
Imperial College London

Doctoral Thesis

Molecular Modelling and Statistical
Thermodynamics of

Semi-Crystalline Polymers:
Network Constraints, Fluid

Sorption and Surface Melting

Author:
Michele Valsecchi

Supervisors:
Prof. Amparo Galindo

Prof. George Jackson

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

Molecular Systems Engineering Group
Department of Materials

July 24, 2023



Declaration of Authorship

I, Michele Valsecchi, declare that the work presented in this thesis titled “Molecu-
lar Modelling and Statistical Thermodynamics of Semi-Crystalline Polymers: Network
Constraints, Fluid Sorption and Surface Melting” is my own. Where I have used the
works of others, it is stated and referenced accordingly.

2



Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its con-
tents are licensed under a Creative Commons Attribution 4.0 International Licence (CC
BY). Under this licence, you may copy and redistribute the material in any medium or
format for both commercial and non-commercial purposes. You may also create and dis-
tribute modified versions of the work. This on the condition that you credit the author.
When reusing or sharing this work, ensure you make the licence terms clear to others
by naming the licence and linking to the licence text. Where a work has been adapted,
you should indicate that the work has been changed and describe those changes. Please
seek permission from the copyright holder for uses of this work that are not included in
this licence or permitted under UK Copyright Law.

3



Abstract

Accurately predicting gas and liquid solubility in semi-crystalline polymers is crucial
for optimizing their production, performance, and degradation behaviour. In this the-
sis a novel statistical-mechanical model for semi-crystalline polymers is proposed. The
amorphous domains are divided into two portions: the semi-rigid inter-lamellar domains
and the melt-like “free” amorphous domains. Solubility in the inter-lamellar domains
is reduced due to the presence of tie-molecules, which are polymer chains connecting
different crystals. By incorporating reversible mass exchange at the crystal/amorphous
interface, the model predicts variations in lamellar thickness and solubility with temper-
ature.

According to our model, the equilibrium solubility in each polymer sample is determined
by its crystallinity (ωc), the fraction of tie-molecules at the crystal/amorphous interface
(pT), and the fraction of free amorphous domains (ψ). While crystallinity can be easily
measured, pT and ψ are adjusted to minimize differences between the model’s predictions
(made in conjunction with the SAFT-γ Mie equation of state) and experimental sorption
isotherms of pure fluids in polyethylene (PE), polypropylene (PP), and polyethylene
glycol (PEG) samples. The model accurately reproduces the solubility of all solutes
considered after the assignment of unique pT and ψ values to each sample. A meta-
analysis of literature data reveals that in PE, ψ decreases with crystallinity and pT is in
the range 0.2 – 0.4.

The model’s predictions of solubility of binary mixtures of short hydrocarbons in PE
are in good agreement with experimental data. The model also accurately captures
the temperature dependence of solubility in most of the polymer samples considered,
except for those with low crystallinity where changes in ψ with temperature may need
consideration. Additionally, the model is applied to study the moisture uptake by PEG.
By employing simple thermodynamic considerations, the model qualitatively predicts
the humidity at which deliquescence occurs and describes the moisture uptake at each
relative humidity after adjusting pT.
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1. Introduction

Polymers are a class of substances composed of macro-molecules and characterized by a

number of well-defined repeating units called monomers.1 Contrarily to materials made

of small constituents, upon cooling polymers cannot fully crystallize and invariably dis-

play a micro-structure that is a combination of the ordered crystalline state and the

“disordered” amorphous state typical of fluids – hence the adjective “semi-crystalline”.

Due to the abundance of macro-molecules in nature, many biological materials are semi-

crystalline. Animal hair and vegetable fibres are two examples of naturally occurring

semi-crystalline polymers made mostly of keratin (a protein) and cellulose (a polysac-

charide), respectively. Early humans valued these materials due to their availability,

physical/chemical stability and insulating properties: some findings suggest that linen

fibre weaving might have started as early as the 30th millennium B.C.,2 while evidence

of selective breeding of woolly sheep dates back to the 6th millennium B.C.3 Nowa-

days, about 32 million tonnes of natural fibre4 and about 2 million tonnes of wool5 are

harvested worldwide each year.

In addition to bio-molecules, a long list of synthetic polymers – i.e., polymers synthe-

sized starting from petrochemical products – are semi-crystalline at ambient conditions.

For example, common synthetic semi-crystalline polymers include polyethylene (PE),

polypropylene (PP), polyvinyl chloride (PVC) and polyethylene terephtalate (PET) –

although the last two are often produced in almost fully amorphous, glassy form. In

13



contrast to bio-polymers, the production of synthetic polymers can be easily scaled up

as it does not require breeding animals or growing crops. Nowadays, about 400 million

tonnes of synthetic plastic are produced each year worldwide, with semi-crystalline PE

and PP alone accounting for about 50% of the total figure.6

The widespread production and use of semi-crystalline polymers can be traced back to

their low average cost, their chemical stability and a number of unique material proper-

ties. Since the most commonly used polymers are carbon-based organic molecules, semi-

crystalline polymers generally have a much lower density at ambient conditions than the

other most common types of solids – i.e., metals and ceramics. At the same time, even

though polymers form molecular crystals held together by weak inter-molecular interac-

tions – orders of magnitude weaker than the metallic, covalent and ionic bonding typical

of metals and ceramics – they possess much better mechanical properties than, e.g., ice

and waxes. This peculiar behaviour is the result of the presence of tie-molecules ,7 i.e.,

un-crystallized polymer sections spanning the amorphous regions and linking different

crystals. These chain segments partially restrict the relative motion of the crystalline

domains, thereby making semi-crystalline polymers both flexibile and tough while being

lightweight.

Another quality for which semi-crystalline polymers are valued is their excellent barrier

performance with respect to the solubility and diffusivity of gases and liquids. Around

42% of the total plastic production is destined to packaging,8 whose purpose is protect-

ing its content from the external environment by preventing fluid permeation. Moreover,

thanks to their chemical resistance and barrier properties semi-crystalline polymers like

high-density PE (HDPE), PVC, polyamide (PA), polyether ether ketone (PEEK), poly-

tetrafluoroethylene (PTFE) and polyvinylidine fluoride (PVDF) are used extensively

for fluid transport either as pipe materials9,10 or as liners to protect metal surfaces

from corrosion and embrittlement.11,12 Minimizing the fluid uptake of semi-crystalline

polymers is also critical to ensure the integrity of a wide range of polymer-containing
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products. For example, the moisture uptake by hydrophilic polymers like polyetyhylene

glycol (PEG) in humid environment can threaten the stability of certain pharmaceutical

formulations.13 Similarly, the mechanical properties of semi-crystalline polymers can be

dramatically altered if the concentration of solutes becomes too high, in a phenomenon

known as plasticisation.14–16

In some applications, however, promoting fluid solubility in semi-crystalline polymers can

be desirable. During PE production, greater concentrations of ethylene in the growing

polymer near the catalyst sites increases the reaction rate and yield.17,18 In the detergent

and perfume industry, ensuring the persistence of certain ingredients in hair or fibres

can lead to longer lasting freshness and softness.19,20 Perhaps more importantly, the

ability of oxidising agents to diffuse within semi-crystalline polymer is one of the factors

affecting their degradation rate when left in the environment.21,22 This is particularly

relevant today, as the sheer amount of synthetic plastic produced combined with its short

usage lifespan (about 40% of all plastic produced is single-use8) and long degradation

times (up to thousands of years23) has led to serious concerns on its environmental

impact, with activist groups and global agencies alike calling for strong regulatory actions

on the plastics market. Engineering packaging materials to provide sufficient barrier

performance while selectively allowing certain oxidants to diffuse might help diminish

their lifetime in the environment.24

From a theoretical perspective, predicting the barrier properties of semi-crystalline poly-

mers requires determining the equilibrium solubility and permeation constants of simple

fluids in these materials at given thermodynamic conditions. Accurate solubility models

are needed in all applications in which semi-crystalline samples are in contact with fluids

for a long time, and can also help provide estimates of intrinsically out-of-equilibrium

properties like permeation constants. For example, according to the widely employed so-

lution– diffusion model reviewed by Wijmans and Baker25 permeation of a fluid through

a polymeric membrane proceeds first by dissolution of a molecule in the surface layers
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of the polymer in contact with the fluid, and then by diffusion driven by the gradient in

chemical potential across the membrane. Equilibrium models can provide estimates of

both the solute concentration on the surface layers∗ and the solute’s chemical potential as

a function of its concentration in the polymer. It must be noted, however, that diffusion

constants and overall permeation rates are significantly influenced by microstructural

features such as the average tortuosity26,27 of the inter-connected amorphous domains,

defined as the ratio between the length the shortest path between two points divided by

their euclidean distance. The investigation of these effects is outside of the scope of the

present work, in which the focus is kept on equilibrium solubility.

The development of equilibrium theories describing the interaction of fluids with semi-

crystalline polymers presents an important challenge. Contrarily to liquid polymer melts

or perfect molecular crystals, semi-crystalline polymers are metastable systems due to

the very slow dynamics of the macromolecules they are composed of. For example, the

ratio of crystalline polymer over the total polymer mass (known as the crystallinity) of

semi-crystalline polymer samples can increase over time as the chains reorganise in con-

figurations corresponding to their equilibrium crystal structure – a phenomenon known

as recrystallization.28,29 Furthermore, when cooling a sample below the glass transition

temperature Tg – which is a function of many factors such as the polymer type and

cooling rate – its amorphous domains become kinetically trapped in local minima of the

free energy forming a glass.30–33 High temperatures, solvent uptake and external loads

can accelerate recrystallization or induce plasticisation of glassy amorphous domains, re-

sulting in dramatic changes of the macroscopic properties of a polymer sample (physical

aging34,35).

The metastable nature of semi-crystalline polymers seems to suggest that their ther-

modynamic properties cannot be described accurately by employing equilibrium theo-

ries. Nevertheless, in many cases the dynamic phenomena discussed are slow enough

∗Assuming these are locally in equilibrium with the fluid

16



that these materials can be considered to be in a pseudo-equilibrium state.36 Whereas

“true” equilibrium states of bulk materials can be characterised only by a small num-

ber of variables (e.g., temperature, pressure and composition), the pseudo-equilibrium

state of a polymeric material must be specified by additional sample-specific, production

history-dependent features which can vary in the event of plasticisation or recrystallisa-

tion.

In the most prominent solubility models developed to date, the pseudo-equilibrium

methodology applied to semi-crystalline polymers relies on two key approximations.

Firstly, the crystalline domains can in most cases be considered impermeable filler

particles for the purpose of calculating fluid solubility due to their dense packing.26,37

Crystallinity is therefore an important sample-specific parameter when modelling fluid

solubility in semi-crystalline polymers, as it is shown in Section 3.2. On the other

hand, due to the lack of long-range structure the amorphous domains can be mod-

elled as equilibrium liquids (or, more precisely, subcooled polymer melts) subject to

a certain “perturbation” or set constraints imposed by the presence of the crystalline

domains.38–45

Critically, the underlying equilibrium theory for the amorphous domains does not depend

on the production history of the polymeric material and is effectively decoupled from the

sample-specific properties which only affect the perturbation. As a result, the composite

model can leverage the accurate representation of polymer mixtures’ properties offered

by equilibrium theories of the liquid state and in many cases also inherit their model pa-

rameters – which normally carry information on the inter-molecular interaction between

the polymer and solute molecules and are optimised to reproduce fluid phase equilibrium

data. On the other hand, while some sample-specific properties such as crystallinity can

be directly measured others (such as the topological features of polymer chains in the

amorphous domains) are more elusive and are usually found by minimisation of the

difference between the composite model’s predictions and experimental solubility and
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swelling data in semi-crystalline polymers.

Such methodologies can therefore yield indirect estimates of micro-structural features

of the polymer samples. It is of particular interest to choose as free parameters of

a given model a set of sample-specific properties that are material constants in the

absence of physical aging (i.e., as long as the pseudo-equilibrium state persists), thereby

enabling prediction of solubility and swelling data outside of the range of conditions in

which the model may be parameterised. The success of the operation hinges on the use

of a predictive equilibrium theory of liquid polymer mixtures coupled with accurate

models for the perturbation induced by the crystalline structure on the amorphous

domains.

Historically, among equilibrium theories lattice models were the first to provide a good

description of polymer mixtures. In lattice models polymer chains and solute molecules

are arranged in a static 3-dimensional lattice, thereby enabling straightforward calcu-

lations of the configurational entropy of polymer chains. The first successful theory of

polymer mixtures was the Flory–Huggins–Staverman (FHS) solution theory,46–48 which

is still used extensively in both academic and industrial settings. More recent models

– namely, the Sanchez–Lacombe theory49 and lattice cluster theory of Dudowicz and

Freed50 – improved over the original FHS theory by allowing to investigate pressure

effects (via the introduction of lattice vacancies) and to introduce structural details of

the monomers. Nevertheless, lattice models have two intrinsic weaknesses. Firstly, the

lattice model cannot be directly mapped onto realistic force-fields which are necessary

to obtaining transport properties via computer simulation. Secondly, lattice models do

not provide an accurate description of the gas state, and therefore require coupling with

additional theories to accurately describe vapour-liquid equilibria.

An alternative to lattice fluid models is offered by perturbation theories, which find

their roots in the work of van der Waals51 and saw significant development starting
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from the work of Zwanzig in 1954.52 Perturbation theories are based on the idea that

liquid properties are dominated by repulsion and that the attractive contributions can

be added perturbatively based on a repulsive reference system. Among these, the family

of statistical associating fluid theory (SAFT) equations of state53,54 – stemming from

the thermodynamic perturbation theory of Wertheim55–59 – has been extensively applied

to the description of polymer mixtures.

SAFT-type equations of state possess a number of advantages over lattice-based mod-

els like the FHS theory. One of them is their ability to predict the thermodynamic

properties of a system of molecules starting from detailed molecular models (including

realistic inter-molecular potentials and hydrogen bonding), enabling the investigation

of out-of-equilibrium properties like viscosity and diffusivity via direct comparison with

molecular dynamics (MD) simulations.60,61 Furthermore, SAFT equations of state pro-

vide an accurate representation of both liquids and gases, resulting in a comprehensive

description of fluid-phase properties (such as vapour-liquid equilibrium, critical points

etc.).

Among the various versions of SAFT,62–67 the SAFT-γ Mie equation of state66,67 em-

ploys a group-contribution (GC) methodology that combines the rigorous theoretical

foundation of SAFT with simplicity of use and predictive power. The SAFT-γ Mie EoS

has been successfully employed to describe the fluid-phase thermodynamic properties of

various compounds of industrial interest,67–70 active pharmaceutical ingredients,71 salts72

and polymers such as PE, PP, PS and PVC.67,73,74 Updated parameter databases include

over 60 different groups,72 allowing for predictions of the fluid properties of many or-

ganic and inorganic compounds of practical interest. In this work the SAFT-γ Mie EoS

is therefore chosen as the equilibrium theory due to its ability to provide a unified de-

scription of simple fluid and equilibrium polymer mixtures, combined with its predictive

capabilities enabled by the group-contribution framework.
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The level of detail and complexity offered by modern fluid-phase EoS is however not

found in state-of-the art models for the perturbation induced by the crystalline polymer

on the amorphous domains. The most prominent physical-based models in the lit-

erature38–41 employ very crude approximations such as assuming that the amorphous

domains are isotropic – a condition violated between crystalline lamellae – or that

amorphous chain segments follow the Gaussian statistics typical of polymer liquids.

More recent developments43–45 have not added physical insight, despite the wealth of

new evidence on the thermodynamics of semi-crystalline polymers across length and

time scales gained in the past 60 years. Inaccurate models of the impact of the crys-

talline domains can hinder the usefulness of the overall theory by diminishing its pre-

dictive power and preventing direct comparison with experiments and computer simu-

lation.

Therefore, the following objectives are set in the current work:

• develop and test SAFT-γ Mie models for a set of industrially relevant polymers,

with a particular emphasis on PE – chosen due to the simplicity of its repeating

unit;

• increase the level of detail of the description of the amorphous domains for use in

solubility models;

• bridge the understanding of semi-crystalline polymers by unifying different solu-

bility models under the same framework and by incorporating insight from other

experimental evidence;

• utilize the resulting compound model in conjunction with equilibrium solubility

measurements to produce indirect estimates of sample-specific properties of semi-

crystalline polymers;
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• predict solvent uptake and polymer melting in a number of model systems that

are of industrial and scientific interest.

Thesis overview

In order to reflect the objectives outlined, this thesis is structured as follows.

In Chapter 2 an overview of the SAFT-γ Mie equation of state is presented. After

establishing the theoretical foundation of the equation of state, various approaches to

parameter estimation are discussed. Original results of the parameterisation procedure

for the series of linear aldehydes and for a set of unlike interaction parameters relevant

to the mixtures of polymers with target solutes are presented.

In Chapter 3 a novel model describing the influence of sample-specific properties of semi-

crystalline samples on their thermodynamic properties is presented. A general model is

developed in order to allow for use with equations of state different than SAFT-γ Mie. In

Section 3.1 an overview of the relevant experimental evidence regarding crystallization

and microstructure of semi-crystalline polymers is discussed. In Section 3.2 after a

review of state-of-the-art solubility models, the new theory is formally derived with an

in-depth discussion of all the assumptions and approximations. Emphasis is placed on

unifying disparate models under the same formalism – the constraint pressure formalism

(cf. Section 3.2.3).

Chapter 4 is dedicated to the comparison of the model with available experimental data.

In Section 4.1 the predictions of the model regarding the variation of the crystallinity,

inter-lamellar distance and other properties with temperature are compared with ex-

perimental data, where available. In Section 4.2 the model is applied to reproduce the

sorption isotherm of n-hexane, n-heptane, cyclohexane and toluene in semi-crystalline

PE and PP samples. In Section 4.3 a systematic study of single-solute sorption isotherms
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in PE is performed in order to understand the dependendence of the tie-molecule frac-

tion parameter on crystallinity. In Sections 4.2.4, 4.3.5 and 4.3.4 the model’s predictions

regarding the variation of solubility with temperature and the solubility of mixtures (i.e.,

co-solubility effects) in the samples parameterized previously are shown together with

experimental data. Finally, in Section 4.4 the model is applied to the study of moisture

uptake in semi-crystalline PEG.

In Chapter 5 the results presented are critically reviewed and potential avenues of im-

provement are discussed. This thesis concludes with a series of Appendices contain-

ing mathematical derivations and a more in-depth analysis of certain aspects of the

model.
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2. The SAFT-γ Mie EoS

Chapter Overview

In this Chapter the SAFT-γ Mie EoS is reviewed, where “EoS” stands for equation

of state. Here and in the rest of the present work the term is used to identify any

analytical expression that expresses the free energy of a system (either the Helmholtz or

the Gibbs free energy) in terms of temperature, volume (or pressure) and composition,

i.e., A(T, V,N) or G(T, P,N ).

In Section 2.2 the theoretical foundations of the SAFT-γ Mie EoS, its molecular models

and force fields are reviewed. In Section 2.3 we show how the knowledge of the Helmholtz

free energy of a system allows to calculate all the other thermodynamic properties of

a system, including chemical potentials and phase behaviour. In Section 2.4 various

parameter estimation procedures are discussed. In Section 2.5 the molecular models and

SAFT-γ Mie parameters of all the polymers and solutes developed in the present work

are presented and the comparison between the SAFT-γ Mie prediction and experimental

data used in the parameterisation procedure is presented.
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2.1. FORCE FIELD AND MOLECULAR MODEL

2.1. Force field and molecular model

In the SAFT-γ Mie approach, every molecule is modelled as a fully-flexible heteronuclear

chain. Each chain segment of type k represents a distinct functional group and interacts

with other segments of type l through a four-parameter Mie potential:

uMie
kl (rkl) = Cklεkl

((
σkl

rkl

)λr
kl

−
(
σkl

rkl

)λa
kl

)
, (2.1)

where rkl represents the distance between the centers of mass of the two groups and Ckl

is given by

Ckl =
λr
kl

λr
kl − λa

kl

(
λr
kl

λa
kl

) λakl
λr
kl

−λa
kl

(2.2)

in order to have min
r∈(0,+∞)

uMie
kl (r) = −εkl. Here, σkl is the size parameter which determines

the location of the zero of the potential; εkl is the energy well depth; λa
kl and λr

kl are,

respectively, the attractive and repulsive exponent. Moreover, each segment k may pos-

sess any number NST,k of types of association sites, with each site a having multiplicity

nk,a. The interaction potential between site a on group k and site b on group l is given

by

uHB
kl,ab(rkl,ab) =

⎧⎪⎨
⎪⎩

−εHB
kl,ab if rkl,ab ≤ rckl,ab

0 otherwise

, (2.3)

where both sites are assumed to be placed at a distance rdkl,ab from the Mie centers. The

cut-off radius rckl,ab and the distance from the dispersion cores rdkl,ab are incorporated via

a bonding volume KHB
kl,ab.

66,67 In Figure 2.1 we show as an example the SAFT-γ Mie

molecular models of three polymers studied in this work: PE, PP and PEG. In Figure

2.2 we show two generic SAFT-γ Mie groups with association sites to clarify the meaning

of the distances rkl and rkl,ab entering Equations 2.1 and 2.3.

The interaction between any distinct pair of monomers is then uniquely defined by the
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2.1. FORCE FIELD AND MOLECULAR MODEL

(a) PE

(b) Isotactic PP

(c) PEG

Figure 2.1.: A schematic depiction of the SAFT-γ molecular models for PE, PP and PEG used
in the current work. From top to bottom: united-atom model for PE featuring the CH2 group;
coarse-grained model for (isotactic) PP featuring the CH2CH(CH3) group; united-atom model
for PEG featuring the second-order CH2

OE group (gray) and the cO group (blue). The red
dots represent association sites of type e. All the group parameters can be found in Tables 2.1,
2.2 and 2.3.
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2.1. FORCE FIELD AND MOLECULAR MODEL

Figure 2.2.: A schematic representation of two SAFT-γ Mie groups with association sites. The
interaction between the centers of mass of group k and group l at distance rkl is mediated by
a Mie potential (Equation 2.1); the interaction between site a and site b at distance rkl,ab is
mediated by a 3-D square-well potential (Equation 2.3).

four dispersion parameters σkl, εkl, λ
r
kl, λ

a
kl and by the eventual εHB

kl,ab, K
HB
kl,ab for every pair

(ak, bl) of sites. In most cases, however, λa
kl is set to 6 in order to reflect the form

of the induced-dipole interaction (i.e., the London dispersion force75) and reduce the

dimension of the parameter space. Furthermore, the unlike interaction parameters can

be calculated from the corresponding quantities describing the like interactions using a

set of combining rules66,67 which are reported in Appendix A.

Additionally, in the SAFT-γ Mie approach an additional group parameter, the shape fac-

tor Sk, is incorporated to account for non-tangential chain segments k67,76 (see Equation

2.18). The inclusion of the shape factor in SAFT-γ Mie gives rise to a group-contribution

approach for molecules formed from different functional groups which are represented

by the various segments. In particular, each group k is characterised by the number of

identical segments it is made of (ν∗
k), its shape factor Sk, its Mie force-field parameters,

and the number and types of association sites present. Each component i in a mixture

is uniquely characterized by the type of groups it is composed of (k = 1, 2 . . . NG) and

the number of groups of each type (νk,i).
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2.2. FREE ENERGY

2.2. Free energy

In SAFT-γ Mie the Helmholtz free energy of a system of N neutral molecules can be

expressed as the sum of four terms which represent the contribution of the translational

degrees of freedom (i.e., the ideal-gas term), monomer-monomer interaction, chain for-

mation and association:66,67

AEoS = Aid + Amono + Achain + Aassoc. (2.4)

2.2.1. The ideal gas term

Here and in the rest of this work kB represents Boltzmann’s constant and T the thermo-

dynamic (absolute) temperature. As it is customary, we define β = 1/kBT . For a system

ofN molecules ofNC distinct components, the ideal gas term is given by67

Aid

NKBT
=

NC∑
i=1

xi ln
(
ρiΛ

3
i

)
, (2.5)

where xi is the mole fraction of component i, ρi = xiρ = Nxi/V and Λi is the thermal

de Broglie wavelength of component i:

Λi =

√
h2

2πmikBT
, (2.6)

where mi is the mass of component i and h is Planck’s constant.
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2.2. FREE ENERGY

2.2.2. The monomer term

The monomer term is the residual Helmoholtz free energy of a system of interacting

Mie monomers obtained by decomposing every component into its group constituents,

and is approximated using a third-order Barker and Henderson high-temperature expan-

sion.77,78 This theory follows early work from Zwanzig52 and embodies the observation

that the properties of the liquid state are dominated by repulsion. Accordingly, the

Mie potential of each pair of groups is split in a repulsive (u0
kl > 0) and an attractive

(u1
kl < 0) contribution such that uMie

kl (r) = u0
kl(r) + u1

kl(r). The repulsive part is given

as

u0
kl(rkl) =

⎧⎪⎨
⎪⎩

uMie
kl if rkl ≤ σkl

0 otherwise

, (2.7)

whereas the attractive contribution is

u1
kl(rkl) =

⎧⎪⎨
⎪⎩

0 if rkl ≤ σkl

uMie
kl otherwise

. (2.8)

The residual free energy of the Mie fluid mixture is obtained by considering the Mie

force field

UMie =
∑
αα′

uMie
αα

′ (2.9)

as a perturbation of the reference purely repulsive force field

U0 =
∑
αα′

u0
αα

′ , (2.10)

where α and α′ are two distinct Mie monomers and the sum runs over all distinct pairs

of monomers. The perturbation is simply U1 = UMie − U0. By denoting with 〈.〉0 the

canonical ensemble average in the reference purely repulsive system and with A0 the cor-
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2.2. FREE ENERGY

responding free energy, a central result in perturbation theory is52

−β (Amono − A0) = ln〈e−βU1〉0 ==
∞∑
n=1

(−β)n

n!
κ0
n [U1] . (2.11)

The series on the right hand side is obtained by (formal) expansion of the exponential

and logarithmic functions in the middle expression, and defines the cumulants κ0
n [U1]

of the perturbation U1 in the reference system. This notation highlights the functional

dependence of the cumulants on the form of the perturbation. The cumulants can

be found as a function of the moments μ0
m = 〈U1

m〉0 using the following general for-

mula:

κ0
n =

n∑
l=1

(−1)l−1 (l − 1)!Bn,l

(
μ0
1, μ

0
2, . . . , μ

0
n−l+1

)
(2.12)

where the Bn,l functions are the incomplete Bell polynomials. For example, the first

three cumulants are given by

κ0
1 = 〈U1〉0

κ0
2 = 〈U2

1 〉0 − 〈U1〉20
κ0
3 = 〈U3

1 〉0 − 3〈U2
1 〉0〈U1〉0 + 2〈U1〉30

. (2.13)

The cumulant expansion of Equation 2.11 is sometimes called “high-temperature” ex-

pansion, although the cumulants themselves are functions of temperature due to the

underlying temperature-dependence of the probability density function (PDF) of the

reference system.

The central idea in the Barker and Henderson theory77,78 is to map the reference soft

repulsive potential to an effective hard-core potential characterised by a temperature-

dependent diameter d(T ). With perturbation techniques, Barker and Henderson showed

that for a one-component fluid, provided that the diameter d of the equivalent hard-
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2.2. FREE ENERGY

sphere system is chosen so that

d(T ) =

∫ σ

0

dr
[
1− e−βu0(r)

]
, (2.14)

the free energy of the reference purely repulsive system, A0, and its distribution functions

needed to calculate the cumulants in Equation 2.11 can be approximated by the equiva-

lent hard-sphere free energy and hard-sphere distribution functions:

βAmono ≈ βAHS + βκHS
1 [U1]− β2

2!
κHS
2 [U1] + . . . (2.15)

However, it must be noted that these approximations are only exact at “first order” in the

difference between the soft-core and hard-core reference potential;77–80 the reader is re-

ferred to the original work for a formal treatment of this perturbation approach.

This procedure takes advantage of the extensive knowledge of hard-sphere equations

of state and pair distribution functions,81–86 which results in good approximation for

A0 ≈ AHS and the cumulants in Equation 2.11. The success of perturbation theory is

due to its ability to provide an accurate description in most thermodynamic conditions.

In the limit of high temperature or low density, higher order terms in Equations 2.11

and 2.15 become negligible since they involve powers of β and higher-order density

distributions. At the same time, since the higher-than-first-order terms in the series

quantify the fluctuations of the attractive potential around its average value the BH

approximation is also accurate at high density, where fluctuations are suppressed.80

Similarly, in the low-temperature limit the need to include more terms in the expansion

is balanced by the increased accuracy of the hard-core mapping.

The BH expansion is implemented in SAFT-γ Mie by assigning to each monomer k an
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2.2. FREE ENERGY

equivalent hard-core diameter dkk given by

dkk(T ) =

∫ σkk

0

dr
[
1− e−βuMie

kk (r)
]
. (2.16)

The monomer excess Helmholz free energy to the third order of the expansion is therefore

written as
Amono

NskBT
= aHS + βa1 + β2a2 + β3a3. (2.17)

Here we have defined Ns as the effective total number of segments:

Ns =

(
NC∑
i=1

xim̃i

)
N =

(
NC∑
i=1

xi

NG∑
k=1

νk,iν
∗
kSk

)
N, (2.18)

where m̃i =
∑NG

k=1 νk,iν
∗
kSk is the effective number of segments of component i. aHS

is the (reduced) residual free energy of a mixture of hard-spheres; in SAFT-γ Mie the

expression proposed by Boubĺık84 and Mansoori85 is employed:

aHS =
6

πρs

[(
ζ32
ζ23

− ζ0

)
ln (1− ζ3) + 3

ζ1ζ2
1− ζ3

+
ζ32

ζ3 (1− ζ3)
2

]
, (2.19)

where ρs = Ns/V is the effective segment density and ζm are the mth density mo-

ments:

ζm =
πρ

6

NC∑
i=1

NG∑
k=1

xiνk,iν
∗
kSkd

m
kk. (2.20)

The three additional terms in Equation 2.17 are the first three cumulants of u1
kl, ensemble-

averaged in the reference hard-sphere system. For example, a1 is simply the mean at-

tractive energy calculated based on the hard-sphere reference:

a1 = 2πρs

∫ +∞

σkl

gHS
kl (r)u

Mie
kl (r)r2dr, (2.21)
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2.2. FREE ENERGY

where gHS
kl is the radial distribution function (RDF) for the pair (k, l) in the reference

hard-sphere system. In practice, in SAFT-γ Mie the integral in Equation 2.21 is ap-

proximated by means of the mean-value theorem, expansions of gHS
kl around r = dkl

(i.e., at contact) and ad hoc mixing rules.66,67 These simplifications provide algebraic

expressions for a1 and do not lead to significant losses in accuracy.

The exact expressions for a2 and a3 require the knowledge of particle distribution func-

tions in the reference hard-sphere fluid of order higher than 2, which are notoriously

hard to evaluate. For this reason, a2 is obtained by means of the macroscopic com-

pressibility approximation77 (MCA) and an empirical correction factor.66 Lastly, a3 is

calculated by means of an empirical expression fitted to simulation data of Mie fluids

and its inclusion in the theory leads to improved accuracy of the predictions near crit-

ical points. The interested reader is referred to the original publications66,67 for the

explicit expressions of a2, a3 and a more in-depth discussion on the approximations

involved.

2.2.3. The chain term

Both the chain and association terms are written using Wertheim’s first-order thermody-

namic perturbation theory55–59 (TPT1) using the Mie monomer fluid as reference. The

TPT framework allows one to account for the influence of strong directional interactions

like hydrogen bonding (or covalent bonding in the case of polymerisation) on fluids of

monomers that otherwise only interact via spherically-symmetric potentials. Wertheim

showed that the grand-canonical partition function of an associating system can be writ-

ten as an infinite series of integrals (often represented via graphs) involving the particle

density functions of the reference non-associating fluid.

There are two major approximations that characterise the TPT of Wertheim. The first

one is the order at which the graph expansion is truncated, which determines the or-
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2.2. FREE ENERGY

der of the reference monomer distribution functions needed to calculate the integrals.

For example, TPT1 includes exclusively two-body effects and therefore only requires

the knowledge of the pair radial distribution function (RDF) of the reference monomer

fluid, whereas TPT2 and TPT3 need 3- and 4-particle distribution functions.87,88 The

second approximation is the so-called single-chain approximation, whereby only graphs

of associating chains surrounded by monomers are considered in the graph sum cor-

responding to the Helmholtz free energy difference due to monomer association. This

approximation is exact in the limit of weak association or in the limit of infinite chain

dilution. The reader is referred to a recent pedagogical review of TPT for more de-

tails.88

The chain term accounts for irreversible bonding between different monomers in the

reference Mie fluid. It can be obtained using the TPT1 framework by simultaneously

taking the limit of infinitely localised and infinitely strong association. In SAFT-γ Mie

the expression is given by66,67,89

Achain

NkBT
= −

NC∑
i=1

xi (m̃i − 1) ln gMie
ii (σ̄ii; ζx) , (2.22)

where m̃i is the effective number of segments of component i (cf. Equation 2.18) and

gMie
ii (σ̄ii; ζx) is the value of an effective RDF at contact for the monomers of component

i evaluated at an effective packing fraction ζx. The word “effective” is used here for the

RDF in the sense that in order to calculate gMie
ii the heteronuclear chain i is replaced by

an equivalent homonuclear chain made of identical Mie monomers of diameter σ̄ii, well

depth ε̄ii and repulsive exponent λ̄r
ii which are determined by appropriate averaging67

over the respective values of the the monomers of component i. Similarly, the effective

packing fraction of the reference hard-sphere mixture ζx is found using a diameter d̄

obtained by appropriate averaging over the BH hard-sphere diameters dkl (cf. Equation

2.16 and Appendix A). See the original publications66,67 for additional details on the
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2.2. FREE ENERGY

way this averaging is performed.

A close inspection of Equation 2.22 reveals the key approximations of TPT1. Each[
(m̃i − 1) ln gMie

ii

]
in the free energy experssion originates from the chemical potential

of a single chain composed of m̃i effective monomers of type i brought into contact

at distance σ̄ii, where correlation higher than second order between the monomers are

neglected; a multiplication by xi follows in order to obtain the free energy, under the

assumption of infinitely dilute chains. Despite the crude approximations, the TPT1

formalism is known to provide an accurate description of polymer properties in the

high-density limit, with deviations expected mostly at low and medium density due to

the single-chain approximation breaking down.87 As a result, SAFT models for polymers

have managed to accurately describe critical properties (UCST and LCST), compress-

ibility effects and vapour-liquid envelopes for associating and non-associating polymer

mixtures.64,90–94

2.2.4. The association term

The association term in SAFT-γ Mie accounts for reversible association due to hydrogen

bonding or other strong directional inter-molecular interactions. The expression for

Aassoc is the following:67

Aassoc

NkBT
=

NC∑
i=1

xi

NG∑
k=1

νk,i

NST,k∑
a=1

nk,a

(
lnXi,k,a +

1−Xi,k,a

2

)
. (2.23)

In this Equation NST,k is the number of types of sites on group k, nk,a is the number

of sites of type a on group k and Xi,k,a is the fraction of molecules of component i not

bonded at site a on group k. The latter quantity is found via solution of the mass action
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equations66,67

Xi,k,a =

⎛
⎝1 + ρ

NC∑
j

NG∑
l

NST,l∑
b

xjνl,jnl,bXj,l,bΔij,kl,ab

⎞
⎠

−1

. (2.24)

The association strength Δij,kl,ab is found after angle averaging the square-well associa-

tion potential (Equation 2.3) and is given by

Δij,kl,ab = σ̄3
ij

[
exp

(
εHB
kl,ab

kBT

)
− 1

]
Ikl,ab. (2.25)

Whereas the effective unlike Mie diameter σ̄ij is calculated using combining rules (as

are all unlike diameters in the theory, cf. Appendix A), the dimensionless integrals

Ikl,ab are obtained using the RDF of the reference Mie fluid gMie
kl , the cut-off radius

rckl,ab and the distance of the association sites from the Mie cores rdkl,ab. In practice,

via additional approximation invoking the equivalence (at zeroth order) gMie
kl ≈ gHS

kl the

following expression is obtained:67

Ikl,ab ≈ gHS
kl

(
d̄kl
)
Kkl,ab

(
σ̄ij, d̄ij, r

c
kl,ab, r

d
kl,ab

)
. (2.26)

HereKkl,ab is the bonding volume and can be calculated with an appropriate integral.66,67

In order to reduce the dimension of the parameter space, in SAFT-γ Mie the bonding

volume Kkl,ab is taken as an adjustable parameter.

2.3. Thermodynamic relations and computational details

In this Section the thermodynamic relations between the Helmholtz free energy and other

macroscopic variables are established. The superscript “EoS” is added to all functions to

indicate that their functional form is determined by the particular equation of state used.
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Systems are here implicitly considered to be fluids in equilibrium.

2.3.1. A note on composition

Throughout this work when no polymer is present in a system, the composition is de-

noted with the vector y = {y1, y2, . . . yNC
} containing the number of moles yi of each

of the NC components. In mixtures containing polymers, a distinction is implemented

between “small” molecules (or solutes) and polymers by specifying composition with the

vector ns = {ns,1, ns,2 . . . ns,NC
} of moles of solutes and with the vector ν = {ν1, ν2 . . . }

of moles νi of the polymer molecules of type i. We do not specify the exact number

of types of polymer molecules as in most polymer systems branching and polydisper-

sity can lead to a huge number of structurally different polymer molecules in the same

system.

2.3.2. Derivatives of the Helmholtz free energy

In this work the SAFT-γ Mie Helmholtz free energy of a system at given T, V,ns,ν

conditions is computed using Clapeyron.jl,95 an open-source package for the calculation

of thermodynamic properties of fluids written in Julia.96 Additionally, all the derivatives

of the the Helmholtz free energy discussed here are obtained via symbolic differentiation

of the Helmholtz free energy enabled by Julia.

The chemical potential of a component in a mixture is defined as the partial derivative

of the system’s Helmholtz free energy with respect to the number of moles of that

component at constant temperature, volume and moles of all the other components. For

a generic polymer + solutes mixture, the chemical potential μEoS
s,i of a solute i is thus
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obtained as

μEoS
s,i =

(
∂AEoS

∂ns,i

)
T,V,ns\{ns,i},ν

, (2.27)

where the notation ns \ {ns,i} indicates that the moles of components j �= i are kept

constant. Similarly, the chemical potential of the polymer molecule of type i, μp,i, is

obtained via

μEoS
p,i =

(
∂AEoS

∂νi

)
T,V,ns,ν\{νi}

. (2.28)

In particular, if the polymer mixture is monodisperse (i.e., if only one well-defined type

of polymer molecule is present in the system) the polymer chemical potential μp is given

by

μEoS
p =

(
∂AEoS

∂ν

)
T,V,ns

. (2.29)

The pressure the mixture is obtained by taking the partial derivative of its Helmholtz free

energy with respect to volume at constant temperature and composition:

PEoS = −
(
∂AEoS

∂V

)
T,ns,ν

. (2.30)

2.3.3. Thermodynamic potentials

There are various thermodynamic potentials that can be defined by Legendre transfor-

mation of the Helmholtz free energy of a polymer + solutes mixture, AEoS, which is

usually written as a function of T, V,ns,ν. For example, by keeping the pressure P

instead of the volume V constant, we can define the function

GEoS,∗(T, P,ns,ν;V ) = AEoS(T, V,ns,ν) + PV, (2.31)
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and require that it is minimum with respect to V at fixed T, P,ns,ν:

min
V

GEoS,∗(T, P,ns,ν;V ) = GEoS(T, P,ns,ν), (2.32)

where

V = V EoS(T, P,ns,ν)��(
∂GEoS,∗

∂V

)
T,P,ns,ν

= P +

(
∂A

∂V

)
T,ns,ν

= 0

. (2.33)

In particular, GEoS(T, P,ns,ν) is defined as the Gibbs free energy of the system. Due

to the property of the Legendre transform, we have

V EoS(T, P,ns,ν) =

(
∂GEoS

∂P

)
T,ns,ν

. (2.34)

Similarly, if the pressure and the chemical potential of each of the solutes are specified

we can define the osmotic free energy ΩEoS,∗
s via

ΩEoS,∗
s (T, P,μs,ν;ns) = GEoS(T, P,ns,ν)−

NC∑
i=1

μs,ins,i. (2.35)

Minimisation of ΩEoS,∗
s with respect to the number of moles of each solute yields the

equilibrium number of solute molecules nEoS
s,i (T, P,μs,ν) – which can also be found by

differentiation of ΩEoS
s = minns Ω

EoS,∗
s as in 2.34. One should note that at equilibrium

we have

ΩEoS
s (T, P,μs,ν) =

∑
i

νiμ
EoS
p,i (T, P,μs,ν) (2.36)

due to the extensivity of the system, where the index i runs over all the chemically and

structurally distinct types of polymer molecules in the system.
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2.3.4. Pure-component saturation properties

Let us consider a fluid made of a single component. Thermodynamic stability requires

that at fixed temperature T , volume V and number of molecules N the Helmholtz free

energy of the system must be at a global minimum with respect to any variation of

the system’s properties compatible with the constraints T, V,N . In particular, if the

system is stable in a single homogeneous phase partitioning its volume and particles

in two homogenous sub-systems must lead to an increase in Helmholtz free energy,

i.e.,

AEoS(T, V,N) ≤ AEoS(T, V1, N1) + AEoS(T, V2, N2) (2.37)

for each pair of (N1, N2) and (V1, V2) such that V1 + V2 = V and N1 + N2 = N . A

necessary condition that follows from Equation 2.37 is that if a system is stable at T, V,N

conditions the Hessian matrix HA of its Helmholtz free energy

HA(T, V,N) =

⎡
⎣∂2AEoS

∂V 2 (T, V,N) ∂2AEoS

∂V ∂n
(T, V,N)

∂2AEoS

∂n∂V
(T, V,N) ∂2AEoS

∂n2 (T, V,N)

⎤
⎦ (2.38)

must be positive semi-definite, a condition that is called “local stability”. Since the ma-

trix is symmetrical due to Schwarz’s theorem∗, it is sufficient that

⎧⎪⎪⎨
⎪⎪⎩
(

∂2AEoS

∂V 2

)
T,N

= −
(

∂PEoS

∂V

)
T,N

≥ 0(
∂2AEoS

∂N2

)
T,V

=
(

∂μEoS

∂N

)
T,V

≥ 0

(2.39)

∗A sufficient condition for Schwarz’s theorem to hold is that all second partial derivatives of AEoS are
continuous.
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for the system to be locally stable. By defining ρ = N/V as the particle density and notic-

ing that at constant temperature the Gibbs–Duhem relation imposes

−NdμEoS + V EoSdP = 0 ⇔ ρ

(
∂μEoS

∂ρ

)
T,V

=

(
∂PEoS

∂ρ

)
T,V

(2.40)

both the conditions expressed in Equation 2.39 can be restated by the single equa-

tion (
∂PEoS

∂ρ

)
T

≥ 0, (2.41)

where we have used the fact that pressure and the chemical potential of a pure com-

pound only depend on density and temperature. At fixed temperature T , if the system

is locally stable (Equation 2.41) at all densities ρ it is also globally stable (Equation

2.37).

There exists a temperature Tc – known as the critical temperature† – above which homo-

geneous fluids are thermodynamically stable at all (V, n) and therefore do not phase sepa-

rate in a gas and liquid phase. Fluids above their critical temperature are deemed “super-

critical”. In the present work, the critical temperature is found using the Clapeyron.jl

package95 via solution of the following pair of non-linear equations:

(
∂2AEoS

∂V 2

)
T,N

=

(
∂3AEoS

∂V 3

)
T,N

= 0 (2.42)

for the critical temperature Tc and volume Vc.

At all temperatures lower than Tc there exists a range of densities in which the system

can lower its Helmholtz free energy by separating in a gas phase with density ρg and

a liquid phase with density ρl > ρg. At each temperature T , since the total Helmholtz

free energy of the system must be stationary with respect to exchanges of volume and

†To be precise, the critical temperature of liquid-gas coexistence
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particles between the two phases we must have

⎧⎪⎨
⎪⎩

PEoS(T, ρg) = PEoS(T, ρl) = Psat(T )

μEoS(T, ρg) = μEoS(T, ρl) = μsat(T )

, (2.43)

where Psat(T ) is referred to as saturation pressure or vapour pressure. Solution of this

pair of non-linear equations yields the density of the gas (ρg(T )) and liquid (ρl(T ))

in equilibrium at temperature T . In this work, the saturation pressure and densi-

ties of sub-critical fluids are calculated using the Clapeyron.jl package which imple-

ments non-linear solvers with appropriate guesses to solve the pair of equations in

2.43.

2.3.5. Phase equilibrium in mixtures

At fixed temperature T and pressure P , a mixture of NC components can phase separate

in a number Np of phases bounded by the Gibbs phase rule:

Np ≤ NC + 2. (2.44)

At equilibrium at fixed temperature, pressure and overall composition, the chemical po-

tential of each component must be equal in all phases and the Gibbs free energy of the

overall system must be at a global minimum. In this work, the Helmholtz free energy

Langrangian dual (HELD) algorithm97 is used to find the number and composition of

each phase at equilibrium once temperature T , pressure P and overall system compo-

sition are specified – the so-called TP flash calculation. The algorithm ensures that

the chemical potential of each species is the same in each phase but does not ensure
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convergence to a global minimum‡.

Dew and bubble point calculations

The dew pressure can be defined as the pressure at which the first droplet of liquid

forms upon increasing pressure of a homogeneous gas mixture at fixed temperature

and overall composition. Similarly, the bubble pressure Pbub can be defined at each

temperature and overall composition as the pressure at which the first bubble of gas

phase forms upon decreasing the pressure of a homogeneous liquid mixture. In this

work, both the bubble pressure and dew pressure of a systems are calculated using

the Clapeyron.jl package and the solutions are checked for consistency using the HELD

algorithm.

A semi-open perspective for nonvolatile components

Polymers possess extremely low volatility, meaning that their concentration in gas phases

can normally be neglected. For similar reasons, polymer + solutes mixtures are expected

to have an infinitesimally small dew pressure at most temperatures as long as the amount

of polymer is not also negligible. As a consequence, performing a TP flash calculation

for a polymer + solutes mixture at given temperature, composition and sufficiently low

pressure results in the equilibrium between a liquid polymer-rich phase and an external

gas phase that can be considered devoid of any polymer molecules. Furthermore, in

many applications the fluids in contact with polymer samples can be considered to be

effectively infinite in extension.

In order to simplify calculations, it is therefore convenient to force the concentration of

the polymer in the gas phase to be zero. At fixed temperature, pressure and composition

‡However, as noted by the authors,97 it is quite unlikely that the algorithm terminates on a local
minimum.
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y the chemical potential of the solutes μs = μEoS
s (T, P,y) is thus fixed by the gas

phase and we can consider the polymer a semi-open system allowing exchanges of solute

molecules only. The equilibrium number of particles of solute i in the polymer – nEoS
s,i –

can thus be found as a function of T, P,μs,ν via minimisation of the osmotic free energy

ΩEoS,*
s (Section 2.3.3).

2.4. Parameter estimation

It is customary in SAFT-γ Mie to employ a top-down parametrization procedure, which

involves optimising a set of like and unlike group parameters in order to reproduce ex-

perimental measurements of macroscopic properties of systems containing the target

groups. Fully-predictive bottom-up parameterisation with ab initio methods is possible

for quasi-spherical molecules and dimers98 but large deviations between predictions and

experimental data are expected for associating compounds and highly asymmetric com-

ponents (such as polymers). Therefore, in the present work all SAFT-γ Mie parameters

are found by minimisation over the free parameter space of an appropriate objective

function:

fobj =

Nobj∑
i=1

ωi

NSi∑
j=1

NDij∑
k=1

[
uexp
ijk − ucalc

ijk

Sijk

]2

, (2.45)

where i = 1, ..Nobj iterates over macroscopic thermodynamic properties described by

the experimental data, j = 1, ..NSi
over the systems that exhibit the property i and

k = 1, ..NDij
over the experimental data points for the property i and the system j; ad-

ditionally, each property i can be assigned – arbitrarily or through a Pareto optimization

– an appropriate weight ωi in order to give more or less importance to different proper-

ties. uexp
ijk and ucalc

ijk are, respectively, the kth experimental value of property i of system

j and the corresponding calculated one as a function of the thermodynamic conditions

and of the parameter set. The parameter S2
ijk accounts for the uncertainty in the ex-
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perimental data and can be set to “constant” or “constant-relative”, i.e. S2
ijk = (0.01)2

or S2
ijk =

(
0.01 · uexp

ijk

)2
, respectively. In this work the weights are chosen so that each

data point has the same weight in the objective function (i.e., wi = 1 for all i), while

the uncertainties are set to “constant-relative” which corresponds to assuming a uniform

distribution in the relative uncertainty of the experimental data.

Normally, pure-component properties such as saturation densities and vapour pressure

are included in the parameterisation whenever the like interaction parameters of a group

are missing. These parameters are the “identity card” of SAFT-γ Mie groups and must

always be found via a parameter estimation procedure. The unlike interaction param-

eters of a group pair can be estimated by using combining rules (cf. Appendix A)

or by including pure component and/or mixture properties – such as the fluid phase

behaviour or excess properties – of systems containing the target groups in the param-

eterisation.

2.5. Optimized SAFT-γ Mie parameters

In this Section all the SAFT-γ Mie parameters of the groups used in this work are

listed. For original like and unlike group parameters the comparison between SAFT-γ

Mie predictions and the experimental data used in the parameterisation procedure of

Section 2.4 is shown.

2.5.1. Solute models

This subsection contains the SAFT-γ Mie molecular models and corresponding group

parameters of the solutes – i.e., small molecules – considered in the present work. All

the parameters are reported in Tables 2.1, 2.2 and 2.3.

44



2.5. OPTIMIZED SAFT-γ MIE PARAMETERS

Table 2.1.: SAFT-γ Mie like interaction parameters and molecular model for all the groups
used in the present work. All the symbols are defined in Section 2.1. TW indicates that the
molecular model and/or parameter set has been developed in this work. The bottom rows are
groups that in the present work only appear as part of polymers (i.e., PP and PEG).

Group k ν∗k Sk σkk (Å) εkk/kB (K) λa
kk λr

kk NST,k nk,H nk,e1 Ref

CH3 1 0.57255 4.0772 256.77 6.0000 15.050 67
CH2 1 0.22932 4.8801 473.39 6.0000 19.871 67
CH 1 0.07210 5.2950 95.621 6.0000 8.0000 68
C 1 0.04072 5.6571 50.020 6.0000 8.0000 68
aCH 1 0.32184 4.0578 371.53 6.0000 14.756 1 0 1 68
CH2= 1 0.44887 4.3175 300.90 6.0000 20.271 68

CHeth
2 = 1 0.44887 4.3175 300.90 6.0000 20.271 TW

CH= 1 0.20037 4.7488 952.54 6.0000 15.974 68
cCH2 1 0.24751 4.7852 477.36 6.0000 20.386 68
H2O 1 1.00000 3.0063 266.68 6.0000 17.020 2 2 2 99
CH4 1 1.00000 3.7370 152.58 6.0000 12.504 100
aCCH3 1 0.31655 5.4874 651.41 6.0000 23.627 101
CH2OH 2 0.58538 3.4054 407.22 6.0000 22.699 2 1 1 101
CHO 2 0.61331 3.0900 311.36 6.0000 8.1793 TW

CH2
OE 1 0.22932 4.8801 473.39 6.0000 19.871 94

cO 1 0.47500 3.0000 586.52 6.0000 26.870 1 0 1 94
PPmono 1 1.00000 4.1030 276.21 6.0000 10.938 73
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Table 2.2.: SAFT-γ Mie unlike potential well depth εkl and repulsive exponent λr
kl for all the

pairs of groups needed to model systems considered in the present work. CR indicates the use
of combining rules (cf. Appendix A). TW indicates parameters developed in this work.

Group k Group l εkl/kB (K) λr
kl Ref Group k Group l εkl/kB (K) λr

kl Ref

CH3 CH2 350.77 CR 67 CH2 CH4 243.13 12.642 70
CH3 CH 387.48 CR 68 CH2 CHO 313.00 CR TW
CH3 C 339.91 CR 68 CH2 CH2

OE CR CR 94
CH3 aCH 305.81 CR 68 CH2 PPmono 359.34 CR TW
CH3 CH2= 333.48 CR 68 CH2= CH 426.76 CR 68

CH3 CHeth
2 = 333.48 CR TW CH2= CHeth

2 = CR CR TW
CH3 CH= 252.41 CR 68 CH2= CH= 275.75 CR 68

CH3 cCH2 355.95 CR 68 CHeth
2 = CH 426.76 CR TW

CH3 CHO 238.23 CR TW CH2
OE cO 325.94 10.054 94

CH3 PPmono CR CR 73 CH2
OE CH2OH 404.74 CR 94

CH2 CH 506.21 CR 68 CH2
OE H2O 283.38 11.885 94

CH2 C 300.07 CR 68 cO CH2OH 606.80 CR 94
CH2 aCH 415.64 CR 68 cO H2O 350.09 14.872 94
CH2 CH2= 386.80 CR 68 CH2OH H2O 353.37 CR 94

CH2 CHeth
2 = 362.79 CR TW CHeth

2 = CH= 275.75 CR TW
CH2 CH= 459.40 CR 68 CH2 cCH2 471.85 CR TW
CH2 aCCH3 525.13 CR TW aCCH3 PPmono 374.72 CR TW
aCH PPmono CR CR TW cCH2 PPmono 359.53 CR TW

Table 2.3.: SAFT-γ Mie association energy εHB
kl,ab and bonding volume KHB

kl,ab for all the pairs
of groups needed to model systems considered in the present work.

Group k Group l site a site b εHB
kl,ab/kB (K) KHB

kl,ab (Å
3) Ref

cO CH2OH e H 1472.5 433.15 TW
cO H2O e H 2193.2 50.01 TW

H2O CH2OH
e
H

H
e

621.7
2153.2

425.00
147.40

101

H2O H2O e H 1985.4 101.69 99
CH2OH CH2OH e H 2097.9 62.31 101
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Linear alkanes

Linear n-alkanes are modelled as composed of two united-atom methyl groups CH3 and

a variable number of united-atom methylene groups CH2. For example, n-butane is

modelled as composed of two CH3 and two CH2 groups. The like and unlike parameters

of the two groups were optimised by Papaioannou and coworkers67 to reproduce pure

component and mixture properties of linear alkanes. Methane is modelled as a single

CH4 group following Burger and coworkers.70

Branched alkanes

Depending on their topology, branched alkanes are modelled with a variable num-

ber of methyl and methylene groups in addition to a variable number of the ternary

united-atom sp3 carbon group (CH) and quaternary carbon group (C). For example,

isopentane is composed of three CH3 groups, one CH2 group and one CH group. The

SAFT-γ Mie parameters of the CH and C groups were developed by Dufal et al.68

to reproduce pure component and mixture properties of systems containing branched

alkanes.

We stress that SAFT-γ Mie does not distinguish between components with the same

groups but different group connectivity due to the TPT1 approximation of the chain

term (cf. Section 2.2). For example, 2-methylhexane and 3-methylhexane cannot be

distinguished if only the four groups mentioned are used. In general, molecules possessing

the same functional groups but different spatial arrangement and group connectivity

can only be separated by defining ad hoc second-order groups that account for the local

environment of each group in different molecules.102

47



2.5. OPTIMIZED SAFT-γ MIE PARAMETERS

Alk-1-enes

Alk-1-enes are modelled in SAFT-γ Mie using the aforementioned methyl, methylene

groups and two additional united-atom sp2 carbon groups: the CH2= group and the

CH= group. For example, 1-hexene is modelled using three CH2 groups, one CH3 group,

one CH2= group and one CH= group. The like and unlike SAFT-γ Mie parameters for

these groups were proposed by Dufal et al.68 and are optimized to reproduce pure

component and VLE data of the series of 1-alkenes and mixtures of alkanes and alkenes.

The C= group developed by the same authors can be used to model branched alkanes,

which however are not studied in this work.

It is questionable whether the same SAFT-γ Mie parameter set can describe both long

1-alkenes and its shortest representatives like ethylene and propylene. For example, the

electronic environment around the two sp2 carbons of ethylene should be noticeably

different than in longer alkenes resulting in a different effective dispersion potential

around the CH2= group. In general, we expect that if a sufficiently high number of

series members (labelled by n) are included in a parameterisation procedure (cf. Section

2.4) in which the same groups are used for all members, the parameters become biased

to reproduce the properties of the longer molecules67,68 due to the limiting behaviour

of many thermodynamic properties as n → ∞. After comparison with literature data,

it was found that the solubility of ethylene in tetracontane (i.e., the n-alkane with 40

carbons) is over-predicted using the current parameter set (cf. Figure 2.3a) whereas the

agreement is much better (cf. Figure 2.4) for mixtures of longer 1-alkenes (propylene

and 1-butene) and n-alkanes (n-hexane and n-heptane).

In order to adjust the least number of parameters, we define here the new second-

order group CHeth
2 = to model ethylene. This group possesses the same like and unlike

interaction parameters as its previously-defined counterpart (CH2 =), with the exception

of its unlike dispersion energy εkl with the methylene group (CH2) which is optimised
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(a) (b)

Figure 2.3.: Bubble pressure curves of ethylene + tetracontane (a) and cyclohexane + eicosane
(b) mixtures. The solid curves represent SAFT-γ Mie calculations with the updated unlike
interaction well-depths between the CH2 group and two groups composing ethylene and cyclo-
hexane ( CHeth

2 = and cCH2, respectively – see Table 2.2 ), while the dashed curves calculations
with the parameter set developed by Dufal and coworkers.68 Experimental data are shown with
markers and are taken from de Loos and coworkers103 and Gomez and coworkers.104

to reproduce the solubility of ethylene in tetracontane (Figure 2.3a). This ensures that

this modification only affects the properties of ethylene-containing mixtures and not of

all the other compounds containing the CH2 and CH2 = groups. The optimal value for

the unlike dispersion energy is found to be 362.79 K, as opposed to the value of 386.80

K used for the CH2= group of longer alk-1-enes (Table 2.2).

Ring molecules

Similarly, due to the approximations of TPT1 SAFT-γ Mie cannot properly account

for the formation of rings from a monomer fluid as all components are assumed to be

linear chains. Though some effort has been recently made to include ring formation in

SAFT,107 the version implemented here does not account for these effect. As a result,

the methylene group of linear alkanes (CH2) cannot be used to model cyclohexane, for

which a different group (cCH2) must be defined. Cyclohexane is therefore modelled as
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(a) (b)

Figure 2.4.: Bubble pressure curves of (a) 1-propylene + n-hexane and (b) 1-butene / n-heptane
mixtures. The solid curves represent SAFT-γ Mie calculations, while markers experimental
data from Mallepally and coworkers105 and Thoedtmann and coworkers,106 respectively. Notice
that propylene and longer alk-1-enes are modelled using the original CH2= group as opposed
to the newly-defined CHeth

2 = group which is used only for ethylene.

a collection of 6 united-atom cCH2 groups, whereas benzene as a collection of 6 united-

atom aromatic carbon groups (aCH) and toluene as 5 aCH groups and one coarse-grained

aCCH3 group.

The like and unlike SAFT-γ Mie parameters of the cCH2 and aCH groups were de-

veloped by Dufal and coworkers68 to model pure component and mixture properties of

cyclohexane, benzene and their mixtures with a variety of organic compounds. After

comparison with experimental data it was found that the interaction between the cCH2

and CH2 had to be modified slightly from 469.67 K to 471.85 K to reproduce the sol-

ubility of cyclohexane in eicosane (see Figure 2.3b). The like SAFT-γ Mie parameters

involving the aCCH3 group were proposed by Papaioannou and coworkers100 to repro-

duce the pure component properties of toluene. Some of its unlike parameters have

been proposed later by Hutacharoen and coworkers101 to reproduce pure component and

mixture properties of various alkanes and alkanols.
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Figure 2.5.: Solubility of toluene in molten polyethylene of mean molecular weight Mn = 1710
g/mol, Mn = 6220 g/mol and Mn = 100, 000 g/mol at 120 °C. Solid curves are SAFT-γ Mie
calculations for monodisperse PE with the optimised εkl between toluene’s aCCH3 group and
PE’s CH2 group (cf. Table 2.2), while dashed curves represent calculations with the parameter
proposed by Hutacharoen and coworkers.101 Symbols are experimental data from Wohlfarth
and coworkers.108

However, no reference is made regarding the inclusion of mixture properties of toluene

and alkanes in the parameterisation procedure. As shown in Figure 2.5, the SAFT-γ Mie

predictions overestimate the solubility of toluene in molten PE using the unlike energy

well depth εkl/kB = 569.18 K between the aCCH3 group and the CH2 group developed

by Hutacharoen and coworkers (dashed curves). This parameter is therefore changed to

525.18 K (solid curves in Figure 2.5; cf. Table 2.2). These modifications ensure that

the fluid-phase behaviour or cyclohexane + PE and toluene + PE mixtures is predicted

accurately by our SAFT-γ Mie model (cf. Section 2.5.2).

Water

Water is modelled as a single Mie monomer (H2O) decorated with two association sites

of type e and two sites of type H representing the two lone electron pairs on the oxygen

and the two hydrogens, respectively. All of its like dispersion and association parameters
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(a) (b)

Figure 2.6.: Pure component properties of the series of linear aldehydes. Solid curves represent
SAFT-γ Mie calculations with the original parameter set reported in Tables 2.1 and 2.2, while
symbols experimental data.109–126 a) Vapour pressure b) Liquid density at saturation

(Tables 2.1, 2.2 and 2.2) were developed by Dufal and coworkers.99

Linear aldehydes

Linear aldehydes are modelled as linear chains made of a methyl group CH3, a variable

number of methylene groups CH2 and a newly-defined terminal carbonyl group CHO.

For example, pentanal is modelled as one methyl group, three methylene groups and

a terminal carbonyl group. The group CHO is modelled as made of two identical seg-

ments (ν∗
k = 2). As an example of a “standard” SAFT parameterisation procedure,

the like SAFT-γ Mie parameters of the newly-defined CHO group and its unlike energy

parameters with the CH2 and CH3 group are optimised to reproduce vapour pressure

and saturation liquid density of the series of aldehydes, as well as the binary VLE prop-

erties of mixtures of linear aldehydes and n-alkanes. As seen in Figures 2.6 and 2.7,

the optimal parameter set provides an accurate representation of the experimental data

included in the parameterisation procedure.
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(a) ethane + propanal (b) butanal + heptane

(c) propane + butanal (d) pentane + propanal

Figure 2.7.: Isothermal vapour-liquid diagram of mixtures of linear aldehydes and n-alkanes.
Solid curves represent SAFT-γ Mie calculations, while symbols experimental data.127–129
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2.5.2. Polymer models

This subsection contains the SAFT-γ Mie models of the polymers considered in the

present work, i.e., PE, PEG and PP. All the relevant parameters are reported in Tables

2.1, 2.2 and 2.3. Due to the inability of SAFT-γ Mie to deal with random branching,

every polymer considered here is a linear chain of well-defined repeating units which

can be supplemented by two end units. Both the repeating and end units are simply

defined in terms of the number and types of SAFT-γ Mie groups they are composed of.

Therefore, by calling νR
k,p, ν

E
k,p the number of groups of type k in the polymer’s repeating

and end units we can write

νk,p = 2νE
k,p + nνR

k,p, (2.46)

where νk,p is the number of groups of type k that defines the polymer molecule in the

SAFT-γ Mie framework and n is the degree of polymerisation. Furthermore, in this work

the polydispersity of the polymer samples is entirely neglected. Systems containing a

given polymer are therefore assumed to be composed of polymer molecules with the

same degree of polymerisation n. Given the mean molecular weight of a polymer Mn,

the degree of polymerisation is thus found via

n =

[
Mn − 2

∑
k wkν

E
k,p∑

k wkνR
k,p

]
, (2.47)

where [x] denotes the nearest integer of x and wk the molar mass of group k and the sum

runs over all the distinct types of SAFT-γ Mie groups in the system.

Neglecting random branching and polydispersity should have a limited effect on the

vapour-liquid equilibrium properties of polymer mixtures at fixed mass fraction fraction

of polymer.94,108,130,131 For example, as Figure 2.5 suggests the solubility of toluene

in molten monodisperse PE quickly approaches a master curve for increasing Mn. In

general, we expect that the VLE properties of polymer mixtures should depend only
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slightly on the polymer’s molecular weight distribution as long as the concentration of

chain ends remains low – i.e., at moderate to high Mn.

Branching and polydispersity can however strongly influence liquid-liquid phase sepa-

ration in polymer + solute mixtures, as seen both experimentally and confirmed by

theoretical calculations and computer simulation.73,94,132 Furthermore, these features

affect out-of-equilibrium properties of polymer systems such as their melt viscosity and

crystallisation rates.60,133–135 Different molecular weight distributions or branching can

therefore lead to very different crystallinity and microstructure in semi-crystalline poly-

mer samples. This is exemplified by the family of polyethylenes, whose crystallinity at

room temperature can vary from about 20% for highly branched samples (LDPE) up to

around 80 % for non-branched samples (HDPE).136 Therefore, in the present work all of

these effects are neglected at the EoS level but indirectly influence the fluid solubility in

semi-crystalline polymers by determining their sample-specific properties (cf. Chapter

3).

It is critical to ensure that the equation of state and its parameters properly represent the

vapour-liquid equilibrium properties of each polymer + solute mixture. An inaccurate

model at the EoS level can introduce systematic errors in the solubility predictions in

semi-crystalline polymers, as the properties of the amorphous domains are written in

terms of those of a subcooled polymer melt described by the EoS (cf. Chapter 3).

In turn, this can lead to systematic bias in the sample-specific parameters of a semi-

crystalline polymer, which are also optimised to reproduce solubility data. For each

polymer listed below, the accuracy of the SAFT-γ Mie predictions for molten polymer

+ solute mixtures must therefore be tested before using the composite model described

in Chapter 3.
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PE

Polyethylene (PE) is modelled as a linear sequence of CH2 groups (i.e., as a long n-

alkane; Figure 2.1). The end units, when present, are two CH3 groups. Although the

transferability of groups developed for short molecules to long polymers is not guaranteed

in SAFT-γ Mie due to the approximations of TPT1 (cf. Section 2.2), using the same

model for short n-alkanes and PE provides semi-quantitative predictions for the solubility

of pentane in PE (bubble curves) and the UCST of propane + hexacontane mixtures.67

In addition, the SAFT-γ Mie parameters between the CH2 group and all of other SAFT-

γ Mie groups needed to model solute + polyethylene mixtures in the present work have

been explicitly optimised to reproduce properties of systems containing n-alkanes and/or

PE (cf. Section 2.5.1). We note that this procedure can be avoided by defining a second

order polymer group CH2
PE and separately develop part of its parameter set by including

only polymer properties in the parameterisation procedure. This is what was done for

the PP and the PEG groups (see below).

It is important to note that no distinction is made between randomly branched PE – e.g.,

low- and medium-density PE (LDPE and MDPE, respectively) – , regularly branched

PE copolymers – i.e., linear low-density PE (LLDPE), obtained by copolimerisation

of ethylene with other alk-1-enes – and linear PE – i.e., high-density PE (HDPE). It

could be possible to model LLDPEs such as polyethylene-co-butene or polyethylene-

co-hexene by considering bigger repeating units including a variable number of CH2

groups, a CH group and a CH3 group. However, we expect that the effect of these

branches on fluid-phase VLE properties should be minor as they normally constitute

only a fraction of the repeating units137,138 and their chemical nature is very close to

that of the backbone.
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PP

In this work, polypropylene (PP) is modelled as a homonuclear chain – i.e., composed of

a single repeating monomer – of coarse-grained groups CH2CH(CH3) which are hereafter

named PPmono (Figure 2.1). This molecular model and its parameters were proposed

by Fayaz-Torshizi and Müller73 to reproduce the saturation liquid density and vapour

pressure of short, branched alkanes. However, the authors did not propose any unlike

interaction parameters. Since in Chapter 3 the solubility of n-hexane, n-heptane, cyclo-

hexane and toluene in semi-crystalline PP is predicted, it is important to ensure that

the SAFT-γ Mie model accurately reproduces the VLE properties of fluid mixtures of

these solutes and polypropylene.

To this end, the SAFT-γ Mie predictions are compared with experimental solubility data

of the four compounds in atactic PP (aPP). This PP isomer lacks regular sterochemical

configuration of the side-chain methyl groups and is practically fully amorphous at all

temperatures. In particular, at room temperature this polymer does not form a glass

but rather an equilibrium subcooled melt – as confirmed by its waxy appearance139 –

and therefore constitutes an ideal system for EoS testing in that temperature range

(where stereoregular PP samples would invariably be semi-crystalline). The experimen-

tal data was kindly provided by Dr. J. Ramadani and Prof. D. Williams. (Imperial

College London, Department of Chemical Engineering). The unlike energy well depths

εkl between the PPmono group and the CH2 group (n-hexane, n-heptane), the cCH2

group (cyclohexane) and the aCCH3 group (toluene) are therefore optimised (via min-

imisation of 2.45) to reproduce the solubility of the respective compounds in aPP. The

optimised parameters can be found in Tables 2.2, whereas comparison with experimen-

tal data is shown in Figure 2.8. Notice that the unlike dispersion energies reported in

previously published work139 are wrong due to a bug in the code calculating combining

rules. Errata corrige was submitted to the Journal of Physical Chemistry B to amend
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Figure 2.8.: Solubility of n-hexane, n-heptane, cyclohexane and toluene at 25 °C in atactic PP
as a function of the ratio of pressure and the partial pressure of each respective substance. The
calculations shown use the optimised unlike energy well depths reported in Table 2.2 instead
of combining rules. aPP is a fully amorphous, waxy solid at room temperature and should
therefore be described accurately by a fluid-phase EoS such as SAFT-γ Mie.

the inaccuracy.

PEG

Polyethylene glycol (PEG) is a polymer characterised by the oxyethylene repeating unit

(CH2CH2O). The name polyethylene oxide (PEO) is sometimes given to high-molecular

weight PEG molecules. By employing a united-atom modelling approach, in the present

work the oxyethylene repeating unit is split in two “oxyethylene” methylene groups

CH2
OE and an oxygen group cO (Figure 2.1). Both of these groups were defined by the

present author in his MSc work recently submitted for publication.94 The CH2
OE group

is a second-order group accounting for the presence of the electronegative oxygen on the

polarisability and therefore dispersion potential of the CH2 group found on n-alkanes.

Therefore, the CH2
OE has the same like SAFT-γ Mie parameters of the CH2 group but

potentially different unlike parameters with other groups.

The oxygen group cO represents instead the oxygens in linear polyethers located more
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than one carbon away from chain ends and is decorated by one association site of type

e. Depending on the polymerisation conditions, the ends of PEG can be hydroxil (OH)

or methyl (CH3) groups. For hydroxy-terminated PEG molecules two CH2OH groups

are added to the polymer’s definition. This group was developed by Hutacharoen and

cowokers101 to represent pure component and mixture properties of primary alcohols.

Methyl-terminated PEGs are not considered here but can be modelled using the methyl

CH3 end group.

The like SAFT-γ Mie parameters of the CH2
OE and cO groups and their unlike param-

eters with the H2 and CH2OH group are reported in Tables 2.1, 2.2 and 2.3 and have

been optimised to reproduce the closed-loop miscibility gap observed in the orthobaric

phase diagrams of PEG + water mixtures.94 In Figure 2.9 the model’s predictions for

the solubility of water vapour in molten PEG as a function of the water pressure (bubble

pressure curves) are compared to experimental data by Malcolm and Rowlinson140 and

Herskowitz and Gottlleb.141 The agreement between the predictions and the experi-

mental data is excellent, especially considering that these properties were not included

in the parameterisation procedure. In the present work, the parameter set developed

previously is used without modifications since only mixtures of water and PEG are

considered.

Concluding remarks

In this Chapter the SAFT-γ Mie equation of state has been presented. In Sections

2.2 and 2.3 the formal aspects of theory and its link to equilibrium thermodynamic

properties of fluids have been discussed. In Sections 2.4 and 2.5 we have shown how a

top-down parameterisation procedure can be employed to develop transferable SAFT-

γ Mie group parameters that allow prediction of a range of fluid-phase properties of
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(a) (b)

Figure 2.9.: Solubility of water vapour in molten PEG (symbols) and corresponding SAFT-γ
Mie theoretical calculations (solid curves) using the parameters provided in Tables 2.1, 2.2 and
2.3 as a function of pressure. The vertical dashed curves correspond to the vapour pressure of
water at the respective temperatures. (a) Data from Malcolm and Rowlinson140 (Mn = 3, 000
g/mol) (b) Data from Herskowitz and Gottlleb141 at 40 °C (Mn = 600 g/mol) and 60 °C
(Mn = 6, 000 g/mol).

both small molecules and polymers. In particular, we have presented molecular models

and corresponding optimised SAFT-γ Mie parameters for solutes (n-alkanes, 1-alkenes,

cyclohexane, toluene, aldehydes and water) and polymers (PE, PP, PEG) that will

be further investigated in the current work. In Chapter 4, the accurate description of

mixtures of small molecules and liquid polymer melts provided by SAFT-γ Mie is coupled

with a methodology developed in Chapter 3 to describe fluid sorption and a range of

other thermodynamic properties of semi-crystalline polymers.
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3. Statistical-Thermodynamics of

Semi-Crystalline Polymers

Chapter overview

This Chapter is structured as follows. In Section 3.1 the latest experimental evidence

on the microstructure and thermodynamic properties of semi-crystalline polymers is

reviewed, forming the basis of our subsequent discussion. In Section 3.2, a general

formalism to describe the equilibrium between small-molecule fluids and semi-crystalline

polymers is presented after a review of previous literature. Finally, in Section 3.3 a new

thermodynamic model is developed to address incompatibilities between state-of-the-art

theories of fluid sorption in semi-crystalline polymers and our current understanding of

their structure and thermodynamics.

3.1. Structure and thermodynamics

This Section opens with an overview of the morphology and thermodynamic stability of

polymer crystals (Section 3.1.1). In Section 3.1.2, the microstructural features of semi-

crystalline polymers and basics of crystallisation theory are discussed. Section 3.1.3 is

61



3.1. STRUCTURE AND THERMODYNAMICS

dedicated to the description of polymer chain topology in the inter-lamellar domains,

supplemented by a survey of relevant theoretical and computational work. In Sections

3.1.4 and 3.1.5 the concepts of crystal-fixed vs crystal-mobile polymers and of free vs

constrained amorphous domains are introduced. The Section concludes with an overview

of experimental methods to determine the crystallinity of a sample.

3.1.1. Stability of polymer crystals

Elementary thermodynamic considerations suggest that a melt of monodisperse and

stereoregular homopolymers at fixed pressure P should freeze at a temperature T 0
m > 0

K called the freezing point – in principle a function of molecular weight and pressure – in

a well-defined crystalline phase. For polymer melts, the equilibrium crystalline structure

is an extended-chain crystal142,143 in which polymer chains are aligned along the [001]

crystallographic axis∗. Preparing such crystal structures however requires high tempera-

tures and pressures, an isothermal crystallisation and sufficiently flexible polymers. For

example, extended-chain PE crystals with an hexagonal unit cell were first prepared by

Wunderlich and coworkers145 at pressures up to 5.3 katm. At lower (i.e., ambient) pres-

sures, the stable crystal structure of PE was later found to be orthorombic,146,147 which

is the same structure observed in semi-crystalline PE. Aside from PE, other polymers

such as PEO,148–152 PTFE153 and PET154 are known to form extended-chain crystals

under the right conditions.

Nevertheless, under most crystallisation conditions homopolymers do not form extended-

chain crystals. Rather, by regularly folding several times they form quasi -2D crystalline

structures called lamellae whose lateral dimensions (of the order of micrometers) are

much bigger than their thickness lc – known as the lamellar thickness –, which can vary

∗One should note that the polymer chains can form helices around the [001] axis such as in the
monoclinic α form of isotactic PP144
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from a few to tens of nanometers depending on the polymer considered.155,156 Since

chain folding occurs entirely on the two major surfaces of the lamellae, we denote the

latter “fold surfaces”. Conversely, the remaining surfaces are denoted “lateral lamellar

surfaces”.

The first strong evidence that chain folding was the preferential mechanism of poly-

mer crystallisation came in 1957157–159 with the successful observation of solution-grown

PE crystals formed by individual polymer molecules. However, the formation of these

structures was expected as single-chain extended-chain crystals cannot be formed. On

the other hand, it was initially thought that crystals in melt-crystallised samples were

formed by bundles of different polymer chains rather than by a smaller number of chains

folded multiple times – the so-called “fringed-micelle” morphology. In the 1960s, theoret-

ical analysis by Flory,160 Keller161 and others found the fringed-micellar configuration

to be thermodynamically unfavourable, leading to widespread recognition that semi-

crystalline polymers possess a folded lamellar morphology.

We shall here apply simple thermodynamic considerations to establish the range of

stability of pure lamellar crystals. At fixed temperature T and pressure P , the sign of

the Gibbs free energy difference ΔG between a lamella of thickness lc and an equivalent

mass of molten polymer† determines whether the lamella is thermodynamically stable

(ΔG < 0) or whether it melts (ΔG > 0). This quantity can be written as a sum of a

bulk term and a surface term:28,162

ΔG = ΔGcrys +ΔGsurface. (3.1)

Here, ΔGcrys is the Gibbs free energy difference between equivalent masses of extended-

chain crystalline polymer and molten polymer. By using the fact that the Gibbs free

†It is more convenient to reason in terms of mass as individual polymer molecules are in general part
of multiple lamellae.
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energy G of the extended-chain crystal and of the melt is the Legendre transform of

their respective enthalpy H, the following holds:

(
∂ (ΔGcrys / T )

∂ (1 / T )

)
P

= ΔHcrys. (3.2)

Since at the equilibrium melting point T 0
m we have ΔGcrys(T

0
m) = 0, by expanding

ΔGcrys/T around T = T 0
m at first order in powers of 1/T we then obtain

ΔGcrys(T, P ) ≈ ΔH0
crys(P )

(
1− T

T 0
m

)
, (3.3)

where ΔH0
crys(P ) = ΔHcrys(T

0
m, P ). Due to the similarity between the density of the

crystalline and molten polymer, pressure has a negligible influence on these quanti-

ties at low to moderate pressure and is therefore neglected in the following develop-

ment.

Conversely, ΔGsurface represents the interfacial free energy contribution due to the exis-

tence of the fold surfaces and the lateral lamellar surfaces. Since the lateral dimensions

of the lamellae are generally much bigger than the lamellar thickness, the surface free

energy is dominated by the contribution of the fold surface:

ΔGsurface ≈ 2σeAΣ. (3.4)

Here, AΣ represent the area of one of the two fold surfaces of the lamella. The fold surface

free energy per unit area, σe, originates from the entropic and energetic penalties to chain

folding28,142,160,163–167 as well the accumulation of topological defects such as chain ends

and entanglements in the amorphous domains168–172 (See Section 3.2).

By combining 3.4 with the preceding equations and dividing by the polymer mass, we
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obtain

Δg(T ) ≈ −Δh0
m

(
1− T

T 0
m

)
+

2σe

ρclc
, (3.5)

where ρc is the crystal density, Δg the specific Gibbs free energy of formation of a lamella

and Δh0
m = −Δh0

crys the specific enthalpy of fusion of an extended chain crystal at its

melting point. We have also used the fact that the volume Vc of the lamella can be

approximated by Vc ≈ AΣlc. A lamella of thickness lc will therefore melt at temperature

Tm given by

Tm = T 0
m

(
1− 2σeT

0
m

ρcΔh0
mlc

)
. (3.6)

This is sometimes referred to as Gibbs–Thompson equation,156 even though the term

more appropriately refers to equations relating the free energy and the curvature of

interfaces.173,174 In Equation 3.6:

• the crystal density ρc does not vary significantly with temperature or pressure;

• Δh0
m and T 0

m depend weakly on pressure and approach well-defined limits as the

molecular weight increases;169

• the fold free energy is approximately constant for a given polymer at fixed stereo-

chemical arrangement.156,162,165

As a result, the melting point of lamellar crystals of a given polymer sample lies on a

straight line in the Tm versus l−1
c plot which intersect the y axis (lc → +∞) at Tm = T 0

m.

Similarly, at every temperature T < Tm only lamellae with thickness greater than a

minimum l∗c given by

l∗c(T ) ≈
2σeT

0
m

Δh0
mρc (T

0
m − T )

. (3.7)

are stable with respect to the molten state. One should note that although this argument

was initially made for the crystallisation of homopolymers, copolymers that containing

non-crystallisable units (such as polyethylene-co-octene156) display a similar behaviour
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with the caveat that the melting point of the extended-chain crystal, T 0
m, is lowered by

the presence of non-crystallisable monomers.170,175

3.1.2. Microstructure and crystallisation

While melting of lamellar crystals can be described with reasonable accuracy by the

methods just described, the molecular mechanisms that determine the typical value of lc

after crystallisation of semi-crystalline polymers have been at the center of much debate

in the scientific community in the past decades.

Typically, isothermal crystallisation of homopolymer melts proceeds first by heteroge-

neous nucleation of primary (dominant) lamellae on pre-existing seeds (impurities, seed-

ing agents or pre-formed nuclei), followed by a growth of secondary (subsidiary) lamellae

in the uncrystallised mass between primary lamellae according to an in-filling mecha-

nism.156,176 Depending on the crystallization conditions, primary and secondary lamellae

organise into bigger mesostructures such as spherulites or shish-kebab structures.135,177

The lamellae usually stack on top of each other sandwiching layers of amorphous mate-

rial in between, which are referred to as inter-lamellar amorphous domains. Although

these alternating structures (the so-called “lamellar stacks”) lack perfect order, they can

be characterised by the average inter-lamellar distance la and the lamellar thickness lc

(or, equivalently, by the long period LP = la + lc).

As a result, semi-crystalline polymer samples can be characterised by the mass fraction

crystallinity ωc, defined as the ratio between the crystalline polymer mass mc
p and the

total polymer mass mtot
p :

ωc =
mc

p

mtot
p

. (3.8)

The persistence of uncrystallised amorphous mass can be heuristically justified by realiz-

ing that the time needed for a macro-molecule to rearrange in configurations compatible
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Figure 3.1.: Melting and crystallisation lines for a sample of syndiotactic polypropylene-co-
octene (sPPcO15). The markers represent experimental measurements of the average lamellar
thickness at various temperatures obtained using SAXS by Hauser and coworkers.179 The
polymer sample was first crystallised isothermally at the five temperatures indicated (circles)
and then heated until melting occured (triangles). Note that the average lamellar thickness is
not altered upon heating in sPPcO15 due to the absence of intra-crystalline chain dynamics
(cf. Section 3.1.4). The solid lines represent linear fits of the experimental data.

with the formation of extended-chain structures far exceeds the characteristic timescale

at which individual sections of the polymer are incorporated in different growing crys-

talline nuclei.178 In general, the resulting lamellar and inter-lamellar size distribution

is a function of the crystallisation temperature Tc and the polymer considered. Hoff-

man and Lauritzen28,162 (HL) first conjectured using classical nucleation theory that the

lamellar thickness of a growing crystal is kinetically selected by balancing nucleation

and growth rates of individual crystalline folds with the thermodynamic driving force of

crystallisation‡.

In the HL theory, the average crystal thickness of the formed crystals 〈lc〉 can be written

as

〈lc〉 ≈ l∗c + δl, (3.9)

‡Essentially Equation 3.5 with the addition of lateral surface free energy terms
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where l∗c is given by Equation 3.7 and δl > 0 is directly proportional to the crystallisation

temperature Tc at low to moderate undercooling.142 The crystallisation line – obtained

by plotting the Tc against 〈lc〉−1 – thus lies below the melting line (Equation 3.6 with lc =

〈lc〉). In particular, it is observed that the extrapolated lines intersect at a temperature

Tcrit < T 0
m below which nucleation rates plummet due to the high free energy barriers to

the formation of stable crystalline nuclei156 (Figure 3.1). Although the HL theory has

received a lot of attention since its original formulation, some authors have suggested that

physical mechanisms other than kinetic ones are at the basis of the observed crystal size

distribution. Strobl,156 for example, has suggested a thermodynamic multiphasic scheme

according to which lamellar thickness is selected by successive crystal reorganisations

between polymorphic mesophases. The reader is referred to a recent review by Zhang

and coworkers143 for an in-depth account of the state of the art in polymer crystallisation

theory.

3.1.3. Fold surface and chain topology in the inter-lamellar domains

After crystallisation, amorphous chains trapped in the inter-lamellar domains can be di-

vided in five categories based on topological arguments (see Figure 3.2):

• bridges, i.e., chain segments that cross the inter-lamellar amorphous domains and

“bridge” two adjacent lamellae;

• un-entangled loops, i.e., chain segments that start and end in the same lamella

without being entangled with other loops;

• entangled loops, i.e., loops entangled with one or more loops on the opposite

lamella;

• tails, i.e., polymer chain ends excluded by the crystal structure and tethered to

one lamella;
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Figure 3.2.: A schematic representation of the five types of polymer chains that can be found
in the amorphous domains. From left to right: bridges, un-entangled loops, entangled loops,
tails, and free chains.

• free chains, i.e. entire polymer molecules able to diffuse in the inter-lamellar do-

mains.

Both bridges and entangled loops are here collectively referred to as “tie-molecules” and

are considered elastically effective upon deformation of the amorphous domains since

they link mechanically two opposing lamelle,7 in contrast to un-entangled loops and

tails.

Tight-folds

As part of his argument against the fringed-micellar morphology, Flory160 pointed out

that due to the dissipation of the crystalline order in the amorphous phase and the

continuity of the polymer molecules, a considerable number of loops had to remain

confined in the crystal/amorphous interface – the so-called “tight-folds”. Tight-folds

can be discriminated by whether they perform adjacent or non-adjacent re-entry in the

lamella they originate from135,180 (i.e., in one of the neighboring crystal sites or not).
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Figure 3.3.: A schematic representation of the (001) crystal plane of a hypothetical polymer
crystal with a square 2D lattice section. The direction of the chain segments in the lamellae is
perpendicular to this plane. The empty white squares represent tight-fold sites on the lamellar
surface; the filled black squares represent stems connected to entangled loops; the crossed
squares, bridges; the striped squares, tails; and the dotted squares, loose loops. The surface
fraction of tie-molecules pT is the ratio of the number of black and crossed sites to the total
number of sites; in this illustration pT = 7/36, pNT = 3/36 and pTF = 1− pT − pNT = 26/36.
If a is the lattice parameter, for this square 2D lattice ρA = 1/a2.

The amorphous mass at sufficient distance from the interface is therefore only composed

of tie-molecules, “loose” loops (i.e., un-entangled loops that are not tight folds) and

tails.

By counting the number of crystalline stems crossing the crystal/amorphous interface,

we denote with pTF the fraction that perform tight-folds, with pT the fraction connected

to tie-molecules and with pNT the fraction connected to loose loops and tails (Figure

3.3). Note that pTF + pT + pNT = 1. By calling ρA the cross-section of a chain in the

crystal (obtained by counting the number of stems per unit area on the (001) plane), the

surface density of stems performing tight folds (ρA,TF), connected to tie-molecules (ρA,T)

and to loose loops and tails (ρA,NT) on the crystal/amorphous interface is therefore given
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by

ρA,TF = pTFρA cos γ

ρA,T = pTρA cos γ

ρA,NT = pNTρA cos γ

, (3.10)

where γ is the chain-tilt angle between the [001] crystallographic axis (i.e., the chain

direction) and the normal to the crystal/amorphous interface.135 Although generally the

chain-tilt angle is small, in PE it can vary between 20°and 40°.181,182

Even though direct experimental evidence of the existence of tie-molecules in semi-

crystalline polymers has been available since the seminal work of Keith and coworkers,183

quantities like pT or pTF have never been measured due to the challenge posed by resolv-

ing the contour of polymer strands in experiments.184 As a consequence, a great body of

work in the literature is dedicated to modelling the topology of inter-lamellar amorphous

domains due to its great influence on the mechanical7,185–194 and thermodynamic39,195–200

properties of semi-crystalline polymers.

Soon after the establishment of chain-folding as the preferential mechanism of forma-

tion of polymer crystals, the relative amount of tight-folds performing adjacent vs non-

adjacent re-entry became a subject of intense scientific debate. Flory was a proponent

of the “random switchboard” model, according to which most of the tight folds should

perform non-adjacent re-entry in the crystal. In 1984, Flory, Yoon and Dill165 claimed

using a 3D lattice model that pTF should be approximately 0.7 and that only one every

five tight-folds performed adjacent re-entry. In their model, calculations were performed

by approximating the configurational partition function of loops in a semi-infinite 3D

cubic lattice.

However, the previous year Monte Carlo (MC) simulation by Mansfield164 using a similar

lattice model had indicated that adjacent re-entry should be favoured unless explicit
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energy penalty terms for their formation were included in MC transition probabilities.

Their findings were supported by another theoretical investigation of the 3D lattice

model of Marqusee and Dill,166 who argued that adjacent tight folding should dominate

even in the absence of energetic effects. Both works found that the fraction of tight folds

should be about 0.72-0.75 when their formation is not penalised. Kumar and Yoon167

then revisited the calculations of Flory, Yoon and Dill and found that both energetic

penalty terms and chain-tilt influence significantly the probability of occurrence of tight-

folds of both kinds. In particular, their calculations indicate that in the in the absence

of energy penalties the fraction of tight-folds in PE with a realistic tilt angle (γ = 40°)

should be approximately 0.5.

Bridges

Guttman, DiMarzio and Hoffman’s201,202 Gambler’s Ruin (GR) model was one of the

first theories to include the finite extension of the amorphous domains in the description.

In the GR model, polymer chains are assumed to perform a 3D random walk in the inter-

lamellar domains starting from one of the two lamellae. Chains that start and end in the

same lamella are categorised as loops, whereas chains that end in the opposite lamella as

bridges. In the limit of high-molecular weight, the GR model predicts that the fraction

of bridges should be inversely proportional to the inter-lamellar spacing la and that at

zero chain tilt (γ = 0, Equation 3.10) the fraction of tight folds should be about 2/3 to

avoid density anomalies184,201,202

In later theoretical work, Huang and Brown190 (HB) proposed another approach based

on the observed dependence of slow crack growth rates in semi-crytalline PE. The HB

model assumes that bridges can only be formed if the end-to-end distance of the polymer

molecules in the melt is bigger than the sum of the inter-lamellar distance la and double

the lamellar thickness lc. This hypothesis leads to the fraction of bridges in the inter-
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lamellar domains depending on the lamellar thickness, crystallinity and the polymer’s

molecular weight.190 More recently, Adikhari and Muthukumar184 improved upon the

HB model by accounting for the ability of individual polymer chains to form links with

multiple lamellae. Their analytical model predicts that the fraction of bridges should

decrease with decreasing molecular weight and increasing inter-lamellar distance and be

smaller than about 0.06 for realistic parameter combinations.

Entanglements

The models just mentioned only provide predictions for the fraction of bridges but ne-

glect entangled loops, even though a high concentration of entanglements is expected

in the amorphous domains. In fact, the entanglements between polymer chains in the

melt are mostly segregated during the crystallisation process and accumulate in the

amorphous domains due to the timescale mismatch between crystal accretion rates and

reptation dynamics.172,178,203–205 Various modifications to the Huang and Brown theory

have been proposed to account for the effects of entanglements,188,191 which were re-

viewed by Seguela.7 However, analytical models predicting the amount of entanglements

that persists in the inter-lamellar domains as a function of crystallisation conditions are

missing.

The question has been instead addressed via computer simulation. A lattice Monte Carlo

study by Lacher, Bryant and Howard206 showed that increasing the inter-lamellar dis-

tance la decreases the bridge fraction, whereas the number of entangled loops stays con-

stant or increases. More recently, Nilsson and coworkers207 predicted using a 3D random-

walk model that the fraction of tie-molecules pT (bridges and entangled loops) should not

exceed 0.1 and that in most conditions the number of entangled loops is about double the

number of bridges. In their work, the configurations of polymer molecules between two

plates were generated using the rotational isomeric state model.207
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Limits of our current understanding

Despite their differences, all theories and computer simulation models described invari-

ably assume that the resulting chain topology after crystallization can be obtained by

using the chain statistics valid in the melt. As a result, these models cannot account

for the chain reorganization on the mesoscale that happens during crystallization7,156 or

the increase in entanglement density in the inter-lamellar domains compared to the melt

caused by crystallisation.172

There are some exceptions to this trend. In the past three decades Rutledge and

coworkers182,208–215 have used a combination of a realistic united-atom force fields and a

topology-altering Monte Carlo scheme to predict the thermo-mechanical response (i.e.

elastic moduli, shear stress) of the inter-lamellar domains of PE, PE copolymers and

PP. Since the chain topology is allowed to vary during the simulation, the inter-lamellar

domains display an “equilibrium” distribution of loops, bridges and tails determined

by the various simulation parameters. It is also worth mentioning the contribution of

Uneyama and coworkers,216 who proposed a self-consistent field-theoretical model al-

lowing to obtain various statistical properties of the inter-lamellar polymer chains by

minimisation of an appropriate free energy functional.

Nonetheless, there is no evidence that the topology of the inter-lamellar domains should

conform to the distributions proposed by these authors either – although arguably

these methodologies represents more closely the pseudo-equilibrium state of the inter-

lamellar domains compared to the theories using unperturbed chain statistics. More

work is therefore needed to predict chain statistics directly from crystallisation con-

ditions or from sample-specific properties such as crystallinity and molecular weight

distribution.
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3.1.4. Crystal-fixed and crystal-mobile polymers

A large class of flexible semi-crystalline polymers such as PE, isotactic PP, PEO and

PTFE display variation of crystallinity and lamellar thickness with temperature, an ef-

fect deemed premelting or partial melting.156,217 This phenomenon highlights the pres-

ence of mass exchanges between the crystalline regions and the amorphous domains in

these polymers, showing that the crystal size distribution is not only determined by ki-

netic effects during crystallisation. In particular, electron microscopy,218 small-angle X-

ray scattering155,200 and temperature-modulated DSC219–221 measurements have shown

that this mass exchange is partially or entirely reversible, indicating the existence of a

local equilibrium at the crystal/amorphous interface.

In the past decades, time-domain nuclear magnetic resonance (TD-NMR) analysis of

semi-crystalline samples has contributed significantly to the current understanding of the

molecular mechanisms at the basis of this exchange equilibrium.205,217,222–229 TD-NMR

can shed insight on the relaxation dynamics of the molecular strands polymer chains both

in melts and in semi-crystalline polymers by measuring the recovery time of nuclear spin

polarisation after a radio-frequency pulse.229 In particular, analysis of the so-called T2

relaxation decay – also known as the “transverse” relaxation time, caused by nuclear

spin-spin coupling – indicates the presence of various relaxation processes (or “modes”)

characteristic of semi-crystalline polymers.222,230 Among these, the αc-relaxation mode

is associated with the presence of intra-crystalline chain dynamics (ICD)205,228 – i.e. the

longitudinal sliding motion of chains in the polymer crystal.

Boyd222 first noted that polymers with active αc-relaxation mode displayed on average

higher crystallinity due to annealing of the lamellar crystals during and after isother-

mal crystallisation. Building on Boyd’s intuition, Hu and Schmidt-Rohr223 postulated

that polymers can be categorised in “crystal-fixed” and “crystal-mobile” depending

on whether they display the characteristic αc-relaxation mode. Examples of crystal-
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fixed polymers are copolymers of ethylene with long 1-alkenes such as polyethylene-

co-octene,231 syndiotactic PP (sPP)156 and poly(ε-caprolactone).232 Conversely, PE ho-

mopolymers, isotactic PP, PEO, PTFE, and polybutadiene (PBD) are all crystal-mobile

at room temperatures.156 Since Hu and Schmidt-Rohr, various authors have systemati-

cally applied this concept to differentiate the phenomenological behaviour of these two

classes of polymers.156,205,228

In crystal-fixed polymers the size distribution of the lamellae is determined at crystallisa-

tion (as discussed in Section 3.1.2) and is quite narrow.156 Upon increasing temperatures,

the smallest lamellae become unstable (cf. Equation 3.7) leading to continuous crystal

melting and recrystallisation,205 whereas the bigger lamellae maintain their size due to

the absence of ICD. On the other hand, in crystal-mobile polymers the lamellae spon-

taneously thicken already during crystallisation due to the crystal/amorphous exchange

equilibrium enabled by the αc-relaxation. In particular, the lamellae can undergo re-

versible partial melting at temperatures T smaller than their melting point (Equation

3.6). This process leads to a size selection of the inter-lamellar domains in the case of

crystal-mobile polymers as the crystal thickening is balanced by entropy loss in the inter-

lamellar domains caused by an increase in entanglement density and decrease in chain

flexibility.156,164,172,200 In the following, this assumption is deemed “local-equilibrium

hypothesis”.

Roe, Krigbaum and Smith195,196 first used this idea to describe the reversible variation

of crystallinity observed in semi-crystalline polyethylene (i.e., premelting). Their model

assumed an isotropic crystalline morphology resembling the “fringed-micelle” model and

predicted that the crystallinity at each temperature was a function of the number of

statistical links Nc of amorphous chains that first deposit on growing crystals. The

local-equilibrium hypothesis was later used by Fischer197 and Zachmann and Peterlin198

to predict the variation of inter-lamellar distance with temperature. These authors

assumed that the inter-lamellar amorphous domains are composed only of un-entangled
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loops and the resulting empirical parameters of the models needed to fit melting data –

in this case, related to the average length of loops at crystallisation, N0 – had unphysical

values.200

More recently, Mansfield and Rieger199,233 and Albrecht and Strobl200 assumed, by con-

trast, that these domains are only composed of a network of entangled segments. This

hypothesis is more compatible with the local-equilibrium hypothesis, as un-entangled

loops should be eventually absorbed in the lamellae due to ICD. Mansfield and Rieger

reasoned that the entangled chain segments in the inter-lamellar mass orient anisotropi-

cally upon increasing the inter-lamellar distance due to their anchoring points being fixed

on the lamellar surface. Albrecht and Strobl noted that Mansfield and Rieger’s model

led to a conservation of the anisotropic features of the inter-lamellar domains at melting,

which was deemed unphysical. Even though there is no indication that the entangled

state of the inter-lamellar domains can be reversibly relaxed until complete melting, Al-

brecht and Strobl managed to obtain the correct limit by adding a term to the free energy

accounting for the mobility of the entangled network junctions.

Both of these models managed to correctly capture the variation of the inter-lamellar

distance with temperature after adjusting the average number of statistical segments in

the loops at crystallistation (N0) to reproduce experimental premelting data, with Al-

brecht and Strobl’s model leading to more physically meaningful values. Nevertheless,

both models contain a severe inconsistency as they assume that the end-to-end distribu-

tion of the polymer chains in the inter-lamellar domains can be described by Gaussian

statistics. This approximation is only valid when the fractional extension of the chain

segments (i.e., the ratio between their end-to-end distance and the one in their extended

configuration) is small, whereas the local-equilibrium hypothesis predicts that chain seg-

ments should be very taut at temperatures sufficiently below the melting point7,39,195,205

– as it is shown later in the current work (Section 4.1).
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3.1.5. Free and constrained amorphous domains

In most experimental and theoretical works, semi-crystalline polymers are approximately

described by the lamellar stack or “2-domain” model, which stipulates that all amor-

phous mass lies between crystalline lamellae. Although this model is accurate for ho-

mopolymers with high crystallinity, samples cooled at very low temperatures or whose

molecules possess enough defects (i.e., comonomers and branching) display a fringed-

micellar / nodular morphology in which “islands” of lamellar stacks are surrounded by

amorphous mass.176 A transition must therefore occur upon decreasing crystallinity be-

tween the lamellar stack morphology and the fringed-micellar one.

Measurements of the T2 transverse relaxation time in low-field 1H TD-NMR experiments

suggest224,234–238 that two populations of amorphous chains exist in semi-crystalline

polymers: the mobile amorphous fraction (MAF) and the rigid amorphous fraction

(RAF). While the small transverse relaxation time of the RAF implies that polymer

chains producing that signal are taut and/or constrained, the longer relaxation times

of the MAF indicates unconstrained, melt-like behaviour of the respective polymer

strands.

In order to reconcile this observation with the 2-domain model, most authors assume

that the RAF is composed of amorphous chains with limited mobility at the crys-

tal/amorphous interface and that the MAF is all the remaining inter-lamellar amor-

phous mass. As recently noted by Chmelař and coworkers,238 this assignment cannot be

correct at lower crystallinity. The authors suggested instead that for PE samples with

low-to-medium crystallinity the “constrained”, rigid portion (RAF) is presumably the

inter-lamellar amorphous mass whereas the “free”, unconstrained portion (MAF) corre-

sponds to amorphous mass outside of the lamellar stacks or in contact with the lateral

lamellar surfaces. Using a spherulite reconstruction technique, Chmelař and coworkers

also demonstrated that such free amorphous domains are expected at crystallinity lower
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Figure 3.4.: A schematic representation of the “three-domain” model. The entire square rep-
resents the total polymer mass, whereas the coloured regions the mass of polymer in each of
the respective domains.

than about 60%.

As shown in Figure 3.4, we can define ψ as the ratio between the free amorphous mass,

mF
p , and the total polymer massmtot

p in a manner analogous to Equation 3.8:

ψ =
mF

p

mtot
p

. (3.11)

As expected, NMR,224,234–238 PALS239 and a combination of DSC and WAXS240 studies

have found that ψ tends to zero at high crystallinity (lamellar stack morphology) and

to one at low crystallinity (fringed-micellar / nodular morphology176). To the list of evi-

dence provided by Chmelař and coworkers, we add that tie-molecules in the inter-lamellar

domains should be fairly taut (and therefore semi-rigid) both due to the high entangle-

ment density7,172,178,205 and, in the case of crystal-mobile polymers, local-equilibrium

effects at the crystal/amorphous interface (cf. Section 3.1.4). In the current work we

adopt this morphological model, as seen in Section 3.3.
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3.1.6. Crystallinity measurements

Various measures of crystallinity can be defined by assuming that some extensive prop-

erties of semi-crystalline polymers are simply the sum of the respective properties of

the crystalline and amorphous domains. All of these procedures require knowledge of

the respective quantities for the “pure” domains, which can be obtained via correlation

of experimental data or using a theoretical description. It is important to note that

these domains are implicitly taken to be homogeneous. The different assumptions and

techniques employed for the calculation of ωc often yield slightly different measures for

the crystallinity, thus making this quantity somewhat ill-defined.

Density measurements

For example, by considering density measurements under the assumption that a unique

specific volume vc can be assigned to the crystalline domains and a unique specific volume

va to the amorphous domains, it is straightforward to show that the mass fraction of

crystallinity ωc of a polymer sample is given by131

ωc =
va − v

va − vc
, (3.12)

where v is the overall specific volume of the sample.

Differential scanning calorimetry (DSC)

Another measure of crystallinity can be obtained using differential scanning calorimetry

(DSC). According to this methodology, a sample is heated at a constant heat rate and its

specific enthalpy of fusion Δhm is compared to that of an ideal extended-chain crystal,
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Δh0
m, obtained by extrapolation of experimental melting enthalpy data or theoretical

considerations:241

ωc =
Δhm

Δh0
m

. (3.13)

It is important to point out that this procedure neglects heat capacity changes in the

crystalline and amorphous domains.

SAXS/WAXS

Small and wide-angle X-ray scattering (SAXS and WAXS, respectively) can be used to

provide another measure of crystallinity. In WAXS diffraction spectra, the crystalline

regions appear as definite peaks at specific angles whereas amorphous regions appear as

a diffuse halo. The crystallinity can therefore be estimated by taking the ratio between

the integrated intensity of the crystalline peaks and the integrated intensity of the entire

diffraction trace.242,243 Conversely, in SAXS the volume fraction of crystallinity of the

lamellar stack φLS
c can be obtained by analysis of the interface distribution function (IDF)

obtained by Fourier transformation of the scattering profile.156,200,244 If one assumes that

all the polymer is organised in lamellar stacks (ψ = 0), this crystallinity corresponds to

the overall (volume fraction) crystallinity of the sample.

3.2. Solubility of small molecules in semi-crystalline

polymers

We will now develop a statistical thermodynamic formalism aimed at modelling fluid

solubility in semi-crystalline polymers. After a survey of experimental evidence and

previous theoretical work (Sections 3.2.1 and 3.2.2), different theories are unified under

the constraint-pressure formalism (Section 3.2.3) which elucidates the effect of network

81



3.2. SOLUBILITY OF SMALL MOLECULES IN SEMI-CRYSTALLINE POLYMERS

constraints on the chemical potentials of the solutes and on the overall density in com-

pressible polymer systems. The local-equilibrium hypothesis is then stated rigorously in

terms of the equality of the monomer chemical potential of the lamellae and the amor-

phous domains in order to model crystal-mobile polymers (Section 3.2.4). In Section

3.2.5, the problem of finding the equilibrium solubility and polymer mass in the amor-

phous domains of crystal-mobile polymers is shown to be equivalent to minimising an

appropriate thermodynamic potential.

Let us consider a homogeneous fluid ofNC components at temperature T , pressure P and

composition y = {y1, y2 . . . yNC
} in contact with a semi-crystalline polymer sample. We

denote with S = {S1, S2 . . . SNC
} the vector of solubilities of each of the fluid components

in the sample, defined as the ratio between the mass of component i retained in the

polymer (ms,i) and the total polymer mass (mtot
p ):

Si =
ms,i

mtot
p

. (3.14)

The solubility S is in principle the sum of an adsorption term on the surfaces of the

polymer sample and a bulk absorption term:

S = S(ad) + S(ab). (3.15)

In practice, however, unless the sample has a very high specific surface or the absorption

is insignificant it can be assumed that the total sorption is almost entirely represented by

absorption, i.e. S ≈ S(ab). In the following analysis only absorption is considered, and

the term solubility and absorption will be used interchangeably.

When a dry (i.e., pure) semi-crystalline sample is placed in contact with the fluid, the

solubility of each component increases until it reaches an apparent plateau after a char-

acteristic time that we denote with τ ∼ τD, determined by the diffusion kinetics of each
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solute in the polymer matrix.26,245 However, since semi-crystalline polymers are out-of-

equilibrium systems, irreversible changes in the microstructure due to melting of small

lamellae and recrystallisation (cf. Section 3.1.2) can in principle change the amount

of solutes dissolved over a typical timescale τ ∼ τR. In the following, it is implicitly

assumed that the characteristic timescale over which irreversible recrystallisation phe-

nomena (or, more generally, physical and chemical aging) take place is much bigger than

the characteristic time of diffusion-limited phenomena, i.e.,

τD << τR. (3.16)

This corresponds to assuming that on the timescales of solute diffusion the lamellar

structure of the material is preserved.

For τ > τD, semi-crystalline polymers swollen by a fluid are therefore considered to be

in a pseudo-equilibrium “state” in which some of their characteristic out-of-equilibrium

features (such as their inter-crystalline chain topology, cf. Section 3.1.3) act as fixed

constraints. Note that we are not excluding the existence of faster local chain reor-

ganisation effects compatible with such constraints, which could give rise to reversible

melting due to intra-crystalline chain dynamics (cf. Section 3.1.4) over a timescale

τICD ≈ τD << τR.

The equilibrium solubility S is therefore intended as a function of the fluid temperature,

pressure and composition (T, P,y) and of a set of material constraints Γc that define

the polymer’s pseudo-equilibrium state:

S = S (T, P,y;Γc) (3.17)

The presence of irreversible transformations leads to a time-dependence of the con-

straints Γc, which can be tested consistently during sorption measurements by looking
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for hysteresis in sorption/desorption cycles.

3.2.1. Experimental evidence and thermodynamic modelling

One of the most common starting assumptions employed to model S ≈ S(ab) at given

temperature T , pressure P and composition y of the external fluid is that the crystalline

domains are essentially impermeable to the solutes relatively to the amorphous ones;

mathematically, this translates into

S ≈ ωaSa = (1− ωc)Sa, (3.18)

where both Sa – the solubility in the amorphous domains only – and the crystallinity ωc

(Equation 3.8) are in principle functions of T, P,y and of the sample-specific constraints

Γc. Here and in the following, equations between vectors are intended as element-by-

element equations; the scalar factor (1−ωc) in Equation 3.18 thus multiplies all the NC

equations for the individual solutes.

Experimental evidence supporting the idea that crystalline domains are impermeable to

the solute molecules has been available since the studies of Richards37 and Michaels and

co-workers26,245,246 on the solubility of small hydrocarbons in polyethylene. Heuristically,

this behaviour can be explained by comparing the high enthalpy of formation of a defect

in the crystalline phase with the enthalpy of solution in the amorphous domains; it is en-

ergetically unfavourable for a solute to deform a dense, ordered lattice rather than mixing

in the less dense and already disordered amorphous domains.

It should be noted, however, that there are some notable exceptions to this general

trend. Polymers with very bulky monomers and with high stereoregularity (such as

syndiotactic polystyrene, s-PS) can form crystal structures which can accommodate

solute particles as interstitials without deforming the crystal architecture significantly,
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thereby reducing the enthalpy of formation of a defect up to the point where adsorption

in the interstitial sites becomes favourable.247–249 Another exception might arise when

the particles absorbing are very small, as it is the case for molecular hydrogen (H2)

and helium (He). In the ensuing discussion we will focus on systems for which the

approximation embodied in Equation 3.18 is justified.

From a thermodynamic perspective, the equilibrium between an external fluid and amor-

phous domains with respect to exchanges of solute particles is realized through the

equality of the chemical potentials μs of the NC solutes in the external fluid and in the

amorphous domains:

μs = μa
s = μf

s (3.19)

Here, the subscript s indicates the solute, and the superscripts a and f the amorphous

domain and external fluid phase, respectively. Note the absence of a corresponding

equation for the the exchange of polymer molecules involving the polymer chemical

potential μp, as we assume for simplicity that no polymer is present in the external

fluid. This approximation should be very accurate for medium to high-molecular weight

polymers131 and exact when the external fluid is gaseous or much larger than the polymer

sample. At temperature T , pressure P and composition y the chemical potentials in the

fluid can be calculated directly with a fluid equation of state like SAFT-γ Mie (Section

2.3 and Equation 2.27):

μf
s = μEoS

s (T, P,y) . (3.20)

As in Section 2.3, the superscript EoS indicates that the functional form of the chemical

potentials is imposed by the choice of a given equation of state. Note that in this equation

the polymer composition is implicitly fixed to zero, and that phase stability must be

checked for example via TP flash calculations (Section 2.3.5).

Under the assumption that no polymer is present in the fluid phase it can be partic-

ularly helpful to treat the polymer sample as a semi-open system allowing exchanges
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of solute particles but not of polymer molecules with the fluid (the so-called “osmotic

ensemble”44). By combining Equations 3.19 and 3.20, the solubility Sa can therefore be

considered as a function of T , P , the NC chemical potentials μs = μf
s = μEoS

s (T, P,y)

and the constraints Γc:

Sa = Sa (T, P,μs;Γc) ⇐⇒ μa
s (T, P,Sa;Γc) = μs. (3.21)

In order to solve Equation 3.21 for the solubility Sa (T, P,μs;Γc) it is necessary to specify

the functional form of the solute chemical potentials μa
s (T, P,Sa;Γc) in the amorphous

domains.

Michaels and Bixler’s hypothesis

The simplest approach is to assume that these domains behave as subcooled polymer

melts due to their disordered, “liquid-like” structure:

μa
s ≈ μEoS

s (T, P,Sa) . (3.22)

By combining this with Equations 3.19 and 3.20, the value of Sa can thus be obtained

directly from a VLE calculation in which no polymer is allowed in the gas phase (cf.

Section 2.3).

Note that the composition of the amorphous domains is specified with the solubil-

ity Sa instead of the mole fractions of all components since the solution of Equa-

tion 3.22 should not depend significantly on the molecular weight of the polymer or

polydispersity at medium to high molecular weights (cf. Section 2.5.2). The calcula-

tions can therefore be performed for a monodisperse polymer of high molecular weight

(e.g., n0 = 1000 repeating units). In the following analysis, the amorphous solubil-

ity calculated via the combination of Equations 3.19, 3.20 and 3.22 is denoted with
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Sa = SEoS
a (T, P,μs).

This is approach was originally proposed by Michaels and Bixler,26 who used the Flory-

Huggins-Staverman theory46–48 to model the liquid polymer + solute mixture. More

recently, Paricaud and coworkers131 improved on Michaels and Bixler’s work by cou-

pling a more advanced equation of state (i.e., the SAFT-VR Mie EoS – a “primitive”

version of SAFT-γ Mie) with a model predicting the variation of crystallinity with tem-

perature taken from Flory.175 The authors managed to provide a satisfactory descrip-

tion of the solubility at various temperatures of short hydrocarbons in semi-crystalline

PE.

(a) (b)

Figure 3.5.: Solubility of n-hexane in amorphous PE at 25 ◦C. The continuous curves represent
SAFT-γ Mie predictions using the n-hexane model defined in Section 2.5.1; PE is modelled
as a homonuclear chain of n0 = 1000 methylene monomers (Section 2.5.2). The symbols
represent experimental data139 (uncertainty smaller than the marker size), while the vertical
dotted lines represent the vapour pressure Pvap of n-hexane at 25 ◦C. a) Comparison of the
theoretical prediction SEoS

a and the apparent amorphous solubility Sexp
a in the three samples

calculated using Equation 3.23. b) Comparison of the theoretical prediction and the scaled
solubility in the three samples; the linear scaling is performed by enforcing that the apparent
solubility in the three samples at P = 0.9Pvap matches the theoretical predictions.
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Constrained amorphous domains

Despite the apparent success of Michaels and Bixler’s approach, a large amount of exper-

imental and theoretical studies38–45,194,250–258 have shown that if the crystallinity ωexp
c of

a sample and the solubility Sexp
i of a given solute are separately measured, the apparent

solubility in the amorphous domains Sexp
a,i obtained by inverting Equation 3.18 is lower

than SEoS
a,i regardless of the equation of state used, i.e.,

Sexp
a,i = Sexp

i / (1− ωexp
c ) ≤ SEoS

a,i . (3.23)

We provide experimental evidence of this fact with sorption data measured by Dr. J.

Ramandani and Prof. D. Williams (Imperial College London, Department of Chemical

Engineering) as part of a joint study139 – see Section 4.2 or the publication for more

details on the experimental procedure. In Figure 3.5 the apparent solubility of pure n-

hexane in the amorphous domains of three semi-crystalline PE samples – LDPE, MDPE

and HDPE – measured at 25 ◦C is compared with SEoS
a (the index i is here omitted since

the external fluid is pure hexane) calculated using the SAFT-γ Mie models for n-alkanes

and PE developed in Section 2.5.2. Note that PE is modelled here as a homonuclear

chain of n0 = 1000 CH2 monomers.

One can see from Figure 3.5a that Sexp
a < SEoS

a for all the semi-crystalline PE sam-

ples. Furthermore, the apparent amorphous solubility is found to decrease with in-

creasing crystallinity. One can justify these findings while retaining the assumption

that Sa = SEoS
a by either assuming that the calculated crystallinity greatly underes-

timates the true value or that only a fraction of the amorphous domains is available

for sorption, resulting in an “effective” crystallinity which is higher than the calculated

value.

Fortunately, it is possible to test the validity of these assumptions. If either of these
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hypotheses are correct, a linear scaling of Sexp
a at each pressure so that the appar-

ent amorphous solubilities in different polyethylene samples match at a given pressure

should result in three overlapping experimental curves. Physically, the linear scaling

is equivalent to assuming that the calculated crystallinity used in Equation 3.23 is un-

derestimated. In Figure 3.5b, the three experimental data sets are scaled so that the

amorphous solubility measured at the highest pressure (i.e., 90% of the vapour pressure

of n-hexane at 25 ◦C) matches the theoretical calculations. It can be seen that the scaled

experimental data sets do not match, and that the curvature decreases with increasing

crystallinity.

These findings clearly indicate that the solubility in the amorphous domains of the three

different PE samples is different. In particular, if the measured values of crystallinity

are accepted as being correct, it follows that Sexp
a < SEoS

a for all samples and that Sexp
a

decreases with increasing crystallinity.

3.2.2. Elastic models

In cross-linked polymer networks (such as rubbers and gels) the bulk solubility of gases

and liquids is lower than the one measured for the corresponding un-crosslinked poly-

mers. It is now well understood134,178,259–263 that this phenomenon can be traced back to

the increase in the free energy (mainly of entropic origin) of the chain segments between

cross-links following the expansion (or “swelling”) of the network caused by the intro-

duction of a solute. By analogy, the most prominent solubility models in the literature

assume that the solubility reduction in the amorphous domains of semi-crystalline poly-

mers originates from the elastic forces exerted by the tie-molecules (cf. Section 3.1.3)

upon swelling.

Theories for swelling in rubbers and semi-crystalline polymers – here colloquially re-

ferred to as “elastic” models – aim to derive approximations for the excess chemical
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potential Δμc
s,i, intended as the difference between the chemical potential of a solute in

the swollen amorphous polymer network (μa
s,i) and the corresponding chemical potential

in a subcooled polymer + mixture at the same temperature, pressure and composi-

tion:

Δμc
s,i (T, P,Sa;Γc) = μa

s,i (T, P,Sa;Γc)− μEoS
s,i (T, P,Sa) . (3.24)

In practice, however, all the theories discussed in this subsection are derived using

the Flory–Huggins–Staverman theory47,48,264 in which pressure is undefined since the

molecules occupy the sites of an incompressible lattice. According to this theory, in a

mixture of ν linear and monodisperse polymer molecules and ns solute molecules of a

single type the solute chemical potential can be expressed as259

μFHS
s (T, ns, ν) = kBT

[
ln(1− φp) +

(
1− 1

Z

)
φp + χφ2

p

]
, (3.25)

where Z = V̄p/V̄s is the ratio between the (partial) molar volume of the polymer and

the solute (assumed constant in lattice models) and the volume fraction of the polymer

is given by

φp =
νV̄p

νV̄p + nsV̄s

=
Zν

Zν + ns

. (3.26)

The term kBTχφ
2
p in Equation 3.25 is the (partial molar) heat of mixing§ derived from a

mean-field treatment of the interactions between the solute and the polymer’s monomers.

When suitably extended to deal with multiple solutes and polydisperse polymer mix-

tures,265 the expression in Equation 3.25 thus constitutes the reference “EoS” term in

the sense of Equation 3.24 for all the elastic models discussed in this subsection. It is

noteworthy that in some works the factor 1/Z is omitted;39,41 this approximation is cer-

tainly valid for most polymer/solute pairs but leads to small differences in the formulae

that are reported here.

§More appropriately, an excess mixing free energy if χ is allowed to vary with temperature
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Flory-Rehner theory

Due to the similarity between the chemical cross-links in rubbers and the physical cross-

links between tie-molecules and lamellae in semi-crystalline polymers, the Flory-Rehner

theory259 – a model originally developed to describe swelling in rubbers – and its mod-

ifications have been applied extensively to semi-crystalline polymers. According to the

FR theory, the elastic chemical potential of a solute in a cross-linked network is given

by
Δμc

s,i

RT
≈ ρaV̄s,i

M̄c

(
φ1/3
p +

(
1− 2

fN

)
φp

)
, (3.27)

where ρa is the pure amorphous polymer density, fN the functionality of the network

(i.e., the number of chains emanating from each cross-link) and M̄c the average molecular

weight of polymer chains between cross-links. Whereas the term in φ
1/3
p in Equation 3.27

is due to the stretching entropy of the chains, the “ideal gas” term proportional to φp is

due to the loss of translational degrees of freedom due to the chain ends being grouped

in fN-functional cross-links.

Rogers and coworkers38 first applied directly the Flory-Rehner (FR) theory to describe

the sorption of organic vapors in polyethylene. Since the cross-links in semi-crystalline

polymers (i.e., the crystalline lamellae) have a very high functionality, for fN → ∞ we

obtain the expression derived by Rogers:38

Δμc
s,i

RT
≈ ρaV̄s,i

M̄c

(
φ1/3
p + φp

)
(3.28)

The theory was later extended by Brown and coworkers40 to take into account that

swelling of the interlamellar amorphous mass is one-dimensional. Their modification

resulted in the elastic term depending on φ−1
p instead of φ

1/3
p , a very significant difference

from the original FR theory. Building on their work, Liu and Neogi41 then proposed

modifications to the ideal-gas term due to the discrepancies between the stretching
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behaviour of real polymer networks and the idealised affine network model of the FR

theory.259,261,266–268 Their expression for Δμs,i thus reads

Δμc
s,i

RT
≈ ρaV̄s,i

M̄c

(
φ−1
p +

1

2
φp

)
. (3.29)

Normally, for all of the theories derived from the FR theory the amorphous density

ρa and the partial molar volumes of the solutes V̄s,i are assumed known, whereas the

mean molecular weight of chains between cross-link M̄c is adjusted to reproduce sorp-

tion data. This procedure has been successfully applied to model the solubility of or-

ganic vapours in PE38,40,41 and PP251 and of CO2 in PTFE, MFA and PVDF,269 with

the most recent iterations of the theory performing better at higher solute concentra-

tions.40,41

Michaels and Hausslein theory

Michaels and Hausslein39 were among the first authors to notice that the excess elastic

activity

acs,i = exp
(
Δμc

s,i/RT
)

(3.30)

of various penetrants in polyethylene – found by comparing experimental solubility data

to the the Flory–Huggins–Staverman theory for the equilibrium polymer mixtures –

depends markedly on temperature at constant composition (i.e., φp), with a reversible

behaviour below about 100 ◦C. In order to explain this phenomenon using the Flory–

Rehner theory the molecular weight of the polymer chains between cross-links must vary

with temperature as seen in Equations 3.27, 3.28 and 3.29. Michaels and Hausslein then

proposed that (in polyethylene) each tie-molecule is in equilibrium with the crystalline

lamellae with respect to exchanges of monomers. This phenomenon makes the tension of

the tie-molecules temperature dependent, as it is the result of a local equilibrium between
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the entropic forces that “loosen” the chains and the driving force of crystallization

which, by contrast, makes the chains taut by removing monomers from them (see Figure

3.6).

Using the local-equilibrium hypothesis, Michaels and Hausslein developed a model for

the excess chemical potential of a solute featuring the mass fraction fT of elastically

effective chains (i.e., bridges and entangled loops) in the amorphous domains as a free

parameter:

Δμc
s,i =

V̄s,i

V̄p

Δh̄0
m

(
1− T

T 0
m

)
+ΔμEoS,res

p

3
2fTφp

− 1
. (3.31)

Here, V̄p is the partial molar volume of the polymer whereas Δh̄0
m and T 0

m are the melting

enthalpy (per mole of polymer) and melting temperature of a perfect polymer crystal.

The quantity ΔμEoS,res
p is the difference in polymer chemical potential between a polymer

mixture swollen at volume fraction φp and a pure polymer liquid. The resulting MH

theory has been applied extensively to model the sorption of various compounds in

PE,39,42,43,251–257 PE copolymers270 and isotactic PP.251

Despite the different application, it is clear that Michaels and Hausslein’s theories relies

on the local-equilibrium hypothesis described in Section 3.1.4. In fact, the MH theory

was actually inspired by the early models of Roe and Krigbaum.39,195,196 This implies

that for crystal-mobile polymers (e.g., PE, isotactic PP, PEO, PTFE156,217) we expect to

observe both reversible changes in the lamellar thickness and an increase in the activity

of solutes dissolved due to the same phenomenon – i.e., the presence of the αc relaxation

mode. In particular, in Section 3.2.4 we show that both phenomena can be described

under the same unified theory.
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Figure 3.6.: A schematic illustration of the effect of the local-equilibrium hypothesis on tie-
molecules. The tie-molecules are shorter and more taut at low temperatures due to the increase
in the driving force of crystallization. The lamellae (rectangles) are thicker at lower tempera-
tures due to the inclusion of more tie monomers.

94



3.2. SOLUBILITY OF SMALL MOLECULES IN SEMI-CRYSTALLINE POLYMERS

3.2.3. The constraint pressure formalism (This work)

Using compressible EoS in solubility calculations

In order to use compressible equations of state (i.e., EoS in which pressure can be speci-

fied) in Equation 3.24 to calculate μEoS
s,i in combination with expressions for Δμc

s derived

by the elastic models reported, one of two strategies must be implemented. The first

requires calculating at fixed temperature T , pressure P and composition Sa the volume

fraction of the polymer φp via the partial molar volumes V̄s,i:

φs,i =
ns,iV̄s,i

V

φp = 1−
∑
i

φs,i

(3.32)

where the partial molar volumes and the volume can be calculated as appropriate deriva-

tives of the EoS Gibbs free energy (cf. Section 2.3.3):

V̄ EoS
s,i =

(
∂V EoS

∂ns,i

)
T,P,ns\{ns,i},ν

V̄ EoS
p =

(
∂V EoS

∂ν

)
T,P,ns

V EoS =

(
∂GEoS

∂P

)
T,ns,ν

. (3.33)

Here the polymer has been assumed to be monodisperse to simplify the notation – ν

represent the moles of polymer molecules. Banaszak and coworkers43 adapted the MH

theory in this fashion to be used with the PC-SAFT EoS.64,65 However, the expressions

for Δμc
s,i derived above assume incompressibility in the first place. A rigorous treatment

starting from Helmholtz free energy of the system is instead required to precisely transfer

the assumptions of lattice-based elastic models to compressible theories (see our approach

in Section 3.3).
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A semi-empirical approach

Recently, Memari and co-workers44,271,272 showed with Monte Carlo simulation in the

osmotic (T, P,μs) ensemble that the solubility reduction of small molecules in the amor-

phous domains of PE can be captured by assuming that they behave like a subcooled

liquid subject to an extra isotropic stress, the “constraint pressure” Pc, which increases

the effective thermodynamic pressure in those domains from the external pressure P

to P + Pc. The same idea was employed by Minelli and co-workers45 to calculate the

solubility of simple gases in PE, PP, and PEO, using the Sanchez-Lacombe (SL) equa-

tion of state49 which, like SAFT theories, allows the pressure to be specified in the

calculations.

In these works, the chemical potential of the solutes in the amorphous domains is written

as

μa
s,i ≈ μEoS

s,i (T, P + Pc,Sa). (3.34)

By combining Equations 3.19, 3.20 and 3.34, the solubility Sa can be intended as a func-

tion of T , P , the NC chemical potentials μs of the fluid components and the constraint

pressure Pc:

Sa = Sa(T, P,μs;Pc) ⇐⇒ μEoS
s (T, P + Pc,Sa) = μs (3.35)

It can be shown under mild assumptions (cf. Appendix B) that increasing Pc at fixed

T, P,μs decreases the equilibrium solubility in the amorphous domains at low to mod-

erate solubility, i.e., (
∂Sa,i

∂Pc

)
T,P,μs

< 0. (3.36)

Both Memari and coworkers44 and Minelli and coworkers45 found that the typical val-

ues of Pc needed to correctly describe the sorption isotherms ranged between 10 and

80 MPa, a very significant pressure compared to the typical external pressure. Fur-

thermore, Pc was found to decrease with increasing temperature and decreasing crys-
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tallinity.

Fischlschweiger and coworkers273 have proposed that the Pc could be of a mechanical

origin, either due to potential residual stresses in the polymer following crystallization

or due to the formation of the cavities needed to accommodate the solute particles in

the amorphous domains. In the current work, neither of these hypotheses are con-

sidered as the constraining effect can be simply explained by considering the swelling

restriction induced by the tie-molecules – as the elastic models discussed in Section 3.2.2

have shown. However, elastic models have invariably been developed using incompress-

ible fluid theories such as the Flory–Huggins–Staverman theory in which pressure is

undefined. We will now show for the first time that the concept of constraint pressure

naturally emerges naturally when compressible polymer mixtures are subject to network

constraints.

Formal derivation (This work)

Let T, V,ns,ν,Γc be respectively temperature, volume, the solute(s) composition vector

(in moles of solutes), the polymer composition vector (i.e., the molecular weight dis-

tribution) and the vector of variables specifying the network constraints (e.g. chemical

or physical cross-links) acting on a polymer network. The free energy of the swollen

network A can be written as

A(T, V,ns,ν;Γc) = AEoS(T, V,ns,ν) + ΔAc(T, V,ns,ν;Γc), (3.37)

where AEoS is the free energy of a liquid polymer-solute mixture at the same temperature,

volume and concentration and ΔAc the free energy difference due to the formation of

network constraints (e.g. chemical or physical cross-links). We anticipate that this free

energy difference is mostly entropic in origin and due to the reduced configuration space

97



3.2. SOLUBILITY OF SMALL MOLECULES IN SEMI-CRYSTALLINE POLYMERS

available to polymer chains upon cross-linking and deformation.134,265 Assuming that

these constraints are irreversible, pressure is obtained as

P (T, V,ns,ν,Γc) = −
(
∂A

∂V

)
T,ns,ν,Γc

= −
(
∂AEoS

∂V

)
T,ns,ν

−
(
∂ΔAc

∂V

)
T,ns,ν,Γc

= PEoS(T, V,ns,ν)− Pc(T, V,ns,ν,Γc)

, (3.38)

where PEoS is the pressure of the reference unconstrained liquid (cf. Section 2.3) and

we have defined

Pc(T, V,ns,ν,Γc) =

(
∂ΔAc

∂V

)
T,ns,ν,Γc

. (3.39)

This quantity is positive for polymer networks since the configurational entropy of the

network chains decreases upon increases in volume. By rearranging Equation 3.38, we

see that at constant pressure P the equilibrium volume V (T, P,ns,ν,Γc) is a solution

of

PEoS(T, V (T, P,ns,ν,Γc),ns,ν) = P + Pc(T, V (T, P,ns,ν,Γc),ns,ν,Γc). (3.40)

By inverting¶,the functional relationship between PEoS and V (Equation 3.40) we then

have

V (T, P,ns,ν,Γc) = V EoS(T, P + Pc,ns,ν), (3.41)

where V EoS is the equilibrium volume of the reference liquid and Pc is a function of

state via Equation 3.39. Simultaneous solution of Equations 3.39 and 3.41 yields the

equilibrium values of V and Pc at fixed T, P,ns,ν,Γc.

In all the elastic models discussed in Section 3.2.238–41,259 the polymer chain statistics in

the reference polymer liquid is assumed to be unperturbed by the presence of the solute

¶One should note that in theory we must account for phase transitions when inverting PEoS(V ). In
solubility calculations – where T, P,μs are fixed – these issues can be avoided by using as first guess
the equilibrium volume and composition of a swollen polymer melt.
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– the so-called phantom-chain statistics265 –, resulting in ΔAc not depending explicitly

on the number of moles of solute ns:

A(T, V,ns,ν,Γc) ≈ AEoS(T, V,ns,ν) + ΔAc(T, V,ν,Γc). (3.42)

It must be stressed that this hypothesis is not justified for highly swollen networks

(e.g. gels) far from their θ temperature.134,259 Under this approximation, the chemical

potential μs,i of a solute i is given by

μs,i (T, V,ns,ν,Γc) =

(
∂A

∂ns,i

)
T,V,ns\{ns,i},ν,Γc

≈
(
∂AEoS

∂ns,i

)
T,V,ns\{ns,i},ν

= μEoS
s,i (T, V,ns,ν)

. (3.43)

At fixed pressure P , exploiting now the invertibility of the function μEoS
s,i (V ) and using

Equation 3.41 we finally obtain

μs,i(T, P,ns,ν,Γc) = μEoS
s,i (T, P + Pc,ns,ν). (3.44)

Notice the similarity to Equation 3.34, aside from the difference in how composition is

specified (Sa versus ns,ν). The combination of Equations 3.41 and 3.44 elucidates how

for systems in which ΔAc ≈ ΔAc(T, V,ν,Γc) the effect of constraints is formally equiv-

alent to the addition of a (state-dependent) pressure Pc to an otherwise unconstrained

liquid polymer-solute mixture.

Since the “liquid-like” amorphous domains have a very low compressibility, the increase

in chemical potential of a solute i due to the presence of network constraints can be
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expressed as

Δμc
s,i = μEoS

s,i (T, P + Pc,ns,ν)− μEoS
s,i (T, P,ns,ν) ≈ V̄s,iPc, (3.45)

where V̄s,i = V̄ EoS
s,i (T, P,ns,ν) is the partial molar volume of solute i in the bulk rubber

or amorphous domains (Equation 3.33)‖. All the elastic models discussed can thus be

unified under the formalism just developed. The magnitude of the constraint pressure

can be calculated with the help of Equation 3.45 by simply dividing the excess chemical

potential obtained with these models by V̄s,i. Finally, we note that the approach of

Memari and coworkers44,271,272 and of Minelli and coworkers45 – who used a constant Pc

– corresponds to setting ΔAc ≈ PcV

3.2.4. Formal statement of the local equilibrium hypothesis (This

work)

We will now develop a general formalism to explore the consequences of the local-

equilibrium hypothesis on the thermodynamic properties of the amorphous domains

of crystal-mobile polymers (cf. Section 3.1.4). Let us assume again that the free energy

of a constrained polymer system satisfies Equation 3.42. Furthermore, for simplicity

let us assume that the system is made of ν identical chains of n monomers each. The

arguments below can be extended to polydisperse chain distributions. Since n can

change it is hereon included in the variables characterizing A. We will further write

A = A(T, V,ns, n; ν,Γc) to emphasize that the constraints Γc and therefore ν cannot

vary.

Equilibrium with respect to exchanges of chain monomers between the system and a

reservoir – in our case, the crystalline lamellae – at fixed T, V,ns, ν,Γc can be treated

‖for a formal justification of 3.45, see Equation B.4 in Appendix B
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formally by considering the swollen network as a semi-open system allowing exchanges

of chain monomers but not of entire polymer molecules with the reservoir. In this

framework, the lamellae are thus assumed to fix the “monomer chemical potential”

μp,mono, defined as the change in Gibbs free energy (at fixed T, P ) of the lamella due to

the incorporation of one mole of monomers. By using similar arguments to those leading

to Equation 3.4, in the limit of high molecular weight (n → +∞) the Gibbs free energy

Glamella of a lamella with n monomers can be written as

Glamella(T, P, n, AΣ) ≈ nμEoS
p,mono(T, P )− nM0Δh0

m

(
1− T

T 0
m

)
+ 2σeAΣ (3.46)

where M0 is the molar mass of a monomer and μEoS
p,mono the chemical potential per

monomer of the pure liquid polymer in the limit of high molecular weight (cf. Ap-

pendix C). In the limit of high molecular weight both the melting temperature T 0
m and

specific melting enthalpy Δh0
m of the extended chain crystal should not depend on the

molecular weight∗∗. Local equilibrium at the fold surface leads to a change in the number

of crystalline monomers at constant fold surface area AΣ:

μp,mono =

(
∂Glamella

∂n

)
T,P,AΣ

≈ μEoS
p,mono(T, P )−M0Δh0

m

(
1− T

T 0
m

)
+ 2AΣ

(
∂σe

∂n

)
T,P,AΣ

. (3.47)

Since the interfacial free energy of the fold surface per unit area (σe) can be a func-

tion of parameters such as the inter-lamellar distance156 – which varies during partial

melting –, in general its partial derivative with respect to n should be computed. How-

ever, in the current work this term is neglected for simplicity, leading to the following

∗∗As pointed out in Section 3.1.1, however, the melting point T 0
m can change due to presence of non-

crystallisable units
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expression:

μp,mono ≈ μEoS
p,mono(T, P )−M0Δh0

m

(
1− T

T 0
m

)
. (3.48)

Since all the network chains are identical, an increase of one monomer per chain corre-

sponds to a decrease of ν monomers in the lamellae. Equilibrium between the lamella and

the inter-lamellar domains is therefore expressed by the following equation:

μp,mono =
1

ν

(
∂A

∂n

)
T,V,ns,ν,Γc

=

(
∂Ã

∂n

)
T,V,ns,ν,Γc

=
1

ν

(
∂A(n),EoS

∂n

)
T,V,ns,ν

+
1

ν

(
∂ΔAc

∂n

)
T,V,ν,Γc

(3.49)

Here, the reduced Helmholtz free energy Ã is obtained by Ã = A/ν and we have used

Equation 3.42. The superscript (n) has been added to the Helmholtz free energy of

the unconstrained liquid AEoS to emphasize that it must be calculated for chains of n

monomers each.

Taking derivatives with respect to n amounts to treat this quantity as a continuous

variable; in the current work, this procedure is justified by the fact that the polymer

strands possess a large number of individual monomers. Details on how these derivatives

are calculated for our model are given in Section 3.3.3.

3.2.5. Solubility calculations in the T, P,μs, μp,mono ensemble (This

work)

Since for crystal-mobile polymers at fixed temperature T , pressure P and composi-

tion y of the external fluid both the chemical potential of the solutes (Equation 3.20)

and the monomer chemical potential of the polymer (Equation 3.48) are fixed, we can

treat solubility calculation formally by calculating thermodynamic properties in the
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T, P,μs, μp,mono ensemble. Crystal-fixed polymers can be treated instead in the corre-

sponding T, P,μs ensemble where the number of polymer’s monomers in the amorphous

domains is not allowed to change.

By noticing that the number of polymer molecules ν and the constraints Γc are constants

we can define in the same spirit of Section 2.3.3 the function

Φ∗(T, P,μs, μp,mono;V,ns, n; ν,Γc) = A(T, V,ns, n; ν,Γc) + PV

−
NC∑
i=1

μs,ins,i − νμp,monon
(3.50)

and require that at equilibrium it is stationary with respect to variations in the volume V ,

number of solute particles ns and number of chain monomers n :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V = V (T, P,μs, μp,mono; ν,Γc)

ns = ns(T, P,μs, μp,mono; ν,Γc)

n = n(T, P,μs, μp,mono; ν,Γc)

⇔

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
∂Φ∗
∂V

)
T,P,μs,μp,mono,ns,n,ν,Γc

= 0(
∂Φ∗
∂ns,i

)
T,P,μs,μp,mono,V,ns\{ns,i},n,ν,Γc

= 0

(
∂Φ∗
∂n

)
T,P,μs,μp,mono,V,ns,ν,Γc

= 0

.

(3.51)

The 2NC +2 Equations on the right hand side correspond to the equilibrium conditions

previously stated (Equations 3.40, 3.19 and 3.49). In particular, since the number of

polymer molecules ν is constant, we note that the same result can be obtained by

minimising the reduced potential

Φ̃∗(T, P,μs, μp,mono;V, ñs, n; ν,Γc) = Φ∗/ν

= Ã(T, V,ns, n; ν,Γc) + PṼ

−
NC∑
i=1

μs,iñs,i − μp,monon

(3.52)

with respect to variations in the reduced volume Ṽ = V/ν, number of solute molecules
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per polymer molecule ñs = ns/ν and number of chain monomers n.

Note that applying simultaneously the four driving forces T, P,μs and μp,mono is not at

odds with the Gibbs-Duhem equation for the system as its free energy A is in general

not extensive in all the four conjugated variables S, V,ns, n – where S indicates entropy

– due to the presence of ΔAc.

3.3. Development of a new model (This work)

In this Section a new model for predicting the solubility of small molecules in semi-

crystalline polymers is developed by applying the formalism developed in Sections 3.2.3,

3.2.4 and 3.2.5.

3.3.1. Improving upon previous theories

All of the solubility models reviewed in Section 3.2 present features that are incompat-

ible with the current understanding of the physics of the amorphous domains. Model

parameters such as the mean molecular weight of the chains M̄c for the FR theory or the

fraction of elastically effective polymer fT of the MH theory – obtained via comparison

of the model predictions with solubility data – therefore possess only qualitative physical

meaning. Furthermore, these approximations can diminish the ability of these models

to predict solubility in conditions different from the ones in which the model parameters

were obtained.

Non-Gaussian chain stretching

As shown in Section 3.2.2, there is strong support for the idea that the solubility re-

duction in semi-crystalline polymers is due to the stretching of the tie-molecules upon
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swelling. However, all the models reported derive expressions for the excess chemical

potential Δμc
s,i (Equation 3.24) by assuming that the end-to-end probability distribution

of the polymer chains conforms to Gaussian statistics which is valid only for small end-

to-end displacements relative to the extended-chain configuration.134 This is at odds

with the fact that the inter-lamellar domains are highly constrained.193,205,238 In par-

ticular, in crystal-mobile polymers the local-equilibrium between the lamellae and the

amorphous mass should make the tie-molecules taut at temperatures sufficiently lower

than the melting point7,39,42,194–196 – as it is show in Section 4.1.

Anisotropic swelling

Another indisputable fact is that due to the rigidity of the crystal structure swelling

in the inter-lamellar domains must be essentially one-dimensional. This concept was

implemented in the swelling models by Brown40 and Liu and Neogi,41 as well as in the

premelting studies by Mansfield et al.199 and Albrecht and Strobl.200 However, all of

these models make use of the Gaussian approximation. Moreover, Brown’s and Liu and

Neogi’s models are only applicable to crystal-fixed polymers, whereas Mansfield and

Albrecht and Strobl’s models only deal with pure polymers.

Limits of the Michaels and Hausslein theory

The Michaels and Hausslein theory39 is the only solubility model to date to account for

the mass exchange at the crystal/amorphous interface, which is a defining character-

istic of crystal-mobile polymers. Nevertheless, the model assumes that the amorphous

domains are completely isotropic and that the polymer chains conform to Gaussian

statistics. Furthermore, the mass fraction of elastically effective chains fT – the main

model parameter – should vary with temperature due to the local-equilibrium hypoth-

esis, whereas it has been used as a constant for each polymer sample in most of the
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subsequent works that implemented the theory.39,42,43,251–258 These issues are addressed

in Section 3.3.3 with the development of a new model for the Helmholtz free energy of

the inter-lamellar domains.

Free and inter-lamellar domains

All the solubility models reviewed are based on the 2-domain model, according to which

all the amorphous mass can be considered homogeneous. As mentioned in Section 3.1.5,

there is strong evidence for the existence of two populations of amorphous chains in

semi-crystalline polymers: one semi-rigid and constrained, and one “loose” and melt-

like. In the current work, following Chmelař and coworkers238 the amorphous domains

are divided in constrained inter-lamellar domains (superscript IL) and “free” extra-

lamellar amorphous domains (superscript F) that possess approximately the properties

of a polymer melt.

If two types of amorphous domains are present, we can define mF
s,i and mIL

s,i as the

mass of each solute i in the free and inter-lamellar domains, respectively. The overall

solubility Si of solute i (Equation 3.14) can then be expressed as a function of the

solubility in the free (SF
a,i = mF

s,i/m
F
p) and inter-lamellar (SIL

a,i = mIL
s,i/m

IL
p ) amorphous

domains:

Si =
ms,i

mtot
p

=
mF

s,i

mtot
p

+
mIL

s,i

mtot
p

=
mF

p

mtot
p

mF
s,i

mF
p

+
mLS

p

mtot
p

mIL
p

mLS
p

mIL
s,i

mIL
p

= ψSF
a,i + (1− ψ)

(
1− ωLS

c

)
SIL
a,i

, (3.53)
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Here, ψ is the mass fraction of free amorphous domains (Equation 3.11) whereas

ωLS
c =

mc
p

mLS
p

=
mc

p

mc
p +mIL

p

= 1− mIL
p

mLS
p

(3.54)

is the crystallinity of the lamellar stacks (LS) – since all crystalline polymers are con-

sidered to be lamellar. This quantity can be related to the total crystallinity ωc and ψ

by combining Equations 3.8 and 3.11:

ωLS
c =

mc
p

mLS
p

=
mc

p

mtot
p

mtot
p

mLS
p

=
ωc

1− ψ
. (3.55)

By comparing Equation 3.53 to Equation 3.18, we can also write

Si = (1− ωc)Sa,i = (1− ωc)
(
φSF

a,i + (1− φ)SIL
a,i

)
, (3.56)

where

φ =
mF

p

mF
p +mIL

p

=
ψ

1− ωc

(3.57)

is the mass fraction of free amorphous mass relative to the total amorphous mass

in the sample; the overall sorption of solute i in the amorphous domains thus satis-

fies

Sa,i = φSF
a + (1− φ)SIL

a,i, (3.58)

i.e., it is a weighted average of the solubility in the free and inter-lamellar domains.

3.3.2. Free amorphous domains

We treat the free amorphous domains as subcooled polymer + solutes mixtures:

AF(T, V,ns, n; ν,Γc) ≈ A(n),EoS(T, V,ns, ν), (3.59)
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where the superscript (n) indicates the number of monomers of the polymer chains as in

Equation 3.49. Although we can expect inhomogeneities in both the density and stress

state to be present in these domains, this assumption reflects the defining property of

free amorphous domains – i.e., being composed of “loose” polymer chains with slow,

melt-like dynamics.193,238

It must be noted that we assume the local equilibrium between the free amorphous

mass and the lamellae to be absent; this is a crude simplification, as the persistence of

amorphous mass in these domains must be due to local equilibrium on the lateral lamellar

surfaces156,274 or chain ends and defects.131,150,170,175,275 However, this assumption is

necessary if we take AF = AEoS since otherwise below the melting point of the polymer

all the monomers of the polymer chains would be incorporated in the lamellae due to

the absence of constraints. It might be important to relax this approximation if the

variation of the free amorphous mass with temperature and concentration needs to be

calculated.

Therefore, at fixed T, P,μs the solubility of each component in the free amorphous do-

mains SF
a,i(T, P,μs) is simply calculated by using Equation 3.19, 3.20 and 3.22 (i.e.,

SF
a,i = SEoS

a,i ). The polymer is modelled as having no ends and a fixed number of

monomers n0 = 1000.

3.3.3. Inter-lamellar domains

In this section an expression for the free energy of the inter-lamellar amorphous domains

in semi-crystalline polymers is derived, based on a simple statistical-mechanics model.

The constraint pressure emerges naturally from this treatment due only to the presence

of tie-molecules bridging the two opposing lamellae. The local-equilibrium hypothesis is

then applied in order to remove an unknown from the solubility calculations (namely, the
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average number of monomers per tie-molecule) in crystal-mobile polymers. The resulting

model is characterized by two free parameters: the fraction of stems connected to tie-

molecules, pT, and the inter-lamellar distance l∗a of the pure semi-crystalline polymer at

an arbitrary temperature T ∗ and pressure P ∗.

This allows one to calculate the dependence of both Pc and the the crystallinity of the

lamellar stacks ωLS
c on temperature, pressure and composition. As a result, the contribu-

tion SIL
a,i(T, P ) can be calculated either with the combination of with Equations 3.34 and

3.19 or by minimisation of the Φ̃ potential described in Section 3.2.5. The total sorption

S can finally be determined with Equation 3.53. This formalism includes crystal-fixed

polymers as a special case in which mass exchanges at the crystal/amorphous surface are

not allowed. However, an extra parameter or extra assumptions are needed to quantify

the average number of monomer per polymer chain (see below).

Morphological model

For simplicity, the lamellar stacks are modelled as a sequence of alternating layers of crys-

talline polymer (the lamellae) and amorphous material characterized by a well-defined

lamellar thickness lc and inter-lamellar distance la. Let V be the volume of a region of the

amorphous domains included between two parallel crystalline lamellae. The relationship

between V and la is simply

V = AΣla, (3.60)

where AΣ is the area of one lamellar surface facing the inter-lamellar domains (the fold

surface). Although this quantity might change with temperature due to mass exchanged

between the lateral lamellar surfaces and the free amorphous mass,156,274 in the current

model it must be a constant as the latter phenomenon does not take place (see discussion

in Section 3.3.2).
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Figure 3.7.: A schematic depiction of a bridge molecule in the inter-lamellar domains. Ree,T is
its end-to-end distance, la the inter-lamellar distance and δT the projection of the end-to-end
vector of the bridge on the lamellar surface.

In this model, the constraints Γc acting on the inter-lamellar domains are embodied by

the rigidity of the crystal structure which prevents the crystalline stems in the lamellae

from moving along the plane parallel to the lamellar surfaces††. As a consequence, the

topology of the inter-lamellar domain – i.e., the fraction of tie-molecules pT, but more

in general of loops etc. – is assumed to be constant. We stress that all of these approxi-

mations can break down at temperatures near the melting point, where recrystallization

and structural reorganizations on the meso-scale may occur.156

In the following development tails and free chains (Figure 3.2) are neglected as their effect

should be minimal except for very low-molecular weight samples. Furthermore, we intro-

duce here the major approximation that the inter-lamellar domains are only composed of

bridges. This is not realistic, as both entangled and un-entangled loops should be greater

in number than bridges.7,190,201,207 However, at the level of description employed here

accounting for the full topological complexity of the inter-lamellar domains would intro-

duce too many free parameters without adding physical insight.

††Note that in crystal-mobile polymers longitudinal chain motion is expected (cf. Section 3.1.4)

110



3.3. DEVELOPMENT OF A NEW MODEL (THIS WORK)

This approximation is inspired by the observation that bridges and entangled loops (i.e.,

the tie-molecules) should have a similar effect mechanical and swelling properties of

the inter-lamellar domains.7,193,258 As shown in Appendix E, at the level of our de-

scription substituting all entangled loops with equivalent bridges with the same average

tension and inclination leaves the constraint pressure unchanged. On the other hand,

un-entangled loops should not contribute significantly to the solubility reduction as they

do not stretch upon swelling. This approximation will be progressively justified at key

points of the following discussion; the full treatment accounting for loops is reported in

Appendix E.

The equivalent bridges of the current model for the inter-lamellar domains (subscript

T) are assigned the same average properties, i.e., the same magnitude of the end-to-end

vector Ree,T and number of monomers nT (Figure 3.7). Introduction of chain length

distributions in the theory is possible but not essential to capture the main physical

features of the problem, and it requires additional assumptions on the shape of said

distribution. Notice that bridges do not have end groups: it is therefore assumed

that polymer chains in the inter-lamellar domains are only composed of main-chain

monomers.

Due to the rigidity of the crystal structure, the projection of the end-to-end vector of

each bridge, Ree,T, on the lamellar surfaces is a constant, hereafter named δT (Figure

3.7):

Ree,T = ‖Ree,T‖ =
√

l2a + δ2T. (3.61)

Furthermore, the number of equivalent bridges νT must also be a constant. We denote

with ρA,T = νT/AΣ the surface density of equivalent bridges (i.e., of stems connected to

tie-molecules, Section 3.1.3) on the fold surface. The free energy of the inter-lamellar

domains, AIL, is therefore a function of T, V,ns, νT but also of the number of equivalent
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bridge monomers nT and the lateral displacement δT:

AIL = AIL(T, V,ns, nT; νT, δT); (3.62)

the same convention will be used for the other thermodynamic properties of the inter-

lamellar domains.

Helmholtz free energy

In order to calculate the Helmholtz free energy of the inter-lamellar amorphous domains,

we employ an approach which is similar to the one used by Flory259 to derive an expres-

sion for the free energy of a swollen polymer network. By physically detaching all the

bridges in the amorphous domains from the lamellar surface, a confined polymer-solute

mixture is obtained (the “confined fluid” - see Figure 3.8). The free energy of the inter-

lamellar amorphous domains AIL can be related to the free energy of the confined fluid

A
′
as follows:

AIL ≈ A′ − kBT ln pc +ΔEbond. (3.63)

Here, ΔEbond is the energy gain due to the formation of irreversible chemical bonds

between the bridges and the lamellae; pc, on the other hand, represents the probability

of finding the detached chain segments in configurations compatible with bonding with

the lamellae in the confined fluid.

The probability that a given tie-segment j in the confined fluid has the ends in positions

R
′
j,R

′′
j can be written as 2Δτ 2p

′
ee

(
R

′
j,R

′′
j

)
, where p

′
ee is the end-to-end probability

distribution in the confined fluid and Δτ is the average volume in which the ends of

the bridges remain confined due to thermal motion and bonding with the lamellae.259

This volume is in principle (at least) temperature-dependent, but its variations with

temperature are small due to the strength of the chemical bonds. Furthermore, one
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Figure 3.8.: A schematic representation of the systems related by Equation 3.63: the confined
polymer-solute mixture (left) and the inter-lamellar domains (right). The orange chains rep-
resent polymer segments, the green circles solute molecules, and the blue rectangles lamellae.
Notice that in the current model we assume that all the bridges have the same number of
monomers and that loops are absent (in contrast to what the picture suggests).

should note that in general p
′
ee depends on temperature, solute concentration and volume

aside from the end-to end distance R
′
j −R

′′
j and number of chain monomers nT. These

dependencies are kept implicit for now to simplify the notation. The factor 2 comes

from the equivalence of the two chain ends.

We then perform the approximation

p
′
ee

(
R

′
j,R

′′
j

)
≈ pee

(
R

′
j,R

′′
j

)
, (3.64)

where pee is the end-to-end probability distribution of a polymer chain with the same

number of monomers in a bulk polymer mixture characterized by the same temperature,

polymer and solute density as the confined fluid.

With this approximation one neglects the fact that the presence of the lamellae breaks

the bulk symmetry, meaning that the actual probability for a free chain in the con-

fined fluid of attaining configurations with its ends in the volumes Δτ centered at
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R
′
j,R

′′
j might be different from 2Δτ 2pee

(
R

′
j,R

′′
j

)
due for example to the interaction

with the crystal surface and the inability of bridge monomers to “cross” the lamellar

surface.276

Since pee is a bulk end-to-end distribution, due to translational and rotational invariance

we have

pee

(
R

′
j,R

′′
j

)
=

1

V
pee(Ree,j), (3.65)

where Ree,j is the magnitude of the end-to-end vector of the jth chain. Since all the chains

are assumed to have the same number of monomers nT and (magnitude of the) end-to-

end vector Ree,T (Figure 3.7), we can thus approximate pc with

pc ≈ νT!

(
2Δτ 2pee (Ree,T)

V

)νT

, (3.66)

where the factor νT ! accounts for the number of ways to choose chain segments in the

confined fluid to fill the νT pairs of bonding sites on the lamellae. This approximation

amounts to assuming that as the structure of bound chain segments is progressively

built from the detached chains, the probability for an unbound chain to attain config-

urations compatible with its target constrained state is not influenced by the presence

of the other constrained segments. At this level we are thus neglecting any pair and

higher-order correlations between chains, as it is customary in polymer networks mod-

els.39,259,266

Equation 3.63 for the Helmholtz free energy can therefore be rewritten as

AIL ≈ A′ − kBT

(
νT ln (pee (Ree,T)Δτ) + νT ln

(
Δτ

V

)
+ ζ(νT)

)
+ ΔEbond. (3.67)

Here, ζ(νT) includes all the terms which depend only on the number of segments; since

the topology of the inter-lamellar domains is assumed to not change, ζ(νT) is just a
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constant in the free energy.

The final approximation that we perform is to assume that the free energy of the confined

fluid, A
′
, is the free energy of a bulk polymer-solute mixture at the same temperature,

volume and composition:

A(nT),
′
(T, V,ns, νT) ≈ A(nT),EoS(T, V,ns, νT). (3.68)

Here, the superscript (nT) has been added to emphasize that the polymer chains in

the confined and bulk mixture have nT monomers (as in Equation 3.49 and following

discussion). Approximating A
′
with AEoS amounts to neglecting finite-size effects on

the thermodynamic properties of an unconstrained polymer mixture confined between

two lamellae. This approximation is consistent with the assumption p
′
ee ≈ pee discussed

earlier. Equation 3.67 is thus now in the form of Equation 3.37, and we can identify

ΔAc with

ΔAc = −νTkBT ln (pee (Ree,T)Δτ)− νTkBT ln

(
Δτ

V

)
+ C(T )

= ΔAel +ΔAloc + C(T )

, (3.69)

where the quantity C(T ) is volume-independent and contains the bonding energy and the

ζ(ν) term. ΔAel is the “elastic” contribution to ΔAc due to the stretching of the bridges.

ΔAloc, one the other hand, represents an ideal gas term due to the loss of translational

degrees of freedom of the constrained chains. It can be shown (cf. Appendix E) that

under similar assumptions the inclusion of loops in the theory (both entangled and not)

would lead to 2 additional stretching term and two additional ideal gas terms to Equation

3.69.

As can be seen in Equation 3.69, in order to calculate ΔAc the functional form of the

bulk end-to-end probability distribution pee(Ree,T) must be specified. In general, this
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distribution is a complicated function of the end-to-end vector Ree,T since it includes

all the effects of the intra-molecular bonding interactions and of the interactions with

the other monomers and the solutes. However, it is possible to show134,260,265 that for

long chains in polymer melts or concentrated solutions, the average squared end-to-end

distance of a chain with M bonds of length l is given by

〈R2
ee〉 = C∞Ml2, (3.70)

where C∞ is the Flory characteristic ratio which is roughly a constant for a given poly-

mer.

In line with the phantom chain model used in most polymer network theories,38–40,134,199,259

in this work we assume

pee(Ree,T;T, V,ns, nT, νT) ≈ pFJee (Ree,T;NT, b), (3.71)

where pFJee is the end-to-end probability distribution of an equivalent freely jointed chain

(i.e., CFJ
∞ = 1) with NT monomers and bond length b. This approximations results in pee

depending only on nT and Ree,T, and therefore ΔAc is now composition-independent (in

line with Equation 3.42). The two equivalent chain parameters NT and b can be found

by enforcing that the contour length and mean square end-to-end distance of the two

chains is the same:

⎧⎪⎨
⎪⎩

〈R2
ee,T〉FJ = 〈R2

ee,T〉 = C∞NbnTl
2

RFJ
max,T = Rmax,T = NbnTl cos

(
π−θB

2

) →

⎧⎪⎨
⎪⎩

NT = cos2((π−θB)/2)
C∞ NbnT

b = C∞
cos((π−θB)/2)

l

. (3.72)

In the equation above Nb is the number of main-chain bonds per monomer (e.g., 1 in

PE an 3 in PEG), whereas l and θB are, respectively, the (average) bond length and

bond angle of the real chain. Alternatively, by defining lmono = l cos ((π − θB) /2) the
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two equations in 3.72 can be expressed as

nT/NT = b/(Nblmono) =
C∞

Nb cos2((π − θB)/2)
= η, (3.73)

where η is a constant. Therefore, the equivalent freely-jointed chain has fewer but longer

bonds than the real chain.

Using the accurate Langevin statistics – a rigorous result for freely-jointed chains if the

force is imposed instead of a displacement – pFJee can be approximated by260,265

ln pFJee (Ree,T, NT; b) ≈ lnC(NT)− 1

b

∫ Ree,T

0

L−1

(
R

NTb

)
dR

= lnC(NT)−NT

∫ xT

0

L−1(x′)dx′

= lnC(NT)−NT

[
xTL−1(xT)− ln

sinhL−1(xT)

L−1(xT)

], (3.74)

where L−1 is the inverse of the Langevin function L(y) = coth y − 1/y and C(NT) is a

normalization constant – see Appendix F for its definition. Here, we have defined the

fractional extension of the tie-molecules

xT = Ree,T/(NTb). (3.75)

In the Gaussian approximation (xT → 0),

ln pFJee (Ree,T, NT; b) ≈ −3

2
ln

(
2πNTb

2

3

)
−NT

3

2
x2
T

= −3

2
ln

(
2πNTb

2

3

)
− 3R2

ee,T

2NTb2

. (3.76)

Before proceeding with the discussion, it is useful to summarize the assumptions and ap-

proximations that are employed to model the inter-lamellar domains:
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• In the current model an equilibrium statistical mechanics treatment of the inter-

lamellar domains is employed, which implies that these domains should be rubbery

rather than glassy. In the latter case, the system could in fact be trapped in a

local minimum of the free energy. It may be possible to extend the theory to

semi-crystalline polymers with glassy amorphous domains using non-equilibrium

theories such as the Non-Equilibrium Thermodynamics for Glassy Polymers (NET-

GP) model originally developed by Doghieri, Sarti, and co-workers.277,278 The

NET-GP theory has been successfully employed to describe sorption isotherms

of semi-crystalline polymers such as PTFE and MFA,269 with glass transitions

occurring above room temperature.

• We have assumed that the inter-lamellar domains are only composed of bridges.

Despite the crude approximation, in Appendix E it is shown that un-entangled

loops do not contribute significantly to the solubility reduction (i.e., Pc), whereas

entangled loop have qualitatively the same effect as bridges. The surface density of

equivalent bridges in the current model is therefore intended as the surface density

of tie-molecules ρA,T (bridges + entangled loops) in the real system.

• In order to find a simple expression for the free energy, the probability of finding

a given chain segment in the confined fluid in configurations compatible with its

bonded state is assumed to be independent of the presence of the other constrained

chain segments. This assumption means that the molecular environment of the

chain segments is not altered significantly upon the formation of the ties. This

condition is violated if the chain segments in the inter-lamellar amorphous domains

attain configurations that are atypical of the molten state.

• The effects that the surfaces of the lamellae have on the thermodynamics of the

amorphous domains are neglected. In particular, the end-to-end probability dis-

tributions appropriate for concentrated polymer solutions are here used to approx-
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imate the probability of observing the two ends of a given bridge on the surfaces

of two opposing lamellae. Furthermore, if the inter-lamellar distance la is small,

finite size effects276,279–284 should make the free energy A
′
of the polymer mixture

confined in the inter-lamellar amorphous domains different from the one calculated

using an equation of state for bulk fluids, AEoS.

• Langevin statistics is employed to approximate the end-to-end probability distri-

butions, thus accounting for the finite extensibility of real chain segments. To

our knowledge, this is the first time that this approximation has been used in-

stead of the Gaussian approximation in the context of predicting sorption in semi-

crystalline polymers. Furthermore, this assumption is consistent with the obser-

vation that tie-segments in the amorphous domains should be fairly taut.7,207,238

Equilibrium with an external fluid

The equilibrium reduced volume Ṽ = V/νT, number of solute particles per equivalent

bridge ñs,i = ns,i/νT and chain monomers in the inter-lamellar domains nT can be found

by minimisation of the reduced potential Φ̃IL.* of the inter-lamellar domains (Equation

3.52):

Φ̃IL,*(T, P,μs, μp,mono;V, ñs, n; νT, δT) = Ã(nT),EoS(T, V,ns, νT)

+ ΔAc(T, V, nT; νT, δT)/νT

+ PṼ −
NC∑
i=1

μs,iñs,i − μp,mononT

. (3.77)

Here, Ã(nT),EoS = A(nT),EoS/νT. The knowledge of ñs,i and nT yields immediately SIL
a,i

since all the inter-lamellar mass is made of bridges:

SIL
a,i = mIL

s,i/m
IL
p =

Ms,i

M0

ñs,i

nT

. (3.78)
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Here, Ms,i and M0 are the molar mass of the solute and the polymer’s monomers, re-

spectively. Similarly, the crystallinity of the lamellar stacks ωLS
c is simply related to the

number of equivalent bridge monomers nT:

1− ωLS
c =

mIL
p

mLS
p

=
νTM0

mLS
p

nT = KnT, (3.79)

where K is a constant due to the assumption that there is no mass exchange between the

lamellar stacks and the free amorphous mass (i.e., that mLS
p and ψ are a constant). Both

Equations 3.78 and 3.79 can be extended straightforwardly to include un-entangled loops

by multiplying and dividing (respectively) the right-hand side by the mass fraction of tie-

molecules fT (Appendix D). Neglecting un-entangled loops thus corresponds to setting

fT = 1.

ΔAc is given by Equation 3.69 with the Langevin approximation for pee (Equation

3.74); it is a function of volume as the end-to-end distance is a function of the inter-

lamellar distance la (Equation 3.61), which in turns is a function of the (reduced) volume

via

la = V/AΣ = ρA,TV/νT = ρA,TṼ , (3.80)

where we have used the definition of the surface density of tie-molecules (i.e., of equiv-

alent bridges) ρA,T = νT/AΣ.

The reduced EoS free energy, A(nT),EoS/νT, can be calculated explicitly using an equation

of state of choice. In the current work, however, an approximate expression is used in

order to elucidate the physical meaning of this quantity and its derivatives in polymer

systems. Since A(nT),EoS is extensive in the volume V , number of solute molecule ns and

number of polymer molecules νT, we can write

A(nT),EoS =

NC∑
i=1

ns,iμ
(nT),EoS
s + νTμ

(nT),EoS
p − P (nT),EoSV. (3.81)

120



3.3. DEVELOPMENT OF A NEW MODEL (THIS WORK)

Dividing by νT, we obtain

Ã(nT),EoS =

NC∑
i=1

ñs,iμ
(nT),EoS
s,i + μ(nT),EoS

p − P (nT),EoSṼ

=

NC∑
i=1

ñs,iμ
(nT),EoS
s + nTμ

(nT),EoS
p,mono − P (nT),EoSṼ

, (3.82)

where we have defined the monomer chemical potential calculated via the EoS as μ
(nT),EoS
p,mono =

μ
(nT),EoS
p /nT in the same spirit of Equation 3.48. In Appendix C it is shown that at fixed

temperature, pressure and mass fraction of solutes and polymer the monomer chemical

potential has a well-defined limit as nT → ∞.

Similarly, at constant temperature, monomer density and mass fraction of solutes and

polymer, the monomer chemical potential μ
(nT),EoS
p,mono , the chemical potential of the solutes

μ
(nT),EoS
s,i and the pressure P (nT),EoS have well-defined limits as nT → ∞. Therefore,

in the current work all the functions in Equation 3.82 are calculated using a reference

system in which the number of chain monomers is fixed to an arbitrary high value

n0:

Ã(nT),EoS ≈
NC∑
i=1

ñs,iμ
(n0),EoS
s,i + nTμ

(n0),EoS
p,mono − P (n0),EoSV/νT. (3.83)

In order to make sure that the mass fraction of polymer and the overall monomer density

is unchanged, the pressure and chemical potentials of the reference polymer + solute

mixture must be calculated at a different volume and composition:

(T, V,ns, νT) →
(
T,

n0

nT

V

νT
,
n0

nT

ns

νT
, 1

)
=

(
T,

n0

nT

Ṽ ,
n0

nT

ñs, 1

)
. (3.84)

The dependence on nT of the thermodynamic properties of the liquid mixture with nT

monomers is now enforced through the composition only. At fixed pressure (instead of

volume), the EoS functions of state in the reference mixture are calculated at the same
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pressure (P + Pc, cf. Section 3.2.3) but different composition:

(T, P + Pc,ns, νT) →
(
T, P + Pc,

n0

nT

ñs, 1

)
. (3.85)

Equilibrium can now be solved by minimisation of Φ̃IL,*, which corresponds to setting

its partial derivatives with respect to Ṽ , ñs,i and nT equal to zero (Section 3.2.5). In the

next two subsections these derivatives are calculated explicitly since they lead to 2NC+2

equilibrium equations and since their value is useful for numerical implementations of

the minimisation problem.

Constraint pressure and equilibrium volume

Setting the partial derivative of Φ̃IL,* with respect to volume equal to zero leads to the

definition of the equilibrium constraint pressure and equilibrium volume at fixed total

pressure P , as shown in Section 3.2.3:

(
∂Φ̃IL,*

∂Ṽ

)
T,P,μs,μp,mono,ns,nT,νT,Γc

= P +

(
∂ÃIL

∂Ṽ

)
T,ns,nT,νT,Γc

= P − P (nT),EoS + Pc = 0

, (3.86)

where we have used Equation 3.40. While the EoS pressure is approximated with the

one calculated in the reference polymer + solute mixture with n0 monomers (see Equa-

tion 3.84), the constraint pressure is found by substituting Equation 3.69 in Equation
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3.39:

Pc =

(
∂ΔAc

∂V

)
T,ns,nT,νT,Γc

=

(
∂ΔAel

∂V

)
T,ns,nT,νT,Γc

+

(
∂ΔAloc

∂V

)
T,ns,nT,νT,Γc

= −νTkBT

(
∂Ree,T

∂V

)
Γc

(
∂ ln pee(Ree,T)

∂Ree,T

)
T,ns,nT,νT

+
νTkBT

V

= νT

(
∂Ree,T

∂V

)
Γc

fee,T +
νTkBT

V

(3.87)

Here, fee,T = −kBT (∂ ln pee/∂Ree,T)T,ns,nT,νT
is the (thermodynamic) force acting on the

ends of the bridges under the assumptions of the current model. The constancy of the

constraints Γc in the equation above influences how the partial derivative (∂Ree,T/∂V )

is calculated. Recalling V = AΣla and Ree,T =
√

l2a + δ2T (Equation 3.61) we thus

obtain

(
∂Ree,T

∂V

)
Γc

=
1

AΣ

(
∂
√

l2a + δ2T
∂la

)
δT

=
cos θT
AΣ

, (3.88)

where θT is the angle formed between Ree,T and the normal to the lamellar surfaces.

This equation enforces one-dimensional swelling of the inter-lamellar domains, in line

with other modelling works.40,41 As mentioned at the beginning of Section 3.3, many

of the most utilized models for swelling in semi-crystalline polymers39,259,285 assume

isotropic swelling, which translates into

(
∂Ree,T

∂V

)
iso

=
Ree,T

3V
. (3.89)
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Substitution of Equation 3.88 in Equation 3.87 yields

Pc = ρA,Tfee,T cos θT +
ρA,TkBT

la
= Pel + Ploc, (3.90)

where ρA,T = νT/AΣ is the surface density of the equivalent bridges (i.e., of tie-molecules)

on the lamellar surfaces.

This form of Pc emphasizes how Pel is equivalent to the mechanical pressure that would

be exerted on the inter-lamellar domains by substituting each equivalent bridge with

a spring at tension fee,T. On the other hand, Ploc originates from the localisation of

the center of mass of the bridges. In Appendix E it is shown how the presence of

entangled loops gives rise to a contribution to Pel that is symmetrical to that of the

bridges. Similarly, both entangled and un-entangled loops lead to two additional Ploc

terms which should however be small.

The force in the Langevin approximation is given by134

fee,T =
kBT

b
L−1 (xT) . (3.91)

The key improvement offered by the Langevin approximation over the Gaussian one

is that the former leads to a force that diverges as xT → 1. This is important as

tie-molecules should be fairly taut, especially in crystal-mobile polymers and at low

temperatures.7,39,195,196,207,216 Furthermore, it is shown later (cf. Section 4.1) that in

order to comply with the local equilibrium hypothesis the Gaussian approximation leads

to unphysical values of xT.

By substituting the expression for the force of Equation 3.91 into Equation 3.90 and

expressing ρA,T in mol/m2, the constraint pressure then becomes

Pc ≈ RTρA,T

b

(
L−1(xT) cos θT +

b

la

)
. (3.92)
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As xT → 0, the Gaussian approximation yields

Pc ≈ RTρA,T

b

(
3xT cos θT +

b

la

)
. (3.93)

In the equations above kB has been substituted by R – the universal gas constant – by

expressing ρA,T in mol m-2.

The equilibrium volume of the inter-lamellar amorphous domains is instead given by

Equation 3.41:

V IL(T, P,ns, nT; νT, δT) = V (nT),EoS(T, P + Pc,ns, νT)

= mIL
p v̄ILp +

NC∑
i=1

v̄ILs,ims,i

= mIL
p

(
v̄ILp +

NC∑
i=1

v̄ILs,iS
IL
a,i

) . (3.94)

Here, the extensivity of V (nT),EoS has been used to express the volume in terms of the

(state-dependent) partial specific volumes of the solutes and the polymer in the inter-

lamellar amorphous domains, calculated by dividing the partial molar volume of each

component (Equation 3.33) by its molar mass:

⎧⎪⎨
⎪⎩

v̄ILs,i = V̄
(nT),EoS
s,i (T, P + Pc,ns, νT) /Ms,i

v̄ILp = V̄
(nT),EoS
p (T, P + Pc,ns, νT) /Mp

. (3.95)

One should note that here the partial specific volumes are calculated using the reference

polymer mixture with n0 monomers, which means (cf. Equation 3.85)

⎧⎪⎨
⎪⎩

v̄ILs,i ≈ v̄
(n0),EoS
s,i

(
T, P + Pc,

n0

nT
ñs, 1

)
v̄ILp ≈ v̄

(n0),EoS
p

(
T, P + Pc,

n0

nT
ñs, 1

) (3.96)
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The quantity

ρILp,eff(T, P,ns, nT; νT, δT) =
mIL

p

V IL
=

(
v̄ILp +

NC∑
i=1

v̄ILs,iS
IL
a,i

)−1

(3.97)

can be identified as the effective polymer density in the inter-lamellar domains. We note

that in the absence of penetrant molecules ρILp,eff = ρ(nT),EoS(T, P +Pc, 0, νT) is simply the

(mass) density of the pure inter-lamellar domains which in the current model is slightly

higher then the density of a pure polymer liquid – and consequently higher then the

density of the free amorphous domains – due to the action of Pc.

A simple mass balance (Appendix D) shows that the inter-lamellar distance la is related

to the effective polymer density via

la =
M0ρA,TnT

fTρILp,eff
. (3.98)

Here, fT is the mass fraction of tie-molecules in the inter-lamellar domains. There-

fore, the inter-lamellar distance increases approximately linearly with the number of

monomers nT at fixed fT. A manipulation of Equation 3.98 leads to

fT =
M0ρA,T

ρILp,effxT cos θTlmonoNb

→ xT cos θT =
M0ρA,T

fTρILp,efflmonoNb

, (3.99)

where M0 is the molar mass of the monomer, lmono is the length of an extended chain per

bond andNb the number of bonds per monomer (Equation 3.73). This equation fixes the

value of xT cos θT and therefore naturally avoids density anomalies in the inter-lamellar

domains.

In the current model due to the absence of tails, free chains and un-entangled loops we

have fT = 1. We have already pointed out that un-entangled loops contribute negligibly

to Pc, and their effect only amounts to a scaling factor for the volume through fT (cf.
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Equation 3.98). The local equilibrium hypothesis provides additional support to this

simplification. As mentioned in Section 3.2.4, this hypothesis postulates that each chain

segment in the inter-lamellar domains is in equilibrium with respect to exchange of

monomers with the crystalline lamellae. Equilibrium is established when the driving

force of crystallization μp,mono is balanced by the variation of free energy arising from

the increase of the number of monomers of each polymer segment (see Equation 3.49

and Figure 3.6).

Since at low temperatures un-entangled loops and tails have no way of resisting the

driving force of crystallization, they should be almost fully incorporated in the crystalline

lamellae – or at least accumulate in the boundary layer, becoming similar to tight-

folds.7,165 This suggests fT ≈ 1 at low temperatures. The condition fT = 1 has been

used implicitly by Mansfield199 and later by Albrecht and Strobl200 in order to build a

model for premelting in PE; both studies assumed the local-equilibrium hypothesis and

employed the Gaussian approximation for the end-to-end probability distribution of the

chain segments.

Conversely, in models employing Michaels and Hausslein’s theory39,42,43,251–256 fT is

usually found to be much smaller than 1. Due to the aforementioned considerations,

this finding seems inconsistent with the local equilibrium hypothesis at least for defect-

free linear homopolymers.
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Chemical potentials

Setting to zero the NC derivatives of Φ̃IL,* with respect to the number of solute molecules

per equivalent bridge (ñs,i) leads to

(
∂Φ̃IL,*

∂ñs,i

)
T,P,μs,μp,mono,Ṽ ,ñs\{ñs,i},nT,νT,Γc

=

(
∂ÃIL

∂ñs,i

)
T,Ṽ ,ñs\{ñs,i},nT,νT,Γc

− μs,i

= μ
(nT),EoS
s,i − μs,i = 0

, (3.100)

where we have used Equation 3.43 as ΔAc does not depend on the number of solute

molecules. Since in the current work the chemical potential is approximated using the ref-

erence mixture with n0 monomers per polymer molecule, we obtain

(
∂ÃIL

∂ñs,i

)
T,Ṽ ,ñs\{ñs,i},nT,νT,Γc

≈ μ
(n0),EoS
s,i

(
T,

n0

nT

Ṽ ,
n0

nT

ñs, 1

)
. (3.101)

At fixed temperature, pressure, and chemical potentials of the solutes, the combination of

the two previous equations can be equivalently stated using Equation 3.44:

μs,i = μ
(n0),EoS
s,i

(
T, P + Pc,

n0

nT

ñs, 1

)
, (3.102)

where Pc is a function of state via 3.92.

Lastly, setting the derivative of Φ̃IL,* with respect to the number of monomers of the

equivalent bridges (nT) to zero yields

(
∂Φ̃IL,*

∂nT

)
T,P,μs,μp,mono,Ṽ ,ñs,νT,Γc

=

(
∂ÃIL

∂nT

)
T,Ṽ ,ñs,νT,Γc

− μp,mono. (3.103)
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By expressing ÃIL via Equations 3.69 and 3.83 and substituting Γc with δT we have

(
∂ÃIL

∂nT

)
T,Ṽ ,ñs,νT,δT

≈ μ(n0),EoS
p,mono

(
T,

n0

nT

Ṽ ,
n0

nT

ñs, 1

)
−RT

(
∂ ln pee
∂nT

)
V,δT

(3.104)

Performing the partial derivative of pee in the Langevin approximation (see Appendix

F) leads to the following expression:

(
∂ÃIL

∂nT

)
T,Ṽ ,ñs,νT,δT

≈ μ(n0),EoS
p,mono

(
T,

n0

nT

Ṽ ,
n0

nT

ñs, 1

)

− RT

η

[
ln

(
sinhL−1(xT)

L−1(xT)

)
− 3

2NT

− 3

4N2
T

− 2

5N3
T

]. (3.105)

Here, the constant η is the ratio of the number of monomers and the equivalent Khun

monomers of the chain NT (cf. Equation 3.72). The series in 1/NT is the result of

an asymptotic expansion of the normalization constant C(NT) in Equation 3.74 and is

arbitrarily truncated at third order. In both the work of Michaels and Hausslein39 and

in studies aimed at modelling premelting,197,198,200,233 the Gaussian approximation is

used, which yields (xT → 0)

(
∂ÃIL

∂nT

)
T,Ṽ ,ñs,νT,δT

≈ μ(n0),EoS
p,mono

(
T,

n0

nT

Ṽ ,
n0

nT

ñs, 1

)
− RT

η

(
3

2
x2
T − 3

2NT

)
. (3.106)

Since at constant temperature and pressure the monomer chemical potential μp,mono is

fixed by Equation 3.48, the equilibrium condition (Equation 3.103) at fixed T, P,ns can

therefore be restated as

η

RT

[
M0Δh0

m

(
1− T

T 0
m

)
+ μ(n0),EoS

p,mono

(
T, P + Pc,

n0

nT

ñs, 1

)

− μ(n0),EoS
p,mono (T, P, 0, 1)

]
= ln

(
sinhL−1(xT)

L−1(xT)

)
− 3

2NT

− 3

4N2
T

− 2

5N3
T

. (3.107)
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This equation determines the equilibrium number of bridge monomers nT and therefore

their fractional extension xT at fixed T, P,ns.

One should note that the actual “size” NT of the chains enters the equation only through

the asymptotic expansion in 1/NT and through the (weak) dependence of Ploc (Equation

3.90) on la (and therefore nT, cf. Equation 3.98). At temperatures sufficiently below

the melting point of the polymer the driving force of crystallization M0Δh0
m (1− T/T 0

m)

becomes significantly bigger than both of these terms. Therefore, the equilibrium frac-

tional extension of the bridges xT is determined only by the value of M0Δh0
m (1− T/T 0

m)

at low enough temperatures. The same arguments can be invoked to show that as long

as T << T 0
m or la/b >> 1 the properties of the bridges (i.e., xT and cos θT) and therefore

the constraint pressure Pc are very weakly independent of the inter-lamellar distance (see

Equations 3.92, 3.99 and 3.107).

This fact can be also used to further justify the substitution of all entangled loops with

bridges performed at the beginning of this Section. As shown by Albrecht and Strobl,200

inclusion of entangled loops in the theory leads to an equation for the equilibrium num-

ber of monomers between entanglements (nES, see Appendix E) equivalent to the one for

bridges just obtained in the Gaussian approximation with the addition of a 1/NES term

on the right-hand side. Although NES is smaller than NT, at low enough temperatures

all the terms in 1/NES are negligible compared to M0Δh0
m (1− T/T 0

m). Therefore, at

low enough temperatures bridges and entangled segments have approximately the same

fractional extension as a consequence of the local-equilibrium hypothesis, possibly dif-

fering only in their average angle with respect to the normal to the lamellae. Since these

angles are already averaged in the definition of the constraint pressure (see Equation

3.92), the substitution of all tie-entanglements with bridges assumed here should thus

leave the qualitative features of the model unchanged.
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3.3.4. Model parameters

The prior knowledge and parameters needed to perform thermodynamic calculations

with the current model can be grouped in three main categories: an equation of state

capable of calculating the properties of both the external fluid and polymer + solutes

mixtures; a collection of polymer-specific parameters; and a few sample-specific param-

eters.

Equation of state parameters

The equation of state is needed to calculate the pressure and the chemical potentials

of the solute and the polymer in both the free and inter-lamellar domains and in the

external fluid phase. The equation of state – and related parameters – must therefore

provide a reliable description of pure fluids and polymer + solutes mixtures, including

their volumetric properties (namely, partial specific volumes and density) and chemical

potentials. Note that in practice all calculations with the current model are made

assuming that the polymer chains possess n0 = 1000 main-chain monomers and no

ends.

Polymer-specific parameters

The polymer-specific parameters, on the other hand, are needed in order to calculate

both the properties of the equivalent freely-jointed bridges (i.e., NT, b) and the specific

Gibbs free energy of crystallization of an extended-chain crystal (−M0Δh0
m (1− T/T 0

m))

appearing in Equation 3.48. These parameter are readily available in the literature or can

be calculated from related literature data for most common polymers.

The bond angles θB of all the polymers are set to the tetrahedral value of 109.47◦

as all the backbone atoms have sp3 hybridisation; although the true values of their
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Table 3.1.: Polymer-specific parameters for PE, isotactic PP and PEG used for all the calcu-
lations.134,168,286–292

Property Symbol PE PP PEG
bond angle θB 109.47◦ 109.47◦ 109.47◦

bond lenght l 0.154 nm 0.154 nm 0.147 nm
main-chain bonds per monomer Nb 1 2 3

enthalpy of melting Δh0
m 293 J g-1 170 J g-1 205 J g-1

melting temperature T 0
m 414 K 460 K 352 K

surface stem density ρA 5.50 nm-2 2.86 nm-2 4.66 nm-2

monomer molecular weight M0 14.03 g mol-1 42.08 g mol-1 44.05 g mol-1

Flory characteristic ratio C∞ 6.9 5.9 6.7

bond angle deviate slightly from the tetrahedral angle, this difference does not impact

the calculations significantly. Similarly, the bond length of both PE and PP is set to

l = 0.154 nm – the typical length of a C-C bond between sp3 hybridized carbons –

whereas the bond length of PEG is the geometric mean of the three bonds comprising

the oxyethylene repeating unit.290

Since in the current model μp,mono (Equation 3.48) only accounts for “bulk” crystalli-

sation, the specific enthalpy of melting of the extended-chain polymer crystal Δh0
m and

its respective melting temperature T 0
m are found168,286–289,292 by extrapolation of the

highest achievable values for high-molecular weight, monodisperse samples as the crys-

tal thickness goes to infinity (cf. Equation 3.6). All real polymer samples will in fact

melt at temperatures lower then T 0
m due to the finite size of the lamellae and the pres-

ence of defects such as chain ends and branching,170,171,175,275 as discussed in Section

3.1.1.

The surface stem density ρA (i.e., the cross-section of the chains in the crystalline struc-

ture) is calculated using the lattice parameters of the orthorombic unit cell of crystalline

PE,293 of the monoclinic unit cell of the α form of crystalline isotactic PP144 and the

monoclinic unit cell of crystalline PEO.291 Lastly, the Flory characteristic ratios for all

the polymers are taken from Rubinstein.134
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Sample-specific parameters

Finally, a set of sample-specific parameters is needed to characterize the morphology

of a given semi-crystalline polymer sample. In order to calculate the solubility in the

inter-lamellar domains SIL
a,i we require:

• The density of the equivalent bridges on the fold surface, νT/AΣ = ρA,T, assumed

to be equal to the surface density of tie-molecules in the sample

• The average lateral displacement of the bridges δT

In the current work the chains in the crystal are assumed to be perpendicular to the

crystal amorphous interface (γ = 0). Using equation 3.10 we thus have ρA,T = pTρA.

We must therefore specify the fraction of stems on the lamellar surfaces attached to

tie-molecules pT, which is kept as a free parameters of the model.

δT can be calculated if the inter-lamellar distance l∗a for a pure semi-crystalline sam-

ple is known at a given temperature T ∗ and pressure P ∗. In fact, once T ∗, P ∗, pT

and l∗a are specified, δT can be found by implementation of a root-finding scheme af-

ter combining Equations 3.98 and 3.107 and setting ns = 0. pT and l∗a are there-

fore sufficient to fully characterize the inter-lamellar domains according to the current

model.

In order to calculate sorption isotherms in a target sample, both the fraction of free

amorphous mass ψ and the crystallinity of the lamellar stacks ωLS
c must also be specified

at each thermodynamic condition (cf. Equation 3.53). In this model, ψ is a constant free

parameter (cf. Section 3.3.2). Once the overall crystallinity ω∗
c and the inter-lamellar

distance l∗a of the pure polymer are specified at given temperature T ∗ and pressure P ∗

and the constants pT and ψ are fixed, by calculating ωLS,*
c via Equation 3.55 and finding

n∗
T we can calculate K = (1 − ωLS,*

c )/n∗
T (Equation 3.79). The crystallinity of the
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lamellar stacks can then be calculated at each condition of temperature, pressure, and

composition via ωLS
c = 1−KnT.

In conclusion, each semi-crystalline polymer sample is uniquely characterized by the

measurement at an arbitrary temperature T ∗ and pressure P ∗ of the crystallinity ω∗
c

and the inter-lamellar distance l∗a, and by the two free parameters ψ and pT. In the

following, P ∗ is set to 1 bar due to its negligible influence on the model’s predictions.

Furthermore, note that at temperatures sufficiently lower than T 0
m or when la/b >> 1 the

actual value of l∗a has very little influence on the sorption properties of the inter-lamellar

domains. Therefore, if the inter-lamellar distance is not a property of interest l∗a can be

safely taken to be equal to a typical experimental value without appreciable changes in

the predictions of the model.

Concluding remarks

In this Chapter we have developed a statistical mechanics framework for the description

of the thermodynamic properties of semi-crystalline polymers. We have unified previous

models of fluid sorption under the constraint pressure formalism, which is a natural ex-

tension of network models to compressible equations of state. We have shown that the

effect of constraints (i.e., physical and/or chemical cross-links) in a polymer network is

formally equivalent to the addition of a state-dependent constraint pressure Pc on an

otherwise unconstrained polymer melt (Section 3.2.3). We have also rigorously imple-

mented the local-equilibrium hypothesis in the theory, resulting in a model capable of

describing both surface melting and the increase in solute activity at low temperatures

seen in crystal-mobile polymers (Section 3.1.4).

As discussed in Section 3.2.5, the equilibrium solubility and number of chain monomers

in the amorphous domains of crystal-mobile polymers can be calculated through min-
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imisation of a single thermodynamic potential, Φ̃∗, instead of solving 2NC + 2 coupled

non-linear equations corresponding to the equality of pressure, solute chemical potentials

and monomer chemical potential between the amorphous domains and two reservoirs

(i.e., the external fluid and the crystalline lamellae). In Section 3.3 we have presented

a new model of semi-crystalline polymers which incorporates three key experimental

observations:

• the amorphous domains can be distinguished in constrained inter-lamellar domains

and free amorphous domains238 (Section 3.1.5);

• swelling in the inter-lamellar domains is essentially one-dimensional;40,41,258,294

• the chain segments in the inter-lamellar domains are highly extended7,39,195–197,207,216

and therefore significantly at variance with Gaussian statistics.

An analytical expression for the free energy of the inter-lamellar domains is obtained

by first mapping all the tie-molecules to equivalent bridges characterised by the same

average properties and then performing a series of simplifying assumptions such as ne-

glecting confinement effects – the reader is referred to the end of Section 3.3.3 for a more

detailed discussion.

As discussed in Section 3.3.4, in order to perform thermodynamic calculations with

our model one requires an equation of state that can accurately describe both small-

molecules fluids and polymer + solutes mixtures. In the current work the SAFT-γ Mie

EoS (Chapter 2) is used with the molecular models and corresponding group parameters

reported in Section 2.5. Furthermore, a set of polymer-specific parameters found in

the literature must be specified (Table 3.1). Lastly, each semi-crystalline sample is

assigned four sample-specific parameters (ω∗
c , l

∗
a, pT and ψ) that uniquely characterise

its thermodynamic properties. In Chapter 4 the model is applied to the study of three

crystal-mobile semi-crystalline polymers: PE, isotactic PP and PEG/PEO. We note that

crystal-fixed polymers (such as syndiotactic PP156 and poly(ε-caprolactone)232) can be
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described using the same formalism with the caveat that the number of monomers per

equivalent bridge must be specified as an additional free parameter due to the absence

of mass exchange at the crystal/amorphous interface.
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4. Results and Discussion

In this Chapter we test the ability of the model developed in Section 3.3 to represent a

number of thermodynamic properties of semi-crystalline polymers. In Section 4.1, the

predictions of the model regarding properties of pure polyethylene are compared to ex-

perimental data, where available. In Section 4.2, we estimate the pT and ψ parameters of

six PE and PP samples by minimisation of the difference between the predicted sorption

isotherms of a range of pure fluids in the polymers and experimental data at a fixed

temperature. We then test the model’s predictions of solubility at different tempera-

tures. We also showcase the ability of the model to track the variation of microstructural

features such as constraint pressure and the inter-lamellar distance during the sorption

process, allowing comparison with nano-swelling measurements.294

In Section 4.3 the model is systematically benchmarked by analysing sorption isotherms

of hydrocarbons in a large number of semi-crystalline PE samples analysed in the litera-

ture. ψ is estimated as a function of each sample’s crystallinity using an empirical corre-

lation of experimental data;238 this leaves pT as the only adjustable parameter, optimised

to reproduce pure-component sorption isotherms at a given temperature. We then com-

pare the model’s predictions of solubility at different temperatures and of co-solubility

effects (i.e., the change of solubility of a component when pure vs. when in mixtures).

We conclude the Chapter with the analysis of moisture uptake in semi-crystalline PEG,

a polymer that can undergo deliquescence13,295 at high relative humidity. We develop
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a simple model to predict the humidity at which deliquescence occurs and apply our

model for semi-crystalline polymers to qualitatively describe moisture uptake at low

humidity.

4.1. Prediction of pure polymer properties

In this Section, the model’s calculations of constraint pressure using Gaussian and

Langevin statistics for the end-to-end distribution of the tie-molecules (Equations 3.76

and 3.74, respectively) are first compared in order to justify the inclusion of the finite

extensibility of the polymer chains in the theory. Next, we compare the model’s predic-

tions of the variation of the inter-lamellar distance and crystallinity with temperature

in semi-crystalline PE.

4.1.1. Constraint pressure

In Figure 4.1 calculations for the temperature dependence of the constraint pressure

Pc and the average fractional extension xT of the tie-segments in the inter-lamellar

amorphous domains of a hypothetical pure semi-crystalline PE sample are shown using

both Langevin statistics (Equations 3.92 and 3.107) and the Gaussian approximation

(Equations 3.93 and 3.106). Here, the reference measurement temperature is T ∗ = 25 ◦C

and the corresponding inter-lamellar distance l∗a = la(25
◦C) is set to 10 nm due to

the small influence it has on the intensive properties of the inter-lamellar domains.

Furthermore, for illustration purposes pT is set to 0.3, meaning that 30% of the stems

on the lamellar surfaces are attached to a bridge or entangled loop. As shown later in

the current work, pT = 0.3 is a typical value found for PE by comparing experimental

solubility data and the model’s predictions.
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(a) (b)

Figure 4.1.: Temperature dependence of a) the constraint pressure Pc and b) the fractional
extension xT of the tie-segments in pure semi-crystalline polyethylene using Langevin statistics
and the Gaussian approximation. The vertical dotted line marks the melting temperature T 0

m

of and extended-chain polyethylene crystal (see Table 3.1). Here, l∗a = la(25
◦C) has been

fixed to 10 nm, and the surface fraction of elastically effective segments pT = 0.3. The PE-
specific parameters are summarized in Table 3.1. Notice that the fractional extension calculated
with the Gaussian approximation needs to exceed the maximum value of 1 in order to satisfy
Equation 3.106.
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As expected, the fractional extension of the tie-segments is seen to increase at low tem-

peratures as a consequence of the dependence imposed by Equations 3.107 and 3.106.

The use of the Gaussian approximation is found to yield unphysical values for xT at

low temperatures. At room temperature, the Langevin statistics predicts xT ≈ 0.88 for

pT = 0.3 which indicates that tie-molecules should be extremely taut. Furthermore,

while the constraint pressure increases at lower temperatures with the Langevin ap-

proximation, the contrary is true with the Gaussian approximation. In fact, Pc does

not depend appreciably on xT with the Gaussian approximation because the factor

xT cos θT appearing in Equation 3.93 is approximately constant for fT = 1 (see Equa-

tion 3.99).

It is instructive to note that even if fT were different from one and allowed to change in

the Gaussian approximation, Pc would increase at lower temperatures only if fT → 0 at

low temperatures, as can be seen by substituting Equation 3.99 into Equation 3.93. This

behaviour is, however, impossible as it would imply that either the elastically effective

segments are fully incorporated in the lamellae at low temperatures or that the elastically

ineffective polymer mass (tails and loops) increases at lower temperatures, which in stark

contradiction with the local-equilibrium hypothesis.

As mentioned in the Introduction, Michaels and Hausslein’s theory39 implicitly predicts

the presence of constraint pressure (as noted by later authors43,44) and manages to pre-

dict an increase of Pc at low temperature despite using the Gaussian approximation.

This is possible because in their work the swelling in the inter-lamellar amorphous do-

mains is assumed to be isotropic, while here it has been postulated that swelling only

occurs in the direction perpendicular to the lamellar surfaces (Equation 3.88) due to the

markedly one-dimensional nature of the lamellar stacks.

Since previous authors have found that Pc should increase at lower temperatures,39,42,45,251

we conclude that the use of the Langevin approximation (or any chain statistics that
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(a) (b)

Figure 4.2.: Temperature dependence of the inter-lamellar distance la in semi-crystalline PE.
The continuous curves represent calculations using the model developed with the Langevin
approximation, and the symbols represent experimental data; the vertical dotted line denotes
the melting temperature of the polymer Tm (see Table 3.1). The inter-lamellar distance at
the lowest experimental temperature l∗a = la(T

∗) is used to calculate δT, while pT has been
adjusted to qualitatively reflect the experimental data: a) data from Kavesh and Schultz;155

b) Data from Tanabe et al.244 The predictions of the theory close to the melting point are not
reliable due to irreversible changes occurring in the lamellar stacks.155

accounts for the finite extensibility of the chain segments) is necessary in order to develop

accurate models for the inter-lamellar domains of crystal-mobile polymers.

4.1.2. Inter-lamellar distance

In Figure 4.2, the predictions of the variations of the inter-lamellar distance la in semi-

crystalline polyethylene obtained with our model are compared with experimental data

taken from literature. In order to determine the theoretical curves, l∗a and T ∗ are set

to the experimental values at the lowest temperature while different values of pT are

considered.

It is apparent from Figure 4.2 that our model can be used to accurately reproduce the
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experimental data for temperatures which are sufficiently lower than the melting point

of an extended-chain crystal T 0
m for any value of pT. The agreement is slightly worse for

the data of Tanabe et al.244 shown in Figure 4.2b, possibly because the inter-lamellar

distance is comparable to the Khun length of polyethylene, b ∼ 1.3 nm; approximating

the real end-to-end probability distribution to that of a freely jointed chain in this limit

may, in fact, lead to errors. At temperatures close to T 0
m the smaller values of pT seem

to fit better the experimental data and it is tempting to conclude that pT ∼ 0.10 for the

samples considered.

However, it must be noted that at temperatures close to the melting point irreversible

transformations39,220 and structural reorganizations7 might change the topology of the

lamellar stacks, violating the assumption inherent in the current model that pT should

be a constant. For example, Kavesh and Schultz155 have noted that for the sample

considered in Figure 4.2a both the inter-lamellar distance and the lamellar thickness in-

creased at temperatures higher then about 100 ◦C, indicating the presence of irreversible

changes to the structure which can lead to chain disentanglement and reduction in pT.

Furthermore, at higher temperatures neglecting fold surface free energy effects as it was

done in Equation 3.48 might not be accurate.

In conclusion, the model can be safely compared to premelting data only at low tem-

peratures compared to T 0
m where all values of pT appear to provide a similar level of

agreement with the experimental data.

4.1.3. Crystallinity

As discussed in Section 3.3.3, the model developed in the current work can be used to

calculate the variation of the crystallinity ωLS
c of the lamellar stacks. For highly crys-

talline samples, all of the amorphous mass should be inter-lamellar,136 and the melting
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(a) Ziegler-Natta catalyst (b) Metallocene catalyst

Figure 4.3.: Temperature dependence of the crystallinity of different highly-crystalline samples
of PE. The continuous curves represent the calculations using our model developed with the
Langevin approximation and assuming ψ = 0, while the symbols represent experimental data
reported by Paricaud and coworkers.131 The vertical dotted line marks the melting temperature
of the polymer T 0

m (see Table 3.1). For all the calculations the inter-lamellar distance at 25◦

C is set to 10 nm.

curves – i.e., plots of the crystallinity versus temperature – should thus be reproducible,

provided that the temperature remains sufficiently lower then the melting temperature

(as per the discussion in the previous section). The calculation with the current model

using various values for pT are compared to the experimental melting curves of two

highly-crystalline polyethylene samples in Figure 4.3.

For all of the calculations, the crystallinity ωLS,*
c of the lamellar stacks at the lowest

experimental temperature T ∗ is set equal to the experimental crystallinity at that tem-

perature (ψ = 0). For the same reasons highlighted earlier, the agreement between

the model and the experimental data is satisfactory at low temperatures and deterio-

rates at higher temperatures. Similarly, smaller values of pT appear to provide better

agreement at higher temperatures, where the predictions are expected to be less reli-

able.
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In order to calculate the melting curves of polymer samples with low crystallinity, the

temperature dependence of ψ must be known. The total crystallinity of the sample ωc is

related to this quantity via Equation 3.55 once ωLS
c (T ) is known. Here, ψ is assumed to

be a constant, but in reality it should change with temperature. It is therefore unlikely

that the current model can describe the melting curves of low-crystallinity samples.

However, for the purpose of calculating the sorption isotherms, approximating ψ with a

constant is reasonable as long as the temperature is sufficiently lower than the melting

temperature. The changes in the crystallinity of semi-crystalline polymer samples should

in fact be small in this regime.131

4.2. Sorption of pure gases in semi-crystalline PE and

PP

In this Section the values of the free parameters of the current model, pT and ψ, are

optimised to reproduce the sorption isotherms of pure n-hexane, n-heptane, cyclohexane

and toluene in six polyethylene and polypropylene samples analysed at Imperial College

London as part of a joint study.139 Since pT and ψ are properties of an individual

polymer sample, a pair of values is assigned to each sample in order to minimize the

difference between the experimental sorption isotherms at 25 ° C and the calculations

obtained with the model. The predictions of the model regarding solubility at different

temperatures and the variation of the properties of the inter-lamellar domain during

sorption are then compared to available experimental data. Since the external fluid is

here always taken to be pure, in this Section the index i and the bold notation for the

solute composition is dropped.
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4.2.1. Experimental

We first report the experimental details of the sorption measurements performed by Dr.

J. Ramadani and Prof. D. Williams for completeness.

Materials

All the substances used for the generation of vapor isotherms – namely n-hexane, n-

heptane, cyclohexane and toluene – were ordered from Sigma-Aldrich (Poole, UK) and

VWR UK with a minimum of 99% purity. These reagents were used without further

purification. The di-water (DI) used for all the experiments was ultra-pure Milli-Q grade.

All the polyethylene samples used in the current work were ordered from Sigma-Aldrich

(Poole, UK) and all the polypropylene samples were ordered from Sp2 Scientific Polymer

Products Inc. (NY, USA). Isotactic polypropylene (iPP) was received as pellets, atactic

polypropylene (aPP) as a waxy solid, low-density polyethylene (LDPE) and high-density

polyethylene (HDPE) as pellets, and medium-density polyethylene (MDPE) as a fine

powder. The commercial nonwoven (isotactic) polypropylene fibers (fPP) were kindly

donated by Procter & Gamble.

Sample fabrication

Apart from aPP which was dissolved in toluene at room temperature all the other

polymers were dissolved in decahydronaphthalene at 160 ◦C to form 2% weight/volume

solutions. An alumina foil swatch (diameter 6.5 cm) was pre-cleaned with di-ionised

water and isopropanol, dipped into the polymer solution for 30 seconds and then left to

air dry for 30 minutes. The films obtained were then placed in a vacuum oven for 3 hours

at 80 ◦C for aPP and 120 ◦C for the other samples in order to evaporate the remaining
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solvents. Each alumina foil preparation was weighed before and after polymer coating

to record the amount of polymer film created.

Dynamic vapour sorption (DVS) – Instrumentation

The sorption profiles of the polymer films were determined using the DVS Endeavour

and Resolution (Surface Measurement Systems, London, UK). The samples, with mass

ranging between 100 and 140 mg, were first directly hung on the the DVS chamber’s

hang-down hook, and the sample pan was removed. Before the sorption cycles the sam-

ples were dried at 0% relative humidity (RH) and 25 ◦C for 180 minutes to establish

a dry mass. On the DVS Resolution, counterweights were used for the higher mass

samples. Most samples were folded into smaller units to keep them compact. A series

of experiments was then carried out using either fixed times for each experimental hu-

midity setpoint or using a % dm/dt threshold mode. Humidity or RH here refers to the

ratio between the partial pressure of the target solute and its vapour pressure at the

corresponding temperature.

In the % dm/dt mode the percentage change of mass with time is measured and com-

pared to a threshold value to determine the equilibration time at each given RH step.

The % dm/dt threshold was set to 0.0005% for all experiments to ensure the sample

had reached a necessary degree of equilibrium before moving on to next step. When the

sample percentage change in mass was equal to or below this threshold for 10 minutes,

the step stage was ended and moved onto the next programmed RH% step. Methods

were run in (0–90% RH) cycles with increments of 10% RH steps. Partial pressures

were generated using liquid solvent bubbling reservoirs and controlled via closed-loop

speed of sound sensors. In a first series of experiments, the temperature was set to

25 ◦C and the sorption cycles of each individual solute were measured in all six poly-

mer samples. The sorption cycles of n-heptane were also measured at 35, 45, and
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Table 4.1.: The density ρ and mass fraction crystallinity ωc at 25 ◦C and 1 bar of the dried
samples obtained after solution casting on the alumina foils. The crystallinity was calculated
using Equation 3.12.

LDPE MDPE HDPE aPP fPP iPP
ρ(25 ◦C) / (kg dm-3) 0.916 0.917 0.920 0.840 0.883 0.899

ωc(25
◦C) 0.472 0.479 0.499 0 0.435 0.586

55 ◦C.

Sorbed quantities were calculated using the change in mass between the ends of the cur-

rent cycle’s sorption and previous cycle’s desorption step. A flow rate of 200 cm3/min

was used for all experiments, with the carrier gas being nitrogen in all cases. Between

experiments, samples were dried at 50 ◦C under vacuum for 3 h to remove any resid-

ual solute or other contaminants that may influence sorption performance. The raw

data was exported into Microsoft Excel ® and the analysis was undertaken using the

DVS Macro Standard Analysis Suite v7.0.13 (Surface Measurement Systems, London,

UK).

Density measurement: Helium pycnometry – Instrumentation

The density of the dried polymer samples was measured at 25 ◦C and 1 bar in order

to determine their mass fraction of crystallinity ωc using Equation 3.12. The correlated

densities of fully amorphous and fully crystalline polymers appearing in Equation 3.12

were taken from the literature,168,296 except for the density of fully amorphous PP which

was taken to be equal to the density of atactic PP. At 25 ◦C for PE ρa = 0.852 kg dm-3

and ρc = 1.000 kg dm-3; for isotactic PP, ρa = 0.840 kg dm-3 and ρc = 0.946 kg dm-3. The

measurements were carried out via pycnometry using an Accupyc II 1340 (Micromeritics,

USA) instrument, with helium gas as the probe molecule. The densities and related

crystallinity of the dried samples are reported in Table 4.1.
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Since the density (and therefore crystallinity) was measured for the solution-cast sam-

ples, its value differed from the one reported by the supplier. In particular, all three

polyethylene samples had similar crystallinity despite having a markedly different sorp-

tion capacity – see the Results section.

4.2.2. Evidence for the presence of free amorphous polymer: ψ > 0

First of all, we provide evidence to support the necessity of including the free, uncon-

strained amorphous polymer in the description (i.e., ψ > 0) in order to reproduce the

experimental sorption isotherms. If all the amorphous mass is inter-lamellar, the total

sorption S can be calculated from Equation 3.53 by setting ψ = 0. Therefore, here

the amorphous solubility Sa represents the solubility in the inter-lamellar amorphous

domains SIL
a , which – provided pT and the inter-lamellar distance l∗a at a given tem-

perature T ∗ are specified – can be calculated with the help of Equations 3.19, 3.92,

3.98, and 3.105 at each temperature T and pressure P of the external fluid. Finally,

the total crystallinity ωc is simply the crystallinity of the lamellar stacks ωLS
c , and the

dependence on the temperature and amount of solute dissolved can be calculated with

Equation 3.79.

In Figure 4.4 predictions of the model with ψ = 0 (continuous curves) are compared to

the experimental sorption data139 for n-hexane, n-heptane, cyclohexane and toluene in

the samples of LDPE and iPP polymers. The value of pT is adjusted for each sample

to reproduce the low-pressure sorption behaviour of the four solutes simultaneously.

The optimal values of pT are 0.23 for LDPE and 0.42 for iPP. We present additional

calculations (dashed curves) assuming that the crystals are impermeable to the solute

(just like in our current model, Equation 3.18) but also that all the amorphous mass is

unconstrained (ψ = 1−ωc); the equilibrium value of Sa = SF
a is thus the variable defined

as SEoS
a in Section 3.1 (see Equation 3.22).
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(a) LDPE, pT = 0.23 (b) iPP, pT = 0.42

Figure 4.4.: Sorption isotherms of n-hexane, n-heptane, cyclohexane and toluene in the LDPE
and iPP samples at 25 ◦C. The sorption (in grams of solute per 100 grams of pure polymer) is
plotted as a function of the total pressure P divided by the vapour pressure of the penetrant at
that temperature. The continuous curves represent the predictions of the model assuming that
all the amorphous polymer lies between crystalline lamellae (ψ = 0); the value of pT has been
adjusted to capture the low-pressure behaviour, while la(25

◦C) = 10 nm. The dashed curves
represent theoretical calculations assuming that the solute cannot penetrate the crystallites
(Equation 3.18) but that there are no constraints, i.e., ψ = 1 − ωc (Equation 3.22). The
symbols represent the experimental data,139 color-coded with the calculations. Uncertainties
in the data are smaller than the marker size. Not accounting for the free amorphous polymer
results in a systematic underprediction of the sorption when the pressure of the external gas
approaches its vapour pressure. On the other hand, not accounting for constraints at all results
in a systematic overprediction of solubility.
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As expected (see Figure 3.5), neglecting the presence of constraints results in a sys-

tematic overprediction of the experimental isotherms. On the other hand, if all the

amorphous mass is subject to constraints – or, equivalently, if all the amorphous mass is

inter-lamellar (continuous curves) – the curvature of the calculated sorption isotherms

decreases significantly and the sorption at pressures close to the vapour pressure of the

penetrant is systematically underestimated when the low-pressure behaviour is captured

correctly. While this behaviour is found for every polymer sample, the curvature of the

experimental amorphous solubility decreases with increasing crystallinity as highlighted

in Figure 3.5.

This suggests that the higher the crystallinity, the more closely the morphology of the

semi-crystalline sample resembles the lamellar stacks model with ψ = 0; conversely, the

lower the crystallinity, the closer the experimental sorption isotherms are to the model

calculations with ψ = 1 − ωc (dashed curves). This finding is consistent with the ex-

perimental observation that the free amorphous content should decrease with increasing

crystallinity.238 It is thus to be expected that if ψ and pT are simultaneously optimized

to reproduce the experimental sorption isotherms, the optimal value of ψ should decrease

with increasing crystallinity for all of the PE and PP samples.

4.2.3. Sorption isotherms calculated with the complete model

Model performance

The calculations obtained with the model after optimizing pT and ψ simultaneously

for each polymer sample (continuous curves) are shown together with the experimental

sorption data (symbols) in Figure 4.5. The optimal parameters for each sample are

listed in Table 4.4 together with the crystallinity at 25◦C calculated using the density

measurements (Equation 3.12). With the inclusion of the free amorphous polymer in the
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(a) LDPE, ωc(25
◦C) = 0.472 (b) MDPE, ωc(25

◦C) = 0.479

(c) HDPE, ωc(25
◦C) = 0.499 (d) aPP, ωc = 0

Figure 4.5.: Sorption isotherms of n-hexane, n-heptane, cyclohexane and toluene in the six
polymer samples tested at 25 ◦C. The sorption (in grams of solute per 100 grams of pure
polymer) is plotted as a function of the total pressure P divided by the vapour pressure of
the penetrant at that temperature. The continuous curves represent the calculations with the
model after adjusting pT and ψ for each polymer sample to best reproduce all four sorption
isotherms simultaneously; the optimal values are reported in Table 4.4. The symbols represent
the experimental data,139 whose uncertainties are smaller than the marker size.
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(e) PP fiber, ωc(25
◦C) = 0.435 (f) iPP, ωc(25

◦C) = 0.586

Figure 4.5.: Sorption isotherms of n-hexane, n-heptane, cyclohexane and toluene in the six
polymer samples tested at 25 ◦C. The sorption (in grams of solute per 100 grams of pure
polymer) is plotted as a function of the total pressure P divided by the vapour pressure of
the penetrant at that temperature. The continuous curves represent the calculations with the
model after adjusting pT and ψ for each polymer sample to best reproduce all four sorption
isotherms simultaneously; the optimal values are reported in Table 4.4. The symbols represent
the experimental data,139 whose uncertainties are smaller than the marker size.

description (ψ �= 0), the agreement between the model with the optimized parameters

and the experimental data is excellent for all of the samples over the entire pressure

range. Since atactic polypropylene is fully amorphous, we neglect any type of constraint

in the amorphous mass (i.e., all amorphous mass is free) in the calculations by setting

ψ = 1 and ωLS
c = 0 in Equation 3.53.

As noted in Section 3.2.1, the sorption isotherms of different compounds in semi-crystalline

samples of the same polymer are not simply re-scaled copies of one another. For example,

while all the solutes have a similar solubility in LDPE at fixed P/Pvap, a clear difference

between the solubility of the cyclic compounds (i.e., cyclohexane and toluene) and the

one of the linear alkanes (n-hexane, n-heptane) is observed in HDPE. It is particularly

encouraging that our model predicts this peculiar phenomenon. As shown in Section B,

the solubility reduction of a solute due to the presence of constraints is a function of its

partial molar volume in the polymer + solute mixture. The presence of constraints in
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Table 4.2.: Sample-specific parameters for the six PE and PP samples analysed by Valsecchi et
al.139 The crystallinity at 25 ◦C is calculated with Equation 3.12 and knowledge of the density
of the samples. The inter-lamellar distance of the pure polymers at 25 ◦C is set to 10 nm for
all samples due to its negligible influence on the sorption isotherms. The values of pT and ψ
are obtained by minimizing the relative deviation of the experimental data of Figure 4.5 and
the model calculations.

Polymer sample ωc(25
◦C) la(25

◦C) pT ψ
LDPE 0.472 10 nm 0.311 0.210
MDPE 0.479 10 nm 0.288 0.106
HDPE 0.499 10 nm 0.374 0.022
aPP ≈ 0 / / ≈ 1
fPP 0.435 10 nm 0.524 0.168
iPP 0.586 10 nm 0.568 0.107

the amorphous domains thus leads to a size selection mechanism that favours solubility

of components with lower partial molar volume in the mixture.

This effect has important implications for gas transport across semi-crystalline polymer.

In membrane-based fluid separation, glassy polymers show remarkable selectivity – i.e.,

the ability to enhance permeation of one component while preventing it for another – at

fixed overall permeability. This phenomenon has been explained in terms of a “molecular

sieving” mechanism whereby the distribution of excess free volume in the glass selectively

enhances diffusion of smaller species compared to the equilibrium “rubbery” state.297,298

Our results suggest that in semi-crystalline polymers with rubbery amorphous domains

a similar size selection must occur due to equilibrium effects related to the entropy loss

of the tie-molecules upon swelling.

Optimal sample-specific parameters

As expected, for the semi-crystalline samples the optimal value of ψ decreases with

increasing crystallinity.238 Furthermore, it is apparent that the values of pT for different

samples of the same polymer are similar, with the average value of pT being∼ 0.32 for the
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PE samples and ∼ 0.55 for the (semi-crystalline) PP samples. These values are higher

than the estimates of previous works who attempted to predict the tie-molecule density

in the inter-lamellar domains. Lacher and coworkers206 estimated that the fraction of

stems attached to tie-molecules should be in the range ∼ 0.1 − 0.2 depending on the

inter-lamellar distance. Nilsson and coworkers,207 on the other hand, found that pT

should decrease with increasing inter-lamellar distance and decreasing molecular weight,

remaining below approximately 0.1.

As discussed in Section 3.1.3, however, both of these estimates are based on random-

walk models that do not consider entanglement segregation in the inter-lamellar domains

during crystallisation172,178 or the highly strained state of the inter-lamellar polymer

chains.217,238 The values reported by these authors should therefore be considered lower

bounds for pT, to which our indirect estimates conform.

An upper bound to the fraction of tie-molecules is instead provided by the fraction of

tight-folds pTF: since pT + pTF + pNT = 1, we must have

pT ≤ 1− pTF. (4.1)

The lattice models described in Section 3.2164,166,167,181 estimated that pTF should lie in

the range 0.6-0.8. The combination of these estimates and our findings implies that for

PE samples there should be very few stems connected to tails and untangled loops since

we find pPET ≈ 0.32. This is consistent with our model, since due to the local equilibrium

between the lamellae and the inter-lamellar amorphous chains fT is assumed to be ∼ 1

– which implies pNT ∼ 0.

One should note that both the bounds for pT reported and the current model assume

no chain tilt – i.e., that the crystalline chains are normal to the crystal/amorphous

surface. In PE the chain tilt is between about 20° and 40°, which leads to a reduction

in the amount of tight folds required by the aforementioned lattice models.167 However,
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the optimal value of pT needed to fit the experimental sorption isotherms with our

model increases for nonzero tilt angles in order to obtain the same overall tie-molecule

density on the crystal/amorphous interface (Equation 3.10), suggesting that our results

would predict the prevalence of tie-molecules in the inter-lamellar domains of PE (i.e.,

pT + pTF ≈ 1) even if realistic chain tilts were considered.

Conversely, the very high values of pT obtained for the semi-crystalline isotactic PP

samples does not seem to respect the upper bounds suggested. Though this discrepancy

could be due to one of the approximations employed to derive the model, the high values

obtained for pT in the PP samples could be explained by the absence of un-entangled

loops in the inter-lamellar amorphous domains. It is apparent by substituting cos θT

from Equation 3.99 in Equation 3.92 that the same constraint pressure can be obtained

by reducing the value of pT and allowing fT to be smaller then 1.

In other words, if all of the inter-lamellar amorphous mass is either in bridges or in

entangled loops at a fractional extension xT (approximately fixed by Equation 3.107),

the average angle of the tie-molecules with the normal to the lamellae must be closer

to 90◦ than with the presence of some elastically ineffective mass (see Equation 3.99).

As a consequence, if fT is closer to 1 the tie-segments are more tilted with respect to

the normal to the lamellae, and thus the component of the force normal to the lamellae

(which contributes to Pc) is smaller.

The high values of pT obtained for PP might thus be an indication that tails and free

loops must be present in the inter-lamellar domains of isotactic PP. This seems at odds

with the fact that isotactic PP is categorised as a crystal-mobile polymer.156 Heuristi-

cally, however, it should be harder for PP chains to perform longitudinal sliding motion

in the crystal compared to polymers such as PE and PEO that do not possess side

groups.274 Furthermore, it has been shown that metallocene-catalysed isotactic PP can

include a variable amount of stereodefects299 (i.e., defects in the regular succession of
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methyl side groups). Both of these effect might lead to the persistence of un-entangled

loops in the inter-lamellar domains or diminished intra-crystalline chain dynamics, lead-

ing to an overestimation of the fraction of tie-molecules with our method which assumes

fT < 1.

4.2.4. Variation of solubility with temperature

In the present model both pT and ψ are temperature- and composition- independent

parameters: the former because the topology of the inter-lamellar domains should not

change unless temperature is very close to the melting point – where structural reorgani-

zation following recrystallization may occur –, and the latter due to the simplicity of the

model for the free amorphous domains – which are assumed to not exchange mass with

the crystal. It is therefore necessary to test the predictions of the model at temperatures

different from the ones at which the sample-specific parameters are optimised. There-

fore, the sorption isotherms of n-heptane measured in the six polymer samples at 35, 45,

and 55 ◦C are compared with the predictions of the model using the sample-specific pa-

rameter obtained for the isotherms of the four solutes at 25 ◦C. The calculations together

with the experimental sorption data are reported in Figure 4.6.

The solubility predicted with the model is seen to underestimate the experimental solu-

bility at pressures close to the vapour pressure of n-heptane for the six polymer samples.

This might be an indication that the variations of ψ with temperature or during sorption

must be accounted for in order to capture the temperature dependence of the sorption

isotherms. It is important to note, however, that the fact that solubility in the atactic

PP sample – i.e., the one calculated neglecting crystallinity entirely – is markedly un-

derpredicted at higher pressures and temperatures greater than 25◦ C, suggests that the

systematic underprediction of solubility in all of the PP samples is due to the inability
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(a) LDPE, ωc(25
◦C) = 0.472 (b) MDPE, ωc(25

◦C) = 0.479

(c) HDPE, ωc(25
◦C) = 0.499 (d) aPP, ωc(25

◦C) ≈ 0

Figure 4.6.: Sorption isotherms of n-heptane in the six PE and PP samples analysed at 25, 35, 45
and 55 ◦C. The sorption (in grams of solute per 100 grams of pure polymer) is plotted as a
function of the total pressure P . The vertical dotted lines denote the vapour pressure of n-
heptane at the four different temperatures. The continuous curves represent the calculations
with the model after adjusting pT and ψ for each polymer sample to best reproduce the
sorption isotherms of n-hexane, n-heptane, cyclohexane and toluene at 25 ◦C (Figure 4.5 and
Table 4.4). The symbols represent the experimental data;139 empty symbols were not included
in the optimisation of the sample-specific parameters. Uncertainty in the data points is smaller
than the marker size.
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(e) PP fiber, ωc(25
◦C) = 0.435 (f) iPP, ωc(25

◦C) = 0.586

Figure 4.6.: (Continued) Sorption isotherms of n-heptane in the six PE and PP samples anal-
ysed by Valsecchi et al.139 at 25, 35, 45 and 55 ◦C. The sorption (in grams of solute per 100
grams of pure polymer) is plotted as a function of the total pressure P . The vertical dotted
lines denote the vapour pressure of n-heptane at the four different temperatures. The con-
tinuous curves represent the calculations with the model after adjusting pT and ψ for each
polymer sample to best reproduce the sorption isotherms of n-hexane, n-heptane, cyclohexane
and toluene at 25 ◦C (Figure 4.5 and Table 4.4). The symbols represent experimental data;139

empty symbols were not included in the optimisation of the sample-specific parameters. Un-
certainty in the data points is smaller than the marker size.
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of the equation of state to describe the VLE properties of the mixture of n-heptane and

PP at high pressures and temperatures.

In other words, if the equation of state alone provided accurate predictions for the

solubility of n-heptane in atactic PP at all temperatures the quality of the predictions

for the other two semi-crystalline samples should improve. Unfortunately, it is not

possible to make the same argument for the PE samples as no fully amorphous PE

exists at the temperatures investigated. Although sorption isotherms above the melting

point of PE (Tm < 141 ◦C) could be used to gauge whether the equation of state properly

describes the VLE properties of the mixture of n-heptane and PE, the comparison might

be misleading due to the ∼ 80− 100 ◦C temperature difference between these isotherms

and the ones determined in this work.

We also note that the solubility in the HDPE sample at temperatures higher than 25 °C is

under-predicted both at high and low pressures. This might indicate irreversible crystal

melting at higher temperatures, possible due to an unstable microstructure obtained

after solution casting of the HDPE sample (cf. Section 4.2.1). It is not clear, however,

why this phenomenon would occur in HDPE only and not in the LDPE and MDPE

samples.

4.2.5. Changes in the inter-lamellar domains during sorption

As mentioned at the end of Section 3.3.4, once the model parameters are specified all

of the properties of the inter-lamellar amorphous domains are functions of state. It is

then possible to track the variations of these quantities along the sorption isotherms or

with temperature at a fixed composition. As an example, the predicted variation of la,

Pc, ω
LS
c and xT along the sorption isotherms of the four solutes in MDPE is shown in

Figure 4.7.
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(a) (b)

(c) (d)

Figure 4.7.: The variation of various properties of the inter-lamellar domains during the sorption
process for MDPE at 25 ◦C, as calculated using the model developed with the parameters of
Tables 3.1 and 4.4. All of quantities are plotted as a function of the ratio between the total
pressure P and the vapour pressure of the penetrant at 25 ◦C as for Figure 4.5: a) inter-
lamellar distance la; b) fractional extension of the tie-segments xT; c) crystallinity of the
lamellar stacks; d) constraint pressure. We note that the fractional extension xT is almost
a constant due to Equation 3.107. The crystallinity of the lamellar stacks at zero sorption
can be obtained by dividing the total crystallinity of the pure polymer by 1 − ψ: for MDPE,
ωLS,*
c = 0.479/(1− 0.106) ∼ 0.536.
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Figure 4.8.: Variation of the inter-lamellar distance during swelling of semi-crystalline PE
samples with n-hexane at 21 °C. The inter-lamellar distance is plotted as a function of the ratio
between pressure and the vapour pressure of n-hexane at 21 °C. Symbols are experimental data
obtained by Kim and coworkers294 for a quenched and isothermally crystallised sample using
small-angle neutron scattering. The dashed and solid curves represent the model’s calculations,
performed by setting the inter-lamellar distance in each pure sample equal to the respective
reported value and then adjusting pT. The optimal values for the quenched and isothermally
crystallised samples are, respectively, pT = 0.22 and pT = 0.30.

The fractional extension xT is found to be almost constant during sorption process as can

be inferred from Equation 3.107. At temperatures which are much lower than T 0
m, the

lowering of the monomer chemical potential of the polymer μ
(n0),EoS
p,mono due to the presence of

the solute is insignificant compared to the driving force of crystallization, which is only a

function of temperature. On the other hand, the swelling of the inter-lamellar domains

(i.e., the increase of la) causes the angle of the tie-segments with the normal to the

crystal/amorphous interface (θT) to become closer to 0◦ and thus leads cos θT to increase.

This explains the corresponding increase in Pc during sorption (Equation 3.92). The

variation of the crystallinity of the lamellar stacks is also limited.

None of these properties was directly measured in conjunction with the sorption isotherms

reported for the six PE and PP samples. Nevertheless, we can compare the model’s pre-

dictions of the swelling in the inter-lamellar domains with nano-swelling measurements
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of Kim and coworkers294 (Figure 4.8). In their work, the authors prepared two semi-

crystalline PE samples by quenching and isothermal crystallisation of the same PE melt.

The (volume fraction) crystallinity at 21 °C for the two samples was reported as 0.54

and 0.78, respectively. The change in the long period of the lamellar stacks was then

measured via in-situ small-angle neutron scattering during sorption experiments using

n-hexane at 21 °C.

We set the inter-lamellar distance of the pure samples at 21 °C, l∗a = la(21°C), equal to the

values reported by the authors (12.13 nm and 10.35 nm, respectively, for the quenched

and isothermally-crystallised samples) and adjust the pT value for each of the two samples

to reproduce the observed swelling. Both the experimental and the theoretical nano-

swelling isotherms are very linear, confirming that the dramatic increase of solubility

in PE samples near condensation seen in Figure 4.5 can only be explained by including

unconstrained amorphous domains in the description (ψ �= 0).

The optimal values of pT for the isothermally-crystallised sample is 0.30, in good agree-

ment with the values found using sorption isotherms in Section 4.2. A lower value of

pT = 0.22 is found for the quenched sample. However, it must be noted that the authors

assumed the 2-domain model in order to calculate the inter-lamellar distance after mea-

suring the long period and the sample’s overall crystallinity. While assuming ψ = 0 is a

good approximation for the isothermally crystallised sample, a non-negligible amount of

free amorphous mass might be present in the quenched samples leading to a reduction in

the measured inter-lamellar distance (and therefore an increase in the optimal pT value

for the quenched sample).
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(a) LDPE (b) HDPE

Figure 4.9.: Swelling of the LDPE and HDPE samples studied by Valsecchi et al.139 during the
sorption process at 25 ◦C as a function of the ratio between the pressure of the external gas and
the vapour pressure of the penetrant at 25 ◦C. The continuous curves represent predictions
with the model obtained using Equation 4.2. The model parameters for the two samples are
listed in Tables 3.1 and 4.4. As expected, the LDPE sample swells considerably more than the
HDPE sample due to the higher amount of solute dissolved in the free amorphous domains
(see Figure 4.5).

4.2.6. Swelling

The model developed allows one to quantify the overall swelling of the polymer sample.

As shown in Appendix G, swelling can be calculated by means of

V

V0

=

(
ωc

ρc
+

ψ

ρFp,eff
+

1− ψ − ωc

ρILp,eff

)/(ω0
c

ρc
+

ψ

ρFa
+

1− ψ − ω0
c

ρILa

)
. (4.2)

Here, ω0
c and V0 are the crystallinity and the volume of the sample before sorption.

Similarly, ρFa and ρILa are the density of pure free amorphous and inter-lamellar domains,

respectively. The effective polymer density in the free amorphous domains, ρFp,eff, is

calculated in the same way as ρILp,eff (Equation 3.97) using the partial specific volumes in

an unconstrained polymer + solutes mixture.
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It should be noted that we assume that the free amorphous mass does not change, i.e., ψ

is constant. In general, the variation of ψ during sorption, if present, should be known in

order to calculate the swelling of the sample. Nonetheless, the change in free amorphous

mass due to sorption should be small (this is the case at least for the inter-lamellar

domains, see Figure 4.7) and the assumption that ψ is a constant during sorption (in

the absence of irreversible transformations in the sample and far from the melting point)

appears to be reasonable.

In Figure 4.9 the swelling of the LDPE and HDPE samples during the sorption process

of the four penetrants is determined at 25 ◦C. Unfortunately, the swelling of the samples

was not measured, preventing a direct comparison with the predictions. As expected,

the LDPE sample swells significantly more then the HDPE sample because the former

has a higher content of free amorphous mass and the solubility in the free amorphous

domains is higher than in the inter-lamellar amorphous domains.

4.3. Estimation of the tie-molecule fraction in PE

Having looked at the theoretical predictions and experimental data of pure fluid sorption

in six PE and PP samples, in this section the model developed in Chapter 3.3 is further

benchmarked against a large set of experimental solubility data of hydrocarbon fluids in

semi-crystalline polyethylene samples.

Just like in Section 4.2, we aim to obtain the optimal sample-specific parameters for

each sample by minimizing the difference between experimental data and the model’s

predictions of pure-component sorption isotherms. However, optimizing pT and ψ at

the same time (as in Section 4.2) can lead to parameter degeneracy when the available

solubility data for a given polymer sample includes measurements for only one solute in

the low-pressure (Henry) regime. In this limit the solubility must increase linearly with
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pressure due to the ideal gas behaviour of the external fluid and Henry’s law for the

polymer-solute mixture, i.e.,

Si(T, P,y) ∼ kH,i(T )Pyi, (4.3)

as P → 0. Here, kH,i is the Henry constant of solute i and yi its mole fraction in the

external gas. By looking at equation 3.53, our model predicts

kH,i(T ) = ψkF
H,i(T ) + (1− ψ)

(
1− ωLS

c

)
kIL
H,i(T ), (4.4)

and since the Henry constant in the inter-lamellar domains must decrease with pT and

kF
H,i > kIL

H,i (as the inter-lamellar domains are constrained, Equation 3.44) an infinite

number of pairs of pT and ψ predicts the same overall Henry constant for the solute i.

For example, in Section 4.2 it was shown how the linear increase in solubility at low

pressures can be described accurately both by setting ψ = 0 and only fitting pT (Figure

4.4) and by fitting both parameters (Figure 4.5).

Nonetheless, at pressures closer to the saturation point of the external fluid the degen-

eracy disappears as the increase in solubility in the free amorphous domains is more

pronounced than in the inter-lamellar domains. In particular, it is necessary to have

ψ > 0 to reproduce high solubilities near condensation as swelling in the inter-lamellar

domains is severely restricted by the tie-molecules, as shown in Sections 4.2.2 and 4.2.5.

Using solubility data of different solutes to parameterise the same sample can also help re-

moving the degeneracy because the entity of the solubility reduction in the inter-lamellar

domains (compared to the free amorphous domains) is different for each solute due to

differences in the solutes’ partial molar volumes (Equation B.7).
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4.3.1. Making pT the only free parameter

In this Section we adopt an ansatz for ψ as a function of the measured crystallinity

in order to avoid degeneracy in the sample-specific parameters, as many of the sources

considered (cf. Section 4.3.2) only reported solubility in the Henry regime or for a single

solute. We remove ψ from the optimization following Chmelař and coworkers,238 who

showed that the fraction of free amorphous mass can be estimated quite precisely using

only crystallinity as an input by comparing measurement from difference sources and

with different techniques (see Figure 6 in their published work238). Here we choose the

function

ψ(ωa) = ω4
a

(
C(ω4

a − 1) + 1
)

(4.5)

to obtain ψ given ωa = 1 − ωc, where C = −0.3673. This functional form ensures

that ψ(0) = 0, ψ(1) = 1 – which are physically sound constraints – and was selected

among other low-order polynomials due to its simple form and good accuracy in the

entire crystallinity range. The value of C used is obtained by minimising the mean

squared error between the predictions of equation 4.5 and the data reported by Chmelař

and coworkers, which refers to polyethylene samples in a wide range of crystallinity

analyzed using NMR,224,234–238 PALS239 or a combination of DSC and WAXS.240 A

comparison between calculations using Equation 4.5 and experimental data is shown in

Figure 4.10.

It is important to note that the experimental data with which we fit Equation 4.5 refers

to PE samples at 25 °C, and therefore should only be applicable to PE samples at the

same temperature in the absence of a model detailing the variations of crystallinity or

ψ with temperature. In practice, crystallinity measurements are sometimes made at

temperatures different from room temperature (cf. Table 4.3). For simplicity here we

estimate ψ for each sample based on the crystallinity value at the reported temperature

(ω∗
c ) using Equation 4.5.
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(a) ψ (b) φ

Figure 4.10.: Fraction of free amorphous mass over the total polymer mass (ψ) and over the
amorphous mass (φ) as a function of the crystallinity of a semi-crystalline PE sample. Symbols
are experimental data at 25 °C from a variety of sources224,234–240 reported by Chmelař and
coworkers;238 the solid curve is an empirical correlation of the data (Equation 4.5 with =
−0.3673); the dashed line in a) represents the upper bound to ψ, i.e. 1 − ωc. The higher
crystallinity data is shown in the inset for clarity.

The only free parameter that we optimize to reproduce sorption isotherms in the current

work is therefore pT. Its value is found for each sample by minimizing the relative root

mean squared error (RRMSE) between the model’s predictions and the experimental

gas solubility at a given temperature T :

RRMSE% =

√√√√√ 1

Ns

Ns∑
i

1

NP,i

⎡
⎣NP,i∑

j

(
Sexp
i (T, Pi,j)− Scalc

i (T, Pi,j)

Sexp
i (T, Pi,j)

)2
⎤
⎦× 100%. (4.6)

Here Ns is the number of single-solute isotherms used for each sample, NP,i is the number

of solubility measurements for each isotherm and Pi,j is the pressure at each measure-

ment. The calculated solubility Scalc
i is here implicitly a function of the polymer- and

sample-specfic parameters.
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4.3.2. Sourcing crystallinity and solubility data

Table 4.3.: Crystallinity characterisation techniques employed by the sources of experimental
solubility data in PE considered in the current work. The quantity T ∗ indicates the temperature
at which the crystallinity measurement was taken (cf. Table 4.4).

Source Technique T ∗ / °C
Chmelař et al.136 DSC, ρ 80
Doong et al.42 ρ, DSC, SAXS 25

Dos Santos et al.300 ρ 30
Jin et al.137 ρ 25

Kiparissides et al.301 DSC 25
Lopez-Gonzalez et al.302 ρ 30

Moebus et al.255 Unknown 25
Moore et al.303 SAXS 25
Mrad et al.304 DSC, ρ 70
Novak et al.138 DSC 25
Rausch et al.254 ρ 25
Sturm et al.256 ρ 25

Valsecchi et al.139 ρ 25
von Solms et al.305 ρ 25

Yoon et al.306 ρ 25

Solubility is reported using different units across different sources; all experimental sol-

ubility data has therefore been converted in g of solute per 100 g of pure polymer to aid

comparison. The data is taken directly if reported in tables in the original publications

or manually extracted from plots with PlotDigitizer.307 Unfortunately, in most cases the

uncertainty of the solubility measurements was not reported.

In order to compare data between different sources, it also important to ensure that crys-

tallinity is calculated using the same formulae and parameters consistently. Crystallinity

estimated with density measurements is here re-calculated using Equation 3.12 and the

correlation between crystalline and amorphous specific volumes of PE with temperature
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proposed by Chiang and Flory:168

⎧⎪⎨
⎪⎩

va = 1.152 + 8.8× 10−4(T [K]− 273.15) cm3g−1

vc = 0.993 + 3.0× 10−4(T [K]− 273.15) cm3g−1

. (4.7)

Similarly, crystallinity estimated via DSC analysis is re-scaled using the specific enthalpy

of melting of extended PE crystals reported in Table 3.1, Δh0
m = 293 J g-1.

4.3.3. Optimisation results

Optimized model parameters for polyethylene samples

In Table 4.4 the results of the optimization of the polymer sample-specific parameters

for all the semi-crystalline PE samples considered are presented. For each sample we

report the temperature at which the solubility used in the parameter estimation was

measured, the solutes considered, the crystallinity – measured at temperature T ∗, see

Table 4.3 –, the source, and the denomination of the sample in the original publication.

Furthermore, we report the optimal value of pT, the value of ψ calculated via Equation

4.5 and the RRMSE at the optimum.

In Figure 4.11 the optimal values of pT are plotted as a function of the crystallinity of

the sample. The average pT value across all samples is 0.297, with an average RRMSE%

of 8.43%. We consider this error to be acceptable given the intrinsic uncertainty in

the measurements of solubility and crystallinity. It is reassuring that approximately

the same average value of pT (≈ 0.32) was found for the PE samples in Section 4.2 by

optimising pT and ψ at the same time. As discussed in Section 4.2.3, a value of pT ≈ 0.3

for PE is consistent with both upper and lower bounds estimated by theoretical models

and computer simulations164–167,206,207 and suggests that most inter-lamellar mass should

belong to tie-molecules (i.e., bridges and entangled loops).
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Table 4.4.: Model parameters for the semi-crystalline PE samples considered. The crystallinity
ω∗
c is measured at temperature T ∗ as reported in Table 4.3, while ψ is calculated using Equation

4.5. The solutes used to parameterise each sample are reported in the “Solutes” column: Cn
stands for n-alkanes; Cn= for linear alk-1-enes; iC4 and iC5 for isobutane and isopentane,
respectively; cC6 for cyclohexane and aC6 for benzene. T is the temperature of the sorption
isotherms used for each sample, and the RRMSE is the minimum relative root mean squared
error calculated via Equation 4.6

Ref Sample name ω∗
c pT ψ Solutes T / °C %RRMSE

Chmelar et al.136

VLLDPE 0.272 0.015 0.728 C2= 80 0.68
LLDPE A 0.374 0.336 0.201 C2= 80 2.61
LLDPE B 0.401 0.370 0.170 C2= 80 1.02
LLDPE C 0.443 0.315 0.128 C2= 80 5.22
LLDPE D 0.475 0.224 0.102 C2= 80 2.32
MDPE A 0.554 0.319 0.053 C2= 80 3.17
MDPE B 0.565 0.335 0.048 C2= 80 1.26
MDPE C 0.575 0.363 0.038 C2= 80 3.30
HDPE A 0.592 0.356 0.017 C2= 80 1.21
HDPE C 0.664 0.307 0.016 C2= 80 5.14
HDPE D 0.671 0.367 0.010 C2= 80 1.90
HDPE E 0.789 0.393 0.005 C2= 80 11.62

Doong et al.42 PE film 0.502 0.287 0.083 aC6 30 14.62

Dos Santos et al.300 DYND-3 0.481 0.308 0.097 C4, C4=, iC4 30 12.33

Jin et al.137

MTH879 0.209 0.165 0.479 C6= 50 8.17
MTH904 0.398 0.223 0.173 C6= 50 4.29
MTH912 0.447 0.285 0.125 C6= 50 5.18
MTH918 0.488 0.314 0.092 C6= 50 3.13
MTH923 0.522 0.304 0.070 C6= 50 3.19

Kiparissides et al.301 HDPE 0.681 0.330 0.014 C2= 80 11.62

Lopez-Gonzalez et al.302
LDPE87 0.231 0.413 0.433 C2=, C3= 30 20.6
LDPE91 0.478 0.311 0.099 C2=, C3= 30 7.85
LDPE93 0.558 0.328 0.052 C2=, C3= 30 7.20

Moebus et al.255
EH1 0.410 0.206 0.160 C2=, iC4, iC5, C6, C6= 80 11.69
EH5 0.440 0.270 0.131 C2=, iC4, C6, C6= 85 9.18
EB1 0.450 0.209 0.122 iC4, C4=, iC5 85 13.15

Moore et al.303

LLDPE (co-hexene) 0.185 0.015 0.532 C4=, C6= 69 12.80
LLDPE (co-butene) 0.470 0.208 0.106 C4=, C6= 69 8.37

LDPE 0.504 0.209 0.081 C2=, C4=, C6= 69 10.78
HDPE 0.702 0.273 0.011 C4=, C6= 69 7.72

Mrad et al.304 LDPE 0.476 0.511 0.101 C2= 70 7.81

Novak et al.138
HDPE - Sample 1 0.601 0.399 0.034 C2=, C6= 70 4.62
HDPE - Sample 2 0.632 0.391 0.025 C2=, C6= 70 7.75
HDPE - Sample 3 0.710 0.362 0.010 C2=, C6= 70 4.64

Rausch et al.254 HDPE 0.754 0.337 0.005 cC6 90 3.26

Sturm et al.256

VLLDPE - Sample 5 0.450 0.279 0.122 iC5, C6= 50 9.85
LLDPE - Sample 6 0.480 0.315 0.098 C6= 50 4.12
LLDPE - Sample 1 0.509 0.255 0.078 iC5 50 1.16
HDPE - Sample 3 0.700 0.283 0.011 iC5 65 1.70
HDPE - Sample 2 0.762 0.295 0.004 iC5 50 5.27
HDPE - Sample 4 0.771 0.270 0.004 iC5 50 3.91

Valsecchi et al.139
LDPE 0.472 0.229 0.104 C6, cC6, C7 25 11.26
MDPE 0.479 0.283 0.099 C6, cC6, C7 25 5.98
HDPE 0.499 0.621 0.085 C6, cC6, C7 25 36.53

von Solms et al.305 HDPE 0.731 0.238 0.007 C1 25 2.93

Yoon et al.306

LLDPE - Sample 1 0.362 0.340 0.216 C6=, C8= 70 39.89
LLDPE - Sample 2 0.398 0.283 0.173 C6=, C8= 70 12.42
LLDPE - Sample 3 0.487 0.292 0.093 C6=, C8= 70 14.36
LLDPE - Sample 4 0.488 0.244 0.092 C6=, C8= 70 17.58
LLDPE - Sample 5 0.529 0.275 0.066 C6=, C8= 70 14.74
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Figure 4.11.: Optimal value of pT for each PE sample considered as a function of its measured
crystallinity ω∗

c . Each marker corresponds to a different literature source (see Table 4.4), while
the color represents the RRMSE % at the optimum: green if 0% ≤ RRMSE% ≤ 10%, yellow if
10% < RRMSE% ≤ 30% and red if RRMSE% > 30%. The horizontal dashed line indicates the
average value of pT (0.297) across all samples. The error bars indicate values of pT that result
in RRMSE % within 5 % from the optimum. Note that the solubility in the inter-lamellar
domains of PE is negligible for pT > 0.6. The temperature at which crystallinity was measured
was 25 °C for most samples (see Table 4.3).
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Various authors have argued that there could be a maximum in the tie-molecule con-

tent at intermediate crystallinity based on mechanical measurements, sorption data and

theoretical calculations.190,191,207,256 Due to the scatter in our optimal pT values when

plotted against crystallinity, we cannot confirm this hypothesis unless more experimen-

tal data at high crystallinity is analysed with the present model. Nevertheless, it is can

be argued that crystallinity simply does not capture enough of the history of a sample

to show strong correlation with pT. For example, samples with same crystallinity but

different average lamellar thickness should possess different tie-molecule fractions.184,190

For accurate estimates of pT it might thus be necessary to consider additional proper-

ties of each PE sample such as its molecular weight distribution, branching content and

production history.

Finally, we note that systematic errors in the reported values of crystallinity or solubility

can affect the comparison of data between different sources. For example, the LDPE

sample studied by Mrad and coworkers304 and the HDPE sample analysed in Section

4.2 are clear outliers with pT > 0.5 at ω∗
c ≈ 0.5. These findings suggest that using

crystallinity (or density) alone to estimate a priori ψ and pT at the same time might

result in unphysical values of some of the parameters.

Henry constants of ethylene

In Figure 4.12 the Henry constant (in (g/g) / GPa) of ethylene at 25 °C in each PE

sample is plotted as a function of the sample’s crystallinity. It is particularly useful to

plot the calculated value of the Henry constant using the optimized model parameters

instead of the experimental one since the data is not always present or smooth enough

in the low-pressure regime. Ethylene is chosen here as a “probe molecule” due to its

importance in polyethylene production processes. As expected, the Henry constant per

total polymer mass decreases with increasing crystallinity (Figure 4.12a), remaining
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(a) (b)

Figure 4.12.: Henry constant of ethylene in the semi-crystalline PE samples studied at 25
°C calculated using the present model and the optimized sample-specific parameters (Table
4.4) in (g/g) GPa-1. Symbols represent the model’s calculations after optimisation of the
sample-specific parameters of each sample – see Figure 4.11. The dashed lines corresponds to
predictions with ψ = 1 − ω∗

c , i.e. with no constraints acting on the amorphous domains. a)
Henry constant per total polymer mass. b) Henry constant per amorphous polymer mass.

always below the ψ = 1 − ω∗
c line (i.e., Michaels and Bixler’s model26). The Henry

constant in the amorphous domains only (intended as the sum of free and inter-lamellar

domains) is shown in Figure 4.12b). Despite the scatter in the data, the Henry constant

in the amorphous domains is seen to decrease on average with crystallinity and tends to

the value predicted for a subcooled polyethylene melt as ωc → 0.

Comparison with data included in the parameterisation

In Figures 4.13 and 4.14 the model’s solubility calculations are compared to experimental

data for six PE samples for which sorption isotherms of multiple pure substances are

available. The pT parameter of each sample is optimised to reproduce all the isotherms

at the same time. Our calculations are in excellent agreement with the experimental

data, confirming that a single parameter set can be assigned to each sample to capture

the solubility of different pure substances. This demonstrates that the sample-specific
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(a) DYND-3,300 30 °C (b) LLDPE93,302 30 °C

(c) LDPE,303 69 °C (d) VLLDPE,306 50 °C

Figure 4.13.: Solubility of various pure substances in semi-crystalline PE samples analysed
in the literature. Solid curves represent the model’s calculations with the sample-specific
parameters found in Table 4.11; for each sample, pT is optimised to reproduce the experimental
data shown (symbols). Vertical dotted lines represent the vapour pressure of the external gas
at the each temperature. The solubility is plotted as a function of total pressure if one of
the solutes is supercritical at the temperature considered; otherwise, as a function of the ratio
between pressure and each solute’s vapour pressure at that temperature.
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(a) EH1, T = 80°C (b) EH5, T = 85°C

Figure 4.14.: Solubility of various pure substances in semi-crystalline PE samples analysed
by Moebus and Greenhalgh255 as a function of pressure. Solid curves represent the model’s
calculations, while symbols experimental data. All isotherms are plotted up to the vapour
pressure of the pure fluid at the corresponding temperature, with the exception of ethylene
(which is supercritical at both temperatures) a) Solubility of pure gases in the EH1 sample
at 80 °C. b) Solubility of pure gases in the EH5 sample at 85 °C. The pT parameters of the
two samples (0.206 and 0.270, cf. Table 4.4) have been optimized to reproduce these sorption
isotherms.
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properties of each semi-crystalline PE sample can be effectively decoupled from the

underlying equilibrium EoS, as seen in Section 4.2.

4.3.4. Prediction of co-solubility effects

The robustness of the model is showcased by predicting solubility co-solubility effects

in a subset of the PE samples analyzed. The term “co-solubility effect” refers to the

increase or decrease in solubility of a given compound in a sample due to the presence

of other substances in the external fluid. This phenomenon is of critical importance in

the production of polyolephines, as the addition induced condensing agents (ICAs) like

n-hexane or co-monomers like 1-butene and 1-hexene to an ethylene reaction mixture

has been shown to increase the polymerization rate of PE, presumably due to the in-

creased ethylene solubility in the amorphous polymer near the catalyst sites.138,255,304,308

Furthermore, in real-world applications semi-crystalline polymers are rarely in contact

with pure fluids and factors such as the relative humidity can have an impact on the

solubility of any given substance.

Our model naturally allows to predict the solubility of mixtures in contact with a semi-

crystalline polymer, as outlined in Section 3.3. The equation of state used in the current

work – i.e., SAFT-γ Mie – provides a good description of mixture properties as its

parameters are usually optimized to reproduce enthalpy of mixing and/or vapour-liquid

equilibrium envelopes of fluid mixtures67,69,70,72,94,100 (cf. Section 2.4). In Figure 4.15

and 4.16 experimental co-solubility data of various substances in semi-crystalline PE

samples reported by Moebus and Greenhalgh255 is compared to the model’s predictions.

Note that the optimal pT parameter for each sample (Table 4.4) has been adjusted to

reproduce the single-solute isotherms reported in Figure 4.14, whereas ψ values were

estimated using Equation 4.5.

176



4.3. ESTIMATION OF THE TIE-MOLECULE FRACTION IN PE

(a) (b)

(c) (d)

Figure 4.15.: Solubility of individual components (in grams of solute per 100 g of polymer) of
fluid mixtures at 80 °C in contact with the EH1 sample analysed by Moebus and Greenhalgh255

as a function of their partial pressure. Solid curves correspond to predictions with the present
model, while symbols experimental data (colour-coded with the corresponding curves). pT
was adjusted to reproduce pure component data (black curves) The numbers in the legend
refer to the composition of the two components (in % mol) in the external mixture. Vertical
dotted lines, if present, indicate the vapour pressure of the pure fluids at 80 °C. a,b) Solubility
of isobutane (isopentane) in the sample at varying isopentane (isobutane) concentration of an
isobutane-isopentane mixture. c,d) Solubility of ethylene (isopentane) in the sample at varying
isopentane (ethylene) concentration of an ethylene-isopentane mixture.
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(a) Solubility of ethylene (b) Solubility of n-hexane

Figure 4.16.: Solubility of individual components (in g of solute per 100 g of polymer) of
mixtures of ethylene and n-hexane at 85 °C in the EH5 sample analysed by Moebus and
Greenhalgh255 as a function of their partial pressure. Solid curves correspond to predictions of
the present model, while symbols to experimental data (colour-coded with the corresponding
curves). The numbers in the legend refer to the % mole fraction of the two components in the
external mixture.

The model semi-quantitatively predicts the solubility of isobutane + isopentane and

ethylene + isopentane mixtures in the EH1 sample (Figure 4.15) and of ethylene +

n-hexane mixtures in the EH5 sample (Figure 4.16). As expected, the solubility of a

component is only a function of its partial pressure Pi (i.e., the product of the total pres-

sure P and its mole fraction in the fluid xi) at low partial pressures. However, at higher

partial pressure different mixtures display one of two behaviours.

In the isobutane + isopentane mixture, the solubility of either component at fixed partial

pressure in greatly enhanced by the presence of the other component in the external fluid.

This phenomenon can be rationalized by realizing that solubility generally increases the

most near saturation conditions of the external fluid (see Figure 4.14). All the isotherms

in Figure 4.15a and b are calculated up to the dew pressure of the mixture at each

composition. The absolute value of the dew pressure of the external fluid is not strongly

influenced by composition (due to the similarity of the saturation pressure of the two
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pure fluids), and therefore the partial pressure at condensation of each component is

lowered as their composition in the external mixture is lowered. Isopentane’s isotherms

are systematically overpredicted as in Figure 4.14; this is likely a consequence of the

overestimation of isopentane’s vapour pressure with the SAFT-γ Mie parameters in

use.69

Conversely, both in the case of ethylene + isopentane and of ethylene + n-hexane mix-

tures (Figures 4.15c and d and 4.16) the solubility of the lighter component (i.e., ethy-

lene) is enhanced by the presence of the heavier one (i.e., isopentane or n-hexane),

while the contrary is true for the solubility of the heavier components upon increasing

ethylene’s concentration. According to our calculations, this phenomenon is so signifi-

cant that at fixed temperature and total pressure the calculated solubility of ethylene is

greater if the external fluid is a mixture instead of pure ethylene, as can be seen in the

figures.

A positive – albeit more modest – deviation of ethylene’s solubility from Henry’s law is

also seen in the experimental data. Nevertheless, solubility measurements at higher pres-

sures are needed to test the model’s predictions outside of the dilute regime. A systematic

over-prediction of the n-hexane solubility when mixed with ethylene is also observed,

although we note the unusal behaviour of the experimental Henry constant reported for

n-hexane which seems to change with the external composition.255

Novak and coworkers138 reported measurements of the total solubility of ethylene + 1-

hexene mixtures in three HDPE samples. In Figure 4.17 pure component and mixture

solubility data in the three samples are compared with the predictions of the present

model. The pT parameters are optimized to provide quantitative description of the

pure component isotherms (cf. Table 4.4), although the solubility of ethylene is slightly

overestimated. The predicted total solubility of a 95.7% ethylene + 4.3 % 1-hexene

mixture (in mol %) in the three samples is in good agreement with the experimental
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(a) Pure ethylene

(b) Pure 1-hexene (c) 95.7% ethylene / 4.3% 1-hexene

Figure 4.17.: Solubility of ethylene, 1-hexene and a 95.7% ethylene + 4.3% 1-hexene mixture
(mol %) in the semi-crystalline PE samples analysed by Novak and coworkers138 at 70 °C as a
function of pressure. Solid curves represent the calculations, while symbols the experimental
data. The pT parameters of the three polymer samples have been optimized to reproduce their
respective pure component isotherms (see Table 4.4). The numbers next to PE in the legend
refer to the crystallinity ωc at 25 °C of the samples in parts per thousands.
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(a) (b)

Figure 4.18.: Isothermal VLE envelope of ethylene + 1-hexene mixture. Solid curves are predic-
tions using SAFT-γ Mie. Symbols represent experimental data from Laugier and coworkers.309

The vertical dotted line corresponds to the composition of the mixture analyzed by Novak and
coworkers,138 i.e. xethylene = 0.957. a) VLE envelope b) VLE envelope for 0.9 < xethylene < 1.

data, with the exception of the sample of highest crystallinity (PE732). Interestingly,

the discrepancy seems to be due to the model predicting a decrease in solubility with

increasing pressure between 5 and 10 MPa for all samples.

This artifact in the prediction is due to our SAFT-γ Mie model predicting a critical

composition of 95.2% for the ethylene + 1-hexene mixture at 70 °C, just slightly below

the composition of the mixture considered by Novak and coworkers (Figure 4.18). This

causes the calculated partial molar volume of ethylene in the mixture to be negative

for total pressures between about 5 and 10 MPa and therefore the total solubility to

decrease with increasing pressure in the same range (Figure 4.17c). The actual critical

composition of the mixture must be lower than the critical composition at 60 °C – i.e.

about 94.3%, as seen in the experimental data by Laugier and coworkers in Figure 4.18.

Since the in reality the mixture analysed by Novak and coworkers is farther away from the

two-phase region of its VLE envelope, the measured total solubility data thus displays

a regular Henry behaviour. This artifact in the predictions highlights the importance
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of using good molecular models for the fluids studied; it is likely that a more optimized

SAFT model for ethylene would result in very linear sorption isotherms for the mixture

composition studied.

4.3.5. Solubility predictions at different temperatures

In Figure 4.19 the model’s solubility predictions at temperatures different from the

ones included in the parameterisation procedure are compared to experimental solubil-

ity data of pure substances in a subset of polymer samples. Overall, the calculations

are in very good agreement with the data at all temperatures reported. It is partic-

ularly noteworthy that the solubility of cyclohexane in a LLDPE sample analysed by

Sturm and coworkers256 (Figure 4.19f) is accurately predicted at various temperatures

even if cyclohexane was not included in the parameter estimation procedure (cf. Table

4.4).

In general, the quality of the predictions deteriorates close to saturation of the external

gas. This could be due to irreversible melting and reorganisation of the smaller lamel-

lae, a phenomenon known to occur during swelling of semi-crystalline PE at high solute

activity.258 Since irreversible transformations result in changes to the crystallinity and

microstructure of a polymer sample, these effects – if present – lead to hysteresis of the

sorption/desorption cycle which can be used as a measure of the degree of reversibility of

the sorption process. However, desorption runs are rarely reported experimentally, pre-

venting the direct investigation of these effects in the current work.

In some of the samples with lower crystallinity (Figure 4.19a, b and c) the model predicts

greater variations of solubility with temperature than what experimental data indicates.

In the absence of irreversible transformations, these findings might be evidence of partial

melting at the lateral lamellar surfaces274 leading to an increase in ψ with temperature.
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(a) benzene in PE film42 (b) 1-hexene in EH1255

(c) 1-hexene in MTH918137 (d) octene in LLDPE - Sample 5306

Figure 4.19.: Solubility of various pure substances in semi-crystalline PE samples at different
temperatures using the optimal sample parameters found in Table 4.11. Solid curves represent
the model’s calculations, while symbols experimental data. Data points represented by filled
symbols are included in the parameterisation procedure; empty symbols, not included. Vertical
dotted lines represent the vapour pressure of the external gas at the each temperature.
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(e) 1-butene in HDPE303 (f) cyclohexane in LLDPE - Sample 1256

(g) isopentane in HDPE - Sample 2256 (h) 1-hexene in HDPE - Sample 3138

Figure 4.19.: (Continued) Solubility of various pure substances in semi-crystalline PE samples
at different temperatures using the optimal sample parameters found in Table 4.11. Solid curves
represent the model’s calculations, while symbols experimental data. Data points represented
by filled symbols are included in the parameterisation procedure; empty symbols, not included.
Vertical dotted lines represent the vapour pressure of the external gas at the corresponding
temperature.
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It might therefore be necessary to develop models to account for the changes of ψ with

temperature to characterize semi-crystalline polymers with temperature-independent

sample-specific parameters over wide temperature ranges.

4.4. Moisture uptake by semi-crystalline PEG:

deliquescence

We conclude this Chapter with an analysis of moisture uptake in PEG to test the ability

of our methodology to reproduce equilibrium properties of hydrogen-bonding polymer

+ solute mixtures. The PEG polymer is semi-crystalline at room temperature, with a

melting point between about 30 and 60 °C.13,156 Semi-crystalline PEG is often used as a

polymer matrix for active pharmaceutical ingredients (APIs).310,311 Water vapour poses

significant problems with the stability of such formulations, as semi-crystalline PEG is

known to melt at room temperature and high relative humidity, a phenomenon known

as deliquescence.13 It is therefore critical to develop models which provide the capability

of describing both the sorption of water in semi-crystalline PEG and the humidity at

which deliquescence occurs at each temperature.

While standard vapour-liquid equilibrium (VLE) calculations can be performed to de-

termine the sorption of water vapour in molten PEG (see Sections 2.3.5 and 2.5.2) ,

the presence of crystalline polymeric domains in semi-crystalline PEG warrants a more

sophisticated description. The solubility of water in semi-crystalline PEG below the

melting point of the fully crystalline sample should be low when a significant propor-

tion of the crystal structure is preserved, and increase steeply once deliquescence oc-

curs.

In this section we apply the model developed in Chapter 3 to the study of moisture
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sorption in semi-crystalline PEG. A simple methodology to predict the humidity at which

deliquescence should occur is also discussed, followed by a comparison with experimental

data.

4.4.1. Solubility in semi-crystalline PEG

According to the methodology developed in Chapter 3, in order to perform solubility

calculations in semi-crystalline PEG one requires:

• A set of sample-specific parameters, including the crystallinity ωc, fraction of tie-

molecules pT, and fraction of free amorphous domains ψ.

• An equation of state (and corresponding parameters) describing the liquid poly-

mer+solute mixture and the gas phase.

• A set of polymer-specific parameters.

The SAFT-γ Mie models for PEG and water are reported in Section 2.5.2. The polymer-

specific parameters for PEG, on the other hand, have previously been reported in Table

3.1. The value of the inter-lamellar distance of the pure polymer (l∗a = la(25°C)) is set to

10 nm for simplicity (as in the previous Sections) due to its small influence on the pre-

dicted moisture uptake. While the crystallinity ωc of a sample can be measured with one

of the methods highlighted in Section 3.1.6, the remaining sample-specific parameters pT

and ψ are found for each sample by minimizing the root-mean-square difference between

the experimental solubility data and the model predictions.

Since semi-crystalline PEG generally has a very high crystallinity,312 we expect the frac-

tion of free amorphous mass to be negligible139,238 and we can therefore set ψ = 0, which

leaves the fraction of stems pT as the only free sample-specifc parameter. The sorption
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S of water in semi-crystalline PEG (in terms of the mass of dissolved water per mass of

PEG) is therefore approximated here as (cf. Equation 3.53)

S(T, P ) ≈ (1− ωc)S
IL
a (T, P ; pT, l

∗
a), (4.8)

where SIL
a – the solubility in the inter-lamellar domains – is obtained with the methods

described in Section 3.3.3. The fraction of tie-molecules pT is adjusted for each sample

to reproduce the water solubility in the low-humidity regime (i.e., before deliquescence

occurs). At higher humidity, solubility is calculated via a standard VLE calculation

(Section 2.5.2).

It must be pointed out that a great body of evidence suggests that low-molecular weight

PEG crystals (Mn < 10, 000 g/mol) consist of polymer chains either folded a small

number of times or in chain-extended conformations.148–152,310,311,313–317 This implies a

very high concentration of chain ends (i.e., tails, cf. Section 3.2) in the inter-lamellar

regions; these are neglected in the current model. Furthermore, the inter-lamellar regions

of semi-crystalline PEG are very small (of the order of 1-2 nm148) and the amorphous

polymer chains in them are very short (less than 10 repeating units318), implying that

confinement effects (which are also neglected in our approach) and chain end-to-end

distributions at variance with the Langevin statistics must be considered to accurately

determine the water solubility in these regions.

Nonetheless, tie-molecules should still be present in high-molecular weight crystals based

on theoretical arguments,201,202,319 and on the experimental observation that the resis-

tance to crack propagation of semi-crystalline PEG increases with increasing molecular

weight.187,320 Our model should therefore be able to provide one with a qualitative

description of the thermodynamic properties of the inter-lamellar domains in PEG, al-

though the adjusted values of pT for each sample should not be considered accurate

estimates but rather as empirical parameters.
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4.4.2. Deliquescence

If we assume that no polymer is present in the external fluid phase, it is particularly

useful to treat deliquescence in the osmotic ensemble. At fixed temperature T , pressure

P and solute chemical potentials μs, the osmotic free energy of a polymer system Ωs =

G −∑
i μs,ins,i (see Equation 2.35 for a definition for a fluid polymer system) must be

at its minimum. Therefore, deliquescence of a lamella occurs when its osmotic free

energy, Ωc
s, becomes equal to than that of a liquid polymer + solutes mixture obtained

by melting all the polymer chains in the lamella, ΩEoS
s :

Ωc
s(T, P,μs,ν) = ΩEoS

s (T, P,μs,ν). (4.9)

Since we assume that the lamellae are impermeable to solutes (i.e., nc
s,i ≈ 0), we have

Ωc
s ≈ Glamella (Equation 3.46). On the other hand, by using the definition of monomer

chemical potential (Appendix C) and assuming that the polymer molecules can be

uniquely characterised by the number of repeating units n, the osmotic free energy of a

liquid polymer + solutes mixture (Equation 2.35) can be rewritten as

ΩEoS
s (T, P,μs,ν) =

∑
i

νiμ
EoS
p,i

=
∞∑
n=0

nν(n)μ(n),EoS
p,mono

= ntotμEoS
p,mono

. (4.10)

Here, ntot =
∑

nν(n) is the total number of monomers in the polymer system and ν(n)

the number of chains in the system with n repeating units. The quantity

μEoS
p,mono =

∑∞
n=0 nν(n)μ

(n),EoS
p,mono∑∞

n=0 nν(n)
(4.11)
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is the weight-averaged monomer chemical potential of the liquid polymer + solute mix-

ture∗. Due to the limiting properties of μEoS
p,mono at high molecular weight, we assume

μEoS
p,mono ≈ μ

(n0),EoS
p,mono with n0 = 1000 as was done throughout the current work.

By substituting the expressions for Glamella and ΩEoS
s in and Equation 4.9 and divid-

ing both sides by the total number of monomers, for a lamella of thickness lc we ob-

tain

μl
p,mono − μl,0

p,mono +M0

[
Δh0

m

(
1− T

T 0
m

)
+ 2

σe

ρclc

]
= 0. (4.12)

Here, μl
p,mono and μl,0

p,mono are the monomer chemical potential in a liquid polymer +

solutes mixture at fixed T, P,μs and in a pure polymer melt at fixed T, P , respec-

tively; both are calculated assuming the polymer monodisperse with n0 = 1000 repeat-

ing units. One should note that additional terms should be considered in Equation 4.12

to account for the entropy of the chain ends on the crystal/amorphous interface,169,171

which lead to an explicit dependence of the melting point on the polymer’s molecular

weight.

By defining

Tm = T 0
m − 2σeT

0
m

ρclcΔh0
m

(4.13)

as the melting point of a lamella of thickness lc (Equation 3.6) we can recast Equation

4.12 as

μl
p,mono − μl,0

p,mono +M0Δh0
m

(
1− T

Tm

)
= 0. (4.14)

In Section 4.4.3, for simplicity we assume that all the crystals have an infinite exten-

sion (Tm = T 0
m); nevertheless, as shown by Equation 4.14 surface free energy effects

can be taken into account approximately by using a realistic melting point Tm(lc) <

T 0
m.

∗Strictly, it is the weight-averaged monomer chemical potential only for homopolymers. Otherwise it
is “monomer-averaged”.
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By rearranging Equation 4.12, it is apparent that at fixed temperature, pressure and so-

lute chemical potentials a lamella with thickness lc is stable only if

lc > l∗c(T, P,μs) =
ρc
2σe

[
Δh0

m

(
1− T

T 0
m

)
+ μl

p,mono − μl,0
p,mono

]
. (4.15)

Therefore, in semi-crystalline samples with broad crystal size distributions we expect a

continuous variation of the overall crystallinity due to irreversible melting (and, poten-

tially, subsequent recrystallisation) of the smaller lamellae at varying temperature and

solute chemical potentials†. However, since the lamellar thickness of melt-crystallised

samples should have a finite lower bound (Section 3.1.2), this phenomenon should occur

only at high temperature (relative to the melting point) and solute chemical potentials

(i.e., high relative humidity in the case of water).

One should note that in the derivation of Equation 4.12 it is assumed that the lamellae

can be decoupled from the surrounding amorphous domains. In reality, we expect that

the stability of the lamellae should be lowered by the presence of constrained amor-

phous chains linked to the crystal. Furthermore, in crystal-mobile polymers such as

PEG192,219,321,322 reversible changes in lamellar thickness occur due to intra-crystalline

chain dynamics, as predicted by our model (Section 3.2.4). A unified description of

the lamellae and the inter-lamellar domains might therefore be necessary to capture the

the interplay between such reversible and irreversible processes close to the polymer’s

melting point or at high relative humidity.

4.4.3. Comparison with experimental sorption isotherms

In Figure 4.20 experimental data for the water solubility in semi-crystalline PEG samples

reported by Thijs et al.295 and by Baird et al.13 are compared to our calculations.

†The effect of pressure is once again neglected due to the high density of the systems under consider-
ation
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(a) (b)

Figure 4.20.: Solubility of water in semi-crystalline PEG (symbols) and the corresponding
SAFT-γ Mie theoretical calculations (continuous curves) using the model outlined in Section
4.4.1. The melting of the sample is predicted to occur sharply at a limiting water pressure
(Pdel) as crystals are assumed to be infinite in extension (cf. Equation 4.12 with Tm = T 0

m).
The vertical dotted line corresponds to the vapour pressure of water at the respective temper-
atures. The dashed curve, on the other hand, is the predicted water solubility in molten PEG.
Comparison of the predictions for: (a) Mn = 3350 g/mol with the data of Baird et al.13 ; and
(b) Mn = 2800 g/mol at 30 °C with the data of Thijs et al.295
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Unfortunately, the crystallinity of the samples was not reported in either study and few

data points are available. For all the calculations the crystallinity ωc of the samples

at 25 °C is therefore assumed to be 90%, a typical value for low molecular weight

semi-crystalline PEG,312,318 in order to reduce the number of adjustable parameters.

As a consequence and due to the inherent limitations in applying our model for semi-

crystalline polymers to PEG (see Section 4.4.1), the value for the fraction of stems pT

for each sample – adjusted to reproduce solubility in the semi-crystalline, low-humidity

region – should not be intended accurate estimates of the proportion of tie-molecules.

All of the sample-specific parameters used for the calculations are reported in Table

4.5.

Table 4.5.: Model parameters for the semi-crystalline PEG samples considered. The crys-
tallinity ωc(25 °C) is an estimate based on the typical crystallinity of low molecular weight
PEG.312,318 Similarly, ψ is set to zero due to the high crystallinity of the samples – see Figure
4.5 for PE. The reported values of pT are adjusted to minimize the root-mean-square differ-
ence between the predicted solubility at low humidity – when the polymer is expected to be
semi-crystalline – and the corresponding experimental data (cf. Figure 4.20)

Ref Sample ωc(25 °C) pT ψ la(25 °C)

Thijs et al.295 PEG-2800 0.9 0.51 0.00 10 nm

Baird et al.13 PEG-3350 0.9 0.38 0.00 10 nm
.

The solubility is estimated using equation 4.8 until deliquescence is found to occur –

marked by a discontinuous increase in solubility – and then with VLE calculations at

higher humidities. The phase transition occurs sharply at a pressure Pdel – corresponding

to a relative humidity of Pdel/Pvap, with Pvap being the vapour pressure of water at

that temperature – which is determined by solving equation 4.12. The discontinuity

in the phase transition is due to our simplified model in which we assume that the

polymer crystals are perfect and infinite in extension (Tm = T 0
m). As pointed out in
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Section 4.4.1, the inclusion of surface free energy effects and realistic lamellar thickness

distributions would lead to a broadening of the melting region and its shifting to lower

humidity, in line with what the experimental data of Baird and coworkers suggests

(Figure 4.20a).

Figure 4.21.: Relative humidity Pdel/Pvap at deliquescence for semi-crystalline PEG as a func-
tion of temperature. The solid curve represents calculations with Equation 4.12 using the
SAFT-γ Mie parameter set (Table 2.1, 2.2, 2.3), together with the enthalpy and temperature
of melting (indicated as the vertical dashed line on the figure) for a perfect PEG crystal of
infinite extension (Table 3.1). The inclusion of surface free energy effects is expected to shift
the curve to lower temperatures (Equation 4.14). Calculations are made for polymer chains
with n0 = 1000 oxyethylene units; nevertheless, the molecular weight is not expected to have
a significant impact on the deliquescence humidity except for short polymer chains.13,295

In Figure 4.21, we show the predicted temperature dependence of the deliquescence

humidity for PEG assuming Tm = T 0
m. As expected,13,295 the deliquescence occurs

at progressively lower relative humidity with increasing temperature due to the reduc-

tion of the factor M0Δh0
m (1− T/Tm) in Equation 4.12. Calculations are only per-

formed for n0 = 1000 repeating units (corresponding to a mean molecular weight of

approximately 44, 000 g/mol) due to the weak dependence of our predictions on the

molecular weight. This is also seen experimentally, as Baird and coworkers13 did not

measure significant differences in the relative humidity at deliquescence of PEG sam-

ples with mean molecular weight higher than about 3000 g/mol (i.e., ∼ 70 oxyethylene
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units).

Concluding remarks

In this Chapter we have applied the formalism developed in Chapter 3 to the description

of a range of thermodynamic properties of crystal-mobile semi-crystalline polymers. In

Section 4.1 we have demonstrated that including the finite extensibility of polymer seg-

ment in the inter-lamellar domains via Langevin statistics is necessary to avoid unphysi-

cal results at low temperatures and correctly capture the increase of Pc upon decreasing

temperature. We have also shown that our model can reproduce both the increase of

lamellar thickness as well as the variation of crystallinity of high-crystallinity samples at

low temperatures, irrespective of the value of pT. Despite lower values of pT appear to

fit experimental data more accurately at high temperatures, irreversible transformations

in the samples are likely to occur in this regime preventing direct comparison between

the model and the data.

In Section 4.2 we have proven that it is necessary to assign a ψ > 0 to all the samples

in order to reproduce solubility near saturation of the external fluid, as swelling of the

inter-lamellar domains is severely restricted (Sections 4.2.2 and 4.2.5). After adjusting

both pT and ψ for each sample to reproduce pure-component sorption isotherms at 25 °C,

our model can accurately reproduce the experimental data of all four compounds studied

(n-hexane, n-heptane, cyclohexane and toluene) at the same time.

In Section 4.3, we have characterised 50 different PE samples using pure-component

sorption isotherms reported in the literature. Here, ψ was estimated as a function of the

measured crystallinity using an empirical correlation, leaving pT as the only adjustable

parameter. The resulting 1-parameter model is capable of reproducing the sorption

isotherms of up to 5 compounds in the same PE sample (Figure 4.14). The average
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value of pT across all samples is approximately 0.3, in accordance with our findings of

Section 4.2 and theoretical bounds.

The model’s predictions of solubility at temperatures non included in the parameter-

isation procedure are in overall good agreement with experimental data. Deviations

between the model’s predictions and experimental data are observed mostly in low-

crystallinity samples and at high pressures, possibly due to irreversible transformations

in the sample or variations in ψ. The model also provides semi-quantitative predictions

of co-solubility effects in PE samples, demonstrating that adding ICAs to pure ethylene

enhances its solubility at fixed partial pressure.

Lastly, in Section 4.4 the model has been applied to the study of moisture uptake in

PEG. We have shown with a simple model that the humidity at which semi-crystalline

PEG undergoes deliquescence can be qualitatively predicted using only the Δh0
m and

T 0
m parameters,which are readily available in the literature. Finite size effect can be

implemented in a straightforward fashion by tuning the melting point Tm in Equation

4.12, possibly leading to quantitative agreement with experimental data. The moisture

uptake is quantitatively predicted with SAFT-γ Mie at humidity higher than Pdel and

qualitative reproduced at lower humidity by adjusting pT.
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5. Conclusions

5.1. Model development

We have presented a new thermodynamic model of semi-crystalline polymers. Each

polymer sample is assumed to be composed of three distinct domains, in line with recent

experimental observations:238 crystalline lamellae; inter-lamellar amorphous domains;

and free amorphous domains. In our model, the free amorphous domains are treated

as a subcooled polymer melt and their mass fraction relative the total polymer mass

is denoted by ψ. The lamellar stacks are treated as a sequence of alternating layers of

crystalline lamellae and inter-lamellar amorphous material with a well-defined boundary

with the lamellae.

A new statistical-thermodynamic model of the inter-lamellar amorphous domains has

been developed Chapter 3. The presence of tie-molecules causes these domains to be (for-

mally) subject to an additional constraint pressure Pc which makes the solubility of any

given solute lower in the inter-lamellar amorphous domains compared to the free amor-

phous domains, and explains the experimental observation that the amorphous solubility

in semi-crystalline polymer samples is lower than the one determined by assuming that

all the amorphous domains are subcooled polymer melts.37–39,44,45

The local-equilibrium hypothesis has been implemented to explain the observed increase

of Pc at low temperatures39,45,251 and the reversible variation of the inter-lamellar dis-

196



5.1. MODEL DEVELOPMENT

tance with temperature155,218,244 observed in crystal-mobile polymers such as PE, isotac-

tic PP and PEO.156,192,217 This allows one to determine the average number of monomers

per tie-molecule or equivalently its fractional extension as a function of temperature,

pressure, and composition of the inter-lamellar amorphous domains.

Furthermore, the Langevin approximation for the end-to-end probability distributions

of the polymer chains in the inter-lamellar domains has been employed in order to ac-

count for their finite extensibility. Previous studies aimed at predicting sorption38–41

and reversible melting198–200 in semi-crystalline polymers almost invariably employed

the Gaussian approximation, which is incompatible with the local-equilibrium hypoth-

esis at low temperatures. Only the earliest studies of reversible melting195,196,198 pro-

vided calculations with the Langevin approximation, although constraint pressure was

neglected.

Calculations with our model also require the use of an equation of state for polymer mix-

tures. In this thesis the SAFT-γ Mie EoS (Chapter 2) has been chosen due to its accurate

representation of both small molecule fluids and polymer mixtures, as well as for its flexi-

ble group-contribution methodology. Nevertheless, the generality of the formalism devel-

oped in Chapter 3 allows straightforward implementation of different equations of state

such as the Sanchez-Lacombe EoS49 or the PC-SAFT EoS.64,65

In addition to any parameter related to the selected EoS (e.g., SAFT-γ Mie here) and

polymer-specific parameters (common across all polymers of any given type), each semi-

crystalline polymer sample is uniquely characterised in the model by specifying four

additional sample-specific parameters which embody its pseudo-equilibrium state: the

crystallinity ω∗
c and inter-lamellar distance l∗a of the pure polymer at a given temperature

and pressure; the mass fraction of free amorphous domains ψ; and the fraction of stems

connected to tie-molecules on the crystal/amorphous interface, pT. Crystallinity can

be determined experimentally with one of the techniques outlined in Section 3.1.6, and
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the average inter-lamellar distance can be measured via small-angle X-ray or neutron

scattering experiments155,193,244,258 – although its value does not influence solubility

calculations significantly.

As discussed in Section 3.2, there is no direct experimental evidence for pT and other

topological features of the inter-lamellar domains due to the challenge posed by resolving

individual polymer strands. pT has therefore been left as an adjustable parameter and

has been optimised to reproduce experimental data. Various strategies for the estimation

of ψ have been attempted in this work: while it has been adjusted in Section 4.2 to re-

produce sorption isotherms, in Section 4.3 it has been estimated based on a correlation of

experimental data to avoid parameter degeneracy. The model is able to accurately repro-

duce sorption isotherms using both parameterisation strategies.

5.2. Pure polymer properties

In Section 4.1 the model’s predictions have been compared to experimental data of pure

semi-crystalline PE. In Section 4.1.1 it has been shown necessary to account for the finite

extensibility of the chain segments (via the Langevin approximation) in order to explain

the increase in Pc at low temperatures; the Gaussian approximation has been found to

yield unphysical values for the fractional extension xT of the equivalent bridges. Our find-

ings suggest that tie-molecules should be very taut at low temperatures in crystal-mobile

polymers, as many authors have argued.7,39,195,196,200,205,216,238,323

We have been able to semi-quantitatively predict the variations of the inter-lamellar dis-

tance and crystallinity of PE samples with high crystallinity at temperatures sufficiently

lower then the melting point T 0
m (Figures 4.2 and 4.3), regardless of the value of pT. De-

viations between the predictions and experimental data are seen at high temperature,

where irreversible transformations in the sample are expected to occur.155,244 Inclusion
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of the temperature dependence of ψ might be necessary to describe the variation of the

crystallinity of the lower-crystallinity samples.

5.3. Estimation of sample-specific parameters using

sorption data

In Section 4.2, the experimental sorption isotherms of pure n-hexane, n-heptane, cyclo-

hexane and toluene in six different PE samples and PP samples have been reproduced

by adjusting pT and ψ simultaneously for each sample. We have found that the exper-

imental curves always lie somewhere between the ψ = 0 and ψ = 1 − ωc theoretical

curves when the low-pressure behaviour is captured (Figure 4.4). As expected,238 the

optimal value of ψ decreases with increasing crystallinity for all samples tested. The

optimal value for pT is around 0.32 for all the PE samples and around 0.54 for the

semi-crystalline PP samples.

The model has also been benchmarked against a large set of experimental sorption data

of hydrocarbons in semi-crystalline PE samples analysed in the literature. In this case,

the fraction of free amorphous mass in each sample was instead estimated from the

measured crystallinity using an empirical correlation238 (Equation 4.5), whereas pT was

adjusted to reproduce the sorption of one or more pure substances in the sample at a

fixed temperature. The average value of pT across all samples (0.297 or about 30%,

including the ones studied in Section 4.2) has been found to conform to theoretical

bounds suggested by various authors,164–167,201,202,206 and suggests that most polymer

chains in the inter-lamellar domains of PE should be tie-molecules (bridges or entangled

loops) – as it is assumed in our model.

The scatter seen in the optimal pT values (Figure 4.11) suggests that factors other than
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crystallinity (such as the polymer’s molecular weight, co-monomer content and crys-

tallisation conditions7,184,190,191) play a role in determining the chain topology in the

inter-lamellar domains. A systematic investigation of these effects is therefore recom-

mended. We note that the values of pT obtained for semi-crystalline PP samples might

be too high to be physically reasonable. As discussed in Section 4.2, we believe that

this overestimation might be due to having neglected un-entangled loops and tails in the

current model.

Overall, we have demonstrated that the a single pair of pT, ψ can provide an accurate

representation of sorption isotherms of multiple compounds in the same PE sample

(see, e.g., Figures 4.5, 4.13 and 4.14), proving that we can effectively decouple the

sample-specific features of each semi-crystalline polymer sample (due to molecular weight

distribution, cooling history etc.) from the inter-molecular interactions between the

polymer and each solute – which are here described accurately by the SAFT-γ Mie

EoS.

5.4. Model predictions

5.4.1. Co-solubility

In Section 4.3.4 co-solubility effects in semi-crystalline PE samples have been predicted

using the model developed using sample-specific parameters optimised to reproduce

pure-component sorption isotherms. We have highlighted qualitative differences in the

sorption behaviour between fluid mixtures of similar components (isobutane + isopen-

tane) and of ethylene with heavier components (isopentane, n-hexane and 1-hexene).

For isobutane + isopentane mixtures, the solubility of either component at constant

partial pressure is enhanced when mixed compared to the pure case. This phenomenon
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is due to the near-ideality of the mixture combined with the proximity of the vapour

pressures of the two components.

Conversely, in mixtures of ethylene + isopentane , ethylene + n-hexane and ethylene + 1-

hexene the presence of the heavier component increases the solubility of ethylene at fixed

partial pressure. This phenomenon plays an important role in PE production17,138,304,324

as the enhanced solubility of ethylene in the growing polymer increases reaction rates

and yield. Our calculations have shown that even moderate amounts of n-hexane (10%

mol) mixed with ethylene might lead to a twofold increase in solubility of ethylene at

partial pressures of around 15 bar (total pressure ≈ 16.7 bar), which is just slightly

above the typical range of operating pressures of fluidized bed reactors used in PE

polymerisation.17,325 We thus encourage experimental investigation at higher pressure,

as the experimental data reported did not show significant variations from the Henry

dilute regime.

5.4.2. Temperature

The assumption that pT and ψ are temperature-independent parameters has been tested

by comparing the model’s predictions with experimental sorption isotherms at temper-

atures different from the ones at which the optimal parameters were found. Overall, the

model has been found to be in very good agreement with experimental data (Figures 4.6

and 4.19). Discrepancies between data and calculations are most evident at pressures

close to saturation of the external fluid, possibly due to irreversible transformations in the

samples or inadequacies of the equation of state. Alternatively, it might be necessary to

consider reversible changes in ψ with temperature or during sorption which could occur

in the presence of mass exchange at the lateral lamellar surfaces.274
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5.5. Moisture uptake in PEG and deliquescence

The model has also been extended to predict moisture uptake in semi-crystalline PEG.

At temperatures close to the melting point, this polymer melts above a specific rela-

tive humidity – a phenomenon known as deliquescence. We have presented a simple

model that predicts the water pressure Pdel at which deliquescence should occur based

on the melting point of the semi-crystalline sample (Equation 4.12). Water solubility

is calculated with the model developed in Section 3.3 for P < Pdel by adjusting the

fraction of tie molecules pT for each sample (cf. Table 4.5) to reproduce the solubility

at low humidity. At higher humidity, solubility can be fully predicted using SAFT-γ

Mie.

The resulting model provides a semi-quantitative prediction of the water solubility in

semi-crystalline PEG at all humidities except close to deliquescence (cf. Figure 4.20)

due to the broadening of the experimental melting range, which is likely caused by the

size distribution of the polymer crystals. The prediction of the temperature dependence

of the humidity at deliquescence (Figure 4.21) are found to be in line with experimental

observations,13,295 suggesting that care must be taken when exposing formulations in-

cluding semi-crystalline PEG at high humidity and temperatures.

One should note that the model was compared only to a handful of moisture uptake

measurements, resulting in a high uncertainty on the reported optimal values of pT.

Furthermore, due to the low melting point of PEG irreversible transformations in the

sample might occur during water sorption. Lastly, we note that for low-molecular

weight PEG samples it may be necessary to account for the effects of confinement

and chain ends on the free energy of the amorphous domains (cf. Sections 4.4.1 and

4.4.3). The reported values of pT should therefore be considered only qualitative esti-

mates.
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5.6. Sorption of liquids

Although in this thesis we have only compared the model’s predictions to sorption

isotherms of gases and super-critical fluids, the same framework can be applied to study-

ing the sorption isotherms of liquids (i.e. P/Pvap > 1) in semi-crystalline polymers. Some

examples of our model’s predictions are shown in Appendix H. It is important to note

that at equilibrium the sorption of liquids can be much higher than that of gases, as seen

by the rapid increase of solubility near saturation in Sections 4.2, 4.3 and 4.4. As high

solute activity in the inter-lamellar amorphous domains might cause irreversible changes

to the lamellar structure258 or even dissolve the sample entirely13 (Section 4.4.3), the

model might not always be applicable in this regime.

5.7. Future work

In the current development the effects of the confinement of the amorphous material be-

tween the lamellae are neglected. Similarly, end-to-end probability distributions for the

bulk polymer melt are used to approximate the probability of finding the ends of given

polymer chain segment on the surfaces of two lamellae. Both of these approximations

can be relaxed in order to make the theory more rigorous. For example, classical density

functional theory281,283,284,326–328 or self-consistent polymer field theory216,262,263,329 can

be used to obtain better approximations of the free energy of a polymer + solute mixture

confined between the lamellae (i.e., A
′
in equation 3.67).

The model should be applied in temperatures ranges over which the amorphous domains

of the polymer are rubbery; if the amorphous domains are glassy, the system might be

trapped in a local minimum of the free energy.30,31,33 Examples of semi-crystalline poly-

mers with glass transition temperatures above room temperature are, e.g., PEEK15,330
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and polyamides such as Kevlar®.331 Out-of-equilibrium theories such as the NET-GP

theory277 might be more suitable to describe such systems. Preliminary work in col-

laboration with Dr. Chris Tighe (Imperial College London, Department of Chemical

Engineering) shows that the implementation of the SAFT-γ Mie EoS with NET-GP can

provide an accurate description of solubility in glassy polymers such as polystyrene (PS)

and PEEK.

Owing to the challenge posed by investigating experimentally the properties of the inter-

lamellar amorphous domains, computer simulation is necessary to test the validity of the

model’s assumptions. We identify a number of unresolved challenges presented by simu-

lating such systems. Firstly, as discussed in Section 3.2, we lack detailed understanding

of the mechanisms that determine the chain topology in the inter-lamellar domains after

crystallisation. Therefore, in order to generate chain configurations in the simulated

system it is necessary to make a priori assumptions on the properties of bridges, loops

etc. which are not guaranteed to accurately represent the topology of the inter-lamellar

domains.

Secondly, to our knowledge the local-equilibrium hypothesis has never been implemented

in computer simulation to date. Though it is certainly possible to introduce mass ex-

change at the crystal/amorphous interface with a Monte Carlo scheme, the chain seg-

ments might become very taut at low temperatures (as seen in Section 4.1), preventing

an effective exploration of the free energy surface. Topology-altering Monte Carlo moves

such as the ones used in the studies of Rutledge and coworkers182,208–215 might help equi-

librate the system, albeit at the cost of losing the ability to directly control the chain

topology.

As shown in Section 4.2.5, our model predicts the variation of microstructural proper-

ties of semi-crystalline polymers such as the inter-lamellar distance during the sorption

process, allowing direct comparison with in-situ nano-swelling measurements.193,258,294
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More experiments of this kind are needed to further test the prediction of our model

for the inter-lamellar domains. It would be particularly insightful to measure both the

swelling of the inter-lamellar domains and the reversible melting of lamellae at various

temperatures in the same polymer sample to test the ability of the model to provide

an accurate description of both properties with a single value of pT. Furthermore,

due to the central role of the free amorphous domains in determining the sorption be-

haviour in low-crystallinity samples, a systematic experimental study investigating the

changes of ψ with temperature or during swelling using low-field 1H NMR238 is war-

ranted.

5.8. Publications and conference contributions

Publications

Published contributions

• Valsecchi M., Ramadani J., Williams D., Galindo A., Jackson G. “ Influence of tie-

molecules and microstructure on the fluid solubility in semi-crystalline polymers”.

The Journal of Physical Chemistry: Part B, 2022, 126, 44, 9059–9088

Submitted contributions

• Chiapasco M., Valsecchi M., Hill G., Wallis C., Porter A. E. “Spatially resolved

effects of photo-oxidation of polypropylene on its microstructure”. Global Chal-

lenges. Submitted, (2023)
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Planned contributions

• Valsecchi M., Galindo A., Jackson J. “Prediction of co-solubility effects in semi-

crystalline polyethylene: the role of the fluid composition and sample microstruc-

ture”. Macromolecules. In preparation (2023)

• Valsecchi M., Galindo A., Jackson J. “Modelling the thermodynamic properties

of the mixture of water and polyethylene glycol (PEG) with the SAFT-γ Mie

group-contribution approach”. Fluid Phase Equilibria. In preparation (2023)

Conference contributions

• Oral Contribution: Valsecchi M., Galindo A., Jackson J., Ramadani J., Williams

D.,“The influence of tie-molecules and microstructure on the fluid solubility in

semi-crystalline polymers”, 2022 AIChE Annual Meeting, November 2022, Phoenix,

AZ, USA.

• Oral & Poster Contribution: Valsecchi M., Galindo A., Jackson J., Ramadani

J., Williams D.,“The influence of tie-molecules and microstructure on the fluid

solubility sin semi-crystalline polymers”, The 27th Thermodynamics Conference,

September 2022, Bath, UK.

• Oral Contribution: Valsecchi M., Galindo A., Jackson J., Ramadani J., Williams

D.,“The influence of tie-molecules and microstructure on the fluid solubility in

semi-crystalline polymers”, 32nd European Symposium on Applied Thermodynam-

ics, July 2022, Graz, Austria.

• Poster Contribution: Valsecchi M., Galindo A., Jackson J. “Modelling the ther-

modynamic properties of aqueous mixtures of poly(ethylene glycol) through the
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SAFT-γ Mie equation of state”, 31st European Symposium on Applied Thermo-

dynamics, July 2021, Paris (online), France.
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Die Makromolekulare Chemie, vol. 99, pp. 160–174, 1966.

[149] P. J. P. Arlie, P. Spegt, and A. Skoulios, “Etude de la cristallisation des polymères.

II. structure lamellaire et repliement des châınes du polyoxyéthylène,” Die Makro-
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A. SAFT Combining Rules

In SAFT the segment size and hard-sphere diameters follow the Lorentz (arithmetic

mean) combining rule, i.e.

σkl =
σkk + σll

2

dkl =
dkk + dll

2

. (A.1)

If we postulate a geometric combining rule for the (unmodified) van der Waals constants

this assumption determines66 the form of the combining rule for the unlike interaction

energies εkl and the unlike repulsive exponents λr
kl:

εkl =

√
σ3
kkσ

3
ll

σ3
kl

√
εkkεll

λr
kl = 3 +

√
(λr

kk − 3) (λr
ll − 3)

. (A.2)

Last, the combining rules for the association parameters (which weren’t used in our

work) are given by

εHB
kl =

√
εkkεll

KHB
kl,ab =

⎛
⎝ 3

√
KHB

kk,aa +
3

√
KHB

ll,bb

2

⎞
⎠

3
(A.3)
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B. Solubility Reduction Under

Constraint Pressure

We are interested the variation of the equilibrium solubility as Pc is increased at con-

stant T, P,μs. By inversion of the relationship between between Sa and μs defined by

Equation 3.35∗ and using the implicit function theorem we obtain in matrix representa-

tion (
∂Sa

∂Pc

)
T,P,μs

= −
[(

∂μs

∂Sa

)
T,P,Pc

]−1(
∂μs

∂Pc

)
T,P,Sa

. (B.1)

The first term on the right hand side is the inverse of the jacobian of the transformation

Sa → μs in Equation 3.35, given by

[(
∂μs

∂Sa

)
T,P,Pc

]−1

=

⎡
⎢⎢⎢⎣

∂μEoS
s,1

∂Sa,1
(T, P + Pc,Sa) . . .

∂μEoS
s,1

∂Sa,NC

(T, P + Pc,Sa)
...

. . .
...

∂μEoS
s,NC

∂Sa,1
(T, P + Pc,Sa) . . .

∂μEoS
s,NC

∂Sa,NC

(T, P + Pc,Sa)

⎤
⎥⎥⎥⎦
−1

. (B.2)

∗This can always be done in a neighborhood of each (Sa,μs) solution of equation 3.35 at fixed T, P as
long as the determinant of the Jacobian of the transformation Sa ↔ μs,i and the derivatives with
respect to constraint pressure are defined and different from zero.
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This matrix multiplies the column vector

(
∂μs

∂Pc

)
T,P,Sa

=

⎛
⎜⎜⎜⎝

∂μEoS
s,1

∂P
(T, P + Pc,Sa)

...
∂μEoS

s,NC

∂P
(T, P + Pc,Sa)

⎞
⎟⎟⎟⎠ (B.3)

to yield the vector of derivatives on the left-hand side of B.1. Since μEoS
s is the vec-

tor of solute chemical potentials of an equilibrium polymer + solutes mixture at tem-

perature T , pressure P + Pc and composition Sa, by using a Maxwell relation and

denoting with ns the (vector of) moles of solutes in the amorphous domains we find

that

∂μEoS
s,i

∂P
(T, P + Pc,Sa) =

∂V EoS

∂ns,i

(T, P + Pc,Sa) = V̄ EoS
s,i (T, P + Pc,Sa) , (B.4)

where V̄ EoS
s,i is the partial molar volume of solute i in the polymer + solutes mixtures

and V EoS the equilibrium volume of the mixture calculated through the equation of state

(cf. Equation 3.33).

In the infinite dilution (Henry) regime, we expect

μEoS
s,i (T, P + Pc,Sa) ∼ μH,EoS

s,i (T, P + Pc) +RT lnSa,i (B.5)

asymptotically as Sa → 0. Here μH,EoS
s,i is the Henry chemical potentials of solute i in

the polymer calculated using the fluid EoS at infinite dilution†. In this limit the matrix

in Equation B.2 is diagonal as for i = j we obtain

(
∂μEoS

s,i

∂Sa,i

)
(T, P + Pc,Sa) ∼ RT/Sa,i, (B.6)

†To be precise, this a the definition of the Henry chemical potential which depends on the fact that
Sa,i was chosen as a variable instead of, e.g., the number of solute molecules ns,i
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whereas the i �= j derivatives are zero. Combining Equations B.1, B.4 and B.5 yields

(
∂ lnSa,i

∂Pc

)
T,P,μs

∼ − V̄ EoS
s,i

RT
(B.7)

asymptotically as Sa → 0. In particular, in the Henry regime (which is valid for low to

moderate pressures – see Chapter 4) the equilibrium solubility decreases at increasing

constraint pressure since the partial molar volume is generally positive for molecules of

non-ionic mixtures‡.

‡To be precise, mixtures of nonionic species near the critical point can display negative partial molar
volumes – see for example the ethylene + 1-hexene mixture giving rise to unique sorption isotherms
(Figure 4.17)
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C. Monomer Chemical Potential

In order to simplify derivatives with respect to the number of chain monomers, in this

work we exploit the intuitive notion that for long polymer chains certain properties of

a polymer + solute mixture should only depend on temperature, pressure and the mass

fraction of solute, regardless of the molecular weight n of the polymer. For example, the

polymer chemical potential per monomer – i.e., the “monomer chemical potential” – in

a monodisperse polymer mixture is here defined as follows:

μ(n),EoS
p,mono :=

1

n
μ(n),EoS
p . (C.1)

In this equation n is the number of monomers comprising the polymer chains and μ
(n),EoS
p

is the “standard” chemical potential of the polymer in the mixture (cf. Section 2.3).

For polydisperse mixtures, the monomer chemical potential can be calculated for each

distinct polymer molecule by dividing its chemical potential in the mixture by its number

of monomers.

As anticipated, μ
(n),EoS
p,mono is independent of n as n → ∞ at fixed temperature, pressure

and mass fraction of solute. In Figure C.1 we show that at fixed temperature and

pressure, using the SAFT-γ Mie model of Papaioannou and coworkers67 for a mixture

of n-hexane and polyethylene the dependence of μ
(n),EoS
p /n on the weight fraction ωs

of n-heptane is not significantly influenced by the number of polymer repeat units for

n > 100.
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Figure C.1.: The dependence of μ
(n)
p /n in a mixture of n-heptane and polyethylene (see Equa-

tion C.1) on the mass fraction ωs of n-heptane as a function of the number n of methy-
lene monomers in the polymer, as calculated using the SAFT-γ Mie model of Papaioannou

and co-workers67 at 300K and 1 bar. We note that μ
(n)
p /n approaches the continuous curve

(n = 100, 000) very rapidly for n > 100.
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D. Mass Balances in the

Inter-Lamellar Domains

The inter-lamellar amorphous polymer mass mIL
p can in general be divided into two con-

tributions: the mass of elastically ineffective molecules (tails and un-entangled loops)

mIL
p,NT; and the mass of tie-molecules mIL

p,T. In our model, mIL
p,T can be expressed

as

mIL
p,T = M0AΣρA,TnT, (D.1)

where M0 is the molar mass of the monomer characterizing the polymer. Since xT =

Ree,T/Rmax and Rmax = NbnTl cos(θB/2) = NbnTlmono due to Equation 3.72, the average

number of bridge monomers nT satisfies nT = Ree,T/(xTlmonoNb). By substituting for

nT, using Ree,T = la/ cos θT and ρA,T = pTρA (neglecting chain-tilt, i.e. γ = 0) we can

write

mIL
p,T =

laM0AΣρApT
xT cos θTlmonoNb

. (D.2)

If the polymer segments in the lamellae are chain-extended (as in PE), ρ∗c = M0ρA/(Nblmono)

is simply the mass density ρc of the lamellae. By combining this expression with Equa-

tion 3.97, using V = AΣla and mIL
p = mIL

p,NT + mIL
p,T the following expression is ob-

tained:

1 =
mIL

p,NT

mIL
p

+
pTρ

∗
c

ρILp,effxT cos θT
. (D.3)
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After defining fT = 1 − (mIL
p,NT/m

IL
p ) as the fraction of elastically effective polymer

mass in the inter-lamellar domains (i.e., the free parameter in the Michaels and Haus-

slein theory, not to be confused with the average force fee,T), Equation D.3 implies

that

fT =
pTρ

∗
c

ρILp,effxT cos θT
→ xT cos θT =

pTρ
∗
c

fTρILp,eff
, (D.4)

or equivalently

la(T, P,ns, nT; νT, δT) =
M0ρA,TnT

fTρILp,eff
. (D.5)
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E. Loops and Entanglements

In this Appendix the model for the inter-lamellar domains developed in Section 3.3.3 is

extended to include entangled and un-entangled loops.

E.1. Free energy

Let us assume that the inter-lamellar domains are composed of νBR bridges, νL un-

entangled loops and νEL entangled loops. The free energy difference due to formation of

bridges has been derived in Section 3.3.3 (Equation 3.69).

The contribution of un-entangled loops (ΔAc
L) can be obtained in the same way as that

of the bridges:

ΔAc
L ≈ −kBT

(
νL ln (pee (Ree,L)Δτ) + νL ln

(
Δτ

V

))
, (E.1)

where Ree,L is their average end-to-end distance and terms that are only temperature

dependent have here been neglected.

The other term that has to be evaluated is the Helmholtz free energy of formation

of the entangled loops in the inter-lamellar domains, ΔAc
EL. Following Mansfield199

and Albrecht and Strobl,200 we assume that the entanglements between different loops
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E.1. FREE ENERGY

can be treated as network junctions that on average subdivide each entangled loop in m

entangled segments (ES). With this approximation, ΔAc
EL is the free energy of formation

of a tetrafunctional network which Flory259 gave as:

ΔAc
EL ≈ −kBT

(
νES ln

(
pee (Ree,ES)Δτ

′
)
+

3νES
2

ln

(
Δτ

′

V

))
, (E.2)

In Equation E.2, Δτ
′
is a hypothetical volume in which the ends of the entangled seg-

ments are confined assuming they maintain a point of contact. Furthermore, νES = mνEL

is the number of entangled segments and Ree,ES their average end-to-end distance. The

factor νES ln
(
pee (Ree,ES)Δτ

′)
in Equation E.2 is not present in Flory’s original work

since it was assumed that the average end-to-end distance of the chain segments in the

melt is unchanged upon cross-linking.

This expression is derived for chemically cross-linked networks, and thus neglects the fact

that the junctions in the entangled network are actually slip-links200 that can change the

length of the corresponding entangled segments due to their motion. Using a mean-field

argument and a simplified expression, Albrecht and Strobl200 proposed that a combina-

torial term should be added to the network term in order to account for the number

of ways the junctions in the network can be arranged; if nES is the average number of

monomers per entangled segment, they obtained an entropic contribution in the form

ΔS ≈ mkB lnnES + C where C is a function of the number of entangled segments per

loop (m). Here, these considerations are neglected: if the polymer is crystal-fixed, m or

nES should not change and thus the term of Albrecht and Strobl is a constant in the free

energy of the inter-lamellar amorphous domains. If the polymer is crystal-mobile, on

the other hand, the addition of such a term does not impact the local equilibrium at low

temperatures significantly, as is briefly discussed in Section 3.3.3.

258



E.2. CONSTRAINT PRESSURE

E.2. Constraint pressure

With the addition of the free energy of formation of loops, the constraint pressure is

obtained like in Section 3.3.3:

Pc =

(
∂ΔAc

∂V

)
T,ns,nT,νT,Γc

=
∑

i∈{BR,L,ES}

(
νi
∂Ree,i

∂V

)
Γc

fee,i +
kBT

(
νBR + νL +

3
2
νES

)
V

= Pel + Ploc

. (E.3)

Here, the subscript “BR” indicates the bridges and fee,i = −kBT (∂ ln pee/∂Ree,i)T,ns,nT,νT
.

The partial derivative for the bridge terms has been performed in Section 3.92. For un-

entangled loops, on the other hand, (∂Ree,L/∂V )Γc
= 0.

In order to obtain an expression for the elastic contribution of the entangled loops,

we assume for simplicity that all polymer segments between entanglements are identi-

cal and that the entanglement points move affinely with the inter-lamellar mass upon

swelling.199,200 By calling δES the projection of the end-to-end vector of the entangled

segments on the lamellar surface and θES the angle with the normal to the lamellar

surface, the following holds:

cos θES ≈ (la/m)/
√
(la/m)2 + δ2ES(

∂Ree,ES

∂V

)
Γc

=
1

AΣ

(
∂Ree,ES

∂la

)
AΣ

=
1

mAΣ

cos θES

. (E.4)

259



E.2. CONSTRAINT PRESSURE

Therefore, entangled loops gives rise to an additional term to Pel:

Pel = ρA,BRfee,BR cos θBR + ρA,ELfee,ES cos θES. (E.5)

Here ρA,BR and ρA,EL are the surface density of stems connected to bridges and en-

tangled loops, respectively (defined in a similar way as the surface densities of equa-

tion 3.10). Note that the surface density of tie-molecules ρA,T is given by ρA,T =

ρA,BR + ρA,EL.

Due to the symmetry between the contribution of bridges and entangled loops to Pel, it

is apparent that a system made of bridges and entangled loops with total surface density

ρA,T can be functionally represented by an equivalent system made only of bridges with

surface density ρA,T.

Similarly, inclusion of loops in the theory gives rise to additional “ideal gas” terms to

Ploc (Equation E.3):

Ploc ≈
RT

(
νBR + νL +

3
2
νES

)
V

=
RT

la
ρA,BR+L+EL +

RTνEL
V

(
3m

2
− 1

)
. (E.6)

Now, (m − 1)νEL/2 is the total number of entanglements (or “knots”) νe, as each

entanglement is shared among two entangled loops and there are m − 1 entangle-

ments per entangled loop (since m is the number of entangled segments per entangled

loop). Hence, Ploc can be expressed in terms of the entanglement density ρe = νe/V

as

Ploc =
RT

la

(
ρA,BR+L+EL +

1

2
ρA,EL

)
+ 3RTρe. (E.7)

Since most stems on the lamellar surface are expected to perform a tight-fold back

into the lamella,160,201,265
(
ρA,BR+L+EL +

1
2
ρA,EL

)
should be smaller than ρA, the maxi-

mum amount of stems per unit surface on the lamellae (cf. Section 3.1.3). In PE the
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E.2. CONSTRAINT PRESSURE

maximum value of ρA can be inferred from the crystalline structure293 corresponding

to ∼ 5.5 stems/nm2; on the other hand, the typical value of inter-lamellar distance is

la ∼ 10 nm.155 Inserting these values into Equation E.7 yields at room temperature

RT
(
ρA,BR+L+EL +

1
2
ρA,EL

)
/la < 2.5 MPa.

Furthermore, if ρmono is the monomer density in the amorphous domains, the entan-

glement density satisfies ρe ≤ ρmono/(2nES), with the equality holding if there are only

entangled loops in the inter-lamellar domains. Since the density of the amorphous do-

mains of PE168 is ∼ 850 kg m-3 and the molecular weight of the methylene monomer is

∼ 14 g mol-1, ρPEmono ≈ 6 × 104 mol m-3. Additionally, although different estimates for

nES have suggested,230 when nES ≈ 50 is considered the upper bound 3RTρe ≤ 4.5 MPa

is obtained at room temperature. Consequently, Ploc < 7 MPa at room temperature, al-

though its actual value is expected to be significantly smaller than the upper bound due

to the nature of the approximations used to obtain this estimate.

Furthermore, we note that these results were obtained by assuming a chemically cross-

linked network. Ploc should be reduced even further by treating the network junctions

as slip-links (as done by Albrecht and Strobl200). Since the values of Pc found indirectly

in the literature44,45 are of the order of tens of MPa, we conclude that in our model

Pel >> Ploc and the approximation Ploc ≈ νTkBT/V – which neglects the contribution

of loops and substitutes every entangled loop with a bridge – should thus not affect the

model significantly.
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F. Derivatives of pee in the Langevin

Approximation

In this Section the derivative of the end-to-end distribution in the Langevin approxima-

tion, (
∂ ln pee
∂nT

)
V

=

(
∂ ln pFJee
∂nT

)
V

, (F.1)

appearing in Equation 3.104 is computed. In the following the subscript “T” of the tie-

molecules will be dropped for clarity. Taking the derivative at constant volume and δT

translates in a constant end-to-end distance due to Equation 3.61:

(
∂ ln pFJee
∂n

)
Ree

, (F.2)

with pFJee given by Equation 3.74. Since pFJee = pFJee (Ree, N ; b), with N being the number

of equivalent Khun monomers, we have

(
∂ ln pFJee
∂n

)
Ree

=
dN

dn

(
∂ ln pFJee
∂N

)
Ree

=
1

η

(
∂ ln pFJee
∂N

)
Ree

. (F.3)

Here η = n/N = C∞/ (Nb cos
2((π − θB)/2)) (Equation 3.73).
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Let’s thus concentrate on the derivative with respect to N . Using the properties of

logarithms and Equation 3.74, we have

(
∂ ln pFJee
∂N

)
Ree

=
d lnC

dN
− ∂

∂N

(
N

∫ Ree/Nb

0

L−1(x)dx

)
. (F.4)

We will first look at the second term on the right hand side of this equation. By using

the fundamental theorem of calculus, the properties of derivatives and remembering that

the derivative is taken at constant Ree we obtain

∂

∂N

(
N

∫ Ree
Nb

0

L−1(x)dx

)
=

∫ Ree
Nb

0

L−1(x)dx− Ree

Nb
L−1

(
Ree

Nb

)
. (F.5)

Let us define the fractional extension x = Ree/Nb and change the dummy integration

variable to x′ to avoid confusion. Now, if f(y) is a continuous invertible function on an

interval [a, b], f−1(y) is its inverse and F (y) its primitive, we have

∫
f−1(y)dy = yf−1(y)− F

(
f−1(y)

)
+ c, (F.6)

where c is the integration constant. If we apply this lemma to equation F.5 and note

that the primitive F (y) of the Langevin function is

F (y) = ln

(
sinh y

y

)
, (F.7)

we obtain

∂

∂N

(
N

∫ Ree
Nb

0

L−1(x)dx

)
=

∫ x

0

L−1(x′)dx′ − xL−1 (x)

= − ln

(
sinhL−1(x)

L−1(x)

)
.

(F.8)
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Let’s now evaluate the derivative d lnC/dN of Equation F.4. Since C(N) is the normal-

ization constant of pFJee , by performing a change of variables we can rewrite C−1(N) as

follows:

C−1(N) =

∫ Rmax

0

4πR2e−N
∫ R/Nb
0 L−1(x)dxdR

= 4π (Nb)3
∫ 1

0

x2e−N
∫ x
0 L−1(x′)dx′

dx

= 4π (Nb)3 I(N)

. (F.9)

Differentiating, we obtain
d lnC

dN
= − 3

N
− d ln I(N)

dN
. (F.10)

Let us then define the function g(x) as

g(x) =

∫ x

0

L−1(x′)dx′. (F.11)

Its MacLaurin series is given by

g(x) =
3

2
x2 +

9

20
x4 +

99

350
x6 +O(x8)

= c2x
2 + c4x

4 + c6x
6 +O(x8)

. (F.12)

The term of lowest order in the expansion, 3x2/2, is the only one accounted for in the

Gaussian approximation. Now we use the properties of exponentials to perform the

factorization

e−N
∫ x
0 L−1(x′)dx′

= e−Ng(x) = e−c2Nx2

e−N(c4x4+c6x6+c8x8+O(x10)). (F.13)

By using the Maclaurin series of the exponential function,

ey = 1 + y +
1

2
y2 +

1

3!
y3 + · · · , (F.14)
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we obtain

e−N(c4x4+c6x6+c8x8+O(x10)) = 1−Nc4x
4 −Nc6x

6 +

(
N2c24
2

−Nc8

)
x8 + · · · (F.15)

Here we have grouped the terms with the same power in x. In order to obtain the term

of power n, the procedure is as follows:

• List all the possible ways in which you can obtain the number n by summing the

degrees of the powers in x appearing in the MacLaurin expansion of g(x)−c2x
2. For

example, since the Maclaurin expansion of g(x) − c2x
2 features only even powers

greater or equal than 4, we can obtain the number n = 12 in four different ways:

12 = 4 + 4 + 4, 12 = 8 + 4, 12 = 6 + 6, 12 = 12.

• For each possible decomposition, write down a term obtained by multiplying fac-

tors ci with multiplicity given by the decomposition. For example, write c4 ·c4 ·c4 =
c34 for 12 = 4 + 4 + 4 and c4 · c8 for 12 = 8 + 4

• Multiply each term by (−N) to the power given by the total number of terms in

the decomposition. For example, we multiply c34 by (−N)3 and c4c8 by (−N)2

• Divide each term by a combinatorial factor obtained as follows: for each different

ci appearing in the term, multiply the factor by ki!, where ki is the multiplicity of

that ci factor in the term. For example, we divide the term c34c
2
6 appearing in the

decomposition of n = 24 by (3! · 2!) = 12

• Sum all the terms

Now, since I(N)is given by

I(N) =

∫ 1

0

x2e−Ng(x)dx, (F.16)
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using the expansion just obtained we have

I(N) =

∫ 1

0

x2e−c2Nx2

e−N(c4x4+c6x6+c8x8+··· )dx

=

∫ 1

0

x2

(
1−Nc4x

4 −Nc6x
6 +

(
N2c24
2

−Nc8

)
x8 + · · ·

)
e−c2Nx2

dx

=

∫ 1

0

(
x2 −Nc4x

6 −Nc6x
8 +

(
N2c24
2

−Nc8

)
x10 + · · ·

)
e−c2Nx2

dx

=

∫ 1

0

x2e−c2Nx2

dx−Nc4

∫ 1

0

x6e−c2Nx2

dx−Nc6

∫ 1

0

x8e−c2Nx2

dx+ · · ·

. (F.17)

All the integrals appearing in the final line of the equation above can be related as follows.

Using Leibniz integral rule to differentiate under the integral and calling α = c2N , we

have

Qk(α) =

∫ 1

0

x2ke−αx2

dx = (−1)k
∂k

∂αk

∫ 1

0

e−αx2

dx = (−1)k
∂k

∂αk
Q0(α). (F.18)

The integralQ0(α) can be further split into the sum of two integrals:

Q0(α) =

∫ +∞

0

e−αx2

dx−
∫ +∞

1

e−αx2

dx

= A0(α) +B0(α)

. (F.19)

The second integral in the equation above is related to the error function and it can be

shown that both the integral and its derivatives in α decay exponentially as α → +∞.

Furthermore, exploiting the parity of e−αx2
we get

A0(α) =

∫ +∞

0

e−αx2

dx =
1

2

(π
α

) 1
2
. (F.20)
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Combining the equations above, we then have

Qk(α) = (−1)k
∂k

∂αk
Q0(α)

=
(2k − 1)!!

2k+1
π

1
2α− 1

2
−k + (−1)k

∂k

∂αk

(
−
∫ +∞

1

e−αx2

dx

)

=
(2k − 1)!!

2k+1
π

1
2 (c2N)−

1
2
−k + Bk(c2N)

= A0(c2N)
(2k − 1)!!

3k
N−k + Bk(c2N)

= A0(c2N)
(
akN

−k + B̃k(c2N)
)

. (F.21)

Here we have defined B̃k(α) = (−1)k
(

∂k

∂αkB0(α)
)
/A0(α), ak = (2k−1)!!/3k and we have

used the fact that c2 = 3/2. The two exclamation marks represent the double factorial

(e.g., 5!! = 5 · 3 · 1).

We can now use this expression to evaluate the series in Equation F.17. Since some

terms are multiplied by powers of N , we need a little bit of care to group the terms

according to their power in N . After performing this operation and stopping at third

order in the expansion we have

I(N) = A0(c2N)

(
a1N

−1 − c4a3N
−2 +

(
c24a5
2

− c6a4

)
N−3 + o(N−3)

)
. (F.22)

Here we have used the little-o notation o(N−3) to indicate a term that is vanishingly small

with respect to N−3 as N → +∞. Notice that this quantity includes all the B̃k(c2N)

terms generated by each integral in the series; all these terms decay exponentially as

N → +∞, and will thus always be included in the little-o regardless of the order at

which we decide to stop the expansion.

Substituting the values for ck, ak, writing A0(c2N) explicitly and regrouping we finally
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have

I(N) =
( π

54

) 1
2
N− 3

2

(
1− 3

4
N−1 +

13

160
N−2 + o(N−2)

)
. (F.23)

Since we have to calculate d ln I/dN = I ′(N)/I(N), we should perform the same opera-

tion for I ′(N) in order to find its asymptotic expansion in powers of N−1. Here we note

that we can obtain the expression for I ′(N) by formally differentiating the asymptotic

expansion of Equation F.23 with respect to N :

I ′(N) =
dI

dN

=
( π

54

) 1
2
N− 3

2

(
−3

2
N−1 +

15

8
N−2 − 91

320
N−3 + o(N−3)

). (F.24)

We finally obtain

d ln I

dN
=

I ′(N)

I(N)

=
−3

2
N−1 + 15

8
N−2 − 91

320
N−3 + o(N−3)

1− 3
4
N−1 + 13

160
N−2 + o(N−2)

= − 3

2N
+

3

4N2
+

2

5N3
+ o(N−3)

. (F.25)

Combining this equation with Equations F.4, F.8 and F.10 we finally obtain Equation

3.107:

(
∂ ln pFJee
∂n

)
V

=
1

η

(
ln

(
sinhL−1(x)

L−1(x)

)
− 3

2N
− 3

4N2
− 2

5N3
+ o

(
1

N3

))
. (F.26)

Notice that the expansion in Equation F.25 doesn’t converge to the actual value of

d ln I/dN for any value of N , as we have placed all the terms that are exponentially

decaying in N (i.e., the B̃k(c2N) terms) in the little-o symbol. The series must then be

intended as an asymptotic series in N−1 for d ln I/dN :

d ln I

dN
+

3

2N
− 3

4N2
− 2

5N3
= o

(
1

N3

)
as N → ∞. (F.27)
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Higher order expansions are thus not guaranteed to reduce the error in the approximation

for d ln I/dN if N is small. The procedure can be generalized to any functional form

for the end-to-end probability distribution, provided that the function multiplying N in

Equation 3.74 is only a function of the fractional extension x and is analytic in x around

x = 0.

269



G. Swelling

The total volume of a semi-crystalline sample is the sum of the volume of the crystalline

lamellae, the free and inter-lamellar amorphous domains:

V = Vc + V F + V IL. (G.1)

The volume of the inter-lamellar amorphous domains and of the free amorphous do-

mains can be obtained using the properties of the partial specific volume (cf. Section

3.3.3):

V IL = v̄ILp mIL
p +

Nc∑
i=1

v̄ILs,im
IL
s,i

V F = v̄Fpm
F
p +

Nc∑
i=1

v̄Fs,im
F
s,i

. (G.2)

At each temperature T and total pressure P , the partial specific volumes in the inter-

lamellar amorphous domains are calculated using the equation of state at T and P +

Pc for a polymer-solute mixture at composition SIL
a (T, P ) . On the other hand, the

partial specific volumes in the free amorphous domains are calculated at T , P and

SF
a = SEoS

a (T, P ) (Equation 3.22). Since the crystallites are assumed to be impermeable

to the solute, the volume of the crystalline polymer can be expressed as Vc = mc
p/ρc. By

factoring out mtot
p (the total polymer mass) in Equation G.1 and using Equation G.2,
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the following expression is obtained:

V/mtot
p =

mc
p

ρcmtot
p

+
mF

p

ρFp,effm
tot
p

+
mIL

p

ρILp,effm
tot
p

=
ωc

ρc
+

ψ

ρFp,eff
+

1− ψ − ωc

ρILp,eff

. (G.3)

Here, the effective polymer density in the free amorphous domains ρFp,eff is given by

ρFp,eff =

(
v̄Fp +

Nc∑
i=1

v̄Fs,iS
F
a,i

)−1

, (G.4)

mirroring the definition of ρILp,eff in Equation 3.97. Since the total polymer mass mtot
p

does not change, by taking V0 and ω0
c as the volume and the crystallinity, respectively,

of the pure semi-crystalline polymer (ns = 0 in both amorphous domains), we obtain

Equation 4.2.
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H. Solubility of Liquids in

Semi-crystalline PE

In the current work only sorption isotherms of gases and supercritical fluids have been

shown. As seen throughout this thesis, the solubility of most hydrocarbons in PE, PP

and of water in PEG diverges near condensation of the external fluid. This phenomenon

is due to the full miscibility of the polymer and the external fluid at pressures higher than

the saturation (dew) point. In particular, these divergences occur due to the presence

of free amorphous domains in the sample, as pointed out in Section 4.2.2. A divergent

solubility implies that the osmotic free energy of the molten polymer + solute mixture at

equilibrium must become smaller than that of the crystals (cf. Section 4.4.3), inevitably

leading to deliquescence.

Nevertheless, deliquescence does not necessarily occur in the presence of fluids that are

near-critical or not fully miscible with the polymer. For example, in Figure H.1 we show

the predicted solubility of ethylene and water at 20, 30, 40 and 50 °C in the EH1 sample

analysed by Moebus and Greenalgh.255 The SAFT-γ Mie models for all the components

are reported in Tables 2.1, 2.2 and 2.3, whereas the sample-specific parameters of the

EH1 sample can be found in Table 4.3.3.

Since the critical temperature of ethylene predicted with SAFT-γ Mie is T eth
c = 23.7

°C, we observe a transition from a subcritical to supercritical regime in the tempera-
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(a) Ethylene (b) Water

Figure H.1.: Predicted solubility of water and ethylene at 20, 30, 40 and 50 °C in the EH1
semi-crystalline PE sample analysed by Moebus and Greenalgh.255 Calculations are performed
with the model developed in Section 3.3 using the PE, water and ethylene SAFT-γ Mie models
reported in Tables 2.1, 2.2 and 2.3 together with the sample-specific parameters reported in
Table 4.4. Vertical dotted lines, if present, represent the vapour pressure of the solutes at
the corresponding temperature. Note that the critical temperature of ethylene predicted with
SAFT-γ Mie is T eth

c = 23.7 °C.

ture range considered. While solubility at fixed pressure is higher in the low-pressure

regime at low temperatures, the contrary is true at pressures higher than approximatly

15 MPa due to the lower compressibility of liquid ethylene compared to supercriti-

cal ethylene. Conversely, the critical temperature of water predicted with SAFT-γ

Mie is Twater
c = 400.8 °C, meaning that the fluid remains subcritical at all tempera-

tures considered. Due to the immiscibility of water and PE, solubility is extremely

low. After saturation, solubility does not increase with pressure significantly due to

the high density and low compressibility of liquid water at the corresponding tempera-

tures.
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List of Symbols

a Subscript indicating the amorphous domains
a Reduced Helmholtz free energy (Section 2.2)
acs,i Excess activity of a solute in a swollen polymer network with respect to the

unconstrained polymer + solutes mixture
A Helmholtz free energy
A(n) Helmholtz free energy of a system in which polymer chains have nmonomers

Ã Helmholtz free energy per polymer chain
A

′
Helmholtz free energy of a confined fluid

AΣ Area of one of the two major surfaces of a lamella (i.e., the fold surfaces)
ΔAc Helmholtz free energy difference between a constrained and unconstrained

polymer mixture (Equation 3.37)
b Khun length of a polymer
BR Subscript indicating bridges (Appendix E)
Bn,l Incomplete Bell polynomial of degree n, l
c Subscript/superscript indicating the crystalline domains or the constraints

acting on the amorphous domains
Ckl Numerical factor appearing in Mie potentials
C∞ Flory characteristic ratio
dkl Barker and Henderson unlike hard-sphere diameter between group k and l
EL Subscript indicating entangled loops
ES Subscript indicating polymer segments between entanglements
EoS Superscript indicating a quantity calculated with an equation of state for

bulk fluids
f Superscript indicating the external fluid phase
F Superscript indicating free amorphous domains
fee Thermodynamic force acting on the ends of a polymer chain
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fN Functionality of a polymer network (i.e., number of chains meeting at junc-
tions

fobj Objective function
fT Mass fraction of tie-molecules (bridges + entangled loops)
gkl(r) Radial distribution function for the pair of groups k and l
Δgcrys Specific Gibbs free energy of crystallisation of an extended-chain crystal
G,G∗ Gibbs free energy. G is the minimum of G∗ at varying V (Section 2.3.3)
h Planck constant
Δh0

m Specific enthalpy of melting of an extended-chain crystal
H Enthalpy
HA Hessian matrix of the Helmholtz free energy
HS Superscript indicating the hard-sphere reference system (Section 2.2)
i Index referring do distinct components of a system
Ikl,ab Association integral appearing in SAFT-γ Mie
IL Superscript indicating inter-lamellar domains
j Index
k Index. in Chapter 2 it refers to individual groups
kB Boltzmann constant
kH,i Henry constant of solute i in the polymer sample (Equation 4.3)
K Proportionality constant between ωLS

c and nT (Equation 3.79)
Kkl,ab Bonding volume for the association interaction between sites a and b on

groups k and l
K0

X Cumulant-generating function for the random variable X in the purely re-
pulsive system (Section 2.2)

l Bond length of a polymer (or its geometric average along the backbone as
with PEO/PEG, see Section 3.3.4)

la Inter-lamellar distance
l∗a Inter-lamellar distance of a pure sample measured at temperature T ∗ and

pressure P ∗

lc Lamellar thickness
l∗c(T ) Lamellar thickness of the smallest stable lamella at temperature T
LP Long period (la + lc)
LS Superscript indicating the inter-lamellar domains
L,L−1 Langevin function and its inverse
m Mass. In Appendix E, it indicates the average number of monomers between

entanglements
m̃i Effective number of segments of component i (Section 2.2)
Ms,i Molar mass of solute i
M0 Molar mass of the polymer’s repeating unit (i.e., per monomer)
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M0
X Moment-generating function for the random variable X in the purely repul-

sive system (Section 2.2)
Mie Superscript indicating the Mie potential or a Mie momnomer fluid
n Number of monomers per polymer chain. In Section 2.3, number of

molecules of a pure component system
(n) Superscript indicating that the polymer chains in the system described have

n monomers
nT, n0 Number of monomers per equivalent bridge and of the reference polymer +

solutes mixture used for the calculations (n0 = 1000)
ns,i Number of solute molecules of type i
ñs,i Number of solute molecules of type i per polymer chain
ns Vector of the ns,i

ñs Vector of the ñs,i

nk,a Number of sites of type a on group k (Section 2.2)
N In Section 2.2, total number of molecules. Otherwise, equivalent number of

Khun monomers of a polymer chain
NC Number of distinct solutes. In Section 2.2, number of components (solutes

+ polymers)
NG Number of SAFT groups
NST,k Number of types of association sites on group k
Nb Number of main-chain bonds per monomer
Np Number of phases in a system
pee, p

′
ee Distribution of the end-to-end vectors of polymer chain segments in a bulk

fluid (pee) or in a fluid confined between lamellae (p
′
ee)

pT, pTF, pNT Fraction of stems in on the crystal/amorphous interface connected to tie-
molecules (pT), tight folds (pTF) and un-entangled loops and tails (pNT) –
Figure 3.2

P Pressure
P ∗ Pressure at which crystallinity and inter-lamellar distance of a polymer are

measured
Pc Constraint pressure
Pvap Vapour pressure of a component
Pdel Pressure at which deliquescence occurs
r Euclidean distance between two points
rckl,ab Cut-off radius for the SAFT association potential between sites a, b on

groups k, l
rdkl,ab Cut-off radius for the SAFT association potential between sites a, b on

groups k, l
R Universal gas constant
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Si, Sa,i Solubility of solute i in mass of solute per total polymer mass and amorphous
mass only, respectively

Sk Shape factor of the SAFT group k (Section 2.2)
T Temperature
Tm Melting point of a lamella or more generally of a polymer sample
T 0
m Melting point of an extended-chain crystal

T ∗ Temperature at which crystallinity and inter-lamellar distance of a pure
polymer are measured

ukl Dispersion potential between two monomers
U0, U1 Repulsive and attractive parts, respectively, of the Mie force field (Equation

2.9)
V Volume

Ṽ Volume per polymer chain
V0 Volume of a pure polymer sample
V̄s,i Partial molar volume of solute i (Equation 3.33)
V̄p Partial molar volume of the polymer (Equation 3.33)
v̄s,i Partial specific volume of solute i (Equation 3.95)
v̄p Partial specific volume of the polymer (Equation 3.95)
va Specific volume of pure amorphous domains intended as a homogeneous

mass (Equation 3.12)
vc Specific volume of pure crystalline polymer (Equation 3.12)
wk Molar mass of the SAFt group k
xi Mole fraction of component i
xT, xES Fractional extension of equivalent bridges and polymer segments between

entanglements (Equation 3.75)
Xi,k,a Fraction of groups k on component i not bonded at site a
yi Mole fraction of component i. Used for polymer-free systems
y Vector of the yi
α, α

′
Index used to refer to individual monomers in Section 2.2

β Defined as 1/kBT
γ Chain-tilt angle between the [001] crystallographic axis and the crys-

tal/amorphous interface
Γc Set of constraints acting on a system of polymer chains
δT Projection of the end-to-end vector of an equivalent bridge on the crys-

tal/amorphous interface
Δ When placed before another symbol, it indicates the difference of the relative

quantity between two systems
Δij,kl,ab Association strength (Section 2.2)
ε Energy well-depth for the Mie potential between groups k and l (εkl) or for

the square-well association potential (εHB
kl,ab) (Section 2.2)
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ζ Function representing Helmholtz combinatorial terms that only depend on
the number of chains in Section 3.3

ζm mth density moment (Section 2.2)
η Ratio between the number of bonds in a real chain and the equivalent num-

ber of Khun bonds (Equation 3.73)
θB Bond angle along the polymer’s backbone
θT Angle between the end-to-end vector of an equivalent bridge (Section 3.3.3)

and the normal to the crystal/amorphous interface. Extended to bridges
(BR) and entangled segments (ES) in Appendix E

κ0
n, κ

HS
n nth cumulant of the attractive potential V1 in the repulsive and equivalent

hard-sphere system (Section 2.2)
λa
kl Attractive exponent of the Mie potential

λr
kl Repulsive exponent of the Mie potential

Λi Thermal de Broglie wavelength of component i
μs,i Chemical potential of solute i
μs Vector of the μs,i

μp,i Chemical potential of polymer i
μp Chemical potential of the polymer in a monodisperse mixture
μp,mono Monomer chemical potential. Defined in Equation 3.47 for the lamellae and

in Appendix C for a bulk polymer + solute mixture
μ0
m mth moment of the attractive potential in the purely repulsive system (Sec-

tion 2.2)
νi Number of polymer chains of type i
ν Vector of the νi – i.e., molecular weight distribution of a polymer sample
νk,i Number of SAFT groups of type k on component i
ν∗
k Number of identical segments a group is made of (Section 2.2)
νR
k,p, ν

E
k,p Number of group of type k on the polymer’s repeating unit and on the chain

ends
ρ Particle density (Section 2.2)
ρa Density (in mass) of amorphous polymer
ρc Density (in mass) of the crystal structure of a polymer
ρp,eff Polymer density (polymer mass divided by volume)
ρA Cross-section of a polymer chain in its crystal structure. I.e., number of

chains per unit area on the (001) crystal plane
ρA,T Surface density of tie-molecules (in our model, equivalent bridges) on the

crystal/amorphous interface (Equation 3.10)
σe Gibbs free energy of the fold surface per unit area
σkl Diameter of the Mie potential between groups k and l
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τD, τICD, τR Respectively, characteristic time of solute diffusion in a semi-crystalline sam-
ple, of intra-crystalline chain dynamics and of irreversible recrystallisation

Δτ Thermal volume in which the ends of a bridge are confined due to bonding
with the crystalline stems

Δτ
′

Hypothetical volume in which entangled segments meet to form an entan-
glements

φ Mass fraction of free amorphous mass over the total amorphous mass
φs,i Volume fraction of solute i in the polymer mixture
φp Volume fraction of the polymer in the polymer mixture
Φ,Φ∗ Thermodynamic potential of constrained amorphous domains in the

T, P,μs, μp,mono ensemble. Φ is the minimum of Φ∗ at varying V,ns, n

Φ̃, Φ̃∗ Obtained dividing Φ,Φ∗ by the number of polymer chains
χ Interaction parameter in the FHS theory
ψ Mass fraction of free amorphous polymer (MAF)
ωc Crystallinity (Equation 3.8)
ωa Amorphous mass fraction (1− ωc)
ω∗
c Crystallinity measured for the pure polymer at temperature T ∗ and pressure

P ∗

ωLS
c Crystallinity of the lamellar stacks only

ωLS,*
c Crystallinity of the lamellar stacks only measured for the pure polymer at

temperature T ∗ and pressure P ∗

ωs,i Mass fraction of solute i. The index is removed if there is only one solute
Ωs,Ω

∗
s Osmotic free energy of a polymer + solute mixture in the T, P,μs ensemble.

Ω is the minimum of Ω∗ at varying V,ns (Section 2.3.3)
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List of Acronyms

aPP Atactic polypropylene
BH Barker and Henderson
CG Coarse-grained
DSC Differential scanning calorimetry
EoS Equation of state
FHS Flory-Huggins-Staverman
fPP Polypropylene fibre
FR Flory-Rehner
GC Group-contribution
GR Gambler’s Ruin
HB Huang and Brown / hydrogen-bonding
HDPE High-density polyethylene
HL Hoffman and Lauritzen
iPP Isotactic polypropylene
ICD Intra-crystalline chain dynamics
LDPE Low-density polyethylene
LLDPE Linear low-density polyethylene
LLE Liquid-liquid equilibrium
MAF Mobile amorphous fraction
MDPE Medium-density polyethylene
MH Michaels and Hausslein
NMR Nuclear magnetic resonance
PA Polyamide
PBD Polybutadiene
PE Polyethylene
PEEK Polyether ether ketone
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PEO/PEG Polyethylene glycol/oxide
PP Polypropylene
PTFE Polytetrafluoroethylene
PVC Polyvinyl chloride
PVDF Polyvinylidine fluoride
RAF Rigid amorphous fraction
sPPcO Syndiotactic polypropylene-co-octene
SAFT Statistical associating fluid theory
SAXS, SANS Small-angle X-ray (respectively, neutron) scattering
TD-NMR Time-domain NMR
UA United-atom
VLE Vapour-liquid equilibrium
WAXS Wide-angle X-ray scattering
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