ds+ σsdWs,

where σ is a general Hilbert-Schmidt operator valued process from a noise space U into
H =H1(0,1) and α : LHS(U,H)→H is a continuous mapping (c.f. [43, Section 4.3]) for
forward rates and vanishes entirely for commodity and energy price curves (c.f. e.g. [15]). In
the space L2(0,1) of square-integrable functions, ∂x is defined on its domain D(∂x) = {h ∈
H1(0,1) : h(1) = 0} and according to [41, Section 2.11] generates the nilpotent semigroup
of left shifts in L2(0,1) given by

(6) S(t)h(x) :=

{
h(x+ t), x+ t≤ 1,

0, x+ t > 1.

In the Sobolev space, the differential operator ∂x can be defined on its domain D(∂x) = {h ∈
H1(0,1) : h′ ∈H1(0,1)} and combining Corollary 5.1.1 in [43] and [41, Section 2.3] it is
then the generator of the strongly continuous semigroup of left shifts on H1(0,1) given by

(7) S(t)h(x) :=

{
h(x+ t), x+ t≤ 1,

h(1), x+ t > 1.

We may choose the noise space to be U = L2(0,1), such that we can interpret σs as a Hilbert-
Schmidt operator from L2(0,1) into itself or that it maps into H1(0,1) ↪→ L2(0,1) and is
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Hilbert-Schmidt with respect to the norm on H1(0,1) if H =H1(0,1). As such, it is given
as a kernel operator

σsf(x) =

∫ 1

0
qs(x, y)f(y)dy, ∀s≥ 0, x ∈ [0,1].

In the case that H =H1(0,1) we alternatively could have chosen U =H1(0,1), as by The-
orem 9 in [22] we have that in an RKHS on [0,1] with kernel k, every continuous linear
operator L is given by a kernel operator with kernel l(x, y) = ⟨k(x, ·),L∗k(·, y)⟩ in the sense
that

Lf(x) = ⟨f, l(·, x)⟩, ∀x ∈ [0,1].

We will come back to the estimation of integrated volatility in this setting for H =H1(0,1)
in Section 3.5.

3. Limit theorems for the SARCV . Throughout this work we fix (Yt)t∈[0,T ] for T >
0 to be the mild solution of the SPDE (1), i.e. Y is a continuous adapted stochastic process
defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) with right-continuous filtration
(Ft)t∈[0,T ] taking values in the separable Hilbert space H and is given by the stochastic
Volterra process

Yt = S(t)Y0 +
∫ t

0
S(t− s)αsds+

∫ t

0
S(t− s)σsdWs, t ∈ [0, T ].(8)

Here, S := (S(t))t≥0 is a strongly continuous semigroup on H generated by A and W is a
cylindrical Wiener process potentially on another separable Hilbert space U (with covariance
operator IU ). Moreover, α is an almost surely Bochner integrable adapted stochastic process
with values in H and σ is a Hilbert-Schmidt operator-valued process that is stochastically
integrable with respect to W , i.e. for ΩT := [0, T ]×Ω,

σ ∈
{
Φ : ΩT → LHS(U,H) : Φ predictable and P

[∫ T

0
∥Φ(s)∥2LHS(U,H)ds <∞

]
= 1

}
(c.f. for instance Chapter 2.5 in [56] for the definition of the stochastic integral in this con-
text). Both coefficients α and σ can in principle be state (or even path) dependent, provided
that there is a mild solution of the form (8) to the equation. We refer to (Yt)t∈[0,T ] as a mild
Itô process.

We present first our result on the asymptotic behaviour of the semigroup-adjusted re-
alised covariation (SARCV ), as it is the most important example of the (semigroup-adjusted)
power variations. The law of large numbers for general multipower variations is postponed
to the next section.

3.1. Infeasible central limit theorems for the SARCV . As it was shown in [19], the law
of large numbers needs no further assumption on Y 2 :

2There are two minor differences with respect to the limit theory established in [19]: First, the driver W was
assumed to have a covariance that is of trace class. However, considering the stochastic integral of a Hilbert-
Schmidt operator-valued process with respect to a cylindrical Wiener noise or the stochastic integral of a process
with values in LHS(Q

1/2U,H) with respect to the corresponding trace class (Q-)Wiener process in U , does
not make a difference. The stochastic integral can (on an extension of the probability space) in both cases be
translated into one or the other, due to the martingale representation theorems (c.f. Section 2.2.5 in [57]). Second,
the drift was assumed to be almost surely square-integrable. Here, in this paper, we do not aim to derive a rate of
convergence via the laws of large numbers and are in that regard able to drop these conditions.
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THEOREM 3.1. For a mild Itô process Y of the form (8), we have

SARCV n u.c.p.−→
(∫ t

0
Σsds

)
t∈[0,T ]

.

The derivation of a corresponding central limit theorem, that is, the asymptotic normality
of

(9) X̃n
t := SARCV n

t −
∫ t

0
Σsds :=

⌊t/∆n⌋∑
i=1

(∆̃n
i Y )⊗2 −

∫ t

0
Σsds,

is more involved. First of all, already in finite dimensions some further conditions have to be
imposed, which is why we give an analogue of the fairly mild Assumption 5.4.1(i) from [52]:

ASSUMPTION 1. The coefficients α and σ satisfy the following local integrability con-
dition:

P
(∫ T

0
∥αs∥2 + ∥σs∥4LHS(U,H)ds <∞

)
= 1.

The law of large numbers, Theorem 3.1, is very general, as there are no additional assump-
tions imposed on Y . However, the subtle difference to the convergence of realised variation
in the finite-dimensional case is hidden in the rate of convergence. Even if Assumption 1
holds, the speed of convergence may become arbitrarily slow and might not be of magnitude
Op(

√
∆n) anymore, where Op denotes boundedness in probability (c.f. Example 2 below).

The latter is however an important condition to obtain a general infinite-dimensional central
limit theorem with respect to some uniform operator topology such as the one induced by the
Hilbert-Schmidt norm. In order to overcome this issue, we impose further assumptions which
increase the regularity of the sample paths of the process or consider limit theorems for the
mild solution process evaluated at functionals h that induce some regularity of the respective
finite-dimensional process ⟨Yt, h⟩3.

To this purpose, we introduce the notion of Favard spaces. Here, for γ ∈ (0,1) the γ-Favard
space FS

γ is defined by

FS
γ = FS

γ (H) :=

{
h ∈H : ∥h∥FS

γ (N) := sup
t∈[0,N ]

∥∥t−γ (I −S(t))h
∥∥<∞,∀N > 0

}
.

As D(A) ⊂ FS
γ , these spaces always form dense subsets of H and become Banach spaces

when equipped with the norm supN≥0 ∥ · ∥FS
γ (N) as long as the semigroup has a negative

growth bound (c.f. [41], Chapter II.5). An example of practical importance for a subset of a
1/2-Favard space are the evaluation functionals in a Sobolev space (this is outlined further in
Section 3.5).

For functionals in the 1
2 -Favard space, we have the following central limit theorem in the

weak operator topology:

3One might hope to find a uniform rate cn such that c−1
n (SARCV nt −

∫ t
0 Σsds) converges in distribution

to a nontrivial law with respect some operator-topology. This is not possible in the general context we are exam-
ining: Example 2 describes a case, in which for certain irregular functionals

√
n⟨(SARCV nt −

∫ t
0 Σsds)h, g⟩

diverges. On the other hand, for another choice of functionals (h, g ∈D(A) for instance) we obtain convergence
in distribution to a centered Gaussian law.
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THEOREM 3.2. Define the covariance operator process Γt for t ∈ [0, T ] on H by

ΓtB :=

∫ t

0
Σs(B +B∗)Σsds, B ∈H.

Let B ∈ H be an operator with a finite-dimensional range of the form B =
∑K

l=1 µlhl ⊗ gl
for hl, gl ∈ FS∗

1

2

, µl ∈R for l= 1, ...,K , K ∈N and let Assumption 1 hold. Then(
∆

− 1

2
n ⟨X̃n

t ,B⟩H
)
t∈[0,T ]

L−s
=⇒ (N (0, ⟨ΓtB,B⟩))t∈[0,T ] ,

where the limiting process on the right is, conditionally on F , a continuous centered
Gaussian process with independent increments defined on a very good filtered extension
(Ω̃, F̃ , F̃t, P̃) of (Ω,F ,Ft,P).

For the notion of a very good filtered extension we refer to [52, Sec. 2.4.1]. Let us now
give two examples of operators B that can be chosen in Theorem 3.2 to make inference on
term structure models.

EXAMPLE 1. We consider examples of practical importance: local averages and evalua-
tion functionals.

(a) (Local averages) Consider the case that H = L2(0,1) and S is the nilpotent shift semi-
group defined in (6). We have for t ∈ [0,1] that S∗(t)f(x) = I[t,1](x)f(x − t). Then it
holds, for 0< b≤ 1 and t < b, that

∥(S(t)∗ − I)I[0,b]∥2L2(0,1) = (min(b+ t,1)− b) + t,

which shows that I[0,b] ∈ FS∗
1

2

but I[0,b] /∈ FS∗

γ for any γ > 1/2. Since Favard-spaces are
vector spaces, this yields in particular, that by virtue of Theorem 3.2 we can analyse one-
dimensional (or multivariate) stochastic processes that arise as local averages over certain
areas of a mild solution. That is, we can readily analyse time series ȳa,bi∆n

, i= 0, ..., ⌊T/∆n⌋
where

ȳa,bi∆n
:=

1

b− a

∫ b

a
Yi∆n

(x)dx=
1

b− a
⟨Yi∆n

, Ia,b⟩L2(0,1).

For forward curves in term structure models this kind of sampling structure appears natu-
rally as differences of yield curve values or (log-)bond prices which can be observed in the
market, since for a zero coupon bond price at time t with time to maturity x+ t we have

Pt(x) = e−
∫ x

0
ft(y)dy.

In energy markets we also observe prices as weighted averages of instantaneous forward
prices in the form of energy-swap contracts guaranteeing delivery of energy over a certain
time (c.f. [16]). A practically relevant class of operators are, hence, weighted sums of
indicator functionals of the form

d∑
i,j=1

wi,jI[ai,bi] ⊗ I[aj ,bj ],

for some intervals [ai, bi]⊂ [0,1] and wi,j ∈R for i, j = 1, ..., d.
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(b) (Evaluation functionals) For H =H1(0,1) we can define evaluation functionals δx by
δxf = f(x) for all x ∈ [0,1]. These functionals satisfy δx ∈ FS∗

1

2

, while δx /∈ FS∗

γ for any

γ > 1/2 if x ∈ [0,1). This is shown in Lemma 3.13 below where statistical estimation
within this framework is elaborated in a fully discrete setting. We can, hence, analyse
one-dimensional (or multivariate) stochastic processes that arise as evaluations of mild
solutions of first-order stochastic partial differential equations at a finite number of points.
A practically relevant class of operators are, thus, weighted sums of evaluation functionals
of the form

B =

d∑
i,j=1

wi,jδxi
⊗ δxj

,

for some elements xi ⊂ [0,1] and wi,j ∈R for i, j = 1, ..., d.

In order to derive a stable central limit theorem for the SARCV with respect to the
Hilbert-Schmidt norm, we need to impose regularity assumptions on the volatility process
itself, namely:

ASSUMPTION 2. One of the two following conditions holds:

(i) ∫ T

0
sup
t∈[0,T ]

E[∥t−
1

2 (I −S(t))σs∥2op]ds <∞;

(ii)

P

[∫ T

0
sup
t∈[0,T ]

∥t−
1

2 (I −S(t))σs∥2opds <∞

]
= 1.

REMARK 1. Observe that if the semigroup has negative growth bound and, thus, FS
1

2

is
a Banach space, Assumption 2(i) and (ii) can be rewritten as

(i) σ ∈ L2
(
[0, T ], FS

1

2

(
L2(Ω,L (U,H))

))
(ii) P

[
σ ∈ L2

(
[0, T ],L

(
U,FS

1

2

(H)
))]

= 1.

Now we state the associated central limit theorem.

THEOREM 3.3. Let Γ be as in Theorem 3.2. Under Assumptions 1 and 2 we have that

(10) (∆
− 1

2
n X̃n

t )t∈[0,T ]
L−s
=⇒ (N (0,Γt))t∈[0,T ],

where the limiting process on the right is, conditionally on F , a continuous centered H-
valued Gaussian process with independent increments defined on a very good filtered exten-
sion (Ω̃, F̃ , F̃t, P̃) of (Ω,F ,Ft,P).

Assumption 2 is a sharp regularity criterion for the validity of the central limit theorem in
the Hilbert-Schmidt norm:
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EXAMPLE 2. Assumption 2 is sharp in the sense that for all H< 1
2 we can always find a

deterministic and constant volatility σ, such that

(11) sup
t∈[0,T ]

∥t−H(I −S(t))σ∥LHS(U,H) <∞,

but convergence in distribution of
√
nX̃n

t cannot take place, even with respect to the weak
operator topology. Such a specification can be done for instance in the following way: Take
H = L2[0,2], (S(t))t≥0 the nilpotent semigroup of left-shifts, such that for x ∈ [0,2], t≥ 0 it
is S(t)f(x) = I[0,2](x+ t)f(x+ t) and σ = e⊗X, where e ∈H such that ∥e∥= 1 and X is
an appropriately chosen path of a rough fractional Brownian motion. That is, X(x) =BH

x (ω)
for a fractional Brownian motion (BH

x )x≥0 with Hurst parameter H< 1
2 , defined on another

probability space (Ω̄, F̄ , P̄) and ω ∈ Ω̄ is such thatBH
x is H-Hölder continuous and guarantees

divergence of
√
nX̃n

t . Clearly, BH(ω) is globally H-Hölder continuous on [0,2] and we can
find a C > 0 such that∥∥∥∥(I −S(t))

tH
σ

∥∥∥∥2
LHS(U,H)

=

∫ 2−t

0

(
BH
x (ω)−BH

x+t(ω)

tH

)2

dx+

∫ 2

2−t

(
BH
x (ω)

tH

)2

dx≤C

Hence, we have that (11) holds. However, it is intuitively clear, that the lower H is chosen, the
worse the impact on the regularity of Y is, which eventually leads to divergence of

√
nX̃n

t

for the rough case H < 1
2 . We give a detailed verification of this counterexample as well as

how to choose the appropriate ω in the Appendix.
In order to account for such irregularities, one often scales the increments in a particular

way and still obtains a feasible limit theory, such as was done for second-order stochastic
partial differential equations in [24] or [27] and for Brownian semistationary processes in
[37], [8], [9], [36], [35] and [45, 61]. However, by the law of large numbers, Theorem 3.1 we
deduce that these rescaling arguments would lead to inconsistent estimators.

To get an intuition about the regularity that is induced by Assumption 2, observe the fol-
lowing

REMARK 2. Assumption 2(i) (and 2(ii)) increases the regularity of Y in space and time:
In fact, suppose that the volatility has bounded second moment, that is, sups∈[0,T ]E

[
∥σs∥2LHS(U,H)

]
<

∞. The assumption then says that the stochastic convolution is weakly mean-square 1
2 -

regular in time, as for each h ∈H and 0≤ u < t≤ T

E

[(
⟨
∫ t

0
S(t− s)σsdWs −

∫ u

0
S(u− s)σsdWs, h⟩

)2
] 1

2

≤
(∫ u

0
E
[
∥((S(t− u)− I)S(u− s)σs)

∗ h∥2
]
ds

) 1

2

+

(∫ t

u
E
[
∥(S(t− s)σs)

∗ h∥2
]
ds

) 1

2

=O
(
(t− u)

1

2

)
.(12)

If we are in a reproducing kernel Hilbert space (i.e. a Hilbert space of functions, say over an
interval in R such that the evaluation functionals δx are continuous) and the semigroup is the
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shift semigroup, it is easy to see that the assumption also gives mean-square 1
2 -regularity in

space: To see this, we write δx for the evaluation functionals in H and observe that

E

[∣∣∣∣∫ t

0
S(t− s)σsdWs(x)−

∫ t

0
S(t− s)σsdWs(y)

∣∣∣∣2
] 1

2

= E

[∣∣∣∣δ0(∫ t

0
S(t− s)S(y)(S(x− y)− I)σsdWs

)∣∣∣∣2
] 1

2

≤ ∥δ0∥ sup
t∈[0,T ]

∥S(t)∥op

(∫ t

0
E
[
∥S(x− y)− I)σs∥2op

]
ds

) 1

2

=O(|x− y|
1

2 ),(13)

by Itô’s formula for x > y. Combining (12) and (13) we find that the random field (t, x) 7→∫ t
0 S(t− s)σsdWs(x) has mean-square regularity 1

2 in space and in time.

REMARK 3 (What if the semigroup adjustment is infeasible?). The semigroup adjust-
ment can readily be implemented in situations in which the semigroup is known and has
a simple form (e.g. a simple left-shift as in term structure models). However, it should be
noted that the adjustment might be hard or even impossible to implement in some cases. For
instance, a commonly encountered situation is A = κA′ for some known generator A′ of a
strongly continuous semigroup (T (t))t≥0 in H and an unknown parameter κ. In this case,
we have S(t) = T (κt) and without further knowledge of the parameter κ, SARCV is an
infeasible estimator.

It is, hence, important to characterise situations, in which the semigroup adjustment is
superfluous and we can use the simpler infinite-dimensional realised variation (4). We give
weak regularity conditions on the volatility guaranteeing consistency and asymptotic normal-
ity of RV n

t in section 3.4. A simple, yet very relevant situation is when the volatility has a
finite second moment and is contained in the domain of the generator A of the semigroup.
Assuming the drift to be zero for convenience, it is well known that in this case the stochastic
convolution (8) is a strong solution to the SPDE

dYt =AYtdt+ σtdWt, Y0 = 0, t ∈ [0, T ],

(which is especially fulfilled if A is continuous), c.f. [57, Theorem 3.2]. This yields that Y is
of the form

Yt =

∫ t

0
AYsds+

∫ t

0
σsdWs,

such that we can reinterpret Y to be a mild Itô process of the form (8) with the semigroup
to be the identity and αt =AYt for the sake of the limit theory. In that way, Assumption 2 is
trivially fulfilled and the realised covariation RV n

t (c.f. (4)) is consistent and asymptotically
mixed normal.

At the same time, the adjustment with the initial semigroup (generated by A) also leads to a
consistent estimator, since the semigroup is Lipschitz-continuous on the range of the volatil-
ity due to the mean value theorem. Thus, SARCV n converges in probability to the same
limit and has the same asymptotic normal distribution as RV n. However, the assumption
that the volatility is in the domain of the generator A or the existence of a strong solution is
oftentimes too strong and we give some weaker regularity conditions in Section 3.4 enabling
us to use RV n

t even in some situations in which Y does not have the pleasant semimartingale
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structure of a strong solution. Yet, in some important cases also these conditions might be too
strong and the asymptotic equality of the semigroup-adjusted and the nonadjusted variation
is not in general fulfilled (c.f. Section 3.4).

REMARK 4 (Which CLT to use in practise?). Both results Theorem 3.2 and 3.3 are cen-
tral limit theorems for the same process. While Theorem 3.3 yields a more general conver-
gence, it comes along with the additional regularity Assumption 2, while Theorem 3.2 does
not impose further assumptions on the mild Itô process Y itself, but rather on the functionals
under which we observe it.

Hence, we might use Theorem 3.2 in situations in which regularity assumptions on the
volatility are not reasonable or cannot be guaranteed to hold and we are interested in testing
hypotheses or finding confidence intervals of sufficiently regular functionals of the integrated
volatility (in terms of the assumption of the theorem). Two important classes of such func-
tionals (or even linear combinations of these) are presented in Example 1. In term structure
models, for instance, we might want to quantify the estimation error of the volatility corre-
sponding to a particular economic parameter. For instance, it is usually important to consider
the spread between two forward contracts with maturities far from each other. We are then
interested in confidence intervals for the volatility of the process ⟨δx − δy, ft⟩)t∈[0,T ] for the
long maturity x and the short term maturity y where δx and δy are evaluation functionals
δxf = f(x) in the Sobolev space H1(0,1) which is defined in Section 2. In this case, we
have to characterise the asymptotic distribution of

∫ T
0 ⟨Σs(δx− δy), (δx− δy)⟩ds. It turns out,

that the evaluation functionals δx and δy are sharply in the space FS∗
1

2

for the shift semigroup

S defined in Section 2, such that we can use Theorem 3.2 with the choice B = (δx − δy)
⊗2

(c.f. Lemma 3.13 below).
On the other hand, if regularity Assumption 2 is reasonable to assume, Theorem 3.3 makes

Theorem 3.2 obsolete. Infinite-dimensional central limit theorems as Theorem 3.3 can be
used to design hypothesis tests based on nonlinear functionals of integrated volatility via
an infinite-dimensional Delta method (c.f. [68, Section 3.9]), or to make inference on the
eigencomponents of integrated volatility in the same way infinite-dimensional limit theorems
guarantee the asymptotic normality of empirical eigenfunctions for covariance operators (c.f.
[54]) and we could also test for functionals that are not in the 1/2 Favard-space of the dual
of the semigroup. The latter is for instance the case for indicator functionals (hence, local
averages) in L2(0,1) and the heat semigroup (c.f. Section 3.5.1 below), for which the Favard
spaces are sharply embedded into Hölder spaces of continuous functions (c.f. [41, Proposition
5.33]).

3.2. Estimation of conditional covariance. As argued in the introduction, estimating in-
tegrated volatility corresponds to the estimation of the conditional covariance of the noise
process if we assume that the volatility and the Wiener process are independent. As opposed
to the semimartingale case, however, it is not the conditional covariance of the increments or
adjusted increments of a mild solution of an SPDE. The latter can, nevertheless be estimated
within our framework as well and might be used for inference on the dynamics.

As a motivation, we show in the next example how we can build time-series models from
HJMM-term structure dynamics.

EXAMPLE 3 (HJMM-time series model). Let us come back to the term structure model
described in Section 2. Assume that the drift and volatility processes are independent of
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the cylindrical Wiener process and stationary. We want to build a functional quarterly time-
series (Fi)i∈N for the forward curve process, that describes the dynamics of the arbitrage-free
HJMM-dynamics well and might for instance be used in forecasting. Measuring time in years,
it is then

Fi := Y i

4
=S

(
1

4

)
Y i−1

4
+

∫ i

4

i−1

4

S
(
i

4
− s

)
αsds+

∫ i

4

i−1

4

S
(
i

4
− s

)
σsdWs

=S
(
1

4

)
Y i−1

4
+ µi + ϵi,

where

µi :=

∫ i

4

i−1

4

S
(
i

4
− s

)
αsds, ϵi :=

∫ i

4

i−1

4

S
(
i

4
− s

)
σsdWs.

Defining Σ∗
i :=

∫ 1

4

0 S(14 − s)Σs+ (i−1)

4

S(14 − s)∗ds, we obtain a stationary time-series of co-
variance operators, such that

ϵi|σ ∼N(0,Σ∗
i ), i ∈N,

forms a weak white noise sequence.
Assuming the time-series µi to be deterministic and constant and potentially violating the

no-arbitrage setting, we can proceed in a straightforward manner: If µ is deterministic and
constant, estimation of mean µ and covariance C = E[Σ∗

i ] can be based on their empirical
counterparts via the adjusted increments (Y i

4
−S(14)Y i−1

4
). We might then conduct a dimen-

sion reduction of the model by functional principal component analysis.
The conditional heteroscedasticity of the Fi would necessitate a sharper analysis of the

time series of conditional covariances (Σ∗
i )i∈N. We might assume that it follows a particular

functional time-series model and treat it as observed rather than latent in the spirit of [6]. In
the latter case, this is justified by the observation that in the case of continuous semimartin-
gales integrated volatility is the same as the conditional covariance of the increments of the
process and is observable under continuous observations. In our case integrated volatility is
observable as well by virtue of Theorem 3.1 but does not correspond to the conditional co-
variance of adjusted increments anymore. Fortunately, adjusting our estimator appropriately
makes observation of the conditional covariance possible as well. Even better, we can esti-
mate it without imposing the regularity Assumption 2. This result can be found in Corollary
3.4 below.

Let us come back to the general setting. For 0≤ U ≤ T , define

(14)
∫ T

U
ΣTs ds :=

∫ T

U
S(T − s)ΣsS(T − s)∗ds.

In the case that the drift and the volatility are independent of the driving Wiener process this
is the conditional covariance of the adjusted increments. I.e. we have

(YT −S(T −U)YU )|α,σ ∼N
(∫ T

U
S(T − s)αsds,

∫ T

U
ΣTs ds

)
.

In that regard, it is helpful to exploit that the process

Y T
t :=S(T )Y0 +

∫ t

0
S(T − s)αsds+

∫ t

0
S(T − s)σsdWs

=Ỹ0 +

∫ t

0
α̃sds+

∫ t

0
σ̃sdWs, t ∈ [0, T ],
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is a semimartingale on H , where Ỹ0 := S(T )Y0, α̃t = S(T − t)αt and σ̃t = S(T − t)σt.
Hence, the associated nonadjusted realised covariation is a consistent and asymptotically
normal estimator of

∫ T
0 ΣTs ds. Luckily, in the presence of the functional data (Yi∆n

, i =

1, ..., ⌊T/∆n⌋), we can reconstruct the quadratic variation corresponding to Y T by

Y T
i∆n

− Y T
(i−1)∆n

= S(T − i∆n)Yi∆n
−S(T − (i− 1)∆n)Y(i−1)∆n

.

This yields the following limit theorems as a corollary of Theorem 3.3 and Remark 3, which
do not need Assumption 2:

COROLLARY 3.4. We have
⌊T/∆n⌋∑
i=1

(
S(T − i∆n)Yi∆n

−S(T − (i− 1)∆n)Y(i−1)∆n

)⊗2 u.c.p.−→
∫ T

0
ΣTs ds,

and, if Assumption 1 holds, we also have

∆
− 1

2
n

⌊T/∆n⌋∑
i=1

(
S(T − i∆n)Yi∆n

−S(T − (i− 1)∆n)Y(i−1)∆n

)⊗2 −
∫ T

0
ΣTs ds


L−s
=⇒N (0,

∫ T

0
S(T − s)ΣsS(T − s)∗(·+ ·∗)S(T − s)ΣsS(T − s)∗ds).

In particular, we obtain that

⌊T/∆n⌋∑
i=⌊U/∆n⌋+1

(
S(T − i∆n)Yi∆n

−S(T − (i− 1)∆n)Y(i−1)∆n

)⊗2 u.c.p.−→
∫ T

U
ΣTs ds,

and under Assumption 1 that

∆
− 1

2
n

 ⌊T/∆n⌋∑
i=⌊U/∆n⌋+1

(
S(T − i∆n)Yi∆n

−S(T − (i− 1)∆n)Y(i−1)∆n

)⊗2 −
∫ T

U
ΣTs ds


L−s
=⇒N (0,

∫ T

U
S(T − s)ΣsS(T − s)∗(·+ ·∗)S(T − s)ΣsS(T − s)∗ds).

REMARK 5 (Inadequacy of the conditional covariance for dimension reduction). It
should be noted that (conditional) covariances may not be a suitable tool for dimension reduc-
tion in situations where the stochastic dynamics imposed by the SPDE should be conserved,
unlike in the case of i.i.d. functional data. This can be of great importance, as SPDE dynam-
ics often encode important physical or economic principles (such as the absence of arbitrage
opportunities in term structure models).

In the energy market, for instance, there is evidence that energy spot prices are not follow-
ing semimartingale-dynamics (c.f. [14]). Energy spot prices as observed in the market are
averages of the lower end of the forward price curve (see e.g. [16]) and are, thus, bounded
linear functionals of these in the Hilbert-space L2([0,1]). This implies in particular, that en-
ergy forward curves cannot follow a strong solution to the Heath-Jarrow-Morton-Musiela
equation in L2(0,1) (c.f. section 2). Corollary 1 in [42] shows that this excludes the exis-
tence of a finite-dimensional submanifold of L2(0,1) on which the solution to the Heath-
Jarrow-Morton-Musiela equation is viable. Hence, given that observed energy spot prices do
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indeed not follow semimartingale-dynamics, the projection onto a finite-dimensional linear
subspace, which is usually done via a functional principal component technique based on the
covariance, violates the principle of the absence of arbitrage in the market.

In contrast, the stochastic noise process and, hence, integrated volatility can conveniently
be replaced by an approximated and potentially low-dimensional version without harming
the stochastic dynamics imposed by the SPDE.

We next outline how to transform Theorems 3.2 and 3.3 (as well as Corollary 3.4) into
feasible results.

3.3. Feasible central limit theorems for the SARCV . The central limit Theorems 3.2
and 3.3 (and Corollary 3.4) are infeasible in practice, as we do not know the asymptotic
variance operator Γ a priori. A consistent estimator of this random operator is given by the
difference of the corresponding (semigroup-adjusted) fourth power- and the second bipower
variation, and therefore it will be possible to derive feasible versions of Theorems 3.2 and
3.3. For that, we introduce Γ̂n given by

(15) Γ̂nt := ∆−1
n

(
SAMPV n

t (4)− SAMPV n
t (2,2)

)
.

It can be seen by the following laws of large numbers in Theorems 4.1 and 4.2 that this
defines a consistent estimator of Γ. I.e., we have in H4

(16) Γ̂n
u.c.p.−→ Γ as n→∞

under the following Assumption:

ASSUMPTION 3. α is locally bounded and σ is a càdlàg process w.r.t. ∥ · ∥LHS(U,H).

This assumption corresponds to Assumption (H) in [52, p.238]. Due to the next result, the
estimator Γ̂n behaves well in the sense that it remains in the space of covariance operators:

LEMMA 3.5. Γ̂nt is a symmetric and positive semidefinite nuclear (and therefore Hilbert-
Schmidt) operator.

PROOF. That it is a symmetric nuclear operator follows immediately, since it is the dif-
ference of two symmetric nuclear operators. Notice that for any real vector (x1, ..., xN ) for
some N ∈N we have

0≤
N−1∑
i=1

(xi+1 − xi)
2 =

N−1∑
i=1

x2i+1 +

N−1∑
i=1

x2i − 2

N−1∑
i=1

xi+1xi ≤ 2

[
N∑
i=1

x2i −
N−1∑
i=1

xi+1xi

]
.

Using this elementary inequality we obtain positive semidefiniteness, since for each B ∈H〈
∆nΓ̂

n
t B,B

〉
H

=

⌊t/∆n⌋∑
i=1

〈
(∆̃n

i Y )⊗2,B
〉2
H
−

⌊t/∆n⌋−1∑
i=1

〈
(∆̃n

i Y )⊗2,B
〉
H

〈
(∆̃n

i+1Y )⊗2,B
〉
H
.

Hence, Γ̂n is positive semidefinite.
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The following two results are direct corollaries of the central limit theorems 3.2 and 3.3
and the fact that two sequences of random variables defined on the same probability space
with values in a Polish space, where one converges stably in law and the other converges in
probability, converge jointly stably in law (c.f. [46, Thm. 3.18 (b)]). We now give the feasible
version of the central limit theorem 3.2, which can be used to find confidence intervals (e.g.
for evaluations in a reproducing kernel Hilbert space setting as in Subsection 3.5):

COROLLARY 3.6. Let Assumption 3 hold and B ∈ H be an operator with a finite-
dimensional range of the form B =

∑K
l=1 µlhl ⊗ gl for hl, gl ∈ FS∗

1/2, l = 1, ...,K , K ∈ N.
Then

∆
− 1

2
n ⟨X̃n

t ,B⟩H√
⟨Γ̂tB,B⟩H

d−→N (0,1),

conditional on the set {⟨ΓtB,B⟩H > 0} ⊆Ω.

We also obtain a "feasible" version of Theorem 3.3:

COROLLARY 3.7. Under Assumptions 2 and 3, we obtain

(17)
(
∆

− 1

2
n X̃n

t , Γ̂
n
t

)
t∈[0,T ]

L−s
=⇒ (N (0,Γt) ,Γt)t∈[0,T ] ,

where we consider the processes in the space H×H4, equipped with the metric

d((B1,Ψ1), (B2,Ψ2)) := ∥B1 −B2∥H + ∥Ψ1 −Ψ2∥H4 .

3.4. Is the semigroup adjustment necessary?. Certainly, in many situations, it would be
convenient to use the realised quadratic variation instead of the semigroup-adjusted variation.
We shall show below when this is possible but start here with an example where the realised
covariation diverges.

EXAMPLE 4. Assume that for an element e ∈ H such that ∥e∥ = 1 and an H-valued
random variable X the volatility takes the simple form

σs = e⊗S(s)X.

Moreover, we assume that there is no drift and Y (0) = 0 and let X (and hence σs) be inde-
pendent of the driving cylindrical Wiener process W (i.e., no so-called leverage effect). The
process βt := ⟨e,Wt⟩ is well-defined and a one-dimensional standard Brownian motion. We
obtain

Yt :=

∫ t

0
S(t− s)σsdWs = βtS(t)X ∀t ∈ [0, T ].

This simple form can be exploited in order to derive counterexamples for the validity of the
law of large numbers and the central limit theorem for the quadratic variation. For that, we
introduce two cases:

(i) (Counterexample for the law of large numbers)H = L2[0,2],X(x) :=BH
x , whereBH is

a fractional Brownian motion with Hurst parameter H= 1
4 and (S(t))t≥0 is the (nilpotent)

left-shift semigroup given by

S(t)f(x) := f(x+ t)I[0,2](x+ t) t≥ 0, x ∈ [0,2].
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(ii) (Counterexample for the central limit theorem) H = L2(R), X(x) := I[0,1](x), and
(S(t))t≥0 is the left-shift semigroup given by

S(t)f(x) := f(x+ t) x, t≥ 0.

Observe that in this case Assumptions 1 and 2 are satisfied, such that the central limit
theorem 3.3 holds.

We start with the first case and make the following technical observation:∥∥∥∥∥
n∑
i=1

((S(∆n)− I)Y(i−1)∆n
)⊗2

∥∥∥∥∥
2

H

=

n∑
i,j=1

⟨(S(∆n)− I)Y(i−1)∆n
)⊗2, (S(∆n)− I)Y(j−1)∆n

)⊗2⟩H

=

n∑
i,j=1

⟨((S(∆n)− I)Y(i−1)∆n
), ((S(∆n)− I)Y(j−1)∆n

)⟩2

≥
n∑
i=1

∥(S(∆n)− I)Y(i−1)∆n
)∥4.

Assume now that the realised variationRV n
t converges in probability to the integrated volatil-

ity. One can show, that (RV n
t −

∫ t
0 Σsds−

∑n
i=1((S(∆n)− I)Y(i−1)∆n

)⊗2) and therefore∑n
i=1 ∥(S(∆n) − I)Y(i−1)∆n

)∥4 converges in probability to 0 and that
∑n

i=1 ∥(S(∆n) −
I)Y(i−1)∆n

)∥4 is uniformly integrable. This is a technical exercise, which can be found in the
Appendix. Thus, in the first case, we must necessarily have by Jensen’s inequality

0 = lim
n→∞

n∑
i=1

E
[
∥(S(∆n)− I)Y(i−1)∆n

)∥4
]
≥ lim
n→∞

n∑
i=1

E
[
∥(S(∆n)− I)Y(i−1)∆n

)∥2
]2

= lim
n→∞

∆2+4H
n

n∑
i=1

(i− 1)2 > 0,

which is a contradiction.
Assume now that the realised variation

√
n(RV n

t −
∫ t
0 Σsds) converges in distribu-

tion to a normal distribution. We now turn to the second example (ii). In this case, both√
n(RV n

t −
∫ t
0 Σsds) and

√
n(SARCV n

t −
∫ t
0 Σsds) are uniformly integrable, such that

their convergence in distribution implies convergence of their means. This is again a techni-
cal exercise and the details can be found in the Appendix. We observe that

E
[
RV n

t −
∫ t

0
Σsds

]
=E
[
SARCV n

t −
∫ t

0
Σsds

]
+

⌊t/∆n⌋∑
i=1

E
[
[(S(∆n)− I)Y(i−1)∆n

]⊗2
]
.

Normalising by
√
n we find that the first summand converges to 0, due to the uniform

integrability and the central limit theorem 3.3 (i.e. convergence in distribution to a cen-
tred random variable). With the notation ∆iS = S(i∆n) − S((i − 1)∆n) we find, since
E
[
[(S(∆n)− I)Y(i−1)∆n

]⊗2
]
=
∫ (i−1)∆n

0 (∆iSI[0,1])⊗2ds that∥∥∥∥∥E
[

n∑
i=1

[(S(∆n)− I)Y(i−1)∆n
]⊗2

]∥∥∥∥∥
2

H

=

n∑
i,j=1

(i− 1)(j − 1)∆2
n⟨∆iSI[0,1],∆jSI[0,1]⟩2

≥∆2
n

n∑
i=1

(i− 1)2∥∆iSI[0,1]∥4
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=∆2
n

n∑
i=1

(i− 1)22∆2
n.

After normalisation by n = (
√
n)2 the expression converges to a positive constant, which

verifies that the second case (ii) provides a counterexample for the central limit theorem.

We can, however, impose assumptions on the regularity of the semigroup on the range of
the volatility, such that we again obtain a law of large numbers and a central limit theorem
for the realised variations. The assumption for the law of large numbers is

ASSUMPTION 4. Let almost surely

lim
t→0

∫ T

0
∥t−

1

2 (I −S(t))σs∥2LHS(U,H)ds= 0.

REMARK 6. Assumption 4 looks similar to Assumption 2. However, in contrast to the
weaker Assumption 2, Assumption 4 excludes some elementary shapes for the volatility such
as the one of Example 4, for which it is simple to see that ∥(I −S(t))σ∥LHS(U,H) = 2t.

Analogously, we obtain a central limit theorem under the following assumption.

ASSUMPTION 5. Let almost surely

lim
t→0

∫ T

0
∥t−

3

4 (I −S(t))σs∥2LHS(U,H)ds= 0.

We have the following results.

THEOREM 3.8. (i) (Law of large numbers) If Assumption 4 is valid, we have

(18) RV n
t
u.c.p.−→

∫ t

0
Σsds.

(ii) (Central limit theorem) If Assumptions 1 and 5 are valid, we have

(19) ∆
− 1

2
n

(
RV n

t −
∫ t

0
Σsds

)
L−s
=⇒N (0,Γt).

We also have a central limit theorem in the weak operator topology as well as a law of
large numbers with mild conditions on the functionals:

THEOREM 3.9. (i) (Law of large numbers) IfB ∈H is of the form B =
∑K

l=1 µlhl⊗gl
for hl, gl ∈ FS∗

1/2 for l= 1, ...,K , K ∈N, we have

(20) ⟨RV n
t ,B⟩H

u.c.p.−→
∫ t

0
⟨Σs,B⟩Hds.

(ii) (Central limit theorem) If B ∈ H is of the form B =
∑K

l=1 µlhl ⊗ gl for hl, gl ∈ FS∗

3/4

for l= 1, ...,K , K ∈N and Assumption 1 holds, we have

(21) ⟨∆− 1

2
n

(
RV n

t −
∫ t

0
Σsds

)
,B⟩H

L−s
=⇒N (0, ⟨ΓtB,B⟩H).
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3.5. Discrete samples in space and time. We discuss in this subsection the case when
we have observations which are discrete in space and time. Discretisation in space yields
many nontrivial challenges (e.g. owing to asynchronicity or noise). Here we want to outline
how our results can be used immediately for estimation of the second-order structure of a
continuous mild Itô process and therefore we assume throughout this subsection that we
have observations of Y on a discrete regular space-time grid. That is, we observe

(22) Yi∆n
(j∆n) := Yti(xj), i, j = 1, ..., n,

where for notational reasons we fix T = 1. We assume that H is the Sobolev space

H1(0,1) := {h : [0,1]→R : h is absolutely continuous and h′ ∈ L2([0,1])},

equipped with the norm ∥h∥ := h(0)2 +
∫ 1
0 (h

′(x))2dx. This is a reproducing kernel Hilbert
space in which the corresponding reproducing kernel is k(x, y) := 1 + min(x, y), c.f. [22].
We write δx = k(x, ·) for both the representer of the evaluation functionals and the evaluation
functionals δxf = f(x) in H .

Define the operator Πn :H →H as the orthogonal projection onto

Hn := span(δj∆n
, j = 1, ..., n).

Then, for any h ∈ H , Πnh can readily be recovered from the finite number of evaluations
h(j∆n), j = 1, ..., n. Indeed, as ⟨δj∆n

,Πnh⟩= ⟨δj∆n
, h⟩= h(j∆n), Πnh is the unique ele-

ment in span(δj∆n
, j = 1, ..., n) that interpolates the points h(j∆n), j = 1, ..., n. Thus, it is

of the form

ΠnYi∆n
=

n∑
j=1

αj,ik(j∆n, ·),(23)

where (α1,i, ..., αn,i)
⊥ = (Kn)

−1(Yi∆n
(∆n), ..., Yi∆n

(1))⊥ and Kn denotes the positive def-
inite matrix Kn = (k(j1∆n, j2∆n))j1,j2=1,...,n. Observe that in this particular case, the kernel
matrix has a very simple form as k(j1∆n, j2∆n) = 1+∆nmin(j1, j2) and its inverse is given
by the symmetric tridiagonal matrix K−1

n which has entries

(K−1
n )i,j =



−n |i− j|= 1

2n i= j /∈ {1, n}
n i= j = n

2 + n2−2
n+1 i= j = 1

0 |i− j|> 1.

This method yields the interpolating element in H that is minimal with respect to the norm in
H (c.f. [22, Theorem 58]) and is a very natural choice of reconstructing a curve from discrete
data. The projections are also suitable for asymptotic theory due to the subsequent lemma.

LEMMA 3.10. The projections Πn converge strongly to the identity on H =H1(0,1).

PROOF. According to [22, Theorem 3] K0 := span(δx, x ∈ [0,1]) is dense in H1(0,1).
For an arbitrary element h=

∑d
i=1 λiδxi

∈K0 let ĥn =
∑d

i=1 λiδx̂n
i

, where x̂ni ∈ {j∆n, j =
1, ..., n} which is closest to xi. We then have ∥δxi

− δx̂i
∥ ≤ |xi − x̂i| ≤ ∆n for all i =

1, ..., d and, thus, ∥h − ĥn∥ ≤ ∆n
∑d

j=1 |λj |. Now let h ∈ H and ϵ > 0. We can choose a
g ∈ span(δx, x ∈ [0,1]) such that ∥h− g∥ ≤ ϵ

2 and for g we can find an n0 ∈N such that for
each n≥ n0 there is an hn ∈ span(δj∆n

, j = 1, ..., n) such that ∥g− hn∥ ≤ ϵ/2. Thus, since
Πn is an orthogonal projection, for all n≥ n0 we have

∥(I − Pn)h∥ ≤ ∥h− hn∥ ≤ ∥h− g∥+ ∥g− hn∥ ≤ ϵ.
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Let us now derive asymptotic results in the fully discrete setting (22). We outline the
situation here in two cases, which are of practical importance and well-suited for these obser-
vations. In the first case, we have a continuous Itô semimartingale in H . This covers suitable
frameworks for intraday energy markets, as mentioned in the introductory section. In the sec-
ond case, S is the semigroup of left shifts, which for instance corresponds to the framework
of Heath-Jarrow-Morton term structure models, c.f. [43], for interest rates and for energy
forward markets, c.f. [18]. For a different sampling scheme we will also include a short dis-
cussion on the stochastic heat equation in a separate subsection afterwards.

(a) (Semimartingale case) The semigroup is equal to the identity (or can be interpreted as
such in the case of a strong solution as in Remark 3). That is, we observe a continuous Itô
semimartingale

Yt = Y0 +

∫ t

0
αsds+

∫ t

0
σsdWs.

In that case, we define the operator

Σ̂nt =ΠnRV
n
t Πn =

⌊t/∆n⌋∑
i=1

(Πn∆
n
i Y )⊗2.

The latter is feasible, as we can derive the values ∆n
i Y (j∆n) = Yi∆n

(j∆n)−Y(i−1)∆n
(j∆n)

from data and, hence, can derive Πn∆
n
i Y by (23).

(b) (Shift case) S is the semigroup of left shifts, given by

S(t)h(x) :=

{
h(x+ t), x+ t≤ 1,

h(1), x+ t > 1,

which forms a the strongly continuous semigroup on H1(0,1). In that case, we define the
operator

Σ̂nt =ΠnSARCV
n
t Πn =

⌊t/∆n⌋∑
i=1

(Πn∆̃
n
i Y )⊗2.

The latter is feasible, as we can derive the values ∆̃n
i Y (j∆n) = Yi∆n

(j∆n)−Y(i−1)∆n
((j+

1)∆n) for j = 1, ..., n− 1 and ∆n
i Y (1) = 0 (by the definition of the semigroup) from data

and, hence, can derive Πn∆̃
n
i Y by (23) also in this case.

The proof of the next result makes use of Theorem 3.1.

LEMMA 3.11. In both cases (a) and (b), we have

Σ̂nt
u.c.p.−→

∫ t

0
Σsds,

with respect to the Hilbert-Schmidt norm on H= LHS(H
1(0,1)).

PROOF. Let An denote either RV n
t in case (a) or SARCV n

t in case (b). Then it is

∥ΠnAnΠn −Πn

∫ t

0
ΣsdsΠn∥H ≤ ∥An −

∫ t

0
Σsds∥H,
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which converges to 0 uniformly on compacts in probability in both cases by Theorem 3.1.
Moreover, ΠnΣsΠn converges to Σs with respect to the nuclear (and hence the Hilbert-
Schmidt) norm for all s ∈ [0,1], which follows by Lemma 3.10 and combining Proposition 4
and Lemma 5 in [59]. The u.c.p. convergence follows by dominated convergence as

sup
t∈[0,1]

∥∥∥∥∫ t

0
ΠnΣsΠn −Σsds

∥∥∥∥
H
≤
∫ 1

0
∥ΠnΣsΠn −Σs∥H ds.

Due to the semimartingale property of the processes (Yt(x))t∈[0,T ] in case (a), both by the
finite-dimensional limit theory outlined in [52] or by appealing to Theorem 3.2 we have the
following result.

COROLLARY 3.12. In case (a), for x ∈ [0,1], we have

√
n

⌊t/∆n⌋∑
i=1

(
Yi∆n

(x)− Y(i−1)∆n
(x)
)2 − ∫ t

0
⟨σs, δx⟩2ds

 L−s
=⇒N (0, ⟨Γtδ⊗2

x , δ⊗2
x ⟩H).

A feasible version, conditional on the set {⟨Γtδ⊗2
x , δ⊗2

x ⟩H > 0} ⊆Ω, is given by(
n∑
i=1

(
Yi∆n

(x)− Y(i−1)∆n
(x)
)4

−
n−1∑
i=1

(
Yi∆n

(x)− Y(i−1)∆n
(x)
)2 (

Y(i+1)∆n
(x)− Y(i)∆n

(x)
)2)− 1

2

×

(
n∑
i=1

(
Yi∆n

(x)− Y(i−1)∆n
(x)
)2 − ∫ t

0
⟨σs, δx⟩2ds

)
d−→N (0,1).

It’s notable that the central limit theorem can be recovered in case (b) as well, due to the
following observation: In the case that H = H1(0,1), the representations δx of evaluation
functionals are in the 1

2 -Favard spaces of the shift semigroup and its dual. Namely, we have

LEMMA 3.13. Let H =H1(0,1) and S be the left shift semigroup. Then the represen-
tations δx, for any 0≤ x≤ 1, of the evaluation functionals are elements in the Favard class
FS
1/2 and FS∗

1/2, but for x ∈ (0,1] not in the γ-Favard spaces FS
γ and for x ∈ [0,1) FS∗

γ with
respect to the shift semigroup for γ > 1

2 .

Let us assume for the moment we are in case (b) for the process

Yt(x) =Y0(x+ t) +

∫ t

0
αs(x+ t− s)ds

∫ t

0
⟨σs, δx+t−s⟩dWs.

This leads to the following useful limit theorem, which enables us to find confidence bounds
for the process (

∫ t
0 ⟨σs, δx⟩

2ds)t∈[0,T ] based on observations (Yi∆n
(x), Yi∆n

(x +∆n)), i =
1, ..., n in case (b):
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COROLLARY 3.14. In case (b), we have, for x ∈ [0,1], due to the central limit Theorem
3.2 (respectively, Theorem 3.6)

√
n

⌊t/∆n⌋∑
i=1

(
Yi∆n

(x)− Y(i−1)∆n
(x+∆n)

)2 − ∫ t

0
⟨σs, δx⟩2ds

 L−s
=⇒N (0, ⟨Γtδ⊗2

x , δ⊗2
x ⟩).

A feasible version, conditional on the set {⟨Γtδ⊗2
x , δ⊗2

x ⟩H > 0} ⊆Ω, is given by(
n∑
i=1

(
Yi∆n

(x)− Y(i−1)∆n
(x+∆n)

)4
−
n−1∑
i=1

(
Yi∆n

(x)− Y(i−1)∆n
(x+∆n)

)2 (
Y(i+1)∆n

(x)− Yi∆n
(x+∆n)

)2)− 1

2

×

(
n∑
i=1

(
Yi∆n

(x)− Y(i−1)∆n
(x+∆n)

)2 − ∫ t

0
⟨σs, δx⟩2ds

)
d−→N (0,1).

We remark, that even for case (b), Lemma 3.13 also guarantees that Theorem 3.9(i) applies.
Hence, it holds that

n∑
i=1

(
Yi∆n

(x)− Y(i−1)∆n
(x)
)2 u.c.p.−→

∫ t

0
⟨σs, δx⟩2ds.

Therefore, we just need observations Yi∆n
(x), i= 1, ..., n to estimate the quadratic variation

of the one-dimensional processes (Yt(x))t∈[0,T ] consistently.

3.5.1. A note on the stochastic heat equation. As already mentioned in Remark 3, the
semigroup adjustment can be easily implemented in cases in which we know the semigroup
and it has a simple form, which is not always the case. A prototypical example is the stochas-
tic heat equation with an unknown diffusivity κ > 0 taking the form

dYt = κ∂xxYtdt+Q
1

2dWt.

Here we assume that
∫ t
0 Q

1

2dWs is formally a Q-Wiener process taking values in H =

L2[0,1] with an unknown nuclear covariance operator Q. The differential operator ∂xx on
the domain D(∂xx) = {h ∈ L2[0,1] : ∥f ′∥+ ∥f ′′∥<∞, f(0) = f(1) = 0} generates an ana-
lytic semigroup on H given by

S(t)f =

∞∑
j=1

etλj ⟨ej , f⟩ej ,

where λj = π2j2κ and ej(x) :=
√
2 sin(πjx) (see for instance Example B.12 in [63]). In this

situation, the regularity of the dynamics is very often expressed in terms of Sobolev spaces,
which can be formally defined as

Ḣr :=D
(
∂

r

2
xx

)
=

h ∈H : ∥h∥2
Ḣr :=

∞∑
j=1

λrj⟨ej , h⟩2 <∞

 .(24)
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Equipped with the norm ∥ · ∥Ḣr = ∥(−A)
r

2 · ∥, these are separable Hilbert spaces. Now, if W
is a cylindrical Wiener process on L2(0,1) and

(25) Q
1

2 ∈ LHS

(
L2(0,1), Ḣr

)
,

it follows by Theorem 6.13 in Section 2.6 of [62]

sup
t∈[0,T ]

t−
r

2 ∥(S(t)− I)Q
1

2 ∥LHS(U,H) = sup
t∈[0,T ]

t−
r

2 ∥A− r

2 (S(t)− I)A
r

2Q
1

2 ∥LHS(U,H)

≤C∥A
r

2Q
1

2 ∥LHS(U,H)

=C∥Q
r

2 ∥LHS(U,Ḣr) <∞.(26)

This yields

LEMMA 3.15. If in (25) we have

(a) r = 1, then Assumption 2 holds and the semigroup-adjusted realised covariation satis-
fies the infinite-dimensional central limit theorem 3.3;

(b) r > 1, then Assumption 4 holds and the realised variation satisfies the infinite-
dimensional law of large numbers Theorem 3.8(i);

(b) r > 3
2 , then Assumption 5 holds and the realised variation satisfies the infinite-

dimensional central limit theorem 3.8(ii).

As we do not necessarily know κ, it might not be possible to implement the semigroup
adjustment. Even if we knew κ, on the basis of discrete observations we would need to
approximate the semigroup appropriately to implement the adjustment such as it is done in
[48]. In this regard, cases (b) and (c) of the previous theorem are particularly appealing, as
they hold for the realised variation, which does not take into account an adjustment by the
semigroup. Still, also the latter has to be approximated by discrete data. Here we assume that
we sample data from the mild solution to the stochastic heat equation as local averages, that
is, we have

ȳn,mi,j :=
1

∆m

∫ j∆m

(j−1)∆m

Yi∆n
(x)dx, i= 0, ..., n, j = 1, ...,m.

Observe that in this case, we can have a different spatial and temporal resolution. Let Πm
denote the projection onto the subspace of L2[0,1] spanned by the orthonormal vectors
∆mI[(j−1)∆m,j∆m]. Then we can recover Πm∆m

i Y from data as this is simply corresponding
to the piecewise constant function given by

Πm∆
m
i Y =

m∑
i=1

(ȳn,mi,j − ȳn,mi−1,j)I[(j−1)∆m,j∆m].

We can, thus, readily derive the estimator

Σ̂n,mt := ΠmRV
n
t Πm =

⌊t/∆n⌋∑
i=1

(Πm∆
n
i Y )⊗2,

from data as well. For a sufficiently regular Q, we then obtain an infinite-dimensional law of
large numbers:

LEMMA 3.16. Assume (25) holds with r > 1. Then Σ̂n,mt is a consistent estimator, that
is, with respect to the Hilbert-Schmidt norm it is as n,m→∞

Σ̂n,mt
u.c.p.−→ tQ.
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PROOF. We have

∥Σ̂n,mt −ΠmtQΠm∥ ≤∥RV n
t − tQ∥,

which converges to 0 by Lemma 3.15 (b) as n→ ∞. As Πm → I strongly in L2(0,1) as
m→ ∞ we also have that ∥Πm(tQ)Πm − tQ∥LHS(L1(0,1)) converges to 0 as m→ ∞ by
combining Proposition 4 and Lemma 5 in [59].

We may also derive a central limit theorem for the one-dimensional observations.

LEMMA 3.17. Assume that (25) holds with r > 3/2 and thatm=mn with limn→∞ n∆mn
=

0. Then for all h ∈H it is
√
n⟨
(
Σ̂n,mt − tQ

)
h,h⟩ L−s

=⇒N
(
0,2t⟨Qh,h⟩2

)
.

PROOF. We decompose
√
n
(
Σ̂n,mt − tQ

)
=
√
n (RV n

t − tQ) +
(√

n
(
Σ̂n,mt −ΠmtQΠm

)
−
√
n (RV n

t − tQ)
)
+
√
n (ΠmtQΠm − tQ) .

The first term converges stably in law to the limiting Gaussian process as specified in the
assertion as n→∞. It, thus, remains to show that the other two terms converge to 0 uniformly
on compacts in probability.

For the second summand we denote hm =Πmh and find that
√
n
∣∣∣⟨(Σ̂n,mt −ΠmtQΠm

)
h,h⟩ −

√
n⟨(RV n

t − tQ)h,h⟩
∣∣∣

≤
√
n∥RV n

t − tQ∥∥hm − h∥(∥hm∥+ ∥h∥).
As the first factor is bounded in probability and hm → h as m→∞, this converges to 0. For
the second summand we have that

√
n(ΠmQΠm −Q) we find

⟨ΠmQΠmh−Qh,h⟩ ≤ ∥(I −Πm)Qh∥+ ∥(I −Πm)Qhm∥= (1)m + (2)m.

For the first summand we can argue that as Q maps into

Ḣ
3

2 ⊂ Ḣ1 ⊂H1(0,1)

by Lemma 3.1 in [67], we have that for any h ∈ H that ∂xQh = (Qh)′ ∈ L2(0,1)
and (Qhm)

′ ∈ L2(0,1) as well. Hence, for Qh∗m(·) :=
∑m

i=1Qh(i∆m)I[(i−1)∆m,i∆m](·) ∈
span(I[(i−1)∆m,i∆m] : i= 1, ...,m) we have

(1)2m ≤ ∥Qh−Qh∗m∥2 =

∥∥∥∥∥
m∑
i=1

(∫ i∆m

x
(Qh)′(y)dy

)
I[(i−1)∆m,i∆m](x)

∥∥∥∥∥
2

≤∆m∥(Qh)′∥2

and in the same way and using Lemma 3.1 in [67]

(2)2m ≤∆m∥(Qhm)′∥2 =∆m∥∂
1

2
xxQhm∥2 ≤∆m∥Q∥2

LHS(L2(0,1),Ḣ1)
∥hm∥2.

Summing up, we get
√
n⟨ΠmQΠmh−Qh,h⟩ ≤∥(I −Πm)Qh∥+ ∥(I −Πm)Qhm∥

=
√
n
√

∆m

(
∥(Qh)′∥+ ∥Q∥LHS(L2(0,1),Ḣ1)∥hm∥

)
.

This converges to 0 as
√
n∆m → 0 as n→∞ by assumption.
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Analytic semigroups such as the heat semigroups can impose regularity on the sample
paths of Y and potentially allow to weaken the conditions of Lemma 3.15, which may not be
sharp in this setting. We postpone a thorough analysis of these conditions in case of analytic
semigroups to future research.

4. A law of large numbers for multipower variations. We still have to verify the con-
sistency (16) of the estimator for the asymptotic variance Γt. Rather than proving only this
specific result, we provide general laws of large numbers for power and multipower variations
in this section.

For a positive symmetric trace-class operator Σ, we define the operator ρΣ(m), as the mth
tensor moment of an H-valued random variable U ∼N (0,Σ), i.e.,

(27) ρΣ(m) = E[U⊗m].

This operator can be characterised by the identity

(28) ⟨ρΣs
(m), h1 ⊗ ...⊗ hm⟩Hm =

∑
p∈P(m)

∏
(x,y)∈p

⟨Σhx, hy⟩,

for any collection h1, ..., hm ∈H , where the sum is taken over all pairings over (1, ...,m),
i.e., all ways to disjointly decompose (1, ...,m) into pairs. We denote the set of all these
pairings by P(m), which is then given as

P(m) =
{
p⊂ {1, ...,m}2 : #p= m

2
and if (x, y), (x′, y′) ∈ p,

then x, y,x′, y′ are pairwise unequal and x < y,x′ < y′
}
.

In particular, ρΣ(m) = 0, if m is odd. In the case of power variations, we need

ASSUMPTION 6 (m). For a natural number m ∈N we have

(29) P
[∫ T

0
∥αs∥

2m

2+mds+

∫ T

0
∥σs∥mLHS(U,H)ds <∞

]
= 1.

Observe that the assumption above corresponds to Condition 3.4.6 in the finite-dimensional
law of large numbers Theorem 3.4.1 in [52]. We now state a law of large numbers for
semigroup-adjusted power variations:

THEOREM 4.1. Let m≥ 2 be a natural number and Assumption 6(m) be valid. Then

∆
1−m

2
n SAMPV n(m)

u.c.p.−→
(∫ t

0
ρΣs

(m)ds

)
t∈[0,T ]

,

with respect to the Hilbert-Schmidt norm on Hm.

Let us study some examples:

EXAMPLE 5. If m= 2, there is just one way to decompose {1,2} into pairs, i.e., P(2)
consists of the pair {(1,2)} only. Therefore ρΣs

(2) = Σs, and in particular, the law of large
numbers reads in this case

SARCV n
t (2)

u.c.p.−→
∫ t

0
Σsds,

which corresponds to the law of large numbers Theorem 3.1.
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EXAMPLE 6. If m = 4, then we find that P(4) consists of the pairs {(1,2), (3,4)},
{(1,3), (2,4)} and {(1,4), (2,3)}. Hence, it follows,

⟨ρΣs
(4), h1 ⊗ ...⊗ h4⟩H4

= ⟨Σsh1, h2⟩⟨Σsh3, h4⟩+ ⟨Σsh1, h3⟩⟨Σsh2, h4⟩+ ⟨Σsh1, h4⟩⟨Σsh2, h3⟩

= ⟨Σ⊗2
s +Σs(·+ ·∗)Σs, h1 ⊗ h2 ⊗ h3 ⊗ h4⟩.

This yields ρΣs
(4) = Σs(·+ ·∗)Σs +Σ⊗2

s .

For a positive symmetric trace class operator Σ : H → H , define for m,m1, ...,mk ∈ N
such that m=m1 + ...+mk

ρ⊗kΣ (m1, ...,mk) :=

k⊗
j=1

ρΣ(mj),

which is an operator in Hm, such that for any collection (hj,l) ⊂ H , j = 1, ..., k and l =
1, ...,mj we have

⟨ρ⊗kΣ (m1, ...,mk),

m1⊗
l=1

h1,l ⊗ ...⊗
mk⊗
l=1

hk,l⟩Hm =

k∏
j=1

∑
p∈P(ml)

∏
(x,y)∈p

⟨Σshx,j , hy,j⟩.

We have the following law of large numbers for multipower variations:

THEOREM 4.2. Let Assumption 3 hold and m,m1,m2, . . . ,mk be natural numbers such
that m1 + ...+mk =m≥ 2. Then

∆
1−m

2
n SAMPV n(m1, ...,mk)

u.c.p.−→
(∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds

)
t∈[0,T ]

.(30)

Let us consider the important example of bipower variation:

EXAMPLE 7 (Bipower variation). Let m1 = m2 = k = 2, i.e., m = 4, and define the
bipower variation

(31) SAMPV n
t (2,2) =

⌊t/∆n⌋−1∑
i=1

∆̃n
i Y

⊗2 ⊗ ∆̃n
i+1Y

⊗2.

Observe that ρ⊗2
Σs

(2,2) = ρΣs
⊗ ρΣs

=Σ⊗2
s by Example 5.

5. Outline of the Proofs. We will now provide an outline of the proofs of the main
results (i.e. Theorems 3.1, 3.2, 3.3, 4.1 and 4.2). The remaining results Theorem 3.8, Theorem
3.9, Lemma 3.11 and Lemma 3.13 as well as Examples 2 and 4 are consequences of these
limit theorems. The detailed proofs are relegated to the Appendix.

Throughout this section, we let pN be the projection onto vN := lin({ej : j ≥N}), for
some orthonormal basis (ej)j∈N that is contained in D(A∗), and PmN denote the projection
onto lin({

⊗m
l=1 ekl : kl ≥N}) (where m is variable, corresponding to the particular case).

In the special case m= 2 we write P 2
N =: PN .

First, it is important to note that we can appeal to localised versions of the assumptions of
Theorems 3.1, 3.2, 3.3, 4.1 and 4.2. This is a common procedure that follows the arguments
presented in Section 4.4.1 in [52], which enables us to prove all theorems stated in this work
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under such localised assumptions. The localised assumptions essentially impose boundedness
instead of almost sure finiteness, in order to ensure the existence of all necessary moments.

The first important observation is the following: By the localisation procedure, we can
assume there is a constant A, such that

(32)
∫ T

0
∥αs∥

m

2 + ∥σs∥mLHS(U,H)ds < A.

In this case, the SAMPV , when projected onto functionals of the form
⊗m

l=1 ejl , for an or-
thonormal basis (ej)j∈N which is contained inD(A∗),m ∈N and j1, ..., jm ∈N, corresponds
asymptotically to the tensor multipower variations of the semimartingale

St :=

∫ t

0
αsds+

∫ t

0
σsdWs.

We find that

⟨SAMPV n
t (m1, ...,mk),

m⊗
l=1

ejl⟩Hm

=

⌊t/∆n⌋∑
i=1

⟨
k⊗
j=1

∆n
i+j−1S

⊗mj ,

m⊗
l=1

ejl⟩Hm +Op(∆
m

2
n ).(33)

As the left-hand side of (33) corresponds to a multivariate continuous semimartingale, the
limit theorems from [52] are readily available.

Now we come to the second important observation: For that, define the two sequences

(34) aN (z) := sup
n∈N

E
[∫ T

0
∥pNαSn

s ∥zHds
]
, bN (z) := sup

n∈N
E
[∫ T

0
∥pNσSn

s ∥zLHS(U,H)ds

]
,

for z ≤m, σSn
s = S(i∆n − s)σs and αSn

s = S(i∆n − s)αs with s ∈ ((i− 1)∆n, i∆n]. Ob-
serve that

ΣSn
s = σSn

s (σSn
s )∗.

Under (32) both aN (z) for z ≤ m/2 and bN (z) for z ≤ m converge to 0 as N → ∞ for
z ≤m, respectively z ≤ m

2 . Moreover, we can find for all m ∈N a universal constant C > 0
possibly depending on m, such that

(35)
⌊t/∆n⌋∑
i=1

E
[
∥pN∆̃n

i Y ∥m
]
≤C∆

m

2
−1

n (aN (
m

2
) + bN (m)) = o(∆

m

2
−1

n ).

We notice that the Hilbert-Schmidt structure of the volatility is crucial to establish that bN (z)
converges to 0.

The proofs for limit theorems in this work follow a similar pattern. For the laws of large
numbers:

(LLNa) Show that (∆
1−m

2
n (I−PmN )(SAMPV n

t −
∫ t
0 ρ

⊗k(m1, ...,mk)ds))t∈[0,T ] converges
for all N ∈ N to 0 as n→ ∞, due to the available limit theory for finite-dimensional
semimartingales.

(LLNb) Show that (∆
1−m

2
n PmN SAMPV n

t )t∈[0,T ] converges to 0 uniformly in n and t as
N →∞. Standard arguments then imply that(

∆
1−m

2
n

(
SAMPV n

t −
∫ t

0
ρ⊗k(m1, ...,mk)ds

))
t∈[0,T ]

u.c.p.−→ 0 as n→∞.
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For the central limit theorems for the SARCV we have

(CLTa) Show that

(36) (Z̃n,2t )t∈[0,T ] :=

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∆̃n
i Y

⊗2 −
∫ i∆n

(i−1)∆n

ΣSn
s ds


t∈[0,T ]

for n ∈ N, which is a sequence of sums of martingale differences, is tight in D([0, T ],H)
provided that the (localised) Assumption 1 holds.

(CLTb) Prove that under (localised) Assumption 1 the finite-dimensional distributions ((I −
PN )Z̃

n,2
t )t∈[0,T ] converge to an asymptotically conditional Gaussian process with the co-

variance (I − PN )Γt(I − PN ) by virtue of (32) and the finite-dimensional limit Theorem
5.4.2 in [52].

(CLTc) In order to prove Theorem 3.3, we appeal to Assumption 2 to show that

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

u.c.p.−→ 0,

and for Theorem 3.2 to the fact that the operator B has its finite-dimensional range in the
1/2-Favard class of the dual semigroup in order to show that

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨(ΣSn
s −Σs),B⟩Hds

u.c.p.−→ 0.

5.1. Comments on the proof of the laws of large numbers. The imposed conditions on
the law of large numbers Theorems 4.1 and 4.2 state that the finite-dimensional multipower
variations

∑⌊t/∆n⌋
i=1 ((I − PmN )

⊗k
j=1∆

n
i+j−1S

⊗mj ) fulfil the required conditions of the cor-
responding laws of large numbers. In the case of power variations, that is under the localised
version of Assumption 6, Theorem 3.4.1 in [52] is applicable. For the multipower variations
with the localised version of Assumption 3, Theorem 8.4.1 in [52] applies and yields (LLNa).

Now, observe that the triangle inequality yields∥∥∥∥PmN (SAMPV n
t (m1, ...,mk)−

∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds

)∥∥∥∥
Hm

≤ ∥PmN SAMPV n
t (m1, ...,mk)∥Hm +

∥∥∥∥PmN ∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds

∥∥∥∥
Hm

.

For a given ϵ > 0, after appealing to the inequalities of Markov and Hölder together with
(35), one finds that

sup
n∈N

P
[
sup
t≤T

∆
1−m

2
n ∥PmN SAMPV n

t (m1, ...,mk)∥Hm > ϵ

]
→ 0 as N →∞.

Moreover, straightforward calculations lead to

∥ρpNΣspN (m)∥2Hm ≤ |P(m)|2(
∑
j≥N

∥Σ
1

2
s ej∥2)m,

which converges to 0 as N →∞, since Σ
1

2
s is a Hilbert-Schmidt operator. Through Markov’s

inequality, one finds

P
[
sup
t≤T

∥∥∥∥PmN ∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds

∥∥∥∥
Hm

> ϵ

]
≤ |P(m)|

ϵ

∫ T

0
E


∑
j≥N

∥Σ
1

2
s ej∥2

m

2

ds.
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Dominated convergence implies that this converges to 0 as N →∞, which shows (LLNb).

5.2. Comments on the proofs of the central limit theorem. In order to show tightness for
the sequence Z̃n,2 we appeal to a criterion from [53, p.35]:

THEOREM 5.1. Let H be a separable Hilbert space. The family of laws (Pψn)n∈N of a
family of random variables (ψn)n∈N in D([0, T ],H) is tight if the following two conditions
hold:

(i) (Pψn
t
)n∈N is tight for each t ∈ [0, T ] and

(ii) (Aldous’ condition) For all ϵ, η > 0 there is an δ > 0 and n0 ∈ N such that for all
sequences of stopping times (τn)n∈N with τn ≤ T − δ we have

(37) sup
n≥n0

sup
θ≤δ

P[∥ψnτn −ψnτn+θ∥H > η]≤ ϵ.

After some tedious estimations, one can verify Aldous’ condition for Z̃n,2 under the lo-
calised versions of Assumptions 1. Then it remains to show the spatial tightness, that is tight-
ness of (Z̃n,2t )n∈N as random sequences in H for each t ∈ [0, T ]. In order to do this, we argue
under condition (32) that, without loss of generality, we can assume α ≡ 0. Moreover, we
will appeal to the following criterion, which is based on the equi-small tails-characterisation
of compact sets in Hilbert spaces and is well known (c.f. Lemma 1.8.1 in [68]):

LEMMA 5.2. Let (Yn)n∈N be a sequence of random variables on a probability space
(Ω,F ,P) with values in a separable Hilbert space H and having finite second moments. If
for some orthonormal basis (en)n∈N we have

(38) lim
N→∞

sup
n∈N

∑
k≥N

E
[
⟨Yn, ek⟩2

]
= 0,

then the sequence (Yn)n∈N is tight.

To show the spatial tightness of Z̃n,2, we observe that∑
m,k≥N

⟨Z̃2,n
t , ek ⊗ em⟩2H = ∥

⌊t/∆n⌋∑
i=1

Z̃Nn (i)∥2H,

where

Z̃Nn (i) := ∆
− 1

2
n

(
(pN∆̃

n
i Y )⊗2 −

∫ ti

ti−1

pNS(ti − s)ΣsS(ti − s)∗pNds

)
.

Next note that t 7→ ψt =
∫ t
(i−1)∆n

pNS(i∆n − s)σsdWs is a martingale for t ∈ [(i −
1)∆n, i∆n]. From [63, Theorem 8.2, p. 109] we then deduce that the process (ζt)t≥0 given
by ζt = (ψt)

⊗2 − ⟨⟨ψ⟩⟩t, where ⟨⟨ψ⟩⟩t =
∫ t
(i−1)∆n

pNS(ti − s)ΣsS(ti − s)∗pNds, is a mar-

tingale w.r.t. (Ft)t≥0. Therefore E[Z̃Nn (i)|Fti−1
] = 0 and E[⟨Z̃Nn (i), Z̃Nn (j)⟩H] = 0, which

yields E[∥
∑⌊t/∆n⌋

i=1 Z̃Nn (i)∥2H] =
∑⌊T/∆n⌋

i=1 E[∥Z̃Nn (i)∥2H]. Moreover, it holds

E[∥Z̃Nn (i)∥2H]≤ 4∆n

∫ i∆n

(i−1)∆n

E[∥pNσSn
s ∥4LHS(U,H)]ds,

such that we ultimately obtain∑
k,l≥N

E
[
⟨Z̃n,2t , ek ⊗ el⟩2

]
≤4 sup

n∈N

∫ T

0
E
[
∥pNσSn

s ∥4LHS(U,H)

]
ds,
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which converges to 0 due to (34). Lemma 5.2 yields the claim in (CLTa), i.e., we have shown
the following intermediate result:

THEOREM 5.3. Let Assumption 1 hold. Then the sequence of processes (Z̃n,2t )t∈[0,T ] is
tight in D([0, T ],H).

We now outline the proof of the stable convergence in law as a process of the finite-
dimensional distributions (⟨Z̃n,2t , ek ⊗ el⟩)k,l=1,...,d. Due to (33) and after some technical
calculations, these finite-dimensional distributions can be asymptotically identified with the
ones of the quadratic variation of the associated multivariate semimartingale, i.e., the stable
limit of (⟨Z̃nt ek, el⟩)k,l=1,...,d is the same as the one of∆

− 1

2
n

⌊t/∆n⌋∑
i=1

(
⟨∆n

i S, ek⟩⟨∆n
i S, el⟩ −

∫ i∆n

(i−1)∆n

⟨Σsek, el⟩ds

)
k,l=1,...,d

.

The latter is a component of the difference between realised quadratic covariation and the
quadratic covariation of the d-dimensional continuous local martingale Sdt = (⟨St, e1⟩, ..., ⟨St, ed⟩).
Therefore, (⟨Z̃nt ek, el⟩)k,l=1,...,d converges by Theorem 5.4.2 from [52] stably as a process to
a continuous (conditional on F ) mixed normal distribution which can be realised on a very
good filtered extension as

Nk,l =
1√
2

d∑
c,b=1

∫ t

0
σ̂kl,bc(s) + σ̂lk,bc(s)dB

cb
s .

Here, σ̂(s) is d2×d2-matrix, being the square-root of the matrix ĉ(s) with entries ĉkl,k′l′(s) =
⟨Σsek, ek′⟩⟨Σsel, el′⟩. Furthermore, B is a matrix of independent Brownian motions. As now
all finite-dimensional distributions converge stably and the sequence of measures is tight, we
obtain by a modification of Proposition 3.9 in [46] that the convergence is indeed stable in the
Skorokhod space. One can then show that the asymptotic normal distribution has covariance
Γt. This gives (CLTb) and thus an auxiliary central limit theorem, which does not rely on the
spatial regularity condition in Assumption 2:

THEOREM 5.4. Let Assumption 1 hold. We have that Z̃n,2 L−s⇒ (N (0,Γt))t∈[0,T ].

In order to prove Theorem 3.3 we have to show ∆
− 1

2
n
∑⌊t/∆n⌋

i=1

∫ i∆n

(i−1)∆n
ΣSn
s −Σsds

u.c.p.−→
0. As ek ∈ D(A∗) and due to the fact that ∥(S(∆n)

∗ − I)ek∥ = ∥
∫ ∆n

0 S(u)∗A∗ekdu∥ =
O(∆n), it is relatively straightforward to show that for all N ∈N

(39) (I − PN )∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

u.c.p.−→ 0.

Further, we find by the triangle, Bochner and Hölder inequalities

E

 sup
t∈[0,T ]

∥∥∥∥∥∥PN∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H


≤
(∫ T

0
E
[∥∥∥∆− 1

2
n (S(⌊s/∆n⌋∆n − s)− I)σs

∥∥∥2
op

]
ds

) 1

2

×
(∫ T

0

√
2E
[
∥pNσs∥2LHS(U,H) + ∥pNS(⌊s/∆n⌋∆n − s)σs∥2LHS(U,H)

]
ds

) 1

2

.
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The first factor is finite by Assumption (2)(i), whereas the second one converges to 0 as
N →∞ by (34). By combining this with (39) the claim follows and Theorem 3.3 is proved.

In order to prove Theorem 3.2 we can argue similarly as for Theorem 3.3 that we just have

to show ∆
− 1

2
n
∑⌊t/∆n⌋

i=1

∫ i∆n

(i−1)∆n
⟨ΣSn

s − Σs,B⟩Hds
u.c.p.−→ 0. We can argue componentwise,

which is why we assume without loss of generality that B = h⊗ g and split the expression
into two integral terms:

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨(ΣSn
s −Σs)h, g⟩ds

=∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨((S(i∆n − s)− I)ΣsS(i∆n − s)∗)h, g⟩ds

+∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨(Σs(S(i∆n − s)− I)∗)h, g⟩ds

= (1)n + (2)n.

We can show the convergence for (1)n only, as the convergence for (2)n is analogous. It
holds that

(1)n =∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨(I − pN )(ΣsS(i∆n − s)∗)h, (S(i∆n − s)− I)∗g⟩ds

+∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨pN (ΣsS(i∆n − s)∗)h, (S(i∆n − s)− I)∗g⟩ds

=(1.1)n,N + (1.2)n,N .

Using that (S(i∆n− s)− I)ej =
∫ i∆n

s S(u− s)Aejds and that the projection (I −PN ) has
the form (I − PN ) =

∑N−1
j=1 ⟨·, ej⟩ej , we can show that

(40) sup
t∈[0,T ]

|(1.1)n,N | ≤∆
1

2
n

N−1∑
j=1

∫ T

0
∥Σs∥opds∥h∥∥g∥ sup

t∈[0,T ]
∥S(t)∥2op,

which converges to 0 as n→∞. In particular, supt∈[0,T ] |(1.1)n,N |
u.c.p.→ 0 as n→∞. From

the assumption that g ∈ FS∗

1/2 we can derive a finite constant

K := sup
t∈[0,T ]

∥S(t)∥op

(∫ T

0
E
[
∥σ∗s∥2op

]
∥h∥2ds

) 1

2

sup
t≤T

∥t−
1

2 (S(t)− I)∗g∥<∞

such that

E

[
sup
t∈[0,T ]

|(1.2)n,N |

]
≤K

(∫ T

0
E
[
∥pNσs∥2op

]
ds

) 1

2

,

which converges to 0 as N →∞ by (34). Thus, combining this uniform convergence result
with (40) and the analogous argumentation for (2)n yields the assertion and, thus, (CLTc).
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6. Conclusion. In this article, we introduced feasible central limit theorems for the
semigroup-adjusted realised covariations and, thus, provided a basis for functional data anal-
ysis of mild solutions to a large number of semilinear stochastic partial differential equa-
tions. We also addressed the issue of how this can be translated into a fully discrete setting,
whereby we assumed a regular spatio-temporal sampling grid. In general, finding closed
forms for the semigroup-adjusted multipower variations is a task that must be addressed for
each semigroup (or equivalently each infinitesimal generator), each sampling grid and any
precise application separately. Certainly, the Hilbert space approach is well suited to account
for potentially any sampling grid.

To gain an overview of the infinite-dimensional limit theory introduced for both SARCV n

and RV n in this article, it might be helpful to give a systematic summary. For the sake
of presentation, it is tedious and eventually not very instructive to repeat all assumptions
in full technical detail so instead we make a distinction on the basis of the magnitude of
pn :=

∫ T
0 ∥(S(∆n)− I)σs∥LHS(U,H)ds in terms of ∆n and assume the volatility σ of a mild

Itô process of the form (8) to be deterministic. In this regard we can distinguish four cases:

(i) If pn = o(∆
3

4
n), then SARCV n and RV n satisfy LLN and CLT .

(ii) If pn = o(∆
1

2
n), then RV n satisfies LLN, SARCV nsatisfies LLN and CLT.

(iii) If pn =O(∆
1

2
n), then SARCV n satisfies LLN and CLT.

(iv) In general SARCV n satisfies LLN,

where satisfying LLN (law of large numbers) means convergence to the integrated volatility
in probability and satisfying CLT (central limit theorem) means asymptotic normality of the
normalised estimator. Observe that Example 2 in Section 3 yields that we cannot reduce the
regularity in (iii), if we want to guarantee the validity of a general central limit theorem for
SARCV n. Example 4 shows that RV n does not have to satisfy a central limit theorem if
pn = o(∆

1/2
n ) is not valid and underlines the necessity of the adjustment by the semigroup.

If even pn = o(∆
1/4
n ) does not hold, then RV n does not even have to satisfy the LLN.

Moreover, it is likely that in many realistic scenarios, the distribution underlying the data
and the sampling itself yield some additional challenges, which can be approached in our
setting. Let us comment on some of these points:

Functional sampling: In infinite dimensions, we witness sampling schemes that have no
counterpart in finite dimensions. For instance, data could be sampled as averages (or in gen-
eral smooth functionals) of the process of interest over certain time periods in the future or
within a demarcated area. This is for instance the case for energy swap prices or meteoro-
logical forecasting data. Our framework yields an ideal basis to derive inferential statistical
tools in these situations.

Jumps: Many processes are not considered to be continuous in time. In fact, many financial
time series show jumps and spikes on a regular basis, which is, in particular, the case in
energy markets, a potential application of our theory. This suggests the inclusion of a pure-
jump component to our framework, such as in the framework of [44]. However, as in finite
dimensions, jumps will considerably complicate expressions, applications and proofs and,
thus, more effort has to go into the task of making inference on non-continuous behaviour in
infinite-dimensional models. Arguably, the structure of our proof, which appeals to tightness
and already existing limit theorems from finite dimensions, yields a promising approach.

Asynchronous sampling: It could very well be, that we sample at high frequency in time,
but sparsely and irregularly in space. Ignoring this (for instance by naïve rearrangement to
refresh times) can have unpleasant consequences such as the Epps effect, c.f. [1, Sec. 9.2.1].
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Again, energy intraday market prices, in which all available maturities are unlikely traded at
the exact same time instances, can be prone to this. Infinite-dimensionality and the potentially
necessary adjustment by the semigroup might make it harder than in the finite-dimensional
case to deal with this issue, as in addition to asynchronous sampling, one has to deal with the
problem of smoothing the adequately aggregated data in space.

Noise: The task of accounting for noise in the samples, often called market microstructure
noise in financial applications has received much attention by the research community (c.f.,
for example, [69], [10] or [51]), as noise lets the quadratic variation severely overshoot the in-
tegrated volatility in the presence of data sampled at very high frequency. In combination with
the problem of smoothing (and asynchronous sampling) this appears to be a delicate ques-
tion in infinite-dimensional applications. However, both finite-dimensional high-frequency
statistics and functional data analysis have several tools available to deal with noise and it is
intriguing to find out how they can be exploited to overcome this problem in the future.
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APPENDIX A: NOTATION

For convenience, we list some of the frequently used notation throughout this appendix:

• LHS(U,H): the space of Hilbert-Schmidt operators from U to H .
• H: equals LHS(H,H), when H is the initial Hilbert space in which the mild Itô process Y

takes its values.
• Hm: for m≥ 3 this is the space of operators spanned by the orthonormal basis (ej1 ⊗· · ·⊗
ejm)j1,...,jm∈N for an orthonormal basis (ej)j∈N of H with respect to the Hilbert-Schmidt
norm.

• σSn
s = S(i∆n − s)σs for s ∈ ((i− 1)∆n, i∆n].

• αSn
s = S(i∆n − s)αs for s ∈ ((i− 1)∆n, i∆n].

• ΣSn
s := σSn

s (σSn
s )∗.

• pN is the projection onto vN := lin({ej : j ≥N}), for some orthonormal basis (ej)j∈N.
• PmN is the projection onto lin({

⊗m
l=1 ekl : kl ≥N}).

• PN = P 2
N for the special case m= 2.

We start by giving several auxiliary results that are needed to prove the limit theorems.

APPENDIX B: TECHNICAL TOOLS

B.1. Localisation. For both the laws of large numbers Theorems 4.1 and 4.2 and the
central limit Theorems 3.3, 3.2 we can work under the following stronger assumptions:

ASSUMPTION 7. There is a constant A> 0 such that almost surely∫ T

0
∥αs∥2 + ∥σs∥4LHS(U,H)ds≤A.

ASSUMPTION 8 (m). There is a constant A> 0 such that almost surely∫ T

0
∥αs∥

2m

2+m + ∥σs∥mLHS(U,H)ds≤A.

ASSUMPTION 9. Assumption 3 holds and there is an A> 0 such that almost surely

∥αs∥+ ∥σs∥LHS(U,H) ≤A, s ∈ [0, T ].

We have then the following simplifying localisation result:

THEOREM B.1 (Localisation). The following relaxations can be made for the limit the-
orems in this work:

(a) (localisation for CLT for functionals of SARCV and RV ) If the central limit Theorems
3.2 or 3.9(ii) hold under Assumption 7, then they also hold under Assumption 1.

(b) (localisation for LLN for power variations) If the law of large numbers Theorem 4.1
holds under Assumption 8(m), then it also holds under Assumption 6(m). Moreover, the
laws of large numbers Theorems 3.8(i) or 3.9(i) hold, if they hold under the additional
Assumption 8(2).

(c) (localisation for LLN for multipower variations)If the law of large numbers, Theorem
4.2, holds under Assumption 9, then it also holds under Assumption 3.

(d) (localisation for CLT for SARCV and RV ) If the central limit Theorem 3.3 holds
under Assumptions 7 and 2(i) (respectively Theorem 3.8(ii) holds under Assumptions 7
and 5), then it also holds under Assumptions 1 together with 2(i) or (ii) (respectively 1 and
5).
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PROOF. Without loss of generality we may exchange the volatility process (σt)t∈[0,T ] by
a left continuous version (σt−)t∈[0,T ]. This is because we assumed the filtration to be right-
continuous and the stochastic integrals

∫ b
a HsdWs and

∫ b
a Hs−dWs coincide for any pre-

dictable càdlàg process (Ht)t∈[0,T ]. In particular, in the case of a predictable càdlàg volatility
process, we can assume it to be locally bounded since any left-continuous process is locally
bounded.

Now, the same localisation procedure as for finite-dimensional semimartingales described
in Section 4.4.1 in [52] holds: We define under each of the assumptions a different se-
quence (τN (i))N∈N, i = 1, ...,4, of stopping times and the corresponding stopped process
Yt(N, i) := Yt∧τN (i). Observe that on {t < τN (i)} we have Yt(N, i) = Yt: Set

Xt(1) :=

∫ t

0
∥αs∥2 + ∥σs∥4LHS(U,H)ds,

Xt(2) :=

∫ t

0
∥αs∥

2m

2+m + ∥σs∥mLHS(U,H)ds,

Xt(3) := ∥αt∥+ ∥σt∥LHS(U,H),

Xt(4) :=

∫ t

0
∥αs∥2 + ∥σs∥4LHS(U,H) + sup

r∈[0,t]
∥t−

1

2 (S(t)− I)σs∥2opds.

We define for i= 1, ...,4

τN (i) := inf {t ∈ [0, T ] :Xt(i)≥N} ,N ∈N.

Then Assumption 1 assures that τN (1) ↑ T , Assumption 6 assures that τN (2) ↑ T , Assump-
tion 3 assures that τN (3) ↑ T , Assumption 1 together with 2(i) or (ii) ensures τN (4) ↑ T .
Moreover, observe that Yt(N,1) satisfies Assumption 7, Yt(N,2) satisfies Assumption 8(m),
Yt(N,3) satisfies Assumption 9, Yt(N,4) satisfies Assumption 7 and 2(i).

The localisation works now for all cases analogously: Observe, that as convergence in
probability is a special case of stable convergence in law (when the underlying probability
space for the limiting distribution coincides with the one on which the sequence of probability
laws is defined), we just have to consider the stable convergence in law.

For any mild Itô processX , i.e. a process of the same form as Y as defined in (8), with val-
ues in H we write Un(X) either for the process of normalised multipower variations (for the
central limit theorems) or the supremum over the unnormalised multipower variations (and
as a special case, power variations). I.e., for proving (a) it is Un(X)t =∆

−1/2
n ⟨(SARCV n

t −∫ t
0 Σsds),B⟩ (resp. Un(X)t = ∆

−1/2
n ⟨(RV n

t −
∫ t
0 Σsds),B⟩) for B =

∑K
l=1 µlhl ⊗ gl ∈ H

for hi, gl ∈ FS∗

3/4 and U(X) is the asymptotic distribution as in Theorem 3.2, for (d) it is

Un(X)t = ∆
−1/2
n (SARCV n

t −
∫ t
0 Σsds) (resp. Un(X)t = ∆

−1/2
n (RV n

t −
∫ t
0 Σsds)) and

U(X) is the asymptotic distributions as described in Theorem 3.3 and (b) and (c) it is
U(X) = 0 and

Un(X)t = sup
s∈[0,t]

∥∆1−m

2
n

⌊s/∆n⌋−k+1∑
i=1

k⊗
j=1

∆̃n
i+j−1X

⊗mj −
∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds∥Hm .

Moreover, for the non-adjusted limit theorems, we exchange ∆̃ by ∆ in the above expres-
sions.

In order to prove the claim, it is enough to show Un(Y ) → U(Y ) stably in law as a
process under the respective localised assumptions. I.e., if Ω̃ = Ω × Ω′, F̃ = F ⊗ F ′ and
P̃= P[dω]Q[ω,dω′] is the extension on which U(X) can be realised, we want to show that
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for all bounded, continuous functions g : D([0, T ],H)→ R and all bounded F -measurable
real-valued random variables Z we have

(41) lim
n→∞

E [Zg(Un(Y ))] = Ẽ [Zg(U(Y ))] ,

where Ẽ is the expectation with respect to P̃. If we write

QY (g)(ω) :=

∫
Ω′
g(U(Y ))(ω,ω′)Q(ω,dω′),

we can express (41) as

lim
n→∞

E [Zg(Un(Y ))] = E [ZQY (g)] .

Now assume that the convergence results hold for Y (N, i), for which the localised assump-
tions are valid. We can therefore deduce that

lim
n→∞

E
[
Zg(Un(Y ))It≤τN (i)

]
= lim
n→∞

E [Zg(Un(Y (N, i)))]

= E
[
ZQY (N,i)(g)

]
= E

[
ZQY (g)It≤τN (i)

]
holds for all N ∈N. This implies (41) as boundedness of Z and g yield that

sup
n∈N

E [Z(g(Un(Y ))−QY (g))It>τN ]→ 0 as N →∞.

This proves the claim.

In many occasions, we just need to impose a localised version of the condition

(42) P
[∫ T

0
∥αs∥

m

2 + ∥σs∥mLHS(U,H)ds <∞
]
= 1.

In that regard, we introduce the auxiliary assumption:

ASSUMPTION 10 ((m)). There is a constant A> 0 such that∫ T

0
∥αs∥

m

2 + ∥σs∥mLHS(U,H)ds≤A.

Based upon choosing the right m, this is satisfied under any (!) of the assumptions above.
In particular Assumption 7 coincides with Assumption 10(4) while Assumption 8(2) coin-
cides with Assumption 10(2). Assumption 8(m) is stricter than Assumption 10(m) if m> 2.

B.2. Elimination of the semigroup on finite-dimensional projections. We will see
that if we apply certain functionals, the semigroup-adjusted increments are essentially incre-
ments of finite-dimensional semimartingales. First, we recall the Burkholder-Davis-Gundy
inequality (in what follows called the BDG inequality), c.f. [58].

THEOREM B.2. For an H-valued local martingale (Mt)t∈[0,T ] we have for all real num-
bers m≥ 1 and all t≤ T

(43) E
[
sup
s≤t

∥Ms∥m
]
≤CmE

[
[M,M ]

m

2

t

]
,

where the constant Cm > 0 is just depending on m and [M,M ] is the scalar quadratic
variation of M .
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For our purposes, the most important application is given in the following example:

EXAMPLE 8. Let Mt :=
∫ t
0 σsdWs be a stochastic integral. Then the BDG inequality

(43) reads

E
[
sup
s≤t

∥
∫ t

0
σsdWs∥m

]
≤CmE

[(∫ t

0
Tr(Σs)ds

)m

2

]

=CmE

[(∫ t

0
∥σs∥2LHS(U,H)ds

)m

2

]
,

for the constant Cm just depending on m and for all t≤ T .

Observe that there always exists an orthonormal basis (ei)i∈N of H that is contained in
the domain D(A∗) of the generator A∗ of the adjoint semigroup (S(t)∗)t≥0. The latter is a
semigroup since H is a Hilbert space, see [41, p.44]. Besides tightness, the most important
argument to be able to appeal to the finite-dimensional limit theory of semimartingales is the
following one:

LEMMA B.3. Suppose that Assumption 10(m) holds for m≥ 2. We define the H-valued
semimartingale S by

St :=

∫ t

0
αsds+

∫ t

0
σsdWs,

and fix a basis (ej)j∈N ⊂D(A∗) of H . Let furthermore ∆n
i S := Si∆n

−S(i−1)∆n
denote the

non-adjusted increments of the semimartingale S. Then for j1, ..., jm ∈N

⟨SAMPV n
t (m1, ...,mk),

m⊗
l=1

ejl⟩Hm

=

⌊t/∆n⌋∑
i=1

⟨
k⊗
j=1

∆n
i+j−1S

⊗mj ,

m⊗
l=1

ejl⟩Hm +Op(∆
m

2
n ).(44)

PROOF. First, fix i, j ∈N. By the stochastic Fubini theorem (and since Y0 = 0) we have∫ t

0

∫ u

0
⟨αs,A∗S(u− s)∗ej⟩dsdu

+

∫ t

0

∫ u

0
⟨σs,A∗S(u− s)∗ej⟩dWsdu+ ⟨St, ej⟩

=

∫ t

0

∫ u

0

d

du
⟨αs,S(u− s)∗ej⟩dsdu

+

∫ t

0

∫ u

0

d

du
⟨σs,S(u− s)∗ej⟩dWsdu+ ⟨St, ej⟩

=

∫ t

0

∫ t

s

d

du
⟨αs,S(u− s)∗ej⟩duds+

∫ t

0
⟨αs, ej⟩ds

+

∫ t

0

∫ t

s

d

du
⟨σs,S(u− s)∗ej⟩dudWs +

∫ t

0
⟨σs, ej⟩dWs
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=

∫ t

0
⟨αs,S(t− s)∗ej⟩ds+

∫ t

0
⟨σs,S(t− s)∗ej⟩dWs

= ⟨Yt, ej⟩.
Now define

∆t
na

j :=

∫ t+∆n

t

∫ u

t

d

du
⟨αs,S(u− s)∗ej⟩dsdu

+

∫ t+∆n

t

∫ u

t
⟨σs,A∗S(u− s)∗ej⟩dWsdu.(45)

Again, by using the stochastic Fubini theorem we obtain

⟨Yt+∆n
, ej⟩ − (⟨St+∆n

, ej⟩ − ⟨St, ej⟩) +∆t
na

j

=

∫ t+∆n

t

∫ u

0

d

du
⟨αs,S(u− s)∗ej⟩dsdu

−
∫ t+∆n

t

∫ u

t

d

du
⟨αs,S(u− s)∗ej⟩dsdu

+

∫ t+∆n

t

∫ u

0

d

du
⟨σs,S(u− s)∗ej⟩dWsdu

−
∫ t+∆n

t

∫ u

t

d

du
⟨σs,S(u− s)∗ej⟩dWsdu+ ⟨Yt, ej⟩

=

∫ t+∆n

t

∫ t

0

d

du
⟨αs,S(u− s)∗ej⟩dsdu

+

∫ t+∆n

t

∫ t

0

d

du
⟨σs,S(u− s)∗ej⟩dWsdu+ ⟨Yt, ej⟩

=

∫ t

0

∫ t+∆n

t

d

du
⟨αs,S(u− s)∗ej⟩duds

+

∫ t

0

∫ t+∆n

t

d

du
⟨σs,S(u− s)∗ej⟩dudWs + ⟨Yt, ej⟩

=

∫ t

0

∫ t+∆n

s

d

du
⟨αs,S(u− s)∗ej⟩duds

+

∫ t

0

∫ t+∆n

s

d

du
⟨σs,S(u− s)∗ej⟩dudWs + ⟨St, ej⟩

=

∫ t

0
⟨αs,S(t+∆n − s)∗ej⟩ds+

∫ t

0
⟨σs,S(t+∆n − s)∗ej⟩dWs

=⟨S(∆n)Yt, ej⟩.
Thus,

⟨∆̃n
i Y, ej⟩= ⟨∆n

i S, ej⟩+∆(i−1)∆n
n aj .

Now let i1, ..., im ∈N. We get
m∏
k=1

⟨∆̃n
ikY, ejk⟩=

m∏
k=1

(
⟨∆n

ikS, ejk⟩+∆(ik−1)∆n
n ajk

)
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=

m∏
k=1

⟨∆n
ikS, ejk⟩+

m∑
y=1,x=2

bxy(i1, ..., im, j1, ..., jm),

where each summand bxy is of the form

bxy(i1, ..., im, j1, ..., jm) =

p∏
r=1

⟨∆n
ikr
S, ejkr

⟩
q∏
s=1

∆(ils−1)∆n
n ajls ,

for p≤m− 1, q ≤m, p+ q =m and

{ik1 , ..., ikp , il1 , ..., ilq}= {i1, ..., im}, {jk1 , ..., jkp , jl1 , ..., jlq}= {j1, ..., jm}.

Then by the generalised Hölder inequality

E[|bxy(i1, ..., im, j1, ..., jm)|]

≤ E[|⟨∆n
ik1
S, ejk1

⟩|m]
1

m × · · · ×E[|⟨∆n
ikp
S, ejkp

⟩|m]
1

m

×E[|∆(il1−1)∆n

n ajl1 |m]
1

m × · · · ×E[|∆(ilq−1)∆n

n ajlq |m]
1

m .(46)

This means that in order to estimate E[|bxy(i1, ..., im, j1, ..., jm)|] we have to find bounds on
E[|⟨∆n

i S, ej⟩|m]
1

m and E[|∆(i−1)∆n
n aj |m]

1

m for i, j ∈N. We start with the latter term.
For any t≤ u≤ T , j ∈N, we have for the quadratic variation[∫ ·

0
I[t,u]⟨σs,S(u− s)∗A∗ej⟩dWs

]
T

=

∫ t

u
⟨S(u− s)ΣsS(t− s)∗A∗ej ,A∗ej⟩ds

=

∫ u

t
∥σ∗sS(u− s)∗A∗ej∥2ds.

Hence, by the BDG inequality (43) we obtain, for t≤ u≤ t+∆n,

E
[∣∣∣∣∫ u

t
⟨αs,A∗S(t− s)∗ej⟩ds+

∫ u

t
⟨σs,A∗S(u− s)∗ej⟩dWs

∣∣∣∣m] 1

m

≤E
[∣∣∣∣∫ u

t
⟨αs,A∗S(t− s)∗ej⟩ds

∣∣∣∣m] 1

m

+E
[∣∣∣∣∫ u

t
⟨σs,A∗S(u− s)∗ej⟩dWs

∣∣∣∣m] 1

m

≤E
[∣∣∣∣∫ u

t
⟨αs,A∗S(t− s)∗ej⟩ds

∣∣∣∣m] 1

m

+C
1

m
m E

[∣∣∣∣∫ u

t
∥σ∗sS(u− s)∗A∗ej∥2ds

∣∣∣∣m2
] 1

m

≤∆
m−2

m
n E

[(∫ t+∆n

t
∥αs∥

m

2 ds

)2
] 1

m

sup
t∈[0,T ]

∥S(t)∥op∥A∗ej∥

+C
1

m
m∆

m−2

2m
n

(∫ t+∆n

t
E
[
∥σ∗s∥mop

]
ds

) 1

m

sup
t∈[0,T ]

∥S(t)∥op∥A∗ej∥.

Therefore, as m≥ 2

E[|∆t
na

j |m]
1

m

≤∆n

∆
m−2

m
n E

[(∫ t+∆n

t
|∥αs∥

m

2 ds

)2
] 1

m

+C
1

m
m∆

m−2

2m
n

(∫ t+∆n

t
E
[
∥σ∗s∥mop

]
ds

) 1

m


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× sup
t∈[0,T ]

∥S(t)∥op∥A∗ej∥

≤∆
3m−2

2m
n

E

[(∫ t+∆n

t
|∥αs∥

m

2 ds

)2
] 1

m

+C
1

m
m

(∫ t+∆n

t
E
[
∥σ∗s∥mop

]
ds

) 1

m


× sup
t∈[0,T ]

∥S(t)∥op∥A∗ej∥.(47)

Now for the martingale differences E[|⟨∆n
i S, ej⟩|m]

1

m we can estimate by virtue of the BDG
inequality (43):

E[|⟨∆n
i S, ej⟩|m]

1

m

≤E

[
∥
∫ i∆n

(i−1)∆n

αsds∥m
] 1

m

+C
1

m
m E

[
(

∫ i∆n

(i−1)∆n

⟨Σsej , ej⟩ds)
m

2

] 1

m

≤

∆
m−2

m
n E

(∫ i∆n

(i−1)∆n

∥αs∥
m

2 ds

)2
 1

m

+∆
m−2

2m
n C

1

m
m

(∫ i∆n

(i−1)∆n

E[∥σs∥mop]ds

) 1

m



≤∆
m−2

2m
n

E

(∫ i∆n

(i−1)∆n

∥αs∥
m

2 ds

)2
 1

m

+C
1

m
m

(∫ i∆n

(i−1)∆n

E[∥σs∥mop]ds

) 1

m

 .(48)

Combining (46), (47) and (48) yields, as q ≥ 1

E[|bxy(i1, ..., im, j1, ..., jm)|]

≤∆
pm−2

2m
n

p∏
l=1

E

(∫ ikl
∆n

(ikl
−1)∆n

∥αs∥
m

2 ds

)2
 1

m

+C
1

m
m

(∫ i∆n

(i−1)∆n

E[∥σs∥mop]ds

) 1

m


p

×∆
q 3m−2

2m
n

q∏
l=1

E

(∫ ikl
∆n

(ikl
−1)∆n

∥αs∥
m

2 ds

)2
 1

m

+C
1

m
m

(∫ ikl

(ikl
−1)∆n

E
[
∥σ∗s∥mop

]
ds

) 1

m

q

× sup
t∈[0,T ]

∥S(t)∥qop∥A∗ej∥q

≤∆
m

2
n

m∏
l=1

E

(∫ il∆n

(il−1)∆n

∥αs∥
m

2 ds

)2
 1

m

+C
1

m
m

(∫ il∆n

(il−1)∆n

E
[
∥σs∥mop

]
ds

) 1

m


×

(
sup

t∈[0,T ]q,j=1,...,m
∥S(t)∥qop∥A∗ej∥q

)
.

Now we use introduce the notation bx,y(i1, ..., im, j1, ..., jm) =: bx,y(i)
m1,...,mk in the case of

i1, ..., im1
= i, im1+1, ..., im1+m2

= i+1 ... imk−2+1, ..., imk−2+mk−1
= i+k−1 (to help with
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the intuition, this is just a formal way to specify that the first m1 components are equal and
then the next m2 are again equal and so on). Then

⟨SAMPV n
t (m1, ...,mk),

m⊗
j=1

ej⟩

=

⌊t/∆n⌋∑
i=1

⟨
k⊗
j=1

∆̃i+j−1S,

m⊗
j=1

ej⟩+
⌊t/∆n⌋∑
i=1

m∑
x=2,y=1

bx,y(i)
m1,...,mk .

In order to prove the assertion, we just have to show that the latter summand is O(∆
m

2
n ).

Therefore, the generalised Hölder inequality and the elementary inequality (a + b)m ≤
2m(am + bm) for positive real numbers a, b ∈R+ yield

⌊t/∆n⌋−k+1∑
i=1

m∑
y=1,x=2

E[|bxy(i)m1,...,mk |]

≤m(m− 1)∆
m

2
n

(
sup

t∈[0,T ],q,j=1,...,m
∥S(t)∥qop∥A∗ej∥q

)

×
⌊t/∆n⌋−k+1∑

i=1

k∏
j=1

E

(∫ (i+j−1)∆n

(i+j−2)∆n

|∥αs∥
m

2 ds

)2
 1

m

+ C
1

m
m

(∫ (i+j−1)∆n

(i+j−2)∆n

E
[
∥σs∥mop

]
ds

) 1

m

mj

≤m(m− 1)∆
m

2
n

(
sup

t∈[0,T ],q,j=1,...,m
∥S(t)∥qop∥A∗ej∥q

)

×
⌊t/∆n⌋−k+1∑

i=1

k∏
j=1

2m

E

(∫ (i+j−1)∆n

(i+j−2)∆n

|∥αs∥
m

2 ds

)2


+Cm

∫ (i+j−1)∆n

(i+j−2)∆n

E
[
∥σs∥mop

]
ds

)mj

m

.

As E
[(∫ (i+j−1)∆n

(i+j−2)∆n
∥αs∥

m

2 ds
)2]

≤ E
[∫ (i+j−1)∆n

(i+j−2)∆n
∥αs∥

m

2 ds
]

for ∆n small enough, we ob-

tain
⌊t/∆n⌋−k+1∑

i=1

m∑
y=1,x=2

E [|bxy(i)m1,...,mk |]

≤m(m− 1)∆
m

2
n

(
sup

t∈[0,T ],q,j=1,...,m
∥S(t)∥qop∥A∗ej∥q

)

×
⌊t/∆n⌋−k+1∑

i=1

k∏
j=1

2mE

[∫ (i+j−1)∆n

(i+j−2)∆n

∥αs∥
m

2 ds+Cm∥σs∥mopds

]mj

m
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≤m(m− 1)∆
m

2
n

(
sup

t∈[0,T ],q,j=1,...,m
∥S(t)∥qop∥A∗ej∥q

)

× k!2mE
[∫ T

0
∥αs∥

m

2 ds+Cm∥σs∥mopds

]

≤m(m− 1)∆
m

2
n

(
sup

t∈[0,T ],q,j=1,...,m
∥S(t)∥qop∥A∗ej∥q

)
k!A.

This proves the assertion

B.2.1. Uniform convergence of the finite-dimensional projections. We introduce the no-
tation

σSn
s = S(i∆n − s)σs,

and

αSn
s = S(i∆n − s)αs,

for s ∈ ((i− 1)∆n, i∆n], such that σSn
s (σSn

s )∗ =ΣSn
s . We often need the following technical

lemma:

LEMMA B.4. Suppose that for m ∈N we have∫ T

0
E
[
∥αs∥

m

2 + ∥σs∥mLHS(U,H)

]
ds <∞,

which holds in particular under Assumption 10(m). Let (ej)j∈N be an orthonormal basis of
H and pN be the projection onto vN := span{ej : j ≥N}. Then for all natural numbers
p≤m, we have

lim
N→∞

sup
n∈N

E
[∫ T

0
∥pNσSn

s ∥pLHS(U,H)ds

]
= 0.

Moreover, for all q ≤ m
2 , we have

lim
N→∞

sup
n∈N

E
[∫ T

0
∥pNαSn

s ∥qds
]
= 0.

PROOF. It is enough to prove the assertion for the first limit as the second limit can be
treated as a special case, if we replace αSn by the Hilbert-Schmidt operator e⊗ α and using
that

∥pNαSn
s ∥= ∥e⊗ pNα

Sn
s ∥,

where e is an arbitrary element in U with ∥e∥= 1. No observe that the Bochner integrability
of ∥pNσSn

s ∥pLHS(U,H) is guaranteed by assumption and

E

[∫ ⌊T/∆n⌋∆n

0
∥pNσSn

s ∥pLHS(U,H)ds

]
≤

⌊T/∆n⌋∑
i=1

E

[∫ i∆n

(i−1)∆n

sup
r∈[0,T ]

∥pNS(r)σs∥pLHS(U,H) ds

]

=

∫ T

0
E

[
sup
r∈[0,T ]

∥pNS(r)σs∥pLHS(U,H)

]
ds.(49)
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Now observe that, for s, r ∈ [0, T ] fixed, we have almost surely

∥pNS(r)σs∥2LHS(U,H) = ∥σ∗sS(r)∗pN∥2LHS(H,U) =

∞∑
k=N

∥σ∗sS(r)∗ek∥2 → 0, as N →∞,

since σ∗t S(s)∗ is almost surely a Hilbert-Schmidt operator. Moreover, the function fs(r) =
∥pNS(r)σs∥LHS(U,H) is continuous in r, as for

|fs(r1)− fs(r2)| ≤∥pN (S(r1)−S(r2))σs∥LHS(U,H)

≤ sup
r∈[0,T ]

∥S(r)∥op sup
r≤|r1−r2|

∥(I −S(r))σs∥LHS(U,H) .

The latter converges to 0, as r1 → r2, by Proposition 5.1 in [19]. As we also have

∥pNS(s)σt∥LHS(U,H) ≥ ∥pN+1pNS(s)σt∥LHS(U,H) = ∥pN+1S(s)σt∥LHS(U,H),

we find by virtue of Dini’s theorem (c.f. Theorem 7.13 in [64]) that almost surely

lim
N→∞

sup
t∈[0,T ]

∥pNS(r)σs∥LHS(U,H) = 0.

By the dominated convergence theorem, this immediately yields

E

[∫ ⌊T/∆n⌋∆n

0
∥pNσSn

s ∥pLHS(U,H)ds

]
≤ E

[∫ T

0
sup
r∈[0,T ]

∥pNS(r)σs∥pLHS(U,H)ds

]
→ 0,

as N →∞. This proves the claim.

B.3. Various estimates for increments. In this subsection, we will use the notation

∆̃n
i A :=

∫ i∆n

(i−1)∆n

S(i∆n − s)αsds,(50)

∆̃n
iM :=

∫ i∆n

(i−1)∆n

S(i∆n − s)σsdWs.(51)

We will make use of the following Lemma:

LEMMA B.5. Suppose that Assumption 10(m) holds. Let (ej)j∈N be an orthonormal ba-
sis of H and pN be the projection onto vN := span{ej : j ≥N}. Moreover, let

aN (z) := sup
n∈N

E
[∫ T

0
∥pNαSn

s ∥zds
]
,

and

bN (z) := sup
n∈N

E
[∫ T

0
∥pNσSn

s ∥zLHS(U,H)ds

]
,

which both converge to 0 as N →∞ for z ≤m, respectively z ≤ m
2 by Lemma B.4. Then we

can find for all m ∈N a universal constant C =C(m)> 0, such that

(52)
⌊t/∆n⌋∑
i=1

E
[
∥pN∆̃n

i A∥m
]
≤C∆m−1

n aN (m),

(53)
⌊t/∆n⌋∑
i=1

E
[
∥pN∆̃n

iM∥m
]
≤C∆

m

2
−1

n bN (m),
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and

(54)
⌊t/∆n⌋∑
i=1

E
[
∥pN∆̃n

i Y ∥m
]
≤C(∆m−1

n aN (m) +∆
m

2
−1

n bN (m)) = o(∆
m

2
−1

n ).

PROOF. Throughout this proof, we treat C as a generic constant that is chosen appropri-
ately large in each step. The majorisation in (52) is an immediate implication of Bochner’s
inequality and the boundedness of α. For (53), we get by the BDG inequality (43) that

⌊t/∆n⌋∑
i=1

E

[
∥pN

∫ i∆n

(i−1)∆n

S(i∆n − s)σsdWs∥m
]

≤
⌊t/∆n⌋∑
i=1

CmE

(∫ i∆n

(i−1)∆n

∥pNS(i∆n − s)σs∥2LHS(U,H)ds

)m

2


≤

⌊t/∆n⌋∑
i=1

Cm∆
m

2
−1

n

∫ i∆n

(i−1)∆n

E
[
∥pNS(i∆n − s)σs∥mLHS(U,H)

]
ds

=Cm∆
m

2
−1

n bN (m).

Moreover, inequality (54) holds as
⌊t/∆n⌋∑
i=1

E
[
∥pN∆̃n

i Y ∥m
]
≤ 2m−1

⌊t/∆n⌋∑
i=1

E

[
∥pN

∫ i∆n

(i−1)∆n

S(i∆n − s)αsds∥m
]

+ 2m−1

⌊t/∆n⌋∑
i=1

E

[
∥pN

∫ i∆n

(i−1)∆n

S(i∆n − s)σsdWs∥m
]

≤ 2m−1

⌊t/∆n⌋∑
i=1

∆
m

2
(m

2
−1)

n E

(∫ i∆n

(i−1)∆n

∥pNαSn
s ∥

m

2 ds

)m

2


+ 2m−1

⌊t/∆n⌋∑
i=1

E

(∫ i∆n

(i−1)∆n

∥pNσSn
s ∥2LHS(U,H)ds

)m

2


≤ 2m−1

⌊t/∆n⌋∑
i=1

∆
m

2
(m

2
−1)

n E

[∫ i∆n

(i−1)∆n

∥pNαSn
s ∥

m

2

]
dsA

m

2
−1

+ 2m−1∆
m

2
−1

n

⌊t/∆n⌋∑
i=1

E

[∫ i∆n

(i−1)∆n

∥pNσSn
s ∥mLHS(U,H)ds

]

≤∆
m

2
−1

n 2m−1
(
aN (

m

2
)A

m

2
−1 + bN (m)

)
.

APPENDIX C: PROOF OF THE LAWS OF LARGE NUMBERS

PROOF OF THEOREMS 4.1 AND 4.2. Let (ej)j∈N be an orthonormal basis of H , such
that ej ∈D(A∗) for all j ∈N. Recall that P dN is the projection onto VdN , with

VdN := span{ej1 ⊗ · · · ⊗ ejd : ji ≥N, i= 1, . . . , d}.
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We write P dN = pN if d = 1. Then we can identify (I − PmN )SAMPV n
t (m1, ...,mk) with

the “matrix”

(⟨SAMPV n
t (m1, ...,mk), ej1 ⊗ ...⊗ ejd⟩Hm)(j1,...,jd)∈{1,...,N}d .

To obtain the asymptotic behaviour of this “matrix”, and so the convergence

(I − PmN )∆
1−m

2
n SAMPV n

t (m1, ...,mk)
u.c.p.−→ (I − PmN )

∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds,

it is enough to check the convergence of the ⟨SAMPV n
t (m1, ...,mk), ej1 ⊗ ...⊗ ejm⟩Hm , for

each (j1, ..., jm) ∈ {1, ...,N}m separately.
Fix therefore some (epi,j )i=1,...,k,j=1,...,mk

with pi,j ∈ N and epi,j ∈ {e1, ..., eN}. Using
Lemma B.3 and its notation, we find that

∆
1−m

2
n ⟨SAMPV n

t (m1, ...,mk),

k⊗
i=1

mj⊗
j=1

epi,j ⟩Hm

has the same asymptotic behaviour as ∆
1−m

2
n

∑⌊t/∆n⌋−k+1
i=1

∏k
l=1

∏ml

j=1⟨∆n
i+l−1S, epl,j ⟩,

where we recall that

∆n
i+l−1S =

∫ (i+j−1)∆n

(i+j−2)∆n

αsds+

∫ (i+j−1)∆n

(i+j−2)∆n

σsdWs.

This is however a component of the multipower variation of the multivariate semimartingale
(⟨St, e1⟩, ..., ⟨St, eN ⟩)t∈]0,T ]. Thus, in the case of power variations (i.e., under Assumption
8), Theorem 3.4.1 in [52] applies, while in the case of multipower variations (i.e., under
Assumption 9), Theorem 8.4.1 in [52] applies. Hence, this yields

∆
1−m

2
n ⟨SAMPV n

t (m1, ...,mk),

k⊗
i=1

mj⊗
j=1

epi,j ⟩Hm

u.c.p.−→ ⟨
∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds,

k⊗
i=1

mj⊗
j=1

epi,j ⟩Hm ,

i.e.,

(I − PmN )∆
1−m

2
n SAMPV n

t (m1, ...,mk)
u.c.p.−→ (I − PmN )

∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds.

This establishes the result for finite-dimensional projections of the multipower variation.
The triangle inequality yields

∥(SAMPV n
t (m1, ...,mk)−

∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds)∥Hm

≤∥(I − PmN )(SAMPV n
t (m1, ...,mk)−

∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds)∥Hm

+ ∥PmN SAMPV n
t (m1, ...,mk)∥Hm + ∥PmN

∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds∥Hm .

We next show the uniform convergence to zero of the latter two terms. The Markov and
generalised Hölder inequality as well as (54) yield for a given ϵ > 0,

P
[
sup
t≤T

∆
1−m

2
n ∥PmN SAMPV n

t (m1, ...,mk)∥Hm > ϵ

]
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≤ 1

ϵ
∆

1−m

2
n E

sup
t≤T

∥∥∥∥∥∥
⌊t/∆n⌋−k+1∑

i=1

k⊗
j=1

(pN∆̃
n
i+j−1Y )⊗mj

∥∥∥∥∥∥
Hm


≤ 1

ϵ
∆

1−m

2
n

⌊T/∆n⌋−k+1∑
i=1

E

 k∏
j=1

∥∥∥pN∆̃n
i+j−1Y

∥∥∥mj


≤ 1

ϵ
∆

1−m

2
n

⌊T/∆n⌋−k+1∑
i=1

k∏
j=1

E
[∥∥∥pN∆̃n

i+j−1Y
∥∥∥m]mj

m

≤ 1

ϵ
∆

1−m

2
n

k∏
j=1

⌊T/∆n⌋−k+1∑
i=1

E
[∥∥∥pN∆̃n

i+j−1Y
∥∥∥m]


mj

m

≤ 1

ϵ
∆

1−m

2
n

k∏
j=1

(
C∆

m

2
−1

n (aN (
m

2
) + bN (m))

)mj

m

.

This converges to 0 as N →∞ uniformly in n. Now, notice that by definition we have

⟨ρpNΣspN , ej1 ⊗ ...⊗ ejm⟩= ⟨ρΣs
, ej1 ⊗ ...⊗ ejm⟩δj1,...,jn≥N .

Therefore

∥ρpNΣspN (m)∥2Hm =
∑

j1,...,jm≥N
⟨ρΣs

(m), ej1 ⊗ ...⊗ ejm⟩2

=
∑

j1,...,jm≥N
(
∑

p∈P(m)

∏
(k,l)∈p

⟨Σsejl , ejk⟩)2

≤|P(m)|
∑

p∈P(m)

∑
j1,...,jm≥N

∏
(k,l)∈p

⟨Σsejl , ejk⟩2

≤|P(m)|
∑

p∈P(m)

∑
j1,...,jm≥N

∏
(k,l)∈p

∥Σ
1

2
s ejl∥2∥Σ

1

2
s ejk∥2.

=|P(m)|2(
∑
j≥N

∥Σ
1

2
s ej∥2)m,

which converges to 0 almost surely as N →∞, as Σ
1

2
s is a Hilbert-Schmidt operator. Hence,

by the definition of ρ⊗kΣs
(m1, ...,mk), it holds,

P
[
sup
t≤T

∥∥∥∥PmN ∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds

∥∥∥∥
Hm

> ϵ

]

≤ 1

ϵ

∫ T

0
E
[∥∥∥PmN ρ⊗kΣs

(m1, ...,mk)
∥∥∥
Hm

]
ds

=
1

ϵ

∫ T

0
E


 ∑
j1,...,jm∈N

⟨ρ⊗kpNΣspN
(m1, ...,mk), e1 ⊗ ...⊗ em⟩2

 1

2

ds
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=
1

ϵ

∫ T

0
E

 k∏
l=1

 ∑
j1,...,jml

∈N
⟨ρpNΣspN (ml), e1 ⊗ ...⊗ eml

⟩2
 1

2

ds
=

1

ϵ

∫ T

0
E

[
k∏
l=1

∥ρpNΣspN (ml)∥Hm

]
ds

≤ |P(m)|
ϵ

∫ T

0
E


∑
j≥N

∥Σ
1

2
s ej∥2

m

2

ds.
This converges to 0 by the Dominated Convergence Theorem.

Summing up, we can, for each δ > 0, find an N ∈N independent of n, such that

lim
n→∞

P
[
sup
t≤T

(
∥(SAMPV n

t (m1, ...,mk)−
∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds)∥Hm

)
> ϵ

]
≤ lim
n→∞

P
[
sup
t≤T

(
∥(I − PmN )(SAMPV n

t (m1, ...,mk)−
∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds)∥Hm

)
> ϵ

]
+ limsup

n→∞

(
P
[
sup
t≤T

(∥PmN SAMPV n
t (m1, ...,mk)∥Hm)> ϵ

]
+ P

[
sup
t≤T

(
∥PmN

∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds∥Hm

)
> ϵ

])
≤ lim
n→∞

P
[
sup
t≤T

(
∥(I − PmN )(SAMPV n

t (m)−
∫ t

0
ρ⊗kΣs

(m1, ...,mk)ds)∥Hm

)
> ϵ

]
+ 2δ

=2δ.

This holds for all δ > 0, and hence the assertion follows.

APPENDIX D: PROOF OF THE CENTRAL LIMIT THEOREMS

We prove the central limit theorems by proving the tightness of the laws of the processes in
the Skorokhod space D([0, T ],H) first and then make use of the available finite-dimensional
asymptotic limit theory in order to show convergence of the corresponding finite-dimensional
distributions.

D.1. A short primer on tightness. Recall that a sequence of measures (µn)n∈N is tight
on a Polish space B equipped with its Borel σ-algebra (B,B(B)), if for each ϵ > 0 there
is a compact set Kϵ ⊂ B such that supn∈N µn(B \ Kϵ) < ϵ. We will say that a sequence
(Xn)n∈N of Borel-measurable random variables in B (e.g. stochastic processes) is tight if
the underlying sequence of laws (µXn

)n∈N is tight.

D.1.1. Tightness of random elements in the Skorokhod space D([0, T ],H). For the con-
venience of the reader, we repeat the following tightness criterion from [53, p.35].

THEOREM D.1. Let H be a separable Hilbert space. The family of laws (Pψn)n∈N of a
sequence of random variables (ψn)n∈N in D([0, T ],H) is tight if the following two conditions
hold:
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(i) (Pψn
t
)n∈N is tight for each t ∈ [0, T ] and

(ii) (Aldous’ condition) For all ϵ, η > 0 there is an δ > 0 and n0 ∈ N such that for all
sequences of stopping times (τn)n∈N with τn ≤ T − δ we have

(55) sup
n≥n0

sup
θ≤δ

P
[
∥ψnτn −ψnτn+θ∥H > η

]
≤ ϵ.

Regarding point (i) above, to show tightness in the space D([0, T ],H) it is necessary to
find criteria for the tightness in the Hilbert space itself. This can be approached by an equi-
small tails-argument and is well known (c.f. Lemma 1.8.1 in [68]):

THEOREM D.2. Let (Yn)n∈N be a sequence of random variables on a probability space
(Ω,F ,P) with values in a separable Hilbert space H , such that for all δ > 0

(56) lim
N→∞

sup
n∈N

P

∑
k≥N

⟨Yn, ek⟩2 > δ

= 0,

for some orthonormal basis (en)n∈N. Then the sequence (PYn
)n∈N is tight in H .

PROOF. Fix some ϵ > 0. By assumption we can define two increasing sequences of natural
numbers (N ϵ

k)k∈N and (lk)k∈N, such that N ϵ
1 = 1 and

(57) sup
n∈N

P

∑
l≥Nϵ

k

⟨Yn, el⟩2 >
1

lk

≤ ϵ
1

l2k
∑∞

j=1
1
l2j

.

Further, we introduce

(58) Aϵk :=

h ∈H :
∑
l≥Nϵ

k

⟨h, el⟩2 ≤
1

lk

 .

We prove now that Kϵ =
⋂
k∈NA

ϵ
k is compact. It is obviously closed and bounded Then we

have as k→∞

sup
h∈Kϵ

∑
l≥Nϵ

k

⟨h, el⟩2 ≤
1

lk
→ 0.

Hence, the set Kϵ is totally bounded and by the Hausdorff theorem (c.f. Theorem 3.28 in [2])
compact.

It is now left to show that 1− PYn
[Kϵ]< ϵ. But, by Markov’s inequality and the choice of

N ϵ
k we have

1− PYn
[Kϵ]≤

∞∑
k=1

PYn
[(Aϵk)

c]≤ ϵ,

which proves the claim.

By Markov’s inequality, we have the following Corollary to Theorem D.2,

COROLLARY D.3. Let (Yn)n∈N be a sequence of random variables on a probability
space (Ω,F ,P) with values in a separable Hilbert space H and having finite second mo-
ments. If for some orthonormal basis (en)n∈N we have

(59) lim
N→∞

sup
n∈N

∑
k≥N

E
[
⟨Yn, ek⟩2

]
= 0,

then the sequence (PYn
)n∈N is tight in H .
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D.1.2. Tightness and stable convergence. Let E be a Polish space, E := B(E) its Borel
σ-algebra and (Ω,F ,P) be a probability space. Recall that a map K : Ω×E → [0,1] is called
a Markov kernel from (Ω,F) to (E,E), if for all ω ∈Ω the mapK(ω, ·) is a Borel probability
measure on E and for all A ∈ E the map K(·,A) is an F -measurable random variable.

Let (Yn)n∈N be a sequence of random variables with values in the Skorokhod space
D([0, T ],H) defined on a probability space (Ω,F ,P) and Y a random variable with val-
ues in D([0, T ],H) defined on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P). Observe, that we can
specify a Markov kernel K by the conditional distribution

K(ω,A) = P̃[Y ∈A|F ].

One can then see that stable convergence of the sequence (Yn)n∈N to Y can be written as

(60) E[Zf(Yn)]→ Ẽ[Zf(Y )] =

∫
Ω
Z(ω)

∫
D([0,T ],H)

f(x)K(ω,dx)P[dω], as n→∞

for all bounded continuous functions f : D([0, T ],H) → R and all bounded random vari-
ables Z on (Ω,F). In that way we can identify stable convergence of a sequence of random
variables as convergence towards a Markov kernel in the sense of (60). We will use this in
the proof of the next theorem, which can be found in [46, Proposition 3.9] for continuous
processes. Here we extend the proof for processes with values in the Skorokhod space.

THEOREM D.4. Let (Yn)n∈N be a sequence of random variables with values in the
Skorokhod space D([0, T ],H) defined on a probability space (Ω,F ,P) and Y a random
variable with values in D([0, T ],H) defined on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P). If
(Yn)n∈N is tight and (Yn(t1), ..., Yn(td))→ (Y (t1), ..., Y (td)) stably for each finite collection
t1, ..., td ∈ [0, T ], d ∈N, then Yn → Y stably as n→∞.

PROOF. Assume (Yn)n∈N is tight and (Yn(t1), ..., Yn(td))→ (Y (t1), ..., Y (td)) stably for
each finite collection t1, ..., td ∈ [0, T ] and (Yn)n∈N does not converge stably to Y . Then
we can find a subsequence (nk)k∈N, ϵ > 0, a bounded real-valued random variable Z on
(Ω,F ,P) and h ∈Cb(D([0, T ],H)), such that

(61) |E[Zh(Ynk
)]− Ẽ[Zh(Y )]| ≥ ϵ.

Equivalently, this means for the kernel

K(ω,A) := P̃[Y ∈A|F ](ω)

that

(62) |E[Zh(Ynk
)]−

∫
Ω
Z(ω)

∫
D([0,T ],H)

f(x)K(ω,dx)P[dω]| ≥ ϵ.

By the tightness of (Yn)n∈N, we can appeal to Theorem 3.4(a) in [46] and obtain a sub-
sequence (nkl)l∈N of (nk)k∈N, such that Ynkl

→ L stably for some Markov kernel L :
Ω × B(D([0, T ],H)) → [0,1] as nkl → ∞. Then we have for all F ∈ F with P(F ) > 0
that

PF ◦ Y −1
nkl

d→ PF [L] :=
∫
Ω
L(ω, ·)PF [dω]

weakly by Theorem 3.2 (iv) in [46], where PF [A] := P[A∩F ]
P[F ] is the conditional probabil-

ity. According to [25, p.138-139] there is then for each F ∈ F with P(F ) > 0 a dense set
TPF [L] ⊂ [0, T ] (depending on the limiting distribution), that contains 0 and T and

(63) PF ◦ Y −1
nkl

◦ (πt1,...,td)
d→ PF [L] ◦ (πt1,...,td)
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whenever t1, ..., td ∈ TPF [L] for d arbitrary. Here, πt1,...,td(f) = (f(t1), ..., f(td)) denotes the
finite-dimensional projections. By Theorem 12.5 in [25], the sets

π−1
t1,...,td(A), A ∈ B(Hd), t1, ..., td ∈ TPF [L]

generate B(D([0, T ],H)), where Hd = H × ... × H is equipped with the product topol-
ogy, and, in particular, two measures Q1 and Q2 coincide on B(D([0, T ],H)), if Q1 ◦
π−1
t1,...,td = Q2 ◦ π−1

t1,...,td for all t1, ..., td ∈ TPF [L], d ∈ N. By assumption we have that
(Yn(t1), ..., Yn(td))→ (Y (t1), ..., Y (td)) stably, which is equivalent to

PF ◦ Y −1
n ◦ πt1,...,td

d→ P̃F ◦ Y −1 ◦ πt1,...,td
for all t1, ..., td ∈ [0, T ], d ∈ N and all F ∈ F with P(F )> 0 by [46, Theorem 3.4(iv)]. This
together with (63) yields

P̃F ◦ Y −1 ◦ πt1,...,td = PF [L] ◦ (πt1,...,td)
for all t1, ..., td ∈ TPF [L], d ∈N and, hence,

PF [K] =

∫
Ω
K(ω, ·)PF [dω] = P̃F ◦ Y −1 = PF [L]

for all F ∈ F with P(F )> 0. However, this shows that K = L, which is a contradiction, as
by construction of L it is

E[Zf(Ynkl
)]→

∫
Ω
Z(ω)

∫
D([0,T ],H)

f(x)L(ω,dx)P[dω], as l→∞.

D.2. Tightness results for the central limit theorems. In this section, we are go-
ing to prove in several steps the following theorem. Recall the notation ΣSn

s := S(i∆n −
s)ΣsS(i∆n − s)∗ for s ∈ [(i− 1)∆n, i∆n), that we will use extensively here.

THEOREM D.5. Let Assumption 7 hold. Then the sequence of processes

(Z̃n,2t )t∈[0,T ] :=

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∆̃n
i Y

⊗2 −
∫ i∆n

(i−1)∆n

ΣSn
s ds


t∈[0,T ]

, n ∈N

is tight in D([0, T ],H).

Despite the rather extensive notation, it is relatively straightforward to show that
(Z̃n,2)t∈[0,T ] satisfies Aldous’ condition.

THEOREM D.6. (Temporal tightness) Let (Pn)n∈N be given by Pn = P(Z̃n,2
t )t∈[0,T ]

and
Assumption 7 hold. Then (Pn)n∈N satisfies Aldous’ condition.

PROOF. The Markov inequality yields

P
[∥∥∥Z̃n,2τn −Zn,2τn+θ

∥∥∥
H
> η
]

≤1

η
E
[∥∥∥Z̃n,2τn − Z̃n,2τn+θ

∥∥∥
H

]

≤1

η

∆
− 1

2
n E

∥∥∥∥∥∥
⌊(τn+θ)/∆n⌋∑
i=⌊τn/∆n⌋

∆̃n
i Y

⊗2

∥∥∥∥∥∥
H

+∆
− 1

2
n

∥∥∥∥∫ τn+θ

τn

Σsds

∥∥∥∥
H

 .(64)
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Now, set θ < δ <∆n. We can estimate further

E

∥∥∥∥∥∥
⌊(τn+θ)/∆n⌋∑
i=⌊τn/∆n⌋

∆̃n
i Y

⊗2

∥∥∥∥∥∥
H

+

∥∥∥∥∫ τn+θ

τn

Σsds

∥∥∥∥
H


≤
(
E
[∥∥∥∆̃n

⌊τn+θ/∆n⌋Y
⊗2
∥∥∥
H
+
∥∥∥∆̃n

⌊τn/∆n⌋Y
⊗2
∥∥∥
H

])
+E[

∫ τn+θ

τn

∥Σs∥H ds]

=

(
E
[∥∥∥∆̃n

⌊τn+θ/∆n⌋Y
∥∥∥2 + ∥∥∥∆̃n

⌊τn/∆n⌋Y
∥∥∥2])+E[

∫ τn+θ

τn

∥Σs∥Hds]

= (1)n + (2)n.

We obtain

∆
− 1

2
n E

[∥∥∥∆̃n
⌊τn+θ/∆n⌋Y

∥∥∥2]

≤∆
− 1

2
n 2

E

∥∥∥∥∥
∫ (⌊τn+θ/∆n⌋+1)∆n

(⌊τn+θ/∆n⌋)∆n

αSn
s ds

∥∥∥∥∥
2


+ E

∥∥∥∥∥
∫ (⌊τn+θ/∆n⌋+1)∆n

(⌊τn+θ/∆n⌋)∆n

σSn
s dWs

∥∥∥∥∥
2


≤∆
− 1

2
n 2

(
E

[
∆−1
n

∫ (⌊τn+θ/∆n⌋+1)∆n

(⌊τn+θ/∆n⌋)∆n

∥∥αSn
s

∥∥2 ds]

+E

[∫ (⌊τn+θ/∆n⌋+1)∆n

(⌊τn+θ/∆n⌋)∆n

∥σs∥2LHS(U,H)ds

])

≤ 2∆
1

2
n sup
r∈[0,T ]

∥S(r)∥2op

∫ T

0
E
[
∥αs∥2

]
ds

+ 2E

(∫ (⌊τn+θ/∆n⌋+1)∆n

(⌊τn+θ/∆n⌋)∆n

∥σs∥4LHS(U,H)ds

) 1

2

 ,(65)

which converges to 0 as n→∞ since the function t 7→
∫ t
0 ∥σs∥

4
LHS(U,H)ds is uniformly con-

tinuous on [0, T ] and bounded.
Analogously we obtain

∆
− 1

2
n E

[
∥∆̃n

⌊τn/∆n⌋Y
⊗2∥H

]
→ 0,

as n→∞. This yields limn→∞∆
− 1

2
n (1)n = 0.

It remains to show limn→∞∆
− 1

2
n (2)n = 0. Observe that since s 7→ Σs is bounded by as-

sumption, the following convergence holds almost surely as n→∞:

∆
− 1

2
n

∫ τn+θ

τn

∥Σs∥Hds≤
(∫ τn+θ

τn

∥Σs∥2Hds
) 1

2

≤ sup
t∈[0,T−θ]

(∫ t+θ

t
∥Σs∥2Hds

) 1

2
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≤ sup
t,s∈[0,T ],t−s≤∆n

(∫ t

s
∥Σs∥2Hds

) 1

2

converges to zero, as t 7→
∫ t
0 ∥Σs∥

2
Hds is uniformly continuous on [0, T ] almost surely, as

θ ≤∆n. Moreover, we have the integrable majorant∫ τn+θ

τn

∥Σs∥Hds≤
∫ T

0
∥Σs∥Hds,

such that we obtain by dominated convergence ∆
− 1

2
n (2)→ 0 as n→∞. Hence, we conclude

the Aldous condition in Theorem D.1.

In order to show tightness of the sequences (Z̃n,2)n∈N in D([0, T ],H) under the conditions
of Theorem D.5, we have to verify the tightness of each (Z̃n,2t )n∈N in H for each t ∈ [0, T ]
separately. This is what we do in the remainder of this subsection. We first argue that we
can assume α ≡ 0 in the proof of tightness of Z̃n,2t in H. Observe that with the notation of
Section B.3, we have

∆
− 1

2
n

(
SARCV n

t −
∫ t

0
ΣSn
s ds

)

=∆
− 1

2
n

⌊t/∆n⌋∑
i=1

(
∆̃n
i A+ ∆̃n

iM
)⊗2

−
∫ t

0
ΣSn
s ds


=∆

− 1

2
n

⌊t/∆n⌋∑
i=1

∆̃n
i A

⊗2 + ∆̃n
i A⊗ ∆̃n

iM + ∆̃n
iM ⊗ ∆̃n

i A


+∆

− 1

2
n

⌊t/∆n⌋∑
i=1

∆̃n
iM

⊗2 −
∫ t

0
ΣSn
s ds


=:(I)nt + (II)nt .(66)

We obtain:

THEOREM D.7 (Elimination of the drift). Suppose that Assumption 10(2m) holds. In this
case, the first summand in (66), that is (I)nt is tight. In particular, in order to show Theorem
D.8 we can assume α≡ 0.

PROOF. We show first that

(67) lim
N→∞

sup
n∈N

E

[
sup
t∈[0,T ]

∥∥P 2
N (I)

n
t

∥∥
H

]
= 0.

We can compute, using Hölder’s inequality

E

[
sup
t∈[0,T ]

∥∥P 2
N (I)

n
t

∥∥
H

]

≤∆
− 1

2
n

⌊T/∆n⌋∑
i=1

E
[
∥P 2

N∆̃
n
i A∥2 + 2∥P 2

N∆̃
n
i A∥∥P 2

N∆̃
n
iM∥

]
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=∆
− 1

2
n

⌊T/∆n⌋∑
i=1

E
[
∥P 2

N∆̃
n
i A∥2

]

+ 2∆
− 1

2
n

⌊T/∆n⌋∑
i=1

E
[
∥P 2

N∆̃
n
i A∥2

] 1

2
⌊T/∆n⌋∑

i=1

E
[
∥P 2

N∆̃
n
iM∥

]2 1

2

.

Now using (52) and (53) as well as the corresponding notation from Lemma B.5 we find

E

[
sup
t∈[0,T ]

∥∥P 2
N (I)

n
t

∥∥
H

]
≤∆

1

2
nC∆naN (2) + 2(CaN (2))

1

2 (CbN (2))
1

2

The latter converges to 0, as N → ∞, uniformly in n. Thus (67) holds. A straightforward
application of Markov’s inequality and Theorem D.2 yield the assertion.

In the subsections below we make the remaining steps in order to prove Theorem D.8, i.e.,
in view of Theorem D.1 and Theorem D.6 we have to prove that (Z̃n,2t )n∈N is tight in H. In
view of Theorem D.7 we further assume that α≡ 0 throughout these subsections.

D.2.1. Spatial tightness for quadratic variation. Recalling that Assumption 7 is satisfied
under the assumptions of Theorem D.8, the tightness of the sequence of laws corresponding
to (Z̃n,2)n∈N is tight in D([0, T ],H) by

THEOREM D.8. Assume that∫ T

0
E
[∥∥σSn

s

∥∥4
LHS(U,H)

]
ds <∞,

which is in particular the case, if Assumption 7 holds. We have

lim
N→∞

sup
t∈[0,T ]

sup
n∈N

∑
m,k≥N

E
[
⟨Z̃2,n

t , ek ⊗ em⟩2H
]

= lim
N→∞

sup
t∈[0,T ]

sup
n∈N

E
[
∥pN Z̃2,n

t ∥2H
]
= 0,(68)

and thus, the sequence (Z̃n,2t )n∈N is tight in H. Hence, the sequence (Z̃n,2)n∈N is tight in
D([0, T ],H).

PROOF. We define

Z̃Nn (i) :=∆
− 1

2
n

(
(pN∆̃

n
i Y )⊗2 − ⟨⟨pN∆̃n

i Y ⟩⟩
)

=∆
− 1

2
n

(
(pN∆̃

n
i Y )⊗2 −

∫ ti

ti−1

pNS(ti − s)ΣsS(ti − s)∗pNds

)
.

First we show that supt∈[0,T ] ∥
∑⌊t/∆n⌋

i=1 Z̃Nn (i)∥HS has finite second moment. Note that, by
the BDG inequality (43), we have

E
[∥∥∥pN∆̃n

i Y
∥∥∥4]≤E

(∫ i∆n

(i−1)∆n

∥∥σSn
s

∥∥2
LHS(U,H)

ds

)2
(69)

≤∆nE

[∫ i∆n

(i−1)∆n

∥∥σSn
s

∥∥4
LHS(U,H)

ds

]
.(70)
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Therefore, by the triangle and Cauchy-Schwarz inequalities, we have

E

∥∥∥∥∥∥
⌊t/∆n⌋∑
i=1

Z̃Nn (i)
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∥∥∥
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s

∥∥
LHS(U,H)
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2
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E
[∥∥∥pN∆̃n

i Y
∥∥∥4]+ ∫ i∆n

(i−1)∆n

E
[∥∥σSn

s

∥∥4
LHS(U,H)
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)
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≤∆−1
n

⌊t/∆n⌋∑
i=1

4∆n

∫ i∆n

(i−1)∆n

E
[∥∥σSn

s

∥∥4
LHS(U,H)

]
ds⌊t/∆n⌋

=

∫ ⌊t/∆n⌋

0
E
[∥∥σSn

s

∥∥4
LHS(U,H)

]
ds⌊t/∆n⌋<∞,

where the finiteness is due to the assumption.
Now note that t 7→ ψt =

∫ t
(i−1)∆n

pNS(ti − s)σsdWs is a martingale for t ∈ [(i −
1)∆n, i∆n]. From [63, Theorem 8.2, p. 109] we deduce that the process (ζt)t≥0, with

ζt = (ψt)
⊗2 − ⟨⟨ψ⟩⟩t,

is a martingale with respect to (Ft)t≥0, and hence,

E
[
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n
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]
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(ψi∆n
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]
=E
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⟨⟨ψ⟩⟩i∆n
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]
=
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E
[
pNS(ti − s)ΣsS(ti − s)∗pN |Fti−1

]
ds.

So, E
[
Z̃Nn (i)

∣∣∣Fti−1
] = 0. Moreover, for j < i, as each Z̃Nn (i) is F(i−1)∆n

measurable and
the conditional expectation commutes with bounded linear operators, we find by using the
tower property of conditional expectation that

E
[
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]
=E
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E
[
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=E
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Z̃Nn (i)|F(i−1)∆n

]
, Z̃Nn (j)⟩H

]
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Thus, we obtain

E
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Z̃Nn (i)
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≤
⌊T/∆n⌋∑
i=1

E
[
∥Z̃Nn (i)∥2H

]
.
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Applying the triangle and Bochner inequalities, the basic inequality (a + b)2 ≤ 2(a2 + b2)
and appealing to (69), we find

E
[
∥Z̃Nn (i)∥2H

]
≤ 2∆−1

n E

∥(pN∆̃n
i Y )⊗2∥2H +

(∫ i∆n

(i−1)∆n

∥pNS(i∆n − s)ΣsS(i∆n − s)∗pN∥Hds
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

≤ 4

∫ i∆n

(i−1)∆n

E
[
∥pNσSn

s ∥4LHS(U,H)

]
ds.

Summing up, we have

E

 sup
t∈[0,T ]

∥∥∥∥∥∥
⌊t/∆n⌋∑
i=1
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≤ 4 sup
n∈N

∫ T

0
E
[
∥pNσSn

s ∥4LHS(U,H)

]
ds,

which converges to 0 by Lemma B.4. Hence, as

sup
t∈[0,T ]

sup
n∈N

∑
m,k≥N

E
[
⟨Z̃2,n

t , ek ⊗ em⟩2H
]
= ∥

⌊t/∆n⌋∑
i=1

Z̃Nn (i)∥2H,

the Theorem follows by Corollary D.3.

D.3. Convergence of finite-dimensional distributions and remainders.

D.3.1. Proof of the central limit theorem for realised covariation. Before we can finally
prove the central limit theorem for realised covariation, we need the following auxiliary
Lemma:

LEMMA D.9. Let (ej)j∈N be an orthonormal basis of H that is contained in D(A∗).
Then for any k, l ∈N we have∫ i∆n

(i−1)∆n

⟨ΣSn
s ek, el⟩ds=

∫ i∆n

(i−1)∆n

⟨Σsek, el⟩ds+ψi,k,ln ,

where ψi,k,ln is a sequence of random variables such that,

E[|ψi,k,ln |]≤K∆2
n,

for a constant K =K2(k, l)> 0 independent of i.

PROOF. Since S(i∆n− s)∗ek =
∫ i∆n

s S(u− s)∗A∗ekdu+ ek for all k ∈N, we have that,∫ i∆n

(i−1)∆n

⟨ΣSn
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s
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∫ i∆n
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=

∫ i∆n

(i−1)∆n

⟨Σsek, el⟩+ ⟨Σs
∫ i∆n

s
S(u− s)∗A∗ekdu, el⟩
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+ ⟨Σsek,
∫ i∆n

s
S(u− s)∗A∗eldu⟩

+ ⟨Σs
∫ i∆n

s
S(u− s)∗A∗ekdu,

∫ i∆n

s
S(u− s)∗A∗eldu⟩ds.

It holds by Bochner’s inequality

E
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s
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s
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≤∆n sup
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and analogous by swapping k and l

E
[∣∣∣∣⟨Σsel,∫ i∆n
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≤∆n sup
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Moreover

E
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≤∆2
n sup
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E
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∥σsS(t)∗A∗ej∥2

]
.

By the choice K = supt,s∈[0,T ],j=k,lE
[
∥σsS(t)∗A∗ej∥2

]
, the assertion follows.

We can now prove an auxiliary central limit theorem, which essentially does not rely on
the spatial regularity condition in Assumption 2.

THEOREM D.10. Let Assumption 7 hold. We have that Z̃n,2 L−s⇒ (N (0,Γt))t∈[0,T ].

PROOF. Let (ei)i∈N be an orthonormal basis of H that is contained in the domain D(A∗)
of the adjoint of the generator A. Since tightness of (PZ̃n,2)n∈N in the Skorokhod topology
is guaranteed by Theorems D.6 and D.8 in combination with Theorem D.1, it is enough
to show the stable convergence in law as a process of the finite-dimensional distributions
Z̃n,2t (d) := (⟨Z̃n,2t , ek ⊗ el⟩)k,l=1,...,d.

Therefore, for k, l= 1, . . . , d we find by Lemma B.3 and Lemma D.9 (and using the same
notation) that
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The second summand converges to 0 in probability uniformly on compacts, which is why we
have that the stable limit of ⟨Z̃n,2t ek, el⟩ is the same as the one of

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

(
⟨∆n

i S, ek⟩⟨∆n
i S, el⟩ −

∫ i∆n

(i−1)∆n

⟨Σsek, el⟩ds

)
.

The latter is a component of the difference of realised quadratic covariation and the quadratic
covariation of the d-dimensional continuous local martingale Sdt = (⟨St, e1⟩, ..., ⟨St, ed⟩).
Therefore, Z̃n,2(d) = (⟨Z̃n, ek, el⟩)k,l=1,...,d converges by Theorem 5.4.2 from [52] stably
as a process to a process that is defined on a very good filtered extension (Ω̃, F̃ , F̃t, P̃) of
(Ω,F ,Ft,P). This limiting process is conditionally on F a centered Gaussian which can be
realised on the very good filtered extension as

Nk,l =
1√
2

d∑
c,b=1

∫ t

0
(σ̂kl,bc(s) + σ̂lk,bc(s))dB

cb
s .

Here, σ̂(s) is a d2 × d2-matrix, being the square-root of the matrix ĉ(s) with entries
ĉkl,k′l′(s) = ⟨Σsek, ek′⟩⟨Σsel, el′⟩. Furthermore, B is a matrix of independent Brownian mo-
tions. This corresponds to the covariance Γt, as by the Itô isometry we obtain
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+ ⟨Σsel, ek′⟩⟨Σsek, el′⟩+ ⟨Σsel, el′⟩⟨Σsek, ek′⟩ds

=

∫ t

0
⟨Σsek, ek′⟩⟨Σsel, el′⟩+ ⟨Σsek, el′⟩⟨Σsel, ek′⟩ds

=

∫ t

0
(⟨Σs(ek′ ⊗ el′)Σs, ek ⊗ el⟩H + ⟨Σs(el′ ⊗ ek′)Σs, ek ⊗ el⟩H)ds

= ⟨Γtek′ ⊗ el′ , ek ⊗ el⟩H.

As now all finite-dimensional distributions converge stably and the sequence of measures
is tight, we obtain by Theorem D.4 that the convergence is indeed stable to a process
Z in the Skorokhod space, whose corresponding finite-dimensional components Z(d) :=
(⟨Z,ek, el⟩)k,l=1,...,d are conditionally on F a centred Gaussian process. It is itself con-
ditionally centred Gaussian. Moreover, the process is continuous as well, since for Z in
D([0, T ],H) we have

∥Zt −Zs∥H ≤ ∥PdZt∥H + ∥Zt(d)−Zs(d)∥Rd×d + ∥PdZs∥H.
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The outer terms can be made arbitrarily small since by (68) it holds

lim
d→∞

sup
t∈[0,T ]

E
[
∥PdZ̃2,n

t ∥2H
]
= 0.

The middle term converges for each fixed d to 0 as |t− s| → 0, as PdZ is continuous as an
Itô integral. The proof is complete.

Now we are in the position to prove the central limit theorems 3.3 and 3.2 for realised
covariations.

PROOF OF THEOREM 3.3. It is clear that ∆
− 1

2
n

∫ t
⌊t/∆n⌋Σsds converges to 0 in the u.c.p.-

sense, and since

X̃n
t = Z̃n,2t +∆

− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds+∆

− 1

2
n

∫ t

⌊t/∆n⌋
Σsds,

we have to show

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

u.c.p.−→ 0.

Recall that PN denotes the projection onto {ek ⊗ el : k, l≥N}, where again (ej)j∈N is an
orthonormal basis of H that is contained in D(A∗). Notice that for each A ∈H

∥(I − PN )A∥H = ∥
∑

k,l≤N−1

⟨A,ek ⊗ el⟩Hek ⊗ el∥H

≤
∑

k,l≤N−1

|⟨A,ek ⊗ el⟩H|∥ek ⊗ el∥H

=
∑

k,l≤N−1

|⟨A,ek ⊗ el⟩H|

=
∑

k,l≤N−1

|⟨Aek, el⟩|.

Then, by Lemma D.9

E

 sup
t∈[0,T ]

∥∥∥∥∥∥(I − PN )∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H


≤ E

 sup
t∈[0,T ]

N−1∑
k,l=1

∣∣∣∣∣∣∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨
(
ΣSn
s −Σs

)
ek, el⟩ds

∣∣∣∣∣∣


= E

 sup
t∈[0,T ]

N−1∑
k,l=1

∣∣∣∣∣∣∆− 1

2
n

⌊t/∆n⌋∑
i=1

ψi,k,l

∣∣∣∣∣∣


≤
N−1∑
k,l=1

∆
− 1

2
n

⌊T/∆n⌋∑
i=1

K(k, l)∆2
n
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≤

N−1∑
k,l=1

K(k, l)

T∆
1

2
n ,(71)

which converges to 0 as n→∞. Thus, for all N ∈N,

(I − PN )∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

u.c.p.−→ 0.

Further, we have, by using the triangle and Bochner inequalities,

E

 sup
t∈[0,T ]

∥∥∥∥∥∥PN∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H


≤∆

− 1

2
n

∫ T

0
E
[∥∥PN (ΣSn

s −Σs
)∥∥

H
]
ds

≤∆
− 1

2
n

∫ T

0
E [∥PN (S(⌊s/∆n⌋∆n − s)− I)ΣsS(⌊s/∆n⌋∆n − s)∗∥H

+∥PNΣs(S(⌊s/∆n⌋∆n − s)∗ − I)∥H]ds.

Now, estimating further using the Cauchy-Schwarz inequality along with the fact that
∥AB∥H ≤ ∥A∥op∥B∥LHS(U,H) for any Hilbert Schmidt operator B :H → U and continuous
linear operator A : U →H ,

E

 sup
t∈[0,T ]

∥∥∥∥∥∥PN∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H


≤∆

− 1

2
n

∫ T

0
E [∥pN (S(⌊s/∆n⌋∆n − s)− I)σs∥op(
∥pNσs∥LHS(U,H) + ∥pNS(⌊s/∆n⌋∆n − s)σs∥LHS(U,H)

)]
ds

≤
(∫ T

0
E
[
∥∆− 1

2
n (S(⌊s/∆n⌋∆n − s)− I)σs∥2op

]
ds

) 1

2

×
(∫ T

0

√
2E
[
∥pNσs∥2LHS(U,H) + ∥pNS(⌊s/∆n⌋∆n − s)σs∥2LHS(U,H)

]
ds

) 1

2

.

The first factor is finite by Assumption 2, whereas the second one converges to 0 as N →∞
by Lemma B.4. Observe that we used that the Lemma holds also in the special case S(t) = I
on H for all t≥ 0. Thus, we have

lim
N→∞

sup
n∈N

E

 sup
t∈[0,T ]

∥∥∥∥∥∥PN∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H

= 0.

Therefore, we can find for each δ > 0 an Nδ ∈N such that for all N ≥Nδ

E

 sup
t∈[0,T ]

∥∥∥∥∥∥∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H


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≤E

 sup
t∈[0,T ]

∥∥∥∥∥∥(I − PN )∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H


+ sup
n∈N

E

 sup
t∈[0,T ]

∥∥∥∥∥∥PN∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H


≤E

 sup
t∈[0,T ]

∥∥∥∥∥∥(I − PN )∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H

+ δ

→ δ.

As this holds for all δ > 0, we obtain that

E

 sup
t∈[0,T ]

∥∥∥∥∥∥∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
H

→ 0,

as n→∞, and the assertion follows.

PROOF OF THEOREM 3.2. For any B ∈H,

⟨X̃n
t ,B⟩H = ⟨Z̃n,2t ,B⟩H + ⟨∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds,B⟩H.

Since the stable convergence with respect to the Hilbert-Schmidt norm as proven in Theorem
D.10 implies the stable convergence in law with respect to the (analytically) weak topology,
we only have to show

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨
(
ΣSn
s −Σs

)
,B⟩Hds

u.c.p.−→ 0.

We can argue componentwise, which is why we assume without loss of generality that B =
h⊗ g for h, g ∈ FS∗

1/2. We split into two terms as follows:

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨(ΣSn
s −Σs)h, g⟩ds

=∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨((S(i∆n − s)− I)ΣsS(i∆n − s)∗)h, g⟩ds

+∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨(Σs(S(i∆n − s)− I)∗)h, g⟩ds

= (1)n + (2)n.

We only show the convergence for (1)n since the argument for (2)n is analogous. It holds

(1)n =∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨(I − pN )(ΣsS(i∆n − s)∗)h, (S(i∆n − s)− I)∗g⟩ds
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+∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨pN (ΣsS(i∆n − s)∗)h, (S(i∆n − s)− I)∗g⟩ds

=(1.1)n,N + (1.2)n,N ,

where again we denoted by pN the projection onto {ej : j ≥N} for an orthonormal basis
(ej)j∈N of H that is contained in D(A). We have

S(t− s)ei − ei =

∫ t

s
S(u− s)Aeidu,

and therefore it holds for the first summand that,

sup
t∈[0,T ]

|(1.1)n,N |

= sup
t∈[0,T ]

|∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨(I − pN )(ΣsS(i∆n − s)∗)h, (S(i∆n − s)− I)∗g⟩ds|

= sup
t∈[0,T ]

|∆− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

N−1∑
j=1

⟨(ΣsS(i∆n − s)∗)h, ej⟩⟨ej , (S(i∆n − s)− I)∗g⟩ds|

= sup
t∈[0,T ]

|
N−1∑
j=1

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

⟨(ΣsS(i∆n − s)∗)h, ej⟩⟨
∫ i∆n

s
S(u− s)Aejds, g⟩ds

≤
N−1∑
j=1

∆
− 1

2
n

∫ T

0
∥Σs∥op∥h∥∆n∥Aej∥∥g∥ds sup

t∈[0,T ]
∥S(t)∥2op

≤∆
1

2
n

N−1∑
j=1

∫ T

0
∥Σs∥opds∥h∥∥g∥ sup

t∈[0,T ]
∥S(t)∥2op.

(72)

The last expression converges to 0 as n→∞ almost surely. In particular, we have as n→∞
that

|(1.1)n,N |
u.c.p.→ 0.

It follows from the fact that g ∈ FS∗

1/2 that we can find a constant K := supt≤T ∥t−
1

2 (S(t)−
I)∗g∥<∞ such that

E

[
sup
t∈[0,T ]

|(1.2)n,N |

]

≤∆
− 1

2
n

⌊T/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

E [|⟨pN (ΣsS(i∆n − s)∗)h, (S(i∆n − s)− I)∗g⟩|]ds

≤∆
− 1

2
n sup

t≤∆n

∥(S(t)− I)∗g∥
∫ T

0
sup
t≤∆n

E [∥pNσs∥op∥σ∗sS(t)∗∥op∥h∥]ds

≤K
(∫ T

0
E
[
∥pNσs∥2op

]
ds

) 1

2
(∫ T

0
sup
t≤∆n

E
[
∥σ∗sS(t)∗)∥2op

]
∥h∥2ds

) 1

2
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≤K
(∫ T

0
E
[
∥pNσs∥2op

]
ds

) 1

2
(∫ T

0
E
[
∥σ∗s∥2op

]
∥h∥2ds

) 1

2

sup
t∈[0,T ]

∥S(t)∥op.(73)

As the first factor converges to 0 as N →∞ by Lemma B.4, we obtain the convergence of
E[supt∈[0,T ] |(1.2)n,N |] to 0 as N →∞ uniformly in n. Therefore, we can find for each δ > 0
an N ∈N, such that by Markov’s inequality

lim
n→∞

P

[
sup
t∈[0,T ]

|(1)n|> ϵ

]

≤ lim
n→∞

P

[
sup
t∈[0,T ]

|(1.1)n,N |> ϵ

]
+ sup
n∈N

P

[
sup
t∈[0,T ]

|(1.2)n,N |> ϵ

]

=0+
1

ϵ
sup
n∈N

E

[
sup
t∈[0,T ]

|(1.2)n,N |

]
≤ δ.

As this holds for all δ > 0 we obtain (1)n
u.c.p.−→ 0 as n→∞. The assertion for (2)n

u.c.p.−→ 0
follows analogously.

APPENDIX E: REMAINING PROOFS

We will now prove the remaining results, i.e. Theorem 3.8, Theorem 3.9, Lemma 3.11 and
Lemma 3.13 as well as Examples 2 and 4. We start with the proof of Example 2.

PROOF OF EXAMPLE 2. We start with some general observations. If the central limit the-

orem should be valid, i.e., if ∆
− 1

2
n

(
SARCV n

t −
∫ t
0 Σsds

)
should converge in distribution,

we must necessarily have that it is tight. As the sum of two tight sequences is tight itself and
since we have

∆
− 1

2
n

(
SARCV n

t −
∫ t

0
Σsds

)
−∆

− 1

2
n

(
SARCV n

t −
∫ t

0
ΣSn
s ds

)

=

∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ t

0
ΣSn
s −Σsds

 ,

we find that
(
∆

− 1

2
n
∑⌊t/∆n⌋

i=1

∫ t
0 Σ

Sn
s −Σsds

)
must be tight, due to Theorem D.10. I.e. for

all ϵ > 0 there is a compact set Kϵ ⊂H such that supn∈N P [Xn /∈Kϵ]< ϵ. All compact sets
K ⊂ H are bounded and hence contained in a ball with radius large enough. Hence, from
tightness we obtain that for all ϵ > 0 there is an Mϵ > 0 such that

sup
n∈N

P

∥∥∥∥∥∥
∆

− 1

2
n

⌊t/∆n⌋∑
i=1

∫ t

0
ΣSn
s −Σsds

∥∥∥∥∥∥
H

>Mϵ

< ϵ.

Thus, if for some specification of σ, there is an ϵ0 > 0 such that

(74) limsup
M↑∞

sup
n∈N

P

∥∥∥∥∥∥
∆

− 1

2
n

⌊t/∆n⌋∑
i=1

∫ t

0
ΣSn
s −Σsds

∥∥∥∥∥∥
H

>M

≥ ϵ0

we necessarily have that the central limit theorem cannot hold. For some f1 ∈ H let the
volatility have the form

σs = e⊗ f1,
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where e ∈H is such that ∥e∥= 1. Moreover, we let f2 ∈H be such that

(75) |⟨(S(x)− I)f1, f2⟩| ≤Cx
1

4 ,

for some constant C > 0, which does not depend on x≥ 0 and

(76) limsup
n→∞

∣∣∣∣∣∆− 1

2
n ⟨f1, f2⟩

n∑
i=1

∫ i∆n

(i−1)∆n

⟨(S(i∆n − s)− I)f1, f2⟩ds

∣∣∣∣∣=∞.

Moreover, we have Σs = f⊗2
1 and hence

∆
− 1

2
n ⟨

⌊t/∆n⌋∑
i=1

∫ t

0
ΣSn
s −Σsds, f

⊗2
2 ⟩

=∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n)
⟨S(i∆n − s)f1, f2⟩2 − ⟨f1, f2⟩2ds

=∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n)
⟨(S(i∆n − s)− I)f1, f2⟩⟨(S(i∆n − s) + I)f1, f2⟩ds

=∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n)
⟨(S(i∆n − s)− I)f1, f2⟩2ds

+ 2⟨f1, f2⟩∆
− 1

2
n

⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n)
⟨(S(i∆n − s)− I)f1, f2⟩ds.

Due to (75), it is simple to see that the first term converges to 0 as n→∞. Now we have that
(74) holds, since

∥f2∥2 limsup
n∈N

∥∥∥∥∥∥
∆

− 1

2
n

⌊t/∆n⌋∑
i=1

∫ t

0
ΣSn
s −Σsds

∥∥∥∥∥∥
H

≥ limsup
n→∞

∆
− 1

2
n

∣∣∣∣∣∣⟨
⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n)
(S(i∆n − s)− I)f1ds, f2⟩

∣∣∣∣∣∣ |⟨f1, f2⟩|=∞.

In order to show that Example 2 is indeed a valid counterexample, it is, thus, left to show
that for the choice H = L2[0,2], (S(t))t≥0 the nilpotent semigroup of left-shifts and f1 a
path of a fractional Brownian motion, we can find an f2 ∈H such that (75) and (76) hold.
We do this as follows: We define (B1(t),B2(t))t∈R to be a multivariate fractional Brownian
motion on some probability space (Ω̄, F̄ , P̄), i.e. a bivariate Gaussian stochastic process with
stationary increments such that the multivariate self-similarity

(B1(λt),B2(λt))∼ (λHB1(t), λ
ϵB2(t)) ∀λ > 0, t ∈R

holds for 0 < H < 1
2 , 0 < ϵ < 1

2 − H and max(H, ϵ) > 1
4 . Moreover, we assume that

E [B1(t)B2(t)] =: ρ > 0 for t ∈R. We also assume that (B1(t),B2(t))t∈R is time-reversible,
i.e. (B1(t),B2(t)) =B1(−t),B2(−t)) for all t ∈R. In that case, the covariance structure of
this process is given by

E [Bi(t)Bj(s)] =
ρi,j
2

(|s|Hi,j + |t|Hi,j − |t− s|Hi,j ),
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where

ρi,j =

{
1, i= j,

ρ, i ̸= j,

and

Hi,j =


H, i= j = 1,

ϵ, i= j = 2,

H+ ϵ, i ̸= j.

Observe that we can always find a ρ > 0 that guarantees the existence of such a process
(c.f. Proposition 9 in [5]) We want to find an ω ∈ Ω̄, such that with the choice

(77) (f1(x), f2(x)) = (B1(x)(ω),B2(x)(ω)), x ∈ [0,2],

we have (75) and (76). For that, observe that we have for t < 2, as the fractional Brownian
motion is globally Hölder on the compact interval [0,2] that for almost all ω ∈ Ω̄ there is a
C̄ω > 0 such that

∥(S(t)− I)BH(ω)∥2 =
∫ 2−t

0
(BH

t+x(ω)−BH
x (ω))

2dx+

∫ 2

2−t
(BH

x (ω))
2dx≤ C̄ωt

2H.

By analogous reasoning and since the adjoint semigroup (S(t)∗)t≥0 is given by the right-shift

S(t)∗f(x) = f(x− t)I[0,2](x− t),

we obtain for almost all ω ∈ Ω̄ a C̄ω > 0 such that

|⟨(S(x)− I)f1, f2⟩| ≤min(∥(S(x)− I)B1(ω)∥∥B2(ω)∥,∥(S(x)∗ − I)B2(ω)∥∥B1(ω)∥)

≤C̄ωx
1

4 ,

and hence (75) holds. It is now enough to prove that (76) holds for all ω ∈ A which are in
a set A ∈ F̄ such that P̄[A] > 0. For that, it is enough to prove that there is a c > 0 and an
N ∈N, such that for all n≥N we have

(78)

∣∣∣∣∣E
[
⟨B1,B2⟩

n∑
i=1

∫ i∆n

(i−1)∆n

∆−(H+ϵ)
n ⟨(S(i∆n − s)− I)B1,B2⟩ds

]∣∣∣∣∣> c,

since in this case, for n≥N we have P̄ [A]> 0 for the choice

A=

{∣∣∣∣∣⟨B1,B2⟩
n∑
i=1

∫ i∆n

(i−1)∆n

∆
− 1

2
n ⟨(S(i∆n − s)− I)B1,B2⟩ds

∣∣∣∣∣> c

}
.

If this would not be the case, there would be a subsequence (nk)k∈N such that on a full
P̄-measure set Ω̄1 we have∣∣∣∣∣⟨B1,B2⟩

nk∑
i=1

∫ i∆nk

(i−1)∆nk

∆
− 1

2
nk ⟨(S(i∆nk

− s)− I)B1,B2⟩ds

∣∣∣∣∣≤ c.

Letting EP̄ denote the expectation with respect to the probability measure P̄, we would have∣∣∣∣∣EP̄

[
⟨B1,B2⟩

nk∑
i=1

∫ i∆nk

(i−1)∆nk

∆−(H+ϵ)
nk

⟨(S(i∆nk
− s)− I)B1,B2⟩ds

]∣∣∣∣∣



FUNCTIONAL DATA ANALYSIS FOR SPDE 67

=

∣∣∣∣∣
∫
Ω̄1

⟨B1,B2⟩
nk∑
i=1

∫ i∆nk

(i−1)∆nk

∆−(H+ϵ)
nk

⟨(S(i∆nk
− s)− I)B1,B2⟩ds(ω)P̄[dω]

∣∣∣∣∣
≤
∫
Ω̄1

∣∣∣∣∣⟨B1,B2⟩
nk∑
i=1

∫ i∆nk

(i−1)∆nk

∆
− 1

2
nk ⟨(S(i∆nk

− s)− I)B1,B2⟩ds(ω)

∣∣∣∣∣ P̄[dω]
≤
∫
Ω̄1

cP̄[dω]

= c.

This would contradict (78). That yields, in particular, that if (78) is valid we obtain that (76)
holds for the choice f1 :=B1(ω) and f2 :=B2(ω) for any ω ∈A, as in this case

limsup
n→∞

∣∣∣∣∣∆− 1

2
n ⟨f1, f2⟩

n∑
i=1

∫ i∆n

(i−1)∆n

⟨(S(i∆n − s)− I)f1, f2⟩ds

∣∣∣∣∣
=limsup

n→∞
∆

−( 1

2
−(H+ϵ))

n

∣∣∣∣∣∆−(H+ϵ)
n ⟨f1, f2⟩

n∑
i=1

∫ i∆n

(i−1)∆n

⟨(S(i∆n − s)− I)f1, f2⟩ds

∣∣∣∣∣
≥ limsup

n→∞
∆

−( 1

2
−(H+ϵ))

n c

=∞.

Let us now prove that (78) holds to complete the proof. By the Isserlis-Wick formula we
obtain

EP̄

[
⟨B1,B2⟩

n∑
i=1

∫ i∆n

(i−1)∆n

∆−(H+ϵ)
n ⟨(S(i∆n − s)− I)B1,B2⟩ds

]

=

n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2

0

∫ 2

2−i∆n+s
∆−(H+ϵ)
n EP̄ [B1(x)(B1(y+ i∆n − s)

−B1(y))B2(y)B2(x)]dydxds

+

n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2

0

∫ 2−i∆n+s

0
∆−(H+ϵ)
n EP̄ [B1(x)(B1(y+ i∆n − s)−B1(y))]

×EP̄ [B2(y)B2(x)]dydxds

+

n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2

0

∫ 2−i∆n+s

0
∆−(H+ϵ)
n EP̄ [B2(x)(B1(y+ i∆n − s)−B1(y))]

×E [B2(y)B1(x)]dydxds

+

n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2

0

∫ 2−i∆n+s

0
∆−(H+ϵ)
n EP̄ [B2(y)(B1(y+ i∆n − s)−B1(y))]

×EP̄ [B2(x)B1(x)]dydxds

=:(1)nt + (2)nt + (3)nt + (4)nt .
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Clearly, since

(79) sup
r1,1,...,r1,d1 ,r2,1,...,r2,d2∈[0,2]

∣∣∣∣∣E
[
d1∏
k=1

B1(ri,1)

d2∏
k=1

B2(r2,k)

]∣∣∣∣∣<∞,

the first term goes to 0 as n→∞, as

|(1)nt |

=

∣∣∣∣∣
n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2

0

∫ 2

2−i∆n+s
∆−(H+ϵ)
n EP̄ [B1(x)(B1(y+ i∆n − s)

−B1(y))B2(y)B2(x)]dydxds|

≤
n∑
i=1

∫ i∆n

(i−1)∆n

2(∆n − s)∆−(H+ϵ)
n ds

× sup
r1,1,r1,2,r2,1,r2,2

|EP̄ [B1(r1,1)B1(r1,2)B2(r2,1)B2(r2,1)] |

≤2∆1−(H+ϵ)
n sup

r1,1,r1,2,r2,1,r2,2
|EP̄ [B1(r1,1)B1(r1,2)B2(r2,1)B2(r2,1)] |.

For the second term, observe that, by the mean value theorem, we have for all x, y ∈ (0,2]
such that y, y− x, y+ i∆n − s− x ̸= 0 for s ∈ [(i− 1)∆n, i∆n] that∣∣|x− y|2H + |y+ i∆n − s|2H − |x− y− (i∆n − s)|2H − |y|2H

∣∣
≤max(y2H−1, |x− y|2H−1, |x− y− (i∆n − s)|2H−1)(i∆n − s)

≤(y2H−1 + |x− y|2H−1 + |x− y− (i∆n − s)|2H−1)(i∆n − s).

Hence,∣∣∣∣∫ 2−i∆n+s

0
EP̄ [B2(y)B2(x)]

×
(
|x− y|2H + (y+ i∆n − s)2H − |x− y− (∆n − s)|2H − y2H

)
dy
∣∣

≤∆n

∫ 2−i∆n+s

0
(y2H−1 + |x− y|2H−1 + |x− y− (i∆n − s)|2H−1)dy

× sup
r,s∈[0,2]

|EP̄ [B2(r)B2(s)] |.

It is∫ 2−i∆n+s

0
|x− y|2H−1dy ≤

∫ 2

0
|x− y|2H−1dy =

∫ x

0
(x− y)2H−1dy+

∫ 2

x
(y− x)2H−1dy

=
x2H + (2− x)2H

2H

≤22H

H
,

and∫ 2−i∆n+s

0
|x− y− i∆n + s|2H−1dy =

∫ 2

i∆n−s
|x− y|2H−1dy ≤

∫ 2

0
|x− y|2H−1dy ≤ 22H

H
,
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as well as ∫ 2−i∆n+s

0
y2H−1dy =

(2− i∆n + s)2H

H
≤ 22H

H
.

Hence, ∣∣∣∣∫ 2−i∆n+s

0
EP̄ [B2(y)B2(x)]

(
|x− y|2H + |y+ i∆n − s|2H

−|x− y− (i∆n − s)|2H − |y|2H
)
dy
∣∣

≤∆n3
22H

H
sup

r,s∈[0,2]
|EP̄ [B2(r)B2(s)] |.

This yields

|(2)nt |

=

∣∣∣∣∣
n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2

0

∫ 2−i∆n+s

0
∆−(H+ϵ)
n EP̄ [B1(x)(B1(y+ i∆n − s)−B1(y))]

×EP̄ [B2(y)B2(x)]dydxds|

=

∣∣∣∣∣
n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2

0

∫ 2−i∆n+s

0
∆−(H+ϵ)
n

1

2

(
|x− y|2H + |y+ i∆n − s|2H

−|x− y− (i∆n − s)|2H − |y|2H
)

×EP̄ [B2(y)B2(x)]dydxds|

≤
n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2

0
∆1−(H+ϵ)
n 3

22H

H
dxds sup

r,s∈[0,2]
|EP̄ [B2(r)B2(s)] |

=∆1−(H+ϵ)
n 6

22H

H
sup

r,s∈[0,2]
|E [B2(r)B2(s)] |,

which goes to 0 as n→∞. By analogous reasoning we obtain that the third summand (3)nt
goes to 0 as n→∞. We now come to the fourth term. For that, we find

n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2−i∆n+s

0
∆−(H+ϵ)
n E [B2(y)(B1(y+ i∆n − s)−B1(y))]dyds

=

n∑
i=1

∫ i∆n

(i−1)∆n

∆−(H+ϵ)
n

∫ 2−(i∆n−s)

0
E [(B1(x+ i∆n − s)−B1(x))B2(x)]dxds

−
n∑
i=1

∫ i∆n

(i−1)∆n

∆−(H+ϵ)
n

∫ 2

2−(i∆n−s)
E [B1(x)B2(x)]dxds

=

n∑
i=1

∫ i∆n

(i−1)∆n

ρ

2∆H+ϵ
n

∫ 2−(i∆n−s)

0
(x+ i∆n − s)H+ϵ − xH+ϵ − (i∆n − s)H+ϵdxds

−
n∑
i=1

∫ i∆n

(i−1)∆n

ρ

∆
(H+ϵ)
n

∫ 2

2−(i∆n−s)
xH+ϵdxds
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=
ρ

2

n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2−(i∆n−s)

0

(x+ i∆n − s)H+ϵ − xH+ϵ

∆H+ϵ
n

dxds

− ρ

2

n∑
i=1

∫ i∆n

(i−1)∆n

(
(i∆n − s)

∆n

)H+ϵ

(2− (i∆n − s))ds

−
n∑
i=1

∫ i∆n

(i−1)∆n

ρ

∆
(H+ϵ)
n

∫ 2

2−(i∆n−s)
xH+ϵdxds.(80)

The first and the third summand converge to 0 as n→∞, as by the mean value theorem∣∣∣∣∣ρ2
n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2−(i∆n−s)

0

(x+ i∆n − s)H+ϵ − xH+ϵ

∆H+ϵ
n

dxds

∣∣∣∣∣
≤ρ
2

n∑
i=1

∫ i∆n

(i−1)∆n

∫ 2−(i∆n−s)

0
∆1−(H+ϵ)
n xH+ϵ−1dxds

≤∆1−(H+ϵ)
n

ρ

2

∫ 2

0
xH+ϵ−1dx.

and ∣∣∣∣∣
n∑
i=1

∫ i∆n

(i−1)∆n

ρ

∆
(H+ϵ)
n

∫ 2

2−(i∆n−s)
xH+ϵdxds

∣∣∣∣∣
≤ρ∆1−(H+ϵ)

n 2H+ϵ.

Summing up, we obtain that for any η > 0 there is an N ∈N, such that for all n≥N we have
as (1)nt , (2)nt , (3)nt and the first and third term in (80) go to 0 as n→∞∣∣∣∣∣E

[
⟨B1,B2⟩

n∑
i=1

∫ i∆n

(i−1)∆n

(i∆n)
−(H+ϵ)⟨(S(i∆n − s)− I)B1,B2⟩ds

]∣∣∣∣∣
≥
∣∣∣∣∫ 2

0
E [B1(x)B2(x)]dx

∣∣∣∣ ρ2
n∑
i=1

∫ i∆n

(i−1)∆n

(
(i∆n − s)

∆n

)H+ϵ

(2− (i∆n − s))ds− η

≥
∣∣∣∣∫ 2

0
E [B1(x)B2(x)]dx

∣∣∣∣ ρ

2∆H+ϵ
n

n∑
i=1

∆H+ϵ+1
n

H+ ϵ+ 1
− η

=

∣∣∣∣∫ 2

0
E [B1(x)B2(x)]dx

∣∣∣∣ ρ

2(H+ ϵ+ 1)
− η.

As this holds for all η > 0, we obtain (78) and hence the proof.

We continue by proving the remaining assertions of Example 4

PROOF OF THE REMAINING ASSERTIONS OF EXAMPLE 4. In order to verify the validity
of the counterexample 4 we still have to show that if X =BH,

(i) (RV n
t −

∫ t
0 Σsds−

∑n
i=1((S(∆n)− I)Y(i−1)∆n

)⊗2) converges in probability to 0 and
(ii)

∑n
i=1 ∥(S(∆n)− I)Y(i−1))∥4 is uniformly integrable.

Moreover, in the second case, in which X = I[0,1] we must show that



FUNCTIONAL DATA ANALYSIS FOR SPDE 71

(iii) ∆
− 1

2
n (SARCV n

t −
∫ t
0 Σsds) is uniformly integrable and

(iv) ∆
− 1

2
n (RV n

t −
∫ t
0 Σsds) is uniformly integrable.

Observe that

RV n
t =

⌊t/∆n⌋∑
i=1

∆n
i Y

⊗2

=

⌊t/∆n⌋∑
i=1

∆̃n
i Y

⊗2 + ∆̃n
i Y ⊗ (S(∆n)− I)Y(i−1)∆n

+ (S(∆n)− I)Y(i−1)∆n
⊗ ∆̃n

i Y + [(S(∆n)− I)Y(i−1)∆n
]⊗2.

Thus, recalling that ΣSn
s = S(i∆n − s)ΣsS(i∆n − s)∗ for s ∈ ((i− 1)∆n, i∆n]

(RV n
t −

∫ t

0
Σsds)

=(SARCV n
t −

∫ t

0
ΣSn
s ds) +∆

− 1

2
n

∫ t

0
ΣSn
s −Σsds

+

⌊t/∆n⌋∑
i=1

∆̃n
i Y ⊗ (S(∆n)− I)Y(i−1)∆n

+

⌊t/∆n⌋∑
i=1

(S(∆n)− I)Y(i−1)∆n
⊗ ∆̃n

i Y

+

⌊t/∆n⌋∑
i=1

[(S(∆n)− I)Y(i−1)∆n
]⊗2

=(1)nt + (2)nt + (3)nt + (4)nt + (5)nt .

The law of large numbers 3.1 guarantees that (1)nt + (2)nt converges to 0 in probability with
respect to the Hilbert-Schmidt norm. Moreover, for (3)nt (and analogously (4)nt ) we find in
the first case that, with the notation ∆iS = S(i∆n)−S((i− 1)∆n),

E
[
∥(3)nt ∥2

]
=

n∑
i,j=1

E
[
⟨∆̃n

i Y ⊗ (S(∆n)− I)Y(i−1)∆n
, ∆̃n

j Y ⊗ (S(∆n)− I)Y(j−1)∆n
⟩H
]

=

n∑
i,j=1

E
[
(βi∆n

− β(i−1)∆n
)β(i−1)∆n

(βj∆n
− β(j−1)∆n

)β(j−1)∆n

]
×E

[
⟨S(i∆n)B

H ⊗∆iSBH,S(j∆n)B
H ⊗∆jSBH⟩H

]
=

n∑
i=1

(i− 1)∆2
nE
[
∥S(i∆n)B

H ⊗∆iSBH∥2H
]

≤
n∑
i=1

(i− 1)∆2
nE
[
∥S(i∆n)B

H∥4H
] 1

2 E
[
∥∆iSBH∥4H

] 1

2
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= sup
r∈[0,T ]

∥S(r)∥4opE
[
∥BH∥4H

] 1

2 E
[
∥(S(∆n)− I)BH∥4H

] 1

2

n∑
i=1

(i− 1)∆2
n.

This converges to 0, as n→∞ and thus (3)nt → 0 (as well as (4)nt → 0) as n→∞ in L2(Ω).
This shows the first point (i).

In order to prove (ii), observe that as by Jensen’s inequality it holds (since the central
eight’s moment of a Gaussian random variable Z ∼N(0, ρ2) is E[Z8] = 105ρ8)

E
[
∥∆jSBH∥8H

]
≤
∫ 2

0
E
[(
BH
x+i∆n

−BH
x+(i−1)∆n

)8]
dx= 210∆8H

n = 210∆2
n,

we have

E

( n∑
i=1

∥(S(∆n)− I)Y(i−1)∆n
)∥4
)2


=

n∑
i,j=1

E
[
β4(i−1)∆n

β4(j−1)∆n

]
E
[
∥∆iSBH∥4H∥∆jSBH∥4H

]
≤

n∑
i,j=1

E
[
β8(i−1)∆n

] 1

2 E
[
β8(j−1)∆n

] 1

2 E
[
∥∆iSBH∥8H

] 1

2 E
[
∥∆jSBH∥8H

] 1

2

≤210× 105

n∑
i,j=1

(i− 1)2(j − 1)2∆4
n∆

2
n

≤210× 105,

which yields the L2(Ω)-boundedness of
∑n

i=1 ∥(S(∆n) − I)Y(i−1))∥4 and, in particular,
point (ii).

In order to show uniform integrability for the points (iii) and (iv) in the second case,
in which X = I[0,1], it is enough to show (after normalisation by

√
n) that all summands√

n(1)nt −
√
n(5)nt are bounded in L2(Ω) uniformly in n ∈N. The first summand

√
n(1)nt is

bounded in L2(Ω), due to Theorem D.8.
For the second term we observe

E

∥∥∥∥∥∥
⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
2

H


1

2

≤
∫ T

0
E
[
∥(S(⌊s/∆n⌋∆n − s)− I)ΣsS(⌊s/∆n⌋∆n − s)∗∥2H

] 1

2

+E
[
∥Σs(S(⌊s/∆n⌋∆n − s)∗ − I)∥2H

] 1

2

ds

≤2 sup
r∈[0,T ]

∥S(r)∥op

∫ T

0
sup

x∈[0,∆n]
E
[∥∥(S(x)− I)σs∥2op∥σs

∥∥2
H

] 1

2

.

It holds for x≥ 0, ∥σs∥LHS(U,H) = 1 and

∥(S(x)− I)σs∥2LHS(U,H)
= ∥(S(x+ s)−S(s))I[0,1]∥2H = 2x.
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This yields

∆
− 1

2
n E

∥∥∥∥∥∥
⌊t/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

(
ΣSn
s −Σs

)
ds

∥∥∥∥∥∥
2

H


1

2

≤∆
− 1

2
n 2 sup

r∈[0,T ]
∥S(r)∥op

∫ T

0
sup

x∈[0,∆n]
∥(S(x)− I)σs∥op∥σs∥Hds

≤4 sup
r∈[0,T ]

∥S(r)∥2opT.

Hence
√
n(2)nt is bounded in L2(Ω). We just proved point (iii).

Now we turn to the L2(Ω)-boundedness of
√
n(3)nt (

√
n(4)nt is analogous). We have

⟨(S(i∆n)−S(∆n(i− 1))) I[0,1], (S(i∆n)−S(∆n(i− 1))) I[0,1]⟩

=

∫
R

(
I[−i∆n,−(i−1)∆n](y)− I[1−i∆n,1−(i−1)∆n](y)

)
×
(
I[−j∆n,−(j−1)∆n](y)− I[1−j∆n,1−(j−1)∆n](y)

)
dy

=δi,j2∆n.

This yields

⟨(S(∆n)− I)Y(i−1)∆n
, (S(∆n)− I)Y(j−1)∆n

⟩

=β(i−1)∆n
β(j−1)∆n

⟨(S(∆ni)−S(∆n(i− 1))) I[0,1], (S(∆nj)−S(∆n(j − 1))) I[0,1]⟩

=δi,jβ
2
(i−1)∆n

2∆n.

Thus,

∥∆− 1

2
n (3)t∥2H

=∆−1
n

n∑
i,j=1

⟨∆̃n
i Y ⊗ (S(∆n)− I)Y(i−1)∆n

, ∆̃n
j Y ⊗ (S(∆n)− I)Y(j−1)∆n

⟩H

=∆−1
n

n∑
i,j=1

⟨∆̃n
i Y, ∆̃

n
j Y ⟩⟨(S(∆n)− I)Y(i−1)∆n

, (S(∆n)− I)Y(j−1)∆n
⟩

=2

n∑
i=1

∥∆̃n
i Y ∥2β2(i−1)∆n

.

This gives, by independence of β(i−1)∆n
and ∆̃n

i Y ,

E
[
∥∆− 1

2
n (3)t∥2H

]
=2∆n

n∑
i=1

(i− 1)

∫ i∆n

(i−1)∆n

E
[
∥σSn

s ∥2LHS(U,H)

]
ds≤ 2 sup

r∈[0,T ]
∥S(r)∥2op.

Hence, the L2(Ω)-boundedness of
√
n(3)nt (and

√
n(4)nt ) follows. It remains to show the

L2(Ω)-boundedness of (5)nt . We find

E
[
∥(5)nt ∥2

]
=E

[
∥∆− 1

2
n

n∑
i=1

[(S(∆n)− I)Y(i−1)]
⊗2∥2

]
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=E

∆−1
n

n∑
i,j=1

⟨S(∆n)− I)Y(i−1),S(∆n)− I)Y(j−1)⟩2


=E

[
∆−1
n

n∑
i=1

2∆2
nβ

4
(i−1)∆n

]
≤6.

This yields the L2(Ω)-boundedness of (5)nt and, thus, we proved (iv).

Now we give the proof of Theorem 3.8.

PROOF OF THEOREM 3.8. Recall that by Theorem B.1(b) and (d) we can assume that
Assumption 8 holds. This yields for the proof of the law of the large numbers that by the
dominated convergence theorem

lim
t→0

E
[∫ T

0
∥t−

1

2 (I −S(t))σs∥2LHS(U,H)
ds

]
= 0,

and for the proof of the central limit theorem

lim
t→0

E
[∫ T

0
∥t−

3

4 (I −S(t))σs∥2LHS(U,H)
ds

]
= 0.

Then observe that we have

RV n
t =

⌊t/∆n⌋∑
i=1

∆n
i Y

⊗2

=

⌊t/∆n⌋∑
i=1

∆̃n
i Y

⊗2 + ∆̃n
i Y ⊗ (S(∆n)− I)Y(i−1)∆n

+ (S(∆n)− I)Y(i−1)∆n
⊗ ∆̃n

i Y + [(S(∆n)− I)Y(i−1)∆n
]⊗2

= (1)t+(2)t + (3)t + (4)t.

We know that the first summand converges in u.c.p. to the integrated volatility
∫ t
0 Σsds. Under

this assumption, we obtain for the second and third summand

1

2
sup
t∈[0,T ]

E [∥(2)t + (3)t∥H]≤
⌊T/∆n⌋∑
i=1

E
[
∥(S(∆n)− I)Y(i−1)∆n

∥∥∆̃n
i Y ∥

]

=

⌊T/∆n⌋∑
i=1

E
[
∥∆̃n

i Y ∥2
] 1

2
⌊T/∆n⌋∑

i=1

E
[
∥(S(∆n)− I)Y(i−1)∆n

∥2
] 1

2

≤ sup
r∈[0,T ]

∥S(r)∥op

⌊T/∆n⌋∑
i=1

∫ i∆n

(i−1)∆n

E
[
∥σs∥2LHS(U,H)

]
ds

 1

2

×

⌊T/∆n⌋∑
i=1

∫ T

0
E
[
∥(S(∆n)− I)σs∥2LHS(U,H)

]
ds

 1

2

= o(1),
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where the last equality is by assumption. Moreover, the last summand fulfills immediately

sup
t∈[0,T ]

(4)t ≤ sup
r∈[0,T ]

∥S(r)∥op

⌊t/∆n⌋∑
i=1

∫ T

0
E
[
∥(S(∆n)− I)σs∥2LHS(U,H)

]
ds= o(1).

This proves the claim for the law of large numbers. The central limit theorem follows by

analogous reasoning, after normalising by ∆
− 1

2
n .

Now we give the proof of Theorem 3.9

PROOF OF THEOREM 3.9. We can argue componentwise, which is why we assume with-
out loss of generality that B = h⊗ g for h, g ∈ FS∗

1/2 for (i) or h, g ∈ FS∗

1/4 for (ii) respectively.
Again, we appeal to the decomposition

⟨RV n
t h, g⟩=

⌊t/∆n⌋∑
i=1

⟨∆n
i Y

⊗2h, g⟩

=

⌊t/∆n⌋∑
i=1

⟨∆̃n
i Y

⊗2h, g⟩+ ⟨∆̃n
i Y ⊗ (S(∆n)− I)Y(i−1)∆n

h, g⟩

+ ⟨(S(∆n)− I)Y(i−1)∆n
⊗ ∆̃n

i Y h, g⟩+ ⟨[(S(∆n)− I)Y(i−1)]
⊗2h, g⟩

= (1)tn+(2)tn + (3)tn + (4)tn.

The first summand converges to
∫ T
0 ⟨Σsh, g⟩ds, and after normalisation with ∆

1

2
n it is asymp-

totically centred normal with variance ⟨Γth⊗ g,h⊗ g⟩. Therefore, it is for the law of large
numbers enough to show(

(2)tn + (3)tn + (4)tn
) u.c.p.−→ 0 as n→∞.

and for the central limit theorem to show

∆
− 1

2
n

(
(2)tn + (3)tn + (4)tn

) u.c.p.−→ 0 as n→∞.

For the third (and analogously for the second) summand we have

|(3)tn|=

∣∣∣∣∣∣
⌊t/∆n⌋∑
i=1

⟨(S(∆n)− I)Y(i−1)∆n
⊗ ∆̃n

i Y h, g⟩

∣∣∣∣∣∣
≤

⌊t/∆n⌋∑
i=1

⟨(S(∆n)− I)Y(i−1)∆n
, h⟩2

 1

2
⌊t/∆n⌋∑

i=1

⟨∆̃n
i Y, g⟩2

 1

2

=

⌊t/∆n⌋∑
i=1

⟨(S(∆n)− I)Y(i−1)∆n
, h⟩2

 1

2
⌊t/∆n⌋∑

i=1

⟨∆̃n
i Y

⊗2g, g⟩

 1

2

,

and the second factor converges to an asymptotically normal law. For the fourth summand
we have

|(4)tn|=

∣∣∣∣∣∣
⌊t/∆n⌋∑
i=1

⟨(S(∆n)− I)Y ⊗2
(i−1)h, g⟩

∣∣∣∣∣∣
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≤

⌊t/∆n⌋∑
i=1

⟨(S(∆n)− I)Y(i−1), h⟩2
 1

2
⌊t/∆n⌋∑

i=1

⟨(S(∆n)− I)Y(i−1), g⟩2
 1

2

,

and, thus, for the law of large numbers it is enough to show for all h ∈ FS∗
1

2

,

(81)
⌊t/∆n⌋∑
i=1

⟨(S(∆n)− I)Y(i−1), h⟩2
u.c.p.−→ 0, as n→∞

and for the central limit theorem for all h ∈ FS∗
3

4

,

(82) ∆
− 1

2
n

⌊t/∆n⌋∑
i=1

⟨(S(∆n)− I)Y(i−1), h⟩2
u.c.p.−→ 0, as n→∞.

Due to Theorem B.1(b) (respectively (a) for the central limit theorem) we can suppose that
Assumption 8 (or Assumption 7 for the central limit theorem) is valid. In that case, we have
for the proof of the law of the large numbers by the dominated convergence theorem

lim
t→0

E
[∫ T

0
∥t−

1

2 (I −S(t))∥2Hds
]
= 0

and for the proof of the central limit theorem

lim
t→0

E
[∫ T

0
∥t−

3

4 (I −S(t))σs∥2Hds
]
= 0.

Moreover, we have
⌊T/∆n⌋∑
i=1

E
[
⟨(S(∆n)− I)Y(i−1), h⟩2

]

=

⌊T/∆n⌋∑
i=1

∫ (i−1)∆n

0
E
[
⟨(S(i∆n)−S((i− 1)∆n))Σ

Sn
s (S(i∆n)−S((i− 1)∆n))

∗h,h⟩
]
ds

≤T
∫ T

0
sup
t∈[0,T ]

E
[
∆−1
n ⟨(S(t+∆n)−S(t))ΣSn

s (S(t+∆n)−S(t))∆n))
∗h,h⟩

]
ds.

Henceforth, in order to show (81) and (82) it is enough to show that, for all γ ∈ (0,1) and
h ∈ FS∗

γ , we have, as n→∞,∫ T

0
sup
t∈[0,T ]

E
[
∆−2γ⟨(S(t+∆)−S(t))Σs(S(t+∆)−S(t))∗h,h⟩

]
ds

u.c.p.−→ 0.

We note that∫ T

0
sup
t∈[0,T ]

E
[
∆−2γ⟨(S(t+∆)−S(t))Σs(S(t+∆)−S(t))∗h,h⟩

]
ds

≤
∫ T

0
sup
t∈[0,T ]

E
[
∆−2γ⟨(I − pN )Σs(S(t+∆)−S(t))∗h, (S(t+∆)−S(t))∗h⟩

]
ds

+

∫ T

0
sup
t∈[0,T ]

E
[
∆−2γ⟨pNΣs(S(t+∆n)−S(t))∗h,∆−γ

n (S(t+∆)−S(t))∗h⟩2
]
ds

=(1)n,N + (2)n,N ,
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where again we denoted by pN the projection onto vN := {ej : j ≥N} for an orthonormal
basis (ej)j∈N of H that is contained in D(A). We have

S(t+∆n)ei −S(t)ei =
∫ t+∆n

t
S(u)Aeidu

and therefore we find for the first summand that

(1)n,N

≤
N−1∑
j=1

∣∣∣∣∣
∫ T

0
sup
t∈[0,T ]

E
[
∆−2γ⟨Σs(S(t+∆n)−S(t))∗h, ej⟩

×⟨ej ,∆−γ
n (S(t+∆n)−S(t))∗h⟩

]
ds
∣∣

=

N−1∑
j=1

∆−2γ

∣∣∣∣∣
∫ T

0
sup
t∈[0,T ]

E
[
⟨Σs(S(t+∆n)−S(t))∗h, ej⟩⟨

∫ t+∆n

t
S(u)Aejds,h⟩

]
ds

∣∣∣∣∣
≤
N−1∑
j=1

∆1−γ
n

(∫ T

0
∥σs∥2opds

) 1

2

∥h∥2∥Aej∥ sup
t∈[0,T ]

∥S(t)∥op

× sup
t∈[0,T ]

∥∆−γ
n (S(t+∆n)−S(t))∗h∥,

which converges to 0 as n→∞. Moreover, it follows that for the second summand we have

(2)n,N ≤∆−2γ
n ∥(S(∆)− I)∗h∥2

(∫ T

0
sup
t∈[0,T ]

E
[
∥pNS(t)σs∥2op

]
ds

) 1

2

,

where the first factor is bounded by Assumption on h and
∫ T
0 E

[
∥pNS(t)σs∥2op

]
ds converges

to 0 as N →∞, as it can be shown analogously to the proof of Lemma B.4. We obtain that
E[supn∈N |(1.2)n,N |] converges to 0 as N →∞. Therefore, we can find for each δ > 0 an
N ∈N, such that by Markov’s inequality

lim
n→∞

P

[∫ T

0
sup
t∈[0,T ]

E
[
∆−2γ⟨(S(t+∆)−S(t))Σs(S(t+∆)−S(t))∗h,h⟩

]
ds > ϵ

]
≤ lim
n→∞

P [|(1)n,N |> ϵ] + sup
n∈N

P [|(2)n,N |> ϵ]

=0 +
1

ϵ
sup
n∈N

E [|(2)n,N |]≤ δ.

As this holds for all δ > 0, we obtain the assertion.

Next, we give the proof of Lemma 3.13.

PROOF OF LEMMA 3.13. We recall that δx(·) = 1 +min(x, ·). By the mean value theo-
rem it holds for x ∈ (0,1) and t > 0 small enough, such that t < x < 1− t

∥S(t)δx − δx∥2 =
∫ 1

0

(
I[0,x] ((y+ t)∧ 1)− I[0,x](y)

)2
dy
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=

∫ 1−t

0
I[x−t,x](y)dy+

∫ 1

1−t
I[0,x](y)dy

=(x∧ (1− t))− (x− t) + x− (1− t)

=x+ 2t− 1

∈(t,2t).
If x= 1 and t small enough such that t≤ x, it is

∥S(t)δx − δx∥2 =
∫ 1

0

(
I[0,1] ((y+ t)∧ 1)− I[0,1](y)

)2
dy

=

∫ 1−t

0
I[x−t,x](y)dy+ t

=2t.

This shows that x ∈ (0,1] δx ∈ FS
1

2

but δx /∈∈ FS
γ for any γ > 1

2 . Moreover, δ0 ∈ FS
γ for all

γ ∈ [0,1] holds as well.
We show that this holds for the adjoint semigroup (S(t))t≥0 as well: For this purpose, we

first derive an explicit representation of the adjoint operator S(t)∗. Let g ∈H be arbitrary.
Then for x < 1, we have, as δ′x(1) = 0,

S∗(t)g(x) =⟨S(t)δx, g⟩

=δx(t)g(0) +

∫ 1

0
δ′x ((y+ t)∧ 1)g′(y)dy

=δx(t)g(0) +

∫ 1−t

0
δ′x (y+ t)g′(y)dx+

∫ 1

1−t
δ′x (1)g

′(y)dy

=

(∫ t

0
δ′x(y)dy+ δx(0)

)
g(0) +

∫ 1

t
δ′x (y)g

′(y− t)dx

=

(∫ t

0
I[0,x](y)dx+ 1

)
g(0) +

∫ 1

t
I[0,x] (y)g′(y− t)dx

=g(0) +

∫ 1

0
I[0,x](y)

(
I[0,t](y)g(0) + I[t,1](y)g′(y− t)

)
dy.

This yields (S(t)∗g)(0) = g(0) and, for all 0< t < 1 and x ∈ [0,1),

(S(t)∗g)′(x) =
(
I[0,t](x)g(0) + I[t,1](x)g′(x− t)

)
.

In particular, S(t)∗δx(0) = 1 and, for all 0< t < 1 and y ∈ [0,1),

(S(t)∗δx)′(y) =
(
I[0,t](y) + I[t,1](y)I[0,x](y− t)

)
=
(
I[0,t](y) + I[t,(x+t)∧1](y)

)
.

Therefore, for t small enough such that 0≤ x < 1− t

∥S(t)∗δx − δx∥2 =
∫ 1

0

(
I[0,t](y) + I[t,x+t](y)− I[0,x](y)

)2
dy =

∫ 1

0
I[x,x+t](y)dy = t.

This shows that all δx with 0≤ x < 1 are contained in the Favard space FS∗
1

2

, but not in FS∗

γ

for γ > 1
2 . Moreover, δ1 ∈ FS∗

γ for all γ ∈ [0,1] holds as well.
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