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Summary
Background Previous global analyses, with known underdiagnosis and single cause per death attribution systems, 
provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part 
of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive 
global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and 
territories from 2000 to 2021.

Methods We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each 
death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of 
Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a 
more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell 
disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess 
deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed 
this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures—borrowing strength 
from predictive covariates and across age, time, and geography—and generated internally consistent estimates of 
incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease 
and severe sickle cell β-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell β-thalassaemia. Summing 
the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease 
mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences 
in mortality burden assessment and implications for the Sustainable Development Goals (SDGs).

Findings Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births 
of babies with sickle cell disease increased globally by 13·7% (95% uncertainty interval 11·1–16·5), to 515 000 
(425 000–614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. 
The number of people living with sickle cell disease globally increased by 41·4% (38·3–44·9), from 5·46 million 
(4·62–6·45) in 2000 to 7·74 million (6·51–9·2) in 2021. We estimated 34 400 (25 000–45 200) cause-specific all-age 
deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 
(303 000–467 000). In children younger than 5 years, there were 81 100 (58 800–108 000) deaths, ranking total sickle 
cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes 
estimated by the GBD in 2021.

Interpretation Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not 
apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, 
especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address 
morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. 
Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine 
and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell 
disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease.
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Introduction
Sickle cell arises from a missense mutation in the 
HBB gene encoding the β-globin subunit of haemoglobin.1 
An individual with one sickle mutation (usually sickle 
haemoglobin [HbS]) will have sickle cell trait, whereas 
someone with a mutation on both HBB genes 

(at least one of which is HbS) will have sickle cell disease. 
The differences between sickle cell trait and sickle cell 
disease are stark. Although sickle cell trait confers 
protection against severe malaria and is otherwise largely a 
benign condition,2,3 those with sickle cell disease have a 
lifelong, severely-disabling disease with lower quality of 
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life, high use of medical resources, increased economic 
burden, and nearly guaranteed early death.4–6 Sickle cell 
disease causes malformed, sickle-shaped red blood cells 
that occlude capillaries and prevent tissue oxygen delivery, 
leading to acute and chronic pain, severe anaemia, kidney 
dysfunction, acute chest syndrome, stroke and other 
cardiovascular diseases, increased susceptibility to 
infectious diseases (including malaria), pregnancy 
complications, and maternal mortality.7–10

Comprehensive global estimates on disease burden of 
sickle cell disease are scarce. Piel and colleagues11 
generated granular maps of birth incidence of sickle cell 
trait for 2010 and back-calculated sickle cell disease at 
birth (HbS–HbS only) of 312 000 (95% CI 294 000–330 000) 
assuming Hardy-Weinberg equilibrium.11,12 Under-5 sickle 
cell disease mortality has been suggested by cross-
sectional studies to be as high as 90%,13 and a 
2018 meta-analysis estimated that sickle cell disease 
explains 7·3% (4·03–10·57%) of under-5 mortality in 
Africa.14 To our knowledge, the Global Burden of Diseases, 
Injuries, and Risk Factors Study (GBD) is the only effort 
to have approached sickle cell disease estimation 
comprehensively by simultaneously assessing disease 
frequency of sickle cell disease and cause-specific mortality 

(in which deaths are assigned to a single underlying 
cause according to the International Classification of 
Diseases [ICD]). GBD 2019 estimated a higher number of 
annual births of babies with sickle cell disease 
(homozygous sickle cell disease and severe sickle cell 
β-thalassaemia, sickle-haemoglobin C disease, and mild 
sickle cell β-thalassaemia) globally in 2010 at 586 000 
(453 000–752 000), but only 41 900 (95% CI 29 500–57 900) 
cause-specific deaths of individuals with sickle cell disease 
globally in 2019, including 0·66% (0·41–0·94) of all 
under-5 deaths in sub-Saharan Africa.15

High sickle cell disease burden in historically malaria-
endemic regions of Africa, the Middle East, the Caribbean, 
and south Asia dictate that sickle cell disease monitoring 
is relevant to at least three Sustainable Development Goal 
(SDG) reduction targets: maternal mortality (SDG 3.1), 
neonatal and under-5 mortality (SDG 3.2), and premature 
mortality due to non-communicable disease (SDG 3.4).16 
The substantial gap in estimated sickle cell disease 
mortality burden between GBD and cross-sectional 
studies is most likely multifactorial, but a crucial first step 
is quantifying the gap globally. To that end, this analysis 
aims to simultaneously provide an updated assessment of 
births and cases of babies with sickle cell disease 

Research in context

Evidence before this study
Previous efforts to quantify the burden of sickle cell disease have 
included systematic reviews and meta-analyses, along with 
scarce modelled estimates of incidence at birth and under-5 
child mortality. However, up to this point, the Global Burden of 
Diseases, Injuries, and Risk Factors Study (GBD), is the only 
attempt at comprehensive assessment of global morbidity 
and mortality from sickle cell disease. Building upon a gene 
frequency dataset compiled by an expert group in 2010, 
a systematic literature review in PubMed was done for 
GBD 2013, with updates in 2016. Additions of clinical 
administrative data were added for GBD 2017, 2019, and 2021. 
Yet, even within GBD, previous mortality estimates have only 
focused on single, underlying causes of death in accordance with 
international death certification guidelines; thus, they have the 
potential to underestimate the full mortality effect of conditions 
such as sickle cell disease, especially in locations where the 
frequency of sickle cell disease is high, comorbid conditions are 
common, and diagnosis of sickle cell disease is rare.

Added value of this study
This study is the first report on sickle cell disease burden using 
GBD 2021 results and, to our knowledge, is the first to estimate 
the full global mortality burden of sickle cell disease. We 
produced modelled estimates for prevalence, cause-specific 
mortality, and total sickle cell disease mortality for each of the 
204 countries and territories, 23 age groups, and two sexes 
from 2000 to 2021. Total sickle cell disease mortality was 
estimated from a combination of cohort survival data and 

age-specific prevalence data using meta-regression on the 
basis of a compartmental model of disease. The mismatch 
between cause-specific and total sickle cell disease mortality 
shows the enormous and underappreciated mortality burden 
of sickle cell disease, suggests potential shortcomings of a one 
death to one cause heuristic, and highlights substantial data 
gaps in both disease frequency of sickle cell disease and its 
consequences.

Implications of all the available evidence
Incidence at birth and all-age sickle cell disease prevalence 
increased most notably in sub-Saharan Africa, likely to be 
largely due to population growth and increased survival in early 
ages. We found that, globally, among children younger than 
5 years, sickle cell disease cause-specific mortality ranked 40th 
among all estimated GBD causes of death. In contrast, using the 
total sickle cell disease mortality metric resulted in a cause 
ranking of 12th among children younger than 5 years. Given 
this vast burden, as previous research has called for, sickle cell 
disease should be integrated into pre-existing health 
surveillance systems, with resources dedicated to newborn 
screening, improved treatment access (eg, hydroxyurea and 
blood transfusion) and prevention (eg, transcranial Doppler 
screening, point-of-care tests, and genetic counselling). 
Particular attention toward implementation of these 
supportive measures should be employed in sub-Saharan Africa 
and south Asia, where the double burden of communicable and 
non-communicable diseases exposes sickle cell disease as both 
a cause and risk factor for premature mortality.
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throughout the world and quantify the degree of under-
ascertainment of sickle cell disease mortality burden 
implied by the disconnect between cause-specific deaths 
of individuals with sickle cell disease (ICD rules=one death 
per one cause) and total sickle cell disease mortality. We 
did this by developing internally consistent models 
informed by available data on birth incidence, age-specific 
prevalence, and mortality in those with sickle cell disease. 
This manuscript was produced as part of the GBD 
Collaborator Network and in accordance with the GBD 
Protocol.

Methods
Overview, definitions, and input data
Overall methods and approaches used in GBD have been 
extensively described previously.15 We present a summary 
of the most salient details related to estimation of the 
disease burden of sickle cell disease, including a 
description of the distinction between cause-specific 
mortality and total sickle cell disease mortality—a key 
focus of this analysis. Further details are available in the 
appendix (pp 5–59), and the overall estimation process is 
shown in figure 1 and the appendix (p 9). This analysis 
complies with the Guidelines for Accurate and Transparent 
Health Estimates Reporting (appendix pp 4–5). All input 
data sources are in the appendix (pp 15–49); inputs and 
results can also be downloaded from the Global Health 
Data Exchange.

GBD 2021 produced estimates for 369 diseases and 
injuries and 87 risk factors for each of the 204 countries 

and territories (appendix p 6), 22 of which were estimated 
subnationally, for 23 age groups and two sexes 
from 2000 to 2021. Sickle cell disease is a Level 4 
cause within the broader Level 3 cause category of 
haemoglobinopathies and haemolytic anaemias, a 
subclassification of Level 2 other non-communicable 
diseases, and Level 1 non-communicable diseases. Sickle 
cell disease includes International Classification of 
Disease Version 10 (ICD-10) codes D57-D57·8 (excluding 
sickle cell trait D57·3) and ICD-9 code 282·6 (appendix p 8).

Following ICD rules for death certification, GBD 
assigns each death to a single underlying cause and 
processes all resulting cause-specific mortality data for 
all GBD causes in parallel. Sickle cell disease inputs 
included vital registration, verbal autopsy, and mortality 
surveillance sources that were processed using 
standardised methods to account for under-reporting, 
misclassification, and stochastic variability, according to 
the methodology previously described.17 Of note, all 
verbal autopsy data were considered as being implausibly 
low and designated as outliers for sickle cell disease 
datasets, given that sickle cell disease is not even included 
as a potential cause of death in many such studies.

Systematic reviews for sickle cell disease birth 
incidence, age-specific prevalence, and total sickle cell 
disease mortality were completed in 2013 and 2016. 
Search terms are in the appendix (p 10) along with a 
PRISMA diagram (appendix p 10) and case definitions 
(appendix p 7). Prevalence data were extracted for each of 
three mutually exclusive groupings based on phenotypic 

See Online for appendix

Figure 1: Flowchart showing prevalence, cause-specific mortality, and total sickle cell disease mortality estimation process
Overview of the estimation process for sickle cell disorders for both cause-specific mortality on the basis of the International Classification of Diseases definition of one cause per death and total sickle 
cell disease mortality. Shapes differentiate input data, disease measures, processes, and estimates, whereas colours distinguish different modelling tools. The four steps are highlighted: (1) sickle cell 
disease-specific data on disease epidemiology were inputted into DisMod-MR 2.1 models to generate internally consistent incidence, prevalence, and overall mortality; (2) causes of death data 
processed across GBD were run through a series of CODEm to generate mortality estimates for total haemoglobinopathies (parent GBD cause) for all locations and for data rich locations only, for 
each of the child causes, including sickle cell disease, thalassaemias, G6PD deficiency, and other haemoglobinopathies; (3) the mortality results from each of the four subcauses were scaled to 100%; 
and (4) these mortality results were used to divide total haemoglobinopathies CODEm results into cause-specific mortality results for sickle cell disease and other subcauses. CODEm=Causes of Death 
Ensemble model. G6PD=glucose-6-phosphate dehydrogenase.
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severity and geographical distribution: homozygous 
sickle cell disease (SS) and severe sickle cell β-thalassaemia 
(Sβ°), sickle-haemoglobin C disease (SC), and mild sickle 
cell β-thalassaemia (Sβ+). Excess mortality data (all deaths 
in those with sickle cell disease) were derived from 
published population-level longitudinal studies and 
published clinical cohorts. Data sources not ICD-coded 
were only included if diagnosis was on the basis of 
blood testing or physician diagnosis. Data additions 
since 2016 have included ICD-coded administrative 
sources (ie, hospital discharges and insurance claims) 
and a small number of household surveys (eg, 2018 
Nigeria Demographic and Health Survey), newborn 
screening sources, published studies, and reports referred 
by GBD collaborators. We processed all data to be age-
specific and sex-specific before modelling. We evaluated 
but did not find any systematic differences between 
ICD-coded data and those based on blood testing, so both 
were considered equally. Geographic input data coverage 
for the types of data informing the total sickle cell disease 
model is seen in figure 2, and further data coverage maps 
are in the appendix (pp 50–51).

Incidence, prevalence, and total mortality
In the absence of ideal data, as is the case with sickle cell 
disease, predictions are strengthened by triangulating 
between epidemiologically related quantities. We 
accomplished this triangulation using DisMod-MR 2.1, a 
Bayesian meta-regression tool with a compartmental 
model of disease developed for GBD,15 to generate 
internally consistent epidemiological estimates. The 
compartmental model relies on input data of each of the 
aforementioned measures and country-level predictive 
covariates to produce estimates of four transition 

hazards—incidence, remission, case fatality, and all 
other mortality—for each age, sex, location, and year 
combination. Since sickle cell disease is a genetic 
disorder with no widespread cure, we assumed both 
remission and incidence after birth to be zero. Total 
sickle cell disease mortality was calculated as the sum of 
prevalence times excess mortality rate results from each 
of the three separate genotype-specific sickle cell disease 
models: SS and Sβ°; SC; and Sβ+. Predictive covariates of 
prevalence included haemoglobin S trait (all models)18 
and haemoglobin C trait (SC model only).19 Universal 
health coverage index, a composite metric assessing 
coverage of essential health services within a location,17 
was used as an additional covariate for excess mortality 
rate. More detailed information on the DisMod-MR 2.1 
modelling process are in the appendix (pp 53–55).

Cause-specific sickle cell disease mortality
We estimated cause-specific mortality for sickle cell 
disease (not separately by genotype) using a hybrid 
approach (appendix p 56). For data rich locations, we used  
the Cause of Death Ensemble model (CODEm) tool, 
scaling the CODEm results of sickle cell disease along 
with those of glucose-6 phosphate dehydrogenase (G6PD) 
deficiency, thalassaemias, and other haemoglobinopathies, 
to match deaths for total haemoglobinopathies.15 For non-
data rich locations, the four subcauses were again scaled 
to match the CODEm result for total haemoglobinopathies, 
but in this case the proportional split was based on the 
summed total of sickle cell disease mortality estimates 
from DisMod-MR 2.1 models, along with total mortality 
DisMod-MR 2.1 results for G6PD deficiency, thalassaemias 
and other haemoglobinopathies. Further details of 
CODEm, including model specification and included 

Figure 2: Data availability map showing types of input data source measures present in each country for sickle cell disease DisMod-MR 2.1 models
Each colour represents a different combination of birth incidence, age-specific prevalence, and survival or mortality data that were used as inputs for DisMod-MR 2.1 
models for each of the three estimated genotypes of sickle cell disease. The outputs of these models include estimated birth incidence, age-specific prevalence, and 
total sickle cell disease mortality for each GBD location, age group, sex, and year (see appendix for genotype specific counts [pp 95–178] and for genotype specific 
rates [pp 207–90]). The specific sources are in the appendix (pp 15–22) and online at the Global Health Data Exchange; contributing counts of prevalence and 
mortality measures from each genotype are also in the appendix (p 50).

Birth incidence, age-specific 
prevalence, and mortality
Birth incidence and age-specific 
prevalence
Age-specific prevalence and mortality
Birth incidence and mortality
Birth incidence only
Age-specific prevalence only
No data
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covariates, are in the appendix (pp 55–57) and in the 
GBD 2019 appendix (pp 48–50).15

Secondary analyses: decomposition and comparative 
mortality rankings
We completed two secondary analyses. First, to evaluate 
time trends and the variable contribution of population 
growth, ageing, and changes in disease frequency and 
survival, we completed a decomposition analysis of 
change over time using counterfactual scenarios in which 
demographic and epidemiological factors were held 
constant from 2000 or changed to reflect 2021. Further 
detail on the decomposition analysis are in the 
appendix (p 58). Second, we re-ranked the GBD causes of 
death and evaluated the cause fraction of total sickle cell 
disease mortality as compared with cause-specific sickle 
cell disease mortality to show the gap between the 
two assessments.

Uncertainty
Uncertainty was propagated through data processing 
(including sampling variance in input data and variance 
from data processing steps such as age-sex splitting and 
causes of death redistribution algorithms), and model 
fits. Final 95% uncertainty intervals (UIs) of modelled 
point estimates were generated for every metric using 
the 25th and 975th ordered draws from 1000 values of the 
posterior distribution.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results
Nearly all countries had stable sickle cell disease birth 
rates over time, but due to demographic changes, the 
number of births of babies with sickle cell disease 
increased from 453 000 (95% UI 370 000–542 000) to 
515 000 (425 000–614 000) between 2000 and 2021—a 
13·7% (11·1–16·5) rise in global sickle cell disease 
birth rate to 382 (95% UI 316–456) per 100 000 live
births (appendix pp 67–94, 179–206). Of these births, 
394 000 (76·5%) of 515 000 were of the SS and Sβ° 
genotypes, 101 000 (19·6%) of 515 000 were of genotype 
SC, and 19 800 (3·9%) of 515 000 were of genotype Sβ+ 
(appendix pp 95–178). Increased sickle cell disease birth 
rates were most notable in Latin America and the 
Caribbean, and decreased sickle cell disease birth rates 
were highest in central Europe, eastern Europe, and 
central Asia, as well as north Africa and the Middle East. 
All-age sickle cell disease prevalent cases increased by 
41·4% (95% UI 38·3–44·9) from 5·46 million (4·62–6·45) 
cases in 2000 to 7·74 million cases (6·51–9·20) in 2021 
(appendix pp 67–94), which our decomposition analysis 
identified as being due to population growth (31·1% 
[95% UI 30·7–31·5]), changes in disease frequency 

associated with increased survival (29·3% [26·4–32·8]), 
and partially offset by ageing of the general population 
(–18·4% [–18·8 to –18·1]).

There were 28 400 (95% UI 22 100–34 500) cause-
specific deaths of individuals with sickle cell disease 
globally in 2000, which increased by 20·8% (–5·3 to 57·6) 
to 34 400 (25 000–45 200) in 2021. In comparison, there 
was a 43·4% (95% UI 39·8–47·3) increase in total deaths 
of individuals with sickle cell disease globally, 
from 262 000 (211 000–327 000) in 2000 to 376 000 
(303 000–467 000) in 2021. Although the 2021 global all-
age and age-standardised cause-specific sickle cell 
disease mortality rates of 0·4 deaths (95% UI 0·3–0·6) 
and 0·5 deaths (0·4–0·7) per 100 000 population 
(appendix pp 459–486) changed only slightly from 2000, 
total sickle cell disease mortality rates for the same age 
groups were markedly higher with 4·8 deaths (3·8–5·9) 
per 100 000 population and 5·1 deaths (4·2–6·3) 
per 100 000 population, respectively.

Across super-regions, sickle cell disease incidence and 
prevalence increased noticeably in sub-Saharan Africa, 
where births in 2021 were 405 000 (95% UI 
343 000–478 000), rising 27·2% (23·4–30·2) since 2000; 
all-age prevalence in 2021 was 5·68 million cases 
(4·78–6·62), a 67·4% (62·9–71·5) increase since 2000 
(appendix pp 67–94). In contrast to observed trends at 
the global level, a greater proportion of the increased 
number of births of babies with sickle cell disease in 
sub-Saharan Africa was due to population growth 
(74·0% [95% UI 73·0–74·9]), rather than changes 
in age structure (–7·1% [–7·7 to –6·5) or disease 
frequency (0·9% [–2·4 to 4·0]; see appendix pp 487–514 
for location specific changes decomposed). Apart from 
this 27·2% (95% UI 23·4–30·2) upsurge in births of 
babies with sickle cell disease in sub-Saharan Africa and 
a slight increase (5·6% [2·1–10·5]) in Latin America 
and the Caribbean, incident cases decreased in all 
other super-regions. In the high-income super-region, 
an 11·5% (95% UI 9·8–12·8) reduction occurred: 
2860 births (95% UI 2550–3190) in 2000 and 2530 (95% UI 
2250–2830) in 2021. Across super regions, examining 
all-age sickle cell disease prevalence, central Europe, 
eastern Europe, and central Asia had the largest 
percentage decline: down 33·3% (95% UI 28·9–37·9); 
425 (95% UI 345–507) cases in 2000 to 285 cases 
(95% UI 232–340) in 2021.

The highest sickle cell disease disability burden was 
concentrated in western and central sub-Saharan Africa 
and India (figure 3A, B). In 2021, countries with a sickle 
cell disease incidence at birth between 1000 and 2000 
per 100 000 livebirths included Bahrain, Angola, 
Democratic Republic of the Congo, Kenya, Ghana, 
Guinea, Niger, and Sao Tome and Principe. Countries 
that have consistently exceeded an incidence at birth 
of 2000 per 100 000 livebirths since 2000 were 
Equatorial Guinea, Benin, Burkina Faso, Nigeria, 
Sierra Leone, and Togo. These six countries made up 
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44% (227 000/515 000) of the global incidence at birth 
in 2021, similar to 2000, when they accounted for 
41% (184 000/453 000) of the global incidence at birth. At 
the super-region level, the global burden incurred in 
sub-Saharan Africa increased from 70% (318 000/453 000) 
in 2000 to 79% (405 000/515 000) in 2021. In contrast, 
incidence at birth in India accounted for 21% 
(96 700/453 000) of the global burden in 2000 but dropped 
to 16% (82 500/515 000) in 2021.

The highest mortality burden from sickle cell disease 
was concentrated in sub-Saharan Africa (figure 3C, D), 
where our cause-specific analysis indicated 29 400 (95% UI 
20 300–40 000) people died of sickle cell disease in 2021, 
an increase of 30·1% (–2·3 to 77·6) since 2000. Total 
deaths of individuals with sickle cell disease were 9-times 
greater in sub-Saharan Africa: 265 000 (95% UI 
219 000–322 000) deaths in 2021, up 65·1% (60·7–69·2) 
from 160 000 (133 000–194 000) deaths in 2000.

Across age groups (younger than 5 years, younger 
than 20 years, and 15–49 years), both cause-specific and 
total mortality metrics showed increasing sickle cell 
disease mortality cause fractions over time (figure 4A; 
appendix pp 291–486). Particularly in sub-Saharan Africa, 
sickle cell disease mortality as a fraction of all-cause 
mortality increased with age. In 2021, cause-specific 
deaths of individuals with sickle cell disease accounted 

for 0·4% (95% UI 0·3–0·5) of all deaths in children 
younger than 5 years and 0·6% (0·4–1·0) of all deaths 
in individuals aged 15–49 years. In comparison, total 
sickle cell disease deaths accounted for 2·2% (1·5–3·0) 
of all deaths in children younger than 5 years 
and 4·3% (3·5–5·6) of all deaths in individuals aged 
15–49 years. Cause-specific sickle cell disease mortality 
rates declined between 2000 and 2021, whereas total 
sickle cell disease mortality rates remained fairly 
constant or declined less noticeably. Sickle cell disease 
mortality rates were highest in the under-5 age group 
(figure 4B); in 2021 in Sub-Saharan Africa, there 
were 6·0 (95% UI 3·7–8·2) cause-specific deaths 
per 100 000 and 35·6 (25·8–47·5) total deaths of 
individuals with sickle cell disease per 100 000.

Females and males had comparable disease patterns. 
Globally, all-age prevalence of sickle cell disease among 
females in 2021 was 3·90 million (95% UI 3·28–4·61), 
similar to the all-age prevalence of sickle cell disease 
among males, which was 3·84 million (3·22–4·58; 
appendix p 66).

Global all-age total deaths of individuals with sickle cell 
disease were nearly 11-times higher than cause-specific 
deaths of individuals with sickle cell disease (appendix 
pp 67–94). This difference was especially pronounced in 
south Asia and sub-Saharan Africa in 2021, where total 

Figure 3: Maps of total sickle cell disease rates per 100 000 population
(A) Birth incidence. (B) All-age prevalence. (C) All-age cause-specific mortality. (D) All-age total sickle cell disease mortality among males and females combined 
in 2021. See the appendix (p 63) for all measures in 2000.

A Birth incidence, males and females, 2021 B All age prevalence, males and females, 2021

C All-age sickle cell diease cause-specific mortality rate, males and females, 
2021

D All-age total sickle cell diease mortality rate, males and females, 2021
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deaths of individuals with sickle cell disease were nearly 
67-times and 9-times higher, respectively, than cause-
specific deaths of individuals with sickle cell disease.

We gauged the public health effect of sickle cell disease 
and implications for SDGs 3.2 and 3.4 in three ways. 
First, examining the mortality burden in children 
younger than 5 years, there were 81 100 (58 800–108 000) 
deaths, ranking total sickle cell disease mortality 
12th among all GBD causes globally, whereas cause-
specific sickle cell disease was ranked 40th (figure 5A). In 
Portugal, Jamaica, Libya, Oman, and San Marino, total 
sickle cell disease mortality was in the top three causes of 
death for children younger than 5 years (figure 5B). Total 
sickle cell disease mortality rates exceeded cause-specific 
mortality rates by a factor of 50 or greater in 70 countries 
in children younger than 5 years, in 51 countries among 
those aged 5–14 years (figure 5C), and in nine countries 

in those aged 15–49 years (figure 5D). Second, in 
countries with high sickle cell disease incidence at birth 
(more than 500 per 100 000 births), total sickle cell 
disease mortality comprised, on average, 3·8% (SD 3·6) 
of total under-5 deaths (appendix p 64). Assessing the 
total sickle cell disease mortality cause fractions across 
locations currently not meeting SDG target 3.2, sickle 
cell disease contributed, on average, 1·9% (SD 2·9) of the 
under-5 mortality rate (appendix p 64). After multiplying 
the total sickle cell disease cause fraction by the observed 
under-5 mortality rate in this subset of locations not 
meeting SDG target 3.2, total deaths of individuals with 
sickle cell disease accounted for at least three under-5 
deaths per 1000 livebirths in Equatorial Guinea, Benin, 
Burkina Faso, and Sierra Leone (appendix p 64). Finally, 
in countries where malaria incidence was above 10 000 
per 100 000 population, the contribution of total sickle 

Figure 4: Time trends of sickle cell disease cause-specific mortality (top) and total sickle cell disease mortality (bottom) as a cause fraction of total mortality within the super-region (A) and 
rate within the super-region (B), by age group
Solid lines are coloured by super-region and display the trends of sickle cell disease mortality measures between 2000 and 2021. The shaded area represents the 95% uncertainty interval.
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cell disease mortality to all-cause mortality in the under-5 
age group averaged 2·3% (SD 1·9) and was as high as 
8·4% (95% UI 4·8–12·0) in Equatorial Guinea (appendix 
p 64).

Discussion
Sickle cell disease has a large and growing global public 
health significance. Over half a million babies were 
born with sickle cell disease in 2021—with more than 

three quarters in countries of sub-Saharan Africa—and 
almost 8 million people were living with sickle cell 
disease globally. The increase in global births of babies 
with sickle cell disease was primarily due to a larger 
proportion of global births occurring in locations with 
higher sickle cell disease rates, with potential additional 
effects from migration,11 which are difficult to measure 
due to data lags and absence of universal newborn 
screening. Total sickle cell disease mortality was nearly 

Figure 5: Ranking of total and cause-specific sickle cell disease mortality in children younger than 5 years compared with other GBD causes in 2021, and comparison of cause-specific mortality 
rates to total sickle cell disease mortality rates in individuals aged 5–14 years and 15–49 years
Total under-5 mortality deaths of children with sickle cell disease ranked together with sickle cell disease cause-specific deaths and the leading 20 causes of death globally for each super-region (A) and 
ranked as a proportion of all-cause under-5 mortality by country (B). The 2021 cause-specific mortality rates are plotted along the x-axis compared with total sickle cell disease mortality rates plotted 
along the y-axis for the 5–14 years age group (C) and 15–49 years age group (D). *Sickle cell disease cause-specific deaths are not included in the 20 leading causes but are included for comparison to 
total sickle cell disease. See the appendix (p 65) for rankings by country in 2000. 
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11-times higher than cause-specific sickle cell disease 
mortality and increased as a proportion of all deaths 
across all super-regions (except high-income super 
region) since 2000. Total sickle cell disease mortality 
consistently ranked in the top 20 causes of death in 
children younger than 5 years, children aged 5–14 years, 
and individuals aged 15–49 years in more than half of the 
super-regions, whereas cause-specific sickle cell disease 
mortality ranked no higher than 26th—showing the 
under-recognition of sickle cell disease mortality burden 
in conventional cause-of-death attribution systems.

Achievement of the SDGs for child mortality will 
unequivocally require sustained local and global efforts 
on combating sickle cell disease. Global organisational 
efforts to fight diseases, such as measles20 and 
tuberculosis,21 have contributed to cause-specific mortality 
declines in children younger than 5 years, yet sickle cell 
disease has had no such global push. In the face of 
decreasing all-cause under-5 mortality,22 failure to reduce 
mortality among those with sickle cell disease is 
exacerbating health inequities and hindering progress 
towards SDG targets 3.1, 3.2, and 3.4, especially in high-
burden regions. Although sickle cell disease can occur in 
people of all races and ethnicities, it is most commonly 
found in individuals of African descent. Underlying 
structural racism has been linked to improper pain 
management,23 differences in research funding,24 and 
stigma25,26 that perpetuate inequities. As noted in the 
WHO report on the African Region sickle-cell strategy 
from 2010–2020, while all 23 countries defined as high-
burden (sickle cell trait prevalence between 20% and 30%) 
had established a sickle cell disease unit in their ministries 
of health, only eight countries had allocated annual 
budget funds for health promotion of sickle cell disease, 
and only five had allocated funding for newborn 
screening.27

Scarcity of proper diagnostics, data collection, and 
linkage for sickle cell disease monitoring makes mortality 
burden estimation challenging and hinders accurate 
sickle cell disease incidence assessment, even in high-
income countries and locations with well resourced vital 
registration systems.28 Relatedly, even in the presence of 
a known diagnosis of sickle cell disease, physicians or 
coroners might be reluctant to assign sickle cell disease 
as the underlying cause of death—a situation that has 
similarities to mortality certification challenges in 
conditions such as atrial fibrillation,29 HIV,30 dementia,31 
preterm birth,32 and congenital heart disease.33 The 
first step in improving outcomes and data quality is early 
diagnosis.

Universal newborn screening combined with 
preventive treatment is feasible and effective even in 
low-resource locations.34 Early diagnosis of sickle cell 
disease allows for risk mitigation and early treatment 
intervention, which most likely explains some improve
ment in survival among women with sickle cell 
disease.35,36 This effect is self-evident when considering 

the other diseases for which sickle cell disease is closely 
linked. Those with sickle cell disease exposed to malaria 
are at greater risk of sickle cell crisis and death,3,37 have 
higher risk of pneumococcal disease (particularly 
children younger than 5 years),38,39 diarrhoeal disease, 
and bone infections linked to vaso-occlusive crisis.40 If 
pregnant, those with sickle cell disease are at increased 
risk for gestational hypertension, pre-eclampsia and 
eclampsia, and other diseases contributing to maternal 
mortality, along with increased likelihood of stillbirth, 
neonatal mortality, and low birthweight.9,10

For newborn screening to be most effective, funding 
must be designated both for scientific research and 
building health system capacity. Even in the USA, where 
newborn screening is universal, there is not a yet a 
population-based national registry; and in Brazil, a 
national newborn screening programme exists,41 but 
implementation of a strong system of sickle cell disease 
care has been very challenging.42 In low-income and 
middle-income countries, newborn screening is rare,34 
and at present is not universal in any African country—
although efforts on this front have accelerated recently 
in Ghana, Uganda, and Tanzania,43 alongside the 
Consortium on Newborn Screening in Africa.44 
Importantly, new diagnostic point-of-care test kits45,46 can 
facilitate more widespread adoption of newborn and 
catch-up screenings; these kits have enabled Nigeria to 
do the first nationally representative Demographic and 
Health Survey with sickle cell disease testing and an 
unprecedented case-control multisite African study of 
sickle cell disease child mortality.47,48 In addition, the 
SickleInAfrica consortium has established one of the 
largest registries of individuals with sickle cell disease 
that spans Ghana, Nigeria, and Tanzania.49 Such efforts 
have the potential to uncover the true sickle cell disease 
burden in resource-constrained settings. As new 
methods of screening are implemented and registry 
systems improve, the number of reported sickle cell 
disease cases will most likely continue to rise, 
underscoring the importance of efforts that build better 
data coverage and widen access to health care.

Newborn screening for sickle cell provides an 
opportunity for integration with other screening 
programmes,50 genetic counselling and education,51 
outpatient clinic care,52 and intersectoral interventions.52,53 
While insufficient alone, prevention techniques, such as 
those in Greece54 and Bahrain,55 including systematic 
carrier screening and counselling, knowledge of 
genotype in partner selection, and option of prenatal 
diagnosis, can be successful in the reduction of births of 
babies with sickle cell disease. Integrating sickle cell 
disease testing into HIV screening,56,57 provision of 
prophylactic antibiotics,58,59 malaria chemoprophylaxis,60 
and routine vaccinations61 can help prevent potentially 
life-threatening infections, and transcranial Doppler 
screening should be implemented for stroke prevention 
beginning at the age of 2 years.62 In Jamaica, since 2000, 
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a decline in the proportion of all-cause deaths that are 
deaths of individuals with sickle cell disease might be 
attributed to implementation of newborn screening, 
pneumococcal conjugate vaccine use in young children, 
and tracking neonates in sickle cell clinics.63

Alongside prevention, affordable, comprehensive, and 
timely health care should be made more accessible.64,65 
Pain management for patients with sickle cell disease 
must be prioritised,66 with improved education for 
physicians67 and policy action to correct the documented 
disparities in treatment for Black people.68 Blood 
transfusion therapy, parenteral analgesics, and disease-
modifying drugs are effective at managing pain, reducing 
the incidence of acute chest syndrome, infections, 
malaria, and ultimately decreasing mortality.69–72 

Particular attention should be focused on scaling the use 
of hydroxyurea (also known as hydroxycarbamide), which 
in a 2020 review, was missing from the list of national 
drug formularies in India and many countries of 
southeast Asia.66 Pioneering efforts, such as the 
government of Ghana’s 2019 commitment to ensure free 
access to hydroxyurea for all patients with sickle cell 
disease through the National Health Insurance Scheme, 
might serve as a model for other countries.73

Although haematopoietic stem-cell transplantation and 
gene therapy can result in complete disease cure,74,75 both 
require high levels of health-care resources and both can 
have their own potentially serious health consequences. 
As of 2021, haematopoietic stem-cell transplantation is 
only available in six centres in all of Africa,76 whereas in 
the USA, there are 215 centres that report transplantations 
to the Center for International Blood and Marrow 
Transplant Research.77 Although high-resource settings 
might be better equipped to provide care to those with 
sickle cell disease, there is much room for improvement 
in access to quality treatment, and further research is 
needed on the multiplicity of factors contributing to 
negative outcomes.

Our analysis estimated a 2021 global sickle cell disease 
incidence at birth for the SS and Sβ° genotypes 
of 386 000 (95% UI 307 000–485 000), within the 
uncertainty interval of previous estimates produced by 
Piel and colleagues12 of 305 773 (238 400–398 775) in 2010. 
Our 2021 estimate of 515 000 births (425 000–614 000) 
already exceeds Piel’s forecasted estimate of 404 190 
(242 530–657 634) by 2050. In addition to including more 
genotypes of sickle cell disease (Piel and colleagues only 
estimated the SS genotype) and estimating disease 
frequency of sickle cell disease directly (Piel and colleagues 
back-calculated approximate birth prevalence from 
estimated gene frequency at birth), our incorporation of 
data sources not available to Piel and colleagues, 
inclusion of age-specific prevalence data and mortality 
data to inform birth incidence in the compartmental 
model of disease, and spatial-temporal covariates, lend 
strength to our estimates. Finally, although mortality 
data are particularly sparse, our results support the 

findings of Ranque and colleagues’ case-control study47 in 
six centres across Africa showing considerably higher 
mortality risk in children younger than 5 years with 
sickle cell disease, and even higher risk in children 
aged 5–9 years. Additionally, our estimates of under-5 
total sickle cell disease mortality align with recent 
studies from Nigeria78 and the Kilifi district of Kenya,79 
which found excess deaths of individuals with sickle 
cell disease comprised 4·2% and 15·0% of total 
under-5 mortality (per livebirths), respectively (we 
estimated 3·1% [95% UI 2·0–4·6%] in Nigeria 
and 5·6% [95% UI 3·7–8·2%] in Kilifi).

As with all estimation efforts, this study has limitations. 
First, we were limited by data sparsity in locations with 
likely high burden. Combined with the strong geographic 
trends, this creates the potential for location-based 
modelling to underestimate geographic gradients (such 
as between Nepal and India). Second, although the GBD 
quantifies net migration in estimation of population and 
mortality, specific migration patterns are not captured, 
such that recent time trends in some countries might not 
yet be reflected here. Third, our ability to quantify time 
trends in ICD-coded data for specific genotypes of sickle 
cell disease might be incomplete since ICD-9 required 
5-digit codes for sickle cell disease subtype classification 
(a granularity unavailable in some data systems), 
whereas ICD-10 required only 4-digit codes. Fourth, the 
absence of newborn screening, in combination with 
deaths assigned to only a single underlying cause, leads 
to a virtual guarantee of under-reporting of sickle cell 
disease, since patients are at increased risk for many 
common causes of death and health-care staff might not 
have awareness of sickle cell disease.80 Explicit guidance 
for sickle cell disease assessment and consideration as 
cause of death or contributing factor in death is crucial 
for addressing these shortcomings.81 Fifth, scarce 
evidence suggests that patients with sickle cell disease 
infected with SARS-CoV-2 might have more severe 
clinical outcomes, including increased susceptibility to 
additional infection, COVID-19-related vaso-occlusive 
crisis, and amplification of acute chest syndrome or 
other comorbidities.82

The findings of this study highlight the need for a 
coalescence of efforts to address the large and under-
recognised burden of sickle cell disease. As countries 
strive to reduce child mortality and mortality due to 
non-communicable diseases, policy makers must 
consider the growing number of individuals living with 
sickle cell disease, and the increasing contribution of this 
disease to all-cause mortality. Progress in improving 
sickle cell disease health outcomes requires global action, 
including efficient diagnostic screening, effective case 
monitoring through population registries, and imple
mentation of high-quality prevention and treatment.
GBD 2021 Sickle Cell Disease Collaborators
Azalea M Thomson†, Theresa A McHugh, Assaf P Oron, Corey Teply, 
Nikhil Lonberg, Victor M Vilchis Tella, Lauren B Wilner, Kia Fuller, 
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