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The effect of an external guide field on the turbulence-like properties of magnetic

reconnection is studied using five different 2.5D kinetic particle-in-cell (PIC) simu-

lations. The magnetic energy spectrum is found to exhibit a slope of approximately

−5/3 in the inertial range, independent of the guide field. On the contrary, the

electric field spectrum, in the inertial range steepens more with the guide field and

approaches a slope of −5/3. In addition, spectral analysis of the different terms of

the generalized Ohm’s law is performed and found to be consistent with PIC sim-

ulations of turbulence and MMS observations. Finally, the guide field effect on the

energy transfer behavior is examined using von-Kármán Howarth (vKH) equation

based on incompressible Hall-MHD. The general characteristics of the vKH equation

with constant rate of energy transfer in the inertial range, is consistent in all the sim-

ulations. This suggests that the qualitative behavior of energy spectrum, and energy

transfer in reconnection is similar to that of turbulence, indicating that reconnection

fundamentally involves an energy cascade.

a)Electronic mail: subash.adhikari@mail.wvu.edu
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I. INTRODUCTION

Reconnection and turbulence are ubiquitous processes in plasmas, including laboratory,

astrophysical, and space plasmas. Traditionally these processes have been studied indepen-

dently of each other, except for a few studies scattered across the last few decades. These

studies have associated magnetic reconnection with turbulence, focusing mostly on turbu-

lent reconnection both theoretically1,2 and numerically3–7. Other themes include examining

reconnection in turbulence8–11 or turbulence generation via reconnection related instabili-

ties12–15.

In a series of papers, we have been taking these connections further; we have probed a

deep connection between reconnection and turbulence implied by morphological similarities

between the two, including spectral features and energy transfer across scales16,17. For exam-

ple, the magnetic energy spectrum of antiparallel laminar reconnection exhibits a spectral

slope of −5/3 in the inertial range16. More importantly, a von Kármán Howarth analysis

of the energy transfer across scales show that the cascade of energy is quite similar in both

laminar reconnection simulations and traditional turbulence simulations17. These results

imply that there may exist a fundamental universality between magnetic reconnection and

turbulence. Although the analyses so far have focused on antiparallel reconnection, mag-

netic reconnection occurs under very general conditions including lower magnetic shears as

well as asymmetric situations.

Here we extend the turbulence diagnostics to the case of guide field reconnection and

determine how the degree of magnetic shear modifies the turbulence-like properties of re-

connection16,17. In this study, we simulate 2D reconnection for a range of guide fields and

examine the energy spectra and energy cascade properties. At MHD scales, the guide field

does not fundamentally modify the power-law magnetic spectrum nor the energy trans-

fer/cascade. We also examine the power spectra of both the electric field and its constituent

terms from Ohm’s law.

The rest of the paper is structured as follows: In Section II we introduce the types of

reconnection simulations used in the analysis. In Section III we discuss the results along

with a detailed explanation of the physical meaning of the von-Kármán Howarth equation

(aka Third-Order law) and finally in Section IV we present our discussions and conclusions.
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II. SIMULATIONS

For this study, five kinetic 2.5D particle in cell (PIC) simulations are performed using

the P3D code18 with the double Harris sheet equilibrium and various guide fields. Length is

normalized to the ion inertial length (di =
√
mic2/4πn0e2), and time is normalized to the

inverse of ion cyclotron frequency [ω−1
ci = (eB0/mic)

−1]. The reference cyclotron frequency

for normalizing time is defined based on the reference magnetic field B0. This implies that

the physical cyclotron frequency will vary from simulation to simulation. Similarly, speed is

normalized to the ion Alfvén speed (vA =
√
B2

0/4πmin0), the magnetic field is normalized

to B0, number density is normalized to n0, electric field is normalized to E0 = vAB0/c

and temperature is normalized to T0 = 1
2
miv

2
A. A small magnetic perturbation is added to

initiate reconnection in the two current sheets.

All the simulations are of size Lx = Ly = 204.8di with grid spacing of δx = 0.05di and

total grid points of 40962. The initial reconnecting magnetic field in all the runs is unity

(1B0) while the guide field is varied as Bg = [0, 0.1, 0.5, 1, 2]B0. The speed of light c = 15vA

and the half width of the current sheets is 3di. More details of the simulation are listed in

Table I. As a cross check of resolution, an additional R5 simulation was performed with

a higher resolution (δx = 0.025di); no significant change in the results were found so this

simulation is not included in this analysis.

TABLE I: Simulation details: background density nb, mass (m) of ions(i)/electrons(e),

temperature (T ), out of plane guide field Bg, reconnecting magnetic field Br, and particles

per grid (ppg).

Run Lx = Ly nb me/mi Te/Ti Bg Br βe/βi ppg

R1 204.8di 0.2 0.04 0.25/1.25 0 1 0.1/0.5 100

R2 204.8di 0.2 0.04 0.25/1.25 0.1 1 ∼ 0.1/0.5 100

R3 204.8di 0.2 0.04 0.25/1.25 0.5 1 0.09/0.45 100

R4 204.8di 0.2 0.04 0.25/1.25 1 1 0.07/0.35 100

R5 204.8di 0.2 0.04 0.25/1.25 2 1 0.044/0.22 100
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FIG. 1: Time evolution of the (a) reconnected flux ψ, (b) mean square current < j2 >,

and (c) change in magnetic energy EB =< B2

2
> for all simulations.

III. RESULTS

A. Overview of the simulations

We start the analysis with an overview of the simulations. Figure 1a shows the time evo-

lution of the reconnected magnetic flux ψ and the mean square current 〈j2〉; the reconnected

magnetic flux is the amount of magnetic flux between the x-line and primary o-line of the

simulation. The average reconnection rate ∂ψ/∂t of both the top and bottom current sheet

is similar for all the simulations, but the onset of reconnection differs substantially. The

reconnection onset time for antiparallel reconnection Bg = 0 is around 100 tωci later than

the case with earliest onset time. The onset time decreases with increasing Bg, but appears

to reach a minimum value at guide fields lower than Bg = 0.5. A larger guide field increases

the exhaust velocity of reconnecting field lines19, which may allow a faster onset time. Once

reconnection initiates, however, the Bg = 2 case does exhibit a slightly slower reconnection

rate than the fastest cases, which is consistent with other PIC simulations.20
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FIG. 2: Change in different forms of energies versus the reconnected flux: (a) EB is the

magnetic energy, (b) Efl is the total bulk flow energy (ion plus electron), (c) Eth is the

total thermal energy (ion plus electron), and (d) Etot is the total energy.

Consistent with the idea that a stronger guide field better confines the electrons, in Fig. 1b

the peak value of the mean square current steadily increases with guide field, saturating

around Bg = 1.0. The faster onset of reconnection with the larger Bg cases is clearly evident

in the time delay between different peaks of 〈j2〉. This time delay complicates the analysis

of the change of energies in the system. As an example, in Fig. 1c, the change in average

magnetic energy EB = 〈B2/2〉 behaves very differently in time for the different guide fields.

To cross-compare more effectively, Fig. 2 shows the change in different energies in the

system (mean values) versus the reconnected flux. Note that all simulations show excellent

energy conservation in panel (d), with the total change in energy much smaller than any

of the constituent parts. Until ψ ≈ 10, the change in magnetic energy is nearly identical
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between all of the simulations. Interestingly, however, the change in bulk flow energy (b)

diverges much earlier, and by ψ = 10 the larger guide field cases have substantially more flow

energy; this larger flow energy is likely due to the higher reconnection outflow velocity in

guide field versus antiparallel reconnection19. On the other hand, there is significantly more

heating for small Bg in (c). Clearly, the presence of the guide field is strongly affecting the

fate of the magnetic energy released, with the larger guide field cases showing significantly

less heating but more bulk flow energy21.

For the reconnected flux ψ > 10 in Fig. 2, the simulations diverge from each other, even

for the change in magnetic energy in panel (a); while the lowest guide field cases continue

to show a steady decline, the reduction of magnetic energy in time becomes slower for

larger guide fields. The flow energy increases initially with reconnected flux and then starts

decreasing. This decrease happens for larger amounts of reconnected flux for smaller guide

field cases. The internal energy rises secularly for all guide field cases with reconnected flux.

To carry out a meaningful turbulence study of the current set of simulations, it is necessary

to appropriately choose a time for the analysis. A traditional choice of time in turbulence

work would be the time of peak dissipation, here identified approximately as the time of

peak mean square current density 〈j2〉. On the other hand from a reconnection perspective

the time development of the reconnected flux is revealing, as shown in Fig. 2. Here we

choose to analyze each guide field case when the reconnection flux ψ ≈ 15,. It happens that

this is also near the time of peak 〈j2〉 for all cases. Note that we have also performed these

analyses at the time of peak 〈j2〉, and found similar results.

Fig. 3 shows the out-of-plane current (jz) density for each of the five runs at a time

when the reconnected flux takes on the value ψ ≈ 15. The corresponding time (in ω−1
ci ) for

each run is included on each panel. For low guide fields, the current sheet in the vicinity of

the x-line shows the extended but symmetric electron diffusion region22,23. For the stronger

guide field cases, the current sheet is shifted towards the separatrices20,24,25. The currents

near the x-line and in the magnetic island are clearly more intense and narrower for larger

guide fields. This is also a region in which electrons may be energized26,27. The shape of the

magnetic islands clearly show the role that compressibility is playing. For very low guide

field, the magnetic islands are longer and narrower because the plasma compresses easily

inside of them. For strong guide field cases, the islands are more round because the magnetic

pressure at least partially inhibits compression of the plasma. For Bg = 1 and 2, there are
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FIG. 3: Out of plane current jz for each guide field case when the amount of reconnected

flux ψ ≈ 15.

very intense currents at the end of the magnetic islands where flow is slowing down. This

effect may be due to the “backpressure” as the plasma exhaust jets run into the growing

magnetic islands; see Ref.3.

B. Energy spectrum: Electromagnetic field and Ohm’s law

Having established the basic properties of the kinetic PIC simulations with varying guide

field, it is natural to study whether a guide field changes the spectral and energy-transfer

properties of reconnection relative to the antiparallel case16,17. Fig. 4 shows the omni-

directional magnetic (left) and electric (right) field spectra for all guide field cases computed

at the time when all the simulations have the same amount of reconnected flux, see Fig. 3.

The magnetic spectra show a slope roughly consistent with −5/3 in the inertial range for

all guide fields. Steepening from this value begins as k increases beyond about kdi ∼ 0.4. In

the kinetic range, (d−1
i < k < d−1

e ), the lower guide field cases have steeper spectral slopes.

In this region the Bg = 2 case has a slope roughly consistent with -11/3.28–31

The spectrum of the electric field (Fig. 4) exhibits more variation with changing guide

field than the magnetic spectra. For Bg = 0 the electric spectrum has an ≈ 0 slope for

0.1 <∼ k di <∼ 1. Conversely in this same region the Bg = 2 case has a negative slope with
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FIG. 4: Energy spectrum of the magnetic field (left) and electric field (right) at the time

of analysis when the reconnected flux is about equal in all the simulations. Solid lines of

slopes −5/3, −8/3, and −11/3 are drawn for reference. The vertical dotted lines represent

the wavenumbers corresponding to the ion inertial length (di), electron inertial length (de)

and the debye length (λD).

magnitude somewhat less than 5/3. For very strong guide fields, MHD turbulent flows

perpendicular to the guide field Bg = Bg ẑ are given by u⊥ ≈ cE⊥ × Bg/B
2
g , where “⊥”

denotes perpendicular to Bg; since the omnidirectional spectrum of u⊥ has a power-law slope

of −5/3, by necessity E⊥ will also have a slope of −5/332–35. It is clear then, that as the

guide field is increased, the electric spectrum for the range 0.1 <∼ k di <∼ 1 is approaching but

not quite reaching a slope of −5/3. Consistent with this idea also, the electric field spectrum

for Bg = 2 is dominated by the Ex and Ey components (not shown).

The Bg = 0 case has a very different behavior. The electric field spectra shows a steep

drop at the largest scales (k di <∼ 0.1), but then flattens out in the inertial range (0.1 <∼
k di <∼ 1). A clue to the reason for this flattening is that in this region Ey plays the dominant

role. Antiparallel reconnection is known to generate a large magnitude normal electric field

approximately along ŷ, which extends for large distances along the separatrices and can

have thicknesses much larger than di
36,37. This global Ey structure both dominates the

omnidirectional spectra and creates a near 0 slope. For k di > 1, in all cases there is a

steepening of the electric field power spectra (Fig. 4).35,38 The spectra flatten out at very

large k, likely due to intrinsic noise in the PIC method associated with the finite particles
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FIG. 5: Top panel (Left): Energy spectrum of different components of the in-plane

electric field (E⊥) as seen in the Ohm’s law for Run R5 (Bg = 2). (Right) The sum of all

the terms in the left (black), and energy spectrum of in-plane electric field directly from

the simulation (red). Bottom panel (Left): Energy spectrum of the different components of

the out-of-plane electric field (Ez). (Right) The sum of the spectra of all the terms in the

left (black), and energy spectrum of out-of-plane electric field (red). The gray curve drawn

on the right panel is the spectrum of the sum of the individual terms, while the vertical

dotted lines represent wavenumbers corresponding to the ion inertial length (di), electron

inertial length (de) and the debye length (λD).

per grid.

The electric field contains a wealth of information regarding the different physics acting

at different length scales. In order to directly study the interplay of different physical scales,

we explore the spectra of the different terms in the generalized Ohm’s law. We begin with

a focus on the Bg = 2 case and later compare all of the different guide field cases.

The generalized form of the Ohm’s law appropriate for collisionless plasma can be written

as:

E = −u×B +
1

ne
J×B− 1

ne
∇ ·Pe +

d2
e

ne2

[
∂J

∂t
+∇ ·

(
uJ + Ju− JJ

ne

)]
, (1)

where n is the ion or electron number density ni = ne taken equal due to quasi-neutrality, e

is the electronic charge, u = (1− µ)ui + µue is the single fluid bulk velocity, µ = me/(mi +

me), and ui, ue are the mean velocities of ions and electrons respectively. E, B are the

electromagnetic fields, J is the electric current density, while Pe is the electron pressure

tensor. The pressure tensor can be further written as Pe = pe + Πe, where p = 1
3

∑
i Pii

and Πij = Pij − pδij are the isotropic and anisotropic decomposition of the pressure tensor

respectively. The first term on the right hand side of Eq. 1 is the MHD term (induction

term), the second term is the Hall term (significant at Hall scales), the third term is the

pressure term, and the remaining terms are associated with electron inertia.

The left panel of Fig. 5 is the energy spectra for the different terms in Ohm’s law (Eqn. 1)

for the Bg = 2 simulation: (top) the in-plane (i.e., (x, y) plane); and (bottom) out-of-plane

(along ẑ). We choose to define “in-plane” and “out-of-plane” to refer to the two directions

of the simulation domain (x, y) perpendicular to the guide field, and the global mean field
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FIG. 6: Comparison of the in-plane (⊥) (left) and out-of-plane (z) (right) power spectra

of the direct PIC output of the electric field (panels a, g), and different components of the

generalized Ohm’s law: MHD electric field (panels b, h), Hall electric field (panels c, l),

pressure contribution of the electric field (panels d, j) and field due to electron inertia

(panels e, k) for varying guide fields. The bottom panel (panels f, l) compares the absolute

value of the relative differences between the spectrum obtained summing the terms in the

Ohm’s law (EOL) and direct PIC output (EPIC). For the discussion (see text), we limit

ourselves to the wavenumbers kde <∼ 1.

direction z, respectively. We avoid computation of statistics relative to the local field di-

rection, as this procedure pollutes second order statistics with higher order correlations39.

The time derivative in the electron inertia term is estimated by using successive time slices

1ω−1
ce apart. At the smallest k in Fig. 5, the spectra for both the in-plane and out-of-plane

electric field are dominated by the MHD term of the electric field. The Hall electric field
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dominates the wavenumbers between the inverse of ion inertial length and the Debye length

for E⊥ in-plane electric field, while for Ez the Hall term is significant in this range but not

dominant. The electron inertia term is only significant for Ez between the ion and electron

inertial lengths. For the largest k with kλD > 1, the pressure term is the largest. Note that

the pressure tensors are direct outputs of the p3d code.

Note that of course there is no guarantee that the spectra of individual terms of Ohm’s

law will sum to equal the spectrum of the electric field, since the spectrum only includes

the information about the amplitude of the Fourier coefficients associated with each term

and not the relative phases of the Fourier coeffieicnts of each term, as examined in detail

by Stawarz et al. (2021)34. From a theoretical standpoint, this equality when summing the

spectra (square of the Fourier amplitudes) of each term would only occur if the different

terms are uncorrelated or perpendicular to each other. This is evident from the right hand

side of Fig. 5 which shows: (red) the spectra of the electric field from the direct output

of the PIC simulation, (black) the sum of the spectra of the Ohm’s law terms, and (gray)

the spectra of the sum of Ohm’s law terms. For E⊥, all three curves are quite similar for

kde <∼ 1. At still smaller length scales, there is a large difference due to the pressure term.

For Ez on the other hand, the black curve begins to diverge at kdi ∼ 1 while the gray curve

remains comparable for kde <∼ 1. One major difference between Ohm’s law for E⊥ and Ez

is that for Ez there are many terms that are comparable size for kdi >∼ 1. With many terms

of comparable size, the effect of cross correlations of these terms is more important, which

is a likely explanation for the divergence between the gray and black curve in this region.

The results shown here agree with the one obtained from a turbulence simulation38 and

magnetosheath observation34.

For kde >∼ 1, even the gray curve diverges. From an inspection of the left panels of Fig. 5

it is evident that the pressure term in Ohm’s law is anomalously large in this region. Kinetic

PIC simulations are known to generate significant numerical fluctuations at high k40. The

calculation of the pressure term in Eqn. 1 requires taking derivatives of pressure terms which

exacerbates this noise at high k. The direct output electric field is directly stepped forward in

time in the PIC simulation using the current, and does not contain such a derivative. Note

also, that the unphysical Ohm’s law pressure term is primarily due to diagonal pressure

terms for E⊥ and off-diagonal terms for Ez.

For the purposes of this paper, from now on we limit our discussion to regions where the
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PIC direct output is comparable to the Ohm’s law sum, that is kde <∼ 1. The top panel of

Fig. 6 shows the spectrum of E⊥ and Ez calculated directly from the PIC output for all the

different guide field cases. An increase in guide field increases the strength of both electric

field spectra, although E⊥ shows a larger increase than Ez. The shape of the spectra for

Ez are quite similar (right panels). In contrast, for E⊥ the low guide field cases show a flat

slope for k di <∼ 1 while the higher guide field cases show a negative slope. Then, for higher

k all guide fields have a steepening to a strong negative slope.

Panels h-k show Ohm’s law terms for Ez. For kdi < 1, the MHD term dominates in

all cases with the electric field much larger for larger guide fields. The increase in Ez with

guide field is consistent with the known increase in reconnection exhaust velocities with

increasing guide field19. For kdi ∼ 1, the MHD term continues to dominate for the large

guide field cases, but in the smallest guide field cases the Hall term becomes comparable.

This behavior is consistent with the reduction of the Larmor radius with guide field. For

kdi > 1, the Hall term gradually becomes dominant over the MHD term in all cases. The

pressure term and the electron inertia term are never dominant in the range considered.

This is because these terms become dominant at scales de or smaller. The pressure term

only becomes comparable to other terms in the highest guide field cases near kde ∼ 1.

The electron inertia term increases significantly with guide field between the wavenumbers

1 < kdi < 5. While the contribution from the electron inertia becomes comparable with the

other terms for smaller guide field cases, it exceeds the contribution from other terms for

the largest guide field case at around kdi > 2.

Panels b-e show Ohm’s law terms for E⊥. As with Ez, the MHD terms are much larger

for increasing guide field. However, for the smallest guide field cases, the Hall term is always

larger than the MHD term; with very small guide field MHD physics generates very little

E⊥ while the Hall physics requires the generation of E⊥. For kdi > 1 the hall term gradually

becomes larger than the MHD term even for the largest guide field cases. The pressure term

is always negligible for kde <∼ 1. The electron inertia term also becomes comparable around

the electron scales kde ∼ 1 but shows almost no dependence with the guide field.

The bottom panels show the relative differences of the spectrum obtained directly from

the PIC output with the spectrum of the sum of different terms in Ohm’s law for both the

parallel and perpendicular spectra. These values are in excellent agreement for kdi <∼ 1;

for kde > 1 the relative difference increases drastically. Between 1 < kdi < 5, this relative
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difference exhibits a small increase because multiple Ohm’s law terms become comparable

in magnitude and presumably cross correlations are playing a significant role. The relative

difference is further found to decrease with an increase in the guide field. Clearly, the choice

of limiting the spectral discussion to wavenumbers kde <∼ 1 is justified. Next, we discuss the

energy transfer in these simulations using the von Kármán Howarth equation.

C. Physical meaning of the Von Kármán Howarth Equation

The connections between magnetic reconnection and turbulence continue to receive in-

creasing attention, so it is important to make key physical concepts accessible from one field

to another. In particular, in the turbulence community, energy transfer across scales is a

focus of attention, and a powerful tool for this analysis is the von Kármán Howarth equation,

through which the physical properties of the cascade process becomes evident. This equa-

tion has been used extensively in the turbulence community in both simulations41–43 and

observations44–48. The reconnection community has had limited exposure to this formalism.

In that light it is helpful to spend some effort to give some physical insight into the von

Kármán Howarth equation.

Outside the turbulence community, the impression of turbulence is completely dominated

by the concept of spectral energy density and its −5/3 power law when plotted versus

wavenumber k. However, the von Kármán Howarth third order law bypasses k in favor of

the concept “lag,” which represents a variation over a length l and can intuitively be thought

of as the inverse of the wavenumber l ≈ 1/k. As with multidimensional spectral analysis,

the lag is in general a vector l.

When discussing the properties of turbulent fluctuations u and b, we will use Alfvénic

units, where the fluctuation amplitude of magnetic field b has units of velocity u, i.e.,

b ≡ (B−〈B〉r)/
√

4πmn, where 〈. . . 〉r is an average over regular space (not lag space). Note

that we are assuming incompressible turbulence in this discussion so that for all intents and

purposes the number density n can be assumed to be a constant. Much of our discussion will

involve functions of |u|2 and |b|2, which in Alfvénic units have units of energy per unit mass.

Physically, the total energy of the system associated with these functions can be determined

by multiplying by the mass density and integrating over the entire system in regular space.

As a shorthand, we will write energy per unit mass as “energy/mass” in the manuscript.
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In order to characterize fluctuations associated with a lag l, the variation of turbulent

fluctuations is defined as the “increment,” with the velocity increment δu(r, l) ≡ u(r + l)−

u(r) and the magnetic field increment δb(r, l) ≡ b(r+ l)−b(r). Note that these increments

have 6-dimensional arguments, depending on both real (regular) space and lag space, but

are three dimensional vectors.

Averages of functions of the increments in real space form the basis for the third order

law. Note that from the definition of the turbulent fluctuations u(r) and b(r), 〈u(r)〉r and

〈b(r)〉r = 0. The second order structure functions are defined as Su(l) ≡ 〈 |δu(r, l)|2 〉r and

Sb(l) ≡ 〈 |δb(r, l)|2 〉r. The general second order structure function including both magnetic

and velocity fluctuations is S(l) = Su(l) + Sb(l). In Alfvénic units, the structure functions

have units of energy per unit mass.

In this form, the structure functions are unwieldy because of their three dimensional

dependence on the vector lag l. They are often averaged over direction (solid angle) to give

a function of only the magnitude of lag l, as

S̄(l) ≡ 〈S(l)〉Ωl
=

1

4π

∫
dΩl S(l), (2)

where Ωl is the solid angle in l space.

By expanding out the terms in the second order structure functions, the physical meaning

becomes apparent. Examining S̄u(l),

S̄u(l) = 2〈 〈 |u(r)|2 〉r 〉Ωl
− 2〈 〈u(r + l) · u(r)〉r 〉Ωl

, (3)

where we have used the fact that 〈 |u(r + l)|2 〉r = 〈 |u(r)|2 〉r for homogeneous turbulence.

The first term is four times the average energy per unit mass of velocity fluctuations in the

system 4Euav and the second term is twice the unnormalized autocorrelation function of

u(r) which we denote as R̄u(l). Fig. 7 shows representative functions of R̄u(l) and S̄u(l)

for a turbulent system of size L. R̄u(l) peaks at the origin and then falls off over a length

comparable to the correlation scale λc. S̄u(l) is zero at the origin and gradually rises, reaching

4Euav at the system size. The continuous rise of S̄u(l) implies that it is a cumulative function

of l. An intuitive meaning of S̄u(l) then presents itself as: Four times the average velocity

field energy/mass in fluctuations of size between 0 and l. S̄b(l) and S̄(l) have related physical

meanings linked to the magnetic field energy and total energy, respectively.

Now that the physical meaning of the second order structure functions has been estab-

lished, we address the question of how they vary in time. The behavior is governed by the
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FIG. 7: Sample autocorrelation function R̄u(l) and second order velocity structure

function S̄u(l). The correlation scale λc is the integral scale
∫∞

0
Ru(`)dl which is commonly

estimated as the lag where R̄u(l) = R̄u(0)/e.

von Kármán Howarth equation, which is derived by massaging the dynamical fluid equa-

tions at r and r + l to create time derivatives of the structure functions49. The resulting

time derivatives are dependent on averages of higher order increments of velocity and mag-

netic fields as can be seen from the appearance of third-order structure functions in the von

Kármán Howarth equation. In homogeneous hydrodynamic turbulence, and within a broad

band inertial range, several terms in the von Kármán Howarth equation may be neglected

and a third-order law emerges that gives an exact relationship between energy decay rate

and the third-order structure function50. This formalism was developed for MHD by Poli-

tano and Pouquet41,49. Recently, the von Kármán Howarth equation has been generalized

to Hall-Magnetohydrodynamics in a non-isotropic form, namely,43,51:

∂S(l)

∂t
+∇l ·Y(l) +

1

2
∇l ·H(l) = 2D(l)− 4ε, (4)
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with Y(l) = 〈δu|δu|2 + δu|δb|2 − 2δb(δu · δb)〉r49 and H(l) = 〈2δb(δb · δj) − δj|δb|2〉r43.

Both Y(l) and H(l) are mixed third-order structure functions that describe the cascade

of energy in MHD and Hall MHD respectively. On the right hand side of equation 4, ε

is a constant independent of l, while D(l) is a lag dependent dissipation term. In the

collisionless kinetic simulations in this study, the exact form of these terms in lag space are

not known. However, for the scale filtered form, the analogous term is the filtered pressure-

strain interaction52. In a system with kinematic viscosity ν and resistivity η, these terms

take the form ε = ν〈(∇u : ∇u)〉r + η〈∇b : ∇b〉r and D(l) = ν∇2
l Su(l) + η∇2

l Sb(l).

Before discussing the physical meaning of the terms of Eq. 4 we simplify them as we did

with the structure functions by averaging over solid angle in lag space. As we did with Eq. 2,

we denote averages in solid angle by putting a “̄ ” over variables. The von Kármán equation

becomes:
1

4

∂S̄(l)

∂t
+

1

4
∇l · Ȳl(l) +

1

8
∇l · H̄l(l) =

1

2
D̄(l)− ε, (5)

where Ȳl(l) = l̂ (l̂ · Ȳ), H̄l(l) = l̂ (l̂ · H̄), and l̂ is the unit vector along the radial direction

in lag space. In writing these terms we have used that 〈∇l · Y(l) 〉Ωl
= ∇l · Ȳ(l) and

〈∇l ·H(l) 〉Ωl
= ∇l · H̄(l) 53,54. Written explicitly ∇l · Ȳl(l) = (1/l2) ∂/∂l (l2 l̂ · Ȳ). Note that

the solid angle averaged vectors Ȳ(l) and H̄(l) could in principle have nonzero components

in lag space along the polar angle θl and the azimuthal angle φl, but these components do

not contribute to the direction averaged divergence, which can greatly simplify estimating

cascade rates from satellite observations54.

In studying the physical meaning of each term of Eq. 5, it is tempting to draw analogies

with the energy equation in electricity and magnetism, with ∂S̄(l)/∂t analogous to the rate of

change in time of the energy density of the fields, Ȳl(l) and H̄l(l) analagous to the Poynting

flux, and the RHS analogous to the particle/fields energy exchange term J · E. In line with

this analogy, Eq. 5 can be integrated over some volume of lag space with the divergence terms

becoming surface integrals. However, S̄(l) does not represent a local energy density in lag

space, but instead a volume integrated quantity from zero lag to l. As such, integrating S̄(l)

over a volume in lag space, although possible and sometimes mathematically expedient,

does not have a clear physical interpretation. Related to this fact, as will be discussed

shortly Ȳl(l) and H̄l(l) are not energy flux densities in lag space and using the term “flux”

to describe them is potentially confusing. Although, it should be noted that in spectral

(wavenumber) space, the analog to Eq. 4, which describes the time evolution of the energy
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FIG. 8: Schematic showing idealized lag space of decaying turbulence in an isotropic case.

Dissipation range (l < ld) in pink, inertial range (ld < l < lc) in white, and correlation

range (lc < l < L) in yellow. Energy/mass flux density leading to cascade shown with blue

arrows. In red, a representative lag sphere of radius l is shown.

spectral density in terms of transfer functions, can be directly related to the cross-scale flux

of energy through spectral space that in the usual Kolmogorov turbulence phenomenology

is the quantity that is constant through the inertial range55,56.

Note that in the following paragraphs discussing the physical meaning of Eq. 5, for

simplicity we do not separately treat the ∇l · H̄l(l) term. This term has the same form as

the MHD cascade term ∇l · Ȳl(l) and the inertial range can be thought of as including both

an MHD cascade range and a Hall cascade range57.

To aid in the discussion of the physical meaning of the terms of the third order law, a

much simplified schematic of a decaying turbulent system in lag space is shown in Fig. 8.

For simplicity the system depicted is isotropic. The system spans lags from l = 0 to the

size l = L. Three physical ranges in lag space are denoted by colors, the correlation range

(also known as the energy range or the energy containing range) in yellow, the inertial

range in white, and the dissipation range in pink, with the (approximate) boundaries at the

dissipation lag ld and the correlation lag lc. The transfer or cascade of fluctuation energy to

smaller lag is shown with blue arrows. A representative “lag sphere” of radius l is shown in

red inside the inertial range.
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We choose to examine decaying turbulence in an isolated system in lag space. That is,

no energy transfer occurs through the boundary at l = L. In addition, we assume that the

Reynold’s number is large enough in the system such that the total energy/mass in the

system S̄(L) is changing very slowly relative to the timescales for the inertial range cascade.

This means that the time variation of S̄(l) in the inertial and dissipation ranges is very

small.

The von Kármán Howarth equation (Eq. 5) physically represents the flow of energy in

the lag space shown in Fig. 8. The term (1/4)∂S̄/∂t is the rate of change of energy/mass

inside a lag sphere of radius l. (1/4)∇l · Ȳl(l) is the MHD energy/mass transfer through the

lag sphere l (with (1/8)∇l · H̄l(l) being due to Hall physics).

The right hand side of Eq. 5 is the average dissipation rate of energy/mass inside a lag

sphere of radius l. For analysis purposes focussed on the rate of energy cascade in the inertial

range, it has been broken up into two terms. ε is the average dissipation rate of energy/mass

in the system, as is clear from its definition in the case of fluid ν and η. It is often called the

“cascade rate” in the literature, because in an idealized inertial range the energy cascade

rate is equal to ε as will be discussed concerning Eq. 6. The other term D̄(l)/2 on the RHS of

Eq. 5 is clearly related to dissipation but is usually not discussed in the literature, primarily

because it is very small in the inertial range. D̄(l)/2 is strange at first glance, because it is

positive, meaning that a dissipative term at face value acts to increase the energy in time.

However, as we shall see it represents the rate of energy/mass dissipated outside of the lag

sphere of radius l and acts as a counterweight to the total dissipation ε.

We now examine the properties of Eq. 5 in the different regions of lag space shown

in Fig. 8, highlighting the associated physics. To assist this analysis, Fig. 9 shows an

idealization of the variation of the terms in Eq. 5 in lag space (we temporarily ignore the

Hall cascade term). Representative values of the correlation scale λc and Kolmogorov scale

λd are shown for reference. The value of the total dissipation rate of energy/mass ε is drawn

as the horizontal dotted line. At the outer boundary l = L, (1/4) ∂S̄/∂t = −ε, meaning

that the rate of change of energy/mass in the entire system must equal the total dissipation

rate, which is required if the system is isolated.

In the inertial range, the influences of ∂S̄/∂t and D̄ terms are small, and we have an

inertial range in which (1/4)∇l · Ȳl(l) = −ε. Physically, this is simply the statement that

when S̄(l) is a constant in time in the inertial range, the energy transfer into a lag sphere

19



Adhikari et al. 2023

𝑙

Inertial
range

Correlation
range

Dissipation
range 𝜖

E
ne
rg
y/
m
as
s/
tim
e

(J
/k
g/
s)

𝐿𝑙!𝑙"

1
2
𝐷$(𝑙) −

1
4
∇! ⋅ 𝒀$!(𝑙) −

1
4
	
𝜕𝑆̅(𝑙)
𝜕𝑡

𝜆" 𝜆!

FIG. 9: Idealized schematic plot of different terms of third order law versus l, where the

Hall cascade term (1/8)∇l · H̄l(l) has been ignored to simplify the discussion. Horizontal

dashed line is ε. Representative values of the correlation scale λc and the Kolmogorov scale

λd are shown.

of radius l must balance the total dissipation of energy within the sphere. In the literature,

the third order law in the inertial range is often integrated over the volume of the lag space

sphere, giving 1
4

(4πl2) (l̂ · Ȳl(l)) = −4
3
πl3ε, thus arriving Ȳl(l) = −4

3
ε l l̂, equivalent to the

familiar scalar relation Ȳl(l) = −4
3
εl.

Unlike the meaning of Poynting flux, the surface integral
∫

Ȳl · dAl is not the rate of

energy/mass transfer through a surface in lag space. Similarly, Ȳl(l) is often called the

“MHD turbulent cascade flux” in the literature but physically does not represent an en-

ergy/mass flux density. If it were truly a flux density in lag space, energy/mass conservation

in the inertial range would require ∇l · Ȳl(l) = 0. For that reason we choose not to use

the term “flux” to describe Ȳl(l) (nor H̄l(l)), but instead simply refer to their divergence

as the transfer rate or cascade rate of energy/mass in lag space. To determine the Ȳl(l)

in the inertial range, it is more physically meaningful to directly solve the third order law

differential equation in the inertial range,

1

4l2
∂

∂l

[
l2(l̂ · Ȳl(l))

]
= −ε, (6)

which gives the same solution mentioned above. We stress that the actual solid angle

averaged energy/mass flux density along l̂ in the inertial range is −l̂ ε/(4π l2), which as
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expected has a zero divergence in the inertial range.

In the correlation range in Fig. 9, S is decreasing in time to feed the cascade and ultimate

dissipation of energy/mass. (1/4) ∂S̄/∂t is equal to ε at l = L and becomes steadily smaller

with decreasing l, reaching 0 at the inner boundary of the correlation range. Conversely, the

energy/mass transfer ∇l · Ȳl(l) is 0 at l = L and increases with decreasing l. In the middle

of this range, the time change term is of the same order as the transfer term. Examining

a lag sphere in the middle of the correlation range, the energy drained from S̄(l) at larger

lags must be transported towards the inertial range raising the value of the cascade term.

Conversely, the change of energy in the lag sphere has decreased because it now contains

less of the correlation range where ∂S̄/∂t is nonzero.

The dissipation range (l < ld) is characterized by non-negligible D̄(l) and ∂S̄/∂t = 0 with

Eq. 5 simplifying to (ignoring the Hall transfer term)

1

4
∇l · Ȳl(l) =

1

2
D̄(l)− ε. (7)

As seen in Fig. 9, as l decreases from ld, the cascade term drops while D̄(l) rises. Drawing

a lag sphere in the central region where ∇ · Ȳl(l) ∼ D̄(l), the physical meaning is clear. To

maintain the time constancy of S̄(l), any dissipation occurring inside the lag sphere (RHS

of Eq. 7) must be balanced by the transfer of energy into the sphere. Since ε is the total

dissipation occuring in the system, D̄(l)/2 must be the energy dissipation occurring outside

the lag sphere. At l = 0, there is no energy transfer in the lag sphere and thus D̄(0) = ε,

meaning that all dissipation is occurring outside of a 0 radius lag sphere.

In summary, the key points we wish to stress in this review section are:

• The lag l represents a length of variation of the fluctuating velocity u and magnetic

field b. Discussions of the properties of turbulence in lag space are directly related to

more well known spectral analysis through the relation l ∼ k/k2.

• The direction-averaged second order structure function S̄(l)/4 is physically the fluc-

tuation energy per unit mass contained in lag space spanning lags of 0 up to lags of

l.

• ε is the total rate of dissipation of energy per unit mass dissipated in the system. In

the inertial range it is equal to the cascade rate of energy per unit mass.
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• Even though Ȳ(l) and H̄(l) are often called the “turbulent cascade flux”, they do not

physically represent an energy flux density in lag space. In the inertial range of a

quasisteady cascade where ∂S̄/∂t = 0, the divergence in lag space of an energy flux

density must be zero.

D. Energy transfer: von Kármán Howarth equation

Using Kinetic PIC simulations, the behavior of the von-Kármán Howarth equation during

anti-parallel reconnection was shown to have significant similarities to a generic decaying

turbulence simulation17. The conclusion therefore was that in that antiparallel case, even

laminar reconnection fundamentally involves an energy transfer to smaller scales (cascade).

We now extend that analysis to the range of guide fields we have simulated.

In Fig. 10, we plot the terms in the direction averaged form of the von-Kármán Howarth

equation (Eq. 5), as a function of lag magnitude. The time chosen to analyze each simulation

is the same as shown in Fig. 3; at these times every simulation has the same amount of

reconnected flux. The terms in Eq. 5 are time-averaged over a duration of 20ω−1
ci centered

on the time of analysis. The time derivative ∂S(l)/∂t is the averate rate of change of S(l)

over this 20 Ω−1
ci duration. For each of these times, the time rate of change of the sum of

magnetic fluctuation energy and ion flow energy is calculated and denoted ε∗. First, the

general behavior of the different terms remains quite similar when the guide field is varied.

The ∂S/∂t terms dominates at largest scales, the MHD transfer term (−∇l ·Y) dominates

at intermediate scales, while the Hall transfer term (−∇l ·H) reaches it peak value at scales

near the inertial length. The decrease at the smallest scales of the sum of the terms is due to

the importance of dissipation at these scales. The kinetic systems do not have a closed form

lag dependent dissipation function in terms of increments, even if the total dissipation is

well accounted for by the pressure work52. Since we are not accounting for scale dependent

dissipated energy, the sum of other terms falls short of the total ε∗. As higher order models,

such as compressible Hall MHD or compressible two fluid MHD, are considered, the regime

of validity can be pushed to smaller scales58,59. Another empirical approach is to introduce

pressure strain interactions52 as an approximation, ad-hoc term in the vKH phenomenology

to account for dissipative processes. Similar terms emerge if one takes into account the

compressive effects58,60–62. At the intermediate scales, there is a significant overlap between
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FIG. 10: Individual terms of the MHD von Kármán Howarth (vKH) equation and their

sum, normalized to ε∗ for all the simulations. The time chosen for each simulation is the

same as shown in Fig. 3. A negative term is represented by a dotted curve of the same

color.

the ∂S/∂t term and the ∇l · Y term for low guide field cases. This reduces the relative

contribution of the ∇l · Y term in the inertial range. While the pressure work has been

found to be significant in these scales for homogeneous turbulence52, it is yet unclear if this

characterization is accurate for the present case.

Second, the crossover point of dominance between the ∂S/∂t terms and the MHD transfer

does not show a clear pattern with changing guide field. The two largest guide field cases

continuously generate secondary islands which create complexity around the scale of about

10 ion inertial lengths. Third, there is a clear trend that the MHD transfer term remains
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FIG. 11: (a) Time evolution of the Shebalin angle, and (b) Shebalin angle versus the

reconnected flux (ψ) for all the simulations. The vertical dashed line at ψ = 15 represents

the flux chosen for the analysis.

large to smaller lags with increasing guide field, and associated with this, the region of

significance of the Hall term shifts towards smaller scales. This trend is consistent with the

reduction in particle Larmor radius with increasing guide field, which makes MHD physics

dominant at smaller scales.

While the energy transfer has many similarities between the different guide field cases,

the question remains if the anisotropy of the magnetic spectrum will behave the same. In

antiparallel reconnection it was shown that the anisotropy of the magnetic spectrum steadily

decreased with time, moving energy from ky to kx
16.

The anisotropy was measured in terms of the Shebalin angle63 corresponding to the

magnetic spectrum, defined as:

tan2θB =

∑
kx,ky

k2
y|EB(~k, t)|∑

kx,ky

k2
x|EB(~k, t)|

, (8)

where kx and ky correspond to the wavenumber along x and y axes respectively while EB is

the 2D magnetic energy spectrum. For reference, a Shebalin angle of 45◦ represents isotropy.

Figure. 11a shows the time evolution of the Shebalin angle across all the simulations. Ini-

tially, since the magnetic energy is dominated by the wavenumbers along y-axis ky, the

Shebalin angle is close to 90◦. However, with the onset of reconnection the energy along

ky is redistributed along kx as suggested by the decrease of the Shebalin angle. The larger
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guide field runs have earlier reconnection onset and therefore an earlier reduction of the She-

balin angle. One peculiar property observed in the higher guide fields runs is the transient

increase of the Shebalin angle. This behavior occurs because secondary islands readily form

in the higher guide field simulations. Both the Bg = 1 and 2 cases generated large secondary

islands that reached scale sizes of about 20 ion inertial lengths before they were absorbed

into the main magnetic islands. These local islands transfer significant energy from ky to

kx, some of which transfers back when they are absorbed, leading to the transient increase

in the Shebalin angle.

Unlike the time evolution of energies in Fig. 2, plotting the Shebalin angle versus recon-

nected flux in Fig. 11b does not simplify the figure substantially. At ψ ≈ 10, for example,

Bg = 0.5 has the largest angle while Bg = 2 has the smallest. It seems clear that secondary

island generation significantly complicates the system anisotropy.

IV. CONCLUSIONS

In this paper, we have studied the effect of a guide field on the spectral and energy transfer

properties of magnetic reconnection using 2.5D kinetic PIC simulations. The key result

is that the turbulence-like characteristics of magnetic reconnection are a robust property

independent of the strength of the guide field. Most importantly, the energy transfer in

reconnection shows a qualitative behavior that is independent of guide field. As shown

for zero guide field17, magnetic reconnection fundamentally involves energy transfer, or in

turbulence vernacular, an energy cascade, that is in a number of aspects much the same as

what is attributed commonly to turbulence.

The Kolmogorov-like spectral index of the magnetic energy spectrum is present for all

guide fields simulated. While the slope of the magnetic energy spectrum stays roughly the

same in the inertial range (kdi <∼ 1), the kinetic range slope becomes steeper for lower guide

field cases. Conversely, the electric field energy spectrum displays significant changes with

the guide field. For wavenumbers in the range 0.1 <∼ kdi <∼ 1, the slope of the electric field

spectrum decreases from about zero to almost a −5/3 for the largest guide field case Bg = 2.

The variation in the electric field spectra with guide field is further quantified by decom-

posing the electric field into various terms of the generalized Ohm’s law. For the Bg = 2

case, we find that the MHD electric field dominates the perpendicular and parallel electric

25



Adhikari et al. 2023

field at the smallest k. The Hall electric field, however, dominates the wavenumbers between

kdi and kλD for E⊥. For Ez, the Hall contribution becomes significant and comparable to

the pressure and electron inertia contributions. The electric field due to the pressure and

electron inertia is significant only in the parallel direction between kdi and kde. It is impor-

tant to note that the largest wavenumbers are often polluted with the finite particles per

grid effect. Therefore, one must be careful while examining the spectra of individual terms

in Ohm’s law. As a result, we compare (a) the spectrum of the electric field directly obtained

from the PIC simulation, (b) the sum of the spectrum of individual terms in the Ohm’s law,

and (c) the spectrum of the sum of different terms in the Ohm’s law and restrict ourselves to

wavenumbers where the spectrum of the PIC output is comparable to the spectrum of the

sum of the terms in Ohm’s law. Further, one must also use high cadence data to study the

electron inertia terms in Ohm’s law such that the time scales at which the current density

change are properly addressed.

The variation of the electric field spectrum with guide field is primarily due to E⊥, which

shows almost a flat slope for Bg = 0 and an increasing negative slope for higher guide

fields. At smaller wavenumbers (kdi < 1), the MHD electric field dominates the parallel

and perpendicular spectrum for all the guide field cases. For Ez, the Hall field plays a

significant role for the Bg = 0 case at kdi ≈ 1, while the MHD contribution still dominates

for large Bg. Whereas, for E⊥, the Hall term consistently exceeds the MHD term in the

smaller wavenumbers. The parallel electric field due to the pressure and electron inertia

is insignificant for all but Bg = 2 case, where it exceeds the contributions from all other

terms in the Ohm’s law at scales around kdi > 2. In the perpendicular field, however, the

pressure term is negligible. The electron inertia contribution becomes comparable in the

electron scales but does not vary much with the guide field. These results of examining the

spectra of the contributions to the generalized Ohm’s law are consistent with the conclusions

obtained from a kinetic PIC simulation of turbulence38,64,65, as well as MMS observations34.

Finally, we also explore the effect of guide field on the von-Kármán Howarth equation.

While energy transfer in reconnection has been discussed partially in the past literature66,67,

Adhikari et al.17 recently quantified the cross-scale energy transfer in reconnection. The

energy transfer characterstics in guide field reconnection are qualitatively the same as what is

observed in anti-parallel reconnection as well as fully developed MHD and kinetic turbulence.

The largest scales are dominated by the ∂S/∂t term; the intermediate scales are dominated
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by the −∇l ·Y, and at the smaller scales, the Hall term −∇l ·H becomes significant. The

total sum of these energy transfer terms, when normalized to the rate of change of magnetic

and ion-flow energy ε∗, is close to unity at the larger scales. A deviation from unity at these

scales is almost certainly related to the compressive channels of energy transfer68. At the

smallest scale, the sum falls significantly because of the absence of a proper description of

dissipation in collisionless plasma. While pressure interaction such as Pi−D69 is considered

a possible candidate to describe dissipation in collisionless plasmas, it involves scale-filtering

techniques52 which is out of the scope of this paper and is left for a subsequent study. There

is an ambiguity about the relative role played by the three distinct regions, inflow, diffusion-

exhaust-separatrices (DES), and island, in a reconnecting system. Merging islands70 and

instability-generated islands71–73 can affect the energy cascade, although detailed studies

of the cascade properties of these phenomena in isolation remain to be addressed. Some

preliminary studies show that islands and DES regions have similar second-order statistics

at smaller lags14,16, but a full characterization of local processes in terms of cascade measures

is not yet accomplished.

Comparing the energy transfer behavior in different guide field simulations can be a

delicate matter. For example, the degree of anisotropy in the systems under comparison

might vary. Because of an earlier onset of reconnection, the higher guide field runs seem to

have an isotropization of energy in kx ky space (see Fig. 11). The Shebalin angle for the

higher guide field runs also displays a transient increase after reaching the first minimum.

This feature is due to the formation of secondary islands which lead to a temporary transfer

of energy back to kx.

We have investigated spectra and energy transfer and the effect of the guide field on

these, within the context of the incompressible Hall MHD von-Kármán Howarth equation.

Although this equation remains valid for non-isotropic systems17,43,51,54, it does not account

for compressive effects on spectral transfer. We are aware of the recent developments of the

exact laws of energy transfer in compressible systems58–60,74. But we consider implementation

of these more complex formulations, which also adopt additional simplifying assumptions,

to be beyond the scope of the present paper. We leave examination of compressive channels

of transfer in kinetic plasma reconnection to future study. The main findings here are that

spectral and energy transfer in the nonlinear phase of laminar collsionless reconnection, with

a range of applied guide fields, bears considerable fundamental resemblance to properties of

27



Adhikari et al. 2023

incompressive MHD turbulence. This recognition may guide future investigations that seek

to unify perspective on the physics of these two important plasma processes.

The results of this paper provide additional compelling evidence of a fundamental prop-

erty of reconnection, namely, that reconnection involves a cascade of energy from large scales

to small scales. Such a fundamental result indicates that the reconnection community might

find that methods that have been developed mainly in the analysis of turbulence can be

fruitfully applied to studies of reconnection. More directly, a greater understanding of the

reconnection energy cascade may shed light on the dissipation properties of reconnection, a

topic that has been a major focus of research in the last decade.
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