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Many systems in biology can be modeled through ordinary differential equations, which are piece-

wise continuous, and switch between different states according to a Markov jump process known

as a stochastic hybrid system or piecewise deterministic Markov process (PDMP). In the fast

switching limit, the dynamics converges to a deterministic ODE. In this paper, we develop a phase

reduction method for stochastic hybrid systems that support a stable limit cycle in the deterministic

limit. A classic example is the Morris-Lecar model of a neuron, where the switching Markov pro-

cess is the number of open ion channels and the continuous process is the membrane voltage. We

outline a variational principle for the phase reduction, yielding an exact analytic expression for the

resulting phase dynamics. We demonstrate that this decomposition is accurate over timescales that

are exponential in the switching rate ��1. That is, we show that for a constant C, the probability

that the expected time to leave an O(a) neighborhood of the limit cycle is less than T scales as

T exp ð�Ca=�Þ. Published by AIP Publishing. https://doi.org/10.1063/1.5027077

Oscillations abound in nature, from the beating of the

heart to the genetic circadian clock that synchronizes

with the day-night cycle. However, oscillations are often

subject to stochastic fluctuations, which in extreme cases

can lead to heart failure or severe jet lag, for example. A

subject of intense study has been how to determine the

corresponding fluctuations in the amplitude and phase of

an oscillator, both at the single and population levels.

This theory plays a crucial role in understanding how

coupled or noise-driven stochastic oscillators can syn-

chronize, and when oscillators fail. In this paper, we

develop the first systematic study of stochastic oscillators

of a particular form, in which the dynamics is said to be

piecewise deterministic. This means that the state of the

system evolves deterministically except at a sequence of

random times where the deterministic dynamics switches

to a different mode. The major results of our work are as

follows: (i) deriving a stochastic phase equation for a

hybrid oscillator and (ii) obtaining strong exponential

bounds on the size of amplitude fluctuations. The former

provides a framework for studying phase synchroniza-

tion in populations of oscillators, whereas the latter is

crucial for determining the time-scale over which the

notion of a phase oscillator can be maintained. We illus-

trate the theory using the example of a neuron whose

voltage depends on how many ion channels in its mem-

brane are open. Jumps in the dynamics occur whenever

one of the channels opens or closes. However, there are

many other applications in the natural world, including

gene and brain networks.

I. INTRODUCTION

There is a growing class of problems in biology that

involve the coupling between a piecewise deterministic

dynamical system in Rd and a time-homogeneous Markov

chain on some discrete space C.1 The resulting stochastic

hybrid system is known as a piecewise deterministic Markov

process (PDMP).2 (A more general type of stochastic hybrid

system occurs when the continuous process is itself stochas-

tic.) One important example is given by membrane voltage

fluctuations arising from the stochastic opening and closing

of ion channels.3–13 The discrete states of the ion channels

evolve according to a continuous-time Markov process with

voltage-dependent transition rates and, in-between discrete

jumps in the ion channel states, the membrane voltage

evolves according to a deterministic equation that depends

on the current state of the ion channels. In the thermody-

namic limit that the number of ion channels goes to infinity,

one can apply the law of large numbers and recover classical

Hodgkin-Huxley type ordinary differential equations

(ODEs). However, finite-size effects can result in the noise-

induced spontaneous firing of a neuron due to channel fluctu-

ations. Another major example of a stochastic hybrid system

occurs within the context of gene regulatory networks. Now

the continuous variables are the concentrations of protein

products (and possibly mRNAs) and the discrete variables

represent the various activation/inactivation states of the

genes.14–20 Yet another example is given by a recent stochas-

tic formulation of synaptically coupled neural networks that

has a mathematical structure analogous to regulatory gene

networks.21

In the above examples, one often finds that the transition

rates between the discrete states n 2 C are much faster than

the relaxation rates of the piecewise deterministic dynamics

for x 2 Rd . Thus, there is a separation of time scales

between the discrete and continuous processes, so that if t is

the characteristic time-scale of the relaxation dynamics then

t� is the characteristic time-scale of the Markov chain

for some small positive dimensionless parameter �. If the

Markov chain is ergodic, then in the fast switching or adia-

batic limit �! 0, one obtains a deterministic dynamical
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system in which one averages the piecewise dynamics with

respect to the corresponding unique stationary distribution.

In the case of gene regulatory networks, the switching on

and off of a gene is due to the binding/unbinding of regula-

tory proteins (transcription factors) to gene promoter sites.

Hence, in the fast switching limit, the binding/unbinding

reactions are much faster than the rates of synthesis and deg-

radation. (This is often assumed in the studies of stochastic

gene expression, which typically focus on the effects of fluc-

tuations in protein numbers.) On the other hand, in single-

neuron models, fast switching means that ion channels open

and close much faster than the voltage evolves. This is cer-

tainly the case for Naþ ion channels.

Suppose that the deterministic dynamical system

obtained in the adiabatic limit �! 0 exhibits some non-

trivial dynamics such as bistability or a limit cycle oscilla-

tion. This raises the general issue of determining how the

dynamics is affected by switching in the weak noise regime,

0 < �� 1. In the case of bistability, a variety of methods

have been developed to explore noise-induced transitions

and metastability in PDMPs, including rigorous large devia-

tion theory,22–24 WKB approximations and matched asymp-

totics,6,10,11,18 and path-integrals.25 On the other hand, as far

as we are aware, there has been very little numerical or ana-

lytical work on limit cycle oscillations in PDMPs. A few

notable exceptions are Refs. 26–28. However, none of these

studies develop a fundamental theory of stochastic limit

cycle oscillations in PDMPs analogous to phase reduction

methods for stochastic differential equations (SDEs).

Regarding the latter, suppose that a deterministic

smooth dynamical system _x ¼ FðxÞ; x 2 Rd supports a limit

cycle xðtÞ ¼ UðhðtÞÞ of period D0, where hðtÞ is a uniformly

rotating phase, _h ¼ x0 and x0 ¼ 2p=D0. The phase is neu-

trally stable with respect to perturbations along the limit

cycle—this reflects invariance of an autonomous dynamical

system with respect to time shifts. Now suppose that the

dynamical system is perturbed by weak Gaussian noise such

that dX ¼ FðXÞdtþ
ffiffiffiffiffi
2�
p

GðXÞdWðtÞ, where W(t) is a d-

dimensional vector of independent Wiener processes. If the

noise amplitude � is sufficiently small relative to the rate of

attraction to the limit cycle, then deviations transverse to the

limit cycle are also small (up to some exponentially large

stopping time). This suggests that the definition of a phase

variable persists in the stochastic setting, and one can derive

a stochastic phase equation. However, there is not a unique

way to define the phase, which has led to two complemen-

tary methods for obtaining a stochastic phase equation: (i)

the method of isochrons29–34 and (ii) an explicit amplitude-

phase decomposition.35–37 (See also the recent survey by

Ashwin et al.38)

Recently, we introduced a variational method for carry-

ing out the amplitude-phase decomposition for SDEs, which

yields exact SDEs for the amplitude and phase,39 equivalent

to those obtained in Ref. 37 using the implicit function theo-

rem. Within the variational framework, different choices of

phase correspond to different choices of the inner product

space Rd. In particular, we took a weighted Euclidean norm,

so that the minimization scheme determined the phase by

projecting the full solution on to the limit cycle using

Floquet vectors. Hence, in a neighborhood of the limit cycle,

the phase variable coincided with the isochronal phase.37

This had the advantage that the amplitude and phase

decoupled to leading order. In addition, we used the exact

amplitude and phase equations to derive strong exponential

bounds on the growth of transverse fluctuations.

In this paper, we develop a variational method for

PDMPs that support a limit cycle in the adiabatic limit. We

derive an exact equation for the phase, which takes the form

of an implicit PDMP. Moreover, we show how the latter can

be converted to an explicit PDMP for the phase by perform-

ing a perturbation expansion in � and show that the phase

decouples from the amplitude to leading order. We also con-

sider an alternative approach to analyzing oscillations in

PDMPs, based on first carrying out a quasi-steady-state

(QSS) diffusion approximation of the full PDMP to obtain

an SDE40 and then performing a phase reduction. We com-

pare the resulting SDE for the phase with the corresponding

SDE obtained by carrying out a QSS reduction of the phase-

based PDMP. However, one important limitation of any dif-

fusion approximation is that it tends to generate exponen-

tially large errors when estimating the probability of rare

events; rare events contribute to the long-time growth of

transverse fluctuations.

One major feature of our variational approach is that it

allows us to obtain an exponential bound on the growth of

transverse fluctuations. This issue, which is typically ignored

in the studies of stochastic phase oscillators, is important

since any phase reduction scheme ultimately breaks down

over sufficiently long time-scales, since there is a non-zero

probability of leaving a bounded neighborhood of the limit

cycle, and the notion of phase no longer makes sense. Using

our variational method, we show that for a constant C, and

all a � a0 (a0 being a constant independent of �), the proba-

bility that the expected time to leave an O(a) neighborhood

of the limit cycle is less than T scales as T exp ð�Ca=�Þ. An

interesting difference between the above bound and the cor-

responding one obtained for SDEs39 is that in the latter the

bound is of the form T exp ð�Cba=�Þ, where b is the rate of

decay towards the limit cycle. In other words, in the SDE

case, the bound is still powerful in the large � case, as long

as b��1 � 1, i.e., as long as the decay towards the limit cycle

dominates the noise. However, this no longer holds in the

PDMP case. Now, if � is large, then the most likely way that

the system can escape the limit cycle is that in stays in any

particular state for too long without jumping and the time

that it stays in one state is not particularly affected by b (in

most cases).

The organization of the paper is as follows. In Sec. II,

we define a stochastic hybrid system or PDMP, discuss the

QSS diffusion approximation (see also Appendix A), and

apply phase reduction methods to the resulting SDE. In Sec.

III, we formulate the variational principle for determining

the phase of a stochastic limit cycle in the case of a PDMP

and show that the resulting phase equation also takes the

form of a PDMP. We illustrate our theory in Sec. IV by con-

sidering the stochastic Morris-Lecar model of subthreshold

oscillations. Finally, in Sec. V and Appendixes C-E, we
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obtain an exponential bound on the growth of transverse

fluctuations.

II. STOCHASTIC HYBRID LIMIT CYCLE OSCILLATOR

Consider a dynamical system whose states are described

by a pair ðx; nÞ 2 R� f0;…;N � 1g, where x is a continu-

ous variable in a connected bounded domain R � Rd and n
is a discrete stochastic variable taking values in the finite set

C � f0;…;N0 � 1g. When the internal state is n, the system

evolves according to the ordinary differential equation

(ODE)

_x ¼ FnðxÞ; (2.1)

where the vector field Fn : Rd ! Rd is a smooth function,

locally Lipschitz. We assume that the dynamics of x is con-

fined to the domain R so that we have existence and unique-

ness of a trajectory for each n. The discrete stochastic

variable is taken to evolve according to a homogeneous,

continuous-time Markov chain with generator AðxÞ for a

given x, where

AnmðxÞ ¼ KnmðxÞ � dn;m

X
k2C

KknðxÞ;

and KðxÞ is the transition matrix. We make the further assump-

tion that for each x the chain is irreducible, that is, there is a

non-zero probability of transitioning, possibly in more than one

step, from any state to any other state of the Markov chain.

This implies the existence of a unique invariant probability dis-

tribution on C with components qmðxÞ, such thatX
m2C

AnmðxÞqmðxÞ ¼ 0; 8n 2 C: (2.2)

The above stochastic model defines a piecewise determin-

istic Markov process (PDMP)2 on Rd. It is also possible to

consider generalizations of the continuous process, in which

the ODE (2.1) is replaced by a stochastic differential equation

(SDE) or even a partial differential equation (PDE). In order to

allow for such possibilities, we will refer to all of these pro-

cesses as examples of a stochastic hybrid system. A useful way

to implement a PDMP is as follows, see also Fig. 1. Let us

decompose the transition matrix of the Markov chain as

KnmðxÞ ¼ ~KnmðxÞkmðxÞ; (2.3)

with
P

n 6¼m
~KnmðxÞ ¼ 1 for all x. Hence, kmðxÞ determines the

jump times from the state m, whereas ~KnmðxÞ determines the

probability distribution that when it jumps the new state is n
for n 6¼ m. The hybrid evolution of the system with respect to

x(t) and n(t) can then be described as follows. Suppose the

system starts at time zero in the state ðx0; n0Þ. Call x0ðtÞ the

solution of (2.1) with n¼ n0 such that x0ð0Þ ¼ x0. Let t1 be

the random variable (stopping time) such that

Pðt1 < tÞ ¼ 1� exp �
ðt

0

kn0
ðx0ðt0ÞÞdt0

� �
:

Then, in the random time interval s 2 ½0; t1Þ, the state of the

system is ðx0ðsÞ; n0Þ. We draw a value of h1 from Pðt1 < tÞ,
choose an internal state n1 2 C with probability ~Kn1n0

ðx0ðt1ÞÞ,
and call x1ðtÞ the solution of the following Cauchy problem

on ½t1;1Þ:

_x1ðtÞ ¼ Fn1
ðx1ðtÞÞ; t 	 h1

x1ðt1Þ ¼ x0ðt1Þ:

(

Iterating this procedure, we construct a sequence of increas-

ing jumping times ðtkÞk	0 (setting t0 ¼ 0) and a correspond-

ing sequence of internal states ðnkÞk	0. The evolution

ðxðtÞ; nðtÞÞ is then defined as

ðxðtÞ; nðtÞÞ ¼ ðxkðtÞ; nkÞ if tk � t < tkþ1: (2.4)

In order to have a well-defined dynamics on ½0; T
, it is nec-

essary that almost surely the system makes a finite number

of jumps in the time interval ½0; T
. This is guaranteed in our

case.

A. Chapman-Kolmogorov equation

Let X(t) and N(t) denote the stochastic continuous and

discrete variables, respectively, at time t, t> 0, given the ini-

tial conditions Xð0Þ ¼ x0;Nð0Þ ¼ n0. Introduce the probabil-

ity density pnðx; tjx0; n0; 0Þ with

PfXðtÞ 2 ðx; xþ dxÞ; NðtÞ ¼ njx0; n0Þ ¼ pnðx; tjx0; n0; 0Þdx:

It follows that p evolves according to the forward differential

Chapman-Kolmogorov (CK) equation41,42

@pn

@t
¼ Lpn; (2.5)

with the generator L (dropping the explicit dependence on

initial conditions) defined according to

Lpnðx; tÞ ¼ �r � FnðxÞpnðx; tÞ½ 
 þ 1

�

X
m2C

AnmðxÞpmðx; tÞ:

(2.6)

The first term on the right-hand side represents the probabil-

ity flow associated with the piecewise deterministic dynam-

ics for a given n, whereas the second term represents jumps

in the discrete state n. Note that we have rescaled the matrix
FIG. 1. Schematic diagram of a PDMP for a sequence of jump times ft1;…g
and a corresponding of discrete states fn0; n1;…g. See text for details.
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A by introducing the dimensionless parameter �, � > 0. This

is motivated by the observation that many applications of

PDMPs involve a separation of time-scales between the

relaxation time for the dynamics of the continuous variables

x and the rate of switching between the different discrete

states n. The fast switching limit then corresponds to the

case �! 0. Let us now define the averaged vector field �F :
R! R by

�FðxÞ ¼
X
n2C

qnðxÞFnðxÞ: (2.7)

It can be shown23 that, given the assumptions on the matrix

A; �FðxÞ is uniformly Lipschitz. Hence, for all t 2 ½0; T
, the

Cauchy problem

_xðtÞ ¼ �FðxðtÞÞ
xð0Þ ¼ x0

(
(2.8)

has a unique solution for all n 2 C. Intuitively speaking, one

would expect the stochastic hybrid system (2.1) to reduce to

the deterministic dynamical system (2.8) in the fast switch-

ing limit �! 0. That is, for sufficiently small �, the Markov

chain undergoes many jumps over a small time interval Dt
during which Dx � 0, and thus the relative frequency of each

discrete state n is approximately qn. This can be made pre-

cise in terms of a Law of Large Numbers for stochastic

hybrid systems proven in Ref. 23.

B. Stochastic limit cycle oscillations under the
diffusion approximation

For small but non-zero �, one can use perturbation the-

ory to derive lowest order corrections to the deterministic

mean field equation, which leads to an SDE with noise

amplitude O
ffiffi
�
p� �

.40 More specifically, perturbations of the

mean-field Eq. (2.8) can be analyzed using a quasi-steady-

state (QSS) diffusion or adiabatic approximation, in which

the CK Eq. (2.5) is approximated by a Fokker-Planck (FP)

equation for the total density Cðx; tÞ ¼
P

npnðx; tÞ. The

details are presented in Appendix A, and we find that under

the Ito representation, the FP equation takes the form

@C

@t
¼ �r � �FðxÞC

� �
� �r � VðxÞC½ 
 þ �

Xd

i;j¼1

@2DijðxÞC
@xi@xj

;

(2.9)

with the Oð�Þ correction to the drift, VðxÞ, and the diffusion

matrix DðxÞ are given by

V ¼
X
n;m

ðqnFnÞr � ðFmA†
mnÞ � �Fr � ðFmA†

mnqnÞ
	 


(2.10a)

and

Dij ¼
X

m;n2C
Fm;i � �Fi

� �
A†

mnqn
�Fj � Fn;j

� �
: (2.10b)

In fact, only the symmetric part of D(x) appears in Eq. (2.9)

so we will take

Dij ¼ �
1

2

X
m;n2C

�Fi � Fm;i

� �
~Amn

�Fj � Fn;j

� �
; (2.11)

where ~Amn ¼ A†
mnqn þ A†

nmqm, i.e., the symmetric part of Aq.

It follows that in the fast switching regime (small �), the

deterministic ODE (2.8) can be approximated by the Ito SDE

dX ¼ �FðXÞ þ �VðXÞ
� �

dtþ
ffiffiffiffiffi
2�
p

GðXÞdWðtÞ; (2.12)

where � determines the noise strength and GðXÞG>ðXÞ
¼ DðXÞ. Here, W(t) is a vector of uncorrelated Brownian

motions in Rd

E WðtÞWðtÞ>
h i

¼ tI;

and I is the d� d identity matrix.

Now suppose that the unperturbed system (2.8) supports

a stable periodic solution x ¼ UðtÞ with UðtÞ ¼ Uðtþ D0Þ,
where x0 ¼ 2p=D0 is the natural frequency of the oscillator.

In state space, the solution is an isolated attractive trajectory

or limit cycle. The dynamics on the limit cycle can be

described by a uniformly rotating phase such that

dh
dt
¼ x0; (2.13)

and x ¼ UðhðtÞÞ with U a 2p-periodic function. Note that the

phase is neutrally stable with respect to perturbations along

the limit cycle—this reflects invariance of an autonomous

dynamical system with respect to time shifts. Note that U
satisfies the equation

x0

dU
dh
¼ �FðUðhÞÞ: (2.14)

Differentiating both sides with respect to h gives

d

dh
dU
dh

� �
¼ x�1

0
�JðhÞ � dU

dh
; (2.15)

where �J is the 2p-periodic Jacobian matrix

�JjkðhÞ �
@ �Fj

@xk

����
x¼UðhÞ

: (2.16)

If the noise amplitude � is sufficiently small relative to

the rate of attraction to the limit cycle, then deviations trans-

verse to the limit cycle are also small (up to some exponen-

tially large stopping time). This suggests that the definition

of a phase variable persists in the stochastic setting, and one

can derive a stochastic phase equation. Here we follow the

method of isochrons.29–34 We only describe the simplest ver-

sion of the theory, in which Oð�Þ corrections to the drift term

are ignored. The latter arise from transforming between Ito

and Stratonovich representations, and coupling between the

phase and transverse (amplitude) fluctuations. First, suppose

that we stroboscopically observe the unperturbed system at

time intervals of length D0. This leads to a Poincare mapping

xðtÞ ! xðtþ �DÞ � PðxðtÞÞ;
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for which all points on the limit cycle are fixed points.

Choose a point x
 on the limit cycle and consider all points

in the vicinity of x
 that are attracted to it under the action of

P. They form a ðd � 1Þ-dimensional hypersurface I called

an isochron,43–47 crossing the limit cycle at x
. A unique iso-

chron can be drawn through each point on the limit cycle (at

least locally) so the isochrons can be parameterized by the

phase, I ¼ IðhÞ. Finally, the definition of phase is extended

by taking all points x 2 IðhÞ to have the same phase,

HðxÞ ¼ h, which then rotates at the natural frequency x0.

Hence, for an unperturbed oscillator in the vicinity of the

limit cycle, we have

�x ¼ dHðxÞ
dt
¼ rHðxÞ � dx

dt
¼ rHðxÞ � �FðxÞ:

Now consider Eq. (2.12) interpreted as a Stratonovich

SDE (after dropping Oð�Þ corrections to the drift) so that the

normal rules of calculus apply. Differentiating the isochronal

phase using the chain rule gives

dH ¼ rHðxÞ � �FðXÞdtþ
ffiffiffiffiffi
2�
p

GðXÞdWðtÞ
h i

¼ �xdtþ
ffiffiffiffiffi
2�
p
rHðXÞ � GðXÞdWðtÞ:

We now make the further approximation that deviations of X
from the limit cycle are ignored on the right-hand side by setting

XðtÞ ¼ UðhðtÞÞ with U as the 2p-periodic solution on the limit

cycle. This then yields the closed stochastic phase equation

dh ¼ x0dtþ
ffiffiffiffiffi
2�
p Xd

k;l¼1

RkðhÞGklðUðhÞÞdWlðtÞ; (2.17)

where

RkðhÞ ¼
@H
@xk

����
x¼UðhÞ

(2.18)

is a 2p-periodic function of h known as the kth component of

the phase resetting curve (PRC).43–47 One way to evaluate

the PRC is to exploit the fact that it is the 2p-periodic solu-

tion of the linear equation

�x
dRðhÞ

dh
¼ ��JðhÞ> � RðhÞ; (2.19)

under the normalization condition

RðhÞ � dUðhÞ
dh

¼ 1: (2.20)

�JðhÞ> is the transpose of the Jacobian matrix �JðhÞ.
Finally, we can simplify Eq. (2.17) by noting that the

probability law (or statistics) of the sum of stochastic inte-

grals
Pd

k;l¼1 RkðhÞGklðUðhÞÞdWlðtÞ is identical to the proba-

bility law arising from the following single stochastic

integral from a single Wiener process W(t), i.e.,

dh ¼ x0dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�DðhÞ

p
dWðtÞ; (2.21)

with

DðhÞ ¼
Xd

l¼1

Xd

k

RkðhÞGklðUðhÞÞ
 ! Xd

k0
Rk0 ðhÞGk0lðUðhÞÞ

 !

¼
Xd

k;k0¼1

RkðhÞDkk0 ðUðhÞÞRk0 ðhÞ:

(2.22)

The reason that the probability laws of the previous two sto-

chastic processes are identical is that their quadratic varia-

tions are identical, i.e.,ð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�DðhÞ

p
dWðtÞ

� 

s

¼ 2�

ðs

0

DðhðtÞÞdt¼
ð�

0

ffiffiffiffiffi
2�
p Xd

k;l¼1

RkðhÞGklðUðhÞÞdWlðtÞ

2
4

3
5

s

:

It is a classical result of stochastic analysis that the probabil-

ity law of a stochastic integral is entirely determined by the

above quadratic variation (see, for example, Theorem 4.2 in

Ref. 54) One way to understand why this is the case is that a

stochastic integral can be characterized as a Brownian

motion that has been rescaled in time, with the rescaling

determined by the quadratic variation.

The above analysis uses two successive approximations:

(i) a diffusion approximation to convert the PDMP to an SDE

in the fast switching regime and (ii) a phase reduction of the

SDE. Both stages introduce Oð�Þ corrections to the drift,

which we have ignored for ease of presentation. We could

also now use the Ito SDE (2.12) to investigate the growth of

fluctuations transverse to the limit cycle in the weak noise

limit, by applying our recent variational method for analyzing

stochastic limit cycle oscillators driven by Gaussian noise.39

This method yields an implicit stochastic phase equation that

is exact even outside the weak noise regime and can be used

to derive strong, �-dependent exponential bounds on the

growth of transverse fluctuations. However, such a method

cannot eliminate the errors introduced by performing the dif-

fusion approximation. This motivates the development of a

variational method that can be applied directly to the exact

PDMP (2.1). This will yield more accurate bounds on the

growth of transverse fluctuations and can also be used to

derive an explicit PDMP for the phase.

III. VARIATIONAL PRINCIPLE

In this section, we formulate a variational method for

the PDMP (2.1), under the assumption that the latter exhibits

a limit cycle oscillation in the fast switching limit. We derive

an exact phase equation for the stochastic limit cycle, which

now takes the form of an implicit PDMP. Moreover, we

show how it can be converted to an explicit PDMP by per-

forming a perturbation expansion in �. Our formulation thus

avoids introducing additional errors arising from the diffu-

sion approximation. One potential limitation of any diffusion

approximation is that it tends to generate exponentially large

errors when estimating the probability of rare events; rare
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events contribute to the long-time growth of transverse

fluctuations.

In order to formulate a variational principle, we fix a

particular realization rT of the Markov chain up to sometime

T, rT ¼ fNðtÞ; 0 � t � Tg. Suppose that there is a finite

sequence of jump times ft1;…trg within the time interval

ð0; TÞ and let nj be the corresponding discrete state in the

interval ðtj; tjþ1Þ with t0 ¼ 0. Introduce the set

T ¼ 0; T½ 
n [r
j¼1 ftjg:

Analogous to the analysis of SDEs,39 we wish to decompose

the piecewise deterministic solution xt to the PDMP (2.1) for

t 2 T into two components according to

xt ¼ UðbtÞ þ
ffiffi
�
p

vt; (3.1)

with bt and vt corresponding to the phase and amplitude

components, respectively. The phase bt and amplitude vt

evolve according to a PDMP, involving the vector field Fnj

in the time intervals ðtj; tjþ1Þ, analogous to xt (see Fig. 1). (It

is notationally convenient to switch from x(t) to xt, etc., in

the following.) However, such a decomposition is not unique

unless we impose an additional mathematical constraint. We

will adapt a variational principle recently introduced to ana-

lyze the dynamics of limit cycles with Gaussian noise.39 In

order to construct the variational principle, we first introduce

an appropriate weighted norm on Rd, based on a Floquet

decomposition.

A. Floquet decomposition and weighted norm

For any 0 � t, define PðtÞ 2 Rd�d to be the following

fundamental matrix for the ODE:

dz

dt
¼ AðtÞz; (3.2)

where AðtÞ ¼ �Jðx0tÞ. That is, PðtÞ :¼ ðz1ðtÞjz2ðtÞj…jzdðtÞÞ,
where ziðtÞ satisfies (3.2), and fzið0Þgd

i¼1 is an orthogonal

basis for Rd . Floquet Theory states that there exists a diago-

nal matrix S ¼ diagð�1;…; �dÞ whose diagonal entries are

the Floquet characteristic exponents, such that

PðtÞ ¼ Pðx0tÞ exp ðtSÞP�1ð0Þ; (3.3)

with PðhÞ being a 2p-periodic matrix whose first column

is proportional to U0ðx0tÞ, and �1 ¼ 0. That is, PðhÞ�1U0ðhÞ
¼ c0e with ej ¼ d1;j and c0 being an arbitrary constant. In

order to simplify the following notation, we will assume

throughout this paper that the Floquet multipliers are real,

and hence, PðhÞ is a real matrix. One could readily general-

ize these results to the case that S is complex. The limit

cycle is taken to be stable, meaning that for a constant b> 0,

for all 2 � i � d, we have �i � �b. Furthermore, P�1ðhÞ
exists for all h, since P�1ðtÞ exists for all t.

The above Floquet decomposition motivates the follow-

ing weighted inner product: For any h 2 R, denoting the

standard Euclidean dot product on Rd by h�; �i

hx; yih ¼ hP�1ðhÞx;P�1ðhÞyi;

and kxkh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hx; xih

p
. In the case of SDEs, we showed that

this choice of weighting yields a leading order separation of

the phase from the amplitude and facilitates strong bounds

on the growth of vt.
39 The former is a consequence of the

fact that the matrix P�1ðhÞ generates a coordination transfor-

mation in which the phase in a neighborhood of the limit

cycle coincides with the asymptotic phase defined using iso-

chrons (see also Ref. 37) In particular, one can show that the

PRC RðhÞ is related to the tangent vector U0ðhÞ according to

(see Ref. 39 and Appendix B)

P>ðhÞRðhÞ ¼M
�1
0 P�1ðhÞU0ðhÞ; (3.4)

where

M0 :¼ kU0ðhÞk2
h ¼ kP�1ðhÞU0ðhÞk2 ¼ c2

0: (3.5)

B. Defining the piecewise deterministic phase using
a variational principle

We can now state the variational principle for the stochas-

tic phase: bt for t 2 T is determined by requiring bt ¼ atðhtÞ,
where atðhtÞ for a prescribed time dependent weight ht is a

local minimum of the following variational problem:

inf
a2N ðatðhtÞÞ

kxt�UðaÞkht
¼ kxt�UðatðhtÞÞkht

; t 2 T ; (3.6)

with NðatðhtÞÞ denoting a sufficiently small neighborhood

of atðhtÞ. The minimization scheme is based on the orthogo-

nal projection of the solution on to the limit cycle with

respect to the weighted Euclidean norm at some ht. We will

derive an exact PDMP for bt (up to some stopping time) by

considering the first derivative

G0ðz;a;hÞ :¼ @

@a
kz�UðaÞk2

h ¼�2hz�UðaÞ;U0ðaÞih: (3.7)

At the minimum

G0ðxt; bt; htÞ ¼ 0: (3.8)

We stipulate that the location of the weight must coincide

with the location of the minimum, i.e., bt ¼ ht, so that bt

must satisfy the implicit equation

Gðxt; btÞ :¼ G0ðxt; bt; btÞ ¼ 0: (3.9)

It will be seen that, up to a stopping time s, there exists a

unique continuous solution to the above equation. Define

Mðz; aÞ 2 R according to

Mðz; aÞ :¼ 1

2

@Gðz; aÞ
@a

¼ 1

2

@G0ðz; a; hÞ
@a

����
h¼a

þ 1

2

@G0ðz; a; hÞ
@h

����
h¼a

¼M0 � hz� UðaÞ;U00ðaÞia

� z� UðaÞ; d

da
PðaÞP>ðaÞ
� ��1
n o

U0ðaÞ
� �

:

(3.10)

Assume that initially Mðu0; b0Þ > 0. We then seek a PDMP

for bt that holds for all times less than the stopping time s
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s ¼ inffs 	 0 : Mðus; bsÞ ¼ 0g: (3.11)

The implicit function theorem guarantees that a unique con-

tinuous bt exists until this time.

In order to derive the PDMP for bt, we consider the

equation

dGt

dt
� dGðxt; btÞ

dt
¼ 0; t 2 T ; (3.12)

with xt evolving according to the PDMP (2.1). From the defi-

nition of Gðxt; btÞ, it follows that

0 ¼ �2
dxt

dt
;U0ðbtÞ

� �
bt

þ @Gt

@a

����
a¼bt

dbt

dt
; t 2 T : (3.13)

Rearranging, we find that the phase bt evolves according to

the exact, but implicit, PDMP

dbt

dt
¼Mðxt; btÞ�1hFnðxtÞ;U0ðbtÞibt

; (3.14)

with n ¼ nj for t 2 ðtj; tjþ1Þ: Finally, recalling that the

amplitude term vt satisfies
ffiffi
�
p

vt ¼ xt � Ubt
, we have

ffiffi
�
p dvt

dt
¼dxt

dt
�U0ðbtÞ

dbt

dt

¼FnðxtÞ�Mðxt;btÞ�1U0ðbtÞhFnðxtÞ;U0ðbtÞibt
: (3.15)

C. Weak noise limit

Equation (3.14) is a rigorous, exact implicit equation for

the phase bt. We can derive an explicit equation for bt by

carrying out a perturbation analysis in the weak noise limit,

which we refer to as a linear phase approximation. Let

0 < �� 1 and set xt ¼ UðbtÞ on the right-hand side of

(3.14), that is, vt¼ 0. Writing bt � ht, we have the piecewise

deterministic phase equation

dht

dt
¼ ZnðhtÞ :¼M

�1
0 hFnðUðhtÞÞ;U0ðhtÞih;

¼M
�1
0 hPðhtÞ�1FnðUðhtÞÞ;P�1ðhtÞU0ðhtÞi;

¼M
�1
0 hFnðUðhtÞÞ; ðPðhtÞPðhtÞ>Þ�1U0ðhtÞi;

¼ hFnðUðhtÞÞ;RðhtÞi; n¼ nj for t 2 ðtj; tjþ1Þ;

¼ x0þ hFnðUðhtÞÞ � �FðUðhtÞÞ;RðhtÞi;

(3.16)

after using MðUðhÞ; hÞ ¼M0 and Eq. (3.4). The last line fol-

lows from the observation

h �FðUðhÞÞ;RðhÞi ¼ x0hU0ðhÞ;RðhÞi
¼ x0M

�1
0 kU0ðhÞk

2
h ¼ x0:

Hence, a phase reduction of the PDMP (2.1) yields a PDMP

for the phase ht. Of course, analogous to the phase reduction

of SDEs, there are errors due to the fact we have ignored

Oð�Þ terms arising from amplitude-phase coupling, see

below. As we show numerically in Sec. IV, this leads to

deviations of the phase ht from the exact variational phase bt

over Oð1=�Þ timescales. Finally, note that we could now

apply a QSS approximation to the phase PDMP (3.16),

which would recover the phase SDE (2.21), at least to lead-

ing order in the drift.

D. Coupling to the amplitude v

Although neglecting the coupling between the phase and

amplitude dynamics by setting vt¼ 0 yields a closed equation

for the phase, it can lead to imprecision at short and interme-

diate times. Here, we show that taking into account the

amplitude coupling only results in Oð�Þ contributions to the

drift, not O
ffiffi
�
p� �

. First, setting

<ðvt; btÞ ¼MðUðbtÞ þ
ffiffi
�
p

vt; btÞ�1;

and using Eq. (3.10) gives

<ðvt; btÞ ¼
�
M0 �

ffiffi
�
p
hvt;U

00ðbtÞibt

�
ffiffi
�
p �

vt;
d

da
PðaÞP>ðaÞ�1
h i����

a¼bt

U0ðbtÞ
���1

:

Let us define

Hnðv; hÞ ¼ <ðv; hÞhFnðUðhÞ þ
ffiffi
�
p

vÞ;U0ðhÞi: (3.17)

In the phase equation (3.16), we set v¼ 0 and used

Hnð0; hÞ ¼ hFnðUðhÞÞ;RðhÞi ¼ HnðhÞ:

Suppose that we now include higher-order terms by Taylor

expanding Hnðv; hÞ with respect to v. In particular, consider

the first derivative

@H

@v
ð0; hÞ � v ¼

ffiffi
�
p

M
�1
0 hJnðhÞ � v;U0ðhÞih þ

ffiffi
�
p

M
�2
0 hFnðUðhÞÞ;U0ðhÞih hv;U00ðhÞih þ v;

d

da
PðaÞP>ðaÞ�1
h i���

a¼h
U0ðhÞ

� �� 


¼
ffiffi
�
p

M
�1
0 hJnðhÞ � v;U0ðhÞih þ

ffiffi
�
p

M
�2
0 hFnðUðhÞÞ;U0ðhÞih

d

dh
hv;U0ðhÞih;

¼
ffiffi
�
p

M
�1
0 h�JðhÞ � v;U0ðhÞih þ x0

d

dh
hv;U0ðhÞih

� 


þ
ffiffi
�
p

M
�1
0 JnðhÞ � �JðhÞ
� �

� v;U0ðhÞ
� �

h þ
ffiffi
�
p

M
�2
0 FnðUðhÞÞ � �FðUðhÞÞ

� �
;U0ðhÞ

� �
h

d

dh
hv;U0ðhÞih;
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with Jn;jkðUÞ � @Fn;j

@xk
jx¼U: We have used h �FðUðhÞÞ;U0ðhÞih

¼ x0M0. Next, we observe that

h�JðhÞ � v;U0ðhÞih ¼ hP�1ðhÞ�JðhÞ � v;P�1ðhÞU0ðhÞi

¼ h�JðhÞ � v; PðhÞP>ðhÞ
� ��1

U0ðhÞi
¼M0hv; �JðhÞ> � RðhÞi ¼ �x0M0hv;R0ðhÞi

¼ �x0 v;
d

dh
PðhÞP>ðhÞ
� ��1

U0ðhÞ
n o� �

¼ �x0

d

dh
hv;U0ðhÞih;

where we have used Eqs. (3.4) and (2.19). We thus have the

modified phase equation

dh
dt
¼ x0 þ FnðUðhÞÞÞ � �FðUðhÞÞ

� �
;RðhÞ

� �
þ

ffiffi
�
p

M
�1
0 JnðhÞ � �JðhÞ
� �

� v;U0ðhÞ
� �

h

þ
ffiffi
�
p

M
�2
0 FnðUðhÞÞ � �FðUðhÞÞ

� �
;U0ðhÞ

� �
h

� d

dh
v;U0ðhÞh ih: (3.18)

IV. EXAMPLE: STOCHASTIC MORRIS-LECAR MODEL

Deterministic, conductance-based models of a single

neuron such as the Hodgkin-Huxley model have been widely

used to understand the dynamical mechanisms underlying

membrane excitability.48 These models assume a large popu-

lation of ion channels so that their effect on membrane con-

ductance can be averaged. As a result, the average fraction

of open ion channels modulates the effective ion conduc-

tance, which in turn depends on voltage. It is often conve-

nient to consider a simplified planar model of a neuron,

which tracks the membrane voltage v and a recovery variable

w that represents the fraction of open potassium channels.

The advantage of a two-dimensional model is that one can

use phase-plane analysis to develop a geometric picture of

neuronal spiking. One well-known example is the Morris-

Lecar (ML) model.49 Although this model was originally

developed to model Ca2þ spikes in molluscs, it has been

widely used to study neural excitability for Naþ spikes,48

since it exhibits many of the same bifurcation scenarios as

more complex models. The ML model has also been used to

investigate subthreshold membrane potential oscillations

(STOs) due to persistent Naþ currents.28,50 For the sake of

illustration, we will consider the latter application in this sec-

tion, following along similar lines to Ref. 28.

Another advantage of the ML model is that it is straight-

forward to incorporate intrinsic channel noise.6,10,12 In order

to capture the fluctuations in membrane potential from sto-

chastic switching in voltage-gated ion channels, the resulting

model includes both discrete jump processes (to represent

the opening and closing of Naþ ion channels) and a two-

dimensional continuous-time piecewise process (to represent

the membrane potential and recovery variable w). We thus

have an explicit example of a PDMP.

A. Deterministic model

First, consider a deterministic version of the ML

model49 consisting of a persistent sodium current (Naþ), a

slow potassium current (Kþ), a leak current (L), and an

applied current (Iapp). For simplicity, each ion channel is

treated as a two-state system that switches between an

open and a closed state—the more detailed subunit structure

of ion channels is neglected.7 The membrane voltage v
evolves as

dv

dt
¼ a1ðvÞfNaðvÞ þ wfKðvÞ þ fLðvÞ þ Iapp

dw

dt
¼ ð1� wÞaKðvÞ � wbK;

(4.1)

where w is the Kþ gating variable. It is assumed that Naþ

channels are in quasi-steady state a1ðvÞ, thus eliminating

Naþ as a variable. For i ¼ K;Na; L, let fi ¼ giðVi � vÞ, where

gi are ion conductances and Vi are reversal potentials.

Opening and closing rates of ion channels depend only on

membrane potential v are represented by a and b, respec-

tively, so that

a1ðvÞ ¼
aNaðvÞ

aNaðvÞ þ bNaðvÞ
: (4.2)

For concreteness, take

aiðvÞ ¼ bi exp
2ðv� vi;1Þ

vi;2

 !
i ¼ K;Na; (4.3)

with bi; vi;1; vi;2 constant. Parameters are chosen such that

stable oscillations arise for sufficient values of the applied

current via a supercritical Hopf bifurcation [see Fig. 2(a)].

This corresponds well to observed behavior of STOs and is

not meant to function as a traditional spiking neuron model.

Limit cycles in a traditional spiking model often appear via a

subcritical Hopf bifurcation. Figures 2(b) and 2(c) show the

phase plane of the deterministic system; here, one can see

how oscillations arise in the membrane potential v(t) as the

applied current is increased.

B. Stochastic model

The deterministic ML model holds under the assumption

that the number of ion channels is very large; thus, the ion

channel activation can be approximated by the average ionic

currents. However, it is known that channel noise does affect

membrane potential fluctuations (and thus neural function).51

In order to account for ion channel fluctuations, we consider

a stochastic version of the ML model,6,10 in which the num-

ber N of Naþ channels is taken to be relatively small. (For

simplicity, we ignore fluctuations in the Kþ channels.) Let

n(t) be the number of open Naþ channels at time t, which

means that there are N � nðtÞ closed channels. The voltage

and recovery variables then evolve according to the follow-

ing PDMP:
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dv

dt
¼ n

N
fNaðvÞfNaðvÞ þ wfKðvÞ þ fLðvÞ þ Iapp;

dw

dt
¼ ð1� wÞaKðvÞ � wbK:

(4.4)

Suppose that individual channels switch between open (O)

and closed (C) states via a two-state Markov chain

C
bNa=�
 ����!aNaðvÞ=�

O: (4.5)

It follows that at the population level, the number of open

ion channels evolves according to a birth-death process with

n! n� 1 x�n ðvÞ ¼ nbNa;

n! nþ 1 xþn ðvÞ ¼ ðN � nÞaNaðvÞ:
(4.6)

Note that we have introduced the small parameter � in order

to reflect the fact that Naþ channels open and close much

faster than the relaxation dynamics of the system (v, w). The

stationary density of the birth-death process is

qnðvÞ ¼
N!

n!ðN � nÞ!
an

NaðvÞb
ðN�nÞ
Na

ðaNaðvÞ þ bNaÞN
: (4.7)

The corresponding CK equation is

@Pn

@t
¼ � @

@v

n

N
fNaðvÞ þ wfKðvÞ þ fLðvÞ þ Iapp

� �
Pnðv;w; tÞ

� 


� @

@w
ð1� wÞaKðvÞ � wbKð ÞPnðv;w; tÞ½ 


þ 1

�
xþn�1ðvÞPn�1ðv;w; tÞ þ x�nþ1ðvÞPnþ1ðv;w; tÞ
� �

� 1

�
ðxþn ðvÞ þ x�n ðvÞÞPnðv;w; tÞ
� �

:

(4.8)

Comparison with the general CK equation (2.6) shows that

x ¼ ðv;wÞ; r ¼ ð@v; @wÞ>

Fnðv;wÞ :¼
fnðv;wÞ
f ðv;wÞ

 !

¼
nfNaðvÞ=N þ wfKðvÞ þ fLðvÞ þ Iapp

ð1� wÞaKðvÞ � wbK

 !
;

and A is the tridiagonal generator matrix of the birth-death

process.

In Figs. 3 and 4, we show results of numerical simula-

tions for N ¼ 10; � ¼ 0:01 and N ¼ 10; � ¼ 0:001, respec-

tively. In both figures, we compare solutions of the explicit

phase equation (3.16) with the exact phase defined using the

FIG. 2. (a) Bifurcation diagram of the

deterministic model. As Iapp is increased,

the system undergoes a supercritical

Hopf bifurcation (H) at I
app ¼ 183,

which leads to the generation of stable

oscillations. The maximum and mini-

mum values of oscillations are plotted as

black (solid) curves. Oscillations disap-

pear via another supercritical Hopf

bifurcation. (b) and (c) Phase plane dia-

grams of the deterministic model for (b)

Iapp ¼ 170 pA (below the Hopf bifurca-

tion point) and (c) Iapp ¼ 190 pA (above

the Hopf bifurcation point). The red

(dashed) curve is the w-nullcline and the

solid (gray) curve represents the v-

nullcline. (d) and (e) Corresponding

voltage time courses. Sodium parame-
ters: gNa¼ 4.4 mS, VNa¼ 55 mV,

bNa¼ 100 ms�1, vn,1¼�1.2 mV, and

vn,2¼ 18 mV. Leak parameters: gL¼ 2

mS and VL¼ –60 mV. Potassium
parameters: gK¼ 8 mS, VK¼ –84 mV,

bK¼ 0.35 ms�1, vk,1¼ 2 mV, and

vk,2¼ 30 mV.
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variational principle [see Eq. (3.14)]. We also show the sam-

ple trajectories for (v, w). It can be seen that initially the

phases are very close, and then very slowly drift apart as

noise accumulates. The diffusive nature of the drift in both

phases can be clearly seen, with the typical deviation of the

phase from x0t increasing in time.

V. BOUNDING THE NORM OF THE AMPLITUDE TERM

In this section, we obtain a bound for the probability of

the difference in amplitude exceeding a certain threshold.

That is, we show that there are positive constants C; a0, such

that for all a � a0 and a0 sufficiently small

Pðsa � TÞ � T exp �Ca

�

� �
; (5.1)

where

sa ¼ infft : xt 62 Uag; Ua ¼ fu 2 Rd : ku� UðaÞka � ag;

and in the above a is the variational phase of u, satisfying

Gðu; a; aÞ ¼ 0 [as in (3.9)]. We assume that initially

kxt � Uðb0Þkb0
� a=2. Here, Pðsa � TÞ is the probability

that xt leaves the neighborhood Ua of the limit cycle over a

time interval of length T. Note that a0 is independent of � but

depends on the rate b of attraction to the limit cycle.

FIG. 3. We simulate the stochastic

Morris-Lecar model with N¼ 10 and

�¼ 0.01. (a) and (b) Plot of the linear-

ized phase ht – tx0 in green, and the

exact variational phase [satisfying

(3.9)] bt – tx0 in black. On the scale

[–p, p], the two phases are in strong

agreement. However, zooming in one

can see the phases slowly drift apart as

noise accumulates. The diffusive

nature of the drift in both phases can

be clearly seen, with the typical devia-

tion of the phase from x0t increasing

in time. (b) Stochastic trajectory

around limit cycle (dashed curve) in

the v and w-plane. The stable attractor

of the deterministic limit cycle is quite

large, which is why the system can tol-

erate quite substantial stochastic per-

turbations. (c) and (d) Corresponding

time variations in v (black) and

w (gray).

FIG. 4. Same as Fig. 3 except that

�¼ 0.001.
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We proceed by first deriving an exact PDMP for the

dynamics of kxt � UðbtÞkbt
(Sec. V A). Then in Sec. V B, we

obtain a bound for the probability that the maximum of

kxt � UðbtÞkbt
between successive jumps exceeds ga=2 with

g < 1. (For concreteness, we take g ¼ 1=4.) This yields a

bound with the same asymptotic order as the right-hand side

of Eq. (5.1). However, it is still possible for xt to leave the

domain Ua due to the accumulative effects of multiple

jumps. In Sec. V C and Appendixes C-E, we obtain exponen-

tial bounds on the probability of this occurring, which

depend on both b and a, thus establishing that if a is suffi-

ciently small, then Eq. (5.1) holds. The bounds on the

accumulative growth of the amplitude are derived by decom-

posing the growth of kxt � UðbtÞkbt
into the sum of several

terms, which we bound individually. More precisely, over

the time interval ½tj; tjþ1
, we take a linear (in the time differ-

ence tjþ1 � tj) approximation to the dynamics of xt. To lead-

ing order, the dynamics of xt decomposes into the sum of a

deterministic part plus a piecewise-constant stochastic part.

The deterministic part is stabilizing once kxt � UðbtÞkbt

	 a=2, due to the assumed linear stability of the limit cycle.

We then show that over timescales of Oðb�1Þ, if the fluctua-

tions remain below O(a), then they will always be dominated

by the stabilizing effect of the deterministic component.

For ease of exposition, we take the generator A of the

discrete Markov chain to be independent of x. However, it is

possible to extend the analysis to the case of x-dependent

rates, as in the case of the Morris-Lecar model.

A. Derivation of PDMP for norm of amplitude term

Let

wt ¼ PðbtÞ�1ðxt � UðbtÞÞ: (5.2)

We are going to see that wt decays towards the limit cycle

(to leading order). This is a key reason why we chose the

weighted norm k � kbt
to define the phase. Differentiating

with respect to t and using Eq. (B4) gives

dwt

dt
¼

_bt

x0

Swt � PðbtÞ�1JðbtÞðxt � UðbtÞÞ
n

�x0PðbtÞ�1U0ðbtÞ
o
þ PðbtÞ�1FnðxtÞ; (5.3)

where S ¼ diagð�1;…; �dÞ with �j the Floquet characteristic

exponents (see Sec. III). Combining this with Eq. (3.14)

shows that

dwt

dt
¼ Swt þ Fðbt; xtÞ þGðFnðxtÞ � �FðxtÞ; bt; xtÞ;

where

Fðbt; xtÞ ¼ PðbtÞ�1 �FðxtÞ
�Mðxt; btÞ�1x�1

0 h �FðxtÞ;U0ðbtÞiPðbtÞ�1

� fU0ðbtÞ þ JðbtÞðxt � UðbtÞÞg
þfMðxt; btÞ�1x�1

0 h �FðxtÞ;U0ðbtÞi � 1gSwt

and

GðKnðxtÞ; bt; xtÞ ¼ x�1
0 Mðxt; btÞ�1hKnðxtÞ;U0ðbtÞibt

� fSwt � PðbtÞ�1JðbtÞðxt � UðbtÞÞ
�x0PðbtÞ�1U0ðbtÞg þ PðbtÞ�1Knðx; tÞ:

This means that

dkwtk2

dt
¼ 2hwt;Swt þ Fðbt; xtÞ

þGðFnðxtÞ � �FðxtÞ; bt; xtÞi:

Taking square roots,

dkwtk
dt
¼ kwtk�1hwt;Swt þ Fðbt; xtÞ

þGðFnðxtÞ � �FðxtÞ; bt; xtÞi:

It should be noted that the above PDMP is well-defined

in the limit as kwtk ! 0, since by the Cauchy-Schwarz

Inequality

jhwt;Swt þ Fðbt; xtÞ þGðFnðxtÞ � �FðxtÞ; bt; xtÞij
� kwtkk�Swt þ Fðbt; xtÞ þGðFnðxtÞ � �FðxtÞ; bt; xtÞk:

Now, by definition of bt, hwt;PðbtÞ�1U0ðbtÞi ¼ 0. Since, by

assumption, hu;Sui � �ðb=x0Þkuk2
for all vectors u such

that hu;PðaÞ�1U0ðaÞi ¼ 0 (where a is the variational phase

of u), we find that

dkwtk
dt
� �bkwtk þ kwtk�1hwt;Fðbt; xtÞ

þGðFnðxtÞ � �FðxtÞ; bt; xtÞi:

B. Bounding fluctuations in kwtk between successive
jumps

Our first step is to bound the fluctuations of kwtk
between successive jumps, which occur at times tj, j 	 0. Let

CL ¼ sup
x2Ua;n2C

fkwk�1jhw;Swþ Fðb; xÞ

þGðFnðxÞ � �FðxÞ; b; xÞijg;

where b is the variational phase corresponding to x, and w is

the remainder term. It is straightforward to show that

CL <1. Let

ŝa ¼ inf tj : tjþ1 � tj 	
a

8CL

� �
: (5.4)

It follows from this definition that for all tj � sa and

tj�1 � ŝ,

sup
t2 tj�1;tj½ 


jkwtk � kwtj�1
kj � a

8
: (5.5)

Now since the length of the interval between successive

jumps is distributed in a Poissonian manner, we have the fol-

lowing bound for the conditional probability:
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P tjþ1 � tj 	
a

8CL

����nðtjÞ ¼ m

 !
� exp � akm

8CL�

� �
;

where km is the rate of the exponential density of switching

times form the discrete state m [see Eq. (2.3)]. By assump-

tion, infm2C km > 0. We thus see that there exists a positive

constant C such that the conditional probability has the uni-

form bound

P tjþ1 � tj 	
a

8CL

���� nðtjÞ ¼ m

 !
� exp �Ca

�

� �
: (5.6)

Now define J to be the typical number of jumps that occur

over the time interval T, i.e.,

J ¼ T

�

X
m2C

qmkm

$ %
: (5.7)

We thus find that

P For some j � J ; tjþ1 � tj 	
a

8CL

� �
� J exp �Ca

�

� �

� T exp �Ca

2�

� �
;

(5.8)

for � sufficiently small. (We have absorbed other constant

factors into C.) We have thus shown that

Pðŝa � TÞ � T exp �Ca

�

� �
: (5.9)

In order to prove Eq. (5.1), we can now proceed by

determining bounds for Pðsa � TÞ given that T � ŝa and

then show that these bounds are weaker than the right-hand

side of Eq. (5.1) when a is sufficiently small. In other words,

having looked at changes in kwtk between successive jumps,

we turn to the accumulative changes in kwtjk over a sequence

of jumps.

C. Bounding the probability of xt leaving Ua

In the following, we assume that t 2 ½0; T
 with

T � ŝa. We will show that when xt 2 Ua, the determinis-

tic component of the dynamics of kwtk is dominated by

the first term i.e., kwtk�1hwt;Swti, which is stabilizing.

Our analysis will centre on the times when kwtk 2 ½a2 ; a
.
We can do this because, by the intermediate value theo-

rem, if xt 62 Ua, then immediately prior to leaving Ua, it

must be such that kwtk 2 ½a2 ; a
. The reason why we insist

on a lower bound for kwtk of a=2 is that we require that,

with very high probability, the linear decay is suffi-

ciently great to dominate the fluctuations due to the

switching. It should be noted that our choice of a=2

for the lower bound is not particularly necessary: one

could have for example chosen a=X for any real X and

obtained comparable results.

Let

uj ¼ ðtjþ1 � tjÞkwtk�1hwtj ;GðFnj
ðxtjÞ � �FðxtjÞ; btj ; xtjÞi:

We make the decomposition

kwtkþm
k�kwtkk¼

Xkþm

j¼k

ðujþðdtjÞ2CjÞ

þ
ðtkþm

tk

kwtk�1ðhwt;Swtiþhwt;Fðbt;xtÞiÞdt

�
Xkþm

j¼k

ðujþðdtjÞ2CjÞ

þ
ðtkþm

tk

ð�bkwtkþkwtk�1hwt;Fðbt;xtÞiÞdt:

(5.10)

Here, Cj is by definition the remainder term for the switching

part of kwtk. Through Taylor’s Theorem

Cj ¼
1

2

@

@t
kwtk�1hwt;GðFnðxtÞ � �FðxtÞ; bt; xtÞi
n o����

t¼�tj

;

for some �tj 2 ½tj; tjþ1
. Now let

�CL ¼
1

2
sup

xt2Ua

@

@t
kwtk�1hwt;GðFnðxtÞ � �FðxtÞ; bt; xtÞi
n o����:

����
Now as long as for all t � tkþm; xt 2 Ua,

jCjj � �CL:

This means that, as long as tkþm � sa

kwtkþm
k � kwtkk �

Xkþm

j¼k

ðuj þ ðdtjÞ2 �CLÞ

þ
ðtkþm

tk

ð�bkwtk þ kwtk�1hwt;Fðbt; xtÞiÞdt: (5.11)

In Appendixes C-E, we obtain bounds on each of the individ-

ual terms on the right-hand side of Eq. (5.11), and thus estab-

lish that if T � ŝa then

Pðsa � TÞ � OðT exp ð� ~Cba2��1Þ; T exp ð�Ĉb��1ÞÞ;

for constants ~C; Ĉ. These bounds will be smaller than the

bound of Eq. (5.1) if b is sufficiently large.

VI. DISCUSSION

In summary, we have presented the first systematic phase

reduction of stochastic hybrid oscillators (PDMPs that support

a stable limit cycle in the adiabatic limit). In particular, we

adapted a variational principle previously developed for

SDEs39 in order to derive an exact stochastic phase equation,

which takes the form of an implicit PDMP. Moreover, we

showed how the latter can be converted to an explicit PDMP

for the phase by performing a perturbation expansion in � (lin-

ear phase approximation), see Eq. (3.16), and that the phase
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decouples from the amplitude to leading order. The phase

equation (3.16) is in a form consistent with the idea that in the

fast switching regime (small �), one can treat FnðxÞ � �FðxÞ as

a small stochastic perturbation of the limit cycle, and thus

determine the phase dynamics by projecting the perturbation

on to the phase resetting curve RðhÞ. Although the linear

phase approximation yields an accurate approximation of the

exact variational phase over a single cycle, it slowly diffuses

away from the latter over longer time-scales due to the effects

of higher order terms that couple the amplitude and phase.

More significantly, as with SDEs, the variational formu-

lation itself ultimately breaks down over sufficiently long

time-scales, since there is a non-zero probability of leaving a

bounded neighborhood of the limit cycle, and the notion of

phase no longer makes sense. Hence, it is important to obtain

estimates for the probability of escape over a time interval of

length T, and how it depends on �, the size a of the neighbor-

hood, and the rate b of attraction to the limit cycle. In light

of this, we used probabilistic methods to establish that for

a constant C, and all a � a0 (a0 being a constant independent

of �), the probability that the time to leave an O(a) neighbor-

hood of the limit cycle is less than T scales as

T exp ð�Ca=�Þ. This result differs significantly from the cor-

responding bound for SDEs. More precisely, our analysis in

Ref. 39 demonstrated that the SDE system stays close to the

limit cycle for a very long time if b��1 is very large: i.e., as

long as the rate of attraction to the limit cycle dominates the

magnitude of the noise. However, by contrast, with a switch-

ing PDMP oscillator, if b��1 is large, but � 	 Oð1Þ, then the

oscillator will in most cases leave any neighborhood of the

limit cycle relatively quickly. This is because if � 	 Oð1Þ,
then it will typically avoid switching for times of O(1) or

greater, and so the system will not ‘feel’ the stabilizing effect

of the averaged system and over this time period can leave

the attracting neighborhood of the limit cycle.

Having established a framework for deriving phase

equations for stochastic hybrid oscillators, it should now be

possible to investigate the synchronization of populations of

uncoupled hybrid oscillators subject to common noise. Such

noise could either be due to some common external fluctuat-

ing input, such as Iapp in the Morris-Lecar model, or a ran-

domly switching environment in which the discrete variable

N(t) is common to all the oscillators. Moreover, the probabil-

istic approach used to derive exponential bounds on the

probability of large transverse fluctuations can be extended

to obtain precise bounds on the probability of two synchro-

nized oscillators desynchronizing, and conditions under

which two oscillators never desynchronize.

Finally, although we have illustrated our theory using

the example of the stochastic Morris-Lecar model of a point

neuron with stochastic ion channels, there are several other

potential application domains. One notable example is a

gene regulatory network with dual feedback, which arises

in experimental synthetic biology.52 This consists of two

genes, one whose protein (araC) acts as an activator of both

genes and one whose protein (lacI) acts as a repressor of

both genes, see Fig. 5(a). This engineered network gener-

ates robust oscillations in Escherichia coli. Moreover,

mathematical modeling of the network has shown that oscil-

lations occur in both the adiabatic and nonadiabatic

regimes.26 One could also consider a simplified version of

the model, by taking the pair of genes to share a single pro-

moter site that can be occupied by either activator proteins

or repressor proteins but not both, see Fig. 5(b)—the full

model has two promoter sites per gene. In either case, if the

number of protein molecules is sufficiently large, then the

stochastic dynamics evolves according to a PDMP in which

protein numbers are the continuous variables, whereas as

the states of the promoters are the discrete switching

variables.
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APPENDIX A: QSS REDUCTION

The basic steps of the QSS reduction are as follows:

(a) Decompose the probability density as

pnðx; tÞ ¼ Cðx; tÞqnðxÞ þ �wnðx; tÞ;

where
P

npnðx; tÞ ¼ Cðx; tÞ and
P

nwnðx; tÞ ¼ 0.

Substituting into Eq. (2.5) yields

qnðxÞ
@C

@t
þ � @wn

@t
¼ �r � FnðxÞ qnðxÞCþ �wn½ 
ð Þ

þ 1

�

X
m2C

AnmðxÞ qmðxÞCþ �wm½ 
:

Summing both sides with respect to n then gives

@C

@t
¼ �r � �FðxÞC

� �
� �
X
n2C
r � FnðxÞwn½ 
: (A1)

(b) Using the equation for C and the fact thatP
m2CAnmðxÞqmðxÞ ¼ 0, we have

�
@wn

@t
¼
X
m2C

AnmðxÞwm�r� FnðxÞqnðxÞC½ 
þqnðxÞr� �FðxÞC
� �

�� r� FnðxÞxnð Þ�qnðxÞ
X
m2C
r� FmðxÞwm½ 


� 

:

FIG. 5. Dual-feedback gene regulatory

network. (a) Two promoter sites. (b)

One promoter site.
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(c) Introduce the asymptotic expansion

wn � wð0Þn þ �wð1Þn þ �2wð2Þn þ � � �

and collect O(1) termsX
m2C

AnmðxÞwð0Þm ¼ r � qnðxÞFnðxÞCðx; tÞ½ 


� qnðxÞr � �FðxÞC
� �

:

The Fredholm alternative theorem show that this has a

solution, which is unique on imposing the conditionP
nwð0Þn ðx; tÞ ¼ 0

wð0Þm ðxÞ ¼
X
n2C

A†
mnðxÞ r � qnðxÞFnðxÞCðx; tÞ½ 
ð

�qnðxÞr � �FðxÞC
� ��

: (A2)

where A† is the pseudo-inverse of the generator A.

(d) Combining Eqs. (A2) and (A1) shows that C evolves

according to the Fokker-Planck (FP) equation

@C

@t
¼ �r � �FðxÞC

� �
� �

X
n;m2C

A†
nmqmr

� FnðxÞr � FmðxÞ � �FðxÞ
� �

C
� �

Þ: (A3)

This can be converted to an Ito FP according to

@C

@t
¼ �r � �FðxÞC

� �
þ �r �

X
n;m

ðqnFnÞr � ðFmA†
mnÞ

	

� �Fr � ðFmA†
mnqnÞ



Cþ �

Xd

i;j¼1

@2DijðxÞC
@xi@xj

; (A4)

where

DijðxÞ ¼
X

m;n2C
Fm;iðxÞA†

mnðxÞqnðxÞ �FjðxÞ � Fn;jðxÞ
� �

: (A5)

Using the fact that
P

mA†
mn ¼ 0 and dropping the Oð�Þ cor-

rection to the drift finally yields Eq. (2.10b). Note that one

typically has to determine the pseudo-inverse of A

numerically.

For the sake of illustration, we write down the Ito FP

equation for Cðv;w; tÞ ¼
PN

n¼0 pnðv;w; tÞ in the case of the

stochastic Morris-Lecar model introduced in Sec. IV B (see

also Ref. 28)

@C

@t
¼ � @

@v
fnðv;wÞC½ 
 � @

@w
f ðv;wÞC½ 


� � @
@v
Vðv;wÞC½ 
 þ � @

2DðvÞC
@v2

; (A6)

with

V ¼
X
m;n

�f ðv;wÞ @
@v
ðqnðvÞA†

mnðvÞfmðv;wÞ
�

�qnðvÞfnðv;wÞ
@

@v
ðA†

mnðvÞfmðv;wÞÞ
�

(A7a)

and

D ¼
X
m;n

fmðv;wÞ � �f ðv;wÞÞ
� �

A†
mnðvÞqnðvÞ �f ðv;wÞ � fnðv;wÞ

� �

¼
X
m;n

m� hmi
N

fNaðvÞ
� 


A†
mnðvÞqnðvÞ

hni � n

N
fNaðvÞ

� 


¼ 1

N
fNaðvÞ2a1ðvÞ 1� a1ðvÞ½ 
2:

(A7b)

The last line follows from a calculation in Ref. 6.

APPENDIX B: ADJOINT EQUATION FOR THE PHASE
RESETTING CURVE

Suppose that RðhÞ is related to the tangent vector U0ðhÞ
according to Eq. (3.4). We will show that RðhÞ then satisfies

the adjoint Eq. (2.19) for the PRC. Differentiating both sides

of Eq. (3.4) with respect to h, we have

M
0P>RþMPTR0 þMðP>Þ0R ¼ P�1U00 þ ðP�1Þ0U0; (B1)

with

M
0 ¼ 2hP�1U00 þ ðP�1Þ0U0;P�1U0i:

Next, differentiating Eq. (3.3) gives

x0P0ðhÞ ¼ �JðhÞPðhÞ � PðhÞS; (B2)

where again S ¼ diagð�1;…; �dÞ with �j the Floquet charac-

teristic exponents, which implies that

x0ðP>ðhÞÞ0 ¼ P>ðhÞ�J>ðhÞ � SP>ðhÞ (B3)

and

x0ðP�1ðhÞÞ0 ¼ �P�1ðhÞ�JðhÞ þ SP�1ðhÞ: (B4)

We have used the fact that S is a diagonal matrix and

P�1P0 þ ðP�1Þ0P ¼ 0 for any square matrix. Substituting

these identities in Eq. (B1) yields

M
0P>RþMPTðR0 þ x�1

0
�J
>

RÞ � x�1
0 MSP>R

¼ P�1 U00 � x�1
0

�JU0
� �

þ x�1
0 SP�1U0

and

M
0 ¼ hP�1 U00 � x�1

0
�JU0

� �
þ x�1

0 SP�1U0;P�1U0i:

Now note that U0 satisfies Eq. (2.15) and SP�1U0 ¼ 0. The

latter follows from the condition PðhÞ�1U0ðhÞ ¼ e and

Se ¼ �1 ¼ 0. It also holds that M0ðhÞ ¼ 0. (In fact, for the

specific choice of PðhÞ, we have MðhÞ ¼M0 ¼ c2
0he; ei

¼ c2
0.) Finally, from the definition of RðhÞ, Eq. (3.4), we

deduce that SP>ðhÞRðhÞ ¼ 0 and hence

M0PTðR0 þ x�1
0

�J
>

RÞ ¼ 0: (B5)

Since PTðhÞ is non-singular for all h, R satisfies the adjoint

Eq. (2.19) together with the normalization condition (2.20).

Hence, RðhÞ can be identified as the classical PRC.46,47
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APPENDIX C: BOUNDING THE PROBABILITY P(sa £ T )
(PART I)

In this appendix, we set up the basic framework for

deriving bounds on Pðsa � TÞ given that T � ŝa. The actual

bounds are derived in Appendixes D and E. For a positive

constant C (that can be inferred from the following analysis),

let k ¼ b exp ðCb��1Þc 2 Zþ and define T ¼ k=2b. (Here, the

floor function bxc denotes the greatest integer less than or

equal to x.) For the constant Mb defined further below in

(C2), we outline a set of events fAm
k g1�k�k;1�m�Mb

and

fBkg1�k�k, such that if they all hold, and ŝa 	 T, then

necessarily

sa 	 T: (C1)

This will mean that, if we can show that for some positive

constant C2

PððAm
k Þ

cÞ � exp ð�C2ba��1Þ;
PðBc

kÞ � exp ð�C2b��1Þ;

then

Pðsa � TÞ �
Xk
k¼1

PðBc
kÞ þ

XMb

m¼1

PððAm
k Þ

cÞ
" #

;

� Oð��1T exp ð�C2ba��1Þ; T exp ð�C2b��1ÞÞ:

(Here, Ac is the complementary set of A so that PðAcÞ is

the probability that the event A has not occurred.)

We now define the events Am
k and Bk, and afterwards

we will explain why [kk¼1 [
Mb

m¼1 A
m
k and [kk¼1Bk ensures that

sa 	 T. We are going to define Am
k to be a set of events that

hold over timescales of Oðb�1Þ: over this timescale, the sta-

bilizing decay due to the term
Ð tþb�1

t �bkwskds dominates

the typical fluctuations due to the switching. Thus, we define

Mb to be the typical number of jumps that occur over time

intervals of size b�1, i.e.,

Mb ¼
1

b�

X
m2C

qmkm

$ %
: (C2)

We define Bk to be the set of events

tkþMb
� tk 	

1

2b
; (C3a)

�CL

XkþMb

j¼k

ðdtjÞ2 �
a

32
; (C3b)

sup
xt2Ua:kwtk2 a

2
;a½ 

kwtk�1hwt;Fðbt; xtÞi �

ba

16
; (C3c)

and we define Am
k to be the set of events

kwtkk 2
a

2
;
5a

8

� 

; (C4a)

kwtlk 	
a

2
for all k � l � k þ m; (C4b)

Xkþm

j¼k

uj �
3a

16
: (C4c)

We now explain why the union of the above events ensures

that (C1) holds. It suffices to show that if [kk¼1Bk holds, but

there exists t 2 ½0; T � ŝa
 such that

kwtk 	 a; (C5)

then necessarily there must exist k � k and m � Mb such that

ðAm
k Þ

c
holds.

Now, if (C5) holds, then it follows from (5.5) that there

must exist some tJ � t such that

kwtJk 	
7a

8
: (C6)

Let k ¼ max j < J : kwtjk 2 ½a2 ; 5a
8



n o
. k exists because suc-

cessive increments in kwtjk cannot differ by more than a=8,

thanks to (5.5). Suppose first that J � k > Mb. Since, by

assumption, Bk holds, it must be that tJ � tk >
1

2b. This means

that, writing l ¼ k þMbðtl

tk

ð�bkwtk þ kwtk�1hwt;Fðbt; xtÞiÞdt

<
1

2b
�b inf

t2 tk ;tl½ 

kwtk þ sup

t2 tk ;tl½ 

kwtk�1hwt;Fðbt; xtÞi

� �

� 1

2b
� ba

2
þ ba

16

� �
¼ �7a

32
:

It thus follows from (5.10) that

kwtlk < kwtkk þ
Xl

j¼k

uj þ ðdtjÞ2 �CL

� �
� 7a

32

� 5a

8
þ
Xl

j¼k

uj þ
a

32
� 7a

32
; (C7)

using the definition of Bk and the fact that kwtkk � 5a
8

.

However, from the definition of k, it must be that kwtlk > 5a
8

.

This means that Xl

j¼k

uj þ
a

32
� 7a

32
> 0;

which implies that
Pl

j¼k uj >
3a
16

. This means that ðAMb

k Þ
c

holds.

Now suppose that J � k � Mb, and, for a contradiction,

that Am
k holds. In this case, since [similarly to (C7)]ðt

tk

ð�bkwtk þ kwtk�1hwt;Fðbt; xtÞiÞdt < 0;

for all t 2 ½tk; tJ
,

kwtJk � kwtkk þ
Xl

j¼k

ðuj þ ðdtjÞ2 �CLÞ

� 5a

8
þ 3a

16
þ a

32
<

7a

8
:
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This contradicts our assumption that kwtJk 	 7a
8

. We thus

conclude that ðAm
k Þ

c
holds.

To summarize the above argument, we have shown that

if ŝa 	 T and the events [kk¼1 [
Mb

m¼1 A
m
k and [kk¼1Bk all hold,

then sa 	 T. It thus suffices for us to bound the probabilities

of each event in Am
k and Bk. In fact, the event (C3c) will

always hold, as long as ab is sufficiently small. This is for

the following reasons.

It has already been shown in Ref. 39 that, as long as

kxt � UðbtÞk is not too great (i.e., if a is sufficiently small)

Mðxt; btÞ�1x�1
0 h �FðxtÞ;U0ðbtÞi � 1 ¼ Oðkxt � UðbtÞk2Þ:

Since the matrix-norms of PðbtÞ and PðbtÞ�1
are uniformly

bounded for all bt, we find that

ðMðxt; btÞ�1x�1
0 h �FðxtÞ;U0ðbtÞi � 1ÞSwt ¼ Oðkwtk3Þ:

We also have that, since x0U
0ðbtÞ ¼ �FðUðbtÞÞ

Fðxt; btÞ ¼ PðbtÞ�1f �FðxtÞ � �FðUðbtÞÞ � JðbtÞðxt � UðbtÞÞg
þOðkwtk3ÞPðbtÞ�1f� �FðUðbtÞÞ
� JðbtÞðxt � UðbtÞÞg ¼ Oðkwtk2Þ;

through Taylor’s Theorem. This means that jhwt;Fðbt; xtÞij
� C3kwtk3

, for some constant C3.

Finally, note that

PððAm
k Þ

cÞ � P
Xkþm

j¼k

uj >
3a

16

0
@

1
A: (C8)

In Appendixes D and E, we derive the bound

sup
1�m�Mb

P
Xm

j¼1

uj 	
3a

16

 !
� exp � Ĉba2

�

� �
: (C9)

The proofs of (C3a) and (C3b) are similar and are omitted.

For (C3b), we would find that for a positive constant C
^

P �CL

XkþMb

j¼k

ðdtjÞ2 >
a

32

0
@

1
A � exp �C

^

a

�2

 !
;

which is of lower order than the other probabilities.

APPENDIX D: BOUNDING THE PROBABILITY P(sa £ T )
(PART II)

In this appendix, we show how to bound the probability

of
Pm

j¼1 uj exceeding 3a
16

. Let the scaled transition matrix be

~K, with elements ð~KnmÞn;m2C
~Knm ¼ Knm=km: (D1)

See Eq. (2.3). Let P be the Perron projection associated with
~K, i.e., P is the rank 1 matrix with the ith element of each

column equal to qiki=
P

a2C qaka. We have used the fact that

the dominant right eigenvector of ~K is the column of P,

and the dominant left eigenvector of ~K is ð1; 1;…; 1Þ. It is a

consequence of the Perron-Frobenius Theorem53 that for

some positive constant CW and c 2 ð0; 1Þ, for all p 2 Zþ

k~K
p �Pk � CWcp: (D2)

In many situations, CW and c can be quite optimal, such as

when the Markov Chain satisfies the Doeblin Condition or a

log-Sobolev Inequality. Refer to Ref. 53 for a more in-depth

discussion.

Write 3a
16
¼ z, and C ¼ 2C2

LC2
Wð1� cÞ�1

. We assume

that C2z2

�2 � 1. The main result that we prove in this section is

that for any positive integer R

P
Xm

j¼1

uj 	 z

 !
� 2

CR�2m

z2

� �R

: (D3)

Now by Chebyshev’s inequality

P
Xm

j¼1

uj 	 z

 !
� E

Xm

j¼1

uj

 !2R
2
4

3
5� ðzÞ�2R:

Using the result in Appendix E

E
Xm

j¼1

uj

 !2R
2
4

3
5 ¼ X

1�pi�2R

E up1
…upR½ 


� ð�2C2
WC2

Lmð1� cÞ�1ÞR

� 1� ð1� cÞ�1 R

m

� ��1 ð2RÞ!
R!

:

We use the (very crude) bound
ð2RÞ!

R! � ð2RÞR and we assume that

1� ð1� cÞ�1 R

m

� ��1

� 2:

Collecting the above bounds, we thus find that

P
Xm

j¼1

uj 	 z

 !
� 2

CR�2m

z2

� �R

; (D4)

where C ¼ 2C2
LC2

Wð1� cÞ�1
.

We can find the approximate R that optimizes the above

bound by differentiating (i.e., approximating R to be any real

number). Upon doing this, we find that the optimal R is

approximately given by

Rm ¼
z2

Ce�2m

� �
: (D5)

Hence, we find that

P
Xm

j¼1

uj 	 z

 !
� exp � z2

Ce�2m

� � !
; (D6)

which yields Eq. (D3). Technically, we must take C to be

greater than its defined value, to account for the loss of accuracy

due to Rm 2 Z. When we use this bound in Appendix C, m
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ranges from 1 to Mb ¼ O 1
b�

� �
. We thus find that, for some posi-

tive constant Ĉ that is independent of � and b, Eq. (C9) holds.

APPENDIX E: BOUNDING THE PROBABILITY P(sa £ T )
(PART III)

In the following lemma, we bound the expectation of

the sum
Pm

j¼1 uj raised to the power of 2R. This bound is the

key result needed to bound the probability in Appendix D.

This bound is useful in the regime m� R: in this regime the

expectation scales as Oð�2RmRÞ. The main result of this sec-

tion is as follows:X
1�pj�m

E up1
…up2R½ 
� �2C2

LmC2
Wð1�cÞ�1

� �R

� 1�ð1�cÞ�1 R

m

� ��1 ð2RÞ!
R!

: (E1)

It follows from a substitution of the definitions that, assum-

ing that pj 	 pj�1,

E up1
…upR½ 
 ¼ �2R

X
ai2C

~K
p2R�p2R�1

a2Ra2R�1

~K
p2R�1�p2R�2

a2R�1a2R�2

…~K
p2�p1

a2a1
~up2R
ða2RÞ~up2R�1

ða2R�1Þ…~up1
ða1Þqa1

;

(E2)

where ~K is the scaled transition matrix.

Now define

Xpjþ1;pj :¼ ~K
pjþ1�pj �P; (E3)

where we recall from Appendix D that P is the rank 1 matrix

with the ith element of each column equal to qiki=P
a2Cqaka. It follows that

E up1
…up2R½ 
 ¼ �2R

X2R

q¼0

Yq; (E4)

where Yq is the sum of terms of the formX
ai2C

Qð2RÞa2Ra2R�1
Qð2R� 1Þa2R�1a2R�2

…Qð1Þa2a1
~up2R
ða2RÞ~up2R�1

ða2R�1Þ…~up1
ða1Þqa1

;

and q of fQðjÞg are equal to P, and the rest of fQðjÞg are of

the form Xpjþ1;pj . Now Yq¼ 0 for all q>R. The reason for

this is that if q>R, then by the pigeon-hole principle there

must be some j such that QðjÞ ¼ Qðjþ 1Þ ¼ P. It then fol-

lows thatX
ai2C

Qð2RÞa2Ra2R�1
…QðjÞajaj�1

Qðj� 1Þaj�1aj�2

…Qð2Þa2a1
~up2R
ða2RÞ…~up1

ða1Þqa1
¼ g

X
ai2C

Qð2RÞa2Ra2R�1

…Qðjþ 2Þajþ2ajþ1
qajþ1

kajþ1
qaj

kaj
Qðj� 1Þaj�1aj�2

…Qð2Þa2a1
~up2R
ða2RÞ…~up1

ða1Þqa1
¼ 0; (E5)

where g ¼ ð
P

a2C qakaÞÞ�2
, sinceX

a2C
qaj

~upj�1
ðajÞkaj

¼ 0: (E6)

Now using the Perron bound in (D2) and the Lipschitz

bound for u����X
ai2C

Xpr�pr�1

arar�1
Xpr�1�pr�2

ar�1ar�2
…Xp2�p1

a2a1
~upr
ðarÞ~upr�1

ðar�1Þ

…~up1
ða1Þqa1

���� � Cr
Wcpr�p0 Cr

L:

In the following decomposition, we note that there if

there are jP’s and ð2R� jÞX’s, then there are at most

mj=j! possible ways of arranging the P’s and X’s. We thus

find that

X
pj:pj�pjþ1

E up1
…up2R½ 
� �2RC2R

W C2R
L mR=R!ð1þcþc2þ���ÞRþmR�1=ðR�1Þ!ð1þcþc2þ���ÞRþ1þ���þmð1þcþc2þ���Þ2R�1
h i

¼ð�2C2
LC2

Wmð1�cÞ�1ÞR=R!� 1þR

m
ð1�cÞ�1þRðR�1Þ

m2
ð1�cÞ�1þ��� R!

MR
ð1�cÞ�R

� �

�ð�2C2
LC2

Wmð1�cÞ�1ÞR 1�ð1�cÞ�1 R

m

� ��1

=R!;

assuming that ð1� cÞ�1 R
m < 1. Now since there are at most

ð2RÞ! different ways of choosing the fprg such that

pj�1 � pj, we find thatX
pj

E up1
…up2R½ 
 � ð�2C2

WC2
Lmð1� cÞ�1ÞR

� 1� ð1� cÞ�1 R

m

� ��1 ð2RÞ!
R!
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