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Abstract
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1 Introduction

When a business invests in research and development (R&D), such strategy only takes into

account how a potential innovation may increase the investing company’s private value.

However, other businesses may utilise innovations made by the original investing company

to increase their own profits. However, returns from investment in innovation does not

only benefit the investing company but has overall social value. Indeed, When a business

invests in research and development (R&D), its strategy only takes into account how a

potential innovation may increase the investing company’s private value. However, other

businesses may utilise innovations made by the original investing company to increase their

own profits. This is known in economic literature as the knowledge spillover effect. By only

considering its private return, businesses systematically undervalue their own innovations and

hence under–invest in R&D, compared with the socially optimal investment level. Chronic

under-investment in innovation by companies is indeed a textbook fact(25). To counteract

the under–investment, governments introduce R&D subsidy policies for certain sectors of

the economy. In order to effectively allocate such subsidies, it is therefore important to

understand the extent of under–investment and how it varies between sectors.

To understand the spillover effect we develop a mean field game (MFG) model of firms

distributed heterogeneously between sectors and according to their productivity level, taking

into account their microscopic behaviour. From a microeconomic perspective, the size of

knowledge spillovers can be inferred from the network of patent citations.(23) When an

industrial technology is developed, it often gets patented. As part of the patent any previous

technology that has been used must be cited. This results in a network of patent citations,

where each citation can be used as a proxy for a spillover from one technology to another,

so spillover sizes can be evaluated.(17) In the model we develop, sectors are connected by

a graph that is informed by and can be calibrated to the microeconomic network of patent

citation data.

A first model of knowledge spillovers, by Cohen and Levinthal,(16) considered the stock

of knowledge of a firm to depend on the amount of investment in R&D of that firm and

the total amount of investment by all other firms, through a mean field–type interaction.

Only an initial analysis of the model was conducted.(16) A later model(1) (see Section

13.2 of this reference) started from a macroscopic perspective. Hence only the aggregate

knowledge of the entire economy was considered and spillovers were assumed to increase the

aggregate uniformly. This did not explain how spillovers heterogeneously affect firms. Similar

models were also used to study entrepreneurship and intellectual property rights.(2) There

has been particularly extensive research of knowledge spillovers in cross–country models.
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In such models, a country’s own output is aggregated and the knowledge level increases

at a rate that depends on the leading country’s knowledge level. However, simplifying

assumptions were made that may affect their accuracy, such as interactions taking place in

a discrete time setting,(18) or interactions between firms being described only through the

evolution of aggregate quantities.(3; 27) In the present paper, we use an MFG model to both

increase the complexity of the description of firms, and to link firm–level evolution directly

to microeconomic data for spillover sizes. There have been several other papers focussing

on MFG–type models of knowledge spillovers.(11; 35) The Boltzmann model studied in

these papers did not consider how innovation among firms evolves, nor did it incorporate

the microeconomic data related to patent citations in its formulation. Therefore, the model

studied in the present paper can give greater insight into the relationship between knowledge

spillovers and firm–level dynamics. Mean field games have been successfully applied in other

areas of economics, including modelling stochastic growth,(29) and in equilibrium dynamics

of supply and demand.(22; 24; 39) More generally, the mathematical theory of active particle

systems has been successfully applied to various areas of economics and finance(7; 8; 10; 30).

In the present paper, we consider an MFG approach with a consumer–level consumption

model through a representative agent model (see Eq. (2)). In earlier work using an MFG

approach,(29) consumption was considered as a reduction in capital stock, whereas here

we consider consumption as the purchase of goods produced by firms. The focus of this

earlier reference was on the behaviour of consumers as a result of a relative utility function.

In comparison here we focus on the behaviour of firms, and only consider consumers as a

method to endogenise the price formation of a product. In the literature, the link between

consumers and producers under the MFG framework has been explored in various ways.

For instance, a trading model in which agents control the frequency with which they trade

commodities has been proposed.(22) In that paper, the focus was on a financial market

with trading in commodities, while in the present paper we consider buying and selling of

products with firms that are price–setters. Solar renewable energy certificate markets have

been modelled in the MFG framework.(39) In that paper, a model for pricing under specific

conditions described by those markets was developed but is not directly applicable to the

situation being modelled in the present paper. Finally, a price model in which agents control

the rate at which they trade their products has been developed.(24) In comparison, in the

present work, we consider a situation where firms control the price they sell products at, and

the rate of consumption is determined by the consumers’ consumption optimisation problem.

In this paper, we analyse a stationary MFG model describing the spillover effect. The

MFG model describes the long–term behaviour of firms with full anticipation of the fu-

ture. MFGs were described mathematically by Lasry and Lions,(32; 33) and simultaneously
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by Huang, Caines and Malhamé(28) and they build on the work of Aumann and related

authors on anonymous games.(5; 37) The MFG system we develop includes distribution

dependence that enters into the drift term but not in the cost functional, and we are con-

sidering more than one population of agents. Therefore our MFG model can be classed as

a multi–population MFG with a non–separable Hamiltonian. There has been some work in

either multi–population MFGs(15) or MFG models with non–separable Hamiltonians(4; 20)

or both.(12; 13; 22) The multi–population MFG we develop in this paper is based on ran-

dom interactions between firms, occurring on a graph structure. On a theoretical level, such

interactions generally result in graphon mean field games (GMFGs). The theory around

GMFGs is an emerging field, with the linear–quadratic case recently being considered.(6)

Due to a simplifying assumption that we make, we are able to model the interactions as

a multi–population game, with the interactions between populations being described by a

graph between the populations. The combination of considering a growth model based on

knowledge spillovers, along with a multi-population MFG with graph-based interaction is a

novel approach that we believe provides interesting contributions to the existing literature.

The techniques we use to prove existence and uniqueness rely on the ability to write the

solution of a stationary Fokker–Planck equation in the form of an exponential. This char-

acteristic has previously been used(9) to prove existence and uniqueness in MFG and best

reply strategy models in a slightly different framework.

The paper is organised as follows. In Section 2, we develop the spillover model by

describing firm behaviour at a microscopic level and formally deriving the mean field limit.

In section 3, we describe the MFG problem and prove existence of solutions to it. We also

show uniqueness of such solutions holds, provided the coupling strength between sectors is

small enough. In Section 4, we provide some deeper insights into the effects of the modelling

parameters, through numerical simulations. The first simulations show how parameters

describing effects unrelated to spillovers (for example the discount factor, the noise level and

the labour efficiency) change the MFG model. Our second group of simulations demonstrate

the effect of the spillover network on the model. The spillover network is a sector–level

network that aggregates the patent citation network. We show that the effect of a spillover

on any sector is a result of all paths to that sector in the associated network, and not just

the immediate connections between sectors, which is contrary to the current economic state

of the art. Finally, in Section 5, we briefly discuss future research prospects for the model,

including how we intend to apply the model to economic questions relevant to R&D subsidy

policy.
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2 Model development

The description of the microscopic model and the derivation of the MFG system, developed

in this section, is purposefully kept at a heuristic level because the focus of the paper is on

the PDE system. The modelling framework is important, however getting too involved in the

technicalities may take away from the broader picture. We do expand on the technical aspects

of the microscopic framework when the ambiguity reduces the clarity of the exposition.

2.1 The microscopic model

2.1.1 Firms

Assume there are L sectors within the economy, and in sector ℓ there are Nℓ firms. Each firm,

uniquely denoted by (ℓ, i) with 1 ≤ ℓ ≤ L and 1 ≤ i ≤ Nℓ, has a complete probability space,

(Ω,F ,P)ℓ,i, associated with it. Each probability space has a complete filter
(
(Ft)t≥0

)
ℓ,i
,

induced by the augmentation of the natural filtration generated by the one-dimensional

Brownian motion Bi, the random variable ξℓ,i : Ωi → [0,∞) and the random variables

sℓ,ℓ
′

i,j : Ωi → N for all (j, ℓ′).

We assume firm i in group ℓ has sℓ,ℓ
′

i,j links with firm j in group ℓ′, furthermore we assume

the probability distribution of sℓ,ℓ
′

i,j depends on ℓ and ℓ′ only. In particular, we assume there

exists a function p : {0, . . . , L}2 × N → [0, 1] such that P
(
sℓ,ℓ

′

i,j = s
)
= p (ℓ, ℓ′, s). The ith

firm in sector ℓ has a productivity–related knowledge level Zℓ,i ∈ (0,∞), which increases

as a result of employing labour hℓ,i or due to knowledge spillovers from firms that they are

linked with. The knowledge dynamics are also affected by noise with strength σ ∈ (0,∞).

As a result, Zℓ,i evolves according to the following reflected SDE

dZh
ℓ,i (t) =

(
(hℓ,i (t))

γ +
1

N

L∑
ℓ′=1

Nℓ′∑
j=1

sℓ,ℓ
′

i,j Z
h
ℓ′,j (t)

)
dt+ σdBℓ,i (t) + dφh

ℓ,i (t) , (1a)

Z
hℓ,i

ℓ,i (0) = ξℓ,i ∼ m0
ℓ , (1b)

where h =
(
(hℓ,i)

Nℓ

i=1

)L
ℓ=1

, N =
∑L

ℓ=1Nℓ, Bℓ,i is the independent Brownian motion that

generates the natural filtration
(
(Ft)t≥0

)
ℓ,i
, and γ ∈ (0, 1) represents the inefficiency in

converting one unit of labour to one unit of knowledge. The function φh
ℓ,i is the unique

Skorokhod map of the unrestricted SDE.(40) This paper is not concerned with the technical

intricacies of reflected Brownian motion which have been explored in previous literature.(45;

31; 36; 42) In the initial condition (1b), ξℓ,i ∼ m0
ℓ means the law of ξℓ,i is equal to m

0
ℓ , where

m0
ℓ is a given initial distribution, which may be different for each sector. We assume that
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hℓ,i is a stationary Markovian feedback control, in particular, hℓ,i (t) = gℓ,i (Z (t)), for some

deterministic function g : (0,∞)N × [0,∞).

2.1.2 Consumers

In order to highlight the effect of knowledge spillovers on firm dynamics, we take a very

standard approach to consumption.(1) We assume a representative consumer has consump-

tion preferences given by u (C, y), where u is a strictly increasing, differentiable and strictly

jointly concave function, y is a generic good representing consumption external to the model,

and C =
[

1
N

∑L
ℓ′=1

∑Nℓ′
j=1 c

α
ℓ′,j

] 1
α
is a consumption index of the N goods produced by the firms

in the model, each firm producing exactly one good. The constant α ∈ (0, 1) is related to

the elasticity of substitution, which describes the extent to which goods are interchangeable.

In this model we choose y to be the numéraire, which means that all prices are normalised

by the price of the generic good, y, and the price of good y is taken as 1. We assume

the representative household has a fixed budget Y , and therefore the consumer’s optimal

consumption is defined in the following problem:

Maximise u (C, y) , (2a)

subject to y +
1

N

L∑
ℓ′=1

Nℓ′∑
j=1

pℓ′,jcℓ′,j ≤ Y . (2b)

Using first–order conditions, we get

pℓ,i
pℓ′,j

=

(
cℓ,i
cℓ′,j

)α−1

, (3)

for any ℓ, ℓ′ ∈ {0, . . . , L}, any i ∈ {1, . . . , Nℓ} and any j ∈ {1, . . . , Nℓ′}. If P denotes the

ideal price index, i.e.
pℓ,i
P

=
(cℓ,i
C

)α−1

, (4)

then, by substituting (4) into (3) and rearranging, we find

P =

[
1

N

L∑
ℓ′=1

Nℓ′∑
j=1

p
α

α−1

ℓ′,j

]α−1
α

,

PC =
1

N

L∑
ℓ′=1

Nℓ′∑
j=1

pℓ′,jcℓ′,j .
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To determine the relationship between C and y, the function u (C, y) is maximised subject

to y + PC ≤ Y . Then,
∂yu

∂Cu
=

1

P
.

Now we assume, for simplicity’s sake, that u (C, y) = Cα + yα. So,

y = Y
(
1 + P

α
α−1

)−1

= g (P, Y ) , (5a)

C =
Y − g (P, Y )

P
=

Y P
1

α−1(
1 + P

α
α−1

) . (5b)

2.1.3 Firms revisited

Now, we assume that firm i faces a cost ψℓ,i of producing a unit of good. As in many

papers,(1; 3; 26) we assume that the knowledge level of firm i reduces the unit cost. So,

there exists a fixed constant ψ ∈ (0,∞) such that

ψh
ℓ,i =

ψ

Zh
ℓ,i

.

Then firms choose to sell at a price pi to maximise profits πh
ℓ,i given by

πh
ℓ,i = pℓ,icℓ,i −

ψ

Zh
ℓ,i

cℓ,i .

By substituting (4) and (5b) in the above equation, assuming P is fixed (which is true for

any individual firm as N → ∞), then

πh
ℓ,i = B

(
Zh

ℓ,i

) α
1−α , (6a)

B = (1− α)

[
1 +

(
α

ψ

) α
1−α

(
1

N

L∑
ℓ′=1

Nℓ′∑
j=1

(
Zh

ℓ′,j

) α
1−α

)]−1(
α

ψ

) α
1−α

Y . (6b)

With their profits, firms can choose to invest in research to increase their future returns.

Then, the agents’ profit functional is given by

Jℓ,i (h) = E
[∫ ∞

0

(
B
(
Zh

ℓ,i

) α
1−α − whℓ,i (t)

)
e−ρt dt

]
. (7)

The wage, w, and the discount rate, ρ, are given constants.
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2.2 Mean field limit

When there are large numbers of firms in each sector, the microscopic model developed in

Section 2.1 can become intractable. Instead, we assume the number of firms in each sector,

Nℓ, goes to infinity while Nℓ

N
→ Aℓ for some Aℓ ∈ (0, 1), which represents the proportion

of firms in sector ℓ. In order to derive the limiting mean field model, we first define the

empirical distributions for each sector ℓ = 1, . . . , L by mNℓ,h
ℓ = 1

Nℓ

∑Nℓ

i=1 δZh
ℓ,i
, where δZh

ℓ,i
is a

Dirac delta at the point Zh
ℓ,i. We also need to define, for fixed ℓ, ℓ′ ∈ {0, . . . , L} and s ∈ N,

the following graph empirical distribution m
Nℓ,ℓ′,s,h

ℓ,ℓ′,s = 1
Nℓ,ℓ′,s

∑
j:sℓ,ℓ

′
i,j =s

δZh
ℓ′,j

. In this case, the

interaction term in the dynamics (1) can be written as:

1

N

L∑
ℓ′=1

Nℓ′∑
j=1

sℓ,ℓ
′

i,j Z
h
ℓ′,j =

L∑
ℓ′=1

Nℓ′

N

∞∑
s=1

Nℓ,ℓ′,s

Nℓ′
s

∫ z̄

0

z dm
Nℓ,ℓ′s,h

ℓ,ℓ′,s ,

for each ℓ ∈ {0, . . . , L}. We can then rewrite the dynamics (1) using m
Nℓ,ℓ′,s,h

ℓ,ℓ′,s as

dZh
ℓ,i (t) =

(
(hℓ,i (t))

γ +
L∑

ℓ′=1

Nℓ′

N

∞∑
s=1

Nℓ,ℓ′,s

Nℓ′
s

∫ z̄

0

z dm
Nℓ,ℓ′s,h

ℓ,ℓ′,s

)
dt

+ σdBℓ,i (t) + dφh
ℓ,i (t) ,

L
(
Zh

ℓ,i (0)
)
= m0

ℓ ,

AssumingmNℓ,h
ℓ has a limit, mh

ℓ , as Nℓ → ∞ then, using the assumption that the distribution

of sℓ,ℓ
′

i.j depends on ℓ and ℓ′ only, it can be seen heuristically that m
Nℓ,ℓ′,s,h

ℓ,ℓ′,s → mh
ℓ as Nℓ→∞ as

well. Therefore, in the limiting model, a representative firm in sector ℓ evolves according to

the SDE

dZh,mh

ℓ (t) =

(
(hℓ (t))

γ +
L∑

ℓ′=1

Aℓ′p (ℓ, ℓ
′)

∫ z̄

0

z′ dmh
ℓ′ (z

′, t)

)
dt

+ σdBℓ (t) + dφh,mh

ℓ (t)

(8a)

L
(
Zh,m

ℓ (0)
)
= m0

ℓ , (8b)

where, p (ℓ, ℓ′) =
∑∞

s=0 s p (ℓ, ℓ
′, s), because

Nℓ,ℓ′,s
Nℓ′

→ p (ℓ, ℓ′, s) as Nℓ → ∞ by the law of large

numbers. The corresponding profit functional is

Jℓ (h;m) = E
[∫ ∞

0

(
B
(
Zh,mh

ℓ (t)
) α

1−α − whℓ (t)

)
e−ρt dt

]
. (9)
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If all firms act in the same way as the representative firm, then the distribution of firms with

respect to productivity level is given by a system of L Fokker–Planck equations

∂tm
h
ℓ + ∂z

[(
(hℓ)

γ +
L∑

ℓ′=1

Aℓ′p (ℓ, ℓ
′)

∫ z̄

0

z′ dmh
ℓ′ (z

′, t)

)
mh

ℓ

]
− σ2

2
∂2zzm

h
ℓ = 0 , (10a)

−

(
(hℓ)

γ +
L∑

ℓ′=1

Aℓ′p (ℓ, ℓ
′)

∫ z̄

0

z′ dmh
ℓ′ (z

′, t)

)
mh

ℓ +
σ2

2
∂zm

h
ℓ

∣∣∣∣∣
z=0,z̄

= 0 , (10b)

mh
ℓ (z, 0) = m0

ℓ (z) , (10c)

where the boundary condition comes from the reflected stochastic process.(41; 46)

3 The MFG model

3.1 Problem formulation

The MFG problem is related to the search for Nash equilibria in the optimisation of the

profit functional (9) while agents evolve according to the dynamics (8).

Definition 1 The MFG problem is to find a pair (h∗,m∗), where h∗ = (h∗ℓ)
L
ℓ=1 is a sequence

of controls and m∗ = (m∗
ℓ)

L
ℓ=1 is a sequence of probability distributions on [0, z̄], such that for

any other sequence of controls h and every ℓ

Jℓ (h
∗
ℓ ,m

∗) ≥ Jℓ (hℓ,m
∗) (11a)

and m∗
ℓ = L

(
Zh∗,m∗

ℓ

)
. (11b)

Such a distribution is called an MFG equilibrium.

To find an MFG equilibrium we first describe the Hamilton–Jacobi–Bellman (HJB) PDE

related to the optimisation part of the problem (11a). Then we couple the HJB PDE to

the Fokker–Planck PDE (10) to solve the consistency part (11b). We start by defining L

Hamiltonians Hℓ : (0, z̄)× (H1 (0, z̄))
L × R → R, for ℓ = 1, . . . L as

Hℓ (z,m, λ) = sup
h≥0

(
hγ +

L∑
ℓ′=1

Aℓ′p (ℓ, ℓ
′)

∫ z̄

0

z′mℓ′ (z
′) dz′

)
λ+Bz

α
1−α − wh

=(1− γ)
( γ
w

) γ
1−γ

max (0, λ)
1

1−γ

+ λ

L∑
ℓ′=1

Aℓ′p (ℓ, ℓ
′)

∫ z̄

0

z′mℓ′ (z
′) dz′ +Bz

α
1−α ,

(12)
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where z ∈ (0, z̄) is productivity, m = (mℓ)
L
ℓ=1 is a distribution of firms in each sector and λ is

an adjoint variable. The optimal control is given by h∗ℓ =
(
γ
w
max (0, λ)

) 1
1−γ , for ℓ = 1, . . . , L.

Then we define the running profit Vℓ (z, t), for ℓ = 1, . . . , L, by

Vℓ (z, t) = sup
hℓ

E
[ ∫ ∞

t

(
B
(
Zh

ℓ (s)
) α

1−α − whℓ
(
Zh

ℓ (s)
))

e−ρ(s−t) ds

∣∣∣∣Zh
ℓ (t) = z

]
,

(13)

where Zh
ℓ (s) follows (8). If we let the equilibrium distribution be given by mℓ (for ℓ =

1, . . . , L), then the MFG PDE system is stationary and given by



Vℓ ∈ H1 (0, z̄)

mℓ ∈ H1 (0, z̄)

− σ2

2
V ′′
ℓ + ρVℓ −Hℓ (z,m, V

′
ℓ ) = 0

− σ2

2
m′′

ℓ + (∂λHℓ (z,m, V
′
ℓ )mℓ)

′
= 0

V ′
ℓ |z=0,z̄ = 0

−σ
2

2
m′

ℓ + ∂λHℓ (z,m, 0)mℓ

∣∣∣∣
z=0,z̄

= 0∫ z̄

0

mℓ (z) dz = 1 .

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

(14g)

It can be shown, using either the dynamic programming principle(44) or the stochastic max-

imum principle,(14) that Vℓ (z), as defined by (13), satisfies the HJB equation (14c), (14e),

provided smooth solutions to the HJB equation exist. The Fokker–Planck system (14d), (14f), (14g)

comes from the distribution in the previous section (10) and the consistency condition (11b).

The verification theorem, Corollary 2, proves that existence( and uniqueness) of MFG equi-

libria, as defined in Definition 1 is a corollary to existence (and uniqueness) of smooth

solutions to (14).

3.2 Existence and uniqueness of solutions to the MFG

Definition 2 A solution to the innovation MFG model (14) is defined to be a tuple (m,V ) =

(m1, . . . ,mL, V1, . . . , VL) such that mℓ : (0, z̄) → (0,∞), Vℓ : (0, z̄) → R satisfy (14) in the

weak sense for each ℓ = 1, . . . , L.

Theorem 1 There exists a solution (m,V ) ∈ [C2 (0, z̄) ∩ C1 [0, z̄]]
2L

to (14). Furthermore,
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if
∑L

ℓ′=1Aℓ′p (ℓ, ℓ
′) is small enough for every ℓ = 1, . . . L, then the solution is unique.

Proof. As noted in the introduction, this proof is based on an earlier proof of existence

and uniqueness.(9) The proof presented here has some technical differences. Hence it is

reproduced in full. However, it follows a similar framework and so we do not claim the proof

to be new. First, for k ∈ [0,∞) we introduce an auxiliary system of PDEs defined by


V k ∈ H1 (0, z̄)

− σ2

2

(
V k
)′′

+ ρV k −Hk
(
z,
(
V k
)′)

= 0(
V k
)′∣∣∣

z=0,z̄
= 0 ,

(15a)

(15b)

(15c)

and 

mk ∈ H1 (0, z̄)

− σ2

2

(
mk
)′′

+

([( γ
w
max

(
0,
(
V k
)′)) γ

1−γ
+ k

]
mk

)′

= 0

−σ
2

2

(
mk
)′
+ kmk

∣∣∣∣
z=0,z̄

= 0∫ z̄

0

mk (z) dz = 1 ,

(16a)

(16b)

(16c)

(16d)

where

Hk (z, λ) = (1− γ)
( γ
w

) γ
1−γ

(max (0, λ))
1

1−γ + kλ+Bz
α

1−α .

We use a modified version of upper and lower solutions(38) to prove existence and uniqueness

of a weak solution V k to (15) for any k ∈ [0,∞), and use elliptic regularity theory to show

V k ∈ C2 (0, z̄) ∩ C1 [0, z̄]. Next we define mk = 1

∥m̄k∥
1

m̄k, where

m̄k = e
2
σ2

(
kz+

∫ z
0

(
γ
w

max
(
0,(V k)

′)) γ
1−γ dy

)
,

and
∥∥m̄k

∥∥
1
=
∫ z̄

0
m̄kdz, for k ∈ [0,∞). We prove that mk ∈ C2 (0, z̄) ∩ C1 [0, z̄] and that mk

is the unique solution of (16). Finally, we define a map

Φ :


[0,∞)L → [0,∞)L ,

(k1, . . . , kL) 7→
( L∑

ℓ′=1

Aℓ′ p (ℓ, ℓ
′)

∫ z̄

0

zmkℓ′ (z) dz
)L
ℓ=1

,

and using the Brouwer fixed point theorem we prove there exists k̄ ∈ [0,∞)L such that

10



Φ
(
k̄
)
= k̄. We use the contraction mapping theorem to prove uniqueness under certain

smallness assumptions for the data. Then it follows, by replacing k̄ℓ with Φ
(
k̄ℓ
)
in (15)

and (16), that
(
mk̄, V k̄

)
=
(
mk̄1 , . . . ,mk̄L , V k̄1 , . . . , V k̄L

)
is a (unique) solution to (14) with

the required regularity.

Corollary 2 Let (m,V ) be a solution to (14). Then h∗ defined coordinate–wise by

h∗ℓ =
( γ
w
max (0, V ′

ℓ )
)
,

is an equilibrium control to the MFG problem defined in Definition 1, with m∗ = m. Fur-

thermore, if the solution to (14) is unique, then the MFG equilibrium is unique.

Proof. Let (m,V ) be a solution to (14). Then, applying earlier results(21) (see in particular

Theorem 9.1 of this reference) with adjustments to take into account the reflection at the

boundary, we get

Vℓ (z) ≤ Jℓ (hℓ,m
∗) ,

for every stationary Markovian feedback control. Note that the proof relies on the appli-

cation of Dynkin’s formula, which can be readily extended to the case of reflected Markov

processes.(46) Furthermore, as shown in earlier results(21) (see in particular Theorem 9.1 of

this reference), we have

h∗ℓ =
( γ
w
max (0, V ′

ℓ )
) γ

1−γ
,

is an optimal control of Jℓ (hℓ,m
∗). Finally, to show (h∗,m∗) is an MFG equilibrium, it

remains to show that an agent evolving according to (8) with a control h∗ℓ has a distribution

equal to m∗
ℓ . However, this can immediately be seen by comparing the Fokker–Planck equa-

tion governing the dynamics (8), given by (10), with the equation describing the distribution

m∗, given by (14d). Note that the fact that m∗ is stationary, and the right hand side of (10)

equals the left hand side of (14d), implies the dynamics of the agent are stationary in law,

and hence m∗ = m.

Now, assume the solution to (14) is unique, and take any MFG equilibrium (h∗,m∗).

Then, each h∗ℓ is an optimal control for the following problem

Maximise E
[∫ ∞

0

(
B
(
Zhℓ

ℓ (t)
) α

1−α − whℓ (t)

)
e−ρt dt

]
,

Subject to dZhℓ (t) = ((hℓ (t))
γ + kℓ) dt+ σdBℓ (t) + dφhℓ

ℓ (t) ,

L
(
Zhℓ

ℓ (0)
)
= m0

ℓ ,

where kℓ =
∑L

ℓ′=1Aℓ′p (ℓ, ℓ
′)
∫ z̄

0
zm∗

ℓ′ (z) dz. However, we can then define the HJB equation

11



related to that optimal control problem as (15b) with k = kℓ, which has a unique C2 solution.

Then, by Dynkin’s formula applied to e−ρtV kℓ

(
Zhℓ

ℓ (t)
)
, and following earlier proofs,(21; 47)

E
[∫ ∞

0

(
B
(
Zhℓ

ℓ (t)
) α

1−α − whℓ (t)

)
e−ρt dt

∣∣∣∣Zhℓ
ℓ (0) = z

]
= lim

t→∞
E
[
e−ρtV kℓ

(
Zhℓ

ℓ (t)
)∣∣∣Zhℓ

ℓ (0) = z
]

+ E
[∫ ∞

0

(
B
(
Zhℓ

ℓ (t)
) α

1−α − whℓ (t)

)
e−ρt dt

∣∣∣∣Zhℓ
ℓ (0) = z

]
=V kℓ (z)

+ E
[∫ ∞

0

(
((hℓ (t))

γ + kℓ)
(
V kℓ
)′ (

Zhℓ
ℓ (t)

))
e−ρt dt

∣∣∣∣Zhℓ
ℓ (0) = z

]
+ E

[ ∫ ∞

0

(
σ2

2

(
V kℓ
)′′ (

Zhℓ
ℓ (t)

)
− ρV kℓ

(
Zhℓ

ℓ (t)
)
− whℓ (t)

)
e−ρt dt

∣∣∣∣Zhℓ
ℓ (0) = z

]
=V kℓ (z)

+ E
[∫ ∞

0

(
(hℓ (t))

γ (V kℓ
)′ (

Zhℓ
ℓ (t)

)
− whℓ (t)

)
e−ρt dt

∣∣∣∣Zhℓ
ℓ (0) = z

]
− E

[∫ ∞

0

(
(1− γ)

( γ
w

) γ
1−γ
(
max

(
0,
(
V kℓ
)′ (

Zhℓ
ℓ (t)

))) 1
1−γ

)

e−ρt dt

∣∣∣∣∣Zhℓ
ℓ (0) = z

]
≤ V kℓ (z) ,

with equality if and only if hℓ (t) =
(

γ
w

(
V kℓ
)′ (

Zhℓ
ℓ (t)

)) γ
1−γ

, so there is a unique maximising

control, given in feedback form as h∗ℓ (z) =
(

γ
w

(
V kℓ
)′
(z)
) γ

1−γ
. Then, the dynamics of an

agent using the control h∗ℓ are governed by

∂tm
h∗
ℓ

ℓ + ∂z

(
∂λH

kℓ
(
z,
(
V kℓ
)′)

m
h∗
ℓ

ℓ

)
− σ2

2
∂2zzm

h∗
ℓ

ℓ = 0 ,

−σ
2

2
∂zm

h∗
ℓ

ℓ + ∂λH
kℓ
(
z,
(
V kℓ
)′)

m
h∗
ℓ

ℓ

∣∣∣∣
z=0,z̄

= 0 .

So, since m
h∗
ℓ

ℓ = m∗
ℓ for all ℓ = 1, . . . L, then k = Φ(k) and ∂tm

h∗
ℓ

ℓ = 0, therefore (m∗, V ∗)

must be the unique solution to (14), and finally h∗ℓ =
(
γ
w
(Vℓ)

′ (z)
) γ

1−γ . As a result, any

generic equilibrium (h∗,m∗) must equal the equilibrium found in the existence part of the

12



proof, and hence the equilibrium is unique.

3.2.1 Solutions to the auxiliary HJB PDE

Theorem 3 There exists a unique solution V k ∈ C2,τ [0, z̄] to the auxiliary HJB PDE (15)

for any k ∈ [0,∞) and some τ ∈ (0, 1), where C2,τ [0, z̄] is the set of C2 functions on [0, z̄]

whose second derivative is Hölder continuous with exponent τ . Furthermore, 0 ≤ V k ≤
B
ρ
z̄

α
1−α

Proof. The existence part of the proof uses the theory of upper and lower solutions(34)

(see specifically Theorem 4.3 of this reference) along similar lines as earlier results(9) (see

proof of Proposition 3.12 in this reference). This shows that a solution V k ∈ W 1,p (0, z̄) to

the auxiliary HJB PDE exists, for some p ≥ 1, provided the following hold true:

1. There exist constants
¯
V ≤ V̄ such that ρ

¯
V − Bz̄

α
1−α ≤ 0 ≤ ρV̄ − Bz̄

α
1−α , for every

z ∈ [0, z̄].

2. There exist constants ak ∈ R and bk > 0 such that∣∣∣∣ρu− (1− γ)
( γ
w

) γ
1−γ

(max (0, λ))
1

1−γ − kλ−Bz̄
α

1−α

∣∣∣∣ ≤ ak + bk |λ|p ,

for every z ∈ (0, z̄), u ∈
[
¯
V, V̄

]
and every λ ∈ R.

If these two properties hold, then
¯
V ≤ V k ≤ V̄ . The first assertion is true by taking

¯
V = 0

and V̄ = B
ρ
z̄

α
1−α , which also gives the required bounds for V k. The second assertion is true

with bk = k + (1− γ)
(
γ
w

) γ
1−γ , ak = Bz̄

α
1−α + bk, and p =

2
1−γ

, as then∣∣∣∣ρu− (1− γ)
( γ
w

) γ
1−γ

(max (0, λ))
1

1−γ − kλ−Bz̄
α

1−α

∣∣∣∣
≤ ρ |u|+

(
k + (1− γ)

( γ
w

) γ
1−γ

)
max

(
1, |λ|

1
1−γ

)
+Bz̄

α
1−α ≤ ak + bk |λ|p .

Now, since (0, z̄) is bounded and p > 2, V k ∈ H1 (0, z̄). To show V k ∈ C2,τ [0, z̄], take any

solution V k to (15) and define

f =
2

σ2

((
σ2

2
− ρ

)
V k + k

(
V k
)′

+ (1− γ)
( γ
w

) γ
1−γ
(
max

(
0,
(
V k
)′)) 1

1−γ
+Bz̄

α
1−α

)
.

13



Then V k is a solution of −u′′ + u = f , where f ∈ L2 (0, z̄). So, from elliptic regularity(43)

(see Proposition 7.2. p.404 of this reference), V k ∈ H2 (0, z̄). Therefore
(
V k
)′ ∈ H1 (0, z̄),

and so f ∈ H1 (0, z̄) because α > 0. So, from elliptic regularity(43) (see Proposition 7.4.

p.407 of this reference), V k ∈ H3 (0, z̄). Then, by the Sobolev inequality(19) (see Theorem

6 p.270 of this reference) V k ∈ C2,τ [0, z̄].

To prove uniqueness we use the strong maximum principle and Hopf’s lemma(19) (see

Section 6.4.2. pp. 330–333 of this reference). Suppose, for some k ∈ [0,∞), there are two

solutions V1, V2 ∈ C2 (0, z̄) ∩ C1 [0, z̄] to (15) and V1 ̸= V2. If we define u = V1 − V2, then

u must attain its maximum at some point z∗ ∈ [0, z̄]. Suppose at this point u > 0. Note

that if this were not the case, we could consider the minimum, as either its maximum or

its minimum must be non–zero. The argument for the minimum is the same as the one for

the maximum, so it is omitted. First suppose z∗ ∈ (0, z̄). Since this is the maximal point,

u′ (z∗) = 0, so V ′
1 (z

∗) = V ′
2 (z

∗). Hence, there exists an open, connected and bounded region

U such that U ⊂ (0, z̄), z∗ ∈ U and

−σ
2

2
u′′ = −ρu+ ku′ + (1− γ)

( γ
w

) γ
1−γ
[
max (0, V ′

1)
1

1−γ −max (0, V ′
2)

1
1−γ

]
≤ 0 ,

for every z ∈ U . So, by the strong maximum principle, u is constant in U . In particular,

using (15b), u (z∗) = 0. But this is a contradiction. The only other case is z∗ ∈ {0, z̄}
and u (z) < u (z∗) for every z ∈ (0, z̄). Then, ∂u

∂ν

∣∣
z∗
> 0 by Hopf’s Lemma, but by (15c),

∂u
∂ν

= ∂V1

∂ν
− ∂V2

∂ν
= 0. This again leads to a contradiction. Therefore V1 = V2 and solutions

to (15) are unique for every k ∈ [0,∞).

Proposition 1 Fix k, k1, k2 ∈ [0,∞). Then, the unique classical solution to the auxiliary

HJB PDE (15), as found in Theorem 3, satisfies the following properties:

1. V k is an increasing function on [0, z̄] i.e.
(
V k
)′ ≥ 0

2.
(
V k
)′
> 0 for all z ∈ (0, z̄)

3. ∥
(
V k
)′ ∥∞ = supz∈(0,z̄)

(
V k
)′
(z) ≤

[
B

1−γ
z̄

α
1−α

]1−γ (
w
γ

)γ
4.
∥∥V k1 − V k2

∥∥
∞ ≤ 1

ρ

[
B

1−γ
z̄

α
1−α

]1−γ (
w
γ

)γ
|k1 − k2|

5. V k is strictly increasing with respect to k

6.
∥∥∥(V k1

)′ − (V k2
)′∥∥∥

∞
≤ 4z̄

σ2

[
B

1−γ
z̄

α
1−α

]1−γ (
w
γ

)γ
|k1 − k2|

7.
(
V k
)′′

(0) > 0 >
(
V k
)′′

(z̄).
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Proof. Property (1): Suppose, for a contradiction, there exists z ∈ [0, z̄] such that
(
V k
)′
(z) <

0. First, by the boundary condition (15c), z ∈ (0, z̄). So, by the boundary conditions and

continuity of
(
V k
)′
, there exists z0, z1 ∈ [0, z̄] with z0 < z1,

(
V k
)′
(z0) =

(
V k
)′
(z1) = 0

and
(
V k
)′
(z) ≤ 0 for all z ∈ (z0, z1). Suppose that z0, z1 ∈ (0, z̄). Then

(
V k
)′′

(z0) ≤ 0 ≤(
V k
)′′

(z1) by construction of z0, z1 and differentiability of
(
V k
)′
. Furthermore, V k (z0) >

V k (z1) because
(
V k
)′
< 0 in (z0, z1). So, using (15b)

0 =− σ2

2

((
V k
)′′

(z1)−
(
V k
)′′

(z0)
)

+ ρ
(
V k (z1)− V k (z0)

)
−B

(
z

α
1−α

1 − z
α

1−α

0

)
< 0 .

This is a contradiction, so z0 = 0 or z1 = z̄. Assume z0 = 0, we will again prove a

contradiction (the other two cases of z1 = z̄ and both z0 = 0, z1 = z̄ follow along similar

arguments so their proofs are omitted). Since
(
V k
)′
(0) =

(
V k
)′
(z1) = 0 and

(
V k
)′
(z) <

0 for all z ∈ (0, z1) then, by continuity of
(
V k
)′′
, we can find ϵ1, δ1 ∈

(
0, z1

2

)
such that(

V k
)′′

(z) ≤ 0 for all z ∈ (0, ϵ1] and
(
V k
)′′

(z) ≥ 0 for all z ∈ [z1 − δ1, z1). Furthermore,

V k is strictly decreasing on (z0, z1). So, using these two facts and continuity of
(
V k
)′

there

exists δ ∈ (0, δ1] and ϵ ∈ (0, ϵ1] such that

1.
(
V k
)′
(ϵ) =

(
V k
)′
(z1 − δ) = min

((
V k
)′
(ϵ1) ,

(
V k
)′
(z1 − δ1)

)
2. V k (ϵ) > V k (z1 − δ)

3.
(
V k
)′′

(ϵ) ≤ 0 ≤
(
V k
)′′

(z1 − δ).

Then,

0 >− σ2

2

((
V k
)′′

(z1 − δ)−
(
V k
)′′

(ϵ)
)

+ ρ
(
V k (z1 − δ)− V k (ϵ)

)
−B

(
(z1 − δ)

α
1−α − ϵ

α
1−α

)
,

which contradicts the fact that V k is a solution to (15). Therefore,
(
V k
)′ ≥ 0 in [0, z̄].

Property (2): From Property (1), we know
(
V k
)′ ≥ 0. Now suppose, for a contradiction,

there exists z∗ ∈ (0, z̄) such that
(
V k
)′
(z∗) = 0. Then

(
V k
)′′

(z∗) = 0, since it is a minimum

of
(
V k
)′
. So, by (15b), V k (z∗) = B

ρ
z

α
1−α and, since

(
V k
)′
(z∗) < d

dz

(
B
ρ
z

α
1−α

)
, there exists

z0, z1 ∈ (0, z̄) with z0 < z∗ < z1 such that

1.
(
V k
)′
(z0) =

(
V k
)′
(z1)

2. V k (z0) >
B
ρ
z

α
1−α

0 and V k (z1) <
B
ρ
z

α
1−α

1

3.
(
V k
)′′

(z0) ≤ 0 ≤
(
V k
)′′

(z1).
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Then,

−σ
2

2

((
V k
)′′

(z1)−
(
V k
)′′

(z0)
)
+ ρ

(
V k (z1)− V k (z0)

)
−B

(
z

α
1−α

1 − z
α

1−α

0

)
< 0 ,

which is a contradiction of (15b). Therefore,
(
V k
)′
(z) > 0 for all z ∈ (0, z̄).

Property (3): Since
(
V k
)′ ≥ 0,

(
V k
)′
(0) =

(
V k
)′
(z̄) = 0 and

(
V k
)′
is continuous on [0, z̄],

then
(
V k
)′

must have a maximum that it attains at some point z∗ ∈ (0, z̄). Furthermore,

since
(
V k
)′

is continuously differentiable in (0, z̄), then
(
V k
)′′

(z∗) = 0. So, using the bound

on V k found in Theorem 3

0 ≤
(
V k
)′
(z) ≤

(
V k
)′
(z∗)

=

[
w

γ
1−γ

(1− γ) γ
γ

1−γ

(
ρV k (z∗)− k

(
V k
)′
(z∗)−B (z∗)

α
1−α

)]1−γ

≤
[

B

(1− γ)
z̄

α
1−α

]1−γ (
w

γ

)γ

.

Property (4): Take k1, k2 ∈ [0,∞) with k1 < k2. First we show V k2 − V k1 ≥ 0, then we show

V k2−V k1 ≤
∥∥∥(V k1)

′∥∥∥
∞

ρ
(k2 − k1), and we can conclude using Property (3). Let u1 = V k2−V k1

and assume, for a contradiction, there exists z ∈ [0, z̄] such that u1 (z) < 0. Then, u1 attains

a minimum at z∗ ∈ [0, z̄] and u1 (z
∗) < 0. First suppose z∗ ∈ (0, z̄), then u′1 (z

∗) = 0 and

from (15b)

−σ
2

2
u′′1 (z

∗) = −ρu1 (z∗) + (k2 − k1)
(
V k1
)′
(z∗) > 0 ,

since
(
V k1
)′ ≥ 0 and u1 < 0. Then, by continuity of u′′1, there exists an open bounded,

connected U ⊂ [0, z̄] such that z∗ ∈ U and u′′1 < 0 for all z ∈ U . So, by the strong maximum

principle, u1 is constant in U . In particular, u′′1 = 0, which contradicts u′′1 < 0 for all

z ∈ U . So, z∗ ∈ {0, z̄} and u1 (z) < u1 (z
∗) for all z ∈ (0, z̄). However, from Hopf’s lemma

u′1 (z
∗) ̸= 0, which contradicts (15c). So, we conclude that u1 ≥ 0. Now let u2 = V k2−V k1−ϵ,

with ϵ =

∥∥∥(V k1)
′∥∥∥

∞
ρ

(k2 − k1) < ∞. We assume, for a contradiction, there exists z ∈ [0, z̄]

such that u2 (z) > 0. Then u2 attains a maximum at z∗ ∈ [0, z̄] and u2 (z
∗) > 0. First

suppose z∗ ∈ (0, z̄), then u′2 (z
∗) = 0 and from (15b)

−σ
2

2
u′′2 (z

∗) = −ρu2 (z∗) + (k2 − k1)
(
V k1
)′
(z∗)− ρϵ < 0 ,

since u2 > 0 and ρϵ ≥ (k1 − k2)
(
V k1
)′
(z∗). Then, by continuity of u′′2, there exists an open

bounded, connected U ⊂ (0, z̄) such that z∗ ∈ U and u′′2 > 0 for all z ∈ U . So, by the strong
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maximum principle, u2 is constant in U . In particular, u′′2 = 0, which contradicts u′′2 > 0

for all z ∈ U . So, z∗ ∈ {0, z̄} and u2 (z) > u2 (z
∗) for all z ∈ (0, z̄). However, from Hopf’s

lemma u′2 (z
∗) ̸= 0, which contradicts (15c). So, we can conclude that u2 ≤ 0.

Property (5): The proof of Property (4) shows V k is increasing with respect to k. Now

suppose, for a contradiction, there exists z∗ ∈ [0, z̄] such that k1 < k2 but V
k1 (z∗) = V k2 (z∗).

First, assume z∗ ∈ (0, z̄) and define u = V k2 − V k1 . Then, u (z∗) = 0, u′ (z∗) = 0 and

u′′ (z∗) ≥ 0, since z∗ is a minimum of u. Furthermore, from Property (2),
(
V k1
)′
(z∗) > 0.

Therefore, using (15b), we get the contradiction

0 = −σ
2

2
u′′ + (k1 − k2)

(
V k1
)′
< 0 .

Hence, z∗ ∈ {0, z̄}, so u′ (z∗) = 0 ,using (15c). But, u′ (z∗) ̸= 0 by Hopf’s lemma, which is a

contradiction. So, V k is strictly increasing with respect to k.

Property (6): Fix k1, k2 ∈ [0,∞). Let u = V k1 − V k2 . Then, u satisfies

σ2

2
u′′ =ρu− k1u

′ + (k2 − k1)
(
V k2
)′

− (1− γ)
( γ
w

) γ
1−γ

(((
V k1
)′) 1

1−γ −
((
V k2
)′) 1

1−γ

)
.

Suppose for z ∈ (0, z̄), u′ (z) ≥ 0. Then, since u′ (0) = 0, there exists z0 ∈ [0, z] such that

u′ (y) ≥ 0 for all y ∈ [z0, z] and u
′ (z0) = 0. Therefore

0 ≤ u′ (z) =

∫ z

z0

u′′ (y) dy ≤ 2z̄

σ2

(
ρ ∥u∥∞ + |k2 − k1|

∥∥∥(V k2
)′∥∥∥

∞

)
≤ 4z̄

σ2

[
B

(1− γ)
z̄

α
1−α

]1−γ (
w

γ

)γ

|k2 − k1| .

We can similarly show that

u′ (z) ≥ −4z̄

σ2

[
B

(1− γ)
z̄

α
1−α

]1−γ (
w

γ

)γ

|k2 − k1| ,

if u′ (z) ≤ 0. Hence,
(
V k
)′

is Lipschitz continuous with respect to k with the required

constant.

Property (7): First, we will show
(
V k
)′′

(0) > 0, and then that
(
V k
)′′

(z̄) < 0. Both steps

use a similar method. Note that
(
V k
)′′

(0) ≥ 0 and
(
V k
)′′

(z̄) ≤ 0, because
(
V k
)′
(0) =

(
V k
)′
(z̄) = 0

and
(
V k
)
(z) > 0 for all z ∈ (0, z̄). So suppose, for a contradiction, that

(
V k
)′′

(0) = 0. Then,

since V k ∈ C2,τ [0, z̄], we can use continuity of V k,
(
V k
)′
,
(
V k
)′′

and (15b), (15c) to show
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V k (0) = 0. We can also use continuity of
(
V k
)′′

to show that for every C > 0 there exists

ϵ1 ∈ (0, 1) such that z ∈ (0, ϵ1) =⇒
(
V k
)′′

(z) < Cσ2

ρ
. Therefore, for any z ∈ (0, ϵ1)

V k (z) =

∫ z

0

∫ y

0

(
V k
)′′

(y′) dy′ dy − z
(
V k
)′
(0)− V k (0) <

Cσ2

2ρ
z2 .

Using (15b), and the fact that
(
V k
)′
(z) ≥ 0, we in fact find

(
V k
)′′

(z) ≤ 2ρ
σ2V (z) < Cz2, on

(0, ϵ). Repeating this procedure as many times as necessary, we can show that for C = B
ρ

and k > α
1−α

there exists ϵ2 ∈ (0, 1) such that

V k (z) <
B

ρ
zk <

B

ρ
z

α
α−1 , for every z ∈ (0, ϵ2) .

However, since
(
V k
)′
> 0 in (0, z̄), there exists ϵ3 > 0 such that

(
V k
)′

increases on (0, ϵ3).

Therefore,
(
V k
)′′ ≥ 0 on (0, ϵ2). So, taking ϵ = min (ϵ2, ϵ3), and using (15b):

B

ρ
z

α
α−1 > V k (z) >

B

ρ
z

α
α−1 ,

which is a contradiction. Hence,
(
V k
)′′

(0) > 0. Now let’s turn to
(
V k
)′′

(z̄). Suppose, for

a contradiction, that
(
V k
)′′

(z̄) = 0. Then, since V k ∈ C2,τ [0, z̄], we can use continuity of

V k,
(
V k
)′
,
(
V k
)′′

and (15b), (15c) to show V k (z̄) = B
ρ
z̄

α
1−α . We can also use continuity of(

V k
)′′

to show that for every C > 0 there exists ϵ1 >∈ (0, 1) such that z ∈ (z̄ − ϵ1, z̄) =⇒(
V k
)′′

(z) > −C. Therefore, for any z ∈ (z̄ − ϵ1, z̄)(
V k
)′
(z) < C (z̄ − z) ,

V k (z) > Bz̄
α

1−α − C

2
(z̄ − z)2 .

Then, using (15b),

V ′′ (z) >
2

σ2

(
B

ρ

(
z̄

α
1−α − z

α
1−α

)
− ρC

2
(z̄ − z)2

− kC (z̄ − z)2 − (1− γ)
( γ
w

) γ
1−γ
((
V k
)′) 1

−γ

)
> −C̃ (z̄ − z) .

Furthermore, this is true for any C̃ > 0 provided ϵ1 is small enough. Repeating this argument

as many times as necessary, we find that there exists ϵ ∈ (0, 1) such that the following hold

18



for any z ∈ (z̄ − ϵ, z̄):

(
V k
)′′

(z) > −C (z̄ − z)k > −C (z̄ − z)
α

1−α ,(
V k
)′
< C (z̄ − z)

α
1−α ,

V k >
B

ρ
z̄

α
1−α − C (z̄ − z)

α
1−α ,

C +
C

ρ

(
σ2

2
+ k + (1− γ)

( γ
w

) γ
1−γ

)
≤ B

ρ
.

Then, using (15b), we get

V k >
B

ρ
z̄

α
1−α − C (z̄ − z)

α
1−α (17a)

V k <
C

ρ

(
σ2

2
+ k + (1− γ)

( γ
w

) γ
1−γ

)
(z̄ − z)

α
1−α +

B

ρ
z

α
1−α . (17b)

Rearranging gives (
z̄

α
1−α − z

α
1−α

)
< (z̄ − z)

α
1−α

If α = 1
2
, this is immediately a contradiction. If α > 1

2
, then

(
z̄

α
1−α − z

α
1−α

)
− (z̄ − z)

α
1−α is

strictly decreasing for all z ∈
(
z̄
2
, z̄
)
, and therefore

(
z̄

α
1−α − z

α
1−α

)
− (z̄ − z)

α
1−α > 0, which is

a contradiction. Finally, if α < 1
2
, we can take k = 1 and modify C appropriately in (17), and

use concavity of z
α

1−α to show α
1−α

z̄
α

1−α (z̄ − z) < α
1−α

z̄
α

1−α (z̄ − z), which is a contradiction

again. Therefore
(
V k
)′′

(z̄) < 0.

3.2.2 The auxiliary Fokker–Planck equation

Definition 3 Fix k ∈ [0,∞) and let V k ∈ C2 (0, z̄) ∩ C1 [0, z̄] denote the unique solution

to (15). Then, we define the function mk : (0, z̄) → (0,∞) by

m̄k = e
2
σ2

(
kz+

∫ z
0

(
γ
w(V k)

′) γ
1−γ dy

)
(18a)

∥∥m̄k
∥∥
1
=

∫ z̄

0

m̄kdz (18b)

mk =
1

∥m̄k∥1
m̄k . (18c)

Proposition 2 For every k ∈ [0,∞), mk ∈ C2 (0, z̄) ∩ C1 [0, z̄] where mk is defined by (3).

Proof. First, note thatmk is well defined because
(
V k
)′ ≥ 0 and

(
V k
)′
is uniformly bounded.

Hence, there exists C ∈ (1,∞) such that m̄k (z) ∈ [1, C] and
∥∥m̄k

∥∥
1
∈ [z̄, Cz̄], so mk (z) ∈

19



[
1
Cz̄
, C
z̄

]
. Furthermore, mk ∈ C [0, z̄] because V k ∈ C1 [0, z̄]. Now, if mk ∈ C2 (0, z̄)∩C1 [0, z̄],

then its derivatives would be

(
mk
)′
=

2

σ2

(
k +

( γ
w

(
V k
)′) γ

1−γ

)
mk (19a)

(
mk
)′′

=
2

σ2

(
k +

( γ
w

(
V k
)′) γ

1−γ

)(
mk
)′

+
2γ2

σ2w (1− γ)

( γ
w

(
V k
)′) 2γ−1

1−γ (
V k
)′′
mk .

(19b)

But, since V k ∈ C1 [0, z̄] and mk ∈ C [0, z̄], then 2
σ2

(
k +

(
γ
w

(
V k
)′) γ

1−γ

)
mk is well–defined

and continuous for all z ∈ [0, z̄]. Hence, mk ∈ C1 [0, z̄]. Then,
(
mk
)′
,
(
V k
)
and

(
V k
)′′

are

continuous in (0, z̄) and from Proposition 1
(
V k
)′
> 0 in (0, z̄). Hence,

(
mk
)′′

is well–defined

in (0, z̄),
(
mk
)′′ ∈ C (0, z̄) and mk ∈ C2 (0, z̄) ∩ C1 [0, z̄].

Theorem 4 There exists a unique solution mk ∈ C2 (0, z̄)∩C1 [0, z̄] to the auxiliary Fokker–

Planck PDE (16) for any k ∈ [0,∞).

Proof. Take mk defined in Definition 3. Then, mk ∈ C2 (0, z̄) ∩ C1 [0, z̄] by Proposition 2.

Furthermore, from (19),mk satisfies (16b), (16c). Finally, by construction,mk satisfies (16d).

Therefore, a solution to the auxiliary Fokker–Planck equation (16) exists, it is given by mk,

and mk ∈ C2 (0, z̄) ∩ C1 [0, z̄]. To prove uniqueness we follow the same proof as in earlier

works.(9) For brevity we only outline the argument here. First, with m̄k defined as in (18),

we can use regularity of m̄k from Proposition 2 to show (16) is equivalent to

mk,
mk

m̄k
∈ H1 (0, z̄) (20a)(

m̄k

(
mk

m̄k

)′
)′

= 0 (20b)

m̄k

(
mk

m̄k

)′
∣∣∣∣∣
z=0,z̄

= 0 ,

∫ z̄

0

mk dz = 1 . (20c)

Then, by multiplying (20b) by mk

m̄k , integrating over (0, z̄) and using integration by parts, the
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system (20) is equivalent to

mk ∈ H1 (0, z̄) , (21a)

there exists Z > 0 such that mk =
1

Z
m̄k , (21b)∫ z̄

0

mk dz = 1 . (21c)

From the previous results in this section, we have shown there exists a unique solution

to (21) given by mk from Definition 3. Hence, existence and uniqueness of the auxiliary

Fokker–Planck PDE follows from the equivalence between (16) and (21).

3.2.3 The fixed point problem

Definition 4 Fix k = (kℓ)
L
ℓ=1 ∈ [0,∞)L. For ℓ = 1, . . . , L, let V kℓ be the unique solution

to the auxiliary HJB PDE (15) with constant kℓ, and let mkℓ be the unique solution to

the auxiliary Fokker–Planck PDE (16) with constant kℓ. Then we define the function Φ :

[0,∞)L → [0,∞)L by

Φℓ (k) =
L∑

ℓ′=1

Aℓ′p (ℓ, ℓ
′)

∫ z̄

0

zmkℓ′ (z) dz , ℓ = 1, . . . , L .

Proposition 3 The function Φ defined in Definition 4 is bounded. Furthermore, defining P

as the L × L matrix with entries Pℓ,ℓ′ = p (ℓ, ℓ′) and A as the column vector (A1, . . . , AL)
T ,

then

0 ≤ ∥Φ (k)∥1 ≤ z̄ ∥PA∥1 ,

where the 1–norm ∥·∥1 is defined as ∥x∥1 =
∑L

ℓ=1 |xℓ| for any x ∈
mathbbRL.

Remark 5 Due to this proposition, we can define ζ = z̄ ∥PA∥1 and consider only the re-

striction of Φ to [0, ζ]L, which we will still denote by Φ for convenience.

Proof. Take ℓ = 1, . . . , L. Then Φℓ (k) =
∑L

ℓ′=1Aℓ′p (ℓ, ℓ
′)
∫ z̄

0
zmkℓ′ (z) dz ≥ 0, since

p (ℓ, ℓ′) ≥ 0 and mkℓ′ ≥ 0. Similarly, since mkℓ′ is a probability distribution, Φℓ (k) ≤
z̄
∑L

ℓ′=1Aℓ′p (ℓ, ℓ
′)
∫ z̄

0
mkℓ′ (z) dz = z̄

∑L
ℓ′=1Aℓ′p (ℓ, ℓ

′). Therefore,

0 ≤
L∑

ℓ=1

Φℓ (k) ≤ z̄

L∑
ℓ=1

L∑
ℓ′=1

Aℓ′p (ℓ, ℓ
′) = z̄ ∥PA∥1 .
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Theorem 6 The function Φ : [0, ζ]L → [0, ζ]L defined in Definition 4 is Lipschitz in the

1–norm on

mathbbRL. The Lipschitz constant is given by
¯
C maxℓ=1,...,LAℓPℓ, where Pℓ =

∑L
ℓ′=1 p (ℓ

′, ℓ)

and
¯
C depends on ∥PA∥1, but not explicitly on P or A.

Proof. First, fix k ∈ [0, ζ]. From Property (5) of Proposition 1, the continuity of V k,
(
V k
)′
,
(
V k
)′′

with respect to z in [0, z̄], and equations (15b), (15c), we find

(
V k
)′′

(0) =
2ρ

σ2
V k (0) ≥ 2ρ

σ2
V 0 (0) =

(
V 0
)′′

(0) > 0 .

Similarly,
(
V k
)′′

(z̄) ≤
(
V ζ
)′′

(z̄) < 0 with the first inequality an equality if and only if k = 0.

Moreover,
(
V k
)′′

is continuous with respect to k due to (15b) and continuity of V k,
(
V k
)′

with respect to k, which was proven in Proposition 1. Therefore, there exists ϵ1, ϵ2 ∈ (0, 1)

and C1, C2 > 0, independent of k, such that

(
V k
)′
(z) =

∫ z

0

(
V k
)′′

(y) dy ≥
∫ z

0

(
V 0
)′′

(y) dy ≥ C1z , if z ∈ [0, ϵ1](
V k
)′
(z) = −

∫ z̄

z

(
V k
)′′

(y) dy ≥ −
∫ z̄

z

(
V ζ
)′′

(y) dy ≥ C2z , if z ∈ [z̄ − ϵ2, z̄] .

Furthermore, by continuity of
(
V k
)′
with respect to k and compactness of [0, ζ], there exists

C3 > 0 such that infk∈[0,ζ]
(
V k
)′
(z) ≥ C3 if z ∈ [ϵ1, z̄ − ϵ2]. Note that Cj for j = 1, 2, 3 are

all independent of k ∈ [0, ζ]. Therefore, if γ ≤ 1
2
, for any k1, k2 ∈ [0, ζ]:

∫ z̄

0

[
min

((
V k1
)′
(z) ,

(
V k2
)′
(z)
)] 2γ−1

1−γ

dz

≤
∫ ϵ1

0

(C1z)
2γ−1
1−γ dz +

∫ z̄−ϵ2

ϵ1

C
2γ−1
1−γ

3 dz +

∫ z̄

z̄−ϵ2

(C2 (z̄ − z))
2γ−1
1−γ dz

≤ 1− γ

γ

(
C

2γ−1
1−γ

1 + C
2γ−1
1−γ

2

)
+ C

2γ−1
1−γ

3 z̄ ,

(22)

while, using Proposition 1, if γ ≥ 1
2∫ z̄

0

[
max

((
V k1
)′
(z) ,

(
V k2
)′
(z)
)] 2γ−1

1−γ

dz

≤ z̄

(
B

(1− γ)
z̄

α
1−α

)2γ−1(
w

γ

) γ(2γ−1)
1−γ

.

(23)
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Now, with the definition of m̄k in (18), for any k1, k2 ∈ [0, ζ] we have

∣∣m̄k1 − m̄k2
∣∣ = ∣∣∣∣∣e 2

σ2

(
k1z+

∫ z
0

(
γ
w(V k1)

′
(y)

) γ
1−γ dy

)

− e
2
σ2

(
k2z+

∫ z
0

(
γ
w(V k2)

′
(y)

) γ
1−γ dy

)∣∣∣∣∣
=

∣∣∣∣∣∣ 2σ2

∫ k1z+
∫ z
0

(
γ
w(V k1)

′
(y)

) γ
1−γ dy

k2z+
∫ z
0

(
γ
w(V k2)

′
(y)

) γ
1−γ dy

e
2
σ2 u du

∣∣∣∣∣∣ .
Then, using the uniform bound on

(
V k
)′
(y) with respect to k given by Proposition 1, we

get

∣∣m̄k1 − m̄k2
∣∣ ≤ 2C̄1

σ2

∣∣∣∣∣ (k1 − k2) z

+

∫ z

0

[( γ
w

(
V k1
)′
(y)
) γ

1−γ −
( γ
w

(
V k2
)′
(y)
) γ

1−γ

]
dy

∣∣∣∣∣
≤ 2C̄1

σ2

(
|k1 − k2| z +

( γ
w

) γ
1−γ

∫ z̄

0

∫ (V k1)
′
(y)

(V k2)
′
(y)

γ

1− γ
u

2γ−1
1−γ du dy

)
,

where C̄1 = e
2z̄
σ2

(
ζ+

[
γB

(1−γ)w
z̄

α
1−α

]γ)
. Then, using Proposition 1 and either (22) or (23), we get

∣∣m̄k1 − m̄k2
∣∣ ≤2C̄1

σ2

(
|k1 − k2| z +

( γ
w

) γ
1−γ γ

1− γ

∥∥∥(V k1
)′ − (V k2

)′∥∥∥
∞∫ z

0

max
[ ((

V k1
)′
(y)
) 2γ−1

1−γ
,
((
V k2
)′
(y)
) 2γ−1

1−γ
]
dy

)

≤2C̄1

σ2

(
z + C̄2

)
|k1 − k2| ,

(24)

where C̄2 =
4z̄
σ2

(
B

(1−γ)
z̄

α
1−α

)1−γ (
γ
w

) γ2

1−γ

(
C

2γ−1
1−γ

1 + C
2γ−1
1−γ

2 + γ
1−γ

C
2γ−1
1−γ

3 z̄

)
, if γ < 1

2
. While C̄2 =

γ
1−γ

4z̄2

σ2

(
wB

γ(1−γ)
z̄

alpha
1−α

)γ
, if γ ≥ 1

2
. Note that for any k ∈ [0, ζ],

∥∥m̄k
∥∥
1
satisfies

∥∥m̄k
∥∥
1
=

∫ z̄

0

e
2
σ2

[
kz+

∫ z
0

(
γ
w(V k)

′
(y)

) γ
1−γ dy

]
dz ≥ 1 , (25)
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as
(
V k
)′ ≥ 0. So, for any k1, k2 ∈ [0, ζ], using (24) and (25), we have∣∣∣∣ ∫ z̄

0

z
(
mk1 −mk2

)
dz

∣∣∣∣ ≤ 1

∥m̄k1∥1

∣∣∣∣∫ z̄

0

z
(
m̄k1 − m̄k2

)
dz

∣∣∣∣
+

∫ z̄

0

z
m̄k2

∥m̄k1∥1 ∥m̄k2∥1
dz
∣∣∣ ∥∥m̄k1

∥∥
1
−
∥∥m̄k2

∥∥
1

∣∣∣
≤2z̄

∫ z̄

0

∣∣m̄k1 − m̄k2
∣∣ dz ≤ 4C̄1z̄

σ2

∫ z̄

0

(
z + C̄2

)
dz |k1 − k2|

=
2C̄1z̄

2
(
z̄ + 2C̄2

)
σ2

|k1 − k2| :=
¯
C |k1 − k2| .

(26)

Now take k(1), k(2) ∈ [0, ζ]L. Define Pℓ =
∑L

ℓ′=1 p (ℓ
′, ℓ), then recalling the definition of Φ

given in Definition 4 and using (26)

∥∥Φ (k(1))− Φ
(
k(2)
)∥∥

1
=

L∑
ℓ=1

L∑
ℓ′=1

Aℓ′p (ℓ, ℓ
′)

∣∣∣∣∫ z̄

0

z
(
mk

(1)

ℓ′ −mk
(2)

ℓ′

)
dz

∣∣∣∣
≤

¯
C

L∑
ℓ′=1

Aℓ′Pℓ′

∣∣∣k(1)ℓ′ − k
(2)
ℓ′

∣∣∣ ≤
¯
C max

ℓ=1,...,L
AℓPℓ

∥∥k(1) − k(2)
∥∥
1
,

(27)

which concludes the proof.

Theorem 7 For any given data, there exists a solution to the innovation MFG (14). Fur-

thermore, if ∥PA∥1 is fixed, this solution is unique provided AℓPℓ <
1

¯
C
for every ℓ = 1, . . . , L.

Proof. From Proposition 3 and Theorem 6, the function Φ : [0, ζ]L → [0, ζ]L is a continuous

function from a convex compact subset of RL to itself. Therefore, by Brouwerâs fixed point

theorem, Φ has a fixed point. Furthermore, Theorem 6 shows that Φ is a Lipschitz function

in ∥·∥1. The Lipschitz constant is given by
¯
C maxℓ=1,...,LAℓPℓ, where

¯
C depends on ∥PA∥1

but not directly on Pℓ or Aℓ. Therefore, for fixed ∥PA∥1, Φ is a contraction map provided

AℓPℓ <
1

¯
C
for every ℓ = 1, . . . , L, and in this case the fixed point is unique.

Theorems 3 and 4 proved existence and uniqueness of solutions to equations (15) and (16)

respectively for any k ∈ [0, ζ]. Now, if k∗ is a fixed point of Φ then (m∗, V ∗) :=
(
mk∗ℓ , V k∗ℓ

)L
ℓ=1

is a solution to (14), which can be seen by replacing k∗ℓ with Φℓ (k
∗) in (15), (16) for every

ℓ = 1, . . . , L. Conversely, if (m∗, V ∗) is a solution to (15), (16), then clearly, by defining

k∗ co–ordinate wise as k∗ℓ =
∑L

ℓ′=1Aℓ′p (ℓ, ℓ
′)
∫ z̄

0
zmℓ′ (z) dz, k∗ ∈ [0, ζ]L is a fixed point

of Φ. Furthermore, by uniqueness of (15), (16),
(
mk∗ , V k∗

)
= (m∗, V ∗). So, existence and

uniqueness of solutions to the innovation MFG (14) is equivalent to existence and uniqueness

of fixed points of Φ. Hence, there exists a solution to the innovation MFG. Furthermore,

this solution is unique, provided AℓPℓ <
1

¯
C
for every ℓ = 1, . . . , L.
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Remark 8 In practical terms we can guarantee the condition AℓPℓ <
1

¯
C

holds for every

ℓ = 1, . . . , L provided L is large enough. This is because
∑L

ℓ=1Aℓ = 1. So, for fixed ∥PA∥1,
when L is sufficiently large we can take Aℓ to be sufficiently small so that AℓPℓ <

1

¯
C

4 Numerical simulations

4.1 Consumers

In the previous analysis, we assumed that consumers play a passive role in the model. In

particular, the constant B has been fixed. However, in doing so we have not modelled

the active nature of consumers in determining the price index R, to include this when

implementing our numerical methods we return to (6b). Then, as the number of firms in

each sector goes to infinity,

B = (1− α)

[
1 +

(
α

ψ

) α
1−α

(
L∑

ℓ=1

Aℓ

∫ z̄

0

z
α

1−αmℓ (z) dz

)]−1(
α

ψ

) α
1−α

Y.

Note that this now needs to be solved as a fixed point, as mℓ itself depends on B.

4.2 Simulations

We computed simulations with synthetic data, using the numerical method outlined in Ap-

pendix A. From an economics perspective it is important to understand how the model

affects the sector–level productivity. The purpose of the simulations is to provide initial

insights into the role of the modelling parameters and of the network configuration.

4.2.1 Parameter effects

The MFG depends on the parameters σ, w, α, γ, ρ, Y , and ψ. Recall that σ > 0 is the

strength of noise in an individual’s dynamics, w > 0 is the wage paid to employees, α ∈ (0, 1)

is a parameter in the consumer optimisation problem which ensures convexity, and γ ∈ (0, 1)

is the returns to labour i.e. the inefficiency in converting one unit of labour to one unit of

knowledge, it also ensures convexity of the firm–level optimisation problem. Furthermore, Y

denotes the total value of the economy, and ψ is the marginal cost of production for firms.

In order to separate the parameter effects from any effects caused by the sector network,

we ran simulations with just a single sector. We fixed z̄ = 2, A = A1 = 1 and P = 0.1,

where z̄ is the maximum productivity level, A1 is the proportion of firms in sector 1 and

P is the strength of connection from sector 1 to itself. For baseline values, we took σ = 1,
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Figure 1: Distribution of firms by produc-
tivity level for varying α

Figure 2: Average productivity vs α

Figure 3: Distribution of firms by produc-
tivity level for varying γ

Figure 4: Average productivity vs γ

w = 1, ρ = 1, γ = 0.5, α = 0.5, Y = 1, and ψ = 1. For each simulation, we varied

one parameter while keeping all others at the baseline level. Figures 1 and 2 show that

the relationship between α and the distribution of firms is a complex one. There is some

α∗ ∈ (0, 1) where the average productivity reaches a maximum, while on (0, α∗] average

productivity is monotonically increasing, and on [α∗, 1) average productivity is monotonically

decreasing. Note that, for fixed productivity level and firm distribution, a firm’s revenue

is πℓ = BZ
α

1−α

ℓ . The parameter B consists of a term that increases with respect to α

multiplied by terms that decrease with respect to α. This results in a competing effect

between α and a firm’s revenue, which in turn affects a firm’s return on investment, and

therefore its level of investment in labour. Since labour investment has an increasing effect

26



Figure 5: Distribution of firms by produc-
tivity level for varying ρ

Figure 6: Average productivity vs ρ

Figure 7: Distribution of firms by produc-
tivity level for varying σ

Figure 8: Average productivity vs σ

on average productivity, the competing terms in the revenue equation directly correspond to

the behaviour exhibited in figure 2.

Figures 3 and 4 show the effect of γ on the sector–level productivity. Figure 4 shows

that as γ increases, the average productivity decreases. Since γ relates to the inefficiency of

converting one unit of labour to one unit of productive work, it seems counter–intuitive at

first that average productivity would be a decreasing function of γ. Recall that the optimal

level of employment is given by h∗ =
(
γ
w
max (0, V ′)

) 1
1−γ , which increases productivity at a

rate (h∗)γ. Then, h∗ is increasing with respect to γ for fixed V ′ if and only if V ′ ≥ w
γ
e

γ−1
γ

and (h∗)γ is increasing if and only if V ′ ≥ w
γ
eγ−1. Hence, the effect of γ on the average

productivity depends on V ′ and how it changes with respect to γ.
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Figure 9: Distribution of firms by produc-
tivity level for varying w

Figure 10: Average productivity vs w

Figure 11: Distribution of firms by produc-
tivity level for varying ψ

Figure 12: Average productivity vs ψ

The effects of ρ and σ on the average productivity, shown in Figures 5, 6 and 7, 8 re-

spectively, show the same trend: average productivity decreases as each parameter increases.

The size of ρ is the extent to which a firm discounts future profits. As ρ increases, firms

care less about the future state of the system and so they are less willing to invest in labour;

it is an investment whose effect is only on the future value of productivity. This results in

reduced average productivity in the long run, which can be seen in Figure 6. As σ increases,

the randomness in productivity evolution of each firm increases. So, the impact of labour

on productivity decreases with increasing σ, and this is reflected in Figure 8.

Figures 9 and 10 shows that average productivity also decreases with increasing wage,

w. The wage rate increases the cost of labour. So, we can directly see that as the wage
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Figure 13: Distribution of firms by produc-
tivity level for varying Y

Figure 14: Average productivity vs Y

increases, the optimal level of employment, and hence the average productivity, decreases.

Finally, figures 13, 14 and 11, 12 show the effect of Y and ψ on productivity, respectively.

In the case of ψ the effect of increasing ψ is decreasing productivity. This can be understood

by noting that higher Ψ means greater unit costs of production, which in turn results in

lower profits and less to invest in R&D. The resulting effect is a reduction in a company’s

knowledge, and hence productivity too. In contrast, increasing Y increases the productivity

of a company. This relationship can be understood from the fact that increasing Y increases

the budget available to the representative household. With more money available, more will

be spent, increasing a firm’s total profits and allowing more to be reinvested in productivity–

increasing research.

4.2.2 Spillover size effects

The sector–level network, encoded by the vertex weights Aℓ for sector ℓ, and the edge weights

p (ℓ, ℓ′) for a transfer of knowledge from sector ℓ′ to sector ℓ, is called the spillover network as

it describes how knowledge and productivity spills over from one sector to another. A path

in the spillover network is called a spillover path, or just spillover if there is no ambiguity.

A path of length 1 from sector ℓ′ to sector ℓ is called a direct spillover, a path of length 2 or

greater from sector ℓ′ to sector ℓ is called an indirect spillover, and in both cases sector ℓ is

called the receiving sector and sector ℓ′ is the originating sector.

In most economic literature focussing on measuring the impact of the spillover effect,

only direct spillovers have been modelled and we are aware of no models that pay attention

to the effect indirect spillovers have on economic productivity. In this subsection, we begin
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investigating how the productivity of a sector is affected by the structure of the spillover

network, and in particular the effect of indirect spillovers on productivity. To undertake

this investigation, we conducted three types of simulations. The first simulations were to

model the six networks in Figures 15–20, to provide initial insight into how indirect spillover

paths affect the distribution of firms. In the second simulations, we randomly generated

spillover networks in models with three sectors and used the collected data to hypothesise

a relationship between the average productivity of a sector and the size of spillovers (di-

rect and indirect) it received. In the final simulations, we tested our hypothesis on more

randomly generated spillover networks, this time for models with 10 sectors, which more

closely resembles the number of sectors in the real economy. We showed that the hypothesis

developed accurately describes the relationship between the spillover network and the aver-

age productivity of firms, moreover there was a 16% reduction in root mean squared error

when direct and indirect spillovers were taken into account, compared with when only direct

spillovers were considered. Therefore, our conclusion from this preliminary investigation is

that indirect spillovers have a significant effect on economic productivity in our model and

they should not be ignored.

A

B C

Figure 15: Network 1

A

B C

Figure 16: Network 2

A

B C

Figure 17: Network 3

A

B C

D

Figure 18: Network 4

A

B C

D

Figure 19: Network 5

A

B C

D

Figure 20: Network 6

The networks in Figure 15–17 provide insight into how indirect spillovers affect the dis-

tribution of firms, in comparison to direct spillovers. In network 1, sector C has one direct

spillover, in network 2 it has one direct spillover and one indirect spillover of length 2, and

in network 3 it has two direct spillovers. So, the difference in productivity in sector C be-

tween network 2 and network 1 will show the effect of an indirect spillover compared with
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having no spillover, and the difference between networks 3 and 2 will show the effect of an

indirect spillover compared with a direct spillover. The differences in density of sector C are

plotted in Figure 21. From the plots, it can be seen that the density of firms is larger at high

productivity levels in network 2 compared with network 1 and the density is lower at low

productivity levels. This means that the indirect spillover from sector A to sector C has a

positive effect on sector C, skewing the distribution towards higher productivity levels. The

same behaviour can be seen when we compare sector C in network 3 to network 2, however

the effect is an order of magnitude larger. Therefore, although an indirect spillover path

has some positive effect compared with no path at all, the effect is less strong than a direct

spillover path.

Figure 21: Difference of distributions of firms by productivity of sector C between networks
2 and 1, and networks 3 and 2

In Figure 22, sector D of networks four to six were modelled. For sector D: in network

4 there is one indirect spillover with path length 2; network 5 has one indirect spillover

with path length 2 and one with path length 3; finally network 6 has an infinite number of

indirect spillovers, one for every path length. We have plotted the difference in density of

sector D between network 5 and network 4 and between networks 6 and 5. The difference

between network 5 and network 4 shows the effect of an indirect spillover of length 3, while

the difference between network 6 and network 5 shows the effect of indirect spillovers of

all lengths greater than 3. For the difference between network 5 and network 4, the same

qualitative result as the difference between network 2 and network 1, in Figure 21, is observed.

This suggests that having spillover paths of greater length do have positive impacts on

productivity, but with reduced impact for increased path lengths. Interestingly, sector D in

network 6 is less productive than sector D in network 5. Further investigation showed that if

B is fixed, rather than the solution of a fixed point problem, then the effect that more paths
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result in greater productivity returns, see figure 23. The reason for this is not immediately

obvious and warrants further study. Since the observed change is very small, it can’t be

ruled out that this result is an artefact from simplifications in the model.

Figure 22: Difference of distributions of
firms by productivity of sector D between
networks 5 and 4, and networks 6 and 5

Figure 23: Difference of distributions of
firms by productivity of sector D between
networks 5 and 4, and networks 6 and 5, with
fixed B = 1

In the second set of simulations, we took a closer look at how the spillover network

structure affects the average productivity within each sector. Recall that if, given a network,

we know the value of the fixed point, k∗, of the function Φ defined in Definition 4. Then

the average productivity in sector ℓ is
∫ z̄

0
zmℓ (z) dz =

∫ z̄

0
zmk∗ℓ (z) dz. So, to understand

the relationship between average productivity and the network, we first need to understand

the relationship between
∫ z̄

0
zmkℓ (z) dz and kℓ, for any kℓ ≥ 0. Then, we also need to

understand the relationship between k∗ℓ and the L × L matrix S with entries defined by

Sℓ,ℓ′ = Aℓ′p (ℓ, ℓ
′), because

k∗ = S

(∫ z̄

0

zmk∗ℓ (z) dz

)L

ℓ=1

,

by the fact that k∗ is a fixed-point of the map Φ. In Figure 24, we have plotted
∫ z̄

0
zmk (z) dz

as a function of k ∈ [0,∞), where mk is the solution to the auxiliary Fokker–Planck equa-

tion (16), which depends on the nonnegative real parameter k. The relationship appears to

approximately follow ∫ z̄

0

zmk (z) dz = z̄ − b0
kb1 + b2

, (28)

for some b0, b1, b2 > 0, as can be seen by the second line in Figure 24. To understand

the relationship between the fixed point of Φ and the matrix S, we considered networks of
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three vertices, with Aℓ = 1/3 for all ℓ. We created a random network between the vertices

by choosing a connection probability p, and making a directed edge between vertices with

probability p. We then weighted each directed edge with a random weight, chosen from a

uniform distribution on
[
0, 1

2

]
. We repeated this 100 times for each connection probability,

and recorded both the size of direct spillovers to each sector and the value of the fixed point

of Φ. Figures 25 and 26 show a scatter plot of k∗ℓ , the ℓ
th co–ordinate of the fixed point

of Φ, against the sum of direct spillover strengths
∑L

ℓ′=1 Sℓ,ℓ′ . In the simulations with a

high connection probability, Figure 25, there is a strong linear relationship between k∗ℓ and∑L
ℓ′=1 Sℓ,ℓ′ . However, with low connection probabilities, Figure 26, the simulations tend to

follow one of two weaker linear relationships with the row sum.

Figure 24: Average productivity
∫ z̄

0
zmk (z) dz as a function of k (where mk is the solution

to the auxiliary Fokker–Planck equation (16)) and plot of y = z̄ − (z̄−1.4)
k2+1

for comparison

To understand the relationships further, we can look at the equation that k∗ℓ ∈ [0,∞)

implicitly satisfies: k∗ℓ =
∑L

ℓ′=1 Sℓ,ℓ′
∫ z̄

0
zmk∗

ℓ′ dz, where mkℓ is defined by (18). So, if sector ℓ

receives no spillovers then k∗ℓ = 0. If it has only direct spillovers, then it is only connected

to sectors with no spillovers. So, by defining f (k) =
∫ z̄

0
zmk dz, we get

k∗ℓ = f (0)
L∑

ℓ′=1

Sℓ,ℓ′ . (29)

We can see this linear relationship between k∗ℓ and
∑L

ℓ′=1 Sℓ,ℓ′ in Figures 27 and 28, where

we have taken the simulated points in Figure 26, and split the data into those points which

have only direct spillovers and those that have indirect spillovers as well. In Figure 27,

where sectors with only direct spillover paths are considered, the linear relationship described
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Figure 25: Scatter plot of k∗ℓ , the ℓth co–
ordinate of the fixed point of Φ, against the
sum of direct spillover strengths

∑L
ℓ′=1 Sℓ,ℓ′

for 100 randomly generated three-node net-
works. Case where the probability of a di-
rected edge between two nodes is equal to
0.8.

Figure 26: Same as Fig. 25 but in the case
where the probability of a directed edge be-
tween two nodes is equal to 0.2

Figure 27: Same as Fig. 26 but restricted to
sectors ℓ that have only direct spillovers

Figure 28: Same as Fig. 26 but restricted
to sectors ℓ that have at least one indirect
spillover

by (29) can be clearly seen.

To understand how the value of k∗ℓ depends on the matrix S in the case of indirect

spillovers, we can return to the definition of the spillover size and f (k). If we assume that
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Table 1: Table of regression results related to linear regression (32)

Variable Coefficient estimate Standard error t stat p value

f0 1.58 1.16× 10−3 1360 0
f1 0.648 4.46× 10−4 1450 0
b0 1.13 2.23× 10−3 509 0
b1 1.08 1.13× 10−3 954 0
b2 1.16 2.25× 10−3 518 0

f is approximately linear for sectors with indirect spillovers, i.e. f (k) = f0 + f1k, then

k∗ℓ = (S (f01+ f1k
∗))ℓ , (30)

where 1 is the vector of length L with ones in every entry. Using the identity (I + f1S)
−1 =∑∞

n=0 f
n
1 S

n, we can rearrange (30)

k∗ℓ = f0

∞∑
n=0

fn
1

(
Sn+11

)
ℓ
, (31)

which gives a way to estimate the value k∗ℓ directly from the initial data. Therefore, com-

bining estimates (28) and (31), we can estimate the value of average productivity from the

Figure 29: Scatter plot of average productiv-
ity (left-hand side of (32)) against right hand
side of (32) with optimal values for fi, bi, for
1000 randomly-generated 10-nodes networks

Figure 30: Same as Figure 29, but against
right hand side of (33) with optimal values
for f̄0, b̄i
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matrix S by ∫ z̄

0

zmℓ (z) dz = z̄ − b0(
f0
∑L

ℓ′=1

∑∞
n=0 f

n
1 (Sn+1)ℓ,ℓ′

)b1
+ b2

. (32)

The relationship suggests that the average productivity depends on Sn for every n i.e. on

indirect spillovers of every path length. Moreover, if f1 is small enough, the effect of a

spillover path is decreasing by an order of magnitude for every increase in path length,

which agrees with our initial simulations of networks 1–6.

In order to verify the hypothesis, in the final simulations we ran a regression to estimate

the parameters f0, f1, b0, b1, b2 and provide evidence that approximation (32) is accurate. We

performed 1000 simulations on networks of ten vertices, with connection probability chosen

randomly and uniformly distributed in [0, 1], with connection strength chosen randomly and

uniformly in [0, 3], and with sector sizes Aℓ also randomly chosen. We ran a nonlinear

regression, of the form (31), on sectors with indirect spillovers, to obtain optimal values of

f0 and f1. Then, using the optimal values of f0 and f1 we ran a second nonlinear regression,

of the form (32), to find the optimal values of b0, b1 and b2. Table 1 gives estimates for

the parameters fi and bi. We found that average productivity does behave approximately

according to (32), with table 1 suggesting a statistically significant result. Visually, this can

be seen in Figure 30, where we plotted (32) using the optimal values of fi and bi. We also

computed estimates for the model∫ z̄

0

zmℓ (z) dz = z̄ − b̄0(
f̄0
∑L

ℓ′=1 Sℓ,ℓ′

)b̄1
+ b̄2

, (33)

which assumes average productivity depends on direct spillovers only, and plotted the result

in Figure 30. Comparing plots 29 and 30 shows that the model (32), which includes the

effects of indirect spillovers, provides a more accurate estimate for average productivity than

model (33), which only accounts for the effect of direct spillovers. This is reconfirmed by

the 16% reduction in root mean squared error when indirect spillover paths are included in

the model. Therefore, indirect spillover paths can not be ignored as a factor determining a

sector’s productivity.

5 Conclusion and future research

We have developed an MFG model of firm–level innovation from a microscopic formulation.

The model can be calibrated to fit economic data of spillovers, so its economic validity can be
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verified. We have been able to prove existence of solutions and, under a smallness assumption

on the data, uniqueness. We have investigated numerically how the modelling parameters

and the spillover network affects the sector–level productivity, through the development

of a simple algorithm that takes advantage of the structure of the proof of existence and

uniqueness.

In future work, we hope to compare the MFG model with the socially optimal behaviour,

as described by the mean field optimal control problem. We will also use patent–level data

to calibrate and test the two models for their accuracy. We hope the comparison between

the social optimum and the competitive equilibrium will suggest a method for implementing

socially optimal subsidy policies for R&D.
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Appendix:

A Numerical Methods

The numerical method we designed to solve (14) is informed by the structure of the proof of

existence and uniqueness. The method of proof relies on the contraction mapping theorem

to find a fixed point of the map Φ, defined in Definition 4. We are also required to solve

a fixed point problem to find the value of the parameter B. In light of this, our numerical

method proceeds as follows, after choosing an initial guess k0 ∈ [0,∞)L, B0 ∈ [0,∞) and

tolerances δ1, δ2.

1. Given ki ∈ [0,∞)L and Bi ∈ [0,∞), solve (15b), (15c) using the following method,

based on a Newton–Raphson method in a Banach space.

(a) Define F (v) = −σ2

2
v′′ + ρv − kv′ − (1− γ)

(
γ
w

) γ
1−γ (v′)

1
1−γ − Bz

α
1−α . We want to

find zeros of F (v).

(b) We define dF (v) (u) = −σ2

2
u′′ + ρu − ku′ −

(
γ
w
v′
) γ

1−γ u′, which is the Fréchet

derivative of F .

(c) Denote by V
kiℓ,B

i

0 the initial guess for the ℓth component of the solution to (15b), (15c)

with k = kiℓ and B = Bi.

(d) Given V
kiℓ,B

i

n , we compute the next iteration, V
kiℓ,B

i

n+1 , using a Newton–Raphson

method: V
kiℓ,B

i

n+1 = V
kiℓ,B

i

n − dF
(
V

kiℓ,B
i

n

)−1 (
F
(
V

kiℓ,B
i

n

))
.

(e) Continue iteratively until
∥∥∥F (V kiℓ,B

i

n

)∥∥∥
1
≤ δ1 and define V i,ℓ = V

kiℓ,B
i

n

2. Given V i, compute the solution to (16b) using (18) and denote it by mi

3. Define ki+1 = Φ(ki)

4. Define

Bi+1 =Y (1− α)

(
α

ψ

) α
1−α

[
1 +

(
α

ψ

) α
1−α

(
L∑

ℓ=1

Aℓ

∫ z̄

0

z
α

1−αmi
ℓ (z) dz

)]−1

5. If ∥ki+1 − ki∥1 + |Bi+1 −Bi| ≤ δ2 then stop the iteration process and define the MFG

solution (m,V ) = (mi, V i). Otherwise return to Step 1.
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