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ABSTRACT

In this Tutorial, we pedagogically review recent developments in the field of non-interacting fermionic phases of matter, focusing on the
low-energy description of higher-order topological insulators in terms of the Dirac equation. Our aim is to give a mostly self-contained
treatment. After introducing the Dirac approximation of topological crystalline band structures, we use it to derive the anomalous end and
corner states of first- and higher-order topological insulators in one and two spatial dimensions. In particular, we recast the classical deriva-
tion of domain wall bound states of the Su–Schrieffer–Heeger (SSH) chain in terms of crystalline symmetry. The edge of a two-dimensional
higher-order topological insulator can then be viewed as a single crystalline symmetry-protected SSH chain, whose domain wall bound
states become the corner states. We never explicitly solve for the full symmetric boundary of the two-dimensional system but instead argue
by adiabatic continuity. Our approach captures all salient features of higher-order topology while remaining analytically tractable.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0035850

I. INTRODUCTION

We begin by introducing some basic notions of condensed
matter physics, topological phases, and topological crystalline insu-
lators. We illustrate symmetry-protected topological phases with a
toy model in zero spatial dimensions. Various aspects of the mate-
rial in this Tutorial are also covered in Refs. 1–6.

Units are chosen so that the speed of light and Planck’s cons-
tant are dimensionless c ¼ �h ¼ 1.

A. Basic notions

Whereas particle physics aims to decompose the macroscopic
material world into its elementary constituents, the goal of
condensed matter physics is to understand how the properties of
materials emerge from their microscopic degrees of freedom. In
principle, this question can be posed not only for materials but also
for any many-body system that is comprised of a macroscopic
number of particles. However, condensed phases of matter are
particularly interesting, because they are not adiabatically (that is,
not without a phase transition) connected to the featureless phase
at infinite temperature. This characterization implies that their
behavior cannot be simply understood as the sum of their parts:7

for instance, the elementary particles that make out a condensed
matter system often reorganize into collective excitations that
behave like particles themselves, the so-called quasi-particles, and
yet have markedly different properties, such as a different mass or
even different exchange statistics.8 One of the basic insights of con-
densed matter physics is that there is a multitude of condensed
phases beyond the rather coarse classification of matter into solids,
liquids, and gases, with particularly interesting cases at very low
temperatures where quantum mechanical effects come into play.

A crystal is an example of a condensed phase that consists of
atomic nuclei and electrons, which for our purposes are its elemen-
tary constituents. We assume that the atomic nuclei (often just
called atoms) form a crystalline lattice in D spatial dimensions and
move so slowly in comparison to the electrons—because of their
much larger mass—that we can essentially treat them as a fixed
background. Since the atomic lattice breaks spatial rotation and
translation symmetry, the crystal realizes a condensed phase that is
not adiabatically connected to the infinite-temperature phase
(which is perfectly symmetric). From now on, we only focus on the
electronic part, which at low temperatures is governed by quantum
mechanics9 and determines whether the crystal is an insulator or a
conductor, among many other measurable properties.
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Since electrons are fermionic particles obeying the Pauli exclu-
sion principle, a conglomerate of electrons such as the one populat-
ing a crystal cannot be understood as the sum of its parts even
when there are no further interactions: in contrast to bosons, elec-
trons cannot all occupy the same single-particle eigenstate. This
property already enables a great number of interesting electronic
phases of matter, and so we will completely neglect further interac-
tions between the electrons such as the Coulomb interaction. It
turns out that this approximation is often surprisingly good and
applies to many real materials.

Quantum properties dominate over thermal fluctuations at
low temperatures, and therefore we will consider systems at zero
temperature for simplicity, allowing us to focus on ground state
properties only. N non-interacting electrons then fill up the
N-lowest energy eigenstates of the single-particle Hamiltonian due
to the Pauli exclusion principle. To be precise, let cyα be the creation
operator of an electron in the single-particle eigenstate labeled by
α. Fermionic exchange statistics are implemented by the anti-
commutation relations

{cyα , cβ} ¼ 2δαβ , {cyα , c
y
β} ¼ {cα , cβ} ¼ 0: (1)

We can write a generic non-interacting many-body Hamiltonian
that preserves electronic charge as

H ¼
X
α

(ϵα � μ)cyαcα , (2)

where ϵα are the eigenvalues of the single-particle Hamiltonian H,
and μ is the chemical potential. The N-particle ground state is then

given by

jΩi ¼ 1
N

Y
ϵα,μ

cyαj0i, (3)

where N is a normalization factor, j0i denotes the electronic
vacuum, and each α appears exactly once as long as ϵα , μ. jΩi is
called a Slater-determinant state, because the fermionic anti-
commutation relations imply that its coefficients in a given basis
are given by a determinant.10

The total number of single-particle states scales linearly with
the system volume V . An insulator is defined by an energy gap
between the ground state and the lowest excited state that survives
in the thermodynamic limit, where we take N ! 1, V ! 1 while
keeping the particle density N=V constant. The condition for a gap
in the many-body spectrum of H translates to the absence of
single-particle eigenstates with energies at the chemical potential μ.
A gap implies that a small external electric field11 cannot lift elec-
trons to excited single-particle states with nonzero net momentum
and, therefore, cannot create a current. In contrast, a conductor (a
metal) is characterized by the absence of a gap. A (second-order)
phase transition, which features a diverging correlation length and
a discontinuous change in some ground state properties, implies a
gap closing.

B. Topological phases

A condensed matter system realizes a gapped topological
phase when its ground state cannot be continuously deformed to a
trivial reference state adiabatically, that is, without closing the
energy gap to the first excited state. In the context of a crystal, a
trivial insulator can be defined as an atomic limit where all elec-
trons are tightly bound to the atoms, that is, as a state that is adia-
batically connected to a Slater product over single-electron
wavefunctions whose weight is exponentially localized around the
atomic sites in position space.12 For this definition, it is important
to assume periodic boundary conditions so that boundary effects
do not play a role and only bulk crystal properties are probed. We
refer to the gap of a crystal with periodic boundary conditions as
the bulk gap and adiabatic manipulations as those preserving it.
There may be multiple trivial phases: for instance, in a crystal con-
taining multiple types of atoms (such as rock salt and NaCl), the
states formed by electrons localized around each atom are equally
valid atomic limits (in real materials, however, at most one atomic
limit is energetically favored).

The concept of topological phases can be refined by demand-
ing that symmetry preservation is necessary to prevent an adiabatic
path to a trivial phase, one then speaks of a symmetry-protected
topological phase (a pedagogical review is provided in Ref. 13) (see
Fig. 1). For example, it may be possible to adiabatically deform the
ground state of all electrons in a crystal to an atomic limit that
breaks the crystalline inversion symmetry (which maps a coordi-
nate x in the crystal lattice to �x) but to no other atomic limit. The
state then realizes a topological crystalline insulator14 protected by
inversion symmetry. The adjective “crystalline” here just means
that a crystalline symmetry, in addition to the bulk gap, is necessary
to stabilize the topological phase. When the symmetry is not

FIG. 1. Schematic phase diagrams of a symmetry-protected topological phase.
(a) When all symmetries are maintained, interpolating from the topological to
the trivial parameter regime necessitates a gap closing and thereby a phase
transition. The right panel shows how the (absolute value of the) gap evolves
with a tuning parameter λ, where the Hamiltonian H(λ) is symmetric for all
choices of λ. (b) Upon symmetry breaking, a smooth (adiabatic) transition
without gap closing becomes possible. The right panel shows how the gap
evolves with a tuning parameter μ, where H(μ) is symmetric for μ , 0 but the
symmetry is broken for μ . 0.
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crystalline, such as time reversal, the convention is to simply call
the system a topological insulator. Historically, topological insula-
tors protected by time-reversal symmetry came before topological
crystalline insulators, here we nevertheless focus on the latter class
of systems because they are conceptually much simpler. There is
only one known example of a non-interacting topological phase
that requires no symmetries at all for its protection: the Chern
insulator or the integer quantum Hall effect.15

To illustrate these concepts, consider a zero-dimensional toy
model of a spinless electron occupying one of the two orbitals in
an atom, an s and a p orbital, with single-particle Hamiltonian

H ¼ ασx þ βσy þ γσz , ϵα ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2 þ γ2

q
, (4)

where σa, a ¼ x, y, z, are the 2� 2 Pauli matrices, and there are
only two energy levels labeled by their sign α ¼ +. Let inversion
symmetry be represented by I ¼ σz so that the s orbital corre-
sponds to the state jsi ¼ (1, 0)T, while the p orbital corresponds to
j pi ¼ (0, 1)T (T takes the transpose). For jγj � jαj, jβj, for
instance, the spectrum of H is gapped, and therefore also that of
the corresponding many-body Hamiltonian H in Eq. (2) at chemi-
cal potential μ ¼ 0. Let us now define jsi as the trivial reference
state, it is the ground state of H for γ ¼ �1.16 Then, the system
realizes an inversion symmetry-protected topological phase for
large positive γ: as long as inversion symmetry is not enforced, it is
possible to tune γ from positive to negative values without a gap
closing, which happens only when α2 þ β2 þ γ2 ¼ 0, as long as α
and β are kept non-zero. On the other hand, enforcing inversion
symmetry via the commutation relation [H, I] ¼ 0 implies that α
and β vanish, which in turn ensures a gap closing along the inter-
polation γ(t) ¼ 1� 2t, t [ [0, 1] that exchanges j pi with jsi as the
lowest energy eigenstate of H. We therefore find that there are no
topological insulators in zero spatial dimensions that are protected
by the bulk gap alone, but that there do exist topological crystalline
insulators protected by inversion symmetry.

Since the vacuum can be viewed as a trivial phase,17 the boun-
dary of a topological phase generically hosts a phase transition (a
phase transition must occur to go between topological and trivial)
and thereby a gap closing, as long as it respects the protecting sym-
metries.18 The most experimentally relevant kinds of topological
insulators are therefore characterized by an insulating (gapped)
bulk and a conducting (gapless) boundary. If the protecting sym-
metry is not crystalline, all boundaries preserve it by default and
are therefore gapless, implying that the D-dimensional insulating
bulk is surrounded by a (D� 1) dimensional conducting surface—
this is the celebrated bulk-boundary correspondence. Topological
crystalline insulators, on the other hand, generically have surfaces
that do not preserve the relevant crystalline symmetry on their own
and can therefore be gapped. The crystalline symmetry may still
enforce the presence of (D� k)-dimensional gapless states with
k . 1, thereby giving rise to higher-order topological insulators,
where k is referred to as the order.

In this Tutorial, our aim is to give a pedagogical introduction
to first- and higher-order topological crystalline insulators from the
point of view of their effective low-energy description. Our main
tool will be the Dirac equation, which describes elementary

electrons in particle physics. In a particularly tractable realization
of the principle of emergence discussed at the beginning of this
introduction, we will see how variants of the Dirac Hamiltonian
arise in the low-energy description of topological (crystalline) insu-
lators (see also Chap. V.5 of Ref. 19). We will then explain how
they can be used to argue for the stability of (higher-order) topo-
logical phases and, in particular, for the presence of protected
boundary states.

II. DIRAC APPROXIMATION OF TOPOLOGICAL
CRYSTALLINE INSULATORS

In this section, we introduce the Dirac equation in the context
of the tight-binding description of electron movement in crystals.
We also fix some basic notation and conventions that will be exten-
sively used later on. For simplicity, we only treat one-dimensional
(1D) systems in this section, the generalization to higher dimen-
sions being straightforward (it mostly involves making all position
and momentum coordinates vector-valued and replacing products
between them by dot products).

A. Tight-binding description

Consider a 1D crystal.20 We may model it as an infinitely long
chain of repeated atom arrangements, the unit cells. In the tight-
binding approximation, each unit cell hosts a finite number of sites
that can be occupied by electrons. Denote by cyxi the operator that
creates an electron at site i, i ¼ 1, . . . , M, in the unit cell at posi-
tion x, x ¼ 1, . . . , L (we take x to be dimensionless so that L is just
the total number of unit cells in the sample). Assuming only
nearest-neighbor hoppings between the sites (in a microscopic
treatment, these hoppings would be derived from transition matrix
elements of the microscopic electronic Hamiltonian between states
that are well-localized on the individual sites), the Hamiltonian
takes the form

H ¼
X
xij

hijc
y
xicxj þ tijc

y
xþ1,icxj þ t*ijc

y
xjcxþ1,i: (5)

(Here and in the following, we will set the chemical potential μ to
zero for simplicity.) By construction, H preserves a global U(1)
symmetry that is represented by

cyxi ! eifcyxi, cxi ! e�ifcxi, (6)

with f [ (0, 2π] an arbitrary phase. The infinitesimal generator of
this symmetry is the total charge,

Q ¼
X
xi

cyxicxi, (7)

so that we have eifQcyxi e
�ifQ ¼ eifcyxi. Let jΩi be the many-body

ground state of H and perform a U(1) transformation by the angle
2π. Evidently, such a transformation must be equal to the identity
transformation, and so the ground state, which transforms as
jΩi ! ei2πQjΩi, must have integer charge Q [ Z. We will see in
Sec. III D how the boundary of a topological phase can break this
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quantization constraint and host fractional charges at the expense
of a topologically nontrivial bulk.

Let us for now return to exploring the general properties of
the Hamiltonian H. Assuming periodic boundary conditions, we
can exploit its discrete translational symmetry and partially diago-
nalize it by introducing the crystal momenta k ¼ (1, . . . , L) 2πL , and
the correspondingly Fourier-transformed creation operators

cyki ¼
X
x

e�ikxcyxi, cyxi ¼
1
L

X
k

eikxcyki: (8)

Later on, we will often implicitly take L ! 1, in which case all
sums over k should be interpreted as integrals over the first
Brillouin zone k [ (0, 2π]. Equation (5) becomes

H ¼ 1
L

X
kij

Hij(k)c
y
kickj, (9)

where we introduced the Bloch Hamiltonian

Hij(k) ¼ hij þ tije
ik þ t*jie

�ik: (10)

The eigenvalues of H(k) give the single-particle energy spectrum as
a function of crystal momentum k, the so-called electronic band
structure. That is, in the case of a periodic one-dimensional crystal,
the eigenstate label α that appears in Eqs. (2) and (3) is a composite
label α ¼ (k, n) that specifies the crystal momentum k together
with the index of the nth eigenstate of H(k), where n ¼ 1, . . . , M
(there are M bands). [Equation (4) can be viewed as a Bloch
Hamiltonian in zero dimensions, where there is no momentum k,
and with M ¼ 2 sites in the unit cell.]

B. Two-band models and topology in the absence of
symmetry

In the remainder of this section, we consider the simplest non-
trivial case, where the unit cell has two atomic sites, M ¼ 2. We
can then expand the Bloch Hamiltonian H(k) in terms of the iden-
tity matrix and the Pauli matrices (something that is possible for
any Hermitian 2� 2 matrix),

H(k) ¼ ϵ0(k)1þ d(k) � σ, (11)

where we used scalar product notation and introduced the
real-valued vector d(k) with components da(k), a ¼ x, y, z. The
spectrum of H(k) can be easily inferred by calculating
[H(k)� ϵ0(k)1]2, which turns out to be proportional to the iden-
tity matrix 1. It is given by

ϵ+(k) ¼ ϵ0(k)+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d(k) � d(k)

p
: (12)

We see that the condition for an energy gap between the two bands
ϵþ(k) and ϵ�(k) translates to the inequality da(k) = 0, a ¼ x, y, z.
Moreover, we can always adiabatically tune ϵ0(k) ! 0 without
closing the gap between the two energy levels, and so all two-band
insulators that only differ by the choice of ϵ0(k) are topologically
equivalent. We set ϵ0(k) ¼ 0 in the following.

We now come to topology. Due to the above criterion for an
energy gap, the space of all one-dimensional two-band insulators is
isomorphic to the space of all vector-valued functions d(k) that do
not map any momentum k [ (0, 2π] to the zero vector 0, that is,
d(k) [ R3 n {0}. Since the Brillouin zone has the topology of a
circle, or one-sphere S1 (after all, the replacement k ! kþ 2π has
no effect), a Bloch Hamiltonian is characterized by a collection of
vectors d(k) that satisfies d(2π) ¼ d(0). It is easy to see that all
such loops in R3 can be contracted to a point d(k) ¼ d* without
ever touching the origin 0. Comparing with Eq. (10), this implies
that any constant d* gives rise to a corresponding atomic limit
Hamiltonian H(k) ¼ H* that is independent of k and does not
feature any hoppings between unit cells.21 We deduce that all one-
dimensional two-band insulators are topologically trivial absent
symmetries.

C. Crystalline topology by inversion symmetry

Here and in the following, we will specify only a single kind of
trivial reference phase: the atomic limits with a Bloch Hamiltonian
independent of k. There may be other atomic limits (remember
from Sec. I B that atomic limits are simply insulators whose ground
state can be decomposed into exponentially localized electronic
wavefunctions). For instance, the Hamiltonian belonging to an
atomic limit where all electrons are exponentially localized around
atomic sites at the boundary of the unit cell necessarily has to be
k-dependent. From our point of view, we will treat such phases as
topological as long as they cannot be adiabatically transformed into
a trivial reference phase, similar to the more canonical examples of
topological phases that do not have a representation in terms of
exponentially localized electrons at all.22

In order to stabilize nontrivial 1D insulators, we need to
incorporate symmetries. As mentioned in Sec. I B, the simplest
example of a crystalline symmetry is given by spatial inversion that
takes x to �x. When each unit cell contains two atoms that are
mapped onto each other by inversion, it is represented by I ¼ σx.
At the same time, inversion symmetry flips a crystal momentum k
to �k. The condition for inversion symmetry in 1D is therefore
that the Bloch Hamiltonian satisfies

IH(k)I y ¼ H(�k): (13)

[This condition is equivalent to the requirement that the many-
body inversion operator commutes with the many-body
Hamiltonian in Eq. (2).] In our two-band example, this constraint
enforces that dy(k) ¼ �dy(�k) and dz(k) ¼ �dz(�k) are odd func-
tions of k, while dx(k) ¼ dx(�k) is even. Moreover, we find that
the crystal momenta �k ¼ 0, π, which satisfy �k ¼ ��kmod 2π, are
special in that, at these momenta, we have the commutation rela-
tion [H(�k), I ] ¼ 0.

These constraints are sufficient to protect topological crystal-
line insulators: Consider the many-body ground state at zero chem-
ical potential. In our example [Eq. (11)], this situation corresponds
to occupying a single site per unit cell with an electron (half-
filling), and therefore, a single occupied energy band (each band
has L available crystal momenta that may be occupied, and there
are L unit cells with two sites each).23 The occupied band is
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composed of Bloch states ju(k)i that satisfy

H(k)ju(k)i ¼ ϵ�(k)ju(k)i: (14)

At the high-symmetry momenta �k, these states can furthermore be
chosen as eigenstates of inversion symmetry,

I ju(�k)i ¼ λ(�k)ju(�k)i: (15)

Due to I 2 ¼ 1, we have λ(�k) ¼ +1—the inversion eigenvalues are
quantized to only two allowed values (this quantization is a key
ingredient for topology). Now, an insulating state where the two
occupied inversion eigenvalues differ, λ(0) ¼ �λ(π), is clearly not
adiabatically connected to any trivial atomic limit: all constant Bloch
Hamiltonians H(k) ¼ H* have equal occupied inversion eigenvalues,
and these cannot be changed without either closing the gap to the
unoccupied band with energy ϵþ(k) or breaking inversion symmetry.
As an example, consider the inversion-symmetric Bloch
Hamiltonian for [dx(k), dy(k), dz(k)] ¼ [Δþ cos k, sin k, 0], which
reads

HSSH(k) ¼ (Δþ cos k)σx þ sin kσy: (16)

This Hamiltonian is in the topological phase for jΔj , 1, and in the
trivial phase otherwise. [Comparing with Eq. (12), the energy disper-
sion reads

ϵ+(k) ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 2Δ cos kþ 1

p
, (17)

and so there is a gap closing at k ¼ π for Δ ¼ 1 and one at k ¼ 0
for Δ ¼ �1.] In fact, HSSH(k) is closely related to the famous Su–
Schrieffer–Heeger (SSH) model of polyacetylene24 (for a derivation,
see Sec. III). We will show in Sec. III B that the topological phase is
characterized by the presence of end states in an open chain geome-
try. The model in Eq. (16) provides the archetypical model of

topological insulators, from which many more phases can be con-
structed by dimensional and symmetry enhancement.

D. Derivation of the Dirac Hamiltonian

We have found that there are 1D topological crystalline insula-
tors protected by inversion symmetry. To explore their physical
properties with respect to boundaries, we would like to solve for
the spectrum and eigenstates of Eq. (16) in geometries with open
rather than periodic boundary conditions. This can be done
numerically via exact diagonalization, but it is more illuminating to
find an approximate analytical solution, in particular, in order to
determine which properties are specific to the model at hand, and
which are general features of the topological phase.25

In order to make the problem tractable, we first need to deter-
mine the salient feature distinguishing the topological phase from
the trivial phase. Fixing Δ , 1 for the trivial reference phase (that
is, the atomic limit where all electrons are tightly bound in the
center of each unit cell as a symmetric, even-parity superposition),
this feature is clearly the inversion eigenvalue at k ¼ 0: in the
trivial phase, we have λ(0) ¼ λ(π) ¼ 1, while in the topological
phase we have λ(0) ¼ �λ(π) ¼ �1 [remember that λ(�k) is the
eigenvalue of inversion symmetry I in the occupied, lower-energy
eigenstate of HSSH(k) ]. To capture the topological phase, it is there-
fore sufficient to perform a first-order Taylor expansion of HSSH(k)
around k ¼ 0, arriving at the Hamiltonian

HDirac(k) ¼ mσx þ kσy , (18)

where we identified m ¼ Δþ 1. This is the Hamiltonian of a Dirac
fermion with mass m that propagates in 1þ 1 spacetime dimen-
sions.26 (See Fig. 2 for a comparison of the tight-binding and Dirac
energy band spectrum.) It is somewhat curious that the relativistic
Dirac equation appears in the context of an evidently non-
relativistic (non-Lorentz-invariant) crystal. Nevertheless, the Dirac
approximation (also called k � p approximation) can be studied in
its own right for any tight-binding model and is particularly useful

FIG. 2. Dirac approximation of a 1D inversion-symmetric tight-binding model at its topological phase transition. The original electronic structure [Eq. (16)] is shown in blue,
while the Dirac spectrum [Eq. (18)] is shown in orange. The signs of the occupied inversion eigenvalues, when well-defined, are indicated in red (at the gap closing, we
cannot unambiguously fix the sign). (a) The topological regime (m , �1) is characterized by inversion eigenvalues that have opposite sign at k ¼ 0 and k ¼ π. (b) At
the phase transition (m ¼ 1), the inversion eigenvalue at k ¼ 0 is exchanged. (c) The trivial regime (m . �1) is characterized by equal occupied inversion eigenvalues.
Importantly, the Dirac approximation reproduces the sign switch at k ¼ 0, all other details of the band structure are unimportant from the point of view of crystalline
topology.
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in topological band theory: topological properties are insensitive to
the non-universal details of the Bloch Hamiltonian that we dis-
carded by approximating around k ¼ 0.27

Note that by virtue of the Taylor expansion, the momentum
variable k loses the Brillouin zone periodicity property it previously
enjoyed. It should therefore be properly seen as taking values in
k [ (�1, 1) (additionally, we may assume the thermodynamic
limit L ! 1 so that k becomes a continuous variable). However,
large values of k are unphysical (the Taylor expansion breaks
down), we will therefore only use the predictions of the Dirac
approximation in a small window around k ¼ 0 and deduce the
behavior at the remaining momenta by arguments of adiabatic con-
tinuity. The advantage that the Dirac approximation has over the
original tight-binding model is that it effectively “forgets” the
microscopic structure of the crystalline lattice and lives in continu-
ous space:28 in order to go to real space (which we need to study
finite sample geometries and boundary effects), we can just make
the canonical replacement k ! �i@=@x.

In the following, we will use the Dirac equation approach to
capture the boundary physics of the one-dimensional SSH model
as well as that of a higher-order topological phase in two dimen-
sions. The general strategy will be the same,

1. Write down the tight-binding model.
2. Identify the momentum at which the gap closes between trivial

and topological parameter regimes.
3. Perform a Taylor expansion around this momentum to first

order, thus arriving at a Dirac-type Hamiltonian.
4. Use the Dirac framework to derive the boundary physics of the

respective topological phase.

III. CRYSTALLINE TOPOLOGY IN THE SU–SCHRIEFFER–
HEEGER MODEL

In this section, we introduce the inversion-symmetric
Su–Schrieffer–Heeger Hamiltonian as the elementary topological
insulator in one spatial dimension and use its Dirac
approximation (derived in Sec. II D) to study its anomalous
boundary physics.

While previous tutorials have discussed the SSH model as a
topological phase protected by chiral symmetry,2,4,29 here we
instead focus its role as the simplest topological crystalline insula-
tor, protected by inversion symmetry alone.5,30

A. Motivation of the Hamiltonian

Consider polyacetylene, a polymer chain of C2H2 molecules.
To minimize potential energy, the structure exhibits an alternation
of weak and strong bonds between the two carbon atoms of the
unit cell, A and B, which effectively each provide one atomic site
that electrons can occupy [see Fig. 3(a)]. At half-filling, there is
therefore one electron per unit cell. The Hamiltonian contains two
terms: the weak, intra-unit cell hopping t that connects A with B,
and the strong, inter-unit cell hopping t0 that connects B with the
A atom in the next unit cell. Inversion symmetry maps one carbon
atom to another and should therefore again be represented by σx.

Equation (10) becomes

HSSH(k) ¼
0 t

t 0

� �
þ 0 0

t0 0

� �
eik þ 0 t0

0 0

� �
e�ik

¼ (t þ t0 cos k)σx þ t0 sin kσy

¼ (Δþ cos k)σx þ sin kσy , (19)

where in the last line we identified Δ ¼ t and set t0 ¼ 1 in order
to recover Eq. (16). We have seen in Sec. II that the spectrum
of HSSH(k) is fully gapped when jΔj = 1 or equivalently when
jtj = jt0j (when there is a mismatch in bond strength). Furthermore,
we identified the regime jΔj , 1 as topological and derived the effec-
tive Dirac Hamiltonian, Eq. (18), that captures the sign flip of inver-
sion eigenvalues at k ¼ 0 as Δ is tuned. For convenience, we
reproduce the Dirac Hamiltonian here,

HDirac(k) ¼ mσx þ kσy , (20)

Keeping in mind m ¼ Δþ 1 and that we fixed Δ , �1 as the trivial
reference phase, we can identify the parameter range m , 0 as
trivial and m . 0 as topological in the Dirac approximation.

B. Derivation of the domain wall bound state

The Dirac model HDirac(k), just like the original tight-binding
Hamiltonian HSSH(k), is gapped at all values of k, and therefore
bulk-insulating. To study the effect of boundaries in the topological
phase, we need to model an interface between the trivial and topo-
logical regimes. This is most easily achieved by assigning a
position-dependence to the mass m ! m(x) ¼ mx, with the

FIG. 3. Domain wall bound states in the Su–Schrieffer–Heeger model. (a) The
unit cell contains two atomic sites, A and B, with alternating hopping amplitudes
t = t0 for intra- and inter-unit cell hoppings. (b) A mass domain wall in the
Dirac approximation of the SSH model [Eq. (18)], modeled by a linear mass
profile m(x) ¼ x and shown in blue, gives rise to an exponentially localized
domain wall bound state, shown in orange.
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convention m . 0, so that m(x) is negative (trivial) in the left half
of the system and positive (topological) in the right half. The
particular form of the real space dependence beyond such a sign
flip is arbitrary—we might as well have chosen m(x) ¼ msign(x),
for instance. The reason is that we are only interested in topological
properties that survive continuous deformations on either side of
the gap-closing point at x ¼ 0. The only notable effect of our
particular choice m(x) ¼ mx is that it is differentiable and so gives
smoother results than, for instance, m(x) ¼ msign(x).

We conclude that the following real-space Hamiltonian effec-
tively describes the interface between two SSH chains, one trivial
and one topological,

Hbdry ¼ σxmx � iσy
@

@x
, (21)

where we expressed k ¼ �i@=@x as an operator acting on real
space, because its eigenvalue k is not anymore a good quantum
number [any non-constant m(x) breaks translation symmetry].

Recall the heuristic argument from Sec. I B that posited that
the boundary between a topological and a trivial phase hosts a
phase transition, characterized by a gapless energy spectrum. [This
argument can be made mathematically rigorous,31 here we will find
it more illuminating to derive it in the Dirac approximation
context.] Guided by this intuition, we will attempt to solve for
zero-energy states at the interface, which are the two-component
wavefunctions jΨ(x)i ¼ [ψ(x), f(x)]T that satisfy the equation

HbdryjΨ(x)i ¼ 0 , @

@x
jΨ(x)i ¼ �σzmxjΨ(x)i: (22)

There is only one normalizable solution to this equation

jΨ(x)i ¼ 1
N e�

1
2mx2 1

0

� �
, (23)

where N ¼ (π=m)
1
4 is a normalization factor. [The solution that

multiplies the vector (0, 1)T comes with a plus sign in the exponen-
tial and is therefore not normalizable.] In conclusion, we find a
single zero-energy state that is exponentially localized to the boun-
dary of the topological phase. Its wavefunction decay is shown in
Fig. 3(b).

C. Protection by sublattice symmetry: End zeromodes

What remains is to interpret the zero-energy end state from
the point of view of topology. At this point, it is illuminating to
first recount the historical point of view, according to which the
SSH model realizes a topological phase protected by a local rather
than a crystalline symmetry.4 [These conceptually distinct inter-
pretations of topology are both consistent with the Hamiltonian
HSSH(k), that is, there is more than one symmetry that prevents
adiabatic transformations of the SSH ground state to the trivial
reference state.] This local symmetry is a sublattice symmetry
C ¼ σz (also known as chiral symmetry) of HSSH(k), and it is

realized via

CHSSH(k)Cy ¼ �HSSH(k): (24)

This relation enforces that the Hamiltonian only couples the two
inequivalent sites of the unit cell (the two sublattices) to each
other but not to themselves (as would be the case for local poten-
tials or longer-range hoppings). [Somewhat confusingly, on the
level of the Bloch Hamiltonian, sublattice symmetry implies anti-
commutation rather than commutation with C. It is nevertheless
a valid symmetry of the physical system, because it commutes
with the many-body Hamiltonian, Eq. (2)—the two minus signs,
one deriving from the anti-commutation, and another from the
fermionic exchange statistics, cancel.]

Sublattice symmetry is preserved by the Dirac approximation
and the interface geometry in Eq. (21). Crucially, it implies that for
every eigenstates of Hbdry at energy E, with jEj . 0, there exists a
partner eigenstate at energy �E. Only a state at E ¼ 0 may be
unpaired. But this constraint ensures that the single zero-energy
mode that we derived in Eq. (23) cannot be moved away from E ¼
0 by any local perturbation: a single eigenstate cannot continuously
split into two. The edge of a nontrivial SSH insulator therefore
hosts a zero-energy bound state that is topologically protected by
the bulk gap and sublattice symmetry.32

D. Protection by inversion symmetry: Filling anomaly

Let us now return to crystalline symmetries. Whereas it is dif-
ficult to guarantee sublattice symmetry in realistic systems, inver-
sion symmetry is a property of many naturally arising crystal
structures. We understood in Sec. II that the SSH model also real-
izes an inversion symmetry-protected topological insulator and
derived the presence of an end state in Eq. (23). It is then natural
to ask what properties of the end state are universal and guaranteed
by inversion symmetry alone, that is, not specific to the particular
choice of Hamiltonian HSSH(k). Clearly, absent sublattice symmetry
there is no preferred notion of “zero energy,”33 so that lying at
zero-energy cannot be a universal property of the domain wall
bound state.

At this point, it is important to note that in order to connect
bulk crystalline topology to boundary states, we must study a boun-
dary termination that preserves inversion symmetry. Our choice of
the mass profile m(x) from before explicitly broke inversion sym-
metry—we only modeled one (the left) end of the topological
phase. In order to restore inversion symmetry, we must also take
into account the second zero-energy state that is located at the
opposite (the right) end of the sample. The inversion-symmetric
and finite system will then have two zero-energy states, but as
explained above, nothing prevents the addition of a local edge
potential to HSSH(k) that shifts them to finite energies (at least as
long as the local potential is the same on the left and right end of
the sample, such a manipulation respects inversion symmetry). The
property that remains invariant is therefore not the energy of the
end states, but their filling: imagine that we gradually tune a finite
system from trivial to topological in an I-symmetric manner. This
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process can, for instance, be modeled via the Hamiltonian

Hbdry,I (T) ¼ σxm(x, T)� iσy
@

@x
, (25)

where T [ [0, 1],

m(x, 0) ¼ �m(m . 0), m(x, 1) ¼ �(jxj � L=2)m, (26)

and m(x, T) interpolates continuously between m(x, 0) and m(x, 1)
in an inversion-symmetric fashion: m(x, T) ¼ m(�x, T). Hbdry,I (0)
then describes a fully trivial system without boundaries, while
Hbdry,I (1) describes a topological system of length L that is embed-
ded in a trivial environment. For large L, we may take over the
result we obtained for a single edge, Eq. (23), and deduce that
Hbdry,I (1) hosts two inversion-related end states as discussed above.
The only important feature of the interpolating Hamiltonian
Hbdry,I (T) is that it also respects sublattice symmetry at all values
of T , ensuring that the two end states that are present at T ¼ 1 but
not at T ¼ 0 must come in with opposite energies E1(T) ¼ �E2(T)
as T is tuned from 0 to 1, with E1(1) ¼ E2(1) ¼ 0 [recall Eq. (24)
and the surrounding discussion]. Correspondingly, only one state is
filled (occupied by an electron in the system’s ground state),
namely, the one deriving from the negative-energy manifold of
states.34 We conclude that the system hosts two end states that
together have only one electron’s worth of electric charge [recall
how the total charge Q is defined in Eq. (7) as the number of

occupied electrons]. The only inversion-symmetric way to distrib-
ute this charge is to assign half a charge to either end of the system,
essentially fractionalizing the electronic charge.

The trade-off between the global U(1) symmetry, which
naively implies charge quantization for a Hamiltonian of the form
of Eq. (5), and the crystalline inversion symmetry, constitutes the
so-called filling anomaly.35 It is the only universal boundary charac-
teristic of inversion-protected topological insulators in one dimen-
sion [see Fig. 4(a)]. The spectrum of Eq. (19) with open boundary
conditions, shown in Fig. 4(b), confirms these results.

While we have used sublattice symmetry to show that the edge
states of HSSH(k) are (filling) anomalous, it should be emphasized
that sublattice symmetry is not required to stabilize the anomaly:
we used sublattice symmetry simply to shortcut an otherwise
lengthy calculation of the domain wall charge. It can be broken
without destroying either the crystalline bulk topology or the edge
state filling anomaly, which are both protected by inversion sym-
metry and U(1) charge conservation alone. Note also that the
filling anomaly, even though it derives from the zero-dimensional
edge states, crucially relies on the topologically nontrivial one-
dimensional bulk: as we have shown in Sec. II A, there is no well-
defined (regularizable) Hamiltonian that preserves U(1) symmetry
and has a ground state with fractional charge.

IV. SECOND-ORDER TOPOLOGICAL INSULATORS IN
TWO DIMENSIONS

We next leverage what we have learned from the SSH model
to understand the simplest possible example of a higher-order
topological insulator: the inversion-symmetric case in two spatial
dimensions. Again, the Dirac approximation provides the most
direct route to a crystalline bulk-boundary correspondence and
filling anomaly.

Historically, higher-order phases were discovered much
later37–41 than their first-order counterparts such as the Chern
insulator42 or the time-reversal symmetric topological insulator.43

Ironically however, at least in 2D, the higher-order case is concep-
tually simpler. This allows us to bypass the discussion of first-order
phases, which have been extensively reviewed elsewhere.1–4,29

A. Concept

In Sec. III, we have seen how zero-dimensional states can arise
at the ends of a one-dimensional insulator that preserves inversion
symmetry. This kind of topological bulk-boundary correspondence
is called first order, because the gapless boundaries have a dimen-
sion that is one lower than that of the bulk. Similarly, higher-order
topological insulators in D spatial dimensions are defined by the
presence of gapless states along boundary segments with dimension
D� K , where K . 1 is the order. The simplest example is corner
states in two dimensions, which realize a corner (zero-dimensional)
filling anomaly similar to what was discussed in Sec. III D, while
the bulk (2D) and edges (1D) are gapped. The filling anomaly gives
rise to fractional corner charge, similar to how the SSH filling
anomaly gave rise to fractional end charge. There also exist 2D
first-order topological insulators, most notably the Chern insulator
(the integer quantum Hall effect) and the time-reversal symmetric

FIG. 4. Filling anomaly of the inversion-symmetric SSH model with open boun-
dary conditions. (a) In the topological phase, each end of an inversion-
symmetric sample hosts a single bound state worth of half an electronic charge.
(b) Exact diagonalization spectrum of the SSH tight-binding model, Eq. (19),
with open boundary conditions (L ¼ 100). Only the states close to E ¼ 0 are
shown. The presence of two midgap states in the exact model validates the
Dirac approximation [discussion around Eq. (25)]. Half-filling implies that there
are L occupied states, highlighted in orange. Importantly, only one of the two
midgap bound states is occupied, giving rise to a filling anomaly.
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topological insulator (the quantum spin Hall effect). An overview
of first- and higher-order topological phases is given in Fig. 5.

First-order phases realize insulators (gapped band structures) in
the bulk and anomalous metals [gapless band structures that cannot
be obtained from well-defined, regularizable (D� 1)-dimensional
Hamiltonians] on the boundary. Second-order phases, on the other
hand, realize insulators in the bulk and anomalous insulators
[gapped band structures that cannot be obtained from well-defined,
regularizable (D� 1)-dimensional Hamiltonians] on the boundary.
These anomalous boundaries can then themselves be viewed as first-
order topological phases that host their own gapless end states of
dimension D� 2.

Crucially, we cannot simply view the (D� 1)-dimensional
boundaries as first-order topological insulators that have been
glued to the boundary of an otherwise trivial D-dimensional
system:44 even though they are gapped, they are anomalous and
can only be realized in the presence of a topologically nontrivial
bulk. These qualitative considerations will be made concrete in the
following.

B. Bloch and Dirac Hamiltonian

Unlike in Sec. III A, where we made at least some attempt at
motivating the SSH Hamiltonian from the microscopic chemistry
of polyacetylene, we will from now on study the properties of toy
model Hamiltonians without further physical legitimization. The

reason is that these capture the essential physics without distracting
us too much with the non-universal properties of any given mate-
rial. Moreover, higher-order topological phases were only discov-
ered recently, and as of yet only very few “nice” material
realizations are known.45–47 For our purposes, it will therefore be
sufficient to study these novel phases of matter on a conceptual
level—it is one of the great luxuries of condensed matter theory
that very often initially theoretical concepts eventually do turn out
to be realized in nature.

Following up on our general characterization of two-
dimensional second-order topological insulators in Sec. IV A, let us
therefore ask the question: how do we construct a two-dimensional
tight-binding that hosts corner states? Evidently, we will again need
a crystalline symmetry to ensure topological protection: with only
local symmetries in place, any corner states could be brought
together along the sample boundary and annihilated with each
other—this process would be adiabatic with respect to the bulk
gap. We note that the requirement of crystalline symmetries (sym-
metries that do not leave all spatial positions x invariant) is particu-
lar to higher-order phases. First-order phases can be protected by
crystalline symmetry operations, but do not have to—we have seen
this already for the SSH insulator that can be stabilized by either
sublattice or inversion symmetry. For simplicity, we will again con-
sider inversion symmetry here, which in 2D maps both coordinates
x ¼ (x, y) ! (�x, �y) to their opposite values.

In particular, inversion symmetry maps the one-dimensional
boundary of a two-dimensional, inversion-symmetric sample to
itself. A natural starting point to construct a second-order topologi-
cal insulator is then to engineer a phase that on its boundary hosts
a phase akin to the one-dimensional, inversion-symmetric SSH
model—domain walls in the SSH parameter m [Eq. (20)] then bind
zero-dimensional “corner” states. We will show in the following
that such a dimensional hierarchy is achieved by the four-band
tight-binding Hamiltonian

HSOTI(k) ¼ (Δþ cos kx þ cos ky)τxσ0 þ sin kxτzσx

þ sin kyτzσy þ δO, (27)

where τ i and σ i, i ¼ 0, x, y, z are two sets of Pauli matrices, and we
abbreviated the Kronecker product by τ i � σ j ; τ iσ j. Inversion sym-
metry is given by I ¼ τxσ0, and the topological parameter regime is
delimited by jΔj , 2. The small constant δ � 1 multiplies a collec-
tion of symmetry-allowed perturbation terms O that will be essential
in gapping out the one-dimensional boundary.48 We may again
define inversion eigenvalues at the four high-symmetry momenta
�k ¼ (0, 0), (0, π), (π, 0), (π, π), just as was done in Sec. II C.
Declaring Δ , �2 as the trivial reference phase,49 the topological
phase is then characterized by a sign flip of two occupied inversion
eigenvalues at �k ¼ (0, 0) [see Fig. 6(a)], prompting us to expand
around that momentum in a Dirac approximation:

H2D,Dirac(k) ¼ mτxσ0 þ kxτzσx þ kyτzσy þ δO: (28)

This Dirac Hamiltonian captures the trivial-to-topological gap-
closing transition of HSOTI(k) when m ¼ Δþ 2 is tuned from
negative to positive values.

FIG. 5. Archetypes of topological insulators. The SSH model, as well as the
second- and third-order topological insulators, host 0D states on their boundar-
ies (here, the inversion-symmetric case is shown in all three dimensions—let us
note that in 2D and 3D, there are further crystalline symmetries beyond inver-
sion that stabilize higher-order topology). The boundaries of Chern and axion
insulators36 host 1D conducting states (1D chiral metals). The surface of the 3D
time-reversal symmetric topological insulator features a gapless Dirac cone
surface state. Importantly, although the gapless boundary states of nth order
phases in n dimensions [and (n� 1)th order phases in n dimensions] are of the
same type, these phases are genuinely distinct: for instance, a second-order
topological insulator in 2D is not adiabatically related to a stack of 1D SSH
models.
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C. Gapped edge states

As for the SSH model, we will first derive the band structure
of HSOTI(k) in the presence of a single edge before arguing for the
topological signature of a full inversion-symmetric boundary.
Without loss of generality, we keep periodic boundary conditions
in the y direction so that the edge under consideration has its
normal along the (negative) x direction. A mass profile m(x) ¼ mx,
m . 0 then locates the left edge of the topological phase at x ¼ 0.
Similar to Eq. (21), any boundary-localized zero-energy states are
determined by the Hamiltonian

Hx(ky) ¼ τxσ0mx � iτzσx
@

@x
þ kyτzσy þ δO: (29)

There are two normalizable solutions to the zero-energy condition
Hx(0)jΨ(x)i ¼ 0 at ky ¼ δ ¼ 0, given by

jΨ1(x)i ¼ 1
N e�

1
2mx2

i
0
0
1

0
BB@

1
CCA, jΨ2(x)i ¼ 1

N e�
1
2mx2

0
i
1
0

0
BB@

1
CCA, (30)

where N ¼ (4π=m)
1
4 is a normalization factor.

We may now deduce the form of the edge Hamiltonian (the
Hamiltonian governing the edge degrees of freedom) by degenerate
first-order perturbation theory in ky and δ. Let us for the moment
fix O ¼ τ0σx—this choice preserves inversion symmetry. The edge
Hamiltonian is given by the matrix elements of Hx(ky) in the basis

{jΨ1(x)i, jΨ2(x)i} spanned by the zero-energy edge states,

[Hedge(ky)]mn ¼ hΨm(x)jHx(ky)jΨn(x)i
¼ [δξx þ kyξy]mn

, (31)

where we introduced another set of Pauli matrices ξi, i ¼ 0, x, y, z.
We thus find that the edge of HSOTI(k) is governed by the SSH
Dirac Hamiltonian, Eq. (18), with the identification m ¼ δ. In par-
ticular, any finite jδj . 0 implies that the edge is gapped out, and
so there is no protected filling anomaly stemming from the one-
dimensional edge states. The edges of a second-order topological
insulator are therefore gapped and seemingly trivial. While some
choices of the perturbation O do not lead to a gap (for instance,
τ0σz), the existence of a single symmetry-allowed gapping term is
already enough to trivialize the edge from a topological point of
view (also, such a term will be generically present in real materials).
The Dirac results are confirmed by a full diagonalization of
HSOTI(k) in a slab geometry, see Figs. 6(b) and 6(c).

D. Gapless corner states

We have shown that the Hamiltonian HSOTI(k) is gapped in
bulk and on edges with normal in the x direction. Similarly, one
can show that the states along edges with normal in the y direc-
tion are gapped and described by a Hamiltonian just like Eq. (31).
We might thus conclude that the entire system is gapped and fea-
tureless. There is, however, one catch: the edge termination we
considered is not inversion symmetric. Recall how we first derived
the SSH end state for a single edge in Sec. III B, before deducing
that an inversion-symmetric pair of edges hosts a pair of edge
states of which only one is filled. To determine the anomalous
boundary physics of second-order topological insulators, we like-
wise have to consider an inversion-symmetric edge termination,
for instance, that of a rectangular sample. A rectangle has four
edges (call them left and right, top and bottom) that all come
with their respective version of Eq. (29)—in Sec. IV C, we have
explicitly treated the left edge only. It does, however, not suffice to
repeat the calculation for the remaining three edges separately:
due to the gauge freedom in defining the edge states (we may
multiply either state with a phase factor, or take arbitrary super-
positions, to arrive at an equally valid set of edge states), there
would be no meaningful way of comparing the resultant edge
Hamiltonians. Instead, we must find the bound states of an arbi-
trary edge, labeled by an angle f—these then continuously evolve
with f as we interpolate from one edge to another, and thereby
provide a consistent choice of gauge.

For an arbitrary edge that has its normal at an angle f to
the x axis, it makes sense to decompose the vector of crystal
momenta as

k ¼ k?
cosf
sinf

� �
þ kk

� sinf
cosf

� �
, (32)

where k? is the momentum along the edge normal and kk is the
momentum along the edge itself (note that we are orienting kk at a

FIG. 6. Bulk and edge band structure of the 2D higher-order topological insula-
tor modeled by Eq. (27). (a) Bulk inversion eigenvalues in the 2D Brillouin zone.
There is a double band inversion at k ¼ (0, 0). (b) Inversion-symmetric slab
geometry with open boundary conditions in the x direction and periodic boun-
dary conditions in the y direction. (c) Exact diagonalization spectrum of the tight-
binding model, Eq. (27), in the slab geometry with Lx ¼ 20 (shown in blue).
The dispersion of the edge states derived from the Dirac approximation,
Eq. (31), is shown in red.
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positive right angle from k?). The Dirac Hamiltonian then reads

Hf
2D,Dirac(k?, kk)¼mτxσ0þk?τzσ1(f)þkkτzσ2(f)þδO, (33)

where σ1(f)¼ σx cosfþσy sinf and σ2(f)¼ σy cosf�σx sinf.
After decomposing the position coordinate x into x? and xk
similar to Eq. (32), we again implement the edge via a domain wall
mass profile m(x?) ¼ mx?, m . 0 so that the topological phase
lies at positive values of x? (the edge normal points into the topo-
logical region). This setup retains kk as a good momentum
quantum number, while we replace k? by �i@=@x?,

Hf
x? (kk) ¼ τxσ0mx? � iτzσ1(f)

@

@x?
þ kkτzσ2(f)þ δO: (34)

Edge states at kk ¼ δ ¼ 0 then satisfy

[τxσ0mx? � iτzσ1(f)
@

@x?
]jΨf

n (x?)i ¼ 0: (35)

Noting that [σ1(f)]
2 ¼ 1, the eigenvalues of σ1(f) are constant

and given by �1 and þ1. The equation can then be solved to give

jΨf
1 (x?)i ¼ 1

N e�
1
2mx2?

e�if

0
0
i

0
BB@

1
CCA,

jΨf
2 (x?)i ¼ 1

N e�
1
2mx2?

0
eþif

i
0

0
BB@

1
CCA,

(36)

where N ¼ (4π=m)
1
4 is a normalization factor. The dispersion of

these states with edge momentum kk, and their gapping, can again
be derived in degenerate first-order perturbation theory by evaluat-
ing the matrix elements

[Hf
edge(kk)]mn

¼ hΨf
m(x?)jHf

x? (kk)jΨf
n (x?)i

¼ [kk(ξx sinfþ ξy cosf)þ δζ(f)]
mn
, (37)

where

[ζ(f)]mn ¼ hΨf
m(x?)jOjΨf

n (x?)i: (38)

We will in fact not use any explicit form of the perturbation terms
O in the following—it will be sufficient to note that these terms
will generically gap the two edge states as long as they project into
a nonzero ζ(f) (we have already seen this for the particular choice
of O ¼ τ0σx and f ¼ 0). Importantly, however, we now show that
inversion symmetry implies stable zeroes of ζ(f). First, note that it
acts on the edge states as follows:

ιfmn ¼ hjΨfþπ
m (x?)I jΨf

n (x?)i
¼ [�i(ξx cosf� ξy sinf)]mn

: (39)

The constraint of inversion symmetry then implies

ιfHf
edge(kk)ι

fy ¼ Hfþπ
edge (kk): (40)

(Recall that the momentum kk is defined at a right angle to the
edge normal, it rotates with f and so is not separately flipped by
inversion.) Now, any perturbation in Eq. (37) that anticommutes
with the kinetic term (other terms do not lead to a gap and can be
absorbed into a redefinition of kk ) can be decomposed as

ζ(f) ¼ a(f)(ξx cosf� ξy sinf)þ b(f)ξz , (41)

so that the eigenvalues of Hf
edge(kk) are given by

ϵf+(kk) ¼ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ a(f)2 þ b(f)2

q
. Equation (40) yields the con-

straints

a(fþ π) ¼ a(f), b(fþ π) ¼ �b(f), (42)

which together imply

ζ(fþ π) ¼ �ζ(f): (43)

This relation necessitates the presence of domain walls in the Dirac
mass, ζ(f) ¼ 0, at some angles �f and �fþ π where ζ(f) switches
sign [see Fig. 7(a)]. The domain walls are movable yet irremovable:
perturbations may change the precise location �f, but domain walls
can only be annihilated in pairs. Since the partner of the domain
wall at �f is fixed to the location �fþ π by inversion symmetry, the
two can never come together and cancel.

We conclude that, in a rectangular geometry, the edge states
on the left and right edges, as well as on the top and bottom edges,
have to come with the opposite signs of their Dirac mass. Viewing
the full rectangular boundary as a 1D system governed by a SSH
type Hamiltonian [Eq. (37)], it then hosts Dirac mass domain walls
at two oppositely related corners [see Figs. 7(b) and 7(c)].50 The
situation is therefore just that of Eq. (25) at t ¼ 1, where we

FIG. 7. Corner states in 2D. (a) The projected edge mass, Eq. (35), has (at
least) two stable domain walls at inversion-related momenta �f and �fþ π. As
an example, here the Frobenius norm of ζ(f) is shown for O ¼ τ0σx þ τ0σy.
[(b) and (c)] The domain wall bound states at �f and �fþ π become corner
states in a rectangular geometry. (d) Exact diagonalization spectrum of Eq. (27),
with open boundary conditions in two directions (Lx ¼ Ly ¼ 20). Only the
states close to E ¼ 0 are shown. The half-filled corner midgap states give
rise to an inversion symmetry-protected filling anomaly [see discussion around
Eq. (25)].
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considered a SSH model with two inversion-related domain walls
and showed that these host end states with a filling anomaly.
Equivalently, the corners of HSOTI(k) bind gapless states that lead
to a filling anomaly of second-order: while the infinite slab geome-
try of Fig. 6(b) is gapped, a filling anomaly arises when introducing
open boundary conditions in two directions. Just like for the SSH
model, the presence of the filling anomaly is guaranteed by the
topologically nontrivial bulk gap and inversion symmetry alone,
and neither relies on the particular structure of HSOTI(k), nor on
the rectangular sample geometry we chose to derive it. The Dirac
result is confirmed by a full diagonalization of the tight-binding
Hamiltonian, shown in Fig. 7(d).

The corner states discussed here have been predicted to natu-
rally occur in 2D monolayers of antimony and arsenic at finite
buckling.51
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