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Abstract 

Logistics operators who participate in horizontal collaboration can gain economic benefits as well as 

being better placed to meet their environmental goals. Real-time information communication and 

computation processes are essential if the potential of collaboration is to be fully exploited in practice, 

however. Such processes come with large computational costs, especially in terms of optimisation of 

joint route planning, and these costs are a significant hurdle for the implementation of real-time 

collaborative logistics operations. On the contrary, data-based approaches provide a viable, albeit 

suboptimal, alternative that can enable real-time collaborative order sharing. Data-based approaches 

for the identification of collaboration opportunities are typically based on origin-destination (OD) 

matching of trips from one collaborating company with shipments from the others. This, however, 

prevents the exploitation of en-route collaboration opportunities. We propose a data-based engine for 

identifying collaboration opportunities during shipment planning stages thus providing a practical 

solution for real-time collaborative freight logistics. The engine is based on a multigraph approach, 

which we refer to as the trailer capacity graph (TCG), which describes the real-time trailer capacity 

status of all collaborating partners. The TCG approach enables shipments to be matched according to 

both the OD and the route of trailer trips, and we customise this further with several enhancements to 

improve performance for real-time operations. Numerical experiments based on real-world data from 

two logistics companies show that the TCG approach identifies a significantly larger number of 

opportunities, and provides a higher total distance saving than traditional OD-based matching. The 

experiments also demonstrate that the implementation of this engine in combination with trailer route 

approximation and route shape simplification allows trade-offs between computational performance 

and effectiveness of opportunity identification. This trade-off implies that the engine can be flexibly 

tailored according to user preferences and requirements. 
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1 Introduction 1 

1.1 Context 2 

The freight transport industry plays a key role in the economic development of our societies, yet it is 3 

subject to significant negative externalities. In the first two decades of the new century, the road 4 

freight logistics sector has been under very strong and increasing pressure to reduce its environmental 5 

impacts significantly (McKinnon et al., 2015). Along with environmental sustainability, freight 6 

transport needs to improve its social sustainability practices, mitigating road accidents and congestion, 7 

as well as many other complex multidimensional social impacts, ranging from the welfare of drivers 8 

to noise impacts on communities (Kumar & Anbanandam, 2019). In addition to these societal 9 

pressures for more responsible road transport, road freight logistics is facing formidable challenges 10 

from within the core of its business environment. Traditional challenges such as stronger competition 11 

and very low margins are exacerbated by booming e-commerce, which has increased demand 12 

volatility and introduced more complexity in value-chains, and extremely short-term fulfilment 13 

requirements (Savelsbergh & Van Woensel, 2016).  14 

Internal innovation may not be sufficient to respond to these challenges, or too costly given the low 15 

margins of the industry. As a result, providers of freight logistics services are resorting to 16 

collaboration. The benefits of collaboration between freight transport carriers are widely recognised. 17 

Horizontal collaboration established amongst companies whose transport networks partially overlap 18 

has the potential to generate significant shared gains  (Cruijssen, Dullaert, et al., 2007; Karam et al., 19 

2020; Leitner et al., 2011). A recent review of ten studies of collaborative logistics by (Allen et al., 20 

2017) reports that horizontal collaborations amongst logistics operators can deliver up to 16% lower 21 

distance-based costs, 24% lower environmental costs and a 25% increase in business volume. These 22 

benefits, however, are mostly estimated from numerical studies and are subject to considerable 23 

variability depending on specific case studies’ contexts. 24 

The existing literature on collaborative logistics has placed a strong emphasis on collaborative 25 

network design (Audy et al., 2010; Soysal et al., 2018; X. Xu et al., 2021; X. F. Xu et al., 2017), 26 

optimal collaborative transport planning with various objectives and constraints (Caballini et al., 27 

2016; Chabot et al., 2018; Hernández et al., 2011), cost and gain sharing mechanisms (Audy et al., 28 

2010; Guajardo & Rönnqvist, 2016; Palhazi Cuervo et al., 2016; Vanovermeire & Sörensen, 2014) 29 

and request exchange mechanisms (Gansterer & Hartl, 2016; Houghtalen et al., 2011; M. Lai et al., 30 

2017). 31 

Despite the benefits emerging from theoretical and modelling studies, the potential of collaborative 32 

partnerships amongst carriers is yet to be extensively exploited in practice (Creemers et al., 2017). 33 

The practical implementation of tools for collaborative logistics is limited to niche applications 34 
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(Perboli et al., 2016) or limited to the analysis of historical data to identify partners instead of being 35 

applied in the management of collaborative operations (Creemers et al., 2017). The widespread 36 

adoption of collaboration practices is prevented by a series of practical barriers and methodological 37 

challenges (Cruijssen, Dullaert, et al., 2007; Karam et al., 2021; Mostafa et al., 2019). Amongst the 38 

methodological challenges the most significant are the allocation of gains, the identification of a 39 

trusted coordinating partner and identification of collaboration opportunities (Cruijssen, Dullaert, et 40 

al., 2007). The coordinating partner is usually a trusted third party, with whom fleet or order data is 41 

shared. Challenges in finding such trusted third parties are related to the demonstrability that the third 42 

party can “coordinate the cooperation in such a way that all participants are satisfied” (Cruijssen, 43 

Bräysy, et al., 2007). 44 

The identification of collaboration opportunities is arguably the core of collaborative logistics. This is 45 

the focus of this paper. Verdonck et al., (2013) distinguish between order sharing and capacity sharing 46 

collaboration opportunities. In order sharing, orders from customers are “shared” or “exchanged” so 47 

as to increase efficiency by optimally re-allocating the orders amongst collaboration partners. In the 48 

capacity sharing framework, instead of pooling orders, transport companies share assets, specifically 49 

vehicle capacity. We note here that this dichotomy between order sharing and capacity sharing 50 

approaches is somewhat deceptive because, for order sharing to be possible, the collaborating 51 

operators must also share available capacity in their vehicles. Indeed, an order sharing opportunity 52 

will involve a company sharing a shipment that is ordered by one of its customers, and another 53 

company sharing available capacity on one of its vehicles to fulfil the order delivery. Thus, while the 54 

framework we propose in this paper focuses on order sharing, it envisages that each collaborating 55 

company also shares its spare capacity to fulfil order shipments originating from other collaborating 56 

companies. 57 

Regardless of the collaboration type, the identification of collaboration opportunities, and indeed 58 

collaboration partners, can be achieved using operation research (OR) approaches (Cleophas et al., 59 

2019; Gansterer & Hartl, 2018; Vaziri et al., 2019) or data-based approaches (Creemers et al., 2017; 60 

Deng, 2014; Suarez-Moreno et al., 2019). Even though methodologies from the OR literature have the 61 

advantage in terms of their ability to lead to, or at least seek, optimal solutions, they tend to be NP-62 

hard, which makes them computationally expensive. The computational complexity of such 63 

approaches is a significant limitation, as it hinders “real-time information communication processes” 64 

that are deemed crucial for effective dynamic planning of horizontal collaborative transport (Pan et 65 

al., 2019). 66 

In order to overcome the computational burden characterising traditional OR approaches, data-based, 67 

rule-based approaches can be designed for real-time operations and, despite providing suboptimal 68 

solutions, can still deliver significant improvements in efficiency compared to a non-collaborative 69 



3 

 

baseline. Hitherto, however, these data-based approaches have typically been based on fully matching 70 

the origin-destination (OD) pair of a trailer trip by a company and the OD pair of a shipment order 71 

from another company. This full OD matching is very limiting as it excludes the potential of 72 

collaboration arising from accepting a shipment from a collaborating partner that requires a limited 73 

deviation of the routes of initially planned trailer trip chains before the planned trip chains are 74 

executed.  75 

Against this background, our paper introduces a data-based and computationally efficient approach to 76 

the real-time identification of “order sharing” collaboration opportunities.The identification of 77 

collaboration opportunities is in real-time because during the trip chain plan update stage, dispatchers 78 

can use real-time information about the opportunity to dynamically update their initial trip chain 79 

plans, by offloading a shipment or receiving a shipment from another company. Our approach is 80 

based on a multigraph, which we call the Trailer Capacity Graph (TCG). The TCG makes it possible 81 

to match shipments from one company with the available capacity of trailer trips of another company, 82 

by allowing en-route pick-ups and drop-offs. Therefore, our proposed approach relaxes the full OD 83 

matching requirement. Instead, a shipment from a company can be matched with a trip from another 84 

company when the location of the shipment is close enough to the route of the trip. We call this “en-85 

route matching”, even though it happens before the trip chain is executed, because the matching is 86 

based on allowing limited deviations on the routes of pre-planned trailer trips to accommodate the 87 

additional shipment. En-route matching allows the identification of a larger number of opportunities 88 

than traditional data-based approaches that require the full OD match between trailer trips and 89 

shipments. 90 

Through numerical experiments based on real-world data from two logistics operators, we 91 

demonstrate the superior performance of our TCG-based engine compared to traditional OD matching 92 

in terms of the number of collaboration opportunities identified and the total distance savings. While 93 

this improvement in operational performance comes at the cost of higher computation times, that 94 

increase is not on a par with that seen in OR approaches and does not hinder the possibility of 95 

implementation in real-time, real-world operations. 96 

1.2 State-of-the-art for data-based identification of collaboration opportunities 97 

Most of the methodological contributions on collaborative logistics are from the OR literature 98 

(Cleophas et al., 2019; Gansterer & Hartl, 2018; Verdonck et al., 2013). While this section reviews 99 

studies that use data-based approaches, in order to structure that discussion, we use a classification of 100 

order sharing approaches originally developed by Verdonck et al., (2013) for approaches from the OR 101 

tradition. In our context, Verdonck et al.’s classification system enables us to categorise the data-102 

based approaches to order sharing in the literature. 103 
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Verdonck et al., (2013) identified a number of implementation modes (or types) for order sharing: 104 

joint route planning (JRP), auction mechanisms (AM), Bilateral Lane Exchanges (BLE), Information 105 

Secured Swapping (ISS) and Shipment Dispatching Policies (SDP). JRP involves pooling orders from 106 

all the partners and formulating and solving appropriate vehicle routing problems (VRPs). For an 107 

agent (i.e. a carrier or a transport company), order sharing with AM involves first identifying which 108 

customer requests should be exchanged, e.g. by solving cost minimisation problems, including route 109 

planning, or through some heuristics. Next, the agent informs the cooperating partners that the 110 

identified orders are open for bidding. In BLE, full truckloads with specific OD pairs are exchanged. 111 

In ISS, transport companies swap orders in an effort to minimise the total travel distance, while 112 

making sure that the minimum amount of information is shared. In SDP, a carrier with an expiring 113 

shipment deadline, but only partially loaded, picks up appropriate orders from collaborating 114 

companies so as to increase its load level.  115 

The discussion of Verdonck et al., (2013) on these order sharing implementation modes focuses 116 

particularly on solutions that frame the identification of collaborative opportunities as an optimisation 117 

problem. Nonetheless, alternative approaches to optimisation are possible for BLE, ISS or SDP, 118 

namely data-based and rule-based approaches that identify temporal and spatial overlaps between the 119 

orders of one company and the available capacity of another. Furthermore, hybrid solutions could be 120 

applied to JRP, BLE, ISS and SDP cases, in which data-based methods are utilised to simplify the 121 

initial optimisation problem. Arguably, while data-based, rule-based approaches may lead to sub-122 

optimal solutions, they do still offer the possibility of significantly improving the operational 123 

efficiency of road freight logistics by real-time identification of collaboration opportunities. In the 124 

paragraphs that follow, we discuss three data-based or hybrid implementations of order sharing.  125 

Deng (2014) observes that in large alliances or market facilitation systems it is inefficient to search 126 

manually for available capacity or shipments, especially in highly dynamic markets characterised by 127 

volatile demand, supply and prices. The author addresses this by means of a purely data-based ISS 128 

approach for the automated discovery of collaboration opportunities based on applying a hierarchy of 129 

rules to match available vehicle capacity and required consignment movements. Specifically, the 130 

approach finds, in order of priority, vehicles and shipments that have overlaps in: pick-up and delivery 131 

dates, OD, vehicle type and shipment type, available tonnage and shipment weight, available space 132 

and shipment size. The algorithm is tested using historical data from transportation companies. While 133 

this automated search is likely significantly to cut the cost and times involved in manual searches, 134 

Deng does not provide any quantitative estimates for the improvement in the number of matches or 135 

the search speed of the hierarchy of rules. The spatial matching of Deng’s approach considers a spatial 136 

match to be successful when at least a vehicle origin and a shipment origin or a vehicle destination 137 

and a shipment destination match but does not consider the potential impacts of any re-routing 138 

necessary to fulfil the shipment order when the OD matching is only partial.  139 
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Creemers et al., (2017) present a matching procedure to identify potential collaboration partners 140 

purely based on the geographical compatibility of respective shipments. This can be viewed as an 141 

initial procedure to pre-select a limited number of collaborative partners in an effort to limit the size 142 

of subsequent JRP problems. Historical shipment data from logistics companies’ databases is 143 

homogenised so that it has unique OD pairs. Shipments are clustered so that bundling, round-trip and 144 

collect and/or drop opportunities are identified. Potential collaborations are evaluated based on several 145 

KPIs, such as the ratio of shared distance to total distance, the ratio of shared volume to total volume, 146 

and the ratio of shared tonne-kilometres to total tonne-kilometres. Users may assign weights to those 147 

KPIs according to their preferences. Capturing users preferences allows ranking potential 148 

collaboration opportunities. In their practical implementation, however, Creemers et al., (2017) do not 149 

consider any criteria other than spatial matching and use the procedure only for strategic decisions 150 

regarding collaborating partner identification, rather than in operations management. 151 

Suarez-Moreno et al., (2019) combine clustering of orders with optimisation to identify opportunities 152 

for cargo consolidation. The clustering is based on temporal OD matching of orders and product 153 

compatibility. The cargo consolidation optimisation, essentially a JRP problem, is then performed 154 

within a cluster in order to limit the computational time needed to identify opportunities.  155 

We should at this point mention that there are also commercial platforms1 for real-time freight 156 

exchanges between logistics operators that are likely to use data-based and optimisation approaches. 157 

We do not specifically review such platforms here, because they operate as two-sided online market 158 

platforms, which logistics operators occasionally use to post available capacity and to offload 159 

shipments that they are unwilling or unable to deliver. This modality falls outside the scope of this 160 

paper that focuses on longer-term collaborative solutions. 161 

In summary, the limited studies focusing on data-based approaches for the identification of 162 

collaboration opportunities are essentially OD-based. That is, they only identify collaboration 163 

opportunities when there is a geographical match between the OD pair of a shipment (and therefore 164 

order) requested to a company and the OD of a trailer trip from another collaborating company (for 165 

ISS or SDP), or between ODs of shipments from collaborating companies (for JRP). Pure data-based 166 

approaches for ISS and SDP that focus only on OD matching of shipments and trips miss potential 167 

opportunities derived from a partially-loaded trailer transiting in the proximity of orders that could be 168 

fulfilled by that trailer with small or null route deviations. In other words, the focus on OD matching 169 

in the current data-based approaches to identifying collaboration opportunities neglects en-route 170 

opportunities for ISS and SDP order sharing. This is a gap that needs addressing. Low computational 171 

time solutions for real-time ISS are of great interest, given the other advantages of ISS over JRP. In 172 

 
1 Examples are TIMOCOM (https://www.timocom.co.uk), UBER FREIGHT (https://www.uberfreight.com/), 

TRUCKSTOP (https://truckstop.com/product/mobile-services/) and others  

https://www.timocom.co.uk/
https://www.uberfreight.com/
https://truckstop.com/product/mobile-services/
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particular, ISS solutions can minimise both the exchange of potentially commercially sensitive 173 

information and negative attention from regulators, who could view JRP as more problematic with 174 

respect to competition laws. 175 

1.3 Aim, contributions and significance 176 

This paper aims to contribute to the scientific literature on real-time collaborative freight logistics by 177 

addressing a major limitation of current data-based approaches for ISS and SDP order sharing. In fact, 178 

current data-based approaches are heavily reliant on OD matching to identify collaboration 179 

opportunities: this results in the impossibility to identify and exploit the potential of en-route 180 

collaborative opportunities. The solution presented in this paper addresses this limitation, introducing 181 

a data-based engine that identifies collaboration opportunities by matching shipments to available 182 

trailer capacity along a given route. In this respect, our specific technical contributions are detailed as 183 

follows. 184 

First, we introduce a novel approach for collaborative opportunity identification based on the trailer 185 

capacity graph (TCG). TCG is a multigraph that describes the spatiotemporal capacity status of a 186 

trailer based on an initial trailer trip chain plan. Our TCG approach significantly enhances the 187 

capabilities of current data-based approaches in collaboration opportunities identification by including 188 

en-route pick-ups and drop-offs of shipments from collaborating companies, relaxing the requirement 189 

that OD pairs of trailer trips and shipment need to coincide for the materialisation of a collaboration 190 

opportunity. 191 

Second, we show in detail how this novel approach is implemented as an engine that is capable of 192 

identifying collaboration opportunities in real-time for real-world operations.  193 

Third, we systematically test the performance of the TCG approach against that of an OD-based 194 

approach, using numerical experiments based on empirical data in a two-company collaboration 195 

scenario. We show how the TCG approach outperforms the OD-based approach in terms of the 196 

number of identified opportunities and the distance savings from the collaboration, with a 197 

computational cost that does not hinder its real-time applicability. Since in multi-company scenarios 198 

we would expect that costumer locations variability is likely to increase and proximity in routes is 199 

likely to be higher than OD pair proximity, our results appear promising also for potential multi- 200 

company collaborations. 201 

Finally, thanks to performance enhancement techniques embedded in our opportunity identification 202 

engine, namely route approximation and route shape simplification, we demonstrate that operators can 203 

determine their preferred trade-off level between operational and computational performance. 204 

The empirical case study in this paper demonstrates that enhanced operational efficiencies are 205 

possible using a purely data-based approach for the identification of collaboration opportunities for 206 
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real-time collaborative logistics applications. Our work, therefore, provides logistics operators with an 207 

avenue to achieve further efficiency improvements through effective real-time horizontal 208 

collaboration.  209 

Overall, our novel data-based approach and the case study demonstration contribute towards the real-210 

world applicability of ISS frameworks, in recognition of the fact that ISS is attracting attention from 211 

both commercial operators and regulators, due to its strengths in respect to commercial data protection 212 

and competition law compliance. Indeed, the practical and commercial value in our solution that 213 

enables the competition law compliant applicability of an ISS framework was ensured by consultation 214 

of industry stakeholders. These included freight logistic companies Freja and Danske Fragtmaand 215 

operating competitively over the same area; Project 44 as trusted third-party hosting and operating the 216 

matching software (Reinau et al., 2021). 217 

1.4 Structure of the paper 218 

The rest of the paper is structured as follows. In section two, we present the core methodology of the 219 

collaboration engine, namely the TCG approach, including the definition of en-route collaboration 220 

opportunity and TCG, the opportunity identification constraints and the opportunity identification 221 

algorithm. In section three, we demonstrate how the TCG approach is implemented in practice as a 222 

real-time collaborative opportunity identification engine for real-world operations. In section four, we 223 

compare the performance of TCG implementations with various degrees of performance enhancement 224 

against the performance of OD based matching in a two-company collaboration scenario. And finally, 225 

in section five, we conclude by summarising the findings from our numerical experiments and 226 

highlighting avenues for future improvements of the methodology proposed in this paper. 227 

2 Identification of collaboration opportunities using trailer capacity 228 

graphs 229 

This section describes the definition of en-route collaboration opportunity and the details of the TCG 230 

approach. In this approach, a pair of a shipment and a trailer trip chain can be matched as a 231 

collaboration opportunity if the pair satisfies both fundamental and additional constraints. More 232 

specifically, fundamental constraints are ones that each collaboration opportunity must satisfy, 233 

including spatial and temporal proximity of a shipment and a trip chain, and a trailer capacity 234 

constraint. Additional constraints are ones arising from the collaborating companies’ specific 235 

preferences and requirements, for example, types of goods allowed on certain trailers. 236 

2.1 OD-based and en-route collaboration opportunities 237 

Dispatchers develop the initial plan of their trailer trips based on the information about current orders 238 

of their company. Typically, these initial plans are based on regular orders. Initial trailer trips and 239 
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unassigned orders from all collaborating companies are then analysed to identify collaboration 240 

opportunities. 241 

Opportunities can be identified by only looking at matches between ODs of initially planned trailer 242 

trips and ODs of shipment orders from the collaborating companies. This OD matching approach is 243 

usually adopted in data-based approaches to identify collaboration opportunities. Given an initial plan 244 

consisting of a trip chain, OD matching considers only shipments that have origin and destination near 245 

stops in this trip chain. Figure 1a shows this situation, where a shipment from a collaborating 246 

company can be picked up and dropped off near pre-planned waypoints of a trailer trip chain of 247 

another company. 248 

In the present paper, we consider en-route opportunities, i.e. pick-ups and drop-offs at locations that 249 

are close to the pre-planned routes of a trailer, but not necessarily coincident with trip ends (i.e. 250 

waypoints) in the trip chain, see Figure 1b. 251 

 

(a) 
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(b) 

Figure 1 – OD-based opportunity (a) and en-route opportunity (b) 252 

Compared with OD-based collaboration opportunities, en-route opportunities do not have strict 253 

restrictions on the origins and destinations of trailer trips from one collaborating company and 254 

shipments from another. Instead, an en-route opportunity can be identified as long as a pair of 255 

shipment order and trailer trip chain can meet a set of predefined spatial, temporal, capacity as well as 256 

potential additional constraints. In Figure 1a and Figure 1b, a trailer trip chain has four stopping 257 

locations (waypoints, travelling from waypoint 1 to waypoint 4). The curved lines between two 258 

consecutive waypoints are geometrical route shapes that the trailer can feasibly take. In Figure 1a, 259 

since the pick-up and drop-off locations of shipment A are spatially close to two waypoints, provided 260 

that temporal, capacity and additional constraints are satisfied, the trailer can pick up and drop off 261 

shipment A with sufficiently small additional travelling distance; hence, shipment A and the trailer 262 

trip chain forms an OD-based opportunity. In Figure 1b, since the pick-up and drop-off locations of 263 

shipment B are spatially close to the routes of the trips, even though the locations are far away from 264 

any waypoints of the trip chain, the trailer can still pick up and drop off shipment B with sufficiently 265 

small additional travelling distance. Therefore, shipment B and the trailer trip chain forms an en-route 266 

opportunity.  267 

Since different companies are likely to have different customer bases, it is plausible to assume that 268 

there is a higher probability of en-route opportunities occurring than that of OD-based opportunities. 269 

Therefore, to improve the effectiveness of data-based approaches, there is room for existing 270 

approaches to be further enhanced by enabling the identification of en-route opportunities. 271 
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2.2 The concept definition of TCG 272 

To identify a collaboration opportunity, we define a TCG, which is a directed multigraph that 273 

describes the spatiotemporal status of trailer capacity based on the planned trailer trip data. All the 274 

notation that we are using for Section 2 is provided in Table 1. 275 

Table 1 – TCG Notation 276 

Variable Definition 

𝑐, 𝑡 A company and a trailer, respectively. 

𝑇𝐶𝐺𝑐 The TCG of company 𝑐. 

𝑉𝑐 
A set of vertices that represents the waypoints of all the trip chains of trailers 

belonging to company 𝑐. 

𝑣𝑛
𝑡,𝑐

 The nth vertex (waypoint) of a trip chain of trailer 𝑡 belonging to company 𝑐. 

𝑙𝑛
𝑡,𝑐

 The geographical location of vertex 𝑣𝑛
𝑡,𝑐

. 

𝒉𝒏
𝒕,𝒄

 The expected time window when trailer 𝑡 is at 𝑣𝑛
𝑡,𝑐

. 

𝑘𝑛
𝑡,𝑐

 The available capacity of trailer 𝑡 at 𝑣𝑛
𝑡,𝑐

. 

𝑁𝑡 The total number of waypoints of a trailer 𝑡. 

𝑢𝑡
𝑐 A trip chain of trailer 𝑡 of company 𝑐. 

𝑇𝑐 The set of all trailers 𝑡 belonging to company 𝑐. 

𝐸𝑐 The set of edges that represents all trailer trips of company 𝑐. 

𝑒𝑛−1,𝑛
𝑡,𝑐

 A directed edge of trailer 𝑡 that connects 𝑣𝑛−1
𝑡,𝑐

 and 𝑣𝑛
𝑡,𝑐

. 

𝑓𝑛−1,𝑛
𝑡,𝑐

 The available trailer capacity over edge 𝑒𝑛−1,𝑛
𝑡,𝑐

. 

𝒓𝒏−1,𝒏
𝒕,𝒄

 
The set of maximum 𝑀 geometrical route shapes (𝑟𝑛−1,𝑛

𝑡,𝑐,𝑚
) of edge 𝑒𝑛−1,𝑛

𝑡,𝑐
, 𝒓𝒏−1,𝒏

𝒕,𝒄 =

{𝑟𝑛−1,𝑛
𝑡,𝑐,𝑚 |𝑚 ∈ [1,𝑀]}. 

𝜶𝒏−1,𝒏
𝒕,𝒄

 
The vector of additional attributes of edge 𝑒𝑛−1,𝑛

𝑡,𝑐
 that correspond to additional 

constraints. 

𝑆𝑐 The set of all shipments belonging to company 𝑐. 

𝐼𝑐 The total number of shipments belonging to company 𝑐. 

𝑠𝑖
𝑐 A shipment 𝑖 belonging to company 𝑐. 

𝑜𝑖
𝑐 , 𝑑𝑖

𝑐 The geographical pick-up and drop-off locations of shipment 𝑠𝑖
𝑐, respectively. 

𝒉𝒊,𝒐
𝒄 , 𝒉𝒊,𝒅

𝒄  The pick-up and drop-off time windows of shipment 𝑠𝑖
𝑐, respectively. 

𝑔𝑖
𝑐 The load of goods of 𝑠𝑖

𝑐. 

𝜶𝒊
𝒄 

The vector of additional attributes of shipment 𝑠𝑖
𝑐 that correspond to additional 

constraints. 

𝑒𝑝−1,𝑝
𝑡,𝑦

,𝑒𝑞−1,𝑞
𝑡,𝑦

 The pick-up edge and drop-off edge for trailer 𝑡 from company 𝑦, respectively. 

𝜏𝑎,𝑏
𝑡.𝑦

 The estimated travel time for trailer 𝑡 from the location a to location b. 
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𝜖𝑞−1,𝑞,𝑖
𝑡.𝑦

 The estimated additional travel time for trailer 𝑡 to pick up 𝑠𝑖
𝑥 on edge 𝑒𝑞−1,𝑞

𝑡,𝑦
. 

𝜋𝑖
𝑜 The estimated time needed for a trailer to handle shipment 𝑠𝑖

𝑥 at 𝑜𝑖
𝑥. 

𝒉𝒍
′𝒕,𝒚

 
The new estimated time windows of trailer 𝑡 assuming that 𝑡 will pick up or drop 

off shipment 𝑖. 

φ A pre-specified distance difference threshold. 

𝐷(𝛼, 𝛽) The diversion distance between a location 𝛼 and an edge route 𝛽. 

For each company, 𝑐, a TCG is defined as: 277 

𝑇𝐶𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐)                                                                                 (1) 278 

𝑉𝑐 = {𝑣𝑛
𝑡,𝑐(𝑙𝑛

𝑡,𝑐 , 𝒉𝒏
𝒕,𝒄, 𝑘𝑛

𝑡,𝑐)|𝑛 ∈ [1, 𝑁𝑡], 𝑣𝑛
𝑡,𝑐 ∈ 𝑢𝑡

𝑐 , 𝑡 ∈ 𝑇𝑐}                     (2) 279 

𝐸𝑐 = {𝑒𝑛−1,𝑛
𝑡,𝑐 (𝑣𝑛−1

𝑡,𝑐 , 𝑣𝑛
𝑡,𝑐 , 𝑓𝑛−1,𝑛

𝑡,𝑐 , 𝒓𝒏−1,𝒏
𝒕,𝒄 , 𝜶𝒏−1,𝒏

𝒕,𝒄 )|𝑛 ∈ 𝑁𝑡 , 𝑡 ∈ 𝑇𝑐}                   (3) 280 

More specifically, all the 𝑣𝑛
𝑡,𝑐

 of trailer 𝑡 are ordered primarily based on the 𝒉𝒏
𝒕,𝒄

, from oldest to 281 

newest. In the case where the precision of 𝒉𝒏
𝒕,𝒄

 is not sufficient to order all 𝑣𝑛
𝑡,𝑐

, heuristics based on 282 

characteristics of different companies’ data (e.g. the order of shipment and trip IDs) can be applied 283 

instead to order 𝑣𝑛
𝑡,𝑐

. Moreover, a trailer 𝑡 can only pick up and/or drop off shipment goods at each 284 

𝑣𝑛
𝑡,𝑐

; hence, the available capacity of a trailer will only change at 𝑣𝑛
𝑡,𝑐

, and the available trailer 285 

capacity of an edge is set as that of its origin, namely: 286 

𝑓𝑛−1,𝑛
𝑡,𝑐 = 𝑘𝑛−1

𝑡,𝑐                                                                           (4) 287 

An edge in the TCG is a trailer trip that connects a pair of consecutive vertices; therefore, the TCG 288 

essentially converts all the trips of a trailer into a single trip chain that consists of all the trips. 289 

Furthermore, the definition given by Equation 3 indicates that there can be multiple route shapes for 290 

an edge. Intuitively, an edge with multiple route shapes is equivalent to multiple edges connecting the 291 

same pair of vertices. Hence, a TCG is essentially a multigraph. The need for “multiple edges” is 292 

because it is likely that the trailer trip plan data does not include the actual route and route shape 293 

information for a trip; hence, the actual route and route shape need to be estimated. To increase the 294 

probability of correctly estimating the trailer route, and thus the probability of matching shipments 295 

and trips, multiple feasible route alternatives are estimated for an edge in the TCG. Nevertheless, a 296 

trailer can only choose one of the routes of an edge. Finally, even though vertices of different trailers 297 

may share the same location, Equation 3 defines that the vertices of different trailers are not 298 

connected.  299 

Usually, multigraphs are applied for vehicle route planning with attributes, such as the travel time/ 300 

cost of an edge (Andelmin & Bartolini, 2019; D. S. W. Lai et al., 2016; Soriano et al., 2020). The 301 

main difference between TCG and the other multigraphs applied for transport planning is that an 302 
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additional attribute, the geometrical route shape of each edge, is added in a TCG. A geometrical route 303 

shape of an edge describes what roads/ locations on the map that the trailer can pass by. Given the 304 

locations of a shipment and this geometrical route shape of an edge, the straight-line or driving 305 

distance between the shipment locations and a trailer trip can be easily computed; and this, in turn, 306 

makes it possible to evaluate if the pick-up or drop-off locations of shipments are spatially close 307 

enough to any trips of the trip chain. It is this that gives the TCG the advantage over conventional 308 

OD-based approaches in terms of identifying collaboration opportunities. That is, it allows the 309 

identification of en-route collaboration opportunities when the locations of the shipments are only 310 

sufficiently close to the geometrical shapes of reasonable routes of trailer trips (i.e. the TCG edges). In 311 

contrast, OD-based approaches can only identify opportunities where the shipment locations are in the 312 

proximity of the starting and endpoints of trailer trips.  313 

2.3 Constraints for matching shipments using TCG 314 

In order to match shipments with the trailer trips described by a TCG, shipments of company 𝑐 are 315 

defined as: 316 

𝑆𝑐 = {𝑠𝑖
𝑐(𝑜𝑖

𝑐 , 𝑑𝑖
𝑐 , 𝒉𝒊,𝒐

𝒄 , 𝒉𝒊,𝒅
𝒄 , 𝑔𝑖

𝑐 , 𝜶𝒊
𝒄)|𝑖 ∈ 𝐼𝑐}                                                  (5) 317 

Given the above definition of TCG and shipments, collaboration opportunities can be identified by 318 

matching shipments and TCG edges (trips) based on the fundamental and additional constraints. We 319 

first focus on matching based on fundamental constraints, namely, the spatial and temporal proximity 320 

of a shipment and a trip, and the trailer capacity constraint. 321 

A shipment 𝑠𝑖
𝑥, belonging to company 𝑥, and a trailer trip chain 𝑢𝑡

𝑦
, belonging to company 𝑦, form a 322 

collaboration opportunity if 𝑠𝑖
𝑥, and at least a pair of edges of 𝑢𝑡

𝑦
, (𝑒𝑝−1,𝑝

𝑡,𝑦
, 𝑒𝑞−1,𝑞
𝑡,𝑦

), where 𝑝 ≤ 𝑞, 323 

satisfy the following constraints: 324 

{
 

 𝒉𝒑−1
𝒕,𝒚

+ 𝜏𝑝−1,𝑜
𝑡.𝑦

∩ 𝒉𝒊,𝒐
𝒙 ≠ ∅

𝒉𝒑−1
𝒕,𝒚

+ 𝜏𝑝−1,𝑜
𝑡.𝑦

+ 𝜏𝑜,𝑑
𝑡.𝑦
+ 𝜋𝑖

𝑜 ∩ 𝒉𝒊,𝒅
𝒙 ≠ ∅        𝑖𝑓 𝑝 = 𝑞

𝒉𝒒−1
𝒕,𝒚

+ 𝜖𝑝−1,𝑝
𝑡,𝑦

+ 𝜏𝑞−1,𝑑
𝑡.𝑦

+ 𝜋𝑖
𝑜 ∩ 𝒉𝒊,𝒅

𝒙 ≠ ∅    𝑖𝑓 𝑝 ≠ 𝑞

                                  (6) 325 

𝒉𝒍
𝒕,𝒚
∩ 𝒉𝒍

′𝒕,𝒚
≠ ∅, ∀𝑙 ≥ 𝑝                                                                              (7) 326 

{
𝐷(𝑜𝑖

𝑥 , 𝑟𝑝−1,𝑝
𝑡,𝑦,𝑎

) ≤ φ

𝐷(𝑑𝑖
𝑥 , 𝑟𝑞−1,𝑞

𝑡,𝑦,𝑏
) ≤ φ

   , ∃𝑗, 𝑘 ∈ [1,𝑀], 𝑝 ≤ 𝑞                                          (8) 327 

𝑎 = 𝑏,   𝑖𝑓  𝑝 = 𝑞                                                                                         (9) 328 

𝑘𝑛
𝑡,𝑦
≥ 𝑔𝑖

𝑥    , ∀𝑛 ∈ [𝑝 − 1, 𝑞 − 1]                                                           (10) 329 
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Equation 6 defines the temporal constraint applied to a collaboration opportunity. Namely, the pick-330 

up/drop-off time window of a shipment must overlap with the estimated time window of a trailer’s 331 

arrival at the shipment location. More specifically, it is assumed that the trailer’s arrival time window 332 

at the pick-up location is not affected by the handling time of the other shipments matched with the 333 

trailer at the same time since the other shipments are not yet accepted by the dispatchers. The 334 

constraint on the drop-off time window considers two situations. When the pick-up and drop-off 335 

edges are the same, the trailer’s arrival time window is the sum of its departure time window of the 336 

edge, the estimated travel time from the start of the edge to the pick-up location, the estimated travel 337 

time from the pick-up location to the drop-off location, and the estimated shipment handling time at 338 

the pick-up location. When the pick-up and drop-off edges are different, the trailer’s arrival time 339 

window is the sum of its departure time window of the drop-off edge, the estimated additional travel 340 

time for the trailer to pick up the shipment on the pick-up edge, the estimated travel time for the trailer 341 

from the start of the drop-off edge to the drop-off location, and the estimated shipment handling time 342 

at the pick-up location. Equation 7 specifies that trailers must still be able to comply with their 343 

original time plans if they fulfil the other companies’ shipments. Equation 8 specifies that the 344 

diversion distance between the pick-up/drop-off location of a shipment and the pick-up/drop-off edge 345 

must be shorter than a distance threshold φ. Equation 9 specifies that when the pick-up edge and the 346 

drop-off edge is the same, the matched route must also be the same; thus, eliminating cases where a 347 

trailer and a shipment is matched even though the trailer can only either pick up or drop off the 348 

shipment. Equation 10 defines the trailer capacity constraint. Specifically, the available trailer 349 

capacity at any vertex between the start of the pick-up edge and the start of the drop-off edge must not 350 

be smaller than the load of a shipment. 351 

Additional constraints are important to identify realistic opportunities. They must be satisfied by 352 

opportunities when they exist. However, they do not necessarily exist and also change from case to 353 

case. Our method is flexible in that when different numeric (e.g. maximum weight of a single 354 

shipment that a specific trailer can take) or non-numeric (e.g. type of goods allowed) additional 355 

constraints exist, they are used them as an another layer of filter when identifying opportunities.  356 

As shown in Equation 10, the trailer capacity constraint essentially compares a numerical attribute of 357 

TCG edges (available trailer capacity) and the corresponding numerical attribute of a shipment 358 

(shipment load). Hence, as long as an additional constraint can be represented as a numerical attribute 359 

of an edge and a shipment, TCG can account for it by formulating it in the same way as Equation 10. 360 

In respect to non-numerical additional constraints, meanwhile, as long as they can be represented as 361 

attributes of edges and shipments, they can be formulated as comparing categorical or literal values, 362 

which can be generalised as follows: 363 

𝛼𝑖
𝑥 ≡ 𝛼𝑛−1,𝑛

𝑡,𝑦
                                                                             (11) 364 
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For example, if 𝛼𝑛−1,𝑛
𝑡,𝑦

 of edge 𝑒𝑛−1,𝑛
𝑡,𝑐

 is [goods_type_allowed: food] and 𝛼𝑖
𝑥 of shipment i is 365 

[goods_type_shipment: food], then Equation (11) compares ‘if goods_type_shipment= 366 

goods_type_allowed. 367 

Figure 2 shows an intuitive example of matching shipments using a TCG, where there are three 368 

shipments from a company (shipment A, B and C) and the TCG of a trailer from another company 369 

that consists of three edges (straight arrow lines A, B and C). The first entry in the parentheses next to 370 

each pick-up location (filled square) or drop-off location (empty square) is the ID of the shipment, and 371 

the second entry is the load of the shipment. Each curved line is a geometrical route shape of the 372 

corresponding edge and the number over each curved line is the available capacity on the edge. 373 

Moreover, the temporal constraints are assumed to be satisfied by all shipments and edges. In this 374 

example, shipment A and edges A and C form an en-route opportunity, where edge A is the pick-up 375 

edge and edge C is the drop-off edge. Shipment B and the TCG cannot be matched since the capacity 376 

on edge C (five) is smaller than the load of shipment B (six). Shipment C and the TCG cannot be 377 

matched since its pick-up location and drop-off location are spatially close to different route shapes of 378 

the same edge (edge B). 379 

 380 
Figure 2- An example of matching shipments using the TCG 381 

2.4 Opportunity identification algorithm 382 

Based on the definition of TCG and the aforementioned matching constraints, an algorithm is 383 

proposed for efficiently identifying opportunities by matching shipments with the TCG; a pseudo 384 

code for this algorithm is described in Figure 3. 385 
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Firstly, the pre-processing step decomposes a shipment 𝑠𝑖  into shipment origin, 386 

𝑠𝑜𝑖 (𝑜𝑖 , 𝒉𝒊,𝒐, 𝑔𝑖 , 𝒂𝒊 ), and shipment destination, 𝑠𝑑𝑖 (𝑑𝑖 , 𝒉𝒊,𝒅, 𝑔𝑖 , 𝒂𝒊 ). Secondly, in the matching 387 

step, for 𝑠𝑖 , the algorithm finds a set of TCG edges (𝑒𝑛−1,𝑛
𝑡 ) that occur on the same day as 𝑠𝑜𝑖  and 388 

that satisfy the spatial constraint. Afterwards, for 𝑠𝑖 , it finds edges (𝑒𝑚−1,𝑚
𝑡 ) occurring on the same 389 

day as 𝑠𝑑𝑖 , belonging to the same trailer as 𝑒𝑛−1,𝑛
𝑡 , happening at the same time or after 𝑒𝑛−1,𝑛

𝑡 , and 390 

satisfying the spatial constraint. This step yields a set of edge pairs 𝐸𝑖
2 = [(𝑒𝑛−1,𝑛

𝑡 , 𝑒𝑚−1,𝑚
𝑡 )] for each 391 

𝑠𝑖 . In step 3 (filtering step), 𝐸𝑖
2 = [(𝑒𝑛−1,𝑛

𝑡 , 𝑒𝑚−1,𝑚
𝑡 )] for each 𝑠𝑖  is first filtered based on the 392 

capacity and additional constraints and then further filtered based on temporal constraints. This step 393 

yields the final edge pairs for each 𝑠𝑖 , and each pair of edges contains an edge for picking up 𝑠𝑖  and 394 

an edge for dropping off 𝑠𝑖 . Each pair of edges and 𝑠𝑖  then forms an opportunity. 395 

In general, this algorithm applies a multi-level filtering strategy to search for pairs of shipments and 396 

TCG edges that satisfy the fundamental and additional constraints. The main aim of this algorithm is 397 

to reduce the number of evaluations of the spatial and temporal constraints since these are among the 398 

most computationally expensive processes when searching for qualifying pairs of shipments and TCG 399 

edges. Firstly, the destination of a shipment is only matched spatially with TCG edges belonging to 400 

the trailers that have edges that are spatially matched with the shipment origin, which reduces the 401 

number of evaluations of the spatial constraint. Secondly, since the evaluation of the temporal 402 

constraint involves updating the time windows of trip edges after the pick-up edge, it is conducted in 403 

the last step so as to minimise the number of time window updates needed. 404 
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 405 
Figure 3 - Pseudo code of the opportunity identification algorithm 406 

3 The Opportunity Identification Engine 407 

This section describes the development of the opportunity identification engine that implements the 408 

TCG approach. This implementation includes approximation techniques that, if triggered, speed up 409 

the identification of collaboration opportunities, albeit, as we shall see in the numerical experiments in 410 

Section 4, at the cost of identifying fewer opportunities. 411 

3.1 Engine description for practical implementation 412 

For the practical implementation of the approach, the opportunity identification engine is hosted by a 413 

trusted third party, which receives input data from collaborating companies and sends them notices 414 

Step 1 (Pre-processing):  

For each shipment 𝑠𝑖 , decompose 𝑠𝑖  into shipment origin 𝑠𝑜𝑖 (𝑜𝑖 ,𝒉𝒊,𝒐,𝑔𝑖 ,𝒂𝒊 ) and shipment 

destination 𝑠𝑑𝑖 (𝑑𝑖 ,𝒉𝒊,𝒅,𝑔𝑖 ,𝒂𝒊 ) 

Step 2 (Matching): For each 𝑠𝑖 , 

Step 2.1: match 𝑠𝑜𝑖  with each edge of TCG (𝑒𝑛−1,𝑛
𝑡 ) belonging to the other companies based 

on the following constraints: 

𝒉𝒊,𝒐.𝑑𝑎𝑡𝑒 = [𝒉𝒏−𝟏
𝒕 ,𝒉𝒏

𝒕 ].𝑑𝑎𝑡𝑒 

𝑑𝑖𝑠(𝑜𝑖 ,𝒓𝒏−𝟏,𝒏
𝒕 ) ≤ 𝜀𝑑  

Output: 𝐸𝑖
1 = [𝑒𝑛−1,𝑛

𝑡 ] 

 Step 2.2: match 𝑠𝑑𝑖  with each edge of TCG based on the following constraints: 

𝑚 ≥ 𝑛        𝑚,𝑛 ∈ 𝑁𝑡𝑜  

𝒉𝒊,𝒅.𝑑𝑎𝑡𝑒 = [𝒉𝒎−𝟏
𝒕 ,𝒉𝒎

𝒕 ].𝑑𝑎𝑡𝑒 

𝑑𝑖𝑠(𝑑𝑖 ,𝒓𝒎−𝟏,𝒎
𝒕𝟏 ) ≤ 𝜀𝑑  

Output: 𝐸𝑖
2 = [(𝑒𝑛−1,𝑛

𝑡 , 𝑒𝑚−1,𝑚
𝑡 )] 

Step 3 (Filtering): 

Step 3.1: filter each pair (𝑒𝑛−1,𝑛
𝑡 , 𝑒𝑚−1,𝑚

𝑡 ) in 𝐸𝑖
2 based on the capacity constraint and 

additional constraints: 

𝑐𝑣𝑝
𝑡 ≥ 𝑔𝑖    ,∀𝑝 ∈ [𝑛 − 1,𝑚 − 1] 

𝑎𝑖 ≡ 𝑎𝑝−1,𝑝
𝑡  

Output: 𝐸𝑖
3 = [(𝑒𝑛−1,𝑛

𝑡 , 𝑒𝑚−1,𝑚
𝑡 )] 

Step 3.2: filter each pair (𝑒𝑛−1,𝑛
𝑡 , 𝑒𝑚−1,𝑚

𝑡 ) in 𝐸𝑖
3 based on the temporal constraint:  

                                                        

{
 

 𝒉𝒑−1
𝒕,𝒚

+ 𝜏𝑝−1,𝑜
𝑡 .𝑦

∩ 𝒉𝒊,𝒐
𝒙 ≠ ∅

𝒉𝒑−1
𝒕,𝒚

+ 𝜏𝑝−1,𝑜
𝑡 .𝑦

+ 𝜏𝑜 ,𝑑
𝑡 .𝑦

+ 𝜋𝑖
𝑜 ∩ 𝒉𝒊,𝒅

𝒙 ≠ ∅        𝑖𝑓 𝑝 = 𝑞

𝒉𝒒−1
𝒕,𝒚

+ 𝜖𝑝−1,𝑝
𝑡,𝑦

+ 𝜏𝑞−1,𝑑
𝑡 .𝑦

+ 𝜋𝑖
𝑜 ∩ 𝒉𝒊,𝒅

𝒙 ≠ ∅    𝑖𝑓 𝑝 ≠ 𝑞

 

Final output: 𝐸𝑖
∗ = [(𝑒𝑛−1,𝑛

𝑡 , 𝑒𝑚−1,𝑚
𝑡 )] 
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when collaboration opportunities are identified. The collaborating companies need to agree to 415 

participate in horizontal collaboration as medium-term partners and to share the necessary data with 416 

the trusted third party. 417 

To identify collaboration opportunities, for each time interval (for example, every five minutes), the 418 

engine creates in real-time a TCG based on each company’s live trailer trip data and matches the live 419 

shipments of companies with the TCG edges of other companies. The matched shipment and trips will 420 

be presented to relevant companies as collaboration opportunities via notifications, which is the 421 

output of this engine. A collaboration agreement is achieved when a presented opportunity is accepted 422 

by dispatchers from both companies. This dispatchers’ decision on presented opportunities, either 423 

acceptance or rejection, will be sent back to the engine. For accepted opportunities, the resultant 424 

exchange of the shipments between companies and the change of the trip plans are updated in the 425 

engine. Opportunities rejected, if still valid, will be sent to dispatchers in the next round since 426 

dispatchers may change their decisions and such opportunities may become acceptable.  427 

To respect the confidentiality of trading data, firstly, participating companies have the freedom to 428 

choose which shipment and trailer trip data are shared with the engine. Hence, shipments and trailer 429 

trips considered as secrets will not be shared with the engine. In addition, when sending notices to 430 

dispatchers about the opportunities, only information about the opportunity that is essential for 431 

dispatchers to evaluate the opportunities is included. For example, the dispatcher from the owner of 432 

the shipment can only see the distance saving from the other company, without knowing how the 433 

trailer from the other company is routed. Also, the accurate shipment locations will only be provided 434 

to the dispatchers of the trailers after an opportunity is accepted. 435 

 436 
Figure 4 - Engine architecture 437 
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Figure  describes the system architecture of this engine. In general, there are three main modules: a 438 

data management module, an opportunity finder module and a database. In the data management 439 

module, there are two sub-modules. The data interface receives live shipment and trailer trip data 440 

from different companies, and the data processor processes the raw data to be ready for the 441 

opportunity finder module to use. In the opportunity finder module, there are three sub-modules. The 442 

trailer capacity computation sub-module extracts trailers’ en-route capacity from trip plan data. The 443 

route alternative estimation sub-module obtains the geographical information for the route alternatives 444 

of each edge in the TCG, Finally, the opportunity identification sub-module matches shipments and 445 

trailer trips from different companies using the TCG algorithm. The third main component of the 446 

engine is the database module. This stores all the data needed for identifying opportunities, including 447 

shipment data, trailer trip plan data and geographical data. This engine could in principal be applied 448 

for collaborations between several companies since this engine emphasises algorithm and operation 449 

efficiency, the details of which will be provided in the following sub-sections. However, as shown in 450 

Section 4, the demonstration of its effectiveness for identifying opportunities and computational 451 

performance focuses on a two-company collaboration scenario due to data resource limitation. 452 

3.2 Data Management Module 453 

The data management module handles live shipment and trailer trip data from different companies. 454 

The output of this module is shipment and trailer trip data that conforms to a consistent data format 455 

that can be efficiently consumed by the opportunity finder module. Thus, the data management 456 

module deals with the problem of diversity in data formats in the data received from the various 457 

collaborating companies. 458 

Currently, our engine is being implemented using data from two large logistics companies operating 459 

over the entire national territory of a European country. The trusted third-party running the engine is a 460 

logistic data service operator. For reasons of commercial sensitivity, we will refer hereafter simply to 461 

Company 1 (C1) and Company 2 (C2). C1 and C2 have very different data schemas for the live data 462 

they provide. This significant difference in data schema, especially in the representation of a shipment 463 

and trailer trip, makes it difficult and inefficient simply to use the raw data to identify opportunities 464 

using a TCG. Hence, unified formats need to be designed if the engine is to handle different 465 

companies’ shipment and trip data. 466 

Table 2 shows the unified data formats designed for shipment data and trailer trip data. For shipments, 467 

the data covers the information on the pick-up and drop-off locations and expected time of a shipment 468 

action (pick-up or drop-off), and the information about its goods (e.g. goods weights). For trailer trips, 469 

the data covers the identity of the trailer, information about the waypoints of the trailer’s trip, the 470 

change in the trailer capacity at each waypoint and the company running this trip.  471 
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More specifically, the change in the trailer capacity at a waypoint depends on the maximum capacity 472 

of the trailer and the goods loaded and unloaded at that waypoint, the details of which will be 473 

described in Section 3.3.1. Also, since, in practice, there are different measurements of shipment load, 474 

namely loading metres2 and weight, the shipment load and trailer capacity are not always directly 475 

comparable. Hence, loading meters and weight are further unified into a converted weight measure: 476 

𝜔 = 𝑀𝐴𝑋(𝜃 × 𝛾,𝑤)                                                              (12) 477 

where 𝜔 is the converted weight; 𝛾 is the loading metre; 𝑤 is the weight in kilograms, and 𝜃 is a 478 

coefficient representing maximum weight in kilogram per loading metre. Since the weight of a 479 

loading metre varies from shipment to shipment, 𝜃 is chosen as the maximum ratio. This helps to 480 

avoid the case where the weight of a shipment is underestimated or the available capacity of a trailer 481 

is overestimated, which will lead to matches that do not satisfy the trailer capacity constraint.  482 

Table 2 - Unified shipment data and trailer data formats 483 

Shipments Trailer Trips 

Column 

name 
Definition 

Column 

name 
Definition 

Shipment ID A unique ID of a trailer Trailer ID A unique ID of a trailer 

Goods ID The ID of the goods Waypoint ID 
A unique ID of a waypoint of 

the trailer 

Converted 

weight 

The shipment goods load 

measured by kilogram 

Waypoint 

order 
The order of the waypoint 

Action Either pick-up or drop-off 
Position 

timestamp 

The expected timestamp when 

trailer is at the waypoint 

Action 

window 

The expected window when the 

action happens 

Load 

changed in 

converted 

weight 

The trailer capacity measured 

by kilogram 

Action 

location 

geometry 

The geographical position of the 

waypoint 

Waypoint 

geometry 

The geographical position of 

the waypoint 

Company The company of the trailer 
Waypoint 

address 

The literal address of the 

waypoint 

− − Company The company of the trailer 

 
2 A loading metre is the standard unit of measurement for truck transportation, and refers to one metre of 

loading space of a truck’s length (Group Legero, 2019). Here, the common European measure is used; hence, a 

loading metre is approximately 2.4 square meters. 
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3.3 Opportunity Finder Module 484 

The opportunity finder module implements the TCG approach for finding collaboration opportunities. 485 

Figure  describes the workflow of the opportunity finder module, the details of which are described in 486 

the following subsections.  487 

In general, the trailer capacity computation sub-module first computes available trailer capacity at 488 

each vertex in the TCG based on the unified trailer data, which is formatted as vertices (waypoints). 489 

After that, the route alternative estimation sub-module will first attempt to find approximated routes 490 

between two consecutive vertices from the route shape table. If approximated routes are found, they 491 

will be fed into the opportunity identification sub-module. If this is not successful, it will invoke an 492 

external routing API to get the complete route shapes, which will be simplified by the route 493 

simplification algorithm. The simplified route shapes will then be combined with vertices with the 494 

capacity to complete the TCG. The TCG and the unified shipment data will then be fed into the 495 

opportunity identification sub-module, which seeks to match the shipments and the TCG based on the 496 

opportunity identification algorithm. In this paper, we only focus on the fundamental constraints. 497 

Nevertheless, as shown in Section 2.2 and Section 2.3, additional constraints can also be integrated 498 

into this engine if needed. 499 

 500 
Figure 5 - Workflow of the opportunity finder module 501 
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3.3.1 Trailer capacity computation 502 

Since companies C1 and C2 only record which shipments are loaded and unloaded at a waypoint of a 503 

trip, as shown in Table 2, the unified trailer trip data only records the change of trailer load at each 504 

waypoint. Hence, to create a TCG, the trailer capacity available at each vertex needs to be computed. 505 

The available capacity of a trailer at a waypoint can be computed based on the load change 506 

accumulated until the current waypoint. Since the load change is positive when a trailer picks up 507 

shipments and negative when it drops off shipments, the available capacity of trailer 𝑡 belonging to 508 

company 𝑐 at waypoint 𝑣𝑛
𝑡,𝑐

 can be computed using Equation 13: 509 

𝑘𝑛
𝑡,𝑐 = 𝜌𝑡

𝑚𝑎𝑥 −∑ 𝜎𝑖
𝑡,𝑐

𝑖
 𝑖 ∈ {𝑖 ≤ 𝑛}                                                 (13) 510 

where 𝜎𝑖
𝑡,𝑐

 is the load change of trailer 𝑡 at its waypoint 𝑣𝑖
𝑡,𝑐

; and 𝜌𝑡
𝑚𝑎𝑥 is the maximum capacity of 511 

trailer 𝑡. 512 

3.3.2 Route alternative estimation 513 

For estimating route alternatives of each edge in a TCG, external routing API services are used to 514 

search for 𝑀 feasible and significantly different route alternatives between the start and end vertices 515 

of each edge, based on the geographical location (coordinates) of each vertex. It is worth noting that it 516 

is not guaranteed that 𝑀 route alternatives can be found because, sometimes, feasible route 517 

alternatives significantly overlap with each other, and hence, there are not enough significantly 518 

different and feasible route alternatives. Moreover, since estimating route alternatives and measuring 519 

the distance between a shipment location and a route alternative are the two most time-consuming 520 

processes in this engine, the following two approaches are adopted to reduce the engine running time. 521 

3.3.2.1 Trailer route approximation (RA) 522 

When estimating routes of edges, it is reasonable to assume that if the start and end locations of two 523 

edges are each close to each other, it is likely that the routes of the two edges are largely overlapping. 524 

Furthermore, in order to measure the spatial distance between a shipment location and an edge with a 525 

route 𝑟, another route that largely overlaps with 𝑟 is likely to produce a distance with a negligible 526 

error compared with the spatial distance threshold and the length of route 𝑟. Given those assumptions, 527 

for a pair of locations whose routes have not been searched before, if there is a close pair of locations 528 

that has already been searched, the routes of this searched pair can be directly used for the distance 529 

measurement for the unsearched pair.  530 

Hence, to further reduce the number of routing API requests, this engine approximates route 531 

alternatives based on the proximity between the start and end locations of two edges. More 532 

specifically, before searching for the route alternatives for an edge using external APIs, the engine 533 
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first searches for the closet pair of start and end vertices in the route shape table using the following 534 

rule: 535 

{

𝑑(𝑣𝑛−1, 𝑣𝑛−1
∗ ) ≤ 𝜂                                                                                               

𝑑(𝑣𝑛 , 𝑣𝑛
∗) ≤ 𝜂                                                                                                       

𝑑(𝑣𝑛−1, 𝑣𝑛−1
∗ ) + 𝑑(𝑣𝑛 , 𝑣𝑛

∗) ≤ 𝑑(𝑣𝑛−1, 𝑣𝑛−1
′ ) + 𝑑(𝑣𝑛 , 𝑣𝑛

′ ),   ∀𝑣𝑛−1
′ , 𝑣𝑛

′

   (14) 536 

where 𝑑(𝑣1 , 𝑣2 ) is the straight-line distance between 𝑣1  and 𝑣2 ; 𝑣𝑛−1 and 𝑣𝑛  is the start and end 537 

vertex of an edge to search for route alternatives; 𝑣𝑛−1
∗  and 𝑣𝑛

∗ is the closet pair start and end vertex in 538 

the route shape table; 𝑣𝑛−1
′  and 𝑣𝑛

′  are a pair of start and end vertices in the route shape table; 𝜂 is a 539 

distance threshold. If more than one pair of vertices is found in the route shape table, the pair with the 540 

shortest total distance to the edge being assessed is selected. The routes of the selected pair of vertices 541 

are used as the routes for edge (𝑣𝑛−1,𝑣𝑛 ).  542 

3.3.2.2 Route shape simplification (RS) 543 

A significant issue with the obtained route shapes of an edge is that their shapes usually consist of a 544 

large number of map coordinate points that seek to describe the curvature of roads in detail. These 545 

closely packed coordinate points will not significantly improve the accuracy of distance computation, 546 

but can significantly slow down the distance computation since the computational time increases with 547 

the complexity of the route shape. 548 

To improve the efficiency when measuring distance between a shipment location and a route, a 549 

clustering algorithm, DBSCAN (Ester et al., 1996), is applied to simplify the shape of a route 550 

alternative in the route shape table. DBSCAN is a density-based clustering algorithm that can group 551 

points and their close neighbours. One of the main advantages of DBSCAN is that it is highly scalable 552 

and has a relatively low computational cost. Moreover, unlike most other clustering algorithms, it 553 

does not require the number of groups (clusters) to be pre-specified, which is difficult to determine 554 

because of the diversity of route shapes. Instead, DBSCAN requires a pre-specified parameter (𝜆) that 555 

defines the maximum distance between two samples for them to be considered as in the same cluster. 556 

A higher 𝜆 will mean that more coordinate points will be included within the same group, and hence 557 

the route shape will become simpler but less accurate. DBSCAN also requires a parameter that 558 

defines the minimum number of points necessary to form a cluster. This is set as one in this study so 559 

that all the points of a route can be classified into a cluster. 560 

Here, the general idea is to start by grouping tightly concentrated coordinate points and select one 561 

point from that group (for our purposes the one closest to the centroid of the cluster) to represent the 562 

cluster. Then, the shape consisting of these representative points is the simplified shape of a route 563 

alternative, which will be used to compute the distance between shipment locations and routes. 564 

Intuitively, this simplification can be treated as zooming out a route shape.  565 
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Since this route shape simplification only runs once for each route, the computational cost of the 566 

DBSCAN algorithm can be further offset when a route is used multiple times for distance 567 

computation. Moreover, because the simplification of each route shape is independent, parallel 568 

computing technology is applied to simplify several route shapes simultaneously, which can 569 

dramatically reduce the running time of the route simplification task. Additionally, less complex route 570 

shapes can also reduce the time needed to store the route shapes in the route shape table, which further 571 

improves the system performance. 572 

3.3.3 Opportunity identification 573 

The opportunity identification sub-module implements the opportunity identification algorithm to find 574 

opportunities. In order to increase efficiency, a two-tier spatial filter is developed to reduce the 575 

computational cost of evaluating the spatial constraint. The estimated time windows, based on the 576 

estimated travel time of this filter, are further used to evaluate the temporal constraint. 577 

3.3.3.1 Two-tier spatial filter 578 

For spatial constraints, although the most accurate spatial distance measurement between a shipment 579 

location and a trailer route is the diversion distance (𝐷(𝛼, 𝛽)), namely, the travel distance that a trailer 580 

diverts from the route to get to the shipment location and back to the route, the measurement of this 581 

diversion distance is costly since it requires using external routing APIs to calculate the shortest 582 

routes. In our system, therefore, a two-tier spatial filter is developed to accommodate the high 583 

computing cost of ascertaining diversion distances. The general idea of this two-tier filter is as 584 

follows: First, a less precise but much more efficient spatial constraint is used to filter out a 585 

potentially large number of shipment locations and trailer trip pairs. Then, actual diversion distances 586 

are obtained only for the remaining locations and pairs. 587 

Hence, in the first tier, the straight-line distance between a shipment location and a route, which can 588 

be directly computed efficiently within the system, is applied as a spatial constraint. The straight-line 589 

distance is the minimum travelling distance between the shipment location and the route. If the 590 

straight-line distance is longer than a threshold 𝜑, the actual travelling distance must be longer than 𝜑. 591 

Hence, satisfying the straight-line distance constraint is a necessary condition for the spatial constraint 592 

to be satisfied.  593 

In the second tier, for the shipment location and trailer trip pairs selected from the first tier, the 594 

diversion distance between the shipment location and trip is estimated using an external routing API. 595 

Specifically, since the main purpose of this system is to utilise residual trailer capacity in daily 596 

operations, it is necessary that the capacity-sharing operations should not interfere significantly with 597 

the original operations of the trailers. Hence, when estimating the diversion distance, the order of 598 
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trailer travel through shipment locations, and the origin and destination of its route, are defined using 599 

the following rules: 600 

(1) A trailer’s trip section/ route must start from its origin waypoint and end at its destination 601 

waypoint; 602 

(2) When a trip section passes the first tier filter with both the pick-up location and drop-off 603 

location of the same shipment, the pick-up location must be passed by the trailer before 604 

the drop-off location. 605 

Moreover, since different routes have different travel distances, instead of defining 𝜑 as a fixed 606 

distance value, it is defined using a percentage of the travel distance of a route and a maximum 607 

distance threshold: 608 

 𝜑 = 𝑀𝐴𝑋(𝜇 × 𝑑𝑟 , 𝜑𝑚𝑎𝑥)                                                            (15) 609 

where 𝜇 is a pre-specified percentage; 𝑑𝑟 is the travel distance of route 𝑟; and 𝜑𝑚𝑎𝑥 is the maximum 610 

distance threshold between a matching shipment location and a trailer’s route. 611 

3.3.3.2 Implementing the temporal constraint 612 

In terms of the temporal constraint, different implementations of the constraints described by 613 

Equation (6) and Equation (7) can be applied based on the characteristics of the data provided. When 614 

the data provides detailed time windows of shipment actions and trailer trip waypoints, the temporal 615 

constraint can be evaluated based on the provided time windows, the estimated dwell and handling 616 

time for a shipment from other companies, and the estimated trailer travel time obtained from the 617 

external routing API that was used in the second tier of the spatial filter. 618 

When an opportunity is accepted by both the shipment company and the trailer company, this 619 

acceptance will be reflected in the system. Firstly, the shared shipment will be moved from the 620 

original company to the company that accepts this shipment, and the corresponding trailer trip will be 621 

removed from its TCG if the trip is not needed anymore. Secondly, for the company that accepts the 622 

shipment, this shipment will be added into the plan of the trailer that conducts it, thus updating that 623 

trailer’s TCG. 624 

4 Numerical Experiments 625 

In this section, experiments were conducted to compare the effectiveness and the computational 626 

performance of our proposed approach against a traditional OD-based approach based on real-world 627 

data collected from two road freight logistics companies, C1 and C2. The following two metrics were 628 

used to quantify the effectiveness of the approaches: 629 
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(1) The number of collaboration opportunities identified; 630 

(2) The reduction in total distance travelled with respect to the non-collaborative case. 631 

In this paper, we do not attempt to quantify the collaboration outcome in terms of system cost or 632 

company-specific economics benefits, because the data shared by the company does not include 633 

information about shipment order revenue and trailer travel cost information. We acknowledge that 634 

these quantities play an important role in accepting or rejecting an identified opportunity, and in 635 

quantifying the overall benefit that can be accrued through collaboration by each company. This is out 636 

of the scope of this paper, however, since our primary purpose is to demonstrate an effective data-637 

based approach for opportunity identification that significantly improves on the currently prevalent 638 

OD-based method. Due to data limitations, the experiments are conducted based on a two-company 639 

collaboration. While the reason why this proposed approach is expected to work for collaboration 640 

with more than two companies is analysed in Section 4.5, we aim to further validate the effectiveness 641 

of this method in multi-company scenarios when more data becomes available in future work. 642 

The computational performance of the TCG approach is also compared with the OD-based approach 643 

in terms of critical processing time (CPT), route shape processing time (RSPT) and the opportunity 644 

identification time (OIT). RSPT is the sum of the time cost of RA, RS and route shape storing in each 645 

engine run. OIT is the time cost of the first-tier spatial filter in each engine run. CPT is the sum of 646 

RSPT and OIT. 647 

The results presented in this section include TCG performance in the absence and presence of route 648 

shape simplification (RS) and route approximation (RA). This makes it possible to show the trade-off 649 

between effectiveness metrics and processing time as the levels of RS and RA are varied. 650 

4.1 Input data and assumptions 651 

The data used for the experiments covers the period from 2 September 2019 to 16 September 2019, 652 

excluding weekends. The temporal resolution of the data provided by the two companies is a day. At 653 

the end of 16 September 2019, the two companies recorded a total of 10584 trailer trip sections and 654 

14136 shipments, with a total trip travel distance of around 831844.26 kilometres. In the experiment, 655 

𝜇 is set as 10% and 𝜑𝑚𝑎𝑥 is set as 25 kilometres. 𝜃 is set as 1850 kilograms per loading metre. The 656 

planning horizon is set as one day. To avoid small shipments being identified, which is not appealing 657 

for dispatchers, the minimum converted weight of shipment that is allowed to be identified is set as 658 

5550 kilograms (equivalent to 3 loading metres). The default value of 𝜋𝑖
𝑜 is set as 10 minutes. 659 

To reduce the complexity of the analysis and thus experiment running time, the results in this section 660 

are those when all the data during the experiment period is collected. Since the live data is collected in 661 

an accumulative manner, the running time in this section represents the maximum engine running 662 

time. 663 
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Traditional OD-based approaches use the same temporal and capacity constraints as the TCG 664 

approach; however, it only matches trailer trips’ waypoints with shipments’ ODs; hence, We set φ to 665 

25 kilometres for the benchmark OD-based approach. 666 

The total trip travel distance when C1 and C2 collaborate is the combined result of the opportunities 667 

identified and dispatchers’ decisions about whether or not to accept those opportunities. Hence, an 668 

automated decision process for the acceptance and choices of opportunities was adopted in the engine 669 

in order to approximate the decision-making process of the dispatchers: 670 

(1) All opportunities are considered on a first-come-first-served basis; which means that if a 671 

trailer’s capacity has already been occupied by its own shipments and shared shipments, no 672 

further shared shipments will be accepted; 673 

(2) When receiving a matched shipment, the dispatcher of the matched trailers will select the 674 

trailer with the minimum diversion distance and send the acceptance of this opportunity to the 675 

dispatcher of the matched shipment; 676 

(3) When receiving the acceptance of the opportunity, the dispatcher of the matched shipment 677 

will compare the diversion distance of the selected trailer and the travel distance of his own 678 

trailer to fulfil the matched shipment, if the former is less than the latter, then he will accept 679 

this opportunity. Note that, if there are actions associated with other shipments at a location of 680 

a matched shipment, the travel distance of his own trailer for the matched shipment is 681 

considered zero, since the trailer must in any case travel to that location for those other 682 

shipments. 683 

Furthermore, it should be remembered that the acceptance of some opportunities may result in other 684 

opportunities being cancelled, since if one opportunity is accepted, the originating company’s 685 

corresponding trailer trip for that opportunity’s matched shipment may be cancelled, and this would 686 

mean that any other opportunities associated with that cancelled trip could no longer be accepted. 687 

These opportunities that have such knock-on effects are excluded from this analysis for two reasons. 688 

Firstly, most of the opportunities (around 91%) do not belong to this category. Secondly, deciding 689 

whether or not to accept these opportunities requires balancing between the monetary benefit of 690 

accepting one opportunity and that of the opportunities that such acceptance would necessarily cancel. 691 

Such a judgement relies on information about shipment pricing and trailer travel cost that is 692 

unavailable for this research. 693 

4.2 Results 694 

Table 3 presents the effectiveness metrics and computational time performance results for the 695 

numerical experiments. These results are presented for the original TCG (without RA or RS), for the 696 

TCG approach with increasing levels of RA and RS, and for the OD-based approach. The metric in 697 
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Table 3 is the number of identified opportunities, the associated distance savings in kilometres 698 

compared to the non-collaborative case (in absolute and relative terms), RSPT, OIT and CPT. 699 

The original TCG approach, i.e. the TCG approach without RS and RA, identifies more than three 700 

times as many opportunities as the OD-based approach. These deliver total distance savings of 17219 701 

km compared to 7403 km for the OD-based approach. The original TCG approach therefore more 702 

than doubles the distance reduction achieved by the traditional OD-based approach. One should note 703 

that the fact that distance savings are a relatively small proportion of the total distance in the non-704 

collaborative case is specific to the input data used in the numerical analyses. That is, the distance 705 

savings will always depend greatly on the two specific companies and the level of their 706 

spatiotemporal operational overlap over the period considered in a particular case study. The main 707 

indication of our result is that the original TCG approach is significantly more effective than the 708 

traditional OD-based approach in finding collaboration opportunities and thereby in generating 709 

distance savings. 710 
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Table 3 Numerical Experiment Results 711 

Approach 

𝜼 

Approximation 

threshold for RA 

𝜆 

Cluster 

threshold 

for RS 

Identified 

opportunity  

Total 

distance 

saving 

(km) 

Total 

distance 

saving % 

Route shape 

processing 

time (Secs) 

Opportunity 

identifying time 

(Secs) 

Critical 

processing 

time (Secs) 

Original TCG − − 2452 17219.18 2.07% 15.02 21.95 36.98 

OD-based − − 765 7403.41 0.89% 1.05 6.7 7.75 

TCG-based 

engine 

250 100 2408 15968.73 1.92% 16.2 18.72 34.92 

250 2142 15224.61 1.83% 9.12 14.78 23.9 

500 1989 13755.52 1.65% 7.71 13.21 20.92 

1000 1718 13283.63 1.60% 7.46 12.16 19.62 

2000 850 9065.42 1.09% 7.21 9.49 16.7 

500 100 2222 15995.81 1.92% 15.5 18.38 33.88 

250 2149 16029.35 1.93% 8.61 14.38 22.99 

500 1991 14336.53 1.72% 7.29 13.8 21.09 

1000 1702 14630.6 1.76% 7.15 12.42 19.57 

2000 794 9065.42 1.09% 7.03 8.94 15.97 

1000 100 2208 14801.06 1.78% 14.79 18.13 32.92 

250 2179 16029.35 1.93% 8.12 14.33 22.45 

500 2002 13926.26 1.67% 7.45 13.74 21.19 

1000 1715 14144.61 1.70% 7.1 11.82 18.92 

2000 796 8844.41 1.06% 6.95 9.39 16.34 

2000 100 2375 15955.72 1.92% 14.61 18.66 33.27 

250 2181 14861.68 1.79% 8.38 14.99 23.37 

500 1988 14309.45 1.72% 7.3 13.72 21.02 

1000 1721 13679.1 1.64% 7.03 12.15 19.18 

2000 800 8848.12 1.06% 6.88 9.02 15.9 

5000 100 2210 15514.26 1.87% 11.72 18.82 30.54 

250 2084 15559.93 1.87% 6.93 14.42 21.35 

500 1998 13729.11 1.65% 5.9 13.46 19.36 

1000 1704 14168.79 1.70% 5.58 11.78 17.36 

2000 797 8900.11 1.07% 5.4 9.17 14.57 

4.3 Reducing critical processing time with RA and RS 712 

The superior effectiveness of the original TCG approach, however, comes at the expense of the time 713 

needed to process the data and identify the collaboration opportunities. The total processing time for 714 

identifying all the opportunities in the case study is 37s for the TCG and 8s for the OD-based 715 

approach. Both these values are compatible with the dispatcher planning operation of the two case 716 
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study companies, but in applications with several companies, any gain in processing time is important. 717 

Accordingly, critical processing time (CPT) savings can be achieved for the TCG approach if RA and 718 

RS are enacted. 719 

6a and 6b show that implementing RS leads to a more pronounced reduction in the critical processing 720 

time, but the rate of this reduction decreases as the cluster threshold for route simplification 𝜆 721 

increases. The effect of RA in reducing the critical processing time is more moderate and occurs at a 722 

fairly constant rate as the approximation threshold 𝜂 increases. 723 

 724 

 725 
Figure 6 – Effect of RA and RS thresholds on the critical processing time 726 
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In summary, RA and RS reduce the processing time of the overall opportunity identification process. 727 

In the specific two-company case of this experiment, it might not be necessary to implement RA and 728 

RS because a CPT of 37s is still manageable for real-time operations. In cases where several 729 

companies participate in the collaboration, however, the CPT of original TCG scales up dramatically, 730 

and in such circumstances, the CPT reduction enabled by RS and RA can help to make TCG viable 731 

for real-time operations. 732 

4.4 The effectiveness cost of RA and RS 733 

 734 
Figure 7 – Effect of RA and RS thresholds on opportunity identification and distance savings 735 

When RA and RS are applied, the performance of the TCG changes depending on the level of the 736 

approximation threshold 𝜂 and the cluster threshold 𝜆. In particular, as 7a shows, the number of 737 

identified opportunities are particularly sensitive to the RS cluster threshold 𝜆 (indeed, the number of 738 

identified opportunities decreases (almost) linearly as 𝜆 increases). This reduction in opportunities 739 
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leads to a decrease in distance savings, although the relation between 𝜆 and distance savings is not as 740 

markedly linear (Figure 7b). Interestingly, neither the number of opportunities nor distance savings 741 

are very sensitive to 𝜂 (Figure 7c and Figure 7d). 742 

The reason for the impact of 𝜆 and 𝜂 on the number of identified opportunities is that they influence 743 

the measurement accuracy of the distance between the shipment locations and the route shapes of the 744 

trailer trips. As 𝜆 increases, the route shape of a trailer trip will be formed by a smaller number of 745 

coordinate points; and hence, the route shape will become less precise. This leads to less accurate 746 

distance measurement between shipment locations and route shapes, which results in some 747 

opportunities being missed and false opportunities being identified but rejected. On the other hand, 748 

when 𝜆 and 𝜂 are relatively small, the approximated and simplified route shape tends to be similar to 749 

the original route shape; therefore, the error in the distance between shipment locations and route 750 

shapes is relatively small, which will not lead to a large number of missed opportunities and false 751 

opportunities. 752 

Overall, Figure 7 demonstrates that RA and RS can generally preserve the TCG’s advantage over the 753 

OD-based approach. This is because the approximated and simplified route shapes are still more 754 

detailed than just their starting and ending points. Hence, some shipments that are far from the start 755 

and end points can still be matched with trailer trips by using the approximated and simplified route 756 

shapes. Indeed, the OD-based approach can be viewed as a special case of the TCG-based engine, 757 

where the route shape of each trip section is aggressively simplified to consist of only the starting and 758 

ending points of the route shape. Hence, the OD-based approach is not capable of identifying the 759 

opportunities where shipments are sufficiently far from both the starting points and ending points of 760 

trailer trips. In contrast, the TCG allows new opportunities to be identified as long as the locations of 761 

the shipments are sufficiently close to reasonable routes of trailer trips.  762 

4.5 Discussion 763 

In essence, when the operating areas of different companies overlap sufficiently, and when there are 764 

more shipments with locations far from the starting or ending points of trips of other companies’ 765 

trailers, but close to the routes of the trailer trips, the margin between the number of opportunities 766 

identified by this engine and those identified by the OD-based approach will increase. On the other 767 

hand, when more shipment locations are close to the starting or ending points of other companies’ 768 

trailer trips, that margin will decrease. In multi-company scenarios we would expect that costumer 769 

locations variability is likely to increase and proximity in routes is likely to be higher than OD pair 770 

proximity. This suggests that our approach would be more effective in collaboration opportunity 771 

identification than OD-based approaches also in multi-company collaboration scenarios. Hence, 772 

notwithstanding that out numerical experiment focused on a two-company collaboration due to data 773 

availability, our results appear promising also for potential multi-company collaborations. However, 774 
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as we point out in Section 5.2, the multi-company scenario will need to be validated empirically in 775 

future research based on data from more than two companies. 776 

The results presented above show that the original TCG and the OD-based approaches represent two 777 

extremes. The original TCG identifies the most opportunities and thus generates the largest distance 778 

savings compared to the non-collaborative case, but this comes at the cost of the highest running time. 779 

On the contrary, the OD-based approach brings the smallest number of identified opportunities but 780 

costs the least time to run.  781 

The results also show that to reduce the running time cost, trailer route data can be processed through 782 

RS and RA. Setting the level of RA and RS (i.e. choosing values of 𝜂 and 𝜆) when implementing the 783 

TCG approach leads to a trade-off between running time cost and the effectiveness of the 784 

collaboration engine. Figure 8 further highlights this trade-off. The figure shows the CPT savings 785 

relative to the original TCG case versus the number of opportunities identified. Each plotted point 786 

represents a TCG implementation. The OD-based approach is also represented in this graph. Due to 787 

the different impact profiles of 𝜂 and 𝜆, there are clearly combinations of these two parameters that 788 

are Pareto efficient. The result in Figure 8 implies that the implementation of RA and RS can provide 789 

the flexibility, depending on the specific application case, to identify a suitable compromise between 790 

the effectiveness of opportunity identification and the running time. Indeed, a multi-objective 791 

optimisation procedure can potentially be conducted for this engine to achieve the optimal 792 

compromise.  793 
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 794 
Figure 8 – CPT – Number of identified opportunities trade-off 795 

In summary, the greater flexibility of the TCG approach, and its superiority in terms of identifying 796 

opportunities, make it overall a more effective tool for data-based collaboration identification than the 797 

traditional OD-based approach. 798 

It should be noted that the absolute magnitude of the performance indicators resulting from our 799 

numerical experiments depends on the specific macroscopic characteristics of the empirical setting, 800 

e.g. the level of spatial and temporal overlap of operations between companies. Notwithstanding this, 801 

the comparison between the TCG and OD-based approach presented in this paper is fair since it is 802 

based on the same underlying input data. Furthermore, we deem that some general results of our 803 

comparison are valid more broadly than the specific empirical setting. Indeed, with any degree of 804 

operational overlap, the TCG approach will provide at least as high an operational performance as the 805 

OD-based approach. Nonetheless, the extent to which different macroscopic characteristics might 806 

affect the overall performance of the TCG approach remains an open question for further research. 807 

5 Conclusions and Future Work 808 

5.1 Conclusions 809 

Real-time information communication and computation processes are deemed essential in the 810 

practical implementation of collaborative road freight logistics (Pan et al., 2019). The high 811 

computational cost of operations research methods for order sharing makes it difficult to implement in 812 
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real-time collaborative logistics operations, however. On the contrary, data-based approaches provide 813 

a viable, albeit suboptimal, alternative that can enable the exploitation of real-time collaborative 814 

opportunities. 815 

By and large, data-based collaborative engines rely on OD matching to identify collaboration 816 

opportunities. Yet OD matching fails to identify potential en-route collaboration opportunities if it is 817 

implemented for order sharing via information secure swapping (ISS) or shipment dispatching 818 

policies (SDP) procedures, in which a shipment of a collaborating company is matched with a trailer 819 

trip of another. This leads to significant unexploited collaboration potential. 820 

This paper proposes a data-based engine for the identification of real-time collaborative opportunities 821 

that enables en-route matching by means of a different approach, the trailer capacity graph (TCG), 822 

overcoming the main limitation of OD-based collaborative engines. Furthermore, our engine based on 823 

the TCG approach is enhanced by route approximation and route shape simplification that can cut 824 

computational times if lower performance in respect to opportunity identification is deemed 825 

acceptable. Hence, the configuration of this engine in terms of trailer route approximation and route 826 

shape simplification enables a trade-off between computational performance and the effectiveness of 827 

opportunity identification. This trade-off implies that the engine can be flexibly tailored according to 828 

user preferences and requirements. 829 

We test our TCG approach against the OD-based approach in numerical experiments based on real-830 

world shipment and trailer trip data from two logistics companies. The results from the numerical 831 

experiments show that the TCG approach identifies a significantly larger number of opportunities than 832 

traditional OD-based matching because it enables en-route matching. The numerical experiments also 833 

demonstrate that when the effectiveness of opportunity identification of our approach is compromised 834 

in order to achieve better computational time, it can still generally preserve its advantage over 835 

traditional OD-based matching. While the effectiveness of our approach is validated in a two-836 

company collaboration scenario, this approach is expected to work for multi-company collaboration 837 

scenario. 838 

Overall, the analyses presented in this paper demonstrate that higher operational efficiencies are 839 

achievable in real-time with our approach that moves beyond traditional OD-matching for the 840 

identification of collaboration opportunities. This is a significant result as it enables a practice-ready 841 

solution that can be easily implemented for ISS. Ultimately, our solution enables collaboration 842 

frameworks, such as ISS, that can protect commercially sensitive data and are competition law 843 

compliant, to operate real-time with improved efficiencies. This can improve the attractiveness of 844 

such frameworks and support wider uptake of collaborative logistics among operators, at a time when 845 

it is paramount to quickly provide solutions for cleaner and more economically sustainable freight 846 

transport. 847 
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5.2 Limitations and future work 848 

The magnitude of the performance indicators obtained in the numerical experiments is clearly 849 

dependent on the specific macroscopic characteristics of the empirical setting, e.g. the level of spatial 850 

and temporal overlap of operations between the two companies in the case study over the period 851 

covered by the input data. While this does not affect the fairness of our comparison between the TCG 852 

approach and our benchmark OD-based approach, the extent to which different macroscopic 853 

characteristics might affect the overall performance of the TCG approach should be investigated in 854 

future research. Our numerical experiments have shown that the approach has been tested, validated, 855 

and proved valuable for a two companies’ collaboration but its application for multi-company 856 

collaboration will require further validation in future works. 857 

The engine demonstrated in this paper filters opportunities based on fundamental constraints only. 858 

Hence, further research will also need to focus on the development of methods that filter opportunities 859 

based on additional constraints. In particular, a data-driven filter that models users’ preferences is 860 

currently under development because finding suitable partners and opportunities rests not only on 861 

“tangible” factors (geographical, temporal, capacity and shipment type compatibilities) but also on 862 

latent “non-tangible” factors, e.g. trust between partners (Creemers et al., 2017) and operator 863 

knowledge, which are typically unobservable in databases (Ilie-Zudor et al., 2015). 864 

In addition, currently the engine only ranks the identified opportunities based on the distance saving; 865 

hence, it does not have a sophisticated approach to select the best opportunities for the dispatchers 866 

when multiple shipments are matched with the same trailer or multiple trailers are matched with the 867 

same shipment. Therefore, a future research direction is to develop a real-time opportunity selection 868 

approach that can relieve the dispatchers from the complicated opportunities selection task. 869 

As a final remark, we would like to point out that given the promising numerical results presented in 870 

this paper the engine, as described in Section 3.1, has been partially piloted in a two-company 871 

application for the two companies that provided the data for the numerical experiments, with 872 

Gatehouse Logistics acting as third-party collaboration engine host. The pilot trial, described in 873 

(Reinau et al., 2021),  demonstrated that poor data quality available from the data management 874 

systems of the two company has proved a to be significant implementation challenge and for the real-875 

world implementation of the engine data reporting and management need to be addressed for a 876 

beneficial implementation of the engine. 877 
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