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Abstract 

Previous studies have demonstrated the importance of the microbiome in the pathogenesis of 

inflammatory bowel disease (IBD), with a dysbiosis being a common feature. This change in 

the microcbiome has metabolic consequences, and metabonomic profiling can be used to detect 

these metabolic signals along with changes in the patient’s own metabolic profile. 

Metabonomics have been applied clinically in oncology to augment diagnosis, treatment, and 

prognostication, and the aim is for it to have a similar role in IBD. Most studies in IBD have 

been performed on stool, and have observed a number of discriminatory metabolites, but more 

recently urinary metabonomics has been studied, as this is a much more convenient biofluid to 

use both in terms of sample collection and preparation. Here too, discriminatory metabolites 

have been observed, several of which are produced by intestinal microbial or host-microbial 

metabolism. These changes in the IBD metabolome give an insight into the complex 

pathophysiology of this disease, and have significant potential impact in both diagnosis and 

stratification of patients into different disease phenotypes and in the assessment of treatment 

outcome. 

However, up until now IBD metabonomic research has been restricted to homogeneous clinical 

cohorts where subjects with comorbidities have been excluded, and for the technique to be 

clinically useful it has to provide consistent results in real-life cohorts, including factors that 

may influence the metabolome such as obesity and the effects of bowel cleansing pre-

colonoscopy, both of which apply to a real-life IBD clinical population. This project assessed 

these factors on the IBD metabolome, examining principally urine due to its ease of use.  

Multivariate analysis showed that changes seen in the IBD metabolome are present with the 

inclusion of subjects with comorbidities in IBD and Crohn’s disease cohorts relative to 

controls. Targeted analysis showed differences in hippurate and 4-cresol sulfate between IBD 
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cohorts relative to controls, likely associated with reduced abundance of Clostridia species 

seen on microbiomic analysis. No changes could be seen in ulcerative colitis (UC) cohorts, but 

UC participant numbers were relatively low following removal of patients taking 5-

aminosalicylates that influenced the NMR spectrum.  

Obesity may have an effect on the urinary IBD metabolome, as although there was no 

clustering on unsupervised multivariate analysis, a reduction in hippurate excretion was not 

seen in the obese IBD relative to control cohorts, and hippurate has been the most consistently 

reported discriminatory metabolite associated with IBD. 

Longitudinal analysis of the urinary and faecal metabolome showed resistance at day 3 and 

week 6 following bowel cleansing; a temporary reduction of alpha diversity was observed on 

microbiomic analysis.  

Overall, this project has shown that whilst many elements of the IBD related urinary 

metabolome are preserved when patients with comorbidities are included into analysis, obesity 

may be a significant confounder. The studies of the urinary and faecal metabolome after bowel 

cleansing show that the metabolome appears resistant to significant changes at day 3 following 

bowel cleansing, which may be helpful in analysing future metabolic and microbiomic studies 

after colonoscopy, and help to associate changes identified from sampling during those 

procedures.  
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Chapter 1: Introduction  

1.1 Inflammatory bowel disease  

1.1.1 Epidemiology and diagnosis 

Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn’s disease 

(CD), is a chronic immune-mediated disease that causes inflammation of the gastro-intestinal 

(GI) tract (1). UC is a colonic disease characterised by continuous mucosal inflammation 

starting in the rectum, and with varying extension through the colon. It follows a relapsing and 

remitting course, and histologically there is usually the absence of granulomas (2). Crohn’s 

disease conversely can involve any part of the GI tract, and also differs to UC in both its 

disease pattern, types of disease behaviour, and is more associated with the presence of 

granulomas on mucosal biopsy (3). Up to fifteen percent of IBD cannot be readily classified 

into either of these subtypes, and is termed IBD unclassified (IBDU). Indeterminate IBD is 

defined as IBD that remains unclassified after histological analysis of a post colectomy (4). 

Since the discovery of ulcerative colitis in 1875 and Crohn’s disease in 1931, the incidence of 

these conditions have been steadily rising in the western world including in Europe, the USA, 

and Australia, with a prevalence of 0.3% (5), and the incidence is rising towards Western levels 

in newly developed industrialised countries (6, 7). In the United Kingdom (UK), Crohn’s 

disease has a prevalence of 157 per 100,000 people, equating to at least 115,000 people (8), 

and UC is slightly more common with a prevalence of approximately 240 per 100,000, 

equating to at least 146,000 people (9). 

Compared to autoimmune conditions which show a higher prevalence in women, gender 

separation is less distinct in IBD. However, gender differences have been observed in clinical 

presentation, medical and surgical intervention, and disease course (10). Peak incidence of IBD 
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appears to between the second and fourth decades of life, and a smaller peak in the sixth 

decade (11), albeit this later peak has not been replicated in more recent studies (12). Ethnic 

background also influences disease phenotype, with Northern European Caucasians having a 

higher prevalence of stricturing and penetrating Crohn’s disease compared to South Asians (13, 

14), and a lower prevalence of extensive disease compared to patients from a South Asian 

background (14-16). 

Obesity, a growing worldwide health concern, is increasingly of interest in research and 

clinical management of patients with inflammatory bowel disease. The prevalence of obesity in 

IBD is at least as common as it is in the general population (17), with 15–40% of patients with 

IBD being reported as obese (18). The effect of obesity on disease phenotype and activity has 

varied in the literature. A higher frequency of elevated CRP and lower IBD-related quality of 

life has been associated with obesity in one study (19), along with a shorter time to first surgery 

(20), and a shorter time to developing peri-anal complications (21). However, no differences in 

risk or number of IBD-related surgeries, IBD-related hospitalisations, and initiation of anti-

TNF treatment have been also reported (17, 19, 20). A better disease course has also been 

reported, with lower rates of surgery, hospitalisation and treatment escalation to anti-TNF 

therapy (17), and a lower prevalence of penetrating disease in having been associated with 

obesity (22). Obesity is associated with a chronic low-grade inflammatory state (23), and 

potential differing disease course in IBD patients has been associated with adiposity related 

adipokine (adipocyte produced cytokines) dysregulation (24, 25). 

The diagnosis of inflammatory bowel disease in general is made using clinical, biochemical, 

stool, endoscopic, histological, and radiological information (26). From a clinical perspective, 

patients can present with varying symptoms depending on sub-type of IBD, location or disease 

extent, disease behaviour, and severity of inflammation. Symptoms include diarrhoea, urgency 
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to defecate, per rectal bleeding, and abdominal pain. Constitutional symptoms can include 

weight loss, fever and fatigue. Crohn’s disease, can have a much more heterogeneous 

presentation, and some patients may present with complications such as an intra-abdominal 

collection, bowel obstruction, or perianal disease.  

Crohn’s disease can affect any part of the GI tract, but typically affects the terminal ileum and 

colon, whereas ulcerative colitis only affects the colon, although some patients with pancolitis 

can get backwash ileitis. Unlike ulcerative colitis, Crohn’s disease has different disease 

behaviours; as well as inflammatory, it can be stricturing and/or penetrating, the latter leading 

to intra-abdominal fistulisation and collections. Crohn’s disease can also involve the ano-

peritoneal area, leading to peri-anal complications including fistulisation and abscess 

formation. 

From a histo-pathological perspective, Crohn’s disease is a transmural disease with a 

classically patchy distribution, and ulcerative colitis is a continuous colonic mucosal disease. 

Both Crohn’s disease and UC are characterised by chronic inflammatory changes, and in 

practice can be difficult to distinguish. Features favouring Crohn’s disease include the presence 

of granulomas, patchy lamina propria inflammation, and focal segmental crypt distortion. 

Diffuse crypt abnormalities, crypt atrophy, abnormal crypt architecture, irregular mucosal 

surface and mucin depletion favour UC (27).  

Accurate classification of IBD has been developed to assist in disease management and 

prognosis. The Montreal Classification system classifies Crohn’s disease patients according to 

age, disease location, and disease behaviour. For UC, this classification system uses just 

disease extent (3). This classification system is summarised in the table 1.1. 
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 Crohn’s disease Ulcerative colitis 

Age (A) A1 below 16 y 

A2 between 17 and 40 y 

A3 above 40 y 

- 

Location (L) / Extent (E) L1 ileal 

L2 colonic 

L3 ileocolonic 

L4 isolated upper disease* 

E1 ulcerative proctitis - 

rectum only 

E2 left sided UC (distal UC) 

- inflammation distal to 

splenic flexure 

E3 extensive UC (pancolitis) 

- extends proximal to the 

splenic flexure 

Behaviour (B) B1 non‐stricturing 

B2 stricturing  

B3 penetrating 

p perianal disease modifier† 

- 

Table 1.1: Montreal classification of Crohn’s and ulcerative colitis. *a modifier which can be added to L1-3 when 

upper GI disease present, † is added to B1–B3 when concomitant perianal disease is present. 

 

1.1.2  Pathogenesis of IBD – multiple component approach 

The cause of IBD remains largely unknown (28), but there have been significant advances in 

our understanding over the past two decades (29). The consensus agreement is that genetic 

variations and environmental factors including changes in the intestinal microbiome lead to a 

chronic abnormal immune response (29-31). The pathogenesis of IBD is therefore a result of a 

‘network effect’ of these components, and this effect is called the ‘IBD interactome’ (32, 33). 

Figure 1.1 summarises the component model of IBD pathogenesis.  
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Figure 1.1: Component model of IBD pathogenesis 

 

Research to date has been heavily focused on studying individual ‘-omes’ in isolation. 

Integrated research into the multiple ‘-omes’ will help build a comprehensive molecular map of 

IBD (29, 33). The aim will be that IBD molecular subtypes can then be identified that will 

correlate to clinical phenotypes which will help elucidate central molecular hubs which can be 

targeted by new drugs (33). 

1.1.2.1  Genetics  

There are over two hundred genetic variations already discovered that are strongly associated 

with IBD using genome-wide association studies (GWAS) (33). The more IBD-associated 

genes within an individual, the greater the risk of developing IBD (34). However, genetic 

variation alone cannot explain the aetiology of IBD, as it only accounts for up to a quarter of 

all IBD cases (29, 33). Monozygotic twin studies have shown concordance rates of 30-35% in 
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Crohn’s disease, and 10-15% in ulcerative colitis, suggesting that non-genetic pathogenic 

components play an important role in IBD (31). 

Studies have identified specific gene variants with plausible disease mechanisms, including the 

nucleotide-binding oligomerization domain-containing protein 2 / caspase recruitment domain-

containing protein 15 (NOD2/CARD15) and autophagy-related 16 like 1 (ATG16L1) gene 

variants in Crohn’s disease. Both have been linked to an inappropriate immune response and 

defective removal of intestinal microorganisms (30, 31, 33). Several gene variants are 

associated with specific disease phenotypes, including NOD2/CARD15 that has been 

specifically linked to ileal fibro-stenotic Crohn’s disease (35).  

Defective autophagy of bacterial cells has been associated with mucosal epithelial and 

dendritic cells containing ATG16L1 and NOD2/CARD15 variants (36). Autophagy, the 

destruction and recycling of cellular components, is an important process that controls bacterial 

replication and antigen presentation within the intestine (28, 36).  

Other susceptibility gene loci include several related to the Th17 and IL-23 pathway, which 

includes the IL23R gene that encodes for the pro-inflammatory cytokine IL-23. JAK2, IL12B 

and STAT3 are also associated with this pathway, and these cytokines are associated with IBD 

(36). Overall, genomics can be beneficial in identifying subgroups of patients at risk of a 

specific disease phenotype, but as all genes are affected by epigenetic modification, and so 

genetic variants identified by GWAS will be have increased utility when combined with other 

pathogenic components such as DNA methylation (29, 30). 

1.1.2.2  Immunology 

Until recently the focus in IBD pathogenesis has been the altered immune response, and in 

particular, abnormalities in the adaptive immune system (33). A correlation has been observed 
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with Crohn's disease and a Th1 response, and a Th2 response with UC (28). More recently, the 

importance of the innate immune system has been recognised, which includes the integrity of 

the epithelial barrier, innate microbial detection, and autophagy (36). It has also been 

recognised that to take our understanding further, the immune response cannot be examined in 

isolation, and its interaction with the exposome and intestinal microbiome must be taken into 

account as immune homeostasis depends on the immune and non-immune cells interacting 

with the intestinal microbiota allowing reciprocal regulation (29). 

Cell surface toll-like receptors mediate the gut innate immune response, along with 

cytoplasmic NOD-like receptors. Altered expression and function of immune cells with both 

TLRs and NOD proteins through mutations such as NOD2/CARD15 is suggested by evidence 

to date to lead to reduced activation of the inflammatory NF-κB pathway (37), which may 

cause an inadequate anti-bacterial response and subsequent pathogenic organism invasion. 

NOD2 loss of function mutations may also lead to an excessive Th1 response by inhibition of 

TLR2 stimulation (38). Altered bacterial autophagy from mutations in NOD2/CARD15 and 

ATG16L1 have also been associated with IBD (31).  

IL23, along with its role in the adaptive immune response, can influence innate immunity (36). 

Polymorphisms in IL23R, associated with IBD, can affect Th17 cytokine function. Increased 

bacterial translocation and defective barrier function from the mucous and epithelial layers 

have been observed in IBD (29, 36). IBD has also been associated with defective secretion of 

antimicrobial peptides by the epithelial layer (36). 

The abnormal adaptive immune response in Crohn's disease centres around the Th1 cell 

response (28, 29, 36), induced by IL-12, and leads to a production in IL-12. Mucosal T cells 

then elevate IFN-γ and IL-2, leading this abnormal Th1 response to cause intestinal 

inflammation (36). Conversely, UC is a Th2 adaptive response, as there are higher amounts of 
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IL-5 and IL-13, and low IL-4 (28, 29). Immuno-pathogenesis of IBD is also linked to Th17, 

and are characterised by secretion of IL-17A, IL-21, and IL-22. Clonal expansion of these cells 

is promoted by IL-23 (29, 36). High levels of IL-17A, one of the main cytokines associated 

with Th17 cells, has been found in the mucosa of IBD patients (29). 

1.1.2.3  Environmental factors 

The exposome refers to all external factors that humans are exposed too. The intestinal 

microbiome is also part of the exposome (29), but as it is located inside the human intestine 

and has received such recent interest in IBD pathogenesis, it will be addressed separately. The 

importance of the exposome has been highlighted by two main factors. The first, is the increase 

in incidence and prevalence in the developed countries during the second half of the last 

century. This time scale alone would not allow for a significant change in the human genome 

to explain this rise (39). The second factor is the effect in incidence of IBD in migrants who 

move from areas of low IBD incidence to areas of high incidence. The infants and second 

generation of these migrants have a similar incidence of IBD as the host country, suggesting 

that environmental factors as opposed to genetics play a more important role in this rise in 

incidence (40).  

Several external factors have been linked to IBD, with evidence linking smoking, a few drugs, 

vitamin D, diet, stress, air pollution, education status, and appendicectomy to disease onset and 

changes in disease course (28, 29, 36). Heavy smoking confers a protective effect in the onset 

and relapse of ulcerative colitis, and is associated with a higher risk of disease onset and 

surgery in Crohn's disease. A higher risk of IBD has been correlated with low vitamin D (41), 

and in mouse studies (42), has been shown to ameliorate severe intestinal inflammation. Non-

steroidal anti-inflammatory drug (NSAID) long-term exposure has also been associated with an 

increased risk of IBD (43, 44), and along with antibiotic use (45). Stress has been linked to 
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both the onset of IBD, and as a mediator of disease exacerbations (46). Air pollution may also 

have a role, with recent evidence showing an association with rising incidence of IBD and 

industrialisation in developing countries (36, 39). 

Diet has a significant impact on developing IBD, with high-sugar, high-fat Western diets 

associated with an increase in incidence and prevalence of IBD (29). Evidence has shown a 

link between diet and the intestinal microbiome, the latter have an established central role in 

the pathogenesis of IBD  (47). Babies are born with a sterile gut, and breast or formula milk, 

and then exposure to other food, is integral to the development of the intestinal microbiome 

(48). A study has linked different dietary patterns as the reason for children from rural Africa 

having a different abundance of the main bacterial phyla (Bacteroidetes and Firmicutes) 

compared to children living in Europe (49). 

1.1.2.4  Gut microbiome and dysbiosis      

1.1.2.4.1  Role of intestinal microbiome in health and disease  

The intestinal microbiome, defined as the entire habit of microorganisms, their genomes, and 

their surrounding environmental conditions within the intestine (50), comprises of 

approximately 1013-1014 bacteria, and over a 1000 species (51). Each person has around 160 

species of bacteria, along with viruses, protozoa and fungi (51, 52). The composition and 

abundance of bacteria varies within different parts of the intestine (53). There are two main 

functional phyla, Bacteroidetes and Firmicutes, although a further 10 can have important 

function on the GI tract (54, 55). The ratio of Firmicutes:Bacteroidetes also varies within 

individuals when studied in large cohorts (52).  

The intestinal microbiome starts to develop immediately following birth, and is relatively 

established within the first few weeks of life (28, 29). During this developmental period, the  
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microbiota is thought to be critical in priming the host intestinal mucosal immune system, and 

disruption at this stage could move the gut away from being healthy, and to being more prone 

to conditions such as IBD (29). Following development in childhood, the microbiome reaches 

stability in adulthood, and then declines later in life (56, 57). Once established in adulthood, 

there is evidence to show that each individual’s microbiota remains relatively stable, and has 

some resistance to long term changes caused by diet, drugs, pre- and probiotics, surgery and 

infections (57).  

The microbiome contributes to the development and regulation of the immune system, 

digestion which includes synthesis of essential vitamins and short chained fatty acids, drug 

metabolism, and protection against pathogens (51, 54, 58). It therefore plays an important role 

in health, and so significant perturbations in the intestinal microbiome can affect the multitude 

of host immune-microbiota interactions, and potentially lead to and perpetuate chronic 

inflammation (51, 58-60). This compositional as well as functional disturbance in the enteric 

microbiota is termed dysbiosis (52). 

1.1.2.4.2  Dysbiosis and IBD    

The human enteric microbiome is thought to have a crucial role in the pathogenesis of 

inflammatory bowel disease. Dysbiosis in IBD is characterised in general by a loss of anti-

inflammatory microbiota, and an increase in pro-inflammatory microbiota (51), resulting in an 

overall ‘loss of tolerance’ of host enteric immunity to the resident microbiota (33) with a 

disruption of microbiota-microbiota, and microbiota-host cross-talk (61). 

There has been some debate in the literature as to whether dysbiosis is the cause or result of 

IBD (62). There is evidence to support a causal role in IBD in both animal and human studies. 

Multiple murine studies in genetically susceptible germ-free individuals have shown a rapid 

immune response and subsequent inflammation in response to introducing microbiota, and 
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particularly when transferred from mice with established colitis (62-65). A study by Schaubeck 

et al. (66) demonstrated transmission of Crohn's disease-like ileitis in susceptible murine hosts 

using inflammatory-associated microbiota compared to non-inflammatory controls. A human 

study by Rutgeerts et al. (67) showed that patients who underwent diversion of the faecal 

stream by defunctioning the small bowel proximal to the site of curative ileal resection had no 

disease recurrence compared to the control group that had a one-step resection and 

anastomosis, and once these defunctioned patients were re-anastomosed, disease recurred in 

all. Similarly, infusing small bowel luminal contents proximal to an ileocolonic anastomosis 

via a defunctioning loop ileostomy following curative bowel resection for Crohn’s disease was 

shown to initiate inflammation in a study by D’Haens et al. (68) These studies have all shown 

that introducing intestinal microbiota in a susceptible intestine triggered inflammation, 

suggesting a role of the microbiome in triggering inflammatory bowel disease. Treating active 

Crohn’s disease with antibiotics has been shown to have a clinical response, and in some 

patients lead to clinical remission, again implicating the microbiome in the aetiology of IBD 

(69).  

There is also evidence suggesting dysbiosis is also the consequence of inflammation (70). 

Changes in IBD activity have been associated with changes in the microbiome. Results from 

human studies have been inconsistent, and in some cases contradictory, and this is likely due to 

high heterogeneity in human subjects (71). However, findings from animal studies have been 

far more reproducible, and studies have shown changes in the microbiome in the DSS colitis 

induced mouse model during and following repeated episodes of inflammation compared to 

intervals of no inflammation and controls (71-73).  

There is strong evidence that a reduction in microbial diversity is associated with IBD - the 

healthier and more diverse the microbiome, the more effectively it interacts and regulates the 
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host immune system, and vice-versa (29, 74). Along with the effects on diversity, changes in 

composition has been reported in a consensus bacterial profile for IBD which was established 

as the result of more than 600 studies of the gut microbiota in this disease (51). Proteobacteria 

(particularly adherent-invasive Escherichia coli), Fusobacterium, Veillonellaceae, 

Pasteurellaceae, and Ruminococcus gnavus are taxa that are commonly reported as higher in 

abundance in IBD (70). Clostridium groups IV and XIVa, Faecalibacterium prausnitzii, 

Bifidobacterium, Bacteroides, Suterella, and Roseburia are typically lower (52, 70). At phyla 

level, study findings have been much less consistent, but most report an increase in 

Bacteroidetes and Gammaproteobacteria, (75, 76), and several studies have shown a loss of 

Firmicutes (77). Other microorganisms have shown to differ in abundance through emerging 

research. Some Candida species are higher in IBD including Candida albicans and Candida 

tropicalis, as well as lower levels of the fungus Saccharomyces cerevisiae (78). Caudovirales, 

which are bacteriophage viruses, are reportedly higher in IBD (79). 

1.1.2.4.3  The gut microbiome and the IBD interactome 

Our understanding of the human intestinal microbiome has increased enormously over the last 

two decades (33, 52), along with our understanding of changes in the gut microbial 

composition associated with IBD (51, 59, 62, 80), other GI conditions (81, 82), and some non-

GI conditions including asthma, diabetes, heart disease, neurological diseases and cancer (83-

86). However, compositional changes are not enough to translate these findings into potential 

new therapeutic targets (29, 30, 52). To do this, better understanding of how the gut microbiota 

interacts with host physiology will be needed (52), as the pathogenesis of IBD is a result of a 

‘network effect’ of different ‘-omes’ - the ‘IBD interactome’ (33). Therefore, further 

integration of changes in the gut microbiota with other 'omics', including genomics, 

epigenetics, proteomics and metabonomics will be needed to help build a comprehensive 
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molecular map of IBD, allowing individualised therapeutic targets to form more personalised 

healthcare in this condition (32). 

Research integrating genomics and the gut microbiome includes identification of several 

susceptibility genes linking microbial sensors that activate autophagy such as NOD2/CARD15, 

and genes that are linked to regulation of autophagy such as ATG16L1 (33, 87). Disruption of 

these proteins leads to defective microbial clearance which has been associated with Crohn’s 

disease (87). 

Metabolic profiling, termed ‘metabonomics’ or ‘metabolomics’, is a powerful approach to 

linking cellular pathways to biological mechanisms (88), and can help take forward our 

comprehension of the intestinal microbiome function, and how the developmental and 

regulatory dysfunctional between host and microbiome relates to the pathogenesis of IBD (29, 

30, 32). Metabolites are small molecules that provide a functional readout of cellular 

biochemistry, and unlike genes are not directly influenced by epigenetic regulation and post-

translational modifications, and so act as direct signatures of biochemical activity (88). Using 

spectrometry techniques, thousands of metabolites from biological samples can undergo 

qualitive and quantitative measurement, and then can be integrated with other ‘omic’ 

techniques (30, 32). 

Alterations in microbial composition in IBD have been well described, along with the 

importance of colonic metabolites in signalling and immune system modulation. There have 

been recent advances in how bacteria and the metabolites they modulate contribute to IBD (62, 

80, 89). A recent study by Franzosa et al (89) was one of the first to examine gut metabonomic 

and microbiomic changes associated with IBD in an integrated multi-omic framework. It 

concluded the discovery of possible mechanistic relationships between specific metabolites and 

microbes that are perturbed in IBD, with over 100 robust associations found between well-



 29 

characterized differentially abundant metabolites and differentially abundant species. Another 

study (58) exploring the functional aspect of the IBD microbiome using metabolic profiling 

showed that carbohydrate-related metabolic pathways and production of amino acid were 

decreased by changes in the enteric microbiome associated with IBD.  

Several other bacterial metabolic pathways have been identified through integrating microbial 

analysis with metabonomics, including the identification of the nuclear farnesoid-activated X 

receptor (FXR) pathway, which is a bile acid receptor involved in bile acid signalling (62). 

This has shown that dysbiosis could affect FXR signalling as intestinal bacteria bile salt 

hydrolases (BSH) are integral bile acid biosynthesis (62, 90). Silico analysis has shown that 

there is a marked reduction in BSH activity in particularly the Firmicutes phyla of Crohn’s 

patients compared to healthy control (91). There is also a loss of secondary bile acids in 

patients with IBD consistent with impaired microbial enzyme activity, leading to modified 

metabolism of bile salts metabolism and through the FXR pathway a subsequent reduction of 

anti-inflammatory signalling (92). 

Short-chain fatty acids (SCFAs) produced by specific Clostridia species through the 

fermentation of undigestible carbohydrates increase intestinal regulatory T-cell function by 

promoting immune tolerance (93), and this has been shown to reduce colitis in murine studies 

(94). Studies are currently underway to target parts of these IBD microbial pathways, either 

through novel small molecule drugs or by directly altering the gut microbiota (62).  

1.1.2.4.4  Techniques to investigate the gut microbiota 

Next generation sequencing (NGS) techniques have revolutionised exploration of the human 

intestinal microbiota, identifying over 99% of the microbiota compared to previous culturing 

techniques that could only identify about 30% of species present (95). Development of DNA 

sequencing and computational analysis allowed multiple research groups to examine the 
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human gut microbiota using small-subunit (16S) ribosomal RNA gene-sequence-based 

experiments (16S rRNA sequencing). The 16S rRNA gene, found in all microorganisms, is 

conserved sufficiently to allow precise phylogenetic analysis (54). This technique allows for 

accurate survey of bacterial communities within biofluids and tissue. 

Shotgun metagenomics is another next generation sequencing technique that performs 

untargeted sequencing of all the microbial genomes within a sample, and not just the 16S gene 

(96). It can therefore be used to profile taxanomic composition and functional potential of 

microbes.  

Metaproteomics is a technique used to give direct information about bacterial gene function. 

Shotgun metaproteomics uses untargeted mass spectrometry to measure thousands of proteins 

within a faecal sample, which can then be correlated to metagenomic analysis to give 

information about which genes are being expressed (97, 98)  

1.1.3  Treatment and the future of personalised healthcare     

IBD is a long-term condition that generally follows a relapsing and remitting course, and often 

affects people younger in life. It can have significant effects on quality of life, participation in 

the workplace including time off work, educational performance, and there is a small increase 

in mortality (99). Medical therapy currently aims to induce clinical remission, achieve mucosal 

healing, and prevent complications including hospitalisation, surgery, and cancer (100). From 

the early days of just steroid based treatment for UC in the 1950’s, there are now a large array 

of treatments including 5-aminosalicylates, oral immunomodulators, and manufactured 

antibodies and small molecule therapies targeting specific aspects of the immune-mediated 

inflammatory response (26, 101) – see Figure 1.2. There remains, however, considerable risks 

and adverse reactions associated with IBD treatment, and in light of phenotypic heterogeneity, 
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finding the optimum treatment course for individual patients can be timely and challenging 

(101). 

 

 

 

 

 

 

 

Figure 1.2: Treatment pyramid for IBD.  

Adapted from figure published by University of Alberta IBD Clinic website (102) 

 

Medical treatment of inflammatory bowel disease depends on several factors, including disease 

subtype, location, extent, behaviour (in Crohn’s disease), and complications. The mainstay of 

medical therapy in ulcerative colitis is 5-aminosalycilate (5-ASA) based treatment, either oral 

and/or topically administered. 5-ASA treatment is less effective in Crohn’s disease, and the 

most recent BSG IBD guidelines published in 2019 has concluded there is no role for 

mesalazine in Crohn’s disease, including disease confined to the colon (103). In contrast, non-

systemic steroids and oral immunomodulators such as azathioprine have better reported 

efficacy (104). For severe disease in both Crohn’s disease and UC, systemic steroid therapy 

with either oral prednisolone or intravenous hydrocortisone is often used (104). Biological 

therapy using anti-TNF based treatment with infliximab and then later adalimumab have been 
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used for severe or treatment refractory IBD over the last two decades (105). There has been an 

introduction of several newer biologic classes for the treatment of IBD over the last 5 years - 

anti-α4β7 integrin and anti-IL12/23 antibody treatment. The most recent novel drug treatment 

introduced are the Janus kinase (JAK) inhibitors, which are small molecule drugs rather than 

biological antibody treatment for the treatment of ulcerative colitis (106, 107). 

5-aminosalicylate based therapy is principally used for mild to moderate ulcerative colitis 

(104), and in one study assessing treatment response in mild to moderate UC (108), high dose 

oral 5-ASA monotherapy was shown to achieve remission in 43% of patients at week 8, and 

64% of patients in combination with topical treatment. The mechanism of action is not fully 

known, but these drugs may act by having a direct anti-inflammatory effect on the mucosa by 

reducing leukotriene and prostaglandin production through inhibition of cyclooxygenase and 

lipoxygenase pathways. This in turn is thought to block peptide-induced neutrophil 

chemotaxis, reduce scavenging reactive oxygen metabolites, and possibly prevent activation of 

nuclear factor-κB (109, 110). Oral 5-ASA is combined with one of two main delivery systems 

to allow it to take effect in the distal ileum or colon – either being coated in a pH sensitive resin 

or a semipermeable membrane, or being linked with another molecule by an azo bond (110). 

These drugs are generally well tolerated, with interstitial nephritis being the most important but 

rare side effect (111). 

Steroids have long been an effective treatment in inducing remission in Crohn’s disease and 

UC patients (104, 111). In Crohn’s disease, two major studies have shown the benefit of 

systemic steroids in active disease (104), with the first study (112) showing 60% of patients 

achieving remission (number needed to treat [NNT] = 3) with a tapering prednisolone regime, 

and the second study (113) showing 83% achieving remission with 6-methylprednisolone 

(NNT = 2). Non-systemic steroid therapy with oral budesonide has also shown benefit in active 
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ileal and ileocolonic Crohn’s disease, but with less efficacy (114). In UC, systemic steroids are 

indicated in moderate and severe disease, or mild disease that does not respond to 5-

aminosalicyate based treatment. Non-systemic steroid treatment is indicated in mild to 

moderate UC refractory to 5-ASA treatment (111). The wide adverse effect profile has long 

been the concern with steroid treatment, with early onset adverse effects including mood and 

sleep disturbance, cosmetic issues including weight gain, and glucose intolerance. Serious 

effects associated with long term use of steroids include osteoporosis, necrosis of the femoral 

head, myopathies, and increase rates of infections (104).  

Thiopurines form the mainstay of oral immunomodulator treatment in Crohn’s disease and UC, 

and are used principally as maintenance treatment in light of their slow onset of action. There 

is substantial low-quality evidence demonstrating the efficacy of azathioprine as a maintenance 

treatment in Crohn’s disease, with one pooled analysis of six studies showing 73% of patients 

remaining in remission over a 6 to 18 month follow up period (115). In UC, pooled analysis of 

seven studies showed that 44% of patients on Azathioprine failed to maintain remission 

compared to 65% of placebo patients (116). Increasingly thiopurines, along with other oral 

immunomodulators such as methotrexate if not tolerated or contraindicated, are used in 

combination with anti-TNF treatment to prevent immunogenicity of this class of biological 

treatment (117).  

Thiopurines inhibit ribonucleotide synthesis causing T-cell apoptosis and changes in T-cell 

subpopulations, the former by modulating Rac1 signalling within the cell. Azathioprine is 

metabolised to 6-mercaptopurine (6-MP), and then to 6-thioguanine nucleotides (6-TGN) 

which is the active metabolite (104, 118). Approximately 20% of patients do not tolerate 

thiopurines, and serious side effect include infections, acute pancreatitis and lymphoma (118). 
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Other oral immunomodulators used in IBD include methotrexate, tacrolimus, and 

mycophenolate (119). 

The first class of biological therapies used in IBD were IgG1 anti-TNF monoclonal antibodies, 

with Infliximab being the first drug licensed in the UK. Its efficacy was shown in a multicentre, 

double-blind study by Targan et al (120), where 64% of Crohn’s disease subjects with 

moderate to severe disease activity that was not responsive to 5-ASAs and steroids showed a 

clinical response compared to 17% who were given placebo (NNT = 1.6). A study by 

Schnitzler et al (121) showed that 89% of patients achieved clinical response after induction 

therapy. Adalimumab was the next anti-TNF drug to be licensed for Crohn’s disease, and was 

shown in the CLASSIC 1 study (122) to have a superior affect compared to placebo in the 

treatment of anti-TNF naïve Crohn’s disease patients with moderate to severe disease activity, 

with clinical remission being achieved in 36% of patients at week 4 compared to 12% given 

placebo.  

The efficacy of infliximab has been demonstrated as a rescue treatment for acute severe colitis, 

with one study (123) showing a significant reduction in colectomies at 3 months. The ACT-2 

trial (124) showed the benefit of infliximab in steroid refractory UC patients, with 21.5% of 

patients with endoscopically confirmed moderate to severe disease achieving steroid free 

remission at 30 weeks compared to 7.2% who received placebo. The ULTRA-2 trial (125) was 

a pivotal study for adalimumab, and showed that 31% of steroid refractory patients with UC 

had ceased steroid treatment at week 16 compared to 5.7% of patients receiving placebo. The 

SONIC trial (105) showed that combination therapy of Infliximab and Azathioprine was 

superior to infliximab or azathioprine alone. Similarly, the SUCCESS trial (126) showed 

benefit of combination therapy compared to Infliximab or Azathioprine monotherapy in 

ulcerative colitis. 
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Serious adverse effects of anti-TNF treatment include infections, reactivation of latent 

tuberculosis, and an increased risk of malignancy (104). A meta-analysis in 2009 showed an 

increased risk of lymphoma with anti-TNF treatment in IBD compared to thiopurines (127).  

Newer classes of biological therapies include anti-migratory therapies such as the α4β7 integrin 

inhibitor vedolizumab. In the GEMINI-III trial (128) for moderate to severely active Crohn's 

disease with previous treatment failure to anti-TNF therapy, 15% of patients achieved clinical 

remission at 6 weeks compared to 7% of placebo. In UC, the GEMINI-I trial (129) showed that 

at week six 47.1% of patients receiving vedolizumab had responded compared to 25.5% of 

placebo. A head-to-head study showed that vedolizumab was superior to adalimumab in 

acquiring clinical remission in the treatment of ulcerative colitis (130). 

Ustekinumab, that targets IL-12 and IL-23 receptors, was studied in the UNITI trials and has 

been licensed in moderate to severely Crohn’s disease, and has shown significantly higher 

clinical response rates at week 6 compared to placebo (UNITI-2, 55.5%, and 28.7%, 

respectively) in anti-TNF naïve or previous response groups, as well as in anti-TNF refractory 

patients (UNITI-1, 34.3% and 21.5%, respectively). At week 44 (IM-UNITI), remission was 

achieved in 53.1% of patients on 8 weekly dosing compared to 48.8% on 12 weekly dosing and 

35.9% in the placebo group. At this time period, serious adverse events occurred in 9.9% on 12 

weekly dosing, 12.1% on 8 weekly dosing, and 15.0% in the placebo group, with serious 

infection in 5.3%, 2.3%, and 2.3% respectively. (131). In ulcerative colitis, ustekinumab has 

been shown to be superior to placebo in achieving clinical remission through the UNIFI trials 

in patients with prior biologic exposure (either non-responder or intolerant), with clinical 

remission achieved following induction (week 8) in 15.6% of the treatment arm compared to 

5.3% in placebo arm, and clinical remission in the maintenance part of the study (week 44) 

with 43.8% receiving 8 weekly treatment compared to 24.0% in the placebo group. Safety data 
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for UC patients receiving ustekinumab was reported at 52 weeks as 7.6% on 12 weekly dosing, 

8.5% on 8 weekly dosing, and 9.7% receiving placebo, and with regards to serious infections, 

3.5%, 1.7%, and 2.3%, respectively (132).  

Another emerging biologic, risankizumab, which is currently used in the treatment of psoriatic 

arthritis, has been shown to be effective and safe in its phase 3 study for Crohn’s disease (133). 

Risankizumab inhibits IL-23/p19 pathway, and has a reported clinical remission rate of 45% at 

week 12, compared to 22% with placebo. 

The first oral small molecule therapy to be licensed in the UK was tofacitinib, a non-selective 

Janus kinase (JAK) inhibitor, where following induction (week 8, OCTAVE Induction 1 trial) 

clinical remission was achieved in 18.5% of patients receiving treatment compared to 8.2% in 

the placebo group (107). Patients included in this study had to have had prior treatment failure 

or intolerance in one of the following IBD treatments: glucocorticoids, thiopurines, or anti-

TNF treatment. The OCTAVE Sustain trial (107) showed clinical remission (52 weeks) in 

40.6% of patients compared to 11.1% in the placebo group. Adverse effects include higher 

rates of infections, skin cancer, lipid levels, and pulmonary embolism in patients with risk 

factors for thromboembolic disease (134).  

Filgotinib, a selective JAK inhibitor (preferential to JAK 1), has induced clinical remission in 

26.1% patients with ulcerative colitis compared to 15.3% in the placebo group in patients who 

were biologic-naïve, and 11.5% compared to 4.2% respectively in patients with prior biologic 

exposure (135). Upadacitinib, the latest JAK inhibitor (also preferential to JAK 1), has had 

positive efficacy and safety data reported for the treatment of ulcerative colitis in its phase 3 

study published recently (136), and encouraging phase 2 data for Crohn’s disease (137). This 

drug also has the additional benefit of efficacy in the treatment of overlapping inflammatory 

joint disease (138, 139). In October 2022 the European Medicines Agency announced safety 
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recommendations for the use of Janus kinase inhibitors for inflammatory conditions, advising 

there use in patients 65 years or older only if no other treatment options were available, and 

this is in light of concerns over infections, cardiovascular events, venous thromboembolic 

events, and cancer (140).  

Ozanimod, another oral small molecule drug that selectively modulates the sphingosine-1-

phosphate receptor, and is used in the treatment multiple sclerosis, has been shown to be 

effective in the induction and maintenance treatment of ulcerative colitis. Its safety data is also 

encouraging from the phase 3 trial, with serious infection at 52 weeks occurring in less than 

2% of patients (141). Other novel compounds undergoing trials include SMAD7 antisense 

oligonucleotides, anti-IL-6 antibodies, and anti-Madcam antibodies (104). 

Exclusive enteral nutrition (EEN), which comprise of a completely liquid diet, have increasing 

evidence for inducing remission in adults (142-146), albeit studies are have been small, despite 

previous large meta-analysis showing only significant benefit in paediatric cohorts (147, 148). 

EEN can be used as alternative to systemic steroids to induce remission, and are particularly 

useful when glucocorticoid treatment is contra-indicated, or in patients who have had previous 

significant adverse effects.  

Although Crohn's disease is now managed primarily by medical gastroenterologists, surgery 

still plays an important role with many patients still undergoing surgery (149). Patients with 

ileo-caecal Crohn's disease carry a 90% risk of requiring surgery (150), although recurrent 

resections are no longer necessary and considered harmful for patients (149). Surgery in UC 

has been refined over the last 20 years, where the gold standard has moved away from procto-

colectomy with ileostomy, to restorative procto-colectomy with an ileal pouch-anal 

anastomosis [IPAA] which preserves rectal tone and body image (151, 152). The rate of 
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colectomy in UC has decreased over the last two decades, with a recent study showing a 10-

year risk of colectomy at 6.4% (153). 

Current treatment models in IBD are based on disease classification, severity, patient factors 

including comorbidities and preferences, and following the step up or top-down model (see 

Figure 1.2). However, poor response to specific treatments can be high in IBD using the 

current approach, causing a considerable reduction in quality of life for patients, and have high 

cost implications for healthcare (152).  

Most medical treatments for IBD have been developed to treat dysfunction within the 

immunome, which accounts for approximately 180,000 protein interactions (154). It is 

becoming increasing apparent that effective treatment of complex diseases cannot be done by 

modulating single targets (33). Current treatment approaches focusing on the immunome alone 

may have reached their limits (32). Within the IBD interactome, there are still many unknown 

interactions within and between each of the pathological components, including the genome, 

epigenome, proteome, metabolome and exposome (155). Each of these components contain at 

least hundreds of elements leading to a staggering number of potential interactions (32). 

Therefore, an integrated systems biology-based approach, along with classical hypothesis-led 

biology, is required to map out the disease network, and central hubs within it, to develop new 

targets to significantly advance individual treatment and develop personalised healthcare (30, 

32, 33). 

1.2  Metabonomics and Inflammatory Bowel Disease   

1.2.1  Metabonomic analysis of human biofluids 

Metabonomics, now used interchangeably ‘metabolomics’ and ‘metabolic profiling’ (156), 

encompasses any technique that can identify and quantify small molecules within a biological 
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sample (157). These techniques enable thousands of metabolites, the functional readouts of 

cellular biochemistry, to be quantitatively measured allowing new discoveries to link cellular 

pathways to biological mechanisms (157-159). The two most broadly used techniques are 

nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy (159). These 

platforms can identify compounds including organic acids, amino acids, sugars, lipids, 

phenolic compounds, and nucleosides (158). 

Metabonomic analysis can be divided into targeted and untargeted analysis – untargeted 

analysis aims to identify a metabolic “fingerprint” of a combination of metabolites from the 

total complement of metabolites, whereas targeted analysis identifies and quantifies specific 

metabolites of interest within a sample (160). 

NMR spectroscopy is highly automated, provides relatively rapid high throughput analysis, and 

has excellent reproducibility making it ideal for large scale experiments compared with gas and 

liquid chromatography–mass spectrometry (GC-MS and LC-MS). 

1H-NMR spectroscopy detects hydrogen-containing molecules within a sample to produce an 

NMR spectrum – which can then be analysed to identify and provide relative quantification of 

all the metabolites within a sample (159). 1H-NMR spectroscopy can be applied to different 

biological samples including serum, urine, faecal extracts, saliva, breast milk and tissue. 

NMR spectroscopy is sensitive to minor internal and external perturbations, and so can provide 

valuable information including environmental factors that other ‘-omics’ techniques cannot 

identify. NMR requires comparatively little sample preparation (161), is non-destructive to the 

sample (unlike mass spectroscopy), and results are easily reproducible. The main disadvantage 

is that in light of its sensitivity to external factors, it is potentially subject to many confounders 

that need to be taken into account by acquiring detailed metadata including diet and 

medications, to allow results to be translated in a meaningful way. NMR spectroscopy are less 
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sensitive than mass spectroscopy, with NMR studies typically identifying 50–200 metabolites 

with concentrations >1 µM, whereas LC-MS can identify over a thousand metabolites with 

concentrations of >10 to 100 nM (162). 

1.2.2  Application of metabonomics in clinical practice 

In the 21st century there is a move to take medicine forward by treating each patient as an 

individual interactome, with unique physiological, biochemical and environmental interactions. 

Therefore, metabonomics, with its ability to analyse metabolites representing the products of 

complex host-environmental interactions, presents itself as an ideal area to help take 

personalised healthcare forward (163).  

Within the field of oncology, translational use of metabonomics is further ahead compared to 

other fields, and can broadly be divided into imaging-based applications and using biofluid 

markers to guide treatment (164). In vivo studies of intra-operative rapid ionisation mass 

spectrometry (REIMS), known as the “iKnife”, can distinguish between malignant and normal 

tissue in near real-time to assist the surgeon minimising excessive resection of normal tissue. 

The technique involved a diathermy cutting tool generating gaseous-phase ionized cell 

constructs that are suctioned into a time-of-flight mass spectrometry where metabolic profiles 

are compared to histologically-specific mass spectral libraries (165-167).  

Metabolic profiling of biofluids have been demonstrated to discriminate cancer subjects from 

controls, which has included tumours of breast, lung, colorectal and pelvic origin (168-173). 

Furthermore, metabonomics has potential in assessing treatment response, with NMR 

spectroscopy identifying metabolic signatures from human glioma cells that are more likely to 

respond to chemotherapy, and can prognosticate prior to imaging detection, with better 

chemotherapy outcomes in several different cancers associated with lower total choline signals 
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(174). In breast cancer, serum metabolite profiles have been associated with micro-metastases 

and along with treatment outcomes (175, 176). 

Non-oncological diseases have shown potential in utilising metabonomic techniques. A case 

series by Wang et al. (177) using mass spectrometry measuring serum 2-aminoadipic acid (2-

AAA) levels, could predict a greater than four-fold risk of diabetes in subjects with the highest 

concentrations of 2-AAA. In rheumatology, gas chromatography/time-of-flight mass 

spectrometry analysis of synovial fluid has identified 20 metabolites than can distinguish 

rheumatoid arthritis from other inflammatory conditions (178). 

Serum metabonomics has demonstrated a role in the stratification of neurological conditions, 

including multiple sclerosis and traumatic brain injury. A study by Villoslada at al. (179) 

identified metabolic signatures in longitudinal serum samples which could discriminate 

between controls, medium disability and high disability related to this disease. Serum analysis 

has also been shown to predict outcome in patients following traumatic brain injury, with 

relative quantification of medium chain fatty acids and one sugar derivative being closely 

associated with outcome severity (180). 

Potential clinical use of metabonomics have been identified in cardiovascular and pulmonary 

diseases. Urinary NMR spectroscopy has identified markers including formate and hippurate 

that correlate with lung function in patients with COPD (181). Serum and blood sample 

metabolites have also been associated with the development of atherosclerosis reported in 

several studies, indicating a potential role as a population screening tool for heart disease (182-

185). 

The application of metabonomics in inflammatory bowel disease is discussed in the next sub-

chapter, however, translating these techniques to widespread clinical practice has been 

prevented by several issues. Intra-operative near real-time histological assessment of tumour 
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margins using the metabonomic techniques have been affected by high start-up costs, and need 

to develop local expertise (165-167). For metabonomics applied to biofluids, as well as the 

above, several areas have been identified that require addressing before this field can be 

applied widely to clinical practice (163).  

Firstly, there has been significant variation in how samples are collected and handled, sample 

pre-processing, and overall experimental procedures, and therefore standardisation to ensure 

reliable and reproducible results is needed - the National Phenome Centre based at Imperial 

College London has taken on this service in the UK (163, 186). 

Analysing data and applying it in a standardised fashion for metabonomics to be reproducible 

for widespread use is another significant hurdle, particularly as different analytical platforms 

are used, which comprise of mass spectrometry techniques and NMR spectroscopy (163, 186-

188) – these are discussed in more detail later in this thesis. Unlike with intra-operative tissue 

margin techniques, biofluid metabonomics produce non-binary results where the metabolic 

profiles will vary due to physiological and environmental factors (such as diet and medication). 

Development of local and national infrastructure, training local expertise, and having a national 

databases to aid interpretation of results will all be required (163).  

1.2.3  Metabonomic profiling in IBD 

There have been multiple metabonomic studies in IBD conducted over the last 15 years, with 

the initial aim of identifying biomarkers for IBD to help differentiate this condition from other 

GI disorders, and also Crohn’s disease (CD) from ulcerative colitis (UC) in the 10-15% of 

patients with IBD unclassified. Over this time period, a single biomarker or panel of 

biomarkers (an ‘IBD metabolic profile’) has not translated from bench to bedside, and this is 

despite multiple studies being successful in using metabolic profiling to separate IBD from 

controls, and Crohn’s disease from UC. Part of the issue has been reproducibility of results, 
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likely due to different study methodologies, sample handling and protocols, analytic platforms, 

and addressing of confounding factors (as described in the above section). Despite this, 

promising results from several studies has shown a potential role of metabonomics in assessing 

patients’ disease activity and response to treatment.  

Several studies have been able to discriminate active and quiescent disease, using different 

biological samples and analytical platforms, and correlating metabolic signatures with different 

assessments of disease activity used in current clinical practice (189). A study by Keshteli et al. 

(190) assessed the urinary metabolome in patients who had undergone ileocolonic resection 

and were able to correlate metabolic signatures with post-operative Rutgeert’s scores. Two 

studies have shown correlation with faecal metabolites and faecal calprotectin results in 

paediatric Crohn’s disease cohorts (191, 192), and serum and plasma metabonomic studies 

have correlated disease activity for both Crohn’s disease and UC respectively (193, 194). 

Breath metabolic profiling has shown correlation with symptoms and endoscopic activity score 

in UC (195), and HBI score, CRP and faecal calprotectin in Crohn’s disease (196). Biopsied 

colonic tissue analysed using mass spectrometry can differentiate treatment-naïve, newly 

diagnosed, and deep remission UC patients in a study reported by Diab et al. (197). 

Stratify treatment response using metabonomics has been reported in several studies to date 

(189). A study by Ding et al. (198) prospectively recruited Crohn's disease patients prior to 

commencing anti-TNF treatment, and collected urine, blood and faecal samples at baseline and 

several intervals within the first 18 months of treatment. Models could be generated to predict 

treatment response based on metabolic profiling in all three types of biological samples. 

Another longitudinal study by Aden et al. (199) collected faecal samples in patients receiving 

anti-TNF and anti-α4β7-integrin (vedolizumab) therapy, and were able to generate predictive 

models in patients receiving anti-TNF treatment showing the potential of metabonomics to 
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stratify patients into those more likely to achieve clinical remission. The anti-α4β7-integrin 

cohort was underpowered and so this could not be assessed. Faecal metabonomic studies have 

shown promising results in predicting response to exclusive enteral nutrition (EEN) in Crohn’s 

disease (200, 201), and potentially in faecal microbiota transplantation in UC (202, 203). 

Overall, research to date has been promising in terms of metabonomics having a role in 

assessing disease activity and stratifying patients into treatment response and failure groups, 

but further work with larger longitudinal data, and likely integrating with other ‘omic’ data to 

identify molecular phenotypes will be needed to help predict clinical course and response to 

specific treatments more reliably.  

As described above, a variety of biofluids have been used in IBD related metabonomic 

research, along with biopsy tissue samples taken at lower GI endoscopy. Biofluids include 

serum/plasma, faecal water and urine. The advantage of urine as a biological sample is that it is 

non-invasive, and easily obtained as patients can usually provide a sample on demand. Faecal 

extracts are also non-invasive obtain, but often cannot be produced on demand, and less 

acceptable to patients. Serum/plasma and colonic tissue are more invasive to acquire. 

Animal studies, where the significant influence of confounders can be controlled for much 

more than in human studies, have shown that in urine the majority of distinguishing 

metabolites between subjects with colitis and controls are intestinal bacterial related (204). In 

serum, glucose and tricarboxylic acid cycle (TCA) cycle intermediates formed the predominant 

distinguishing metabolites (205). 

Human studies assessing the role of metabonomics in IBD using colon biopsies and 

serum/plasma (not studied in this thesis) have found discriminatory metabolites associated with 

amino acid metabolism and the tricarboxylic acid cycle (204, 206, 207). 
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Most metabonomic studies have separated IBD cohorts into Crohn’s disease and ulcerative 

colitis, and excluded patients with unclassified IBD (IBDU) (156, 208). A study by Kolho et al. 

(191) investigating faecal and serum metabolomics in paediatric IBD patients included subjects 

with IBDU but then combined this group with UC patients in the analysis as the IBDU cohort 

was too small.  

1.2.3.1  IBD metabonomic profiling of urine      

Metabonomic profiling in IBD using urine samples has been explored quite extensively in 

human studies. Urine is an easily attainable biofluid, and requires little preparation for NMR 

analysis compared to other biological samples. It gives time-averaged (between micturition) 

information of the endpoints of both endogenous and exogenous (medication and diet) 

metabolism, and contains the gut bacterial metabolites and host-bacterial co-metabolites (156). 

Table 1.2 summarises the studies published prior to this work. 
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Study Samples / 

analytical 

platform 

Changes in metabolites in IBD cohorts compared to controls 

 

Untargeted analysis Targeted analysis 
Dawiskiba 2014 

(209) 

CD (n =19)   

UC (n =24)   

HC (n=17) 

 
1H NMR 

↓ hippurate 

↓ trigonelline 

↓ taurine 

↓ succinate 

↓ 2-hydroxyisobutyrate 

 

↓ hippurate  

↓ citrate  

↓ alanine  

↓ formate  

↓ trigonelline  

↓ taurine  

↓ succinate  

↓ glycine  

↑ 2-hydroxyisobutyrate  

↑ acetoacetate 

 

Stephens 2013 

(210) 

CD (n = 30)   

UC (n = 30)   

HC (n = 60) 

 
1H NMR 

↓ hippurate 

↓ formate 

↓ methanol 

↓ acetate 

↓ methylamine 

↓ succinate 

↓ trans-aconitate 

↓ citrate 

↓ 1-methylhistidine 

↓ histidine 

↓ lysine 

↓ asparagine 

↓ trigonelline 

↓ creatine 

↓ taurine 

 

 not done 

Schicho 2012 

(207) 

CD (n = 20)   

UC (n = 20)   

HC (n = 40) 

 
1H NMR 

↓ hippurate 

↓ citrate 

↓ succinate 

↓ 1-methylnicotinamide 

↓ trigonelline 

↓ betaine 

↓ formate 

↓ 1-methylhistidine 

↑ acetate 

 

not done 

Bjerrum 2010 

(UC only) 

(211) 

 

UC (n = 68)   

HC (n = 25) 

 
1H NMR 

 

no difference not done 

Williams 2009 

(161) 

CD (n = 86)   

UC (n = 60)   

HC (n = 60) 

 
1H NMR 

↓ hippurate 

↓ citrate 

↓ NNN-trimethyllysine 

↑ guanidoacetate,  

↑ glycine 

↑ methylhistidine 

↑ glycolate 

 

↓ hippurate 

↑ formate 

↓ 4-cresol sulfate 

 

Table 1.2: Table of metabonomic studies using urine sampling – adapted from (212) and (213) 
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The first study to show differences between urine metabolic profiles between IBD and controls 

was published by Williams et al (161) in 2009, and was also able to separate Crohn’s disease 

(CD) from ulcerative colitis (UC) with discriminatory metabolites that were principally related 

to intestinal microbiota. However, only Caucasian patients were recruited, and those with 

significant other comorbidities were excluded. Ten of the 86 Crohn’s patient and 8 of the 60 

UC patients had evidence of a disease flare, with an HBI score of ≥5 or a SCCAI score ≥5 

respectively. This study used 1H NMR spectroscopy, and initial separation between IBD and 

control cohorts using untargeted multivariate analysis was driven by the presence of 

xenometabolites, and specifically metabolites attributable to paracetamol and 5-

aminosalicylates. Consequently, patients identified as taking these medications from the 

corresponding metadata were excluded from further analysis. The subsequent loadings plot 

showed that separation was then driven principally by hippurate, a product of the microbial 

metabolism whose synthesis is related to the presence of Clostridia species, known to be 

lowered in IBD. The main discriminatory metabolites for Crohn’s disease when compared to 

controls using OPLS-DA analysis were hippurate, guanidoacetate, glycine, methylhistidine, 

citrate, and glycolate. UC differentiated from controls with changes in relative quantity of 

methylhistidine, guanidoacetate, hippurate, citrate and glycine. Between CD and UC, changes 

in citrate, hippurate, methylhistidine, guanidoacetate and 4-cresol sulfate were discriminatory. 

Hypothesis-led targeted analysis showed lower levels of hippurate between IBD and controls, 

and increased levels of formate, with the latter’s production being related to the 

Enterobacteriaceae family of bacteria, particularly Escherichia coli. 4-cresol sulfate was also 

shown to be reduced in the IBD cohort on targeted analysis, with its production again related to 

the presence of Clostridia species. Concentration of these 3 metabolites were different between 

the Crohn’s disease and UC cohorts too, with lower excretion of hippurate and 4-cresol sulfate, 

and increased excretion of formate in the Crohn’s disease cohorts. Hippurate was also 
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significantly lower in isolated colonic Crohn’s disease compared to all UC, and UC pancolitis. 

Effect of disease activity, measured using HBI and SCCAI scores, on urinary metabolic 

profiles was assessed in this study, but no significant differences were seen discriminating 

active and quiescent disease on targeted analysis.  

The study authors detail how they addressed potential confounders; they excluded patients with 

significant comorbidities, intercurrent illnesses, biologics, and those on treatment diets (EEN 

etc), antibiotics and pre- and probiotics. Patients who were pregnant, and those with stomas 

were excluded. Detailed information including diet (including 24 hours recall of foods and 

substances known to affect the urinary metabolome), medications, female menstrual 

information, exercise, alcohol, and smoking status were taken and analysed between cohorts. 

Effect of body mass index (BMI) was not reported (161). 

A study by Schicho et al (207) collected serum, plasma and urine from 20 subjects with 

Crohn’s disease, 20 with UC subjects, and 40 healthy controls and performed 1H NMR 

spectroscopy on each biofluid. All patients were fasted at the time of collection. Patients with 

significant comorbidities or an inter-current illness, or those on biological treatment, antibiotics 

or pre- or probiotics were excluded. Resonances corresponding to metabolites related to 

medication, including paracetamol and acetamide, were removed from the spectral analysis. 3 

Crohn’s disease and 15 UC patients were taking 5-ASAs at the time of analysis, and it is not 

clear from the study report how the related metabolites, which are known to interrupt the 

aromatic region of the urinary 1H NMR spectrum (161), were accounted for. Using untargeted 

OPLS-DA modelling of urine samples, Crohn’s and UC could be separated from controls, with 

stronger separation in the Crohn’s disease cohort. 26 metabolites were changed in Crohn’s 

disease compared to controls, whereas only 23 were altered in UC. There were only a few 

metabolites that were altered in both, including hippurate, citrate, succinate, betaine, and 
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methanol. Citrate and succinate are TCA cycle intermediates, and betaine (also known as 

trimethylglycine) is mainly acquired from the diet, and there is growing evidence that it has an 

anti-inflammatory effect by inhibiting nuclear factor-κB (214). Separation could not be 

established between Crohn’s disease and UC using supervised multivariate analysis. TCA 

cycle intermediates, including citrate and succinate, were lower in UC compared to the control 

cohort. This study did not report disease activity in the patient information section of study, 

and did not assess effect of disease activity on the metabolome. 

This study reported lifestyle information as detailed above, and assessed for any significant 

impact between comparison groups. Fasting samples were taken to help prevent diet potentially 

influencing the metabolome, but otherwise no specific diets were excluded. Subjects with 

comorbidities were excluded, and mean height and weight (and ranges) between Crohn’s 

disease, UC and control groups were assessed and reported as similar between cohorts, but 

BMI comparisons were not stated (207).  

Untargeted analysis of urine samples was performed by Stephens et al (210), where 30 Crohn’s 

disease patients, 30 UC, and 60 controls were recruited. Four of the Crohn’s patients and 19 of 

the UC patients were taking 5-aminosalicylate based treatment, but it is unclear how these were 

accounted for in the paper manuscript. Patients were excluded if they had urinary dysfunction 

or infection at the time of recruitment. Other comorbidities, BMI and other potential 

confounders were not reported. Harvey Bradshaw Index (HBI) was used to assess disease 

activity in Crohn's disease participants, and the Mayo Disease Activity Score (MDAS) was 

used in UC subjects. 13 patients in the Crohn's cohort and 17 in the UC cohort were regarded 

as being in clinical remission. Multivariate analysis using OPLS-DA was able to distinguish 

IBD from control cohorts. Discriminatory metabolites included ones derived from gut 

microbiota including hippurate, formate, acetate, methylamine and methanol. TCA cycle 



 50 

associated metabolites including succinate and citrate, and several amino acids including 

histidine were also discriminatory in separation between IBD and controls. Crohn’s disease 

patients could only be distinguished from UC if the model included patients who had 

undergone intestinal resection. IBD disease activity information was collected using Harvey–

Bradshaw Index and Mayo Disease Activity Score for Crohn's disease and UC respectively. 

However, effect of disease activity on the metabolome was not reported in this study.  

A study by Dawiskiba et al (209) assessed urinary metabolic profiles in 19 Crohn’s disease 

patients, 24 UC patients, and 17 healthy controls. Samples were taken following an overnight 

fast, and patients were excluded if they had an infection, and any other ‘severe diseases’ 

including diabetes mellitus, liver or kidney impairment, and malignancy. No information about 

BMI was described in this paper. Signals in the NMR spectrum related medications including 

5-aminosalicylate, azathioprine and acetaminophen were removed, and so not included in the 

analysis. This study showed the strongest separation using partial least squares-discriminative 

analysis (PLS-DA) was between active IBD and control cohorts, and between IBD active and 

remission cohorts. In the former, hippurate, citrate, succinate, trigonelline, taurine, and 2-

hydroxyisobutyrate were the main discriminatory metabolites. In both active and remission 

cohorts, hippurate, citrate, succinate, and taurine were discriminatory between IBD and control 

cohorts. Higher concentrations of glycine and lower concentrations of acetoacetate separated 

active IBD from disease remission. Targeted univariate analysis was subsequently preformed 

on metabolites identified as driving the PLS-DA models, with discriminatory metabolites listed 

in Table 1.2. Mean IBD activity score (SCCAI/HBI) data was presented in a patient clinical 

profile table, but no assessment of activity on the metabolome was reported in this study. 

Bjerrum et al. (211) used NMR spectroscopy and multivariate statistics to assess for potential 

biomarkers in ulcerative colitis only, and showed no separation between the UC cohort and 
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control based on urinary metabolic profiling. In this study, urine samples were collected from 

41 active UC patients, 33 quiescent UC patients, and 25 controls. Several potential confounders 

were accounted for including active infections, recent use of antibiotics, severe mental illness, 

and pregnancy. It did not report whether patients with other significant diseases such as 

diabetes mellitus, cardiovascular or respiratory disease were excluded. Participant BMI was not 

stated in the main manuscript. The NMR spectra had regions removed with no clear reason 

given (it is assumed that this was done to exclude drug metabolites including those for 5-

ASAs), and this included the aromatic region where most of the discriminatory metabolites for 

IBD have been found in previous studies (215). Disease activity was assessed on colonic tissue 

samples, but in the urinary NMR results the effects were not reported, but this is likely because 

UC could not be differentiated from controls. 

Overall, it is difficult to comment on the homogeneity of populations examined in the above 

studies as although participant characteristics were described in varying details in the above 

five studies, only exclusion of subjects with other significant diagnoses was reported in three of 

these studies. Obesity, another important health condition, is only addressed in one of the five 

studies above, where mean height and weight were compared between disease and control 

cohorts, although no BMI or statistical analysis was described.  

1.2.3.2  IBD metabonomic profiling of faecal water 

With the recent interest of the intestinal microbiome in the pathogenesis of IBD, faecal 

sampling has been seen as an ideal biological sample type to examine the corresponding 

metabolic effect, and consequently there have been several metabonomic studies using faecal 

extracts to examine for discriminatory metabolites in IBD. Faecal water or extracts have the 

advantage that they contain direct metabolic information of the microbiome within the 

environment where it is located, and samples are non-invasive to obtain. Disadvantages include 
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patients often cannot provide a sample on demand, and so often have to return to hospital, the 

acceptability from patients of providing and handling samples, and these samples often require 

more preparation than urine. Faecal samples will also be heavily influenced by potential 

confounders including xenobiotics (molecules not naturally found within an organism) include 

metabolites related to drugs and nutrition. The following table summarises the faecal 

metabonomic studies in IBD to date.  

Study Samples Analytical 

platform 

Changes in metabolites in IBD 

cohorts compared to controls 

Santoru 

2017 

(216) 

 

CD (n = 50)  

UC (n = 82)  

HC (n = 51) 

1H-NMR 

GC-MS 

LC-MS 

↑ biogenic amines 

↑ amino acids,  

↑lipids 

↓ B group vitamins 

 

Bjerrum 

2015 

(217) 

 

UC (n = 48) 

CD (n = 44) 

HC (n = 21) 

1H NMR ↑ amino acids 

↓ SCFAs in IBD  

Le Gall 

2011 

(218) 

  

UC (n = 13) 

HC (n = 22) 

1H NMR ↑ taurine 

↑ cadavarine 

↓ acetate 

↓ butyrate 

 

Jansson 

2009 

(219) 

  

CD (n = 10 

twin pairs, 

6 are 

discordant) 

HC (n = 7 

twin pairs) 

 

ICR-FT/MS ↑ amino acids 

↑ bile acid metabolites  

Marchesi 

2007 

(220) 

CD (n = 10) 

UC (n = 10) 

HC (n = 13) 

 

1H NMR ↓ acetate 

↓ butyrate 

↓ methylamine 

↓ trimethylamine 

 

Table 1.3: Table of metabonomic studies using faecal extracts in IBD – adapted  

from (212) and (213) 

The first study published assessing the impact of IBD on faecal metabolites was by Marchesi et 

al. (220), where 1H NMR spectroscopy was performed on 10 Crohn’s disease patients, 10 UC 
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patients, and 13 controls. IBD patients were being treated with prednisolone and 5-

aminosalicylates as part of their clinical management. Information regarding comorbidities, 

other medications or BMI was not reported. Initial analysis showed that the presence of 

metabolites related to 5-aminosalicylates were driving separation in multivariate analysis, and 

so the entire aromatic region was subsequently removed from the spectrum prior to further 

analysis. Depletion of particularly acetate and butyrate, short chain fatty acids (SCFA), was the 

main factor driving separation between Crohn’s disease patients and healthy controls. These 

metabolites are produced via fermentation of complex carbohydrates by intestinal bacteria 

(221). Methylamine and trimethylamine were also decreased, with these metabolites being 

derived from degradation action of the microbiota on the choline and carnitine. These findings 

correlate with microbial studies in IBD that have shown a reduction in Clostridia species C. 

leptum and C. coccoides that are principally responsible for producing SFCAs in the gut. This 

study also showed a reduction in butyrate, methylamine and trimethylamine in UC. Effects of 

disease activity on the faecal metabolome was not described in the study manuscript. 

Jansson et al (219) used ion cyclotron resonance fourier transform mass spectrometry (ICR-

FT/MS) to perform non-targeted metabolic profiling to assess for differences in gut microbiota 

associated metabolites in faecal samples between Crohn’s disease patients and controls. ICR-

FT/MS is a very sensitive technique able to differentiate between subtle variations between 

thousands of metabolites including those with higher molecular weights. Consequently, this 

study recruited identical twins to help identify metabolites specific to Crohn’s disease within 

the thousands that could be detected using this technique. 17 pairs of identical twins were 

recruited, with 7 healthy sets, 4 who were discordant for predominantly colonic CD, 2 

discordant for predominantly ileal CD, 2 concordant for ileal disease, and 2 concordant for 

colonic disease. All disease participants had inactive disease based on HBI score. Metadata 

regarding comorbidities, BMI and medication was not reported in the paper. PL-DA 
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multivariate analysis showed differing concentrations of bile acid metabolites including 

glycocholate and taurocholate, metabolites related to fatty acid biosynthesis including oleic and 

stearic acid, and amino acids tyrosine and tryptophan.  

1H NMR spectroscopy of faecal water samples was used by Le Gall et al (218) to investigate 

the changes in faecal metabolic profiles between UC, irritable bowel syndrome (IBD) and 

control subjects. 13 UC patients, 10 IBS, and 22 controls were recruited. All but one of the UC 

subjects were taking 5-aminosalycilate treatment, and spectral regions containing 5-ASA 

metabolites including the entire phenolic region were removed from the analysis. Details 

regarding BMI, medications and other comorbidities were not reported. Multivariate 

discriminant analysis using PLS-DA modelling was able to differentiate UC from controls, 

reporting a slight reduction in acetate and butyrate, and an increase in taurine and cadaverine. 

Disease activity was assessed in this study by measuring faecal calprotectin (FCP), and those 

with a FCP level less than 75 mg/kg (n = 6) were compared with subjects with a FCP greater 

than 125 mg/kg (n = 7), and an elevated faecal lactate was detected in the higher FCP group.  

A larger study by Bjerrum et al. (217) recruited 48 patients with UC, 44 with Crohn’s disease, 

and 21 controls, and analysed faecal extracts using 1H NMR spectroscopy. Crohn’s and UC 

cohorts were split into groups of active and inactive disease using HBI and Mayo scoring 

systems respectively, and these groups were compared to controls and each other. Detailed 

IBD clinic information was reported including disease activity and IBD medications. Body 

mass index and the presence of other comorbidities were not reported. 42 of the UC cohort and 

2 of the Crohn’s cohort were taking 5-aminosalicylate based treatment, and regions in the 

spectra where 5-ASA metabolites were present were subsequently removed. Faecal metabolic 

profiles were able to differentiate active and inactive IBD from controls, and Crohn’s from UC, 

although the discriminatory power of the latter was lost when patients who were on anti-TNF 

treatment or those who had previous bowel resection were eliminated from the cohort. Active 
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UC could be differentiated from inactive UC, but this was not replicated for Crohn’s disease. 

As with previous studies, discriminatory metabolites were microbiota-related SCFAs including 

butyrate, and several amino acids including alanine, tyrosine, and phenylalamine. 

A study by Santuro et al. (216) took more of an ‘inter-omics’ approach, analysing both faecal 

metataxanomic and metabolic data. 50 Crohn’s disease, 82 UC and 50 healthy controls were 

recruited and faecal samples were analysed using 1H NMR spectroscopy and 16S rRNA 

sequencing. Participant clinical information including the presence of comorbidities and BMI 

was not reported in the main paper report. OPLS-DA score plots separated IBD patients from 

controls. 14 metabolites were discriminatory in the Crohn’s disease cohort, including an 

increase in two biogenic amines, putrescine and cadaverine, produced by intestinal bacteria, 

and were shown in this study to negatively correlate with the amount of two bacterial genera 

Faecalibacterium and Oscillospira, which belong to the Firmicutes phylum. Nicotinic acid and 

pantothenic acid, two group B vitamins, were also decreased in the Crohn’s cohort, and the 

former was directly correlated to the decreased abundance of Faecalibacterium prausnitzii 

found. Methylamine was decreased in the Crohn’s cohort, and is derived from intestinal 

degradation from dietary compounds including carnitine and choline, and its depletion 

correlated with a decrease of Oscillospira.  

1.2.4  Potential confounders that may affect metabonomic analysis in IBD 

Studies to date assessing urinary and faecal metabolic profiles in IBD have either excluded 

patients with other comorbidities because of potential confounding (205, 209, 215), or have not 

stated whether patients with comorbidities were recruited (211, 216-220). These studies have 

also not accounted for the possible confounding effects of obesity, or the use of bowel 

cleansing for endoscopic procedures that these patients frequently undergo. For urinary 

metabonomics to be applied to a real world IBD population, the changes seen in these IBD 



 56 

urinary metabolic profiles must be applicable to the whole population, including obese patients, 

those with other comorbidities, and those who may have undertaken recent colonoscopy. 

Several common conditions that have been shown to affect either the urinary or faecal 

metabolome including obesity and the use bowel cleansing are discussed below.  

1.2.4.1  Diabetes mellitus           

Most studies investigating metabolic changes related to diabetes (207, 210, 211) mellitus have 

assessed plasma or serum (222, 223). However, both type 1 and type 2 diabetes mellitus have 

been reported to influence the urinary metabolome (224). Messana et al (225) compared 

urinary metabolites of patients with type 2 diabetes mellitus and controls, and demonstrated 

higher levels of the bacterial associated metabolites hippurate, trimethylamine N-oxide, and 

dimethylamine in the diabetic cohort. Zhao et al (226) used untargeted metabonomics to assess 

pre-diabetic traits in urine and plasma, and showed gut flora associated metabolites were 

discriminatory in patients with impaired glucose tolerance (IGT), including changes in IBD 

associated hippurate. Higher excretion of hippurate has also been observed in a study assessing 

urinary metabolic changes in type 1 diabetes mellitus relative to healthy controls (227).  

1.2.4.2  Asthma         

Metabolic profiling has been applied to asthma to help investigate the relationship between 

pathophysiologic characteristics and particular clinical features or treatment response using a 

range of biological samples including serum/plasma, urine, breath, and bronchiolar lavage 

(228). A study by Saude et al. (229) was able to separate asthmatic patients from controls based 

on different levels of urine metabolites using 1H NMR spectroscopy. These metabolites 

included intestinal bacterial associated metabolites hippurate and trimethylamine N-oxide 

(TMAO). Another study by Quan-Jun et al (230) demonstrated changes in urinary TMAO in 
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patients with asthma exacerbations being treated with combination inhaled salbutamol and 

budesonide.  

1.2.4.3  Effect of other diseases   

Urine contains both host and microbial products, and so urinary metabonomics has been 

applied to a wide range of conditions that are influenced by both. As urine contains metabolites 

produced by intestinal bacteria or host-bacteria interactions, it has been used to study several 

dysbiosis associated GI conditions including IBS, antibiotic associated diarrhoea, as well as 

IBD. It has also been applied to other microbiota associated conditions such as tuberculosis, 

autism, and metabolic syndrome (231). 

Metabolic profiling has been used extensively in cardiovascular research, although principally 

with serum/plasma (232, 233). Urinary metabolic profiling has been studied in hypertension, 

which has shown changes in bacterial associated metabolites including hippurate and 

dimethylamine (234). Acute heart failure with renal impairment has been shown to alter the 

composition of urinary metabolites (235), and patients with cerebral vascular disease have 

lower levels of metabolites including hippurate in their urine (236). Hippurate and formate, the 

latter another intestinal associated urinary metabolite, have been shown to be influenced by 

lung function in patients with COPD (181).  

Rheumatoid arthritis, along with other inflammatory conditions, have been reported to show 

differentiation from healthy controls in urinary metabonomic experiments (237, 238). Changes 

in urinary metabolites have also been observed to distinguish cancer patients from controls 

(239), and in a study by Carrola et al (240), the relative quantity of the bacterial associated 

metabolite hippurate was found to be lower in patients with lung cancer.  
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As faecal samples directly contain the metabolites of intestinal bacteria and bacteria-host co-

metabolism, they have been widely used as a research tool for gut microbial associated 

conditions (241). As well as GI disorders including, IBD, IBS, antibiotic associated diarrhoea 

(AAD), Clostridium difficile infection, and colorectal carcinoma, other non-GI microbial 

associated conditions have been investigated. These include obesity (described above), and 

liver cirrhosis. In liver cirrhosis, non-targeted reversed-phase ultra-performance liquid 

chromatography coupled to electrospray ionization quadrupole time-of-flight mass 

spectrometry (Q-TOF-MS) has reported a reduction in bile acids, and an enrichment of 

aromatic amino acids and fatty acids (242).  

1.2.4.4  Obesity and IBD  

The prevalence of IBD patients with obesity is similar to the general population (243, 244), and 

this is in the context of a dramatic rise in obesity worldwide (245). Several studies have 

assessed the clinical impact of obesity in patients with IBD, and have reported that a high body 

mass index (BMI) may influence the nature of this condition, and the time of onset to 

developing peri-anal disease and first surgery, along with disease-related quality of life, and 

CRP levels. (17, 20, 21, 246, 247). However, other studies have shown a more benign disease 

course associated with adiposity (19, 22). Obesity has also been reported as influencing disease 

location, with isolated colonic Crohn’s disease being more prevalent in patients with a higher 

BMI (247). 

Two observational studies using large patient cohorts have shown a higher risk of developing 

Crohn's disease in obese subjects, with the United States Nurses' Health Study II (248) of over 

110,000 women showed a greater two fold risk of developing this disease at the age of 18 years 

old, and the Danish National Birth Cohort (249) of over 75,000 women showed a nearly 2 fold 

risk increased risk. 
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Obesity refers to excessive body adipose tissue, and the diagnosis is normally made by 

measuring a person’s body mass index (BMI), calculated by the weight in kilograms divided 

by the square of height in meters, with a value of greater than 30 kg/m2. However, BMI is not a 

direct measure of adiposity, as it does not differentiate excess fatty tissue and lean body mass. 

Measuring waist circumference has a better association with degree of visceral adipose 

deposition compared to BMI (250). There are several methods for calculating body fat 

percentage, although the best direct method is with using dual-energy X-ray absorptiometry 

(DEXA). Body fat percentage correlates better than BMI with metabolic syndrome and type 2 

diabetes (251), and waist circumference correlates better than BMI with cardiovascular risk 

(252). High BMI can also mask sarcopenia, defined as a loss of skeletal muscle mass, and as 

some individuals have sarcopenic obesity, where they are both obese and sarcopenic (253). 

Sarcopenic obesity typically affects people over the age of 60 years, and has its own impact on 

physical capacity and health (253). Studies assessing the effect of obesity on inflammatory 

bowel disease have used BMI as a measure of obesity (17, 20, 21, 243, 246, 247), and this may 

be in part the reason for the difference reported effects of obesity in IBD patients. 

There are several plausible mechanisms for how obesity may affect IBD. Up to half the body 

mass of morbidly obese individuals can comprise of adipose tissue, distributed mainly intra-

abdominally and subcutaneously (254). Adipose tissue is highly physiologically active, with 

visceral adipose tissue having a significant role in promoting local and systemic inflammation 

(255). Adipose tissue contains immune cells including T and B lymphocytes, and visceral 

adipose tissue contains more pro-inflammatory M1 macrophages which secrete pro-

inflammatory cytokines involved in the pathophysiology of IBD including TNF-α and IL-1 

(256, 257).  



 60 

Fat-wrapping, or creeping fat, has also been associated with Crohn's disease, with Crohn et al. 

(258) first reporting the phenomena as the presence of enlarged mesenteric adipose tissue 

enveloping the corresponding inflamed intestines. The adipocytes within creeping fat are 

distinct from normal adipocytes as they are smaller with higher section of adipokines. 

Adipokines, also called adipocytokines, are cytokines produced by adipocytes.  

There is increased bacterial antigen translocation which occurs through the transmural 

inflammation in Crohn’s disease, and are detected by innate adipocyte receptors, which in turn 

mediate the local inflammatory response (25). Visceral adiposity is modulated by growth 

hormones that are reduced in Crohn's disease (259). However, there has been no clear 

correlation shown between an increase in visceral adiposity and BMI in Crohn's disease (260). 

Adipocytes and pre-adipocytes produce over 50 adipokines, including IL-6 and TNF-α. There 

is more expression of TNF-α and IL-6 in IBD, with the amount of secretion correlating with 

mesenteric adipocyte load (255, 257). There is also increased expression of other adipocyte 

secreted inflammatory mediators such as the hormone leptin, with over-expression in 

mesenteric adipocytes and in the colonic lumen of IBD patients (261, 262). Adiponectin and 

resistin are other pro-inflammatory mediators produced by adipocytes that may have a role in 

IBD due to their effects on toll like receptor via the nuclear factor-kB pathway (263) and 

expression on pro-inflammatory cytokines (264) respectively. 

Obesity related metabonomic research has focused on using plasma/serum (265), but several 

animal and human studies have been conducted using urine (266-268). Kim et al. (268) showed 

that levels of tricarboxylic acid cycle (TCA) related metabolites and the gut bacteria associated 

metabolite phenylacetylglutamine differed in the obese rat model induced by high-fat diet 

compared to normal diet rats. A large study (267) that used the samples of over a thousand 

human subjects analysed the correlation of body mass index with urinary metabolic profiles, 
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and identified nine intestinal bacterial associated metabolites which were affected by increasing 

body weight. These gut microbial metabolites include trimethylamine, dimethylamine, 4-cresol 

sulfate, phenylacetylglutamine and 2-hydroxyisobutyrate. A study by Schwiertz et al. (269) 

assessing the effects of obesity on faecal SCFAs showed that overweight and obese groups had 

higher levels of butyrate, propionate, acetate compared to controls. Hippurate has been 

observed to have a significant inverse relationship with adiposity (267, 270). 

The impact of BMI on metabolic profiles of other conditions has been assessed in type 2 

diabetes, where BMI had no confounding effect on type 2 diabetes mellitus related metabolites 

using meta-regression in a large systemic review and integrative analysis (271). A study 

investigating the relationship between clinical characteristics and asthma associated urinary 

metabolites excluded patients with a BMI ≥ 30 kg/m2 (272). The influence of BMI on 

rheumatic disease assessed BMI as a confounder, and showed no effect with BMI on elevated 

branched-chain amino acids associated with osteoarthritis (237). Several studies assessing 

metabonomics in cardiovascular disease, asthma, and lung cancer have not assessed BMI as a 

potential confounding factor (230, 232, 240, 273). 

1.2.4.5  Bowel purgatives for colonoscopy      

Colonoscopy is performed to assess gastro-intestinal symptoms, and is used frequently in the 

screening and surveillance of IBD patients and patients with colonic polyps. This procedure 

requires the use of bowel cleansing agents for safe intubation and good visualisation of the 

large intestine. Polyethylene glycol (PEG) solutions are the most commonly used and preferred 

bowel cleansing agent for bowel preparation prior to colonoscopy (274, 275). PEG causes a 

profound osmotic diarrhoea with a high-volume lavage rapidly passing through the gastro-

intestinal tract, which in turn alters the luminal contents including the microbiota and luminal 

metabolites (276, 277). 
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It has been increasingly recognised over the last few years that, along with use of antibiotics 

(90), studies of the microbiota need to take in to account the potential confounding effects of 

bowel preparation using bowel cleansing agents, as several studies have shown bowel 

preparation to temporarily affect both the faecal and the mucosal associated microbiota (276-

280).  

Compositional studies assessing changes in the faecal associated microbiota following bowel 

preparation have shown significant effects on bacterial load, overall bacterial diversity (α-

diversity), and composition (β-diversity) (276, 277, 280, 281). A study by Jalanka et al. (281) 

showed bacterial load was significantly reduced by up to 35 fold in samples immediately post 

lavage after high volume preparation with polyethylene glycol (PEG), and microbiota 

composition changed to the extent that subject-wise clustering was lost, although these changes 

recovered within 14 days. Two studies (276, 280) shown that bowel cleansing reduces α-

diversity, which is a measure of compositional diversity of bacteria by assessing richness and 

evenness of the bacterial taxa. Richness, that reflects the number of different bacteria in a 

sample (280), was reduced in both studies (276, 280) following induction of an osmotic 

diarrhoea with PEG. Evenness, that reflects how uniformly distributed the different taxa are 

within samples, was not affected (276, 280). Shobar et al. (280) also showed a trend towards a 

reduction in the Shannon index, a measure that takes into account both richness and evenness. 

Three other studies have shown no effect of bowel preparation on faecal α-diversity (277, 278, 

282). Differences in β-diversity, which reflects compositional changes between samples (280), 

have also shown changes in the faecal associated microbiota following bowel preparation (277, 

280).  

Taxanomic composition analysis of the faecal associated microbiota has shown significant 

changes between pre- and post-bowel preparation samples in four studies (276, 278, 280, 281). 
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However, these findings have not been consistent between studies. At phyla level, the relative 

quantity of Firmicutes and Bacteroidetes have varied in different studies (276, 278, 280), and 

two studies have shown an increase in Proteobacteria (278, 281). Changes at different taxa 

levels down to genus level have be reported, but these are also conflicting between studies 

(276, 278, 280, 281). Three studies have shown no significant taxanomic compositional 

changes at phyla level (277, 282, 283). These conflicting results are likely due in part to small 

subject numbers, and differing study design and analysis. 

One study to date has examined the effect of bowel purgatives on the metabolome. Nagata et 

al. used Spearman’s correlation coefficients to examine differences in faecal metabolites at 

baseline, day 1, and day 14 post bowel cleansing in eight patients scheduled to undergo 

colonoscopy. Unsupervised multivariate analysis using principal coordinate analysis (PCoA) 

showed non-clustering of samples belonging to the same patient immediately post bowel 

cleansing (day 1) in 6 of the 8 patients, with the remaining time points being clustered in these 

patients. Targeted analysis was performed using capillary electrophoresis time-of-flight mass 

spectrometry (CE-TOF-MS) to assess changes in 514 faecal metabolites. 32 metabolites, 

including amino acids and short chained fatty acids (SCFAs) significantly changed following 

bowel cleansing, but then recovered at 14 days. 

1.2.5 Novel techniques in faecal metabolic profiling 

IBD studies to date have principally used 1H NMR spectroscopy (161, 207, 209-211, 216-218, 

220) as the analytical platform to assess urine and faecal metabolic profiles, although mass 

spectrometry has also been used in two studies assessing faecal extracts (216, 219). 1H NMR 

spectroscopy has the disadvantage that it can lack sensitivity, particularly in the presence of 

multiple potential confounders. Mass spectrometry is a more sensitive platform, and but 

involves extensive sample preparation and destruction of samples during the analytical process.  
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Rapid evaporative ionisation mass spectrometry (REIMS) is a relatively new technique that has 

not been applied to IBD metabolic profiling, and involves rapid analysis of samples requiring 

minimal preparation to obtain lipidomic spectral profiles and has a greater sensitivity than 

NMR spectroscopy. This technique has not been explored in this thesis. 

1.3  Scope of this thesis 

IBD metabonomic research has been restricted to homogeneous clinical cohorts where subjects 

with comorbidities have been excluded. Other factors present in a real-life IBD population that 

may influence the metabolome include obesity and the effects of bowel cleansing pre-

colonoscopy. This thesis aims to assess these specific factors on the IBD metabolome, 

examining principally urine as this biofluid is easily collected and processed, and gives a 

wealth of metabolic information including the endpoints of intestinal microbial metabolism. 

Chapter 2: Materials and Methods  

There is a separate materials and methods chapter in this thesis to prevent repetition as the 

three studies use the same techniques. Aspects of the materials and methods specific to 

individual studies will be further described within the individual chapters. 

Chapter 3:  Examining the differences in urinary metabonomic profiles of a real-life IBD 

population and relating it to changes in the faecal microbiome. 

The first part of this chapter examines the faecal microbiomic composition between IBD and 

healthy control subjects to assess whether differences can be linked with changes seen in the 

urinary metabolome.  



 65 

The second part of this chapter examines whether differences in the urinary metabolome 

associated with inflammatory bowel disease can be seen in a real-life population of subjects, 

including those comorbidities that have been excluded from previous studies.  

Hypothesis:  Urinary metabolic profiles associated with IBD are specific to this condition and 

will therefore present when applied to a cohort of subjects representing a real-life clinic 

population, and this will include subjects with comorbidities.  

Chapter 4: Effects of obesity on the IBD urinary metabolome. 

This chapter examines the effects of obesity on the urinary metabolome of IBD subjects, and 

specifically its effect on urinary metabolites known to be discriminatory in IBD.  

Hypothesis:  Discriminatory metabolites in IBD are specific to this disease and will not be 

influenced by high body mass index (BMI).  

Chapter 5: Effects of bowel purgatives on urinary and faecal metabolic profiling. 

This study aimed to compare the effects of bowel cleansing on the faecal microbiome and urinary 

and faecal metabolome at baseline, day 3 and week 6 after colonoscopy. 

Hypothesis: Bowel cleansing using polyethylene glycol will have a transient and temporary 

effect on urinary and faecal metabolome correlating with a temporary change in the faecal 

microbiome.  
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Chapter 2: Materials and Methods  

2.1 Subjects and clinical data  

All studies had ethical approval from Imperial College Healthcare NHS Trust Research and 

Ethics Committee (Ref: 13/LO/1867). IBD patients were recruited from gastroenterology 

clinics at St Mary’s Hospital in Paddington, and Ealing Hospital in Southall. Patients were 

collected for this thesis by myself, Dr Lucy Hicks, and Dr Leo Chong, for our concurrent 

studies – all recruitment and collection of samples were done using the same protocols and 

under the same ethical approval.  

Verbal and written information was given to all patients, and informed written consent was 

acquired from all study participants. 

2.1.1 Recruitment of IBD patients  

Clinical information was acquired from patients directly, and use of their medical notes and 

investigation reports. IBD patients were only recruited if there was a clear diagnosis of either 

Crohn’s disease or ulcerative colitis based on clinical information, and radiological, endoscopic 

and histological test results. Patients with IBD unclassified were excluded. Patients were sub-

classified using the Montreal classification system (284), and disease activity at the time of 

recruitment was recorded using the Harvey-Bradshaw index (HBI) (285) or the simple clinical 

colitis assessment index (SCCAI) (286) scoring systems for Crohn’s disease and ulcerative 

colitis respectively. A disease activity score of greater than 5 in both scoring systems was 

considered active disease. 

Details of diagnosis, investigations, past and current IBD medication, and previous operations 

was all recorded. IBD medications were classified as 5-aminosalicylates, immunosuppressive 
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(thiopurines, Tacrolimus, Methotrexate, Mycophenolate), and biologic (Infliximab, 

Adalimumab or other biologics). 

2.1.2 Comorbidity and obesity control cohorts 

IBD patients with obesity and comorbidities were recruited from gastroenterology clinics at St 

Mary’s Hospital and Ealing Hospital. Control patients with comorbidities were recruited from 

metabolic, endocrinology and respiratory clinics at St Mary’s Hospital. Patients were recruited 

to match comorbidities in the IBD cohorts, and patients with co-existing gastroenterological 

disease other than IBD, such as irritable bowel disorder, were excluded from the control 

cohort. Details of other medications including prescribed, over-the-counter and herbal 

medications, were also recorded. Patients taking probiotics, prebiotics, or antibiotics within 2 

months of the time of recruitment were excluded.  

2.1.3 Metabonomic information 

Along with age and sex of the patient, further information was collected that may influence 

metabolic profiling. This included body mass index (BMI), details about menstruation, 

smoking, alcohol intake, exercise and 24-hour recall on diet. Details regarding specific dietary 

components (such as fish, liquorish, cherries, tea, coffee and herbal tea) that are known to 

affect the NMR spectrum (161) was also obtained.  

2.2 Sample collection and preparation  

2.2.1 Urine samples   

Random urine samples, as opposed to first void, were collected from study participants as they 

are subject to less intra-individual variability influenced by lifestyle and diet (287). Samples 

were collected in 30ml universal containers (Sigma-Aldrich, USA).  



 68 

Within 6 hours of production, samples were centrifuged for 10 minutes at 13,000 rpm at 4 oC, 

and the supernatant was then aliquoted off and transferred into a microcentrifuge tubes 

(Ependorff, Germany) and stored at -80 oC until used for NMR analysis. 

2.2.2 Faecal sample collection and water extraction for NMR  

Faecal samples were collected using spoon cap sample containers (Sigma-Aldrich,  

USA), and were then separated into microcentrifuge tubes (Ependorff, Germany) prior to being 

frozen at -80 oC on the same day (within 12 hours of being produced).  

Prior to NMR analysis, 500 mg of crude stool was mixed with two volumes of phosphate 

buffer saline (PBS) solution, and then transferred into vortex conical tubes before being 

vortexed at 2000 Hz for 15 minutes. These were then centrifuged at 9500 rpm for 20 minutes at 

4 oC, and 600 μl of supernatant was then aliquoted into microcentrifuge tubes before NMR 

analysis.  

2.2.3 Faecal DNA extraction for microbial analysis 

Faecal DNA extraction was performed using PowerLyzer PowerSoil DNA Isolation Kit (Mo 

Bio, Carlsbad, CA, USA). This protocol homogenizes the faecal samples using a bead beating 

tube, followed by mechanical and chemical lysis of the bacterial cells, allowing total genomic 

DNA capture on a silica membrane in a spin column format, where the bacterial DNA is then 

washed and eluted from the membrane ready for PCR analysis. 

For each sample, 250 mg of crude stool was added to the PowerBead Tube provided, and 

votexed for 30 seconds. 60 μl of Solution C1 was then added and the mixture was votexed for 

10 minutes. The tube was centrifuged at 10,000 x g for 30 seconds, and then 250 μl of Solution 

C2 was then added. This mixture was centrifuge for 1 minute at 10,000 x g, and 600 μl of the 

resulting supernatant was transferred to a clean collection tube. 200 μl of Solution C3 was then 
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added to the collection tube, and the mixture was incubated for 5 minutes at 4 oC. The tube was 

centrifuged at 10,000 x g for 1 minute, and 750 μl of the supernatant was then transferred to 

clean collection tube. 1200 μl of Solution C4 was added to the collection tube, and the mixture 

was then vortexed for 5 seconds. 675 μl of the mixture was then loaded onto a spin filter and 

centrifuged for 1 minute at 10,000 x g, with the flow through then discarded. A further 675 μl 

of supernatant underwent the same step, followed by the remaining supernatant that was left, 

with each time the flow through was discarded. 500 μl of Solution C5 was then added to the 

spin filter, and then was centrifuged at 10000 x g for 30 seconds. The flow through was 

discarded and the spin filter was centrifuged for 1 minute at 10,000 x g. The spin filter was 

then placed in a 2ml clean collection tube and then 100 μl of Solution C6 was added to the 

white filter membrane and centrifuged for 30 seconds at 10,000 x g. The spin filter was then 

discarded and the remaining fluid in the collection tube contained DNA which was frozen at -

20 oC prior to analysis. 

Prior to 16S rRNA sequencing analysis, a QubitTM fluorometer and quantitation assays were 

used to quantify DNA in each sample. A fluorometer was calibrated using standards #1 and #2 

prior to 200 µl of each sample being transferred to 0.5ml Qubit® assay tubes. Samples were 

incubated for 2 minutes at 20 oC prior to being read on fluorometer providing DNA 

concentrations in ng/mL. 

2.3 16S rRNA sequencing of faecal samples 

High‐throughput DNA sequencing techniques have revolutionised the investigative field of 

identifying the constituents of the microbiome compared to traditional culture-based 

techniques. Current methods generally involve amplifying and sequencing target microbial 

DNA regions, and then identifying organisms and assessing diversity based on the similarity of 

sequences compared to reference microbial genomic databases. The 16S ribosome gene (16S 
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rRNA) is often targeted in bacterial compositional studies as it contains nine variable regions 

between conserved regions, with the variable regions differing between genus and species. 16S 

rRNA sequencing differs from whole-genome shotgun sequencing, with the latter sequencing 

all the genes within the sample and consequently can provide functional information about the 

microbiome. Most intestinal microbial studies have used faecal samples, as obtaining samples 

is safer for the patient and more practical. One study has shown similarity in genera between 

the faecal and mucosal-associated bacterial communities, but other studies have shown 

substantial differences between these areas (288). 

2.3.1 Illumina’s 16S Metagenomic Sequencing 

Illumina’s 16S Metagenomic Sequencing Library Preparation Protocol (289) was used to 

prepare the sample libraries. The V1 and V2 variable regions were amplified using the primers 

detailed in Table 2.1. The forward primer mix was made up of four different forward primers, 

mixed at a ratio of 4:1:1:1 (28F-YM:28F-Borrellia:28FChloroflex:28F-Bifdo).  

 

Primer name Primer sequence 

 
28F-YM  

(forward primer) 

 

28F-Borrellia 

(forward primer) 

 

28FChloroflex 

(forward primer) 

 

28F-Bifdo 

(forward primer) 

 

388R  

(reverse primer) 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTTGATYMTGGCTCAG 

 

 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTTGATCCTGGCTTAG 

 

 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAATTTGATCTTGGTTCAG 

 

 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGTTCGATTCTGGCTCAG 

 

 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGCTGCCTCCCGTAGGAGT 

 

 

 
Table 2.1 - Illumina MiSeq primers used for 16S rRNA gene sequencing – adapted from (90) 
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An Illumina MiSeq platform (Illumina Inc., Saffron Walden, UK) was used at St Mary’s 

Hospital to perform 16S rRNA sequencing utilising the MiSeq Reagent Kit v3 (Illumina) and 

paired-end 300bp chemistry. The MiSeq platform performed clonal amplification, sequencing 

of the variable regions of the 16S rRNA gene, and then classification of faecal bacteria DNA 

within the sample.  

The protocol involved initially performing PCR to amplify the V1 and V2 regions out of the 

faecal DNA samples using the above primers (Table 2.1). This was followed by the first PCR 

clean up step using AMPure XP beads to clean the 16S V1 and V2 amplicon from free primers 

and primer dimer species. Index PCR was then performed where dual indices and Illumina 

sequencing adapters were attached, and then another clean up and normalisation step utilising 

the SequalPrep Normalization Plate Kit (Life Technologies, Paisley, UK). Pooled libraries 

were then denatured before sequencing. 

This protocol identified organisms from the resulting V1 and V2 amplicon utilising a 16S 

rRNA database - the Greengenes database (http://greengenes.lbl.gov/) - and results given at 

several taxonomic levels: kingdom, phylum, class, order, family, and genus. NEBNext Library 

Quant Kit for Illumina (New England Biolabs, Hitchin, UK) was utilised to quantify sample 

libraries. 

2.3.2 Data processing 

16S rRNA gene sequence data generated by the Illumina MiSeq platform was processed 

utilising the Mothur package (290) keeping to the MiSeq SOP Pipeline (291). During 

processing there was pairing of forward and reverse reads, and low-count and duplicate reads 

were removed, along with sequences containing ambiguous bases. The silva bacterial database 

was used to carry out sequence alignment (292), and the Wang method (293) was used to 

classify the sequences using the RDP database reference sequence files. 

http://greengenes.lbl.gov/
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2.3.3 Diversity analysis 

Different metrics can be used to describe the diversity of organisms within a sample. For 

microbiological studies, alpha diversity is used to measure the compositional diversity within a 

sample, and beta diversity measures compositional differences between groups of samples.  

Alpha diversity includes richness, which reflects the number of different bacteria, and 

evenness, that measures how uniformly distributed the different taxa are within a sample. 

Richness can be represented by the Observed OTU count and Chao1 index, whereas the 

Shannon index and Fisher’s index account for both richness and evenness. Calculations were 

performed within Mothur for alpha diversity (290), and then Wilcoxon matched-pairs signed 

rank test was used within GraphPad Prism statistical analysis software programme version 

8.0.2 to assess for statistically significant changes between comparison groups. A p value of 

less than 0.05 was considered significant. 

For beta analysis, a UniFrac weighted distance matrix was created from Mothur was used to 

generate a non-metric multidimensional scaling (NMDS) plot and PERMANOVA p-values 

were used to assess significance, and these data were analysed using the Vegan library within 

the R statistical package (294). Multidimensional scaling (MDS), or principal coordinate 

analysis (PCoA), is a visual representation of dissimilarities between sets of samples (Kruskal 

and Wish ref, 1978). More similar samples are closer on the graph compared to samples which 

are less alike. Non-metric multidimensional scaling uses rank orders as opposed to absolute 

abundances of OTUs, and so can reduce complex multidimensional data allowing it to be more 

easily plotted and visualised (295). For microbial diversity analysis, both unweighted and 

weighted UniFrac distances are used. Unweighted Unfrac distances are based on phylogenetic 

branches and OTU count, whereas weighted UniFrac distances include phylogenetic branches, 

OTU count and abundance (296).  
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2.3.4 Compositional analysis 

Direct comparison of different bacterial abundance was made using bar charts in Excel at 

phylum, class, order, family and genus levels. The Statistical Analysis of Metagenomic Profiles 

software (STAMP) package was utilised to assess for statistically significant differences in 

bacterial composition between different groups using White’s non-parametric t-test with 

Benjamini-Hochberg False Discovery Rate (FDR), and extended error bar plots were 

generated.  

2.4 Urinary and faecal water NMR spectroscopy  

2.4.1 NMR spectroscopy  

Over the last few years nuclear magnetic resonance (NMR) spectroscopy has increasingly 

become the predominant technique for determining the structure of organic compounds. The 

NMR phenomenon can be simply described as applying a magnetic field to a sample, and then 

subjecting it to energy in the form of radiofrequency radiation. At the appropriate frequency, 

this causes the nuclei of the sample to absorb the energy, and then the duration and nature of 

energy dissipation from the nuclei provides information about that constituents of that sample 

(297). 

Nuclei of elemental isotopes have a positive charge, and many act like they are spinning – 

called nuclear spin (I). In many atoms (for example carbon-12) these spins are paired against 

each other, and so there is no overall spin (I = 0). However, in atoms where there are an odd 

number of neutrons plus protons, or both the number of neutrons and protons are odd, then 

there is an overall net spin (I = half integer or integer spin respectively). As the nucleus 

contains spinning charges, a magnetic field is generated. In an external static magnetic field B0 

and at thermal equilibrium, two spin states can exist – a ground state (parallel to B0), and an 
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excited state (anti-parallel to B0), with only infrequent flipping of nuclei between states. 

Applying bursts of energy in the form of radiofrequency pulses (B1) that equates to the energy 

difference of the two nuclear spin energy states causes much more flipping between the two 

energy states, and this flipping is referred to as the resonance process. The excited spin state 

energy is then released after the radiofrequency (RF) pulse is removed and the nuclei go back 

to an equilibrium state, and the released radiofrequency energy can be detected by a coil of 

wire tuned to the correct frequency. The signal is shown as a free induction decay (FID) 

following amplification. The FID is characterised by two major spin relaxation processes: the 

spin-lattice relaxation (T1) which is the duration for the nuclei to return to their original spin, 

and the spin-spin relaxation which is the amplitude of the relaxation in the transverse plane 

(T2) (297-299). Using a technique called Fourier Transformation, FIDs are mathematically 

simplified and transferred into the Frequency domain, and normally presented in the form of a 

one‐dimensional (1D) spectrum – an example of a 1D NMR spectrum is shown in Figure 2.1. 

 

 

 

 

 

 

 

Figure 2.1: Example of a NMR spectrum 
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The NMR spectrum (Figure 2.1) shows the intensity on the y axis, and resonant frequency (the 

difference between the two spin states) as a chemical shift δ (expressed in parts per million) on 

the x axis, which is compared to a reference signal. The reference signal used in this project is 

3-trimethylsilyl-1-1-(2,2,3,3,-2H4) propionate (TSP), which is chemically non-reactive. 

The magnetic field experienced by particular protons in a molecule are influenced by the 

motions of nearby electrons, and so different positioned protons resonate at slightly different 

frequencies at different applied fields allowing specific proton environments within molecules 

to be identified. This effect is called 'chemical shift', and the nucleus of a specific chemical 

group shielded by a higher electron density will have a lower chemical shift, and vice versa. 

All nuclei experience a local magnetic field created by the surrounding electrons along with the 

static magnetic field B0 and the applied field B1. This local magnetic field depends on the exact 

electron environment, a function of the chemical structure of the molecule, and influences the 

degree of shielding or enhancement this has on the amount of RF energy absorbed. NMR peaks 

corresponding to specific molecules can be split by a phenomenon called ‘spin-spin coupling’, 

which is caused by the interaction of neighbouring protons in more than one kind of 

environment within a molecule interacting with each other and affecting the magnetic energy 

of the other protons. These split peaks can help identify molecules within a spectrum and add 

to the diagnostic ability of NMR. Identification of molecules within complex biological 

samples is possible using databases that contain information about chemical shifts and the 

number of peaks relating to each specific metabolite. As the intensity of the peak is 

proportional to the number of nuclei generating that signal, the area under a peak can be 

integrated to determine relative quantification of the corresponding metabolite (300). 
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2.4.2 Preparation of urine and faecal samples  

A standardised method (301) was used to prepare urine and faecal samples using laboratory 

agents supplied by Sigma-Aldrich, USA, unless otherwise stated. 200µL of PBS (pH 7.4) was 

added to 400µL of urine or faecal water to stabile the pH. TSP and deuterium oxide (D2O) 

were already mixed into PBS, with the former to act as a reference standard, and the latter as a 

field lock. For each sample, the above mixture was centrifuged for 5 minutes at 12,000g, and 

then 550µL was transferred to sterilised 5mm NMR tubes.  

2.4.3 NMR Data acquisition and pre-processing  

All spectra were phased, calibrated (using TSP), and baseline corrected automatically in 

Topspin. Spectral data was imported into MATLAB (version 2017a, The Mathworks, Inc.; 

Natwick, MA) using in-house scripts before spectral regions containing redundant information 

were removed. This included peaks corresponding to water and TSP, at 4.6 – 4.85 ppm and -

0.2 to 0.2 ppm respectively. Prior to modelling, all data was aligned using an in-house 

automatic alignment function. Spectral data was then normalized using a probabilistic quotient 

approach. 

Multivariate statistical analysis was employed to investigate differences between study groups. 

This was done using SIMCA (version 15, Umetrics, Sweden). Principal components analysis 

(PCA) was first carried out using univariate scaling to allow for the identification of any 

outliers and initial clustering based on principle components. Following this, orthogonal 

projection to latent structures discriminant analysis (OPLS-DA) was used to identify 

metabolites responsible for group membership; a maximum of two orthogonal components was 

used as to avoid over fitting the model. The discriminatory power of each OPLS-DA model 

was then validated by seven-fold cross-validation, providing a Q2 and R2 value representative 
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of predictive ability and degree of fit respectively. Finally, a CV-ANOVA with 1000 

permutations was run to ascertain the significance of each model and obtain a p value.  

Peak integral values for selected metabolites were obtained using an in-house Matlab script. 

Using the integral values, a univariate statistical approach was used to compare the relative 

concentration of metabolites of interest between the three time points. GraphPad Prism 

statistical analysis software programme version 8.0.2 was used to perform the appropriate 

univariate statistical test and corrected this for multiple comparisons. The panel of metabolites 

assessed were identified based on the specific hypothesis for each study.  

2.4.4 Statistical Total Correlation Spectroscopy Editing (STOCSY-E) 

Statistical Total Correlation Spectroscopy Editing (STOCSY-E) of 1H NMR Spectra acquired 

from biofluids is a procedure that enables deconvolution of drug from endogenous metabolites. 

This procedure involves the identification of structurally correlated drug metabolic resonances, 

and then this is utilised to scale the 1H NMR spectra across regions containing the correlating 

drug peaks, and then a modified set of spectra containing reduced drug metabolite resonances 

is produced and allows reconstruction of potential endogenous peaks in drug metabolite peak 

regions. The STOCSY-E procedure contains fundamentally two steps; the identification of 

signals resulting from drug related compounds, and then selective scaling and background 

correction across the identified regions (302).  
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Chapter 3:  Examining the differences in urinary metabonomic profiles of a real-life IBD 

population and relating it to changes in the faecal microbiome.  

3.1 Summary 

The intestinal microbiome has been extensively studied in IBD to further understand the 

complex pathogenesis of this condition, with microbiomic changes thought to be involved in 

propagating the abnormal immune response (33). Changes have been reported in intestinal 

microbial associated metabolites within a range of biological samples to further understand the 

role of microbiome in IBD, and to assess the potential of metabolic profiling in disease 

phenotyping and treatment response (156). Urine has been widely studied in IBD metabolomic 

research due to its ease in collection and handling, and extensive metabolic data including 

differences in microbial associated metabolites between IBD patients and healthy controls 

(161, 207, 209-211). These studies have been limited to subjects with no comorbidities, and so 

not reflecting a real-life clinical population.  

This study assessed the faecal microbiome and urinary metabolome to examine whether the 

urinary metabolome was still distinct in a real-life population when compared to non-IBD 

controls, and whether changes in the metabolome could be linked to changes seen in the faecal 

microbiome. 

Urine samples were acquired from 117 Crohn’s disease, 98 UC, and 100 control subjects for 

1H NMR spectroscopy analysis. Contemporaneous faecal samples were obtained from the same 

subjects recruited for urine metabonomic analysis in 60 Crohn’s disease, 43 UC, and 45 control 

subjects – faecal microbiomic analysis using 16S rRNA sequencing was restricted to subjects 

with no comorbidities and healthy controls as an insufficient number of faecal samples were 

obtained from IBD and non-IBD patients with comorbidities to allow for meaningful analysis 

in these cohorts.  
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Faecal 16S rRNA analysis in this study showed a reduction in alpha-diversity in the Crohn’s 

disease cohorts, and compositional changes included an enrichment of Bacteroidetes and a 

lower abundance of Clostridia species. Initial multivariate 1H NMR analysis of urine samples 

demonstrated that the presence of 5-aminosalicylates (5-ASAs) as the principal component 

driving separation between IBD and control cohorts, an issue that has been previously reported 

(215). Statistical total correlation spectroscopy editing (STOCSY-E) (302) was unsuccessful in 

deconvoluting the distortion of 5-ASAs on the NMR spectrum, and so subjects taking this 

medication were removed from further analysis. Multivariate separation between IBD and 

control subjects was then driven by microbial related metabolites hippurate, 4-cresol sulfate, 

and formate, the tricarboxylic acid (TCA) cycle metabolite citrate, the amino acid alanine, and 

these changes were consistent with previously reported studies (156). Targeted analysis 

showed consistent differences in hippurate and 4-cresol sulfate between IBD cohorts relative to 

controls, likely associated with reduced abundance of Clostridia species seen in faecal samples 

analysed with 16S rRNA sequencing. Overall, changes seen in previous studies appear to be 

consistent in a real-life population, and some of these changes can be attributed to 

corresponding differences in the faecal microbiome. 

3.2 Introduction 

Dysbiosis is thought to be an important part of the pathogenesis of inflammatory bowel 

disease. IBD related dysbiosis has been extensively investigated, with previous studies 

showing a loss of microbial diversity (303), and specific bacterial compositional changes. 

There has been variation in the previously reported microbial changes associated with IBD, 

which likely relates to different methodology and analytical techniques, however there has 

been some consistency in findings across several studies. At phyla level, an increase in 

Bacteroidetes and Proteobacteria (particularly Escherichia coli), and a loss of Firmicute 
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species have been associated with IBD. (75-77)  Within the loss of Firmicutes phylum, a loss 

of the butyrate-producing Faecalibacterium prausnitzii, Roseburia homonis and Clostridium 

groups IV and XIVa have been reported. A loss of Bifidobacterium and an enrichment of 

Fusobacteria have also been observed in IBD (52, 70).  

The intestinal microbiome has been shown to influence the metabolome in different biofluids 

and tissues (80, 89). Consequently, multiple studies have been conducted to examine the 

influence of IBD on these metabolomes to further understand the pathogenesis of this disease, 

and to investigate its use in stratifying patients into different disease phenotypes and treatment 

outcome groups (156). Urine has been widely studied in IBD metabonomic research due to its 

ease in collection, and handling and processing in the laboratory. Urine also provides extensive 

metabolic information including the endpoint profiles of microbial and host-microbial 

metabolism (161).  

1H NMR spectroscopy has been the analytical platform predominantly used in IBD urinary 

metabonomic studies (161, 207, 209-211). This platform involves the application of 

radiofrequency pulses to a sample within in a magnet field causing molecules to resonate 

between two states to determine the molecular constituents and their relative abundance within 

the sample (297). The advantage of 1H NMR spectroscopy over mass spectrometry is high 

throughput analysis through comparatively simple sample preparation and speed of analysis. 

NMR data has high reproducibility but is less sensitive than mass spectroscopy (160). 

Urinary 1H NMR studies have shown that intestinal bacterial associated metabolites have been 

discriminatory when comparing IBD and healthy control cohorts (161, 207, 209-211). 

Williams et al. (161) published the first study using urinary 1H NMR spectroscopy and 

observed differences between the urinary metabolomes of Crohn’s disease and UC relative to 

controls, and Crohn’s disease compared to UC. This study excluded IBD patients with other 
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comorbidities, and subjects taking 5-aminosalicylates and paracetamol had to be excluded from 

the final analysis as these xenometabolites were the principal components driving initial 

multivariate models. Following removal of these subjects, intestinal microbial associated 

metabolites were important in distinguishing IBD profiles from controls. A later study by 

Bjerrum et al. (211) did not observe differences in UC urinary NMR profiles, but this was 

following the removal of the aromatic region of the spectrum to account for the effect of 5-

ASA resonances on multivariate analysis – this area also contains resonances from microbial 

associated metabolites which likely accounts for this study’s findings (215).  

There are several urinary metabolites that have shown to be discriminatory in IBD when 

compared to healthy controls (156, 161, 207, 209-211). These include a reduction in excretion 

of the microbial related metabolites hippurate, 4-cresol sulfate, formate and trigonelline (161, 

207, 209, 210, 304, 305). Lower excretion of short chain fatty acids (SFCAs) acetate and 

butyrate (210, 306), and increased excretion of the amino acid alanine (217, 220). 

Patients with IBD within the normal clinical setting will often have co-existing health 

conditions; 56 % of IBD patients had one additional significant comorbidity in a survey of 91 

patients from three consecutive combined IBD outpatient clinics at St Mary’s Hospital, 

Paddington, London (307). Despite this, IBD urinary metabonomic research to date either 

excludes subjects with comorbidities, or the presence of such co-existing conditions are not 

reported in the publications.  

This is of importance as intestinal microbial associated urinary metabolites have been shown to 

be influenced by other common conditions including diabetes mellitus, asthma, and 

cardiovascular disease; for instance, altered renal excretion of the intestinal microbial related 

metabolites hippurate and dimethylamine have been seen in patients with type 2 diabetes 

mellitus (224, 225) and hypertension (234, 308), and different levels of hippurate and 
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trimethylamine N-oxide (TMAO) have been shown in asthma (229). TMAO has also been 

associated with cardiovascular disease (309, 310). 

This study examined whether urinary metabolic profiling using 1NMR spectroscopy can be 

applied to a real-life clinic population, and specifically included subjects with comorbidities, 

and assessed whether changes in the urinary metabolome specific to IBD could be associated 

with changes in the faecal microbiome.  

3.3 Aims and hypothesis 

The first part of this chapter examines the IBD associated faecal microbiome by comparing it 

to healthy control subjects to assess whether differences can be linked with changes seen in the 

urinary metabolome.  

The second part of this chapter examines whether differences in the urinary metabolome 

associated with inflammatory bowel disease can be seen in a real-life population of subjects, 

including those comorbidities that have been excluded from previous studies.  

Hypothesis:  Urinary metabolic profiles associated with IBD are specific to this condition and 

will therefore present when applied to a cohort of subjects representing a real-life clinic 

population, and this population will include subjects with comorbidities.  

3.4 Methods 

3.4.1 Ethical approval 

This study had ethical approval from Imperial College Healthcare NHS Trust Research and 

Ethics Committee (Ref: 13/LO/1867).  
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3.4.2 Study subjects 

IBD and control subjects were recruited from gastroenterology, diabetes, cardiology, 

respiratory clinics from Imperial College Healthcare NHS Trust (ICHT), at the St Mary’s 

Hospital and The Hammersmith Hospital sites, and London North West University Hospitals 

NHS Trust, at the Ealing Hospital site. Healthy controls were recruited from subjects working 

at ICHT and Imperial College London, and non-IBD controls were recruited from diabetes and 

chest clinics at St Mary’s Hospital. 117 Crohn’s disease patients, 98 UC and 100 control 

subjects were recruited, with detailed clinical data, dietary and medication information, 

obtained at the time of sample collection.  

Urine samples were collected from all study subjects to assess the utility of metabonomic 

analysis in a wider population of patients than in previous studies to reflect a more real-life 

clinic population. Contemporaneous faecal samples were collected from the same cohort of 

subjects but restricted to IBD patients with no comorbidities and healthy controls – this was to 

make the groups more homogeneous so as to assess whether changes in the faecal microbiome 

of IBD patients could be linked to changes in discriminatory urinary metabolites associated 

with this disease. It was then planned to examine the urinary metabolome in comorbid IBD 

subjects and non-IBD subjects, but an insufficient number of faecal samples were collected to 

allow this analysis. 

Ethnicity of subjects were separated into Caucasian, South Asian, and others. Caucasian 

subjects were defined as individuals who were white and of European decent. South Asians 

included subjects with ethnic-cultural heritage from the following countries: Afghanistan, 

Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka. Study subjects of  

‘other’ ethnicity were defined as all subjects of another ethnic-cultural heritage outside of the 

above defined Caucasian and South Asian groups. The aim was to recruit equal proportions of 
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subjects from each of the above ethnic definitions, and of particular note, the sites for 

recruitment serve a large South Asian population, and so it was important to account for any 

confounding related to this ethnic group. 

IBD diagnosis was based on clinical, radiological, endoscopic and histological data taken from 

the patient’s paper and electronic notes, and from the pathology, radiology and endoscopy 

electronic reporting systems. 

Exclusion criteria included subjects with IBD unclassified (IBDU), stomas, and currently 

pregnant. Subjects who had recently taken antibiotics (within 8 weeks), pre- or probiotics, or 

on liquid or treatment diets were also excluded. The diagnosis of IBDU was made based both 

on the diagnosis documented in patients’ health records, but also on review of their clinical, 

histological, endoscopic and histological data. 

3.4.3 Demographic and clinical data analysis 

To assess for statistically significant differences in demographic and clinical data between 

cohorts, the Mann-Whitney U test and Fisher’s exact tests were used. To correct for multiple 

comparisons, a Holm-Bonferroni adjustment was applied. For non-parametric data, a Chi-

squared test (X2) was used.  

3.4.4 Sample collection 

Faecal samples were collected using spoon cap sample containers (Sigma-Aldrich, USA), and 

were then separated into microcentrifuge tubes (Ependorff, Germany) prior to being frozen at -

80 oC on the same day (within 12 hours of being produced). Samples were then defrosted at the 

time of faecal DNA extraction. 
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Random urine samples were collected in 30ml universal containers (Sigma-Aldrich, USA), and 

within 6 hours were centrifuged for 10 minutes at 13,000 rpm at 4 oC. The supernatant was 

aliquoted off and transferred into a microcentrifuge tubes (Ependorff, Germany) and stored at -

80 oC until used for NMR analysis. 

3.4.5 Faecal microbiome analysis  

The PowerLyzer PowerSoil DNA Isolation Kit (Mo Bio, Carlsbad, CA, USA) was used to 

perform DNA extraction on faecal samples using the manufacturer’s protocol. For each sample, 

250 mg of faeces and an in-house additional bead beating step was used (90). The extracted DNA 

was then stored at -80oC. Illumina’s 16S Metagenomic Sequencing Library Preparation Protocol 

(289) was used to prepare the sample libraries. An Illumina MiSeq platform (Illumina Inc., 

Saffron Walden, UK) was used to perform the sequencing using the MiSeq Reagent Kit v3 

(Illumina) and paired-end 300bp chemistry.  

16S rRNA sequencing data was then analysed using the Mothur package following the MiSeq 

SOP Pipeline (290). Sequence alignment was performed using the Silva bacterial database, and 

the Wang method using the RDP database was used for classification of sequences (292). 

Calculations were performed within Mothur for alpha diversity (Shannon diversity index, H’), 

and Wilcoxon matched-pairs signed rank test using GraphPad Prism statistical analysis software 

programme version 8.0.2 was used to performed to assess for statistical significance between 

time points. The Shannon index creates a number (between 0 and 1) that summarises the species 

diversity within a sample, and is based on the richness and evenness of species within the sample; 

richness is the total number of species within a sample, and evenness reflects how uniformly 

distributed the different species are within samples (311). Beta diversity, a measure of 

compositional similarity between samples, was assessed using the non-metric multidimensional 

scaling (NMDS) plot, and PERMANOVA p-values were generated using the UniFrac weighted 
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distance matrix. (294). The Statistical Analysis of Metagenomic Profiles software (STAMP) 

package (312) was used to assess for statistically significant differences in bacterial composition 

between subjects at different time groups using White’s non-parametric t-test with Benjamini-

Hochberg False Discovery Rate (FDR). 

3.4.6 Metabonomic analysis 

Urine samples were analysed using 1D 1H NMR spectroscopy. All spectra were phased, 

calibrated, (using TSP) and baseline corrected automatically in Topspin. Spectral data was 

imported into MATLAB (version 2017a, The Mathworks, Inc.; Natwick, MA) using in-house 

scripts before spectral regions containing redundant information were removed. This included 

peaks corresponding to water and TSP, at 4.6 – 4.85 ppm and -0.2 to 0.2 ppm respectively. Prior 

to modelling, all data were aligned using an in-house automatic alignment function. Spectral data 

was then normalized using a probabilistic quotient approach. 

Multivariate statistical analysis was used to investigate differences between study groups. This 

performed using SIMCA (version 15, Umetrics, Sweden) and Matlab (version 2017a, The 

Mathworks, Inc.; Natwick, MA). Principal components analysis (PCA) was carried to identify 

of outliers and initial clustering based on principle components. Univariate scaling (scaling 

weight = inverse standard deviation of variable) was applied to allow for smaller variations in 

data during multivariate analysis. Outliers with a distance from the model (DModX) that 

exceeded the critical value (Dcrit) were excluded. The chemical shift of these samples was 

identified using a loadings plot, and the subsequent driving metabolite could be identified. A 7-

fold cross validation was undertaken in each model. 

Supervised multivariate analysis was performed using orthogonal partial least squares – 

discriminative analysis (OPLS-DA). This generates a R2 value and a Q2 values. R2 represents 

the proportion of variance for the dependent variables that is explained by the independent 
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variables within the model. Q2 is used to validate the model and estimates its predictability using 

cross-validation. This is done taking out 1/7th of the data and building a new model using the 

remaining 6/7th of the data, and then assesses how well the new model predicts the left-out data. 

This is repeated until every 1/7th of the data in the model is predicted in this manner. All the 

predicted data is then compared with the original data to generate this value. The higher the Q2, 

the better the predictability of the model. Positive Q2 values undergo permutation testing or CV-

ANOVA to calculate a p value (values less than 0.05 were considered significant). The Human 

Metabolome Database and Chenomx Profiler (Chenomx NMR Suite 8.1) were used to identify 

metabolites contributing to the model from the loadings plot, and correlating peaks from the 

same metabolite were confirmed using Statistical evidence from STOCSY Matlab (version 

2017a, The Mathworks, Inc.; Natwick, MA). 

For targeted analysis, peak integral values for selected metabolites were obtained using an in-

house Matlab script (90). These metabolites were identified from a mean spectrum of all the 

samples, and a mean integral of a peak from each targeted metabolite was used to calculate a 

relative abundance. Using the integral values, a univariate statistical approach was employed to 

compare the relative quantity of metabolites of interest between cohorts. GraphPad Prism 

statistical analysis software programme version 8.0.2 was used to perform a Mann-Whitney U 

test for univariate analysis. A Benjamini-Hochburg calculation was applied to adjust for 

multiple comparisons. 

Targeted analysis was performed on urine metabolites that were either demonstrated in 

previous studies to be consistently discriminative in IBD (161, 207, 209, 210). These are as 

follows: 4-cresol sulfate, formate, hippurate, methylamine, trigellonine, citrate, succinate and 

alanine – see Table 3.1. 
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Metabolite Formula Multiplicity Chemical shift 

(ppm) 

 

ppm range 

used for 

integrals 

(ppm) 

 

p-cresol C7H8O d 

d 

s 

7.13 

6.82 

2.25 

 

2.256 to 

2.266 

formate CH2O2 s  8.46 8.460 to 

8.470 

 

hippurate  C9H9NO3 d 

t 

t 

3.97 

7.55 

7.64 

3.965 to 

3.982 

 

 

methylamine CH5N s 2.59 2.582 to 

2.595 

 

trigonelline C7H7NO2 

 

s 

m 

m 

s 

 

9.11 

8.82 

8.07 

4.43 

4.420 to 

4.442 

acetate C2H4O2 d 

q 

1.49 

3.79 

3.744 to 

3.812 

 

butyrate C4H8O2 t 

m 

t 

 

2.14 

1.54 

0.88 

2.130 to 

2.152 

citrate C6H8O7 d 

d 

2.55 

2.67 

2.525 to 

2.570 

 

succinate C4H6O4 s 2.39 2.280 to 

2.412 

 

alanine C2H3O2 s  1.92 1.475 to 

1.500 

 

Table 3.1: Urine metabolites selected for targeted univariate analysis. Table shows chemical formula, and 

multiplicity and chemical shift for their 1H NMR peaks. Chemical shifts marked in bold indicate peak integration 

used in this study. s=singlet, d=doublet, t=triplet, m=multiplet 
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3.5 Results 

3.5.1 Subject characteristics of all study subjects 

117 Crohn’s subjects, 98 UC subjects, and 100 non-IBD control subjects were analysed. 

Subject characteristics are summarised in Table 3.2 below. 

 
CD, n = 117  UC, n = 98  Controls, n = 100 

Age (mean, years) 48  (IQR 24) 49  (IQR 25) 53  (IQR 15) 

Sex (M : F) 

(%) 

50 : 67 

(43 : 57) 

48 : 50 

(49 : 51) 

56 : 44 

(56 : 44) 

Ethnicity (Cau : SA : 

Oth)* 

(%) 

73 : 29 : 15  

(62 : 25 : 13) 

56 : 32 : 10 

(57 : 33 : 10) 

42 : 47 : 11 

(42 : 47 : 11) 

BMI (median, kg/m2) 23.9  (IQR 6.3) 24.7  (IQR 7.6) 26.3  (IQR 6.7) 

Disease location** 

(%) 

  

L1:  20 (17) 

L2:  62 (53) 

L3:  35 (30) 

E1:  24 (24) 

E2:  41 (42) 

E3:  33 (34) 

- 

- 

- 

Disease activity†: 

(%) 

Remission:  98 (84) 

Mild:           9 (8) 

Moderate:    9 (8) 

Severe:        1 (8) 

 

Remission : active  

98 : 19 

(84 : 16) 

Remission:  78 (80) 

Active:  10 (10) 

Severe:  10 (10) 

 

 

Remission : active  

78 : 20 

(80 : 20) 

- 

- 

- 

- 

 

- 

- 

Operation 

(%) 

31 (26) 0 (0) - 

5 ASA 

(%) 

43 (36) 70 (71) - 

Oral immuno-

modulator (%) 

49 (42) 34 (35) - 

Biologic 

(%) 

23 (20) 5 (5) - 

Steroid 

(%) 

4 (3) 9 (9) 1 (1) 
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Non-IBD medication 

(%) 

66 (56) 51 (52) 47 (47) 

Comorbidity: 

Total 

T2DM 

Asthma 

Hypertension / CVD 

Other 

(%) 

  

33 (28) 

7 (6) 

6 (5) 

12 (10) 

8 (7) 

  

41 (42) 

11 (11) 

8 (8) 

11 (11) 

13 (13) 

  

48 (48) 

19 (19) 

12 (12) 

2 (2) 

15 (15) 

Table 3.2: Characteristics of study subjects. *Ethnicity; Cau = Caucasian, SA = South Asian, Oth = Other. 

**Montreal classification, CD L1 = ileal, L2 = colonic, L3 = ileo-colonic, UC E1 = proctitis, E2 = left sided, E3 = 

extensive. †CD HBI score, remission =<5 and active ≥5, UC SCCAI score, remission <5, active ≥5. ††Statistical 

comparison between groups, p value of <0.05 considered significant and are in bold.  

3.5.2 Faecal 16S sequencing results 

16S rRNA gene sequencing was performed on faecal samples from IBD subjects with no 

comorbidities and healthy controls. Subjects with comorbidities were excluded as there were not 

enough samples collected from this cohort to lead to meaningful analysis. Subjects taking 5-

aminosalicylates or paracetamol were also excluded. 

3.5.2.1 Faecal 16S sequencing of Crohn’s disease subjects without comorbidities, and not 

taking 5-aminosalcylates 

 Subject characteristics are shown in table 3.3. 

 
n Age 

(mean) 

Sex (M : F) Ethnicity* 

(Ca : SA : Oth) 

CD 

(%) 

49 49 24 : 25 

(49 : 51) 

29 : 18 : 2 

(59 : 37 : 4) 

HC 

(%) 

45 53 26 : 19 

(58 : 42) 

16 : 27 : 2 

(36 : 60 : 4) 

Table 3.3: Subject characteristic of Crohn’s disease (CD) and healthy control (HC) cohorts. Cohorts include 

subjects from all ethnic backgrounds, but those taking 5-aminosalicylates or have a comorbidity have been 

excluded. *Ethnicity: Cau = Caucasian, SA = South Asian, Oth = Other.  
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Analysis of alpha diversity, measured by the Shannon index, was reduced in the Crohn’s 

disease cohort compared to the healthy controls – see Figure 3.1. 

 

 

 

 

 

 

 

Figure 3.1: Alpha diversity as measured by the Shannon index between Crohn’s disease (CD) and control cohorts, 

no 5ASAs. A two tailed Mann Whitney U test showed statistically significant difference between the two groups, 

p = 0.024. 

 

Alpha diversity using the Shannon index was assessed in the UC cohort, assessing for any 

difference compared to healthy controls – no significant change in alpha diversity was shown 

in this comparison.  

Compositional analysis comparing Crohn’s disease subjects with healthy controls showed an 

increase in Bacteroidetes in the Crohn’s disease cohort at class, order and family taxa levels. 

At family level there was also an increase in Ruminococcaceae in the Crohn’s subjects – see 

Figure 3.2. At genus levels there was a reduction in Clostridium XIV and Clostridium XVIII. In 

the figure below, Crohn’s disease cohorts are represented by the blue bars, and controls by the 

orange bars. This figure only demonstrates organisms at each taxanomic level that were found 

to have statistically significant differences between disease and control groups using White’s 
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non-parametric t-test with a q-value < 0.05 (q value = p value corrected for multiple 

comparisons with Benjanmini-Hochber test). 

 

 

Figure 3.2(a) – Class 

 

 

Figure 3.2(b) – Order 

 

 

Figure 3.2(c) – Family 

 

 

 

 

 

 

Figure 3.2(d) – Genus 

Figure 3.2: Compositional analysis comparing Crohn’s disease subjects with healthy controls. STAMP analysis 

using White’s non-parametric t-test showed statistically different abundance of bacteria between Crohn’s disease 

cohorts and healthy controls at (a) class, (b) order, (c) family and (d) genus taxa levels. Blue bars = CD cohort, 

orange = controls. Statistically significant differences between cohorts were not present at phyla level. q-value = p 

value corrected for multiple comparisons with Benjanmini-Hochber test. 
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3.5.2.2 Faecal 16S sequencing of UC subjects without comorbidities, and not taking 5-

aminosalcylates 

Subject characteristics are shown in table 3.4. 

 
n Age (mean) Sex (male : female) Ethnicity* 

(Ca : SA : Oth) 

UC 

(%) 

29 49  16 : 13 

(55 : 45) 

18 : 10 : 1 

(62 : 35 : 3) 

HC 

(%) 

45 53 26 : 19 

(58 : 42) 

16 : 27 : 2 

(36 : 60 : 4) 

Table 3.4: Subject characteristic of ulcerative colitis (UC) and healthy control (HC) cohorts. Cohorts include 

subjects from all ethnic backgrounds, but those taking 5-aminosalicylates or have a comorbidity have been 

excluded. *Ethnicity: Cau = Caucasian, SA = South Asian, Oth = Other.  

 

There was no statically significant difference in alpha diversity between the UC cohort and 

healthy controls (p = 0.233). Compositional analysis comparing UC subjects with healthy 

controls (see Figure 3.3) showed an increase in Bacteroidetes at order level in UC patients, and 

a reduction of Eubacteriaceae and Oxalobacteraceae at order and family levels. UC patients 

have an increase in Clostridiaceae at family level, and an increase in 

Clostridium_sensu_stricto at genus level. Further differences at genus level included an 

increase of Firmicutes_unclassified in the UC cohort. In the figure below, UC cohorts are 

represented by the blue bars, and controls by the orange bars. This figure only demonstrates 

organisms at each taxanomic level that were found to have statistically significant differences 

between disease and control groups using White’s non-parametric t-test with a q-value < 0.05 

(q value = p value corrected for multiple comparisons with Benjanmini-Hochber test). 
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Figure 3.3 (a) – Order 

 

 

 

Figure 3.3(b) – Family 

 

 

 

 

Figure 3.3(c) – Genus 

Figure 3.3: Compositional analysis comparing UC subjects with healthy controls. STAMP analysis using White’s 

non-parametric t-test showed statistically different abundance of bacteria between UC cohorts with no 

comorbidities and healthy controls at (a) order and (b) family and (c) genus taxa levels. Blue bars = UC cohort, 

orange = controls. Statistically significant differences between cohorts were not present at phyla, class and order 

levels. q-value = p value corrected for multiple comparisons with Benjanmini-Hochber test. 

 

3.5.3 Metabonomic analysis of urine samples 

This study used two approaches to analyse urine samples between different cohorts – supervised 

multivariate analysis using OPLS-DA, and targeted univariate analysis to compare relative 

abundance of microbial associated metabolites that have previously been shown to be affected 

in IBD.  
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3.5.3.1 Multivariate analysis of urine samples - all subjects (subjects with comorbidities 

included in IBD and non-IBD cohorts)  

The first supervised multivariate model included all recruited subjects in the study, and 

compared IBD subjects with non-IBD subjects. This model included subjects with non-IBD 

comorbidities in the IBD cohort and non-IBD health conditions the control cohort. Figure 3.4 

shows the OPLS-DA model comparing these groups. Table 3.2 in Section 3.5.1 gives details of 

the study characteristics. 

 

 

 

 

 

 

Figure 3.4:  OPLSDA plot comparing IBD cohort with non-IBD cohort. Cohorts included subjects of different 

ethnic backgrounds, and subjects taking 5-aminosalicylates and those with comorbidities. IBD subjects are 

marked in blue, healthy controls are marked in green. 

 

A covariance plot was used to identify metabolites driving the subsequent models. OPLS-DA 

cross-validated coefficients were plotted back scaled onto the original spectral data, and 

interpreted as a conventional NMR spectrum. Positive (upward pointing) and negative 

(downward pointing) signals denote metabolites with a relative increase and decrease in 

intensity respectively, with the strength indicated by the correlation coefficient (R2). A 

covariance plot of the aromatic region from the above OPLSDA model showed that the two 
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5-aminosalicylate peaks 

hippurate peaks 

most significant metabolites driving separation are resonances from 5-aminosalicylates and 

hippurate– see Figure 3.5.  

 

 

 

 

 

 

 

 

Figure 3.5:  Covariance plot of aromatic region of OPLS-DA model comparing the IBD cohort with non-IBD cohort. 

Cohorts included subjects of different ethnic backgrounds, and subjects taking 5-aminosalicylates and those with 

comorbidities. This plot demonstrates that the main driving peaks in this OPLS-DA model correspond to 5-

aminosalicylate and hippurate. 

 

5-aminosalicylatess (5-ASAs) are known to affect the aromatic region of the urine spectra, a 

region of interest as it contains peaks corresponding to bacterial associated metabolites. 5-

aminosacylate peaks are found at δ 2.17, 6.95, 7.44, 7.73 respectively (313). Statistical Total 

Correlation Spectroscopy editing (STOCSY-E), a technique that allows for the removal of 

metabolite peaks using statistical correlation between a driver peak and correlating peaks, was 

applied to remove resonances from xenometabolites. A driver peak at 2.17, corresponding to 5-

ASA, was initially used to remove correlating 5-ASA peaks. However, this was unsuccessful 

owing to the significant overlap of 5-ASA peaks with endogenous metabolite peaks across this 

region of the spectra. Overlapping of peaks reduces the correlation between xenometabolite 
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peaks and their corresponding driver peak which means STOCSY-E cannot accurately reduce 

these peaks. Multiple driver peaks were then used across the spectra for both 5-ASAs, reducing 

the threshold of correlation that STOCSY-E uses to remove correlating peaks (from a default 

of 0.9 to 0.7), and manually aligning the spectra in these regions was also performed to 

improve separation between xenometabolite peaks with the aim of improving their correlation 

with the driver peak. Removal of xenometabolite peaks using STOCSY-E was also attempted 

using raw, unaligned data, and data that had only been aligned in the xenometabolite regions, 

but this did not allow for the successful removal of all xenometabolite peaks, and shifting of 

peaks across the spectra meant this data was also not useful for multivariate statistical 

interrogation.  

3.5.3.2 Multivariate analysis of urine samples – subjects taking 5-aminosalicylates 

excluded 

Subject characteristic comparisons following the removal of patients taking 5-aiminosalicylates 

and paracetamol is shown in Table 3.5. IBD and control cohorts include subjects with another 

comorbidity. 

 

 

 

 

 

 



 98 

 
CD, n = 74 UC, n = 28 Controls, n = 100 

Age  (mean, years) 43  (IQR 21) 53  (IQR 22) 53  (IQR 15) 

Sex  (M : F) 

(%) 

31 : 43 

(41 : 56) 

13 : 15 

(46 : 54) 

56 : 44 

(56 : 44) 

Ethnicity  (Cau : SA : 

Oth)* 

(%) 

45 : 18 : 11 

(61 : 24 : 15) 

15 : 13 : 0 

(54 : 46 : 0) 

42 : 47 : 11 

(42 : 47 : 11) 

BMI  (median, kg/m2) 23.6  (IQR 7.3) 25.6  (IQR 9.1) 26.3  (IQR 6.7) 

Disease location** 

(%) 

L1: 14 (19) 

L2: 35 (47) 

L3: 25 (34) 

E1:  7 (25) 

E2:  11 (39) 

E3:  10 (36) 

- 

- 

- 

Disease activity† 

(%) 

Remission:  62 (84) 

Mild:           6 (8) 

Moderate:   6 (8) 

Severe:        0 (0) 

 

Remission : active  

62 : 11 

(84 : 16) 

Remission: 22 (79) 

Active:        6 (21) 

 

 

 

Remission : active  

22 : 6 

(79 : 21)  

- 

- 

- 

- 

 

- 

- 

- 

Oral immuno-modulator 

(%) 

36 (49) 6 (21) - 

Biologic 

(%) 

26 (35) 3 (11) - 

Non-IBD medication 

(%) 

39 (53) 14 (50) 47 (47) 

Comorbidity: 

Total 

DM 

Asthma 

CVD / hypertension 

Other 

(%) 

  

19 (26) 

4 (5) 

4 (5) 

4 (5) 

7 (9) 

  

8 (29) 

4 (14) 

2 (7) 

1 (4) 

2 (7) 

  

48 (48) 

19 (19) 

12 (12) 

2 (2) 

15 (15) 

Table 3.5: Characteristics of study subjects excluding patients on 5-aminosalicylates. *Ethnicity; Cau = Caucasian, 

SA = South Asian, Oth = Other. **Montreal classification, CD L1 = ileal, L2 = colonic, L3 = ileo-colonic, UC E1 

= proctitis, E2 = left sided, E3 = extensive. †CD HBI score, remission =<5, mild = 5-7, moderate 6-18, severe >16, 

UC SCCAI score, remission <3, active 3-4, severe 5+. 
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Subject characteristic data after removal of subjects taking 5-aminosalicylates and paracetamol 

have been assessed for statistically significant differences and the results shown in Table 3.6. 

Comparisons between disease and control groups showed differences in age, ethnicity, BMI, and 

comorbidities. There were differences in the number of operations, IBD medications, and 

comorbidities between Crohn’s disease and UC groups.  
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Subject characteristic comparisons - univariate analysis – p values 

 
IBD : controls  CD : controls  UC : controls CD : UC 

n 102 : 100 74 : 100 28 : 100 74: 28 

Age (median)1 0.012 0.003 0.704 0.112 

Sex2  0.069 0.066 0.573 0.462 

Ethnicity (Cau : SA : 

Oth)*2 

0.029 0.009 0.107 0.028 

BMI (median)1 0.013 0.002 0.960 0.058 

Disease activity†2: - - - 0.843 

Operation2 - - - 0.001 

 

Oral immuno-

modulator2 

- - - 0.017 

 

Biologic2 - - - 0.061 

 

Steroid2 - - - 0.519 

Non-IBD medication2 0.481 0.457 0.779 0.807 

Comorbidity2: 

Total 

DM 

Asthma 

CVD 

Other 

 

0.002 

0.020 

0.127 

0.157 

0.262 

 

0.003 

0.009 

0.136 

0.114 

0.420 

 

0.136 

0.566 

0.466 

0.627 

0.279 

 

0.514 

0.137 

0.739 

0.541 

0.578 

Table 3.6 – Characteristic comparisons between subject cohorts after removal of subjects taking 5-aminosalicylates. 

1Mann-Whitney U test, 2Chi-squared test, p value of <0.05 considered significant and are in bold. †HBI score or 

SCCAI score of ≥5. 
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Disease activity was assessed using HBI and SCCAI scores for Crohn’s disease and UC 

respectively. At the time when recruitment commenced for this study, in early 2014, faecal 

calprotectin tests were just coming into routine monitoring use. Faecal calprotectin, a non-

invasive marker of disease activity, was not used in this study but would have given an additional 

measure of disease activity to correlate with metabolomic and microbiome results. 

Dietary and lifestyle factors known to potentially affect the urinary metabolome were also 

compared between cohorts and are shown in Table 3.7a and 3.7b. In the IBD compared to control 

cohorts, difference were seen in smoking (UC :C), meat consumed within the last 24 hours (CD 

: C), grapefruit (CD : C), mild (CD : C), and alcohol (IBD : C, and CD : C). Meat, berries and 

coffee consumption was different in the Crohn’s disease compared to UC cohorts.  
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Lifestyle comparisons  

 
IBD  CD UC    controls 

n 102  74  28  100 

Vegetarian 

Smoker 

Exercise 

 

17 

83 
 

 

5 

42 

 

12 

41 

 

2 

48 

Consumed within the 

last 24 hours prior to 

producing samples: 

Meat 

Fish 

Cheese 

Grapefruit 

Cherries 

Liquorice 

Walnuts 

Vanilla 

Milk 

Yoghurt 

Berries 

Carbonated drinks 

Coffee 

Tea 

Herbal tea 

ETOH 

 

 

 

182 

65 

127 

5 

4 

13 

18 

26 

158 

71 

58 

110 

112 

123 

48 

48 
 

 

 

 

108 

28 

70 

5 

0 

5 

14 

14 

80 

42 

42 

61 

51 

66 

23 

28 

 

 

 

74 

37 

57 

0 

4 

8 

4 

12 

78 

29 

16 

49 

61 

57 

25 

20 

 

 

 

82 

29 

48 

0 

1 

3 

15 

7 

81 

43 

28 

44 

52 

51 

17 

12 

Table 3.7a – Lifestyle comparisons between subject cohorts.  
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Lifestyle comparisons - univariate analysis – p values 

 
IBD : controls  CD : controls  UC : controls   CD : UC 

n 102 : 100 74 : 100 28 : 100 74: 28 

Vegetarian 

Smoker 

Exercise 

0.184 

0.037 

0.115 

0.291 

0.332 

0.071 

0.227 

0.004 

0.383 

0.830 

0.031 

0.373 

Consumed within the 

last 24 hours prior to 

producing samples: 

Meat 

Fish 

Cheese 

Grapefruit 

Cherries 

Liquorice 

Walnuts 

Vanilla 

Milk 

Yoghurt 

Berries 

Carbonated drinks 

Coffee 

Tea 

Herbal tea 

ETOH 

 

 

 

0.552 

0.823 

0.065 

0.124 

0.569 

0.251 

0.074 

0.169 

0.150 

0.086 

0.850 

0.236 

0.988 

0.302 

0.277 

0.030 

 

 

 

0.022 

0.398 

0.812 

0.036 

0.278 

0.620 

0.513 

0.217 

0.034 

0.285 

0.215 

0.232 

0.216 

0.425 

0.615 

0.024 

 

 

 

0.264 

0.191 

0.152 

0.999 

0.167 

0.113 

0.009 

0.210 

0.803 

0.050 

0.048 

0.398 

0.145 

0.311 

0.143 

0.108 

 

 

 

0.001 

0.398 

0.805 

0.038 

0.274 

0.233 

0.038 

0.950 

0.064 

0.328 

0.001 

0.755 

0.006 

0.796 

0.305 

0.537 

Table 3.7b – Statistical analysis of lifestyle comparisons between subject cohorts. Chi square test, p value of <0.05 

considered significant and are in bold. 

 

Patient recall of dietary and lifestyle factors within and beyond 24 hours can be variable, and it 

can also be difficult to quantify some of these factors, and so accurately statistically assessing 

the influence of these important potential confounders can be challenging. 

Multivariate models excluding subjects taking 5-aminosalicylates were able to discriminate IBD 

from non-IBD controls, and Crohn’s disease from non-IBD controls - see Table 3.8. Models 

comparing UC and controls, and Crohn’s disease and UC, were not significant. 
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IBD v non-IBD controls (C) [subjects on 5-ASAs excluded]. 

Comparison 

cohorts 

n R2X Q2 p value 

CV- 

ANOVA 

Most significant 

metabolites  

driving model* 

(fold change) 

Fold change 

IBD : C 202 

(102 : 

100)  

 

0.194 0.142 0.020 hippurate ↓   

alanine ↓       

citrate ↓ 

p-cresol ↓ 

PAG ↑ 

DMG ↓ 

formate ↓ 

0.72 

0.87 

0.89 

0.86 

1.21 

0.91 

0.91 

CD : C 174 

(74 : 

100) 

0.037 

 

0.093 

 

<0.001 hippurate ↓ 

alanine ↓ 

citrate ↓ 

p-cresol ↓ 

PAG ↑ 

DMG ↓ 

betaine ↓ 

formate ↓ 

sucrose ↑ 

0.69 

0.88 

0.86 

0.90 

1.19 

0.92 

0.88 

0.89 

1.23 

UC : C 128 

(28 : 

100) 

0.208 

 

-0.157 NS†   

CD : UC 102 

(74 : 

28) 

0.168 

 

0.007 NS   

Table 3.8: OPLS-DA models comparing IBD and control cohorts, and includes subjects with comorbidities in IBD 

and non-IBD cohorts. *most significant metabolites driving separation as identified using a covariance plot, †NS, 

non-significant. Arrows denote whether the relative abundance of metabolite is higher or lower in the IBD cohort. 

 

 

Covariance plots demonstrated the driving metabolites separating IBD and Crohn’s cohorts 

from controls were hippurate, alanine, citrate, 4-cresol sulfate, phenyacetylglutamine (PAG), 

dimethylglcyine (DMG), betaine, and formate – see Table 3.8. Models comparing UC and 

healthy controls, and Crohn’s disease and UC, were not significant. 
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When IBD and control subjects with a non-IBD health condition were excluded, similar 

discriminatory metabolites were identified driving the models – see Table 3.9. Supervised 

multivariate analysis could not construct models to separate UC from healthy controls and 

Crohn’s patients from UC patients following the removal of subjects with non-IBD health 

conditions. 

Further multivariate comparisons were made between IBD cohorts and controls, and similar to 

the above, discriminatory models could be generated for non-comorbid IBD and Crohn’s 

disease cohorts compared to healthy controls, but not for UC and healthy controls, and between 

Crohn’s disease and UC – see Supplementary Table 1. Discriminatory models could not be 

generated for comorbid only IBD cohorts and healthy controls, but these comparisons were 

likely underpowered – see Supplementary Table 2. 

3.5.2.3 Targeted univariate analysis of urine samples  

Targeted univariate analysis was performed to assess for statistically significant differences in 

metabolites of interest between cohorts. The first five metabolites selected for targeted analysis 

were related to intestinal bacterial metabolism or host-bacterial co-metabolism, and had shown 

to be significant in IBD in previous studies; these included 4-cresol sulfate, formate, hippurate, 

methalamine, and trigonelline. The TCA related metabolite citrate and succinate, and the amino 

acid alanine were also selected as these too have been consistently shown to be significant in 

IBD. 

All IBD subjects including those with no comorbidities were compared with all controls 

(including those with comorbidities) – see Tables 3.9a and 3.9b. Patients taking 5-

aminosalicylates were excluded, as 5-ASA signals interfered identifying targeted metabolite 

spectral peaks in the aromatic region preventing peak integral values being accurately selected 

for these metabolites. 
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Targeted analysis showed differences between the combined IBD cohort (Crohn’s disease and 

UC) and controls. There was a decrease in 4-cresol sulfate between all IBD cohorts and 

controls, and between Crohn’s disease and UC with a p value of less than 0.05. A statistically 

reduced reduction in hippurate excretion was present in IBD and Crohn’s disease cohorts 

compared to controls. Alanine excretion was reduced in all IBD cohorts compared to controls, 

citrate excretion was reduced in Crohn’s disease cohort compared to controls, and acetate 

excretion was increased in UC compared to controls, and reduced in Crohn’s disease compared 

to UC.  
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 All IBD and CD vs all controls (C) 

  

n 

IBD : C 

102 : 100 

CD : C 

74 : 100 

 Microbial metabolites 

4-cresol 

sulfate 

Median integral: 

Direction: 

p value =  

12242 : 14724 

↓ : ↑ 

0.001 

12833 : 14724 

↓ : ↑ 

0.002 

formate Median integral: 

Direction: 

p value = 

11995 : 12383 

↓ : ↑ 

0.262 

11295 : 12383 

↓ : ↑ 

0.673 

hippurate  Median integral: 

Direction: 

p value = 

196880 : 283119 

↓ : ↑ 

0.004 

190145 : 283119 

↓ : ↑ 

0. 002 

methylamine Median integral: 

Direction: 

p value = 

9318 : 9710 

↓ : ↑ 

0. 945 

9476 : 9710 

↓ : ↑ 

0. 604 

trigonelline Median integral: 

Direction: 

p value = 

9291 : 9175 

↑ : ↓ 

0. 996 

8049 : 9175 

↓ : ↑ 

0. 546 

 SCFAs 

acetate Median integral: 

Direction: 

p value = 

73314 : 73408 

↓ : ↑ 

0. 146 

76475 : 73408 

↑ : ↓ 

0. 898 

butyrate Median integral: 

Direction: 

p value = 

83827 : 87358 

↓ : ↑ 

0. 277 

85135 : 87358 

↓ : ↑ 

0. 145 

 TCA metabolites and amino acids 

citrate Median integral: 

Direction: 

p value = 

444265 : 397881 

↑ : ↓ 

0. 151 

465199 : 397881 

↑ : ↓ 

0.016 

succinate Median integral: 

Direction: 

p value = 

35874 : 33455 

↑ : ↓ 

0. 425    

33286 : 33455 

↓ : ↑ 

0. 787 

alanine Median integral: 

Direction: 

p value = 

112911 : 129213 

↓ : ↑ 

0. 003 

113088 : 129213 

↓ : ↑ 

0. 005 

Table 3.9a: Targeted univariate analysis using a Mann-Whitney U test of IBD subjects with no comorbidities and 

healthy controls. Figures in bold have a p value less than 0.05 after Benjamini-Hochburg correction for multiple 

comparisons. Arrows denote whether relative abundance of metabolite is higher or lower in corresponding cohort. 
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 All UC vs all controls (C), and all CD vs all UC 

  

n 

UC : C 

28 : 100 

CD : UC 

74 : 28 

 Microbial metabolites 

4-cresol 

sulfate 

Median integral:  

Direction: 

p value =  

10141 : 14724 

↓ : ↑ 

0.001 

12833 : 10141 

↑ : ↓ 

0.015 

formate Median integral:  

Direction: 

p value = 

11618 : 12383 

↓ : ↑ 

0.108 

11295 : 11618 

↓ : ↑ 

0.255 

hippurate  Median integral:  

Direction: 

p value = 

204281 : 283119 

↓ : ↑ 

0. 079 

190145 : 204281 

↓ : ↑ 

0. 100 

methylamine Median integral:  

Direction: 

p value = 

9198 : 9710 

↓ : ↑ 

0. 645 

9476 : 9198 

↑ : ↓ 

0. 360 

trigonelline Median integral:  

Direction: 

p value = 

10292 : 9175 

↑ : ↓ 

0.601 

8049 : 10292 

↓ : ↑ 

0.515 

 SCFAs 

acetate Median integral:  

Direction: 

p value = 

70314 : 73408 

↑ : ↓ 

0. 010 

76475 : 70314 

↓ : ↑ 

0.009 

butyrate Median integral:  

Direction: 

p value = 

82741 : 87358 

↓ : ↑ 

0. 717 

85135 : 82741 

↑ : ↓ 

0. 219 

 TCA metabolites and amino acids 

citrate Median integral:  

Direction: 

p value = 

432756 : 397881 

↑ : ↓ 

0.823 

465199 : 432756 

↑ : ↓ 

0.083 

succinate Median integral:  

Direction: 

p value = 

37814 : 33455 

↑ : ↓ 

0. 073 

33286 : 37814 

↓ : ↑ 

0. 042 

alanine Median integral:  

Direction: 

p value = 

111748 : 129213 

↓ : ↑ 

0. 020 

113088 : 111748 

↑ : ↓ 

0. 779 

Table 3.9b: Targeted univariate analysis using a Mann-Whitney U test of IBD subjects with no comorbidities and 

healthy controls. Figures in bold have a p value less than 0.05 after Benjamini-Hochburg correction for multiple 

comparisons. Arrows denote whether relative abundance of metabolite is higher or lower in corresponding cohort. 
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Further comparisons of IBD and non-IBD cohorts were made with the inclusion and exclusion 

of non-IBD health conditions – this is summarised in Supplementary Tables 4 to 7. IBD groups 

including patients with comorbidities were compared against control groups that included 

subjects with non-IBD health conditions as well as healthy controls. Consistent changes in 4-

cresol sulfate and hippurate were seen across comparison groups. Increased excretion of citrate 

was seen in IBD when subjects with comorbidities were included in the models. Reduced 

excretion of formate, alanine and acetate were seen in the UC cohorts when subjects with 

comorbidities were included.  

In the last set of targeted analyses (row 4 in Supplementary Table 3, and Supplementary Table 

6), IBD cohorts containing a comorbidity were compared against healthy controls. This showed 

changes in 4-cresol sulfate and hippurate seen in previous comparisons were preserved. 

Increased excretion of citrate was observed, a finding not seen in when subjects with 

comorbidities were excluded. Comparisons of IBD subjects with a comorbidity with non-IBD 

controls (that have at least one health condition) showed that in the UC cohort there was 

reduced excretion of 4-cresol, alanine and acetate.  

The effect of comorbidities was assessed directly by comparing IBD cohorts with a 

comorbidity against IBD cohorts without comorbidities (row 4 in Supplementary Table 3, and 

Supplementary Tables 8 and 9) – an increase in 4-cresol sulfate and a reduction in acetate 

excretion was seen in IBD subjects with a comorbidity. Comparing healthy controls with non-

IBD controls that have at least one health condition showed no differences in targeted 

metabolites. 
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3.6 Discussion 

In contrast to previous urinary IBD metabonomic research, this study included all patients from 

IBD clinic except those taking [or had recently taken] antibiotics, and those with a stoma. This 

more open approach was adopted to try and include IBD subjects that reflected a more real-life 

clinic population, and help assess the impact of comorbidities on the IBD metabolic profiles, 

and to establish whether there is a potential diagnostic as well as research role of NMR 

metabolic profiling in a real-life IBD population. 

The first part of this study assessed the effect of IBD on the faecal microbiome to help explain 

changes then observed in the urinary metabolome. This was performed in a subset of IBD 

patients with no comorbidities, and compared against healthy controls, in order to minimise the 

confounding effects of other conditions. It was then planned to assess and potentially correlate 

the changes on the IBD metabolome related to the presence of specific comorbidities such 

diabetes mellitus, but the number faecal samples in the IBD comorbid subjects were too small 

for meaningful analysis. 

Consistent with previous studies (314-317), 16S RNA sequencing analysis showed a reduction 

in alpha diversity within the faecal microbiome when the Crohn’s disease cohort was compared 

to healthy controls. No statistically significant changes could be seen when comparing UC to 

healthy controls, or the combined IBD group (Crohn’s disease and UC) with controls. A 

reduction in alpha diversity measured using the Shannon index has been demonstrated in a 

recent study assessing microbiomic changes in UC patients compared to healthy controls (318), 

and bacterial richness in UC compared to controls was reported to be decreased in another 

study (319). 

Compositional analysis showed changes in both Crohn’s disease and UC groups when 

compared with healthy controls. There was an increase in Bacteroidetes_unclassified at class, 
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order and family level in the Crohn’s disease cohort, and at order level in the UC cohort. 

Increased levels of Bacteroidetes phylum members in IBD have been reported in several 

studies (51, 52). At family level there was an increase in Rumoninococcacea, which is from the 

phylum Firmicutes. This family contains Ruminococcus gnavus; higher levels of this anaerobic 

bacteria have been observed in Crohn’s disease which is thought to cause inflammation by loss 

of barrier function due its mucin-degrading capabilities (80, 320, 321). 

At genus level, several changes were seen in both Crohn’s disease and UC when compared to 

healthy controls. In the Crohn’s disease cohort, a reduction in Clostridia XIVb and XVIII was 

seen. A lower abundance of Clostridia species has been reported in IBD, including Clostridia 

XIVa, which is important in maintaining gut health and is a SCFA producer (particularly 

butyrate) (75, 322). A reduction in Blautia, Enterococcus, Selemonomnas, Holdermania, 

Haemophilus, Lactococcus and Desulfovibrionaceae_unclassified was also seen in this study. 

In the UC cohort there was an increase in Eggerthella, which has been observed in previous 

studies, and is believed to be an emerging pathogen (322).  

Correlating compositional microbiomic changes to urinary metabolic profiling in IBD, a 

reduction in hippurate and 4-cresol sulfate have been reported in previous studies (161, 207, 

209, 210), and a positive correlation of these metabolites with Clostridia species and 

microbiomic diversity has been previously observed (323-325). Hippurate is a product of host-

bacterial co-metabolism where dietary phenols are converted to benzoate by microbial action, 

and then undergoes hepatic conjugation by phase 2 glycine (326). 4-cresol sulfate is a product 

of bacterial metabolism of tyrosine, and along with Clostridia species, has a positive 

correlation with Bacteroidetes (324, 327).  

This study analysed urinary samples from 315 patients, which included 117 Crohn's patients, 

98 UC patients and 100 non-IBD controls, and included patients with comorbidities in both the 
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IBD groups and non-IBD groups. Subjects with stomas, those who had recently taken 

antibiotics, and those taking pre- and probiotics were excluded. Samples from 112 patients 

taking 5-aminosalicylates were analysed, which included 43 Crohn's disease patients taking 

this medication. The Crohn's disease patients taking 5-aminosalicyates (all Mesalazine) had 

predominantly colonic disease, or ileocolonic disease (27/43 and 9/43 respectively). Although 

this appears to be a high proportion of Crohn’s disease subjects taking 5-ASAS, these patients 

were recruited in 2015 and 2016 prior to the 2019 BSG guidelines where 5-ASAs are not 

recommended in Crohn’s disease (103) – of note, 75% of colonic Crohn’s disease patients in 

the population-based EPIMAD study were prescribed 5-ASAs (328).  

Initial supervised multivariate analysis showed that separation between IBD cohorts and 

controls were principally driven by the presence of 5-aminosalicylates. This has been observed 

in previous studies (161, 211, 215) which have shown high concentrations of 5-ASAs excreted 

in the urine leading to intense NMR spectral resonances in the aromatic region. Many IBD 

patients (mainly UC) take 5-ASAs, and so excluding these patients from urinary NMR analysis 

removes an important cohort for ongoing metabonomic research, and reduces its potential role 

in clinical practice. Removing the aromatic region of the NMR spectrum results in the loss of a 

vital part of the NMR spectrum where several microbial associated metabolites are expressed. 

This study employed statistical total correlation spectroscopy editing (STOCSY-E) to recover 

the underlying spectral information lost due to the presence of 5-aminosalicylates in the 

aromatic region. Unfortunately, correlation and scaling of the 5-ASA peaks could not be 

achieved due to significant peak overlapping. As such the intestinal bacterial associated 

metabolites could not be recovered in these subjects, and so all IBD patients taking 5-

aminosalicylates had to be removed from further analysis. This significantly impacted on 

samples sizes, particularly in the UC cohorts which had a much higher proportion of patients 

taking 5-ASA medications. It also meant that comorbidities then had to be grouped together, as 
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cohorts of patients with specific comorbidities (e.g. diabetes mellitus) were too small to 

analyse individually. This then meant that impact of metabonomic profiles specific to each 

different comorbidity on the IBD metabolome could not be assessed. 

Subsequent analysis included 74 Crohn’s disease, 28 with ulcerative colitis, and 100 controls 

subjects. Metadata analysis showed there were several characteristics that were statistically 

different between different cohort comparisons (Table 3.6). In the IBD and Crohn's disease 

cohorts versus controls models this included age, ethnicity, and BMI. Age and BMI have been 

shown to effect over 180 urinary metabolites (329), including several related to the intestinal 

microbiome: dimethylamine, phenylacetylglutamine, 4-cresol sulfate, and hippurate (267).  

Characteristic comparisons between the groups also showed differences in the total number of 

non-IBD health conditions between the IBD and Crohn’s disease cohorts when compared to 

controls, and specifically the presence of type 2 diabetes mellitus. Type 2 diabetes mellitus has 

been associated with changes in intestinal associated metabolites including hippurate, 

trimethylamine N-oxide, and dimethylamine (224, 225). 

Lifestyle comparisons between groups in this study showed several differences (Table 3.7), but 

one of the most significant dietary influences reported in the literature has been a 

lactovegatarian diet (330). Although a significant difference in vegetarians relative to 

omnivores was not seen in this study, consumption of meat within the 24 hours prior to be 

providing a urine sample differed in the Crohn’s disease cohort compared to controls. 

Differences in urinary metabolites observed in lactovegetarians reported in one study (330) 

included an increase in excretion of hippurate, succinate and citrate, and decreased excretion of 

formate. A higher concentration of citrate was observed in the Crohn’s disease cohort 

compared to controls (Table 3.12), but this is unlikely to be of biological significance as this 
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finding was also seen in other cohort comparison where there was no significant difference in 

meat consumption. 

In this study, multivariate analysis between combined IBD and controls, which included 

subjects with comorbidities, showed reduced excretion of hippurate, alanine, citrate, formate, 

p-cresol and dimethylglycine, and increased excretion of phenyacetylglutamine (PAG). These 

changes were present in the Crohn’s disease versus control comparison, and present when 

comparing combined IBD and Crohn’s disease cohorts with controls when all subjects with 

comorbidities have been removed. The reduction in hippurate and 4-cresol sulfate 

concentration in the IBD and Crohn’s disease cohorts may be related to the reduction in 

Clostridia species seen in the 16S rRNA sequencing of the faecal samples. 

Phenylacetylglutamine (PAG) excretion is produced almost exclusively from bacterial 

phenylalanine metabolism (331), and has been related to several bacteria including 

Ruminococcaceae, Bifidobacteriaceae, and Coriobacteriaceae (332, 333). This study showed 

an increase in Ruminococcaceae family in the Crohn’s disease cohort when compared to 

controls and an increase in urinary phenylacetylglutamine. Phenylacetylglutamine also has an 

inverse relationship with BMI (267, 270), and both IBD and Crohn’s disease groups in these 

comparisons had a lower BMI than the control group (see table 3.5 and 3.6). Therefore, higher 

levels of PAG may be a result of the lower median BMI in the IBD and Crohn’s disease 

cohorts.  

Lower excretion of dimethylglycine (DMG) was also shown to be discriminatory between IBD 

and Crohn’s disease and controls in this study, which has not previously been reported. DMG 

is a produced by gut microbial degradation of choline, and has been shown to have a direct 

association with BMI (267). This finding may also be related to lower BMI in the IBD and 

Crohn’s disease groups.  
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A lower concentration of the amino acid betaine was demonstrated in IBD and Crohn’s disease 

when compared to controls on multivariate analysis, and this has been demonstrated previously 

associated with IBD (207). 

Targeted analysis focused on ten metabolites that have been shown to be influenced by IBD, 

five of which are microbial related (4-cresol sulfate, formate, hippurate, methylamine, and 

trigonelline), two are SCFAs (acetate and butyrate), two are TCA metabolites, and one is 

amino acid (alanine). Reduced excretion of 4-cresol sulfate was the most consistent change 

across all IBD cohorts compared to non-IBD controls irrespective of the presence of 

comorbidities, and has been observed in a previous IBD study (161). 4-cresol sulfate has an 

inverse association with adiposity (267), but this did not appear to influence the lower 

concentration of this metabolite in the IBD cohorts which had a lower BMI. 

Reduced hippurate excretion was demonstrated in targeted analysis of IBD and Crohn’s disease 

cohorts irrespective of the presence of comorbidities (Table 3.12) but not in the UC against 

controls assessments – this might be due to the low number of UC participants in these 

comparisons. Hippurate has been consistently shown in previous studies to be of lower 

concentration in IBD compared to relative to controls (156).  

This study showed a reduced concentration of alanine compared to controls in IBD and 

Crohn’s disease, although this was only seen in cohorts where subjects with comorbidities were 

included. BMI and type 2 diabetes mellitus have a positive correlation with alanine, and so 

would not explain this finding.  

Increased excretion of citrate was seen in the IBD and Crohn’s disease groups where subjects 

with comorbidities were included relative to non-IBD controls. These IBD groups contained a 

significantly higher number of diabetic patients relative to controls (Table 3.6). Citrate 

concentrations have been observed to be increased with increasing glycosuria (225), and this 
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could explain the presence of this metabolite in the IBD and Crohn’s disease cohorts compared 

to controls.  

IBD cohorts with comorbidities and without comorbidities were compared against each other 

(Table 3.12, row 4). This showed no significant differences in targeted metabolites between 

these groups, and no differences in these metabolites were observed when comparing non-IBD 

subjects with health conditions compared to healthy controls. 

This study has been limited by the effect of 5-aminosalicylates on the NMR spectrum, which 

significantly impacted on the number of UC subjects in this study. Comparison groups were 

reduced, which has likely affected the sensitivity of both multivariate analysis and targeted 

analysis. It has also led to potential confounding within the comparison groups with differences 

in age, BMI, ethnicity and the presence of comorbidities – differences in BMI and the presence 

of type 2 diabetes mellitus may have affected the concentrations of PAG and citrate 

respectively. Additionally, with lower subject numbers, comorbid IBD patients could not be 

stratified into specific groups for more in-depth analysis of specific comorbidities on the IBD 

metabolome.  

Addressing the issue with 5-ASAs on the NMR spectrum may be difficult, and although this 

technique can be utilised around the time of diagnosis prior to 5-ASA medication being 

commenced, IBD patients already established on this treatment will likely require a more 

sensitive analytical platform such as gas chromatography mass-spectrometry (160). 

Analysing all subjects’ stool for microbiomic changes, rather than restricting this to non-

comorbid subjects, would potentially have given additional information regarding the influence 

of a real-life population on the corresponding urinary metabolome.  
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Indirect correlation of microbiomic changes with changes in the urinary metabolome was 

performed in this study. To take this further, direct statistical correlation can be performed 

using Spearman’s correlation tests, and Heatmap correlograms can then be produced to 

demonstrate bacterial and metabolite relationships which discriminate IBD from controls. 

Overall, this study showed that changes in IBD associated metabolites, including microbial 

associated metabolites, are present when applied to a real-life population of patients with 

comorbidities, and changes in these metabolites can be partly linked to changes seen in the 

faecal microbiome. A larger study utilising a more sensitive analytical platform, and with 

subjects stratified into difference important comorbidities including type 2 diabetes mellitus, 

cardiovascular disease and inflammatory conditions, needs to be conducted to further assess 

the application of urinary metabonomics in a real-life population of IBD patients. 
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Chapter 4: Effects of obesity on the IBD urinary metabolome. 

4.1 Summary 

Obesity is a growing epidemic (245) and is affecting patients with IBD as much as the general 

population (243), and the pro-inflammatory properties of adipose tissue may influence the 

clinical course of this IBD. Changes in the intestinal microbiome and metabolome has been 

observed in obesity, but the influence of obesity on the urinary IBD associated metabolome has 

not been investigated. This study assessed the influence of obesity on discriminatory 

metabolites previously observed in IBD in 36 obese IBD patients, 35 obese control subjects, 95 

normal weight IBD patients, and 38 normal weight controls. 

Unsupervised multivariate modelling demonstrated no clear clustering of obese subjects 

compared to those of normal weight subjects. Targeted analysis comparing obese with normal 

weight subjects in IBD and non-IBD cohorts showed an increase in dimethylamine excretion, a 

gut microbiota-derived metabolite that has been previously shown to be increased in obesity. A 

reduction in hippurate excretion, the most consistently reported discriminatory metabolite in 

IBD, was not observed in obese IBD patients relative to obese controls.  

Overall, obesity may influence the IBD associated metabolome particularly a reduction of 

hippurate excretion was not seen in obese IBD relative to controls, and so a larger study is 

needed to further investigate the influence of obesity on the urinary metabolome to further 

investigate this. 

4.2 Introduction 

The prevalence of obesity in IBD is at least as common as it is in the general population (243), 

with 15–40% of patients with IBD being reported as obese (334). Nearly 60% of adults are 

now overweight, having almost doubled since 1980 in developed countries, and along with 
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rising obesity, the incidence and prevalence of IBD has been increasing with approximately 

0.5% of adults in the Western world suffering with this disease (18). 

The impact of obesity was assessed in its own separate chapter within this thesis in light of the 

pro-inflammatory state related to obesity, and its significant growing prevalence both in the 

general population and within IBD population. 

Worse clinical outcomes have been associated with obesity in several autoimmune diseases 

(335), but there has been less consistency from published studies that obesity adversely affects 

IBD. A study by Seminerio et al. (336) reported a higher frequency of elevated CRP and lower 

IBD-related quality of life in obese subjects, and Hass et al. (20) observed a shorter time to first 

surgery in overweight relative to underweight IBD patients. Blain et al. (21) observed a shorter 

time to developing peri-anal complications. However, no differences in risk or number of IBD-

related surgeries, IBD-related hospitalisations, and initiation of anti-TNF treatment have been 

also reported (17, 19, 20). Two studies have observed better clinical course outcomes in 

obesity, with Flores et al. (17) reporting lower rates of surgery, hospitalisation and treatment 

escalation to anti-TNF therapy, and Pringle et al. (22) reporting a lower prevalence of 

penetrating disease in obesity. 

Obesity may influence the pathogenesis of IBD, with excessive adipose tissue in subcutaneous 

and visceral compartments recognised as perpetuating a chronic low-grade inflammatory state 

(23). Increased circulating pro-inflammatory cytokines, and altered interactions of cytokines 

and adipokines are associated with obesity (24). Mesenteric hyperplasia correlating with 

inflamed bowel in mainly Crohn's disease - fat wrapping - is thought to be associated with 

more immunological activity than other visceral adipose tissue (25, 337). Severity of Crohn's 

disease has also been observed to correlate with adipokine secretion (338) and adipocyte 

activation has been associated with increased bacterial translocation. Dysbiosis has been linked 
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to the pathogenesis of obesity, with a twins study by Turnbaugh et al. (339) demonstrating a 

reduction in bacterial diversity, and compositional changes including enrichment of 

Actinobacteria and lower Bacteroidetes. Intestinal microbial changes have been reported 

following bariatric surgery including a reduction in Firmicutes encompasses Clostridia species 

(340, 341), correlating with reduced short chain fatty acids and bile acids in blood and faeces 

(342, 343).  

Studies assessing the effect of obesity on the urinary metabolome have reported differences in 

intestinal microbial associated metabolites including an inverse relationship with hippurate, 

formate, and phenylacetylglutamine (PAG), and a correlation with dimethylamine and 4-cresol 

sulfate (267, 270) – all these metabolites with the exception of PAG and dimethylamine have 

been associated with IBD (161, 207, 209, 210). 

Obesity has been defined in this study as a body mass index of greater than or equal to 30 

kg/m2. Issues around defining obesity based on BMI alone have been discussed previously in 

Chapter 1 subsection 1.2.4.4. 

Previous studies examining the urinary metabolome in IBD have not accounted for the 

potential confounding of obesity within their study populations. For IBD urinary 

metabonomics to be applied to a real-life population, the influence of obesity needs to be 

assessed in an IBD population.  

4.3 Aims and hypothesis 

This chapter examines the effects of obesity on the urinary metabolome of IBD subjects, and 

specifically its effect on urinary metabolites known to be discriminatory in IBD.  

Hypothesis:  Discriminatory metabolites in IBD are specific to this disease and will not be 

influenced by high body mass index (BMI).  
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4.4. Methods 

The methodology in this chapter heavily overlaps that of the previous chapter, and so this 

section will concentrate on aspects specific to this study. 

This study had ethical approval from Imperial College Healthcare NHS Trust Research and 

Ethics Committee (Ref: 13/LO/1867). IBD subjects were recruited from IBD clinics from 

Imperial College Healthcare NHS Trust (ICHT), at the St Mary’s Hospital and The 

Hammersmith Hospital sites, and London North West University Hospitals NHS Trust, at the 

Ealing Hospital site. Non-IBD controls were recruited from subjects working at ICHT and 

Imperial College London (St Mary’s Hospital site), and from bariatric clinics at the same site.  

Detailed clinical data, dietary and medication information, obtained at the time of sample 

collection. Exclusion criteria included subjects with IBD unclassified, stomas, and currently 

pregnant. Subjects who had recently taken antibiotics (within 8 weeks), pre- or probiotics, or 

on liquid or treatment diets were also excluded. 

Subject recruitment, sample collection, handling, and recruitment were all done as described in 

Chapter 3. Subject characteristic and metabonomic analysis – both multivariate and targeted 

univariate analysis – were performed as described in Chapter 3.  

Obesity within both IBD and non-IBD control cohorts was defined as a body mass index 

(BMI) greater than or equal to 30 kg/m2, and normal weight was defined as subjects with a 

BMI of greater than or equal to 20 kg/m2, and upto a BMI of 24.9 kg/m2. 

Eleven metabolites were selected for targeted univariate analysis – this included the 10 

metabolites selected in Chapter 3 which have shown to be discriminatory in IBD with six also 

been observed to be influenced by BMI (hippurate, 4-cresol sulfate, formate, citrate, succinate 
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and alanine), and in addition dimethylamine was also selected; a microbial associated 

metabolite excreted in higher concentration in obese subjects (267). 

Multivariate and targeted univariate analysis was performed as described in Section 3.4.6 in 

Chapter 3.  

4.5 Results 

4.5.1: Characteristics of study participants 

71 subjects with a BMI >30 kg/m2 were recruited into this study – 36 with IBD and 35 non-

IBD controls. 133 subjects with a normal BMI measuring between 20 and 25 kg/m2 were also 

included in this study. Table 4.1 details the study participant characteristics. 

 

 High BMI Normal BMI 

Cohort IBD 

n = 36 

Controls 

n = 35 

IBD 

n = 95 

Controls 

n = 38 

BMI (median, kg/m2) 34.7   

(IQR 5.4) 

32.0  

(IQR 3.4) 

22.4 

(IQR 2.23) 

22.2  

(IQR 3.02) 

CD : UC 22 : 14 - 53 : 42 - 

Age (median, in 

years) 

53.5 

(IQR 19.0) 

54.5 

(IQR 12.0) 

47.4 

(IQR 26.0) 

49.1 

(IQR 22.5) 

Sex (M : F) 16 : 26 23 : 12 44 : 51 16 : 22 

Ethnicity (Cau : SA : 

Oth)* 

23 : 12 : 7 15 : 14 : 6 59 : 28 : 8 14 : 7 : 1 

T2DM 

(CD : UC) 

7 

(3 : 4) 

10 8 

(3 : 5) 

2 

Table 4.1: Participant characteristics. 
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Subject characteristics were examined to assess for significant differences between different 

cohort comparisons – see Table 4.2. This showed a significant difference in age between IBD 

obese subjects relative to normal weight IBD subjects. There was also a significant difference 

in the number of subjects with type 2 diabetes mellitus in non-IBD obese subjects relative to 

non-IBD normal weight subjects. Lifestyle comparisons were made between different IBD 

groups and non-IBD obese and normal weight groups – see Supplementary Table 10. 

 IBD obese v 

normal weight 

 

 

p value 

 

Non-IBD obese v 

normal weight 

 

 

p value 

 

Obese IBD v 

obese controls 

 

 

p value 

 

Normal weight 

IBD v normal 

weight controls 

 

p value 

 

Age1 0.023  0.117 0.881 0.542 

Sex2 0.050 0.715  0.016  0.659 

Ethnicity2 0.114  0.222 0.525  0.494 

T2DM2 0.233 
 

0.007 
 

0.209 0.436 

Table 4.2 – Participant characteristic comparisons. 1Mann-Whitney U test, 2Chi-squared test, p value of 

<0.05 considered significant and are in bold.  

  

4.5.2: Multivariate analysis 

The following figure (Figure 4.1) is an PCA model comparing IBD patients with a high BMI 

(≥ 30 kg/m2) against normal weight IBD patients (BMI 20.0 to 29.9 kg/m2). This shows no 

subject clustering according to obesity, and subsequent supervised analysis using OPLS-DA 

modelling showed no significant differences between obese and normal weight subjects. 
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Figure 4.1: Unsupervised multivariate analysis (PCA) of IBD subjects with a high BMI (≥30 kg/m2) compared 

with IBD subjects with a normal BMI (20-25 kg/m2). Blue = high BMI cohort, green = normal weight. 

 

4.5.3: Targeted analysis  

Targeted univariate analysis of 11 targeted metabolites were assessed in IBD obese and normal 

weight cohorts. A significant reduction in dimethylamine excretion was seen in obese relative 

to normal weight subjects in both IBD (combined Crohn’s disease and UC) and non-IBD 

cohorts, and UC only cohorts. A reduction in succinate was also observed in obese UC subjects 

compared to UC patients with a normal BMI. No significant differences were observed 

comparing obese Crohn’s disease subjects when compared with normal weight Crohn’s disease 

subjects.  
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Table 4.3:  Targeted univariate analysis comparing obesity cohorts against normal weight cohorts. A Mann-Whitney U test was used to generate a p value. Changes with 

statistical significance (p<0.05) after Benjamini-Hochburg correction are in bold. Obese subjects have BMI ≥ 30 kg/m2, and normal weight have BMI between 20 and 25 

kg/m2. 

 Obese vs normal weight (nw) in IBD, Crohn’s disease (CD), ulcerative colitis (UC), and non-IBD cohorts 

  

 
n    

IBD obese vs IBD normal weight 

(nw) 
36 : 95 

CD obese vs CD nw 

 
22 : 53 

UC obese vs UC nw 

 
14 : 42 

Non-IBD obese vs non-IBD 

normal weight 
35 : 38 

 Microbial metabolites 

4-cresol sulfate Median integral:  
Direction: 

p value =  

10188 : 11961 
↓ : ↑      

0.412 

12755 : 12916 
↓ : ↑      

0.635 

9084 : 10974 
↓ : ↑      

0.337 

14110 : 14220 
↓ : ↑      

0.734 

formate Median integral:  

Direction: 

p value = 

11927 : 13580 

↓ : ↑      

0.314 

12630 : 13951 

↓ : ↑      

0.978 

11487 : 13111 

↓ : ↑      

0.181 

13987 : 13400 

↑ : ↓ 

0.690 

hippurate  Median integral:  

Direction: 
p value = 

378148 : 383904 

↓ : ↑      
0.678 

436264 : 363944 

↑ : ↓ 
0.550 

341825 : 409091 

↓ : ↑      
0.099 

467929 : 472679 

↓ : ↑      
0.225 

methylamine Median integral:  

Direction: 

p value = 

9622 : 11287 

↓ : ↑      

0.041 

10035 : 11484 

↓ : ↑      

0.148 

9364 : 11038   

↓ : ↑      

0.259 

9309 : 11216 

↓ : ↑      

0.231 

trigonelline Median integral:  

Direction: 
p value = 

11863 : 14762 

↓ : ↑      
0.393 

14926 : 13100 

↑ : ↓ 
0.439 

9949 : 16860 

↓ : ↑      
0.035 

9156 : 14149 

↓ : ↑      
0.134 

dimethylamine Median integral:  
Direction: 

p value = 

53940 : 51049 
↑ : ↓ 

0.011 

52235 : 51122 
↑ : ↓ 

0.497 

55005 : 50957 
↑ : ↓ 

0.006 

56869 :  54100 
↑ : ↓ 

0.013 

 SCFAs 

acetate Median integral:  

Direction: 

p value = 

83184 : 80841 

↓ : ↑      

0.911 

77713 : 85157 

↓ : ↑      

0.999 

86604 : 75396 

↑ : ↓ 

0.842 

88311 : 92092 

↓ : ↑      

0.555 

butyrate Median integral:  

Direction: 
p value = 

91808 : 110019 

↑ : ↓ 
0.908 

87412 : 84770 

↑ : ↓ 
0.664 

94556 : 141881 

↓ : ↑      
0.933 

88225 : 97140 

↓ : ↑      
0.883 

 TCA metabolites and amino acids 

citrate Median integral:  
Direction: 

p value = 

426357 : 468813 
↓ : ↑      

0.336 

370315 : 419108 
↑ : ↓ 

0.384 

461383 : 531535 
↓ : ↑      

0.232 

521485 : 522726 
↓ : ↑      

0.965 

succinate Median integral:  

Direction: 

p value = 

37270 : 40402 

↓ : ↑      

0.103 

39237 : 37063 

↑ : ↓ 

0.957 

36040 : 44615 

↑ : ↓ 

0.007 

38630 : 42482 

↓ : ↑      

0.242 

alanine Median integral:  

Direction: 

p value = 

149851 : 126563 

↑ : ↓ 

0.089 

128098 : 121949 

↑ : ↓ 

0.334 

163447 : 132387 

↑ : ↓ 

0.142 

164980 : 130722 

↑ : ↓ 

0.255 
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Table 4.4 shows univariate analysis of IBD compared to non-IBD controls in obese and normal 

weight subjects. In obese subjects with IBD (combined Crohn’s disease and UC), and obese UC 

subjects, there was a significant reduction in 4-cresol sulfate excretion when compared to obese 

controls. A reduction of 4-cresol sulfate excretion was seen in the normal weight IBD cohorts 

compared to controls, but was not significant after being tested for multiple comparisons. 

Excretion of hippurate was lower in normal weight IBD subjects relative to controls, but in the obese 

IBD cohorts compared to obese controls this change was lost, with this being the most consistent 

discriminatory urine metabolite separating IBD from controls across previous studies. 
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Table 4.4:  Targeted univariate analysis comparing IBD cohorts against controls in obese and normal weight subjects. A Mann-Whitney U test was used to generate a p value. 

Changes with statistical significance (p<0.05) after Benjamini-Hochburg correction are in bold. Obese subjects have BMI ≥ 30 kg/m2, and normal weight have BMI between 

20 and 25 kg/m2.

 IBD vs controls in obese and normal weight cohorts 

  

 
n    

Obese IBD v obese 

Controls 
36 : 35 

Normal weight (nw) IBD v nw 

controls 
95 : 38 

Obese CD v obese controls 

 
22 : 35 

Obese UC v obese controls 

 
14 : 35 

 Microbial metabolites 

4-cresol sulfate Median integral:  
Direction: 

p value =  

10188 : 14110   
↓ : ↑      

0.005 

11961 : 14220 
↑ : ↓ 

0.023 

12755 : 14110   
↓ : ↑      

0.150 

9084  : 14110   
↓ : ↑      

0.006 

formate Median integral:  

Direction: 

p value = 

11927 : 13987 

↓ : ↑      

0.500 

13580 : 13400 

↑ : ↓ 

0.657 

12630 : 13987 

↓ : ↑      

0.877 

11487  : 13987 

↓ : ↑      

0.318 

hippurate  Median integral:  

Direction: 
p value = 

378148 : 467929  

↓ : ↑      
0.124 

383904 : 472679 

↓ : ↑      
0.005 

436264 : 467929  

↓ : ↑      
0.685 

341825  : 467929  

↓ : ↑      
0.082 

methylamine Median integral:  

Direction: 

p value = 

9622 : 9309 

↑ : ↓ 

0.623 

11287 : 11216 

↑ : ↓ 

0.737 

10035 : 9309 

↑ : ↓ 

0.313 

9364 : 9309 

↑ : ↓ 

0.456 

trigonelline Median integral:  

Direction: 
p value = 

11863 : 9156 

↑ : ↓ 
0.299 

14762 : 14149 

↑ : ↓ 
0.741 

14926 : 9156 

↑ : ↓ 
0.200 

9949  : 9156 

↑ : ↓ 
0.512 

dimethylamine Median integral:  
Direction: 

p value = 

53940 : 56869 
↓ : ↑      

0.887 

51049 : 54100 
↓ : ↑      

0.618 

52235 : 56869 
↓ : ↑      

0.657 

55005 : 56869 
↓ : ↑      

0.582 

 SCFAs 

acetate Median integral:  

Direction: 

p value = 

83184 : 88311 

↓ : ↑      

0.275 

80841 : 92092 

↓ : ↑      

0.422 

77713 : 88311 

↓ : ↑      

0.938 

86604 : 88311 

↓ : ↑      

0.346 

butyrate Median integral:  

Direction: 
p value = 

91808 : 88225 

↑ : ↓ 
0.484 

110019 : 97140 

↑ : ↓ 
0.373 

87412 : 88311 

↓ : ↑      
0.439 

94556 : 88311 

↑ : ↓ 
0.999 

 TCA metabolites and amino acids 

citrate Median integral:  
Direction: 

p value = 

426357 : 521485 
↓ : ↑      

0.128 

468813 : 522726 
↓ : ↑      

0.431 

370315 : 521485 
↓ : ↑      

0.027 

461383 : 521485 
↓ : ↑      

0.484 

succinate Median integral:  

Direction: 

p value = 

37270 : 38630 

↓ : ↑      

0.959 

40402 : 42482 

↓ : ↑      

0.803 

39237  : 38630 

↑ : ↓ 

0.923 

36040 : 38630 

↓ : ↑      

0.894 

alanine Median integral:  

Direction: 

p value = 

149851 : 164980 

↓ : ↑      

0.160 

126563 : 130722 

↓ : ↑      

0.105 

128098 : 164980 

↓ : ↑      

0.023 

163447 : 164980 

↓ : ↑      

0.522 
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4.6 Discussion 

Obesity, a growing issue in the IBD population (243), is associated with a chronic low 

inflammatory state - along with alterations in pro-inflammatory cytokines, reduced barrier 

function and dysbiosis are also thought to be related. Changes in urinary intestinal microbial 

associated metabolites have been observed in obesity, with several metabolites also being 

discriminatory in IBD. This study assessed whether the presence obesity was significant in 

influencing the IBD associated urinary metabolome. 

This study recruited relatively small numbers compared to the previous study, and this meant 

there was a lot of heterogeneity within the comparison groups, and this may well have 

impacted on the results – this was in part having to exclude subjects taking 5-aminosalicylates.  

Unsupervised multivariate modelling demonstrated no clear clustering of obese subjects 

compared to those of normal weight subjects. This may suggest that obesity is relatively less 

important in the clustering of subjects compared to other factors such as IBD. However, the 

heterogeneity of the subjects within the model, and potentially the number of participants in 

this study may also explain the lack of clustering. Supervised multivariate analysis did not 

show differences between obese and non-obese subjects in this study. 

Targeted analysis comparing obese with normal weight subjects in IBD and non-IBD cohorts 

showed an increase in dimethylamine excretion (p = 0.011 and 0.013 respectively), and this 

difference was mirrored in the UC obese cohort relative to normal weight UC patients (p = 

0.006). No changes between obese and normal weight subjects were elicited in the Crohn's 

disease cohort – which may be due to the relatively low number of subjects within the 

comparison. A higher concentration of dimethylamine has been previously observed in obesity 

(267). Dimethylamine is converted from both trimethylamine N-oxide and trimethylamine, 

with trimethylamine liberated by gut microbes from dietary precursors including choline (344). 
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Examining obese IBD patients with obese controls demonstrated a reduction in 4-cresol sulfate 

in UC subjects, and differences in citrate and alanine in Crohn’s disease subjects. No 

significant change in hippurate excretion was observed, one of the most consistently observed 

findings associated with IBD, but reduced excretion was observed in normal weight IBD 

subjects compared to controls. The obese IBD and non-IBD cohorts contained significantly 

more type 2 diabetic subjects compared to the normal weight cohorts, and with hippurate 

excretion having been reported as increased with increasing glycosuria and glycohaemoglobin, 

this might explain the non-significant change in hippurate concentration within the obese IBD 

cohort.  

The main limitation of this study was the relatively low number of participants, which was 

affected in part by the exclusion of subjects taking 5-aminosalicylates which could not be 

overcome with STOCSY-E. With more heterogeneity in comparison groups caused by the 

inclusion of IBD and non-IBD subjects with other health condition (as in Chapter 3), smaller 

study participant numbers will be a more significant confounding factor. 

Overall, although multivariate analysis showed no clustering of obese patients, obesity may 

influence the IBD associated urinary metabolome as no change in the excretion of hippurate 

was observed in obese IBD patients relative to obese controls. A larger study is needed to 

further assess the influence of obesity in IBD urinary 1H NMR experiments.  
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Chapter 5: Examining the effect of bowel purgatives on the urinary metabolome 

This chapter has been published as an original research paper: 

Powles, S. T., et al. (2022). "Effects of bowel preparation on intestinal bacterial associated 

urine and faecal metabolites and the associated faecal microbiome." BMC gastroenterology 

22(1): 1-9. 

5.1 Summary 

Urinary and faecal metabolic profiling has been extensively studied in GI diseases as potential 

diagnostic markers, and to enhance our understanding of the intestinal microbiome in the 

pathogenesis these conditions. The impact of bowel cleansing on the microbiome has been 

investigated in several studies, but limited to just one study on the faecal metabolome. The aim 

of this study was to compare the effects of bowel cleansing on the faecal microbiome, and the 

urine and faecal metabolome.  

Urine and faecal samples were obtained from eleven patients undergoing colonoscopy at 

baseline, and then at day 3 and week 6 after colonoscopy. 16S rRNA gene sequencing was used 

to analyse changes in the microbiome; assessing changes in alpha and beta diversity, and specific 

taxonomic changes at phylum to genus levels. Metabolomic analysis was performed using proton 

nuclear magnetic resonance (1H NMR) spectroscopy. Multivariate analysis assessed 

dissimilarity between samples at different time points, and targeted univariate analysis 

investigated the effects of bowel cleansing on 20 urine and 10 faecal bacterial associated 

metabolites. 

Microbiomic analysis demonstrated a change in alpha diversity (Shannon index) between 

samples taken at baseline and 3 days following bowel cleansing (p = 0.002), and no significant 

change between samples at baseline and 6 weeks post colonoscopy. Beta analysis showed that 



 131 

intra-subject variability was greater than inter-subject variability. There were no significant 

taxonomic changes between time points. Targeted and non-targeted analysis of urinary and 

faecal bacterial associated metabolites showed no significant impact following bowel cleansing. 

In conclusion, bowel cleansing causes a temporary disturbance in bacterial alpha diversity 

measured in faeces, but no significant changes in the faecal and urine metabolic profile, 

suggesting that the faecal microbiome and its associated metabolome is resistant to the effects of 

an induced osmotic diarrhoea.  

5.2 Introduction 

Investigation of the composition and functionality of the gut microbiome is of key interest for a 

range of GI diseases. However, there is no standardised best practice regarding choice of sample 

type (stool or mucosal biopsies), or methodology regarding sample collection and/or processing. 

It is also recognised that a wide range of external factors may influence the results of analysis. 

One major example would be medications, with bowel purgatives such as polyethylene glycol 

(PEG) solutions, which are given as bowel cleansing prior to colonoscopy (274, 275), being of 

particular relevance when investigating GI disease. 

PEG solutions cause a profound osmotic diarrhoea with a high-volume lavage rapidly passing 

through the gastro-intestinal tract which in turn alters the luminal contents including the 

microbiota and luminal metabolites (276, 277). Effects of bowel cleansing on the intestinal 

microbiome have been studied (276-282), both to assess whether it can directly cause dysbiosis, 

and to assess how these vary in health and disease (277).  

Results have been inconsistent across different published studies; some have shown a significant 

reduction in bacterial load (281) and alpha diversity (276, 279, 280) when examining the faecal 

and colonic mucosal microbiota post purgatives, but this has not been universally demonstrated 
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(277, 278, 282). In those studies that demonstrate a dysbiosis however it appears that the 

composition recovers quickly (277, 280, 281) - likely within 14 days, but the exact timing of this 

restoration is unclear. Understanding the longevity of these microbial changes may be important 

in determining study protocols and interpreting results. Of further interest is determining if there 

are metabolically functional changes (measured in the metabolome) associated with these 

microbiome perturbations, beyond simply measuring composition. Only one study to date (277) 

has assessed the metabolic effects of bowel cleansing on faecal samples, and showed that bowel 

cleansing caused a change in the faecal metabolome immediately after bowel cleansing, but this 

had recovered at day 14 sampling. 

While faecal metabolic data have been extensively researched in GI conditions (216-218, 345-

347), sample collection can be unappealing for patients, and therefore be more difficult to obtain. 

Urine is a more readily acquired biological sample, and has been shown to demonstrate gut host-

microbiota metabolic changes in GI pathology including inflammatory bowel disease (IBD) 

(161, 207, 209, 210, 213) and colorectal cancer (348-351). No studies have yet been published 

assessing the impact of bowel cleansing on bacterial associated urinary metabolites. 

Previous studies have assessed stability of the microbiome following bowel cleansing at various 

different time points. This study chose baseline sampling at 3 days pre-colonoscopy, and then 3 

days after colonoscopy as the impact of dietary changes should have settled at this time, and then 

a final sampling date at 6 weeks post colonoscopy to see if more lasting changes in the 

metabolome and microbiome were present – as a previous study (281) had shown changes in the 

colonic microbiota at 28 days post 2L of PEG when compared to baseline, this study used 6 

weeks to see if changes continued beyond 28 days.  
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5.3 Aims and hypothesis 

This study aimed to compare the effects of bowel cleansing on the faecal microbiome and urinary 

and faecal metabolome at baseline, day 3 and week 6 after colonoscopy.  

Hypothesis: Bowel cleansing using polyethylene glycol will have a transient and temporary 

effect on urinary and faecal metabolome correlating with a temporary change in the faecal 

microbiome.  

5.4 Method 

5.4.1 Experimental design and subjects 

This study had ethical approval from Imperial College Healthcare NHS Trust Research and 

Ethics Committee (Ref: 13/LO/1867). Eleven subjects were recruited from gastroenterology 

clinics at St. Mary’s Hospital in London who were due to undergo a colonoscopy. Subjects were 

excluded if they had received antibiotics, further purgatives, acid suppressing or 

immunosuppressive medication within 2 months of sample collection. Written informed consent 

was obtained from all participants. Detailed dietary and lifestyle data was taken from each 

subject. 

5.4.2 Sample collection 

32 urine samples and 30 faecal samples were collected from 11 subjects at 3 different time points 

from the time of their colonoscopy – see Table 5.1. 9 of these subjects were male, and the mean 

age was 41 years. 10 of the subjects were Caucasian, and one was black. The mean BMI was 

23.4 kg/m2. Two subjects did not provide faecal samples at the last time point, and one of these 

subjects also did not provide a urine sample at the last time point – however all recruited subjects 

and all samples were included in the final analysis. Baseline (t0) samples were collected 3 days 
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prior to the procedure, and before a low residue diet or bowel purgatives were commenced. 

Further samples were collected 3 days post procedure (t1), and 6 weeks post procedure (t2). 

Samples were collected in sterile polypropylene containers and stored in a -80oC freezer once 

received by the subject. MoviPrep® (Macrogol 3350, Sodium sulphate anhydrous, Sodium 

chloride, Potassium chloride, Ascorbic acid and Sodium ascorbate) was used as bowel 

preparation in all cases.  
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Sbj.  Age  Sex  Ethnicity  BMI  Comorbidities  Medications  Colonoscopy 

report  
Histology  

1  41  M  Caucasian  27.2  Ulcerative colitis  Pentasa  Patchy 

erythema 

distally  

Within 

normal 

limits  

2  63  M  Caucasian  25.6  Ulcerative colitis, 

type 2 diabetes 

mellitus  

Metformin  UC mild 

activity in 

distal 20cm  

Quiescent 

colitis in 

rectum  

3  31  M  Caucasian  19.7  Nil  Nil  Normal  Nil taken  

4  28  M  Caucasian  34.6  Nil  Nil  Normal  Within 

normal 

limits  

5  24  M  Caucasian  18.5  Nil  Nil  Normal  Within 

normal 

limits  

6  45  F  Caucasian  21.3  Nil  Nil  Normal  Nil taken  

7  47  M  Caucasian  23.6  Hypertension  Candesartan  Normal  Nil taken  

8  31  M  Black  23.3  Nil  Nil  Normal  Nil taken  

9  40  F  Caucasian  20.7  Nil  Nil  Normal  Within 

normal 

limits  

10  38  M  Caucasian  20.1  Nil  Nil  Normal  Nil taken  

11  58  M  Caucasian  22.6  Nil  Nil  Normal  Nil taken  

  

Table 5.1: Characteristics of study subjects. 
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5.4.3 Bacterial DNA extraction and 16S rRNA gene sequencing 

DNA extraction was performed using the PowerLyzer PowerSoil DNA Isolation Kit (Mo Bio, 

Carlsbad, CA, USA). 250 mg of faeces from each sample was used for extraction, and the 

manufacturer’s instructions were followed. An in-house additional bead beating step (90) was 

included at speed 8 for 3 minutes using a Bullet Blender Storm (Chembio Ltd, St Albans, UK). 

The extracted DNA was then stored at -80oC. Illumina’s 16S Metagenomic Sequencing Library 

Preparation Protocol (289) was used to prepare the sample libraries.  

16S rRNA sequencing data was then analysed using the Mothur package following the MiSeq 

SOP Pipeline (290). Sequence alignment was performed using the Silva bacterial database, and 

the Wang method using the RDP database was used for classification of sequences (292). 

Analysis for alpha and beta diversity was performed using the same method detailed in Chapter 

3. The Statistical Analysis of Metagenomic Profiles software (STAMP) package (312) was used 

to assess for statistically significant differences in bacterial composition between subjects at 

different time groups. 

5.4.4 Metabonomic analysis 

One dimensional spectra were obtained from urine and faecal samples using proton nuclear 

magnetic resonance (1H NMR) spectroscopy.  

Multivariate statistical analysis was used to investigate differences between study groups. This 

performed using SIMCA (version 15, Umetrics, Sweden). Principal components analysis (PCA) 

was carried out using univariate scaling to allow for the identification of any outliers and initial 

clustering based on principle components.  

For targeted analysis, peak integral values for selected metabolites were obtained using an in-

house Matlab script (90). Using the integral values, a univariate statistical approach was used to 
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compare the relative concentration of metabolites of interest between the three time points. 

GraphPad Prism statistical analysis software programme version 8.0.2 was used to perform a 

Wilcoxon matched-pairs signed rank test between time points t0 and t1, t0 and t2, and t1 and t2. 

A Bonferroni calculation was used to correct for multiple comparisons. Urine metabolites (161, 

207, 209, 210, 212, 231, 348-351) and faecal metabolites (216-220) were selected for targeted 

analysis if they are produced by intestinal bacterial metabolism or host-bacterial co-metabolism, 

and in previous studies have been shown to be important in GI disease.  

5.5 Results 

5.5.1 Faecal 16s RNA Sequencing 

31 faecal samples were collected, which included 11 samples at baseline (t0), 11 at three days 

post colonoscopy (t1), and 9 at six weeks post procedure (t2). Analysis of the alpha diversity 

between baseline (t0) and 3 days post procedure (t1) showed that bowel preparation caused a 

significant decrease (p = 0.002) in the Shannon index of the bacteria present (Figure 5.1). There 

was no significant change between baseline and 6 weeks post bowel cleansing (t0 and t2).  
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Figure 5.1: Faecal microbiota alpha diversity as measured by the Shannon index at baseline (t0), 3 days after bowel 

preparation (t1), and 6 weeks after bowel preparation (t2). Wilcoxon matched-pairs signed rank test (two-tailed) 

between t0 and t1 had a p value of 0.002, and between t0 and t2 there was a p value of 0.142.  

 

 

Compositional changes between samples (beta diversity) was analysed using non-metric 

multidimensional scaling (NMDS) plots measuring weighted Unifrac distances. Weighted 

Unifrac distances compared the inter- and intra-subject variability between samples following 

the use of bowel preparation (Figure 5.2). Eight of the subjects had relatively conserved beta 

diversity despite the use of bowel preparation, and so in these cases the inter-subject variability 

was greater. The remaining three subjects had a considerable change in composition over the 3 

time points (coloured in blue, orange and yellow), and in each of these cases there was a marked 

difference between baseline and 3 days following bowel cleansing. 
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Figure 5.2: NMDS plot of microbial composition of subjects at differing time points. t0 = baseline, t1 = 3 days post 

colonoscopy, and t2 = 6 weeks post colonoscopy. 

 

Taxanomic analysis at phylum, class, order, family and genus levels was performed using the 

STAMP software package, and showed no significant differences in composition of bacteria 

between samples taken at baseline, 3 days post colonoscopy, and 6 weeks post procedure (Figure 

5.3).  
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Figure 5.3: Percentage bar graph showing the relative proportion of bacterial phyla in each sample. Samples are 

grouped within subjects and in order of collection time; at baseline (t0), 3 days after bowel preparation (t1), and 6 

weeks after bowel preparation (t2). 

 

5.5.2 Urine metabonomic analysis 

Metabonomic analysis was performed on 32 urine samples which were collected at the same 

time as the faecal samples. This included 11 baseline samples (t0), 11 collected at 3 days post 

procedure (t1), and 10 collected at 6 weeks post procedure (t2).  

Unsupervised multivariate analysis using Principal Component Analysis (PCA) of the urine 

samples at each time point was performed – see Figure 5.4. This showed that inter-subject 

variability was greater than intra-subject variability irrespective of bowel preparation in 9 out of 

11 subjects.  
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 Figure 5.4: Unsupervised multivariate analysis of urine metabolites at each time point. PCA scores plot of 

urine metabolic profiles of 11 subjects, with samples at baseline, 3 days post procedure, and 6 weeks post 

procedure. Samples from the same subject are plotted in the same colour. Lines have been added to this 

figure to link time points between samples from the same subject. 

 

Targeted analysis of 38 urine metabolites showed no significant change between time points t0 

and t1 when corrected for multiple comparisons (p < 0.003) – see Figure 5.5 and Table 5.2. 
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Figure 5.5: Bar plot graphs showing median relative quantity of each urine metabolite at three time points; at baseline 

(t0), 3 days after bowel preparation (t1), and 6 weeks after bowel preparation (t2). 
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Metabolite  p value 

t0 vs t1  t0 vs t2  t1 vs t2  

1-methylnicotinamide  0.577  0.057  0.492  

2-hydroxyhippurate  0.240  0.846  0.923  

2-oxoglutaric acid  0.320  0.492  0.432  

acetic acid  0.465  0.492  0.929  

alanine  0.005  0.020  0.770  

4-cresol sulfate  0.365  0.846  0.922  

dimethylamine  0.831  0.695  0.625  

dimethylglycine  0.240  0.625  0.922  

formate  0.765  0.322  0.695  

fumurate  0.700  0.275  0.922  

glycine  0.175  0.131  0.492  

hippurate  0.966  0.770  0.557  

mannitol  0.413  0.557  0.696  

methanol  0.765  0.322  0.695  

methylamine  0.520  0.770  0.375  

phenyacetylglutamine (PAG)  0.638  0.322  0.492  

timethylamine  0.831  0.432  0.770  

taurine  0.700  0.625  0.769  

trigonelline  0.413  0.193  0.432  

trimethylamine N-oxide (TMAO)  0.898  0.625  0.846  

Table 5.2: Univariate analysis comparing urine metabolites between time points. Changes in urine metabolites 

between baseline (t0), day 3 post bowel preparation (t1), and 6 weeks post procedure (t2). Wilcoxon matched-pairs 

signed rank test to assess for statistical significant (p < 0.003 after correction for multiple comparisons).  
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5.5.3 Faecal metabonomic analysis 

Metabonomic analysis was performed on ten faecal samples at baseline (t0), and ten samples 3 

days post colonoscopy (t1). Unsupervised multivariate analysis of faecal water metabolities was 

performed using Principal Component Analysis – see Figure 5.6. This showed that in 9 out of 10 

subjects, the inter-subject variability was greater than the inter-subject variability. Targeted 

analysis was performed on 10 metabolites. This showed there were no significant differences 

after correction for multiple comparisons – see Figure 5.7 and Table 5.3.  

 

 

  

  

Figure 5.6: Unsupervised multivariate analysis of faecal water metabolites at each time point. PCA scores plot of 

faecal metabolic profiles of 11 subjects, with samples at baseline and 3 days post procedure. Samples from the 

same subject are plotted in the same colour. Lines have been added to this figure to link time points between 

samples from the same subject.  
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Figure 5.7: Bar plot graphs showing median relative quantity of each faecal metabolite at two time points; at baseline 

(t0), and 3 days after bowel preparation (t1). 
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Metabolite p value - t0 vs t1* 

acetate 0.084 

butyrate 0.027 

propionate 0.232 

lactate 0.193 

methylamine 0.695 

glutamine 0.065 

alanine 0.557 

taurine 0.193 

valine 0.846 

alpha hydroxybutyrate 0.695 

 

Table 5.3: Univariate analysis comparing faecal water metabolites between time points. Changes in 

faecal water metabolites between baseline (t0), day 3 post bowel preparation (t1), and 6 weeks post 

procedure (t2). Wilcoxon matched-pairs signed rank test to assess for statistical significant (p < 0.005 

after correction for multiple comparisons). 

 

5.6 Discussion 

This is a novel study combining urinary and stool metabolic data with microbiomic changes to 

assess the effect of bowel cleansing pre-colonoscopy. 

Stool analysis showed a reduction in microbiome ecological indices, with a significant decrease 

in the Shannon index (p = 0.002) following bowel preparation. Gorkiewicz et al. (276) 

demonstrated a reduction in richness following three days of PEG administration, and this change 

trended towards recovery but remained significantly lower than baseline one week after bowel 

cleansing. A trend towards reduced richness and Shannon index was shown by Shobar et al. 

(280) within one week post bowel cleansing in eight patients with IBD and ten healthy controls. 
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However, four other studies did not show a change in Shannon index following bowel cleansing 

(277, 278, 281, 282).  

Subject clustering was more marked than time point clustering in all but three patients following 

bowel cleansing, and there were no statistically significant changes in beta diversity between 

samples across time points. Nagata et al. (277) observed using a principal coordinated analysis 

(PCoA) plot of weighted UniFrac distances that individuals who had received bowel cleansing 

clustered together, rather than clustering at time points. A study by Shobar et al. (280) also did 

not show a statistically significant difference in weighted Unifrac distances in faecal samples 

pre- and post-bowel cleansing, but did show a difference in unweighted distances, potentially 

suggesting that rarer species were affected more by bowel cleansing. 

Taxonomic composition analysis showed no statistically significant changes from phylum to 

genus level following bowel cleansing. Nagata et al. (277) showed no differences at phyla level 

in eight patients receiving bowel cleansing, and in genera with a >1% relative abundance. A 

larger study by O'Brien et al. (282) showed no consistent findings in taxonomic composition in 

15 patients undergoing bowel lavage. Another study by Shobar et al. (280) showed a reduction 

in Bacteroidetes in 10 healthy controls and 8 IBD patients receiving bowel preparation, along 

with changes at other taxonomic levels including a reduction in the Clostridiales order. A 

reduction in Firmictues and in an increase in Proteobacteria was reported in a study by Drago 

et al. (278) at phyla level, who also showed a reduction in the Clostridia class. Discrepancies in 

the literature in the previous studies (276-278, 280-283) to date assessing the impact of bowel 

cleansing on the faecal microbiota are likely in part due to the differing study designs, time point 

analysis, analytical techniques and generally small sample sizes. 

The effects of bowel cleansing on intestinal bacterial associated urine metabolites was measured 

in this study, and the selected targeted metabolites which have been previously demonstrated to 
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alter in GI diseases including IBD and colorectal cancer (161, 207, 209, 210, 212, 231, 348, 349, 

351). These included formate, hippurate, 4-cresol sulfate, and alanine (161, 209). Formate, 

produced both endogenously and also from intestinal fermentation, and has been associated with 

Enterobacteriaceae phylum, and particularly Escherichia coli (352, 353). Hippurate, a product 

of host and commensal co-metabolism of dietary aromatic compounds, has been shown in several 

studies to have reduced excretion in IBD (161, 207, 209, 210), and to have a positive association 

with Clostridia species (323). Bacterial fermentation of tyrosine in the colon produces p-cresol 

sulfate, and its production has also been associated with Clostridia species (324). Beta-alanine, 

an isomer alanine, is a non-protein amino acid obtained from dietary muscle protein and 

additionally sourced from intestinal Escherichia coli (354). Trimethylamine N-oxide (TMAO) 

has been associated with development of colorectal cancer (347, 355). TMAO is reduced to 

trimethylamine (TMA) by predominantly Enterobacteriaceae in the gut (356). 

There were no significant changes in any of the urinary metabolites that were measured following 

bowel cleansing (with exception of alanine, although this was not significant when corrected for 

multiple comparisons). Unsupervised multivariate analysis showed that in nine out of eleven 

participants subject clustering was preserved following bowel cleansing, suggesting stability of 

bacterial associated urinary metabolome despite alterations in the intestinal faecal microbiome. 

Both untargeted multivariate and targeted univariate analysis was performed on the faecal 

metabolome. In contrast to the recent study by Nagata et al. (277) that observed an immediate 

change in faecal metabolome after bowel cleansing (the same day as the purgatives were given), 

this study showed no changes at day 3 following colonoscopy. In this study PCA plots showed 

subject clustering in ten out of eleven study participants at all three time points, and targeted 

analysis showed no significant differences in ten selected metabolites following bowel cleansing. 



 149 

Several limitations were present in this study, including a relatively small number of subjects - 

although this was a similar number to previous studies assessing the effects of bowel cleansing. 

Although all the colonoscopy examinations showed no significant pathology, there was a mixture 

of healthy subjects and subjects with underlying background pathology including quiescent 

ulcerative colitis. The week 6 sample cohort was incomplete, with two subjects not giving faecal 

samples, and one subject not giving a urine sample. The initial post-intervention sample time 

point was taken three days after bowel cleansing, and so more immediate perturbations in 

metabolites and the faecal microbiome may have been missed. NMR spectroscopy was used as 

the analytical platform, which gives a good overall qualitative and relative quantitative 

assessment of metabolites, but is of less sensitivity than mass spectrometry (160).  

Timepoint selection likely affects the outcome of this study, with samples being taken three days 

after colonoscopy potentially too late to capture transient changes in the metabolome – this point 

is discussed further in Chapter 6. 

In conclusion, bowel cleansing using PEG causes a temporary disturbance in bacterial alpha 

diversity measured in faeces, but no significant changes in the faecal and urine metabolic 

profile, suggesting that the faecal microbiome and its associated metabolome is resistant to the 

effects of an induced osmotic diarrhoea.  
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Chapter 6: General Discussion and Conclusion   

This thesis contains three metabonomic IBD studies to further explore the application of 1NMR 

spectroscopy in a real-life population, and specifically examining the effects of comorbidities, 

obesity and use of bowel purgatives. 

6.1 Exploring the application of IBD urinary metabonomics to a real-life population, 

including subjects with comorbidities. 

Previous studies of metabonomics in IBD have been conducted in very homogeneous patient 

populations, excluding significant comorbidities (156, 161, 207, 209-211). They consistently 

found that microbial associated metabolites in urine are discriminatory in IBD, along with TCA 

metabolites and several amino acids. This study had the aim of exploring the application of 

urinary 1H NMR metabolic profiling on a real-life population and specifically assessing 

whether the discriminatory metabolites could still be observed in IBD patients with 

comorbidities. It took the approach of trying to recruit all comers from IBD clinics, with the 

exception of patients with stomas and those who were receiving (or had recently received) 

antibiotics or pre-/probiotics, with the aim of trying to reflect a real-life population. A large 

number of subjects were recruited into this study; 215 IBD patients and 100 controls. Urine 

was obtained from all subjects, and stool from 158 subjects. Comorbidities in recruited subjects 

included T2DM, asthma, hypertension / cardiovascular disease and other inflammatory 

conditions.  

This study, and thesis, has focused on the application of urinary metabonomics in light of the 

ease of collecting and handling this biofluid, and the wealth of metabolic information it 

contains including endpoints of exogenous and microbial metabolism. The aim was to assess 

all subjects with both multivariate and targeted analysis of urine, and to correlate microbial 

associated metabolites with compositional changes in the faecal microbiome associated with 
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IBD to help consolidate the link between changes in the urinary metabolome and faecal 

microbiome in IBD. 

Assessment of the faecal microbiome was restricted to IBD with no comorbidities and healthy 

controls. This was to make the groups more homogenous and remove potential confounding 

from other conditions that may impact on the baseline faecal microbiome associated with IBD. 

Faecal 16S rRNA analysis showed changes that have been observed in previous studies 

including a reduction in alpha diversity, a higher abundance of Bacteroidetes, a reduction of 

Clostridia species, and some specific changes such as a reduction in the Ruminococcaceae 

family and an enrichment of Eggerthella. A reduction in Clostridia species has been associated 

with a reduction in microbial associated metabolites hippurate and 4-cresol sulfate. 

Supervised multivariate analysis of urine samples from all recruited subjects showed, as in 

previously studies, that resonances from 5-aminosalicylates were the principal components 

driving separation between IBD and control subjects. This was the first study to employ 

STOCSY-E, a statistical correlation tool, to try and remove the effect of 5-ASAs on the NMR 

spectrum. Unfortunately, due to significant 5-ASA spectral peak overlapping, these resonances 

could not be removed, and so subjects taking 5-ASAs were excluded from further analysis 

rather than removing this vital area of the NMR spectrum. The removal of patients on 5-ASAs 

reduced the study size significantly and consequently had a considerable impact on analysis as 

a significant proportion of patients, particularly UC patients, were receiving 5-ASAs. For a pre-

diagnostic use, this may not necessarily be an issue, but could be a significant limitation in 

patients already diagnosed with IBD, particularly UC, where generally a very high population 

of patients take 5-ASAs.  

Subsequent multivariate analysis observed differences in urinary metabolites between IBD and 

Crohn’s disease cohorts relative to controls with changes in the microbial related metabolites 
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hippurate, 4-cresol sulfate and formate, the TCA metabolite citrate, and the amino acids alanine 

and betaine. These differences were present in models which included subjects with non-IBD 

health conditions. 

Higher levels of phenylacetylglutamine (PAG), produced from bacterial phenylalanine 

metabolism (331), were seen in IBD cohorts compared to controls. PAG has not been 

previously observed in IBD, but known to have an inverse correlation with obesity (267, 270). 

The IBD cohorts in this study had a lower BMI than the control groups, and so this suggests 

that a difference in BMI between groups had led to this finding. 

Targeted analysis of 10 metabolites associated with IBD in previous studies were examined in 

this study (161, 207, 209, 210). Reduced urinary excretion of 4-cresol sulfate and hippurate 

was observed across several comparisons, along with reduced alanine (161, 207, 209, 210). In 

this study, a higher concentration of citrate was seen in IBD cohorts containing subjects with 

comorbidities, but not in the IBD alone comparisons with healthy controls, suggesting another 

condition such as type 2 diabetes mellitus (previously observed to affect urinary citrate 

concentration (225)) may be contributing to this finding. Directly assessing IBD and control 

cohorts with and without the presence of non-IBD health conditions showed no changes in 

these targeted metabolites. 

Overall, this study shows specific changes in IBD microbial and non-microbial related 

metabolites appear to be consistent in presence of subjects with comorbidities. However, the 

presence of 5-aminosalicylates is a significant confounder, and in this study STOCSY-E was 

not able to correct for this. This meant that to include patients taking 5-ASAs the whole 

aromatic region of the NMR spectrum would have to be excluded, which is a region containing 

many of the resonances related to intestinal microbial activity – patients taking 5-ASAs were 
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instead excluded from further analysis. Therefore, to be useful, 1H NMR spectroscopy cannot 

be used on patients taking 5-ASAs. 

This study also showed that obesity and type 2 diabetes mellitus may influence the metabolome 

of IBD subjects by altering concentrations PAG, and citrate, so future studies this would need 

to account for this.  

There were several limitations to this study. Firstly, by trying to recruit all IBD patients 

(excluding those with stomas and those on antibiotics or pre-/probiotics) there will have been 

significant heterogeneity within comparison groups. Despite several advantages of 1H NMR 

spectroscopy (previously described in Chapters 1 and 3), this technique is less sensitive than 

mass spectrometry, and with the urinary metabolome influenced by exogenous metabolites 

from diet and medication, this could potentially impact on results. This can potentially be 

overcome by analysing a large number samples to account for some of these potential 

confounding factors. This study initially recruited 315 patients, but could not overcome the 

impact of 5-ASAs on the NMR spectrum, which led to the removal of a large number of 

patients, as noted above. 

This study only examined the faecal microbiome of non-comorbid IBD patients and healthy 

controls, and although this gives an insight into the potential causes of metabolomic changes 

being seen in the urine, it would have been more informative if all subjects were included in 

this part of the study. Using statistical correlation to examine the changes in faecal bacterial 

composition with differences expressed in the urinary metabolome associated with IBD would 

help to increase the confidence in the association between these two areas that were examined 

in this chapter. 

Separately examining the effects of individual comorbidities on IBD, particularly type 2 

diabetes mellitus, hypertension / cardiovascular disease, and inflammatory conditions including 
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asthma would be better than grouping them all together as was done in this study, but would 

need substantially larger numbers, and once subjects with 5-ASAs were removed, the number 

of participants with individual comorbidities was too low for individual assessment. 

6.2 Effects of obesity in IBD patients 

This chapter assessed the influence of obesity on the urinary metabolome of patients with IBD 

(245). Obesity rates in IBD have been growing (243), and there is increasing evidence that 

obesity alters the nature of this disease due to the pro-inflammatory function of adipose tissue 

(20, 246). The urinary metabolome has been shown to be influenced by obesity, and this 

includes changes in several IBD associated metabolites.  

This study analysed urine samples from 42 obese IBD subjects (BMI >30 kg/m2), 35 obese 

controls, 95 normal weight IBD patients and 38 normal weight controls. As there is a 

significant overlap with obesity and type 2 diabetes mellitus, a condition also known to affect 

the urinary metabolome, the number of subjects with this condition was also reported and 

considered in the final analysis. 

Unsupervised multivariate analysis observed no clustering of obese subjects, possibly due to 

the heterogeneity of the subjects and potentially the number of participants in the study, but 

could represent the fact that obesity was relatively less important in clustering of subjects 

compared to other factors such as IBD. Targeted univariate analysis focused on the same 

profile of IBD associated metabolites that were examined in chapter 3 of this thesis, but with 

the addition of dimethylamine, a microbial associated metabolite that has been consistently 

reported to be increased in obesity (267, 270). Higher concentrations of dimethylamine were 

associated with obesity in this study, with higher excretion in IBD obese subjects compared to 

normal weight IBD patients, and also in non-IBD obese subjects compared to normal weight 

controls. Subgroup analysis only observed different levels of dimethylamine in obese UC 
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patients. Reduced succinate excretion was seen in UC obese patients compared to those of a 

normal weight, a finding that has been previously observed in obesity (267). No changes were 

demonstrated in the Crohn’s disease cohort when comparing obese patients relative to those 

with a normal weight. 

Examining obese IBD patients with obese controls demonstrated a reduction in 4-cresol in UC, 

and differences in citrate and alanine in Crohn’s disease. No change in hippurate was observed, 

one of the most consistently observed findings associated with IBD. Hippurate has a strong 

inverse correlation with BMI (267). Reduced excretion of 4-cresol sulfate and hippurate was 

observed in the normal weight comparison of Crohn’s disease compared to controls. 

Overall, comparing obese with normal weight IBD and non-IBD subjects only showed a 

difference in dimethylamine, which is not normally associated with IBD but has been observe 

to be influenced by BMI. Comparing obese IBD cohorts with obese controls showed some 

changes associated with IBD, but not a reduction in hippurate, which is the most consistent 

finding seen in IBD urinary metabolomic studies. Increased concentration in hippurate has 

been reported with increasing glycosuria (225), and so the increased presence of type 2 

diabetes mellitus in the obese IBD and control cohorts, and the relatively lower numbers 

(particularly of Crohn’s patients) may also be a factor in why lower hippurate excretion was 

not seen in the obese IBD subjects. Hippurate excretion has been observed to have an inverse 

relationship with BMI (267), and this may also have been lost in these data due to the above 

factors.  

The limitations of this study include the number of study participants and heterogeneity within 

the comparison groups. The relatively lower number of participants, compared for instance 

with Chapter 3, likely restricted the use of supervised multivariate analysis in already quite 

heterogeneous comparison groups, as well as affecting the targeted univariate analysis. Power 
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calculations cannot be applied to metabonomics studies, and so the size of previous studies 

which have acquired positive findings is usually used as a guide to the required number of 

study participants – although this study was of similar size to previous studies, past 

investigations have had more homogeneity between groups.  

Changes in the urinary metabolome have been observed in type 2 diabetes mellitus, which in 

turn is associated with obesity. Previously reported differences include increased hippurate, 

citrate, and alanine concentrations with increasing glycosuria and glycohaemoglobin (225). 

The presence of type 2 diabetes mellitus within obese cohorts may well have influenced the 

targeted analysis. 

6.3 Effects of bowel cleansing on urinary metabolic profiling 

In this chapter the effects of bowel purgatives on the urinary and faecal metabolome were 

examined, as IBD patients often undergo an induced osmotic diarrhoea with bowel purgatives 

before a colonoscopy. Several previous studies have examined the effect of bowel cleansing on 

the faecal and mucosal microbiome, and although there has been variation in the reported 

effects, the overall consistent findings have been a temporary perturbation of the microbiome 

with transient recovery (276-278, 280). Only one study (277) has examined the effects on the 

associated metabolome, and this was in faecal samples only, with the overall conclusion that 

bowel cleansing caused a change in the faecal metabolome immediately after bowel cleansing, 

but this had recovered at day 14 sampling. 

In this study 2 litres of polyethylene glycol (PEG) was given to induce an osmotic diarrhoea in 

the 11 participants that were recruited, with baseline urine and faecal samples taken 3 days 

before colonoscopy (baseline sample), 3 days afterwards, and then 6 weeks after their 

procedure. Faecal samples were analysed using 16S rRNA sequencing to assess changes in 
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bacterial composition, and both stool and urine were analysed with 1H NMR spectroscopy to 

investigate the impact on the corresponding metabolomes. 

Faecal 16S rRNA sequencing analysis showed a decrease in alpha diversity (number of taxa 

and relative abundance of those taxa present) following bowel preparation, but no significant 

difference in beta diversity (variability of community composition). Taxonomic composition 

analysis showed no statistically significant changes from phylum to genus level following 

bowel cleansing.  

Unsupervised multivariate analysis of urine samples (PCA plot) showed subject clustering of 

urine samples at all 3 time points in samples from 9 of the 11 study participants, and similarly 

there was subject clustering of faecal samples from 9 out of 10 participants. These findings 

were in contrast to the previous study (277) assessing the impact on the faecal microbiome, 

which showed subject clustering was lost immediately after bowel cleansing (day 1), but then 

recovered at day 14 sampling (the next time point that was assessed).  

Overall, this study showed that an induced osmotic diarrhoea caused a temporary disturbance 

in microbiome (reduced bacterial alpha diversity), but no significant changes in the faecal and 

urine metabolic profile, suggesting resistance in the faecal microbiome and its associated 

metabolome. Taking into account the findings of the previous study assessing the impact on the 

faecal metabolome, this would suggest that any immediate disturbance in the metabolome 

recovers within 3 days of bowel cleansing (277). 

Limitations of this study included the relatively small number of participants - although this 

was a similar number to previous studies assessing the effects of bowel cleansing. The 

incomplete number of samples acquired at the third time points (mainly faecal samples at the 

third time point) led to an incomplete dataset. There was also a mixture of healthy subjects and 

subjects with underlying quiescent ulcerative colitis which in itself could lead to some 
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confounding in the results. The initial post-intervention sample time point was taken three days 

after bowel cleansing, and so more immediate perturbations in metabolites and the faecal 

microbiome may have been missed.  

Another potential confounder is the timing of sample taking. There has been great variation 

across previous studies, with the most recent published study by Nagata et al. (277) sampled 

one day before bowel cleansing, immediately after finishing bowel preparation (first motion 

passed after finishing consumption of PEG), and then 14 days post bowel preparation. A study 

by Gorkiewicz et al. (276) collected samples at day 3 post commencing bowel lavage and 

observed significant reduction in bacterial richness at this time point. Overall, studies that took 

faecal samples within 72 hours of bowel lavage recorded changes in the faecal microbiome 

(276-278). 

A study by O’Brien et al. (282) collected samples one month before colonoscopy, one week 

before, and then one week, one month, and three to six months after colonoscopy – this study 

showed no significant impact on the microbiome.  

The specific time points selected in this study were for the following reasons. 3 days before 

sampling provided the most recent as possible baseline sample without being affected by a low 

residue diet used in bowel preparation pre-colonoscopy, with dietary changes known to affect 

the metabolome (357). 3 days afterwards was selected as by this time most patients will be 

back on a normal diet, and six weeks afterwards to assess for any long-term effects. 

Overall, this study suggests that disturbances in the microbiome related to bowel cleansing 

with PEG are short lived and recovery quickly. However, to gain a more complete picture a 

larger study focusing on the time immediately post-procedure may be helpful. 

 



 159 

6.4 Lessons learnt from this MD 

This project has provided much learning about the pitfalls of clinical research. Firstly, study 

design is imperative; the initial plan was to apply 1H NMR spectroscopy to a wide group of 

patients that better reflected a real-life population than previous studies. One of the main 

potential confounders that had not been examined in previous IBD metabolomic studies had 

been the effect of other conditions, and recent publications already existed when I started my 

research showing that other conditions had an effect on the urinary metabolome, including 

some of the microbial associated metabolites seen to differ in IBD. I attended a weekly IBD 

clinic and a significant proportion of the patients had comorbidities and obesity. I took the 

approach of trying to recruit all patients who were willing to engage in research, and initially 

wanted urine and stool from every patient. I discovered that the type of sample was important, 

as patients are very willing to give urine (which I later discovered is much easier to handle and 

process in the lab compared to faeces), but much less willing to provide stool samples which 

often requires a second trip to the hospital. With ethical approval, we devised a system of 

sending patient information letters, with stool and urine pots inside, so patients could bring 

these to their next appointment, and the subsequent engagement in providing stool samples 

significantly improved. 

At the outset I examined previous literature on comorbidities – with the exception of known 

IBD associations (extra-intestinal manifestations of IBD) there were no clear specific 

associations with other diseases. North West London, the catchment area for recruitment in this 

study, has significant heterogeneity in its IBD population (358) – it serves a large South Asian 

population, where comorbidities include a significant number of patients with type 2 diabetes 

mellitus, obesity and cardiovascular disease (359). It is not possible to conduct power 

calculations in metabonomic studies, and so the initial plan was to recruit all comers which 
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would then provide the option of subgroup analysis of particular cohorts that may then be 

shown to be important, aiming for a study population similar to previous studies. Later in the 

recruitment period I noted that type 2 diabetes and asthma appeared to be frequent 

comorbidities, and so I attempted to match this with non-IBD diabetic and asthmatic controls 

by going to respective diabetes and chest clinic. However, following the removal of subjects 

taking 5-ASAs due to their interferences on the NMR spectra that could not be resolved with 

STOCSY-E, subgroup analysis of diabetic and asthmatic groups was hindered. The only 

contingency was then to include all comorbidities together. Further studies of this area would 

need to use larger populations, stratified by individual comorbidities, or a very large trial of all 

comers. 

This project showed me that research is vulnerable to many setbacks which included delays in 

getting access to analytical platforms (eg NMR machine), and not being able to overcome the 

impact of 5-ASAs on the urinary NMR spectrum using STOCSY-E. 

With all projects of this type accurate clinical phenotyping, and collection and curation of 

samples are critical. In this study, the creation of the biobank left comparatively less time to 

analyse the data, which in metabolomics is a complex task requiring the acquisition of new 

skills which was a timely process. This highlighted the importance of having a well-maintained 

biobank, so metabolomic analysis can begin at an earlier interval during research time (perhaps 

of a small set of pilot data) to help acquire the skills necessary analytic skills. Further studies 

can now be conducted using the samples collected for this project. 

6.5 Direction of future work 

Urinary 1H NMR spectroscopy has many advantages, including that allowing for easy 

acquisition and handling of samples that can then undergo high throughput analysis that then 

gives a wealth of metabolic information including endpoints of microbial metabolism, and has 
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shown consistent discriminatory metabolites in IBD. It has provided a valuable research tool 

exploring the complex pathogenesis with findings likely to increasingly be associated with 

other aspects of the interactome. It may also have the potential to stratify patients into different 

disease phenotypes and be used as part of treatment assessment. 

However, limitations identified during this project have identified several potential issues of 

urinary 1H NMR spectroscopy going forward. The presence of 5-aminosalicylates remains an 

ongoing issue when including patients on this medication in studies using 1H NMR 

spectroscopy to assess urine. This study employed STOCSY-E (302) that was not able to 

overcome this issue, and so it may make this technique with urine as the biofluid difficult to 

use in ulcerative colitis, but this would not affect its use at the time of diagnosis. Future studies 

may have to use mass spectrometry with its increased sensitivity, but would be disadvantaged 

by its more complex and longer sample preparation and analysis (160, 162).  

This study showed, particularly in the Crohn’s disease cohort, that discriminatory urinary 

metabolic differences were seen in cohorts reflecting more of a real-life IBD population, and 

these changes in the urinary metabolome were consistent with those reported in previous 

studies – particularly changes to hippurate, 4-cresol sulfate, citrate and alanine in multivariate 

analysis where comorbid patients were included, and there was a statistical difference in BMI 

between IBD and control cohorts. 

Metabonomic research is continuing to move forward with large multi-site and multinational 

projects recognising the potential value metabononics in identifying risk of developing IBD, as 

well personalising treatment. The Crohn’s and Colitis Canada (CCC) Genetic, Environmental, 

Microbial (GEM) Project, a multinational project initiated in 2008 which has recruited over 

5000 first degree relatives (FDR) of patients with Crohn's disease, has assessed potential 

metabolic markers within stool to predict onset of Crohn's disease (360). As part of the CCC-
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GEM project, a recent study by Lee et al. has identified two faecal metabolic markers that 

confer a higher risk of developing Crohn's disease, and five markers that are protective (361). 

In the UK, the IBD-RESPONSE project is collecting stool, blood and tissue from multiple sites 

around the UK, and will use metabonomic techniques with the aim of developing algorithms to 

predict patients who will respond or not to specific IBD biological and small molecule 

treatments in Crohn’s disease and UC (362). 

Summarising how to make further progress the following areas need to be studied: 

i. Larger real-life populations need to be studied, either with much higher recruitment 

using an all-comers approach, or lower numbers stratified by comorbidities, and 

selecting comorbidities that are of higher prevalence and known to influence the 

intestinal microbiome and associated metabolome.  

ii. Use of a more sensitive analytical technique: with liquid chromatography–mass 

spectrometry (LC-MS, good detection of polar compounds common in urine 

samples) or gas chromatography–mass spectrometry (GC-MS, less interference of 

drug metabolites conjugated with target molecules) (160, 162) – a combination of 

NMR experiments for untargeted analysis and mass spectrometry (GC- and LC-

MS) for targeted analysis was effective in the mapping of the human urinary 

metabolome (357)  

iii. Using prospective studies of patients at the time of diagnosis and so before they are 

commenced on 5-aminosalicylates that interfere with the vital region of the urinary 

NMR metabolome. 

iv. Further studies should investigate the relationship between the microbiome and 

discriminatory metabolites, using statistical correlation tools (can present with heat 

maps etc), to further assess this relationship. 



 163 

Publications and conference presentations arising from this thesis to date 

Original research paper publication: 

Powles, S. T., et al. (2022). Effects of bowel preparation on intestinal bacterial associated urine 

and faecal metabolites and the associated faecal microbiome. BMC gastroenterology 22(1): 1-

9. 

Published conference articles: 

Powles, S. T., et al. (2019). PTH-112 Effect of co-morbidities in Crohn’s disease associated 

urinary metabolic profiles, BMJ Publishing Group. 

Powles, S. T., et al. (2019). PTH-113 Effect of ethnicity on the faecal water metabolic profiles 

in Crohn’s disease, BMJ Publishing Group 

Powles, S. T., et al. (2018). "Mo1945-Effect of bowel purgatives on urinary metabolic profiling 

associated with the faecal microbiome." Gastroenterology 154(6): S-860. 

Powles, S. T. R., et al. (2017). "The use of rapid evaporative ionisation mass spectrometry 

(REIMS) in faecal samples to identify inflammatory bowel disease." United European 

Gastroenterology Journal 5(5 Supplement 1): A500-A501. 

Powles, S., et al. (2017). "P274 Assessing the individual risk of acute severe colitis at diagnosis 

in a South Asian population." Journal of Crohn's and Colitis 11(suppl_1): S217-S217. 

Powles, S., et al. (2015). PTH-069 Effect of co-morbidities on urinary metabolic profiling in 

the characterisation of patients with inflammatory bowel disease, BMJ Publishing Group. 

Oral presentations: 

Powles, S. T. R., et al. Effect of comorbidities on urinary metabolic profiling in the 

characterisation of patients with inflammatory bowel disease. United European 

Gastroenterology Week (UEGW), 2015 

Poster presentations: 

Powles, S. T. R., et al. Effect of bowel purgatives on urinary metabolic profiling associated 

with the faecal microbiome. Digestive Diseases Week (DDW), 2018. 



 164 

Powles, S. T. R., et al. Effect of ethnicity on the faecal water metabolic profiles in Crohn’s 

disease. British Society of Gastroenterology (BSG) Annual Meeting, 2019. 

Powles, S. T. R., et al. The use of rapid evaporative ionisation mass spectrometry (REIMS) in 

faecal samples to identify inflammatory bowel disease. United European Gastroenterology 

Week (UEGW), 2017, and Digestive Diseases Week (DDW), 2018. 

Powles, S. T. R., et al. Assessing the individual risk of acute severe colitis at diagnosis in a 

South Asian population. BSG Annual Meeting, 2017, and 12th Congress of European Crohn’s 

and Colitis Organisation (ECCO), 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 165 

Appendix  

Supplementary Table 1 

IBD with no comorbidities v healthy controls (HC) 

Comparison 

cohorts 

n Significant 

differences in 

subject 

characteristics  

R2X Q2 p value 

CV- 

ANOVA 

Most significant 

metabolites  

driving model*  

IBD : HC 127  

(75 : 52) 

Age 

Ethnicity 

BMI 

0.084 0.180  0.041 hippurate ↓ 

alanine ↓ 

citrate ↑ 

p-cresol ↓ 

PAG ↑ 

DMG ↓ 

formate ↓ 

CD : HC 107  

(55 : 52) 

Age 

Ethnicity 

BMI 

0.085  0.231  0.014 hippurate ↓ 

alanine ↓ 

citrate ↑ 

p-cresol ↓ 

PAG ↑ 

DMG ↓ 

betaine ↓ 

formate ↓ 

leucine ↓ 

aspartate ↓ 

UC : HC 72  

(20 : 52)  

nil 0.081   0.003 NS† 
 

CD : UC 75 

(55 : 20) 

Operations 

Oral immuno-

modulators 

Biologics 

 

0.096 -0.04 NS 
 

Supplementary Table 1: OPLS-DA models comparing cohorts excluding subjects on 5-aminosalicylates and those 

with comorbidities. Arrows denote whether the relative abundance of metabolite is higher or lower in the IBD 

cohort. *NS = non-significant. 
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Supplementary Table 2 

IBD, CD and UC with comorbidities only (c) vs healthy controls 

(HC) and IBD with no comorbidities (IBD) 

Comparison 

cohorts* 

n R2X Q2 p value 

CV-ANOVA 

IBDc : HC 27 : 52 0.116 -0.029 NS† 

CDc : HC 19 : 52 0.125 0.048 NS 

UCc : HC 8 : 52 0.091 0.151 NS 

CDc : UCc 19 : 8 0.192 0.108 NS 

IBDc : IBD 27 : 75 0.103 -0.129 NS 

Cc : HC 48 : 52 0.231 -0.030 NS 

Supplementary Table 2: OPLS-DA models comparing IBD subjects with a comorbidity with IBD subjects without 

a comorbidity, and comparing these groups with healthy controls and with non-IBD subjects with a comorbidity. 

*IBDc = IBD subjects with a comorbidity, CDc = CD subjects with a comorbidity, UCc = UC subjects with a 

comorbidity, Cc = non-IBD subjects with a comorbidity, IBD = IBD subjects with no comorbidities, HC = healthy 

controls   †NS, non-significant 
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Supplementary Table 3 

 

Supplementary Table 3: Targeted univariate analysis comparing IBD subjects and control cohorts with and 

without the inclusion of subjects with non-IBD health conditions. Only differences that were statistically 

significant (p<0.05) after Benjamini-Hochburg correction for multiple comparisons were included in this table. 

Arrows denote whether relative abundance of metabolite is higher or lower in the first comparison group. †IBD = 

IBD subjects with or with no comorbidities, HC = healthy controls, C = non-IBD controls including healthy 

controls and subjects without IBD but with another health condition, IBDc = IBD subjects with a comorbidity, 

# Comparison n Differentiating metabolites  

1 All IBD and all 

controls: 

IBD : C 

CD : C 

UC : C 

CD : UC 

 

 

 

102 : 100 

74 : 100 

28 : 100 

74 : 28 

 

 

↓4-cresol, ↓hippurate, ↓alanine 

↓4-cresol, ↓hippurate, ↑citrate, ↓alanine 

↓4-cresol, ↓alanine 

↓4-cresol, ↓acetate 

 

2 IBD with no-

comorbidities and 

healthy controls: 

IBD : HC 

CD : HC 

UC : HC 

CD : UC 

 

 

 

 

75 : 52 

55 : 52 

20 : 52 

55 : 20 

 

 

 

 

↓4-cresol 

↓4-cresol, ↓hippurate 

↓4-cresol 

- 

 

3 All IBD and healthy 

controls: 

IBD : HC 

CD : HC 

UC : HC 

 

 

 

102 : 52 

74 : 52 

28 : 52 

 

 

 

↓4-cresol, ↓hippurate, ↑citrate 

↓4-cresol, ↓hippurate, ↑citrate 

↓4-cresol 

4 IBD with 

comorbidities and 

controls: 

IBDc : HC 

CDc : HC 

UCc : HC 

CDc : UCc 

IBDc : Cc 

CDc : Cc 

UCc : Cc 

IBDc : IBDnc 

CDc : CDnc 

UCc : CDnc 

Cc : HC 

 

 

 

 

27 : 52 

19 : 52 

8 : 52 

19 : 8 

27 : 48 

19 : 48 

8 : 48 

27 : 75 

19 : 55 

8 : 20 

48 : 52  

 

 

 

↓4-cresol, ↓hippurate, ↑citrate 

↓4-cresol, ↓hippurate, ↑citrate 

↓4-cresol 

- 

↓4-cresol, ↓alanine, ↓acetate 

- 

↓4-cresol, ↓alanine, ↓acetate 

- 

- 

- 

- 
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CDc = CD subjects with a comorbidity, UCc = UC subjects with a comorbidity, Cc = non-IBD subjects with a 

non-IBD health condition, IBDnc = IBD subjects with no comorbidities, CDnc = Crohn’s disease subjects with a 

non-IBD health condition, UCnc = UC subjects with a non-IBD health condition  ††NS, non-significant   

 

Supplementary Table 4 

IBD with comorbidities included† vs mixed controls (C)††  
  p value 

IBD : C 

102 : 100 

p value 

CD : C 

74 : 100 

p value 

UC : C 

28 : 100 

p value 

CD : UC 

74 : 28 

Microbial metabolites 

4-cresol sulfate <0.001  0.002 <0.001 0.015 

formate 0.262 0.673 0.108 0.255 

hippurate  0.004 0.002 0.079 0.099 

methylamine 0.945 0.604 0.645 0.360 

trigonelline 0.996 0.546 0.486 0.210 

SCFAs 

acetate 0.146 0.898 0.012 0.029 

butyrate 0.277 0.145 0.717 0.219 

TCA metabolites and amino acids 

citrate 0.151 0.016 0.995 0.036 

succinate 0.425 0.787 0.073 0.042 

alanine 0.003 0.005 0.020 0.779 

Supplementary Table 4: Targeted univariate analysis of IBD subjects with no comorbidities and healthy controls. 

Bold figures are statistically significant (p<0.05) after Benjamini-Hochburg correction. †group includes IBD alone 

and IBD with a comorbidity  ††group includes healthy controls and non-IBD patients with a comorbidity. Arrows 

denote whether relative abundance of metabolite is higher or lower in corresponding cohort. 

 

 

 

 

 

 

Supplementary Table 5: 
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IBD with comorbidities included† vs healthy controls (HC)  

  p value 

IBD : HC 

102 : 52 

p value 

CD : HC 

74 : 52 

p value 

UC : HC 

28 : 52 

Microbial metabolites 

4-cresol sulfate <0.001 0.006 <0.001 

formate 0.078 0.240 0.035 

hippurate  0.033 0.012 0.191 

methylamine 0.812 0.846 0.488 

trigonelline 0.282 0.134 0.699 

SCFAs 

acetate 0.345 0.914 0.084 

butyrate 0.794 0.578 0.901 

TCA metabolites and amino acids 

citrate 0.016  0.013 0.230 

succinate 0.866 0.564 0.318 

alanine 0.094 0.091 0.181 

Supplementary Table 5: Targeted univariate analysis of IBD subjects including those with a comorbidity and 

healthy controls. Bold figures are statistically significant (p<0.05) after Benjamini-Hochburg correction; †group 

includes subjects with IBD alone and those with IBD and a comorbidity. Arrows denote whether relative 

abundance of metabolite is higher or lower in corresponding cohort. 
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Supplementary Table 6: 

IBD with comorbidities only (c)† vs healthy controls (HC)  

  p value 

IBDc : HC 

27 : 52 

p value 

CDc : HC 

19 : 52 

p value 

UCc : HC 

8 : 52 

p value 

CDc : UCc 

19 : 8 

Microbial metabolites 

4-cresol sulfate <0.001   0.016 <0.001 

 

0.013 

 

formate 0.056 0.093 0.125 

 

0.863 

 

hippurate  0.053 0.104 0.107 0.545 

methylamine 0.087 0.181 0.129 0.914 

trigonelline 0.370 0.127 0.929 0.152 

SCFAs 

acetate 0.043 0.396 0.015 0.137 

butyrate 0.234 0.587 0.166 0.948 

TCA metabolites and amino acids 

citrate 0.055 0.002 0.743 0.010 

succinate 0.994 0.252 0.333 0.027 

alanine 0.055 0.308 0.035 0.298 

Supplementary Table 6: Targeted univariate analysis using a Mann-Whitney U test of IBD subjects with no 

comorbidities and healthy controls. Bold figures are statistically significant (p<0.05) after Benjamini-Hochburg 

correction. Arrows denote whether relative abundance of metabolite is higher or lower in corresponding cohort. 

†IBDc = IBD subjects with a comorbidity, CDc = CD subjects with a comorbidity, UCc = UC subjects with a 

comorbidity, HC = healthy controls.  
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Supplementary Table 7 

 

IBD with comorbidities only (c)† vs non-IBD controls with at least one comorbidity 

(Cc)  
  p value 

IBDc : Cc 

27 : 48 

p value 

CDc : Cc 

19 : 48 

p value 

UCc : Cc 

8 : 48 

Microbial metabolites 

4-cresol sulfate <0.001 0.046 <0.001 

formate 0.760 0.778 0.815 

hippurate  0.028 0.067 0.062 

methylamine 0.292 0.453 0.315 

trigonelline 0.338 0.973 0.123 

SCFAs 

acetate 0.014 0.447 0.001 

butyrate 0.028 0.106 0.039 

TCA metabolites and amino acids 

citrate 0.258 0.017 0.809 

succinate 0.396 0.609 0.075 

alanine 0.002 0.0536 0.002 

Supplementary Table 7: Targeted univariate analysis using a Mann-Whitney U test of IBD subjects with no 

comorbidities and healthy controls. Bold figures are statistically significant (p<0.05) after Benjamini-Hochburg 

correction. Arrows denote whether relative abundance of metabolite is higher or lower in corresponding cohort. 

†IBDc = IBD subjects with a comorbidity, CDc = CD subjects with a comorbidity, UCc = UC subjects with a 

comorbidity, Cc = non-IBD subjects with another health condition 

 

 

 

 

 

 

 

 

 



 172 

Supplementary Table 8: 

IBD with comorbidities only (c)† vs non-comorbid IBD groups (nc), and non-IBD controls 

with at least one comorbidity (Cc) vs healthy controls (HC)  
  p value 

IBDc : IBDnc 

27 : 48 

p value 

CDc : CDnc 

19 : 48 

p value 

UCc : UCnc 

8 : 48 

p value 

Cc : HC 

Microbial metabolites 

4-cresol sulfate 0.013* 0.536 0.029* 0.609 

formate 0.457 0.223 0.785 0.185 

hippurate  0.805 0.780 0.273 0.749 

methylamine 0.008* 0.056 0.090 0.648 

trigonelline 0.911 0.500 0.501 0.079 

SCFAs 

acetate 0.010* 0.296 0.026* 0.776 

butyrate 0.113 0.837 0.012* 0.392 

TCA metabolites and amino acids 

citrate 0.209 0.033* 0.780 0.477 

succinate 0.627 0.263 0.746 0.456 

alanine 0.331 0.651 0.069 0.258 

Supplementary Table 8: Targeted univariate analysis using a Mann-Whitney U test of IBD subjects with no 

comorbidities and healthy controls. Figures in bold have a p value less than 0.05. *Not statistically significant 

when corrected for multiple comparisons using the Benjamini-Hochburg correction. Arrows denote whether 

relative abundance of metabolite is higher or lower in corresponding cohort. †IBDc = IBD subjects with a 

comorbidity, CDc = CD subjects with a comorbidity, UCc = UC subjects with a comorbidity, IBDnc = IBD 

subjects with no comorbidities, CDnc = Crohn’s disease subjects with a non-IBD health condition, UCnc = UC 

subjects with a non-IBD health condition, Cc = non-IBD subjects with another health condition. ††NS, non-

significant   
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Subject characteristic comparisons - univariate analysis – p values 

 
IBDc : IBDnc  CDc : CDnc  UCc : UCnc Cc : HC 

n 27 : 75 19 : 55 8 : 20 48 : 52 

Age (median)1 <0.001 0.003 <0.001 0.035 

Sex2  0.282 0.073 0.394 0.236 

Ethnicity (Cau : SA : 

Oth)*2 

<0.001 0.040 0.005 0.196 

BMI (median)1 0.008 0.198 0.038 0.776 

Non-IBD medication2 0.023 0.008 0.002 <0.001 

Supplementary Table 9: Characteristic comparisons between subject cohorts. 1Mann-Whitney U test, 2Chi-squared 

test, p value of <0.05 considered significant and are in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 10: 
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Lifestyle comparisons - univariate analysis – p values 

 
IBD obese v 

normal weight 

Non-IBD 

obese v 

normal 

weight 

Obese IBD v 

obese controls 

Normal 

weight IBD 

v normal 

weight 

controls 

n 36 : 100 35 : 38 36 : 35 74: 38 

Vegetarian 

Smoker 

Exercise 

0.101 

0.214 

0.434 

0.821 

0.351 

0.055 

0.256 

0.701 

0.725 

0.546 

0.623 

0.091 

Consumed within the 

last 24 hours prior to 

producing samples: 

Meat 

Fish 

Cheese 

Grapefruit 

Cherries 

Liquorice 

Walnuts 

Vanilla 

Milk 

Yoghurt 

Berries 

Carbonated drinks 

Coffee 

Tea 

Herbal tea 

ETOH 

 

 

 

0.339 

0.874 

0.465 

0.131 

0.718 

0.640 

0.903 

0.707 

0.262 

0.097 

0.035 

0.772 

0.491 

0.399 

0.594 

0.213 

 

 

 

0.225 

0.443 

0.255 

0.738 

0.436 

0.370 

0.124 

0.530 

0.028 

0.217 

0.909 

0.952 

0.557 

0.416 

0.378 

0.570 

 

 

 

0.943 

0.773 

0.801 

0.679 

0.477 

0.533 

0.635 

0.042 

0.079 

0.840 

0.309 

0.741 

0.492 

0.100 

0.219 

0.180 

 

 

 

0.502 

0.082 

0.931 

0.388 

0.381 

0.187 

0.179 

0.395 

0.772 

0.632 

0.343 

0.273 

0.022 

0.213 

0.470 

0.509 

Supplementary Table 10 – Statistical analysis of lifestyle comparisons between subject cohorts. Chi square test, p 

value of <0.05 considered significant and are in bold. 
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