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Higher-order topological insulators
Frank Schindler,1 Ashley M. Cook,1 Maia G. Vergniory,2,3* Zhijun Wang,4 Stuart S. P. Parkin,5

B. Andrei Bernevig,4,2,6† Titus Neupert1†

Three-dimensional topological (crystalline) insulators are materials with an insulating bulk but conducting surface
states that are topologically protected by time-reversal (or spatial) symmetries. We extend the notion of three-
dimensional topological insulators to systems that host no gapless surface states but exhibit topologically protected
gapless hinge states. Their topological character is protected by spatiotemporal symmetries of which we present two
cases: (i) Chiral higher-order topological insulators protected by the combination of time-reversal and a fourfold
rotation symmetry. Their hinge states are chiral modes, and the bulk topology isZ2-classified. (ii) Helical higher-order
topological insulators protectedby time-reversal andmirror symmetries. Their hinge states come in Kramers pairs, and
the bulk topology isZ-classified.Weprovide the topological invariants for both cases. Furthermore, we show that SnTe
as well as surface-modified Bi2TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic
experimental setup to detect the hinge states.

INTRODUCTION
The bulk-boundary correspondence is often taken as a defining prop-
erty of topological insulators (TIs) (1–3): If a d-dimensional systemwith
given symmetry is insulating in the bulk but supports gapless boundary
excitations that cannot be removed by local boundary perturbations
without breaking the symmetry, then the system is called TI. The
electric multipole insulators in the study of Benalcazar et al. (4) gener-
alize this bulk-boundary correspondence: In two and three dimensions,
these insulators exhibit no edge or surface states, respectively, but fea-
ture gapless, topological corner excitations corresponding to quantized
higher electric multipole moments. Here, we introduce a new class of
three-dimensional (3D) topological phases to which the usual form of
the bulk-boundary correspondence also does not apply. The topology
of the bulk protects gapless states on the hinges, while the surfaces are
gapped. Both systems, with gapless corner and hinge states, respectively,
can be subsumedunder the notion of higher-order TIs (HOTI): An nth-
order TI has protected gapless modes at a boundary of the system of
codimension n. Following this terminology, we introduce second-order
3D TIs in this work, while the study of Benalcazar et al. (4) has intro-
duced second-order 2D TIs and third-order 3D TIs. The important as-
pect of 3DHOTIs is that they exhibit protected hinge stateswith (spectral)
flow between the valence and conduction bands, whereas the corner
states have no spectral flow.

The topological properties of HOTIs are protected by symmetries
that involve spatial transformations, possibly augmented by time rever-
sal. They thus generalize topological crystalline insulators (5, 6), which
have been encompassed in a recent exhaustive classification of TIs in the
study of Bradlyn et al. (7). Here, we propose two cases: (i) chiral HOTIs
with hinge modes that propagate unidirectionally, akin to the edge
states of a 2D quantumHall effect (8), or Chern insulator (9). We show

that chiral HOTIsmay be protected by the productĈ4T̂ of time reversal
T̂ and aĈ4 rotation symmetry. The existence of these hingemodes—but
not the direction in which they propagate—is determined by the
topology of the 3D bulk. By a Ĉ4T̂ -respecting surface manipulation,
the direction of all hinge modes can be reversed, but they cannot be
removed. This constitutes a bulk Z2 topological classification. We also
show that chiral HOTIs may have a bulk Z topological classification
protected by mirror symmetries that leave the hinges invariant when
time-reversal symmetry T̂ is broken. (ii) helical HOTIs with Kramers
pairs of counterpropagating hingemodes, akin to the edge states of a 2D
quantum spin Hall effect (1, 10–12). We show that helical HOTIs may
occur when a system is invariant under time reversalT̂ and aĈ4 rotation
symmetry.We further show that helical HOTIs can also be protected
by T̂ andmirror symmetries that leave the hinges invariant. Any integer
number of Kramers pairs is topologically protected against symmetry-
preserving surface manipulations, yielding a Z classification.

For both cases, we show the topological bulk-surface-hinge corre-
spondence, provide concrete lattice-model realizations, and provide ex-
pressions for the bulk topological invariants. The latter are given by the
magnetoelectric polarizability and mirror Chern numbers (6, 13), for
chiral and helicalHOTIs, respectively. For the case where a chiral HOTI
also respects the product of inversion times time-reversal symmetry Î T̂,
we formulate a simplified topological index akin to the Fu-Kane formula
for inversion symmetric TIs (2). Finally, on the basis of tight-binding and
ab initio calculations, we propose SnTe as amaterial realization for helical
HOTIs. We also propose an explicit experimental setup to cleanly create
hinge states in a topological SnTe coaxial cable. In contrast, chiral HOTIs
may arise in 3D TI materials that exhibit noncollinear antiferromagnetic
order at low temperatures. Our work is complemented by two related
articles: The study of Langbehn et al. (14) provides a general classification
of second-order phases with reflection symmetry for all 10 Altland-
Zirnbauer symmetry classes, and the study of Benalcazar et al. (15)
establishes a physical interpretation of the topological invariants of
higher-order phases in terms of electric multipole moments.

RESULTS
Chiral HOTI
We first give an intuitive argument for the topological nature of a chiral
3DHOTI.We consider a hypothetical but realizable electronic structure
where gapless degrees of freedom are only found on the hinge. For
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concreteness, let us consider a systemwith a square cross section, periodic
boundary conditions in z direction, and Ĉ

z
4T̂ symmetry that has a

single chiralmode at each hinge, as sketched in Fig. 1A. For thesemodes
to be a feature associated with the 3D bulk topology of the system, they
should be protected against any Ĉ

z
4T̂ -preserving surface or hinge per-

turbation of the system. The minimal relevant surface perturbation
of that kind is the addition of an integer quantum Hall (or Chern in-
sulator) layer with Hall conductivity sxy = e2/h and sxy = − e2/h on
the (100) surfaces and the (010) surfaces, respectively, which respects
Ĉ

z
4T̂ . As seen from Fig. 1C, this adds to each hinge two chiral hinge

channels. Repeating this procedure, we can change—via a pure surface
manipulation—the number of chiral channels on each hinge by any
even number. Hence, only the Z2 parity of hinge channels can be a
topological property protected by the system’s 3D bulk.

A concrete model of this phase is defined via the four-band
Bloch Hamiltonian

HcðkÞ ¼ M þ t∑
i
cos ki

� �
tzs0

þ D1∑
i
sin kitxsi þ D2ðcos kx � cos kyÞtys0 ð1Þ

where si and ti, i = x, y, z, are the three Pauli matrices acting on
spin and orbital degree of freedoms, respectively (see Methods for a
real-space representation of the model). For D2 = 0,HcðkÞ represents
the well-known 3D TI if 1 < |M| < 3. Time-reversal symmetry is re-
presented by THcðkÞT�1 ¼ Hcð�kÞ, with T ≡ t0syK, where K de-
notes complex conjugation. For D2 = 0, Hamiltonian (1) has a Ĉ

z
4

rotation symmetry Cz
4HcðkÞðCz

4Þ�1 ¼ HcðDĈ
z
4
kÞ, where Cz

4 ≡ t0e�ip4sz

and DĈ
z
4
k ¼ ð�ky; kx; kzÞ.

The term proportional to D2 breaks both T̂ and Ĉ
z
4 individually

but respects the antiunitary combination Ĉ
z
4T̂ , which means that

ðCz
4TÞHcðkÞðCz

4TÞ�1 ¼ HcðDĈ
z
4T̂
kÞ;DĈ

z
4T̂
k ¼ ðky;�kx;�kzÞ ð2Þ

is a symmetry of the Hamiltonian also when D2 ≠ 0. Because ½Ĉz
4; T̂ � ¼ 0,

we have ðĈz
4T̂ Þ4 ¼ �1, independent of the choice of representation.

The phase diagram of Hamiltonian (1) is shown in Fig. 2A. For
1 < |M/t| < 3 and D1, D2 ≠ 0, the system is a chiral 3D HOTI. The

spectrum in the case of open boundary conditions in x and y directions
is presented in Fig. 2C, where the chiral hinge modes (each twofold
degenerate) are seen to traverse the bulk gap. Physically, the termmulti-
plied by D2 corresponds to orbital currents that break time-reversal
symmetry oppositely in the x and y directions. When infinitesimally
small, its main effect is thus to open gaps with alternating signs for
the surface Dirac electrons of the 3DTI on the (100) and (010) surfaces.
The four hinges are then domain walls at which theDiracmass changes
sign. It is well known (16, 17) that such a domainwall on the surface of a
3D TI binds a gapless chiral mode, which, in the case at hand, is rein-
terpreted as the hingemode of theHOTI. Another physical mechanism
that breaks time-reversal symmetry and preservesĈ

z
4T̂ would be (p, p, 0)

noncollinear antiferromagnetic orderwith a unit cell as shown in Fig. 2B.
Note that even with finite D2, the (001) surface of the model remains
gapless, because its Dirac cone is protected by the Ĉ

z
4T̂ symmetry that

leaves the surface invariant and enforces a Kramers-like degeneracy dis-
cussed in the Supplementary Materials. The gapless nature of the
(001) surface in the geometry of Fig. 1B is also required by current con-
servation because the chiral hinge currents cannot terminate in a gapped
region of the sample. A current-conserving geometry with gapped sur-
faces is given in the Supplementary Materials.

We turn to the bulk topological invariant that describes the Z2

topology. The topological invariant of 3DTIs is the theta angle or Chern
Simons invariant q (see Methods for its definition), which is quantized
by time-reversal symmetry to be q = 0, pmod 2p, with q = p being the
nontrivial case (18). The very same quantity q is the topological invariant
of chiralHOTIs.What changes is that its quantization to values 0, p is not
enforced by T̂ but by Ĉ4T̂ symmetry in this case. q attains a newmeaning
in the second-order picture: It uniquely characterizes a different symmetry-
protected topological phase that exhibits T̂-breaking but Ĉ4T̂-preserving
hinge currents instead of T̂-preserving gapless surface excitations. In the
Supplementary Materials, we show the quantization of q enforced by
Ĉ4T̂ symmetry and explicitly evaluate q = p for the model (1). We fur-
thermore note that for a nontrivial q in the presence of Ĉ4T̂ symmetry
to uniquely characterize the presence of gapless hinge excitations, the
bulk and the surfaces of the material that adjoin the hinge are required
to be insulating. This constitutes the bulk-surface-hinge correspondence
of chiral HOTIs.

The explicit evaluation of q is impractical for ab initio computations
in generic insulators. This motivates the discussion of alternative forms
of the topological invariant. The Pfaffian invariant (1) used to define
first-order 3D TIs rests on the group relation T̂

2 ¼ �1, and it fails in

A B C

Fig. 1. Topologically protected hinge excitations of second-order 3D TIs. (A) Time-reversal breaking model with chiral hinge currents running along the corners of a
Ĉ
z
4-preserving bulk termination where periodic boundary conditions in z direction are assumed. (B) Time-reversal invariant model with antipropagating Kramers pairs of

hingemodes. Highlighted in gray are the planes invariant under the mirror symmetries M̂xy and M̂x�y that protect the hinge states. (C) By supplementing each surface of the
chiral HOTI in (A) with a Chern insulator with Hall conductivity sxy = ± e2/h, the number of chiral hingemodes can be changed by 2. The Hall conductivities of the additional
Chern insulator layers alternate (blue for + e2/h, red for − e2/h) to comply with the Ĉ

z
4T̂ symmetry. The topology is therefore Z2-classified.
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our case where ðĈ4T̂ Þ4 ¼ �1. We may instead use a non-Abelian
Wilson loop characterization of the topology, as presented in the Sup-
plementary Materials (19, 20). There, we also provide two further
topological characterizations, one based on so-called nested Wilson
loop (4) and entanglement spectra (21–23) and one applicable to
systems that are in addition invariant under the product Î T̂ of inver-
sion symmetry Î and T̂ (3).

Helical HOTI
Helical HOTIs feature Kramers pairs of counterpropagating hinge
modes. They are protected by time-reversal symmetry and a spatial
symmetry. For concreteness, let us consider a system with a square
(or rhombic) cross section, periodic boundary conditions in the z
direction, and two mirror symmetries M̂xy and M̂xy that leave, re-
spectively, the x = −y and the x = y planes invariant and with it a
pair of hinges each (as sketched in Fig. 1B). We consider a hypothetical
but realizable electronic structure where gapless degrees of freedom
are only found on the hinge. At a given hinge, for instance, one that is
invariant under M̂xy , we can choose all hinge modes as eigenstates of
M̂xy. We denote the number of modes that propagate parallel, R, (anti-
parallel, L) to the z direction and haveM̂xy eigenvalue il, l =± 1, byNR,l

(NL,l).We argue that the net number of helical hinge pairsn≡NR,+−NL,+

(which by time-reversal symmetry is equal to NL,− − NR,−) is topologi-
cally protected. In particular, n cannot be changed by any surface or
hingemanipulation that respects both T̂ andM̂xy. First, note that if both
NR,+ and NL,+ are nonzero (assuming from now on that NR,+ > NR,−),
then we can always hybridize NL,+ right-moving modes with all NL,+

left-moving modes within the l = + subspace without breaking any
symmetry.Therefore, only thedifferencen iswell defined andcorresponds
to the number of remaining pairs of modes.

The argument for their topological protection proceeds similar to
the chiral HOTI case by considering a minimal symmetry-preserving
surface perturbation. It consists of a layer of a 2D time-reversal symmetric
TI and its mirror-conjugated partner added to surfaces that border the
hinge under consideration. Each of the TIs contributes a single Kramers
pair of boundarymodes to the hinge so that (NL,−+NL,+) and (NR,−+NR,+)
each increase by 2 (see Fig. 3A). Because mirror symmetry maps the
right-movingmodes of the two Kramers pairs onto one another (and
the same for the two left-moving modes), we can form a “bonding”
and “antibonding” superpositionwithmirror eigenvalues + i and− i out
of each pair. Thus, each of NL,+, NL,−, NR,+, and NR,− increases by
1 because of this minimal surface manipulation. This leaves n in-
variant, suggesting a Z classification of the helical HOTI for each

pair of mirror-invariant hinges. The case depicted in Fig. 1B with
two mirror symmetries is then Z� Z–classified. A more rigorous
version of this argument can be found in the Supplementary
Materials.

The topological invariant for the Z� Z classification of the helical
HOTI is the set of mirror Chern numbers (6, 13) Cm/2 on the M̂xy and
M̂xymirror planes (seeMethods for the definition ofCm). First, observe
that if Cm were odd, then the system would be a strong 3D TI: The
M̂xy mirror planes in momentum space include all time-reversal in-
variant momenta in the (110) surface Brillouin zone. Thus, if Cm is
odd, then there is an odd number of Dirac cones on the (110) surface,
and time-reversal symmetry implies that such a system is a strong 3D
TI. As the surfaces of a strong 3D TI cannot be gapped out with a
time-reversal symmetric perturbation, we cannot construct a helical
HOTI from it. We conclude that Cm is even for all systems of interest
to us.

We now discuss the correspondence between the bulk topological
invariant Cm/2 and the existence of Kramers-paired hinge modes.
For this, we first consider the electronic structure of the (110) sur-
face, which is invariant under M̂xy and then that of a pair of surfaces
with a normaln± = (1 ± a, 1∓ a, 0) for small a, which aremapped into
each other under M̂xy and form a hinge at their interface (see Fig. 3,
B to D).

A nonzero bulk mirror Chern number Cm with respect to the M̂xy

symmetry enforces the existence of gapless Dirac cones on the (110)
surface. These Dirac cones are pinned to the mirror invariant lines
k1 = 0, p in the surface Brillouin zone of the (110) surface, where k1
is the momentum along the direction with the unit vector ê1 ¼
ðêx � êyÞ=

ffiffiffi
2

p
. If we consider the electronic structure along these lines

in momentum space (see Fig. 3B), then each Dirac cone has an effective
HamiltonianHD ¼ v1szðk1 � kð0Þ1 Þ þ vzsxðkz � kð0Þz Þwhen expand-
ed around a Dirac point at ðk1; kzÞ ¼ ðkð0Þ1 ; kð0Þz Þ for kð0Þ1 ¼ 0 or
kð0Þ1 ¼ p. The mirror symmetry is represented by Mxy = isx, pre-
venting mass terms of the form msy from appearing. The sign of vz is
tied to the M̂xy eigenvalue (i sgn vz) of the eigenstate with a positive
group velocity in the z direction (at k1 � kð0Þ1 ¼ 0). Denoting the total
number ofDirac coneswith vz>0 (vz<0) byn+ (n−), the bulk-boundary
correspondence of a topological crystalline insulator (5) implies

Cm ¼ nþ � n� ð3Þ

Consider now a pair of surfaces with slightly tilted normals n+ and n−,
which are not invariant under the mirror symmetry but map into each

CA B

Fig. 2. Simple model for a chiral HOTI. (A) Schematic phase diagram for model (1), where NI stands for normal insulator. (B) A unit cell of noncollinear magnetic order
with Ĉ

z
4T̂ symmetry. (C) Energy spectrum of model (1) with chiral hinge currents (red) in the geometry of Fig. 1A. For a slab geometry, where the bulk is terminated in

just one direction of space, there are in general no gapless modes.
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other. Mass terms are allowed, and the Hamiltonians on the surfaces
with normal n± read

HD;± ¼ v1sz k1 � kð0Þ1 ±ka
� �

þ vzsx kz � kð0Þz

� �
±masy ð4Þ

to linear order in a, ðk1 � kð0Þ1 Þ and ðkz � kð0Þz Þ with m and k real
parameters. The two surfaces with normals n+ and n− meet in a
hinge (see Fig. 3B). Equation 4 describes a Dirac fermion with a
mass of opposite sign on the two surfaces. The hinge therefore
forms a domain wall in the Dirac mass from which a single chiral
channel connecting valence and conduction bands arises (24). As
we show in the Supplementary Materials, this domain wall either
binds an R moving mode withMxymirror eigenvalue il = i sgn(vz)
or an L moving mode with mirror eigenvalue − i sgn(vz). The equality
nsgnðvzÞ ¼ NR;sgnðvzÞ þ NL;�sgnðvzÞ follows, which connects the num-
ber of hinge modes NL/R,± we had introduced before to the mirror-
graded numbers of Dirac cones on the (110) surface n±. From Eq. 3,
we obtain

Cm ¼ ðNR;þ � NR;� þ NL;� � NL;þÞ ≡ 2n ð5Þ

relating the 3D bulk invariant Cm to the number of protected helical
hinge pairs n of the HOTI. Notice that by time-reversal symmetry,
NR,+ −NR,− =NL,− −NL,+, so that n in Eq. 5 is an integer. Cm is even as
aforementioned.

Note that the above deformation of the surfaces can be extended
to nonperturbative angles a, until, for example, the (100) and (010)
surface orientations are reached. The surfaces on either side of
the hinge may undergo gap-closing transitions as a is increased.
But as we argued at the beginning of the section, surface transi-
tions of this kind may not change the net number of helical hinge
states with a given mirror eigenvalue, if they occur in a mirror-
symmetric manner.

We remark that an equation similar to Eq. 5 also holds in the
absence of time-reversal symmetry for each mirror subspace.
Then, the Chern number in each mirror subspace is an independent
topological invariant, which gives rise to a Z� Z classification on
each hinge (as opposed toZwith time-reversal symmetry). This case
corresponds to chiral HOTIs protected by mirror symmetries in-
stead of the Ĉ4T̂ symmetry used in Eq. 2. Conversely, we show in
the Supplementary Materials that a helical HOTI protected by Ĉ4

and T̂ exists and has a Z2 classification.

Material candidates and experimental setup
We propose that SnTe realizes a helical HOTI. In its cubic rocksalt
structure, SnTe is known to be a topological crystalline insulator (5, 6).
This crystal structure has mirror symmetries M̂xy [acting as (x, y, z)→
(y, x, z)] as well as its partners under cubic symmetry (M̂x�y,M̂xz,M̂x�z,M̂yz,
andM̂y�z). Further spatial symmetries irrelevant to the discussion are not
mentioned. The bulk electronic structure of SnTe is insulating and to-
pologically characterized by a mirror Chern number Cm = 2 with re-
spect to the mirror symmetries on the mirror planes that include
the G point in momentum space. All other mirror planes have Cm =
0. As a result, cubic SnTe has mirror-symmetry protected Dirac cones
on specific surfaces. We consider the geometry of Fig. 1B with open
boundary conditions in the x and y directions and periodic boundary
conditions in the z direction. The M̂xz, M̂x�z, M̂yz, and M̂y�z symmetries
along with their mirror Chern numbers protect either four Dirac cones
at generic surface momenta or two at the surface Brillouin zone Kramers
points on the (100) as well as the (010) surfaces (see Fig. 4B). In the case
at hand, the former possibility is realized. We now discuss two distor-
tions of the crystal structure that turn SnTe into a HOTI.

(1) At about 98K, SnTe undergoes a structural distortion into a low-
temperature rhombohedral phase via a relative displacement of the two
sublattices along the (111) direction (25, 26). This breaks the mirror
symmetries M̂x�z, M̂y�z, and M̂x�y but preserves M̂xz, M̂yz, and M̂xy. On
the (100) surface in the geometry in Fig. 1B, for instance, the two Dirac
cones protected by M̂y�z can thus be gapped out, while the two Dirac
cones protected by M̂yz remain [and similarly for the (010) surface].
Therefore, the (100) and (010) surfaces remain gapless, and the geom-
etry of Fig. 1B cannot be used to expose the HOTI nature of SnTe with
(111) uniaxial displacement. For that reason, we instead consider the
(�101) and (0�11) surfaces, which are not invariant under any mirror
symmetry of SnTe with (111) uniaxial displacement. The spectral func-
tion focused on the hinge weight of a semi-infinite geometry with a
single hinge formed between the (�101) and (0�11) surfaces is shown
in Fig. 4E. This tight-binding calculation, based on density functional
theory (DFT)–derived Wannier functions (WFs) (see Methods), de-
monstrates the existence of this single Kramers pair of states on the
two hinges invariant under M̂xy , in line with the prediction of Eq. 5
for Cm = 2.

(2) If uniaxial strain along the (110) direction is applied to SnTe,
then M̂xz , M̂x�z , M̂yz , and M̂y�z symmetries are broken, but M̂xy and
M̂x�y are preserved. This gaps the (100) and (010) surfaces in the geom-
etry in Fig. 1B completely. We calculated the surface states by using a
slab geometry along the (100) directionwithDFT. Because of the small-
ness of the bandgap induced by strain, we needed to achieve a negligible

A B C D

Fig. 3. Bulk-surface-hinge correspondence of helical HOTIs. (A) Additional hingemodes obtained by decorating the surfaceswith 2D time-reversal symmetric TIs in amirror-
symmetric fashion. They can always be combined in bonding and antibonding pairs {R1 + R2, L1 + L2} and {R1 − R2, L1 − L2}, with mirror eigenvalues + i and − i, respectively.
Therefore, they do not change the net mirror chirality of the hinge. (B) Mirror-symmetry protected Dirac cones on a (110) surface. (C) Slightly tilting the surface normal out of the
mirror plane gaps theDirac cones and forms aKramers pair of domainwall states between two surfaceswith opposite tilting. Themirror eigenvalues of thehingemodes are tied to
those of theDirac cones, which, in turn, are related to a bulk topological invariant, themirror Chern numberCm. (D) Further deforming the surface to the (100) and (010) orientation
in a mirror symmetry–preserving manner does not change this correspondence.
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interaction between the surface states from both sides of the slab. To
reduce the overlap between top and bottom surface states, we considered
a slab of 45 layers and 1 nm vacuum thickness, artificially localized the
states on one of the surfaces, and added one layer of hydrogen on one of
the surfaces. The evolution of the surface gap size with strain is shown in
Fig. 4D (see the Supplementary Materials for more details). Figure 4F is
the spectrum of a tight-binding calculation (6) with (110) strain, demon-
strating that there exists one Kramers pair of hinge modes on all four
hinges in the geometry of Fig. 1B.

We propose to physically realize the (110) uniaxial strain in SnTe
with a topological coaxial cable geometry, which would enable the
use of its protected hinge states as quasi-1D dissipationless conduction
channels (see Fig. 4F). The starting point is an insulating nanowire sub-
strate made from Si or SiO, with a slightly rhombohedral cross section
imprinted by anisotropic etching. SnTe is grown in layers on the

surfaces by using molecular beam epitaxy, with a thickness of about
10 layers. SnTe will experience the uniaxial strain to gap out its surfaces
and protect the helical HOTI phase. The hinge states can be studied by
scanning tunneling microscopy and transport experiments with contacts
applied through electronic-beam lithography. Note that in the process of
growth, regions with step edges are likely to form on the surfaces and
should be avoided in measurements, as they may carry their own gapless
modes (27). Alternatively, we propose to use a superconducting sub-
strate to study proximity-induced superconductivity on the helical
hinge states.

In addition to the topological crystalline insulator SnTe, we propose
weakTIswith nonvanishingmirror Chern numbers as possible avenues
to realize helical HOTIs. We computed the relevant mirror Chern
numbers for the weak TIs Bi2TeI (28), BiSe (29), and BiTe (30), which
all turn out to be 2. These materials are therefore dual TIs, in the sense

A

B

C D

G

F

E

Fig. 4. Helical HOTI emerging from the topological crystalline insulator SnTe. (A) Rocksalt lattice structure of SnTe. Uniaxial strain along the (110) direction breaks themirror
symmetries represented by dotted lines but preserves the ones represented by dashed lines. (B) Circles indicate the location of Dirac cones in the surface Brillouin zone of pristine
SnTe for various surface terminations. Those crossedbydottedmirror symmetries are gapped in SnTewith uniaxial strainwhile theothers are retained. The two redDirac cones are
enforced by a mirror Chern number Cm = 2, corresponding to one helical pair of hinge modes. k1 is the momentum along the direction with unit vector ê1 ¼ ðêx � êyÞ=

ffiffiffi
2

p
. (C)

DFT band structure of a slab of SnTewith open boundary conditions in the (100) direction under 3% strain in the (110) direction. (D) DFT calculation of the gapD that develops on
the (100) surface of SnTe under (110) uniaxial strain. (E) DFT-basedWannier tight-binding calculation of SnTe with the (111) ferroelectric displacement in a semi-infinite geometry
in which the (0�11) surface and the (�101) surfacemeet at a hinge that is parallel to the (111) direction. A single Kramers pair of hinge states is visible. This distortion breaks all mirror
symmetries except those with normal (0�11), (�101), and (1�10), which retain their mirror Chern number 2 for a sufficiently small distortion. The (0�11) and (�101) surfaces considered
here are both not invariant under thesemirror symmetries, but the hinge formed between them is invariant under themirror symmetrywith normal (1�10), supporting topological
hinge states. (F) Low-energy finite size spectrum of SnTe with uniaxial (110) strain obtained using a tight-binding model (see the Supplementary Materials) for open boundary
conditions in the x and y directions (with Lx = Ly = 111 atoms) and periodic boundary conditions in the z direction. States localized in the bulk, on the (100)/(010) surfaces, and on
the hinges are color-coded. Near kz = p, four Kramers pairs of hingemodes, one localized on each hinge, are found. Upper left inset: Localization of the gapless modes. Lower left
inset: Spatial structure of one suchmode near a hinge. Only a small portion of the lattice near the hinge is shown. Right inset: Electronic structure of undistorted SnTe in the same
geometry, showing two “flat band” hingemodes in addition to the gapless surface Dirac cones. (G) Topological coaxial cable geometry to realize (110) uniaxial displacement. A Si
or SiO substrate (gray) is etched to have a rhombohedral cross section and then coated with SnTe (blue) yielding Kramers pairs of hinge modes (orange).
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that they carry nontrivial weak and crystalline topological invariants.
Their surface Dirac cones are protected by a nontrivial weak
index, that is, by time reversal together with translation sym-
metry. To gap them, it is necessary to break at least one of these
symmetries, which is possible by inducing magnetic or charge
density wave order.

DISCUSSION
We have introduced 3D HOTIs, which have gapped surfaces but
gapless hinge modes, as intrinsically 3D topological phases of
matter. Both time-reversal symmetry breaking and time-reversal
symmetric systems were explored, which support hinge states akin
to those of the integer quantum Hall effect and 2D time-reversal sym-
metric TIs, respectively. The former may be realized in magnetically
ordered TIs; we propose the naturally occurring rhombohedral or a
uniaxially distorted phase of SnTe as a material realization for the
latter. Despite their global topological characterization based on spa-
tial symmetries, the hinge states are as robust against local perturba-
tions as quantum (spin) Hall edge modes. The concepts introduced
here can be extended to define novel topological superconductors
with chiral and helical Majoranamodes at their hinges andmay further
be transferred to strongly interacting, possibly topologically ordered,
states of matter and to mechanical (31), electrical (32), and photonic
analogs of Bloch Hamiltonians.

METHODS
First-principles calculations
We used DFT as implemented in the Vienna Ab initio Simulation
Package (33). The exchange correlation term was described
according to the Perdew-Burke-Ernzerhof prescription together
with projected augmented-wave pseudopotentials (34). For the
autoconsistent calculations, we used a 12 × 12 × 12 k-point mesh
for the bulk and 7 × 7 × 1 for the slab calculations.

For the electronic structure of SnTe with (110) distortion, the
kinetic energy cutoff was set to 400 eV. We calculated the surface
states by using a slab geometry along the (100) direction. Because
of the smallness of the bandgap induced by strain, we needed to
achieve a negligible interaction between the surface states from
both sides of the slab (to avoid a spurious gap opened by the creation
of bonding and antibonding states from the top and bottom surface
states). To reduce the overlap between top and bottom surface states,
we considered a slab of 45 layers and 1 nm vacuum thickness and
artificially localized the states on one of the surfaces. The latter
was performed by adding one layer of hydrogen to one of the
surfaces.

To obtain the electronic structure of bulk SnTe with (111) fer-
roelectric distortion, we set the cutoff energy for wave-function
expansion to 500 eV. We used the parameter l introduced in the
study of Plekhanov et al. (35) to parameterize a path linearly con-
necting the cubic structure (space group Fm3m) to the rhombohe-
dral structure (space group R3m). Our calculations are focused on
the l = 0.1 structure. Then, to obtain the hinge electronic structure,
we first constructed the maximally localized WFs from the bulk ab
initio calculations. These WFs were used in a Green’s function cal-
culation for a system finite in a direction, semi-infinite in b direction,
and periodic in c direction (a, b, and c are the conventional lattice
vectors in the space group R3m). The hinge state spectrum was ob-

tained by projecting on the atoms at the corner, which preserve the
mirror symmetry M̂xy .

Chiral HOTI tight-binding model
We considered a model on a simple cubic lattice spanned by the
basis vectors êi, i = x, y, z, with two orbitals dx2�y2 (denoted a = 0
below) and f zðx2�y2Þ (a = 1) on each site, which is populated by
spin 1/2 electrons. It is defined by the tight-binding Hamiltonian

Hc ¼ M
2
∑
r;a
ð�1Þac†r;acr;a

þ t
2
∑
r;a

∑
i¼x;y;z

ð�1Þa c†rþê i;a
cr;a

þD1

2
∑
r;a

∑
i¼x;y;z

c†rþê i;aþ1sicr;a

�D2

2i
∑
r;a

∑
i¼x;y;z

ð�1Þanic†rþê i;aþ1cr;a þ h:c:

ð6Þ

where a i s def ined modulo 2 , n̂ ¼ ð1;�1; 0Þ , and c†r;a ¼
ðc†r;a;↑c†r;a;↓Þ creates a spinor in orbital a at lattice site r. We de-
noted by s0 and si, i = x, y, z, respectively, the 2 × 2 identity
matrix and the three Pauli matrices acting on the spin 1/2 degree
of freedom.

Chern-Simons topological invariant
The invariant for chiral HOTIs with Ĉ4T̂ symmetry is given by

q ¼ 1
4p
∫d3k∈abctr Aa∂bAc þ i

2
3
AaAbAc

� �
ð7Þ

written in terms of the Berry gauge field Aa;n;n’ ¼ �i〈unj∂ajun’ 〉,
where |un〉 are the Bloch eigenstates of the Bloch Hamiltonian
and n, n′ are running over the occupied bands of the insulator.
∂a is the partial derivative with respect to the momentum com-
ponent ka, a = x, z, y. The trace is performed with respect to band
indices.

Mirror Chern number
The topological invariant of a 3D helical HOTI is the mirror Chern
number Cm. Because for a spinful system a mirror symmetry M̂ sat-
isfies M̂

2 ¼ �1, its representationM has eigenvalues ± i. Given a sur-
face ∑ in the Brillouin zone, which is left invariant under the action of
M̂ , the eigenstates |un〉 of the Bloch Hamiltonian on ∑ can be de-
composed into two groups, {juþl i} and {ju�l’ i}, with mirror eigenvalue
±i, respectively. Time-reversal symmetry maps one mirror eigenspace
into the other; if time-reversal symmetry is present, then the twomirror
eigenspaces are of the same dimension.We can define theChern num-
ber in each mirror subspace as

C± ¼ 1
2p
∫SdkxdkyF ±

xyðkÞ ð8Þ

Here

F ±
abðkÞ ¼ ∂aAþ

b ðkÞ � ∂bAþ
a ðkÞ þ i Aþ

a ðkÞ;Aþ
b ðkÞ

	 
 ð9Þ
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is the non-Abelian Berry curvature field in the ± imirror subspace, with
A±

a;l;l’ ¼ �i〈u±l j∂aju±l’ 〉, and matrix multiplication is implied in the
expressions. Note that in time-reversal symmetric systems, C+ = − C−,
and we define the mirror Chern number

Cm≡ðCþ � C�Þ=2 ð10Þ

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/6/eaat0346/DC1
Supplementary Text
fig. S1. Nested entanglement and Wilson loop spectra for the second-order 3D chiral TI model
defined in Eq. 1 in the main text with M/t = 2 and D1/t = D2/t = 1.
fig. S2. Real-space hopping picture for the optical lattice model with
H4 ¼ ∑〈ij〉∈ðx;yÞ tðx;yÞij c†z;i cz; j þ tzij c

†
z;i czþ1; j

� �
.

fig. S3. Real-space structure for a chiral HOTI.
fig. S4. Constraints on mirror-symmetric domain wall modes in two dimensions.
fig. S5. Wilson loop characterization of helical HOTIs.
fig. S6. Band structure of the surface Dirac cones of the topological crystalline insulator SnTe
calculated in a slab geometry.
fig. S7. High-symmetry points in the BZ of SnTe.
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