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A PDE-DDE MODEL FOR CELL POLARIZATION
IN FISSION YEAST∗

BIN XU† AND PAUL C. BRESSLOFF†

Abstract. We consider a one-dimensional model of cell polarization in fission yeast consisting
of a hybrid partial differential equation–delay differential equation system. The model describes bulk
diffusion of the signaling molecule Rho GTPase Cdc42 in the cytoplasm, which is coupled to a pair
of delay differential equations at the ends of the cell via boundary conditions. The latter represent
the binding of Cdc42 to the cell membrane and rerelease into the cytoplasm via unbinding. The
nontrivial nature of the dynamics arises from the fact that both the binding and unbinding rates
at each end are taken to depend on the local membrane concentration of Cdc42. In particular, the
association rate is regulated by positive feedback and the dissociation rate is regulated by delayed
negative feedback. We use linear stability analysis and numerical simulations to investigate the onset
of limit cycle oscillations at the end compartments for a cell of fixed length, distinguishing between
symmetric solutions in which the mean concentration is identical at both ends and asymmetric
solutions where the mean concentration at one end dominates. We find that the critical time delay
for the onset of oscillations via a Hopf bifurcation increases as the diffusion coefficient D decreases.
We then solve the diffusion equation on a growing domain under the additional assumption that the
total amount Ctot of the signaling molecule increases as the cell length increases. We show that the
system undergoes a transition from asymmetric to symmetric oscillations as the cell grows, consistent
with experimental findings of “new-end-take-off” in fission yeast. (The latter refers to the switch
from monopolar to bipolar growth as the cell grows.) The critical length where the switch occurs
depends on D and the growth rate.
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tion
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1. Introduction. In this paper, we analyze a novel diffusion type problem with
active boundary compartments relevant to the triggering or nucleation of actin during
cell polarization of fission yeast Schizosaccharomyces pombe. Fission yeast is a rod-
shaped cell consisting of two hemispheres of constant radius that cap a cylinder of
increasing length. Thus growth is effectively one-dimensional (1D) (axial). There are
distinct stages of cell growth that are regulated by the cell cycle, as illustrated in
Figure 1. Immediately following cell division, the cell initially grows at one end only,
namely, the “old end” of the previous cell cycle (monopolar growth). However, during
the G2 phase of the cell cycle, the cell also starts growing from the new end (bipolar
growth), in a process known as “new-end-take-off” (NETO) [13, 6, 9]. Cell growth
then ceases during mitosis, after which the cytoskeletal growth machinery is directed
toward the division site for cell separation.

Recent experimental evidence suggests that the signaling molecule Rho GTPase
Cdc42 plays an important role in regulating polarized growth in fission yeast [8].
Labeling active Cdc42 within fission yeast cells using a fluorescent marker, Das et al.
[8] observed Cdc42 oscillations with an average period of 5 min. The oscillations
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Fig. 1. Cytoskeleton organization of fission yeast during the cell cycle. Sites of active growth
are labeled by the red lines and arrows. The microtubules (green), actin cytoskeleton (dark red),
and protein-rich membrane domains (light blue) are depicted at representative cell cycle stages. The
microtubules form cytoskeletal tracks for molecular motors to transport landmark proteins to the
cell tips, which then regulate cell growth via the nucleation and polymerization of actin. There are
two main types of actin structure involved in the polarized growth of yeast cells: cables and patches.
Actin patches consist of networks of branched actin filaments nucleated at the plasma membrane,
whereas actin cables consist of long, unbranched bundles of actin filaments. Myosin motors travel
along the cables unidirectionally toward the actin barbed ends at the plasma membrane, transporting
intracellular cargo such as vesicles, mRNA, and organelles necessary for growth. The actin patches
act to recycle membrane bound structures to the cytoplasm via endocytosis.

occurred at both tips and were out-of-phase (anticorrelated). In the case of longer
cells exhibiting bipolar growth, the mean amplitude of the oscillations were the same
at both ends (symmetric, anticorrelated oscillations). On the other hand, for shorter,
less mature cells exhibiting monopolar growth, the amplitude was significantly larger
at the growing end (asymmetric, anticorrelated oscillations). The observed dynamics
suggests that there is competition for active Cdc42 (or associated regulators) at the
two ends and indicates the presence of some form of delayed feedback. This motivated
Das et al. [8] to model Cdc42 oscillations in terms of a system of delayed differential
equations (DDEs) with positive feedback and delayed negative feedback. The DDE
model was able to account for the transition from oscillating monopolar (asymmetric)
to oscillating bipolar (symmetric) states during cell elongation. However, one of the
potential limitations of the Das et al. model is that the effects of cytosolic diffusion
were ignored. That is, the concentration of Cdc42 in the bulk of the cell was assumed
to be spatially uniform and could thus be determined by imposing conservation of
total Cdc42 within the cell at a given length.

We extend the Das et al. model in order to investigate the effects of cytosolic
bulk diffusion and cell length on Cdc42 oscillations. Exploiting the rod-like geometry
of fission yeast, we treat the cell as a finite 1D domain of length L. Cdc42 diffuses
within the interior of the domain, x ∈ (0, L), and can bind to the cell membrane at
the ends x = 0, L. Moreover, membrane-bound Cdc42 can unbind and reenter the
cytosol. The nontrivial nature of the dynamics arises from the fact that both the
binding and unbinding rates at each end are taken to depend nonlinearly on the local
membrane concentration. In particular, the association rate is regulated by positive
feedback and the dissociation rate is regulated by delayed negative feedback along
lines identical to the model of Das et al. [8]. The resulting dynamical system takes
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1846 BIN XU AND PAUL C. BRESSLOFF

the form of a coupled PDE-DDE, where the bulk dynamics is described by a simple
diffusion PDE, and the exchange of Cdc42 between the cytolsol and the end membrane
compartments is modeled in terms of flux boundary conditions that involve both the
positive and delayed negative feedback (DDE).

From a mathematical perspective, our model is a new example of a class of models
recently formulated and studied by Gou, Ward, and collaborators [10, 11]. These
consist of spatially segregated dynamically active units, such as cells or localized
signaling compartments, that are coupled with each other via a signaling molecule that
diffuses in the bulk domain between the active units. Gou et al. [10, 11] considered the
particular case in which each isolated compartment is a conditional oscillator. That
is, in isolation a compartment’s dynamics is at a stable fixed point but can exhibit
sustained oscillations in a different parameter regime. For the sake of illustration, each
isolated compartment was modeled in terms of a planar dynamical system (without
delays). Using linear stability analysis, the authors showed that diffusive coupling can
induce in-phase or antiphase oscillations for a pair of active compartments. There are,
however, a number of differences between our model and those studied by Gou et al.
[10, 11]. First, our membrane compartments are not conditional oscillators, that is,
the existence of oscillations depends crucially on the delayed coupling between the
compartments and the bulk diffusion. Second, there is only one chemical species in
our model, that is, the signaling molecule is the same molecule as in each active
compartment. Third, the size of the domain changes during cell elongation.

The structure of the paper is as follows. In section 2, we introduce our PDE-
DDE model for Cdc42 oscillations in fission yeast. In section 3, we show that our
model reduces to the DDE model of Das et al. [8] in the fast diffusion limit. In order
to provide a baseline for comparisons with the full model, we investigate conditions
for a Hopf bifurcation using a mixture of numerical simulations and linear stability
analysis. (Note that this was not carried out by Das et al.) We then turn to the
analysis of the full PDE-DDE model in section 4. One major result of our work
is to demonstrate that for biophysical values of diffusivity, bulk diffusion can have a
significant effect on the critical time delay and amplitude of Cdc42 oscillations for a cell
of fixed length. We then solve the diffusion equation on a growing domain under the
additional assumption that the total amount Ctot of the signaling molecule increases
as the cell length increases. We show that the system undergoes a transition from
asymmetric to symmetric oscillations as the cell grows, consistent with experimental
findings of “new-end-take-off” in fission yeast. We also show that the critical length
where the switch occurs depends on both D and the growth rate.

2. The PDE-DDE model. Consider a 1D compartmental model consisting of a
PDE for the substrate concentration in the cytosol and a DDE for the concentration
at each end compartment; see Figure 2. The length of the domain is taken to be
L. Let C(x, t) be the cytosolic concentration of Cdc42 at x and Xi(t), i = 1, 2,
the concentration of Cdc42 at the ith compartment, where t, t > 0, denotes time.
(Concentrations are defined as the number of molecules per unit cross section of the
cell, which is assumed to be fixed.) The PDE-DDE model is taken to be

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
, 0 < x < L, t > 0,(2.1a)
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Cytoplasmic CX1 X2

L

autocatalysis

di!usive "ux

Fig. 2. Compartmental model of NETO based on Cdc42 oscillations.

with flux boundary conditions

−D∂xC(0, t) = −k+(X1(t))C(0, t) + k−(X1(t), X1(t− τ))X1(t),(2.1b)

−D∂xC(L, t) = k+(X2(t))C(L, t)− k−(X2(t), X2(t− τ))X2(t),(2.1c)

and

dX1

dt
= k+(X1(t))C(0, t)− k−(X1(t), X1(t− τ))X1(t),(2.1d)

dX2

dt
= k+(X2(t))C(L, t)− k−(X2(t), X2(t− τ))X2(t).(2.1e)

Following Das et al. [8], the association rate k+ is regulated by positive feedback with
saturation in the form of an exponential:

k+(X) = (k+
0 + k+

n (X/Csat)
n) exp(−X/Csat), n ≥ 2.(2.2)

Similarly, the dissociation rate k− is controlled by negative delayed feedback according
to

k−(X(t), X(t− τ)) = k−0

[
1− ε

2
+ ε

X(t− τ)h

X(t)h +X(t− τ)h

]
,(2.3)

where τ is the time delay, k−0 is the baseline dissociation rate in the absence of the
delayed negative feedback, ε represents the strength of the delayed negative feedback,
and h is the Hill coefficient. (For a detailed justification of delayed negative feedback
as a mechanism for biochemical oscillations, see [14].) Equations (2.1a)–(2.1e) are
supplemented by the conservation equation∫ L

0

C(x, t)dx+X1(t) +X2(t) = Ctot,(2.4)

where Ctot is the total number of Cdc42 molecules per unit area.
In the above formulation of the model, we have assumed that L and Ctot are

fixed. This simplification is based on the observation that cell elongation is much
slower than any of the processes associated with the Cdc42 dynamics. In section 4.3,
we will explicitly incorporate elongation of the cell by taking L and Ctot to grow
linearly in time along the lines of Das et al. [8]. In particular, we will determine how
diffusion affects the transition from oscillating monopolar (asymmetric) to oscillating
bipolar (symmetric) states during cell elongation. We fix the units of concentration
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1848 BIN XU AND PAUL C. BRESSLOFF

by setting Csat = 1. The unit of time is taken to be minutes (the typical time-scale
of binding/unbinding and the delay τ) and the unit of length is taken to be 5µm
(comparable to the initial length of a fission yeast cell immediately following cell
division). It follows that after nondimensionalization a diffusion coefficient of D = 1
corresponds to D ≈ 0.5µm2/s in physical units. The other parameters of the model
are taken to be similar to those of Das et al. [8]. Finally, note that in contrast to
the PDE-ODE models of Gou et al., we neglect any degradation of Cdc42; this is
reasonable over the time-scales of NETO [10, 11]. Moreover, our main interest is
how diffusion affects Cdc42 oscillations that exist in the absence of diffusion, rather
than exploring diffusion-induced oscillations; the latter appear to require nonzero
degradation rates [10, 11].

3. Analysis of the model in the fast diffusion limit. In this section, we
show how to recover the DDE model of Das et al. [8] from our PDE-DDE model by
taking the diffusion coefficientD →∞, and then we carry out a detailed analysis of the
resulting DDE. This provides the baseline behavior which will be compared with the
behavior of the full model for finite D in section 4. If we introduce the small parameter
ε = L2k−0 /D for large D, then the leading order terms of the diffusion equation (2.1a)
and the boundary conditions give C(x, t) = C0(t). Using the conservation equation
(2.4), we can rewrite C0(t) as

C0(t) =
Ctot −X1(t)−X2(t)

L
.(3.1)

The DDE model by Das et al. can then be recovered by substituting (3.1) into the
DDE of Xi(t). That is,

dX1

dt
=
k+(X1)

L
(Ctot −X1(t)−X2(t))− k−(X1(t), X1(t− τ))X1(t),(3.2a)

dX2

dt
=
k+(X2)

L
(Ctot −X1(t)−X2(t))− k−(X2(t), X2(t− τ))X2(t),(3.2b)

For simplicity, we take k−0 = 1 and Csat = 1 in (2.2) and (2.3).
In the absence of a time delay, τ = 0, we numerically determine the steady state

solution of the DDE (3.2) as a function of the total Cdc42 concentration Ctot; see
Figure 3. For small values of Ctot, there exists only a stable symmetric steady state.
At Ctot ≈ 1.8, the symmetric steady state solution loses its stability via a supercritical
pitchfork bifurcation, resulting in the formation of a pair of stable asymmetric steady
states. However, for Ctot ≈ 6.1 the symmetric state regains stability due to a subcrit-
ical pitchfork bifurcation. This leads to a range of values of Ctot over which a pair
of stable asymmetric steady states coexists with a stable symmetric steady state. As
Ctot is further increased, the asymmetric steady states disappear via saddle node bi-
furcations so that one returns to a single stable symmetric state. Following Das et al.
[8], suppose that we vary the cell length L and take the total substrate concentration
Ctot to be a linearly increasing function of cell length L. (The only explicit depen-
dence of cell length in the DDE model (3.2) is that it scales the rates k+

0 and k+
n .) In

Figure 4(a) we plot the resulting bifurcation diagram in the (X1, L)-plane. Without
time delay, the asymmetric steady state is linearly stable for L ∈ (0.25, 1.285), while
the symmetric steady state is linearly stable for L > 1.014. Moreover, at Lsd ≈ 1.285,
the asymmetric steady state vanishes through a saddle node bifurcation. Only the
symmetric steady state exists and it is linearly stable for L > Lsd. This suggests that
the cell can undergo a transition from monopolar (asymmetric) growth to bipolar
(symmetric) growth as the cell length increases (see section 3.2). The critical value of
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Fig. 3. Steady state solution of X1 versus the parameter Ctot (in units of Csat) for unit
cell length and zero time delay (τ = 0). The bifurcation diagram suggests that there is always a
symmetric steady state solution and a pair of asymmetric steady state solutions for the parameter
Ctot in a certain range. As Ctot increases, the symmetric steady state solution loses its stability
and the asymmetric steady state solution becomes stable. For large value of Ctot, the asymmetric
steady state does not exist and the symmetric steady sate is stable. There is also a parameter
regime for which stable symmetric and asymmetric steady states coexist. Parameters: L = 1,
k+0 = 2.25, k+n = 6.467, n = 4, k−0 = 1, ε = 0.5375, h = 40.
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b

Fig. 4. Bifurcation diagrams in the (L,X1) plane for the DDE model (3.2) with Ctot/L = 6
and zero delays. (a) Full model. The stable symmetric and asymmetric steady states coexist for a
small range of L ∈ [1.014, 1.285]. For L > 1.285, the asymmetric steady state vanishes through a
saddle-node bifurcation. (b) Nonsaturating positive feedback k+(x) = k+0 + k+n x

n. The saddle node
point where the stable asymmetric state vanishes is no longer observed. Other parameters are the
same as Figure 3.

L at the saddle node point is dependent on Ctot = C0 at L = L0 = 1 and the strength
of the positive feedback k+(x). If we assume there is no saturation in the positive
feedback by dropping the exponential term in (2.2), that is,

k+(X) = (k+
0 + k+

n (X/Csat)
n), n ≥ 2,

then the saddle node point is not observed and the symmetric steady state cannot be
stabilized as L increases; see Figure 4(b).
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Fig. 5. Numerical solutions of the DDE model for different time delays and initial conditions.
(a)–(c) Initial condition X1(t) = 1.1, X2(t) = 1, −τ ≤ t ≤ 0. (d)–(e) Initial condition X1(t) =
5, X2(t) = 1.1, −τ ≤ t ≤ 0. Here Ctot = 6.5, L = 1, and other parameters are the same as Figure
3.

3.1. Delay-induced oscillations (fixed length). Next, we explore the effects
of a nonzero time delay for a fixed value of Ctot. As expected, we find that delayed
negative feedback can give rise to oscillations. In Figure 5, we plot the numerical
solution of the DDE (3.2) for different choices of the time delay τ . For the sake of
illustration, we choose Ctot = 6.5 so that the symmetric and asymmetric states coexist
when τ = 0; see Figure 3. In Figures 5(a)–(c) the initial condition is taken to be close
to the symmetric steady state solution with X1(t) = 1, X2(t) = 1 for all −τ ≤ t ≤ 0.
For small time delays, the symmetric steady state solution remains stable. However,
as τ is increased the steady state destabilizes, and a periodic, symmetric antiphase
solution emerges. When the delay is further increased, the system switches to an
asymmetric antiphase solution. One possible reason is that the basin of the attraction
of the symmetric steady state is small for small τ . In Figures 5(d), (e), we plot the
corresponding numerical solution when the initial condition is taken to be near the
asymmetric steady state solution. For a range of values Ctot, the stable asymmetric
branch can also go unstable to oscillations if the delay τ crosses a threshold from
below; see; Figure 6(a).

In order to determine the critical time delay at a Hopf bifurcation point, we
perform a linear stability analysis of the DDE model for a fixed length L = L0:
Setting

F (X1, X2) =
1

L0
k+(X1)(Ctot −X1(t)−X2(t))− k−(X1(t), X1(t− τ))X1(t),

with L0 = 1, the linearized system near the steady state (X1, X2) is

d

dt

(
y1(t)
y2(t)

)
=

(
F11 F12

F21 F22

)(
y1(t)
y2(t)

)
− εh

4

(
y1(t− τ)
y2(t− τ)

)
,(3.3)
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Fig. 6. (a) Hopf bifurcation curves for the symmetric steady state (green) and the asymmetric
steady state (blue) as a function of Ctot for fixed cell length L0 = 1. The dashed line indicates the
value of Ctot used in Figure 4 and the critical delay τc for oscillations is shown. Other parameters
are the same as Figure 3. (b) Numerical check that 4(F11 + F12)/hε < −1 for the given choice of
parameters. Hence, the necessary condition (3.5) for the existence of an in-phase solution cannot
hold.

where

F11 =
∂F

∂X1
(X1, X2) =

nk+
nX

n−1

1

L0
(Ctot −X1 −X2)e−X1

− k+
0 + k+

nX
n

1

L0
(Ctot −X1 −X2 + 1)e−X1 −

(
1− εh

4

)
,

F12 =
∂F

∂X2
(X1, X2) = −k

+
0 + k+

nX
n

1

L0
e−X1 ,

and

F21 =
∂F

∂X1
(X2, X1), F22 =

∂F

∂X2
(X2, X1).

Consider the perturbation

X1 = X1 + σ1eλt, X2 = X2 + σ2eλt.

Substituting it into the linearized DDE gives

λ

(
σ1

σ2

)
=

(
F11 − hεe−λτ/4 F12

F21 F22 − hεe−λτ/4

)(
σ1

σ2

)
.

For a symmetric steady state we have F11 = F22 and F12 = F21, so that the matrix
is cyclic and symmetric with the eigenvectors σ1 = −σ2 (antiphase) and σ1 = σ2

(in-phase). The corresponding eigenvalue equations are(
λ− F11 +

εh

4
e−λτ

)
+ F12 = 0,

(
λ− F11 +

εh

4
e−λτ

)
− F12 = 0.(3.4)

In order to identify a Hopf bifurcation point, we set λ = iω in (3.4) and equate real
and imaginary parts. This yields the pair of equations

(3.5) ω − εh

4
sin(ωτ) = 0, cos(ωτ) =

4

εh
(F11 ± F12),
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corresponding to the eigenvectors σ1 = ±σ2. The existence of the solution (ω, τ)
requires that

(3.6)

∣∣∣∣ 4

εh
(F11 ± F12)

∣∣∣∣ ≤ 1.

In the asymmetric case we have the characteristic equation(
λ− F11 +

εh

4
e−λτ

)(
λ− F22 +

εh

4
e−λτ

)
− F12F21 = 0.(3.7)

Again we set λ = iω in (3.7) and equate real and imaginary parts:[
εh

4
cos(ωτ)− F11

] [
εh

4
cos(ωτ)− F22

]
−
(
ω − εh

4
sin(ωτ)

)2

− F12F21 = 0,(3.8a) [
ω − εh

4
sin(ωτ)

] [
εh

2
cos(ωτ)− F11 − F22

]
= 0.(3.8b)

Noting that F12 < 0 and F21 < 0, we have[
εh

4
cos(ωτ)− F11

] [
εh

4
cos(ωτ)− F22

]
=

(
ω − εh

4
sin(ωτ)

)2

+ F12F21 > 0.

It follows that
εh

2
cos(ωτ)− F11 − F22 6= 0,

and (3.8) can be simplified as

ω − εh

4
sin(ωτ) = 0,(3.9a) [

εh

4
cos(ωτ)− F11

] [
εh

4
cos(ωτ)− F22

]
= F12F21.(3.9b)

We now solve the two different systems (3.5) and (3.9) numerically. In Figure 6,
we plot the Hopf bifurcation curves in the (Ctot, τ)-plane for the stable symmetric and
asymmetric steady states. Note that for the parameter set chosen in Figure 3, there is
no solution (ω, τ) of (3.9) such that the eigenvector σ1 = σ2. In Figure 6(b), we check
the necessary condition (3.6) for the existence of in-phase solution for the symmetric
steady state. The result shows that 4(F11 + F12)/hε < −1 and hence the condition
(3.6) for the existence of in-phase solution is not satisfied. It follows that oscillations
bifurcating from the symmetric and asymmetric steady states are antiphase. (We find,
however, that in-phase oscillations can exist if the strength of the negative feedback
ε is sufficiently strong or the nonlinearity h is sufficiently high.) In Figure 7, we take
Ctot = 6.5 and plot the amplitude and period of the periodic solutions branching
from the symmetric and asymmetric steady states as a function of time delay. For
the periodic solution branching from the symmetric steady state, the period increases
dramatically at τ ≈ 0.26. This suggests that there is a homoclinic orbit resulting
from the collision of the symmetric limit cycle with the unstable asymmetric fixed
point; see Figure 3. In Figure 8, we plot the numerical solution as a function of time
with time delay τ = 0.263 and τ = 0.2632. We find that as the time delay crosses
τ = 0.263, the numerical solution evolves to the periodic solution branching from the
asymmetric steady state; see Figure 8(b).
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Fig. 7. Amplitude and period of the periodic solution as a function of the time delay with
Ctot = 6.5 and L0 = 1. Blue: result of the periodic solution branching from the symmetric steady
state. Green: result of the periodic solution branching from the asymmetric steady state. At time
delay τ ≈ 0.263, the period of the periodic solution branching from the symmetric steady state
increases dramatically. It suggests that there is possibly a homoclinic or heteroclinic bifurcation.
Other parameters are the same as in Figure 3.
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Fig. 8. Switch from a periodic solution branching from the symmetric steady state to a periodic
solution near the asymmetric steady state at time delay τ ≈ 0.263. (a), (b) X1,2 vs t. (c), (d)
periodic solution in (X1, X2) plane. Other parameters are the same as in Figure 3.

3.2. Delay-induced oscillations (varying length). It is straightforward to
use the simplified DDE model of Das et al. [8] to investigate the effects of cell elonga-
tion. For the sake of illustration, suppose that both L and Ctot increase linearly with
time at a rate γ. That is, we modify (3.2) by taking

(3.10) L(t) = L0[1 + γt], Ctot(t) = C0[1 + γt],
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Fig. 9. Numerical solutions of the DDE model with Ctot(t) = 6(1 + γt) and L(t) = 1 + γt.
(a) Ctot versus time t for γ = 0.005. (b), (c) Numerical solutions of X1,2(t) for γ = 0.005 and
τ = 0.5, 3, respectively. (d)–(f) Corresponding figures for γ = 0.01.

where L0, C0 are the initial length and total Cdc42 concentration, respectively. It is
important to emphasize, however, that in the case of growing cells one can no longer
treat the DDE model as the fast diffusion limit of the full PDE-DDE model (2.1a).
Indeed, integrating the diffusion equation (2.1a) over the growing interval [0, L(t)] and
imposing the boundary conditions gives∫ L(t)

0

∂tC(x, t)dx = −dX1

dt
− dX2

dt
.

Differentiating the conservation condition

Ctot(t) =

∫ L(t)

0

C(x, t)dx+X1(t) +X2(t)

then implies that
dCtot(t)

dt
= C(L(t), t)

dL

dt
.

This last equation holds in the large D limit for which C(L(t), t)→ C0(t). However,
it is not satisfied by the growth law of (3.10) for which C0(t)/L(t) = C0/L0. Such a
law is consistent if one takes proper account of diffusion in a linearly growing domain,
which involves adding a convection term to the diffusion model (see section 4.3).

Consistent with the numerical results of Das et al. [8], we find that for moderate
delays (e.g., τ = 0.5) the numerical solution changes from an asymmetric to a sym-
metric oscillation; see Figure 9. Moreover, the switch to the symmetric state occurs at
a smaller value of L and Ctot (smaller times t) for larger τ . Moreover, for larger delays
the oscillations become less sinusoidal, the frequency of oscillations decreases, and we
observe an additional transition from large amplitude to low amplitude symmetric
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Fig. 10. Effect of the growth rate on the timing of the switch from asymmetric to symmet-
ric oscillations for the DDE model. As γ is increased, the switch from asymmetric to symmetric
oscillation occurs at longer cell lengths. Here τ = 0.5 and other parameters are the same as in
Figure 3.

oscillations; see Figure 9(c), (f). Finally, as shown in Figure 10, the transition be-
tween asymmetric and symmetric oscillations occurs at larger cell lengths when the
growth rate γ is increased. In conclusion, as previously shown by Das et al. [8], the
DDE model reproduces the switch from asymmetric to symmetric Cdc42 oscillations
observed experimentally during NETO.

In Figure 11, we plot the Hopf bifurcation curves in the (L, τ)-plane for the stable
symmetric and asymmetric steady states. The corresponding Hopf frequency of the
Hopf curve branching from the asymmetric fixed point is plotted as a function of the
cell length L, or equivalently the critical time delay τc in Figure 12. It can be seen that
the frequency vanishes at the Hopf bifurcation point, indicative of a Bogdanov–Takens
bifurcation. The termination of the asymmetric Hopf branch at a critical cell length
Lc is the basic mechanism underlying the switch from an asymmetric oscillation to
a symmetric oscillation. It is also consistent with the vanishing of the asymmetric
steady states via a saddle node bifurcation when τ = 0; see Figure 4(a). The same
basic mechanism holds when bulk diffusion is included using the full PDE-DDE model
(2.1a). However, as we will show in section 4, the critical length where the switch
occurs is sensitive to the value of the diffusion coefficient.

4. Analysis of the full model. Let us now return to the full PDE-DDE model
given by (2.1a)–(2.3), in order to investigate how the switch from asymmetric to
symmetric oscillations depends on bulk diffusion. For the moment we take L and
Ctot to be fixed with Ctot treated as a bifurcation parameter. We also perform the
rescalings x → x̃ = x/L, C → C̃ = CL, and D → D̃ ≡ D/L2. The only dependence
on L then appears through the association rate k+, as in the pure DDE model. The
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Fig. 11. Hopf bifurcation curves for the symmetric steady state (green) and the asymmetric
steady state (blue) in the (L, τ) plane with Ctot = 6L. The Hopf curve for the asymmetric steady
state iexists for L ∈ (0.25, 1.28), while the Hopf curve for the symmetric steady state is plotted for
L > 1.014. Other parameters are the same as in Figure 3.
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Fig. 12. Plot of frequency along the Hopf curve branching from the asymmetric steady state as
a function of (a) cell length L and (b) critical delay τ . Near (τ, L) ≈ (0.18, 1.285), the frequency is
zero indicative of a Bogdanov–Takens bifurcation. Other parameters are the same as in Figure 3.

steady state solution for the bulk concentration C satisfies (after dropping the tilde)

C ′′(x) = 0, C ′(0) = C ′(1) = 0.

Hence C(x) is homogeneous, i.e., C(x) = C. The conservation equation of the total
amount of substrate requires that∫ 1

0

Cdx+X1 +X2 = Ctot.
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It follows that C = Ctot −X1 −X2. The steady state solution (X1, X2) satisfies

0 =
k+(X1)

L
(Ctot −X1 −X2)− k−(X1, X1)X1,

0 =
k+(X2)

L
(Ctot −X1 −X2)− k−(X2, X2)X2.

Note that the PDE-DDE has the same steady state solution as the DDE model and
there exist a symmetric steady state solution (X1 = X2) and an asymmetric steady
state solution (X1 6= X2) for different choices of total substrate concentration Ctot;
see Figure 2.

4.1. Linear stability analysis. Consider the perturbation near the steady state
(C0, X1, X2),

C(x, t) = C + eλtη(x), Xi(t) = Xi + eλtφi.

Substituting into the linearized PDE-DDE model near the steady state solution gives

D
∂2η(x)

∂x2
= λη(x), 0 < x < 1,(4.1a)

D∂xη(0) =
k+(X1)

L
η(0) +

[
k′+(X1)

L
C − (1− εh

4
+
εh

4
e−λτ )

]
φ1 = λφ1,(4.1b)

−D∂xη(1) =
k+(X2)

L
η(1) +

[
k′+(X2)

L
C − (1− εh

4
+
εh

4
e−λτ )

]
φ2 = λφ2,(4.1c)

and [
λ+ 1− εh

4
(1− e−λτ )−

k′+(X1)

L
C

]
φ1 =

k+(X1)

L
η(0),(4.2a) [

λ+ 1− εh

4
(1− e−λτ )−

k′+(X2)

L
C

]
φ2 =

k+(X2)

L
η(1),(4.2b)

where k′+(X) = dk+(X)/dX|X=X . Rewriting (4.2) gives

φ1 = B1(λ, τ)η(0), φ2 = B2(λ, τ)η(1),(4.3)

with

Bi(λ, τ) =
k+(Xi)/L

λ+ 1− εh
4 (1− e−λτ )− k′+(Xi)C/L

.

Substituting (4.3) into the boundary conditions for η(x) yields the following nonlinear
boundary value problem:

D
∂2η(x)

∂x2
= λη(x), 0 < x < 1, t > 0,

D∂xη(0) = λB1(λ, τ)η(0),

−D∂xη(1) = λB2(λ, τ)η(1).(4.4)
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The solution η(x) can be expressed in the form

η(x) =
η0 + η1

2

cosh(
√
λ/D(x− 1

2 ))

cosh( 1
2

√
λ/D)

+
η1 − η0

2

sinh(
√
λ/D(x− 1

2 ))

sinh( 1
2

√
λ/D)

,(4.5)

where η0 = η(0) and η1 = η(1). The boundary conditions then require(
A+(λ) + λB1(λ, τ) A−(λ)

A−(λ) A+(λ) + λB2(λ, τ)

)(
η0

η1

)
= 0,(4.6)

where

(4.7) A±(λ) =
√
λD

tanh( 1
2

√
λ/D)± coth( 1

2

√
λ/D)

2
.

Setting the determinant to zero and dividing through by λD gives

λ

D
B1B2 + (B1 +B2)

√
λ

D

tanh( 1
2

√
λ/D) + coth( 1

2

√
λ/D)

2
+ 1 = 0.(4.8)

The presence of terms involving
√
λ/D means that we have to introduce a branch

cut in the complex λ-plane along (−∞, 0]. Fortunately, for finite D,L this does not
affect the eigenvalue relation (4.8) since, as λ→ 0, we have tanh(

√
λ/4D)→

√
λ/4D

and coth(
√
λ/4D) →

√
4D/λ, that is, any square roots in (4.8) cancel. However,

care has to be taken in the limit D → 0 (D/(k−0 L
2)→ 0 in dimensionless units) since,

up to exponentially small errors, η(x) ≈ e−
√
λ/4Dx such that (4.8) reduces to

λ

D
B1B2 + (B1 +B2)

√
λ

D
+ 1 = 0.

One can no longer eliminate the square roots and there is a continuous spectrum
in addition to a discrete spectrum. We will avoid these complexities here by taking
D > 0.

Note that (4.3) and (4.8) are well-defined provided that the denominators of the
function B1,2(λ, τ) are nonzero. Therefore, we need to check that the boundary value
problem still makes sense in the singular limit. Let

A(λ, τ,Xi) = λ+
εh

4
e−λτ + 1− εh

4
− k′+(Xi)C/L,

and consider the eigenvalue problem associated with the symmetric steady state so-
lution X1 = X2 > 0. If A(λ, τ,X1) = 0, then (4.3) requires that

η(0) = η(1) = 0.

It is known that the Dirichlet boundary value problem (4.1a) of η(x) has only a trivial
solution, i.e., η(x) = 0. To solve for (φ1, φ2), we substitute η(x) = 0 into the boundary
conditions (4.1b) and (4.1c). It follows that

0 =

[
1− εh

4
+
εh

4
e−λτ −

k′+(Xi)

L
C

]
φi = −λφi, i = 1, 2,

with the first identity holding since A(λ, τ,Xi) = 0. Noting that λ = 0 is not a solution
of A(λ, τ,Xi) = 0, it follows that φ1 = φ2 = 0. Therefore, if A(λ, τ,Xi) = 0, the
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associated solution (η(x), φ1, φ2) is trivial. Hence, we can assume that A(λ, τ,Xi) 6= 0
for the symmetric steady state, and (4.8) holds. For the symmetric steady state
X1 = X2, we have B1 = B2 and the resulting cyclic matrix (4.6) has the eigenvectors
(1, 1)T , (1,−1)T . It follows that A+(λ) ± A−(λ) + λB1(λ, τ) = for the in-phase (+)
and antiphase (−) solutions, respectively, with corresponding eigenvalue equations

B1 +

√
D

λ
tanh

(
1

2

√
λ

D

)
= 0 (in-phase),(4.9a)

B1 +

√
D

λ
coth

(
1

2

√
λ

D

)
= 0 (antiphase).(4.9b)

Recall that linear stability analysis of the pure DDE model indicated that the
oscillation mode is sensitive to the parameters ε and h of the negative feedback. With
the same parameter set as the DDE model, numerical results of our PDE-DDE model
show that the oscillations are also antiphase for different diffusion coefficients (see
below). In fact, we can check numerically that the eigenvalue equation (4.9a) does
not have a purely imaginary solution λ = iω. To compare with the results of the DDE
model, we rewrite (4.9a) as follows:

− 1

B1
=

√
λ

D
coth

(
1

2

√
λ

D

)
⇒ −A(λ, τ,X1)

k+(X1)/L
=

√
λ

D
coth

(
1

2

√
λ

D

)
.

Also, noting that

F12 = −k+(X1)/L, A(λ, τ,X1) = λ+
εh

4
e−λτ − F11 + F12,

we have

(4.10)
λ+ εhe−λτ/4− F11 + F12

F12
=

√
λ

D
cot

(
1

2

√
λ

D

)
.

Since
√

λ
D coth( 1

2

√
λ
D )→ 2 as D →∞, it follows that (4.10) reduces to

λ+ εhe−λτ/4− F11 + F12

F12
= 2⇒ λ+

εh

4
e−λτ − F11 − F12 = 0.

This is the eigenvalue equation (in-phase) of the DDE model; see (3.4). As shown
in Figure 6(b), there is no in-phase solution for the given parameters since 4(F11 +
F12)/hε < −1. For a finite D, we can check numerically that there is no solution of
λ = iω by comparing the real parts of (4.10). Defining

Fin(ω) =

√
iω

D
coth

(
1

2

√
iω

D

)
, ω > 0,

a numerical plot of the real part of Fin indicates that Re(Fin) > 2; see Figure 13.
Suppose that there exists a solution (λ, τ) of (4.10) with λ = iω; then the real part
of the left-hand side of (4.10) must satisfy

εh cos(ωτ)/4− F11 + F12

F12
> 2.
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Fig. 13. Plot of the real part of the function Fin(ω) with different diffusion coefficients.

Since F12 < 0, we have

cos(ωτ) < 4(F11 + F12)/εh < −1.

By contradiction, there is no solution of (4.10) with λ = iω. In other words, there is
no in-phase oscillation emerging from a Hopf point along the symmetric steady state.

Next, we consider the eigenvalue problem for the asymmetric steady state solution
X1 6= X2 where at least B1 or B2 is singular. Since k+(X) is monotonically increasing,
it follows that A(λ, τ,X1) and A(λ, τ,X2) cannot attain zero simultaneously. Without
loss of generality, we assume that

A(λ, τ,X1) = 0, A(λ, τ,X2) 6= 0.

It follows that η(0) = 0 and φ2 = B2(λ, τ)η(1). The solution for η(x) can be rewritten
as

η(x) =
η1

2

(
cosh(

√
λ/D(x− 1

2 ))

cosh( 1
2

√
λ/D)

+
sinh(

√
λ/D(x− 1

2 ))

sinh( 1
2

√
λ/D)

)
.

The boundary conditions (4.1b) and (4.1c) require that

φ1 =
η1

2

√
D

λ

[
coth

(
1

2

√
λ/D

)
− tanh

(
1

2

√
λ/D

)]
,

0 =

(
√
λD

tanh( 1
2

√
λ/D) + coth( 1

2

√
λ/D)

2
+ λB2(λ, τ)

)
η1.

Hence, in order to have a nontrivial solution, we require

A(λ, τ,X1) = 0,
tanh( 1

2

√
λ/D) + coth( 1

2

√
λ/D)

2
+

√
λ

D
B2(λ, τ) = 0.

The second equation also arises from taking the limit B1 → ∞ in (4.8). Note that
the root λ of the second equation is dependent on the parameter D, while the root of
the first equation is independent of D. For any fixed τ and D, these two equations
can be solved numerically.
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Fig. 14. Effects of diffusion on Hopf bifurcations from the symmetric steady state. (a) Critical
delay τ versus diffusion coefficient D. As D → ∞, the critical time delay approaches a horizontal
asymptote, which is the same as the DDE model. (b) Critical delay τ versus the total substrate
concentration Ctot. (c), (d) Numerical solution of X1,2 with (D, τ) below and above the Hopf point
A, respectively, indicating that the Hopf bifurcation at A is supercritical and the oscillation mode is
antiphase. Baseline parameters: k+0 = 2.25, k+n = 6.467, n = 4, Ctot = 6.5, k−0 = 1, ε = 0.5375, h =
40, and L = 1. Initial condition: X1(t) = 3.1, X2(t) = 3.3, C(x, t) = 0.1 for −τ ≤ t ≤ 0.

4.2. Hopf bifurcations. In the following, we numerically solve the eigenvalue
relations for the symmetric and asymmetric steady states in order to determine Hopf
bifurcation curves, and we show the results of various numerical simulations. Our
main goal is to investigate how bulk diffusion can change the critical time delay for
the onset of oscillations.

4.2.1. Case (a). Hopf bifurcation from the symmetric steady state. In
Figures 14(a), (b) we plot the critical delay for a Hopf bifurcation from the symmetric
steady state as a function of the diffusion coefficient D and total substrate concen-
tration Ctot, respectively. Compared to the parameter Ctot, the critical time delay is
more sensitive to the value of the diffusion coefficient. For small D the critical time
delay is relatively large but decreases as D increases. There exists an asymptote of the
critical time delay as D →∞, which agrees with the critical delay for the DDE model
by Das et al. [8]; see section 3. For a fixed value of D, the critical time delay has a
maximum as the parameter Ctot changes from 6 to 12. For an arbitrarily chosen point
A ((D, τ) = (2, 1.5)) on the Hopf curve in Figure 14(a), we determine the direction of
the Hopf bifurcation by solving the PDE-DDE (2.1a) numerically. For a parameter
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Fig. 15. Effects of diffusion on Hopf bifurcations from the asymmetric steady state. (a) Critical
delay τ versus diffusion coefficient D. (b) Critical delay τ versus the total substrate concentration
Ctot. (c), (d) Numerical solution of X1,2 with (D, τ) below and above the Hopf point B, respectively,

indicating that the Hopf bifurcation at B is supercritical. Baseline parameters: k+0 = 2.25, k+n =

6.467, n = 4, Ctot = 6.5, k−0 = 1, ε = 0.5375, h = 40. Initial condition: X1(t) = 1, X2(t) =
5.3, C(x, t) = 0.2 for −τ ≤ t ≤ 0.

set (D, τ) = (2, 1.4) below the Hopf point, the numerical solution indicates that the
steady state solution is stable; see Figure 14(c). For a parameter set (D, τ) = (2, 1.6)
above the Hopf point, the steady state loses its stability and the numerical solution
oscillates near the symmetric steady state; see Figure 14(d). This suggests that the
Hopf bifurcation at the point A is supercritical.

4.2.2. Case (b). Hopf bifurcation from the asymmetric steady state.
For the asymmetric steady state, we plot the Hopf curves and numerical solutions of
X1,2 in Figure 15. Again the critical time delay decreases as the diffusion coefficient
increases, but the critical time delay tends to be smaller than for the symmetric
steady state. Recall from the bifurcation diagram of the DDE model (see Figure 3)
that there exists a parameter domain Ctot ∈ [6.1, 7.6] where the symmetric steady
state and asymmetric steady state coexist for τ = 0. In Figure 16, we plot the
Hopf branches corresponding to the symmetric and asymmetric steady states in this
parameter domain for different values of D. Unlike the Hopf curves of the DDE
model where the two branches intersect (see Figure 6(a)), no intersection of the Hopf
branches is observed for D = 2 and D = 20. For D = 2, the two Hopf curves separate
the parameter domain (Ctot, τ) into three different regions. In region 1, both of the
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Fig. 16. (a), (b) Hopf curves along the symmetric and asymmetric steady states as Ctot

changes for D = 2, 20, respectively. (c) Numerical solution of X1,2 with initial condition: C(x, t) =
0.1, X1(t) = 3.1, X2(t) = 3.3,−τ ≤ t ≤ 0. (d) Numerical solution of X1,2 with initial condition:
C(x, t) = 0.5, X1(t) = 1, X2(t) = 5, −τ ≤ t ≤ 0. Both of the solutions oscillate near the
asymmetric steady state. Baseline parameters: D = 2, Ctot = 6.5, L = 1, τ = 2, k+0 = 2.25, k+n =

6.467, n = 4, k−0 = 1, ε = 0.5375, h = 40.

steady state solutions are linearly stable. In region 2, the asymmetric steady state is
linearly unstable and a small perturbation near the asymmetric steady state generates
oscillatory solutions. In region 3, we expect to find both symmetric and asymmetric
oscillations. In order to explore this possibility, we plot the numerical solutions for
different initial conditions in Figures 16(c), (d). The initial conditions are either near
the symmetric steady state,

C(x, t) = 0.1, X1(t) = 3.1, X2(t) = 3.3, −τ ≤ t ≤ 0,

or near the asymmetric steady state,

C(x, t) = 0.5, X1(t) = 1, X2(t) = 5, −τ ≤ t ≤ 0.

In both cases, oscillations occur around the asymmetric steady state. On the other
hand, for smaller time delays in region 3, the first initial condition can lead to sym-
metric oscillations; see Figure 17. This suggests that the time delay could give rise to
spontaneous symmetry breaking.

Figures 16(a), (b) implies that for a finite diffusion coefficient, D = 2 and D = 20,
the critical time delay for the symmetric branch is larger than that for the asymmetric
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Fig. 17. Numerical solution with different time delays. As the time delay increases, the am-
plitude of the oscillation increases. At τ = 1.9, the numerical solution changes from symmetric
to asymmetric oscillations. Parameters: D = 2, k+0 = 2.25, k+n = 6.467, n = 4, k−0 = 1, ε =
0.5375, h = 40. Initial condition: X1(t) = 3.1, X2(t) = 3.3, C(x, t) = 0.1 for −τ ≤ t ≤ 0.

branch. This is different from the result of critical time delays for the two branches
for the DDE model; see Figure 6(a). To compare the critical time delay in the fast
diffusion limit with the DDE model given by (3.2), we plot the Hopf curves in the
(D, τ) plane for large D with Ctot = 6.5, 7.45, respectively; see Figure 18. For the
smaller value Ctot = 6.5 and sufficiently large D, the Hopf curve for the symmetric
branch decreases faster than that for asymmetric steady state and reaches a smaller
asymptote. On the other hand if Ctot = 7.45, then the asymptote of the Hopf curve
for the symmetric branch is larger than that for the asymmetric branch. The result
is consistent with the result of the DDE model; see Figure 6(a).

4.3. NETO. In the DDE model of Cdc42 oscillations by Das et al. [8] and the
ODE model of NETO by Cerone, Novák, and Neufeld [5], it is crucial to assume
that the total amount of substrate increases as the cell length increases. One possible
explanation for this assumption is that a typical cell must double its mass and dupli-
cate its contents so that the new daughter cells can contain the components needed
for independent growth and eventual division. Recall that the total amount Ctot of
Cdc42 per unit area, for fixed length L, is defined by the conservation equation

Ctot =

∫ L

0

C(x, t)dx+X1(t) +X2(t).
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Fig. 18. Comparison of effects of diffusion on Hopf bifurcations from the symmetric and

asymmetric steady states for a large diffusion coefficient. (a) Ctot = 6.5. (b) Ctot = 7.45. For a
wide range of values of diffusion coefficients, the critical time delay at a Hopf bifurcation from the
symmetric steady state is larger than that for the asymmetric steady state. This still holds for large
D when Ctot = 7.45. However, for a smaller value of Ctot = 6.5 and a sufficiently large D(> 190),
the critical time delay at a Hopf bifurcation from the symmetric steady state is smaller than that
for the asymmetric steady state. This is consistent with the results for the critical time delay in the
DDE model; see Figure 3. Baseline parameters: k+0 = 2.25, k+n = 6.467, n = 4, Ctot = 6.5, k−0 =
1, ε = 0.5375, h = 40.

In order to reproduce the experimentally observed switch from asymmetric to sym-
metric oscillations during NETO, we now modify our PDE-DDE model to take into
account diffusion in a growing domain Ωt = [0, L(t)], in which the total substrate
concentration Ctot increase explicitly with respect to time t. We will extend our anal-
ysis of diffusion in a growing 1D domain along lines similar to Crampin, Gaffney,
and Maini [7], who studied the particular problem of spontaneous pattern formation
for a reaction-diffusion equation on a growing domain. We begin by expressing the
resulting conservation equation in the form

(4.11)
d

dt

∫
Ωt

C(x, t)dx+

∫
Ωt

∂J(x, t)

∂x
dx =

dCtot(t)

dt

with

J(x, t) = −D∂C(x, t)

∂x
,

∫
Ωt

∂J(x, t)

∂x
dx =

dX1

dt
+
dX2

dt
.

Using the Reynolds transport theorem to evaluate the first term on the left-hand side,

(4.12)
d

dt

∫
Ωt

C(x, t)dx =

∫
Ωt

[
∂C(x, t)

∂t
+
∂[φ(x, t)C(x, t)]

∂x

]
dx,

where φ(x, t) is the flow of the domain at time t. If we take

Ctot(t) =
C0

L0
L(t)

with C0 = Ctot(0), then we obtain the evolution equation

∂C(x, t)

∂t
+
∂[φ(x, t)C(x, t)]

∂x
= D

∂2C(x, t)

∂x2
+
C0

L0

ρ̇

ρ
, 0 < x < L(t), t > 0.(4.13)
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Let X ∈ [0, L0] be the local coordinate system at the initial length L0. Using a
Lagrangian description, we can represent spatial position at time t as

x = Γ(X, t) = Xρ(t), ρ(0) = 1,

with corresponding flow

(4.14) φ(x, t) = Xρ̇ = x
ρ̇

ρ
.

Consistent with the analysis of the DDE model, we take ρ(t) = 1 + γt so that

L(t) = L0(1 + γt).

Substitution into (4.13) gives

(4.15)
∂C(x, t)

∂t
+

(
ρ̇

ρ

)(
x
∂C(x, t)

∂x
+ C(x, t)

)
= D

∂2C(x, t)

∂x2
+
C0

L0

ρ̇

ρ
.

Following Crampin, Gaffney, and Maini [7], we transform (4.15) to the fixed interval
[0, L0] by performing the change of variables

(4.16) (x, t)→ (x̄, t̄) =

(
x

ρ(t)
, t

)
.

Under this transformation the advection term in (4.15) is eliminated and, on dropping
the overbars, we obtain the modified evolution equation

(4.17a)
∂C(x, t)

∂t
=

D

L(t)2

∂2C(x, t)

∂x2
−
(
ρ̇

ρ

)
C(x, t) +

C0

L0

ρ̇

ρ
.

The boundary conditions are

− D

L(t)
∂xC(0, t) = −k

+(X1(t))

L(t)
C(0, t) + k−(X1(t), X1(t− τ))X1(t),(4.17b)

− D

L(t)
∂xC(L0, t) =

k+(X2(t))

L(t)
C(L0, t)− k−(X2(t), X2(t− τ))X2(t).(4.17c)

The DDE for X1,2 are

dX1

dt
=
k+(X1(t))

L(t)
C(0, t)− k−(X1(t), X1(t− τ))X1(t),(4.17d)

dX2

dt
=
k+(X2(t))

L(t)
C(L, t)− k−(X2(t), X2(t− τ))X2(t).(4.17e)

In the following we take L0 = 1 and solve the PDE-DDE (4.17a)–(4.17e) numerically
on the domain [0, 1].

From our analysis of the pure DDE model in section 3, we expect there to be a
switch from an asymmetric oscillation to a symmetric oscillation as the cell grows.
However, one major difference between the PDE-DDE model and the DDE model
is that in the former case the Hopf curve for symmetric bifurcations lies above the
Hopf curve for asymmetric bifurcations, as illustrated in Figure 16 for fixed L. This
suggests that when the asymmetric Hopf branch disappears, the symmetric state may
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be below its Hopf bifurcation point so that no symmetric oscillations are observed.
This is indeed found to be the case, as illustrated in Figure 19 for a small constant
growth rate γ = 0.01. The initial condition is chosen to be near the asymmetric
steady state when Ctot = 6. For a fixed time delay τ = 1.4 and D = 2, the numerical
solution of X1,2 starts oscillating near the asymmetric steady state and evolves to the
symmetric steady state as Ctot increases. However, oscillations near the symmetric
steady state are not observed, since the time delay is below the critical time delay
for D = 2. That is, for changing L one can construct Hopf curves similar to those
of Figure 16(a) for fixed cell length and show that the system is in region 2. This
is different from the behavior of the DDE model shown in Figure 9(b), for which
a small time delay (e.g., τ = 0.5) can give rise to both symmetric and asymmetric
oscillations. On the other hand, for larger τ and D, the PDE-DDE model does exhibit
a transition from an asymmetric to symmetric oscillations as L increases. Moreover,
the amplitude of the symmetric oscillations increases as D increases; see Figure 19
(c), (d). In Figure 20, we plot the numerical solution as a function of L/L0 for
different D and growth rates γ. Interestingly, as the growth rate increases from 0.005
to 0.01, we find that the switch from an asymmetric to symmetric oscillations occurs
at a relatively larger value of L/L0, again reflecting a breakdown of the adiabatic
approximation. On the other hand, as D is increased, the switch occurs at a smaller
value of L/L0.

5. Discussion. In this paper, we studied a 1D PDE-DDE model for the signaling
molecule Cdc42 during cell polarization in fission yeast. The PDE model represents
the diffusion of Cdc42 in the cytoplasm, whereas the system of DDEs represents
the association and dissociation of Cdc42 at the two end compartments, which are
regulated by positive feedback and delayed negative feedback, respectively. In the fast
diffusion limit and fixed length, we recovered the DDE model of Das et al. [8]. Using
linear stability analysis and numerical simulations, we investigated Hopf bifurcations
of the symmetric and asymmetric steady states. We showed that the critical time delay
at the Hopf point is sensitive to the diffusion coefficient; as the diffusion coefficient
increases, the critical delay decreases and reaches an asymptote. This suggests that
the DDE model underestimates the critical time delay. Finally, we solved the diffusion
equation on a growing domain under the additional assumption that the total amount
Ctot of the signaling molecule increases as the cell length increases. We showed that
the system undergoes a transition from asymmetric to symmetric oscillations as the
cell grows, consistent with experimental findings of “new-end-take-off” in fission yeast.
We also found that the critical length where the switch occurs depends on both D
and the growth rate.

We note that the particular result concerning the effect of diffusion on the critical
time delay for a Hopf bifurcation has previously been shown for a genetic control
model by Busenberg and Mahaffy [3, 4]. However, there are several major differences
between our model and theirs. First, the genetic control model involves two species,
mRNA and a repressor protein, whereas there is only a single chemical component
in our model (signaling protein Cdc42). Second, in our model, the delayed negative
feedback is incorporated into the boundary conditions, while the delayed feedback in
the genetic control model occurs in a reaction term of the repressor protein. Third,
the genetic control model consists of two compartments, one of which is well-mixed.
Most significantly, our model has both symmetric and asymmetric steady states, while
the genetic model has a unique steady state.
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Fig. 19. Switch from asymmetric to symmetric oscillations with Ctot and L slowly increasing
functions of time t. For a smaller diffusion coefficient D = 2, the time delay τ = 1.4 is not large
enough to give rise to symmetric oscillations. On the other hand, for τ = 2 and either D = 2
or D = 3, the numerical solution changes from asymmetric to symmetric oscillations consistent
with the pure DDE model. As the diffusion coefficient increases, the amplitude of the symmetric
oscillations also increases. The numerical solution is for the PDE-DDE model (4.17a)–(4.17e).
Parameters: L0 = 1, γ = 0.01, k+0 = 2.25, k+n = 6.467, n = 4, k−0 = 1, ε = 0.5375, h = 40. Initial
condition: X1(t) = 1, X2(t) = 4.5, C(x, t) = 0.5 for −τ ≤ t ≤ 0.

There are a number of possible extensions of our work. First, in this paper we
followed Das et al. [8] and took the basic mechanism for generating Cdc42 oscillations
to be a negative feedback loop with a discrete delay. Since the precise cause of
Cdc42 oscillations is not currently known, it would be worth exploring alternative
mechanisms as highlighted by Novak and Tyson [14]. However, we do not expect the
basic results of the paper to be altered. Second, our model could be modified to study
other signaling molecules that are involved in the polarization of fission yeast such as
formin for3p [12]. Third, it would be interesting to consider the full 3D geometry of
fission yeast, where bulk diffusion occurs in the cylindrical interior of the cell and the
end compartments are treated as hemispherical caps. Finally, from a more general
mathematical perspective, our study suggests that it would be worth extending the
class of diffusion models considered by Gou et al. [10, 11] to the case where diffusively
active compartments evolve according to DDEs.
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Fig. 20. Effect of the growth rate and diffusion coefficient on the timing of the switch from
asymmetric to symmetric oscillations. (a), ( b) As γ increased, the switch from asymmetric to
symmetric oscillation occurs later. (c), ( b). On the other hand, as D is increased, the switch occurs
earlier. The numerical solution is for the PDE-DDE model (4.17a)–(4.17e). Baseline parameters:
D = 3, τ = 3, γ = 0.01, L0 = 1. Other parameters are the same as in Figure 19. Initial condition:
X1(t) = 1, X2(t) = 4.5, C(x, t) = 0.5 for −τ ≤ t ≤ 0.
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