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Abstract
1.	 Camera trap surveys are a popular ecological monitoring tool that produce 

vast numbers of images making their annotation extremely time-consuming. 
Advances in machine learning, in the form of convolutional neural networks, 
have demonstrated potential for automated image classification, reducing pro-
cessing time. These networks often have a poor ability to generalise, however, 
which could impact assessments of species in habitats undergoing change.

2.	 Here, we (i) compare the performance of three network architectures in 
identifying species in camera trap images taken from tropical forest of varying 
disturbance intensities; (ii) explore the impacts of training dataset configuration; 
(iii) use habitat disturbance categories to investigate network generalisability 
and (iv) test whether classification performance and generalisability improve 
when using images cropped to bounding boxes.

3.	 Overall accuracy (72.8%) was improved by excluding the rarest species and by 
adding extra training images (76.3% and 82.8%, respectively). Generalisability 
to new camera locations within a disturbance level was poor (mean F1-score: 
0.32). Performance across unseen habitat disturbance levels was worse (mean 
F1-score: 0.27). Training the network on multiple disturbance levels improved 
generalisability (mean F1-score on unseen disturbance levels: 0.41). Cropping 
images to bounding boxes improved overall performance (F1-score: 0.77 vs. 
0.47) and generalisability (mean F1-score on unseen disturbance levels: 0.73), 
but at a cost of losing images that contained animals which the detector failed to 
detect.

4.	 These results suggest researchers should consider using an object detector 
before passing images to a classifier, and an improvement in classification 
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1  |  INTRODUC TION

Camera traps have become an increasingly popular survey tool 
among ecologists and conservationists, being used in a variety of 
studies, including of wildlife distribution, abundance, occupancy, be-
haviour and community structure (Burton et al.,  2015). Their two 
biggest advantages are that they sample a relatively broad spectrum 
of wildlife, making them effective for monitoring species richness, 
and that they can operate night-and-day for months at a time, mean-
ing that they can produce useful data on even the rarest species 
(Wearn et al., 2019). They also produce thousands, or in some cases, 
millions, of images for analysis.

Sifting out empty images and tagging images of animals can 
be a very time-consuming task for researchers. Although work-
flow efficiency and task complexity are probably hugely variable 
in ‘real-world’ settings, our experience is that an operator can pro-
cess on the order of 1000–5000 images per day (assuming a basic 
task of tagging species and counting individuals). Recent advances 
in machine learning have seen the application of neural networks 
to this task to reduce the burden on researchers and reduce pro-
cessing time (Beery et al., 2018; Norouzzadeh et al., 2018; Swanson 
et al., 2015; Tabak et al., 2019; Willi et al., 2019). In the largest com-
parison of machine learning architectures for the task of identifying 
species to date—based on the 3.2 million-image Snapshot Serengeti 
dataset—an overall accuracy of 93.8% was achieved (Norouzzadeh 
et al., 2018). When restricted to only images, the network was con-
fident of having categorised correctly, this rose to 99.3%. Overall, 
automating the task of identifying species could have saved over 
8.4 years of manual human labelling time if implemented from 
the outset (Norouzzadeh et al.,  2018). More recent studies have 
achieved even higher accuracies of 95.6% (Schneider et al., 2020) 
and 97.6% (Tabak et al., 2019). In their review, Wäldchen and Mäder 
(2018) predicted that the number of tools available, and their ap-
plication to species identification tasks, will continue to increase 
in the future.

These high accuracy results are impressive, but do not provide 
the full picture since they represent performance when the network 
is trained and tested on images from the same camera trap loca-
tions. When networks are tested on images from camera locations 
unseen during training, performance invariably drops; the networks 
do not generalise well. Previous studies have reported varying ac-
curacies in this case: 68.7% (Schneider et al., 2020) and 59% (Beery 
et al., 2018) when tested on unseen camera locations from within 
the camera trap dataset, and 82% (Tabak et al., 2019) when tested 
on camera locations from an alternative dataset. This drop in perfor-
mance could be due to variables such as changes to the background 
scenery, lighting, camera position or average distance of subject 
from camera. Performance can also be impacted by variation in the 
distribution and density of species recorded by each camera (Wei 
Koh et al., 2021). The issue of poor generalisability is not unique to 
automated classification of camera trap images, however. In the re-
lated context of acoustic detection in birds, networks generalised 
poorly to new conditions including differing species balances, noise 
conditions or recording equipment (Stowell et al.,  2019). Similarly, 
a 14.4% drop in marine mammal classifier accuracy occurred when 
testing on whistle data from a different region than that trained on 
(Erbs et al., 2017).

Many applications of machine learning to classification thus far 
have had a particular geographical focus (Weinstein, 2018), but in 
order for these techniques to be widely applicable and impactful, 
architectures are required that can be used by multiple research-
ers on different datasets, ideally without having to perform the 
time-consuming network training at each new location (Wearn 
et al.,  2019). In a world increasingly impacted by anthropogenic 
activity resulting in habitat degradation and fragmentation, it is 
also important that we have classifiers that are robust to changes 
in image background to facilitate long-term monitoring of habitats 
undergoing change. Otherwise, when conducting analyses using 
images classified by a network trained on images from pristine hab-
itat, we risk drawing wrong conclusions if the new habitat has been 

might be seen if labelled images from other studies are added to their training 
data. Composition of training data was shown to be influential, but including 
rarer classes did not compromise performance on common classes, providing 
support for the inclusion of rare species to inform conservation efforts. These 
findings have important implications for use of these methods for long-term 
monitoring of habitats undergoing change, as they highlight the potential for 
misclassifications due to poor generalisability to impact subsequent ecological 
analyses. These methods therefore need to be considered as dynamic, in that 
changes to the study site would need to be reflected in the updated training of 
the network.

K E Y W O R D S
camera trap, convolutional neural network, deep learning, disturbance, generalisability, image 
classification, object detection
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altered to such an extent that the image backgrounds have changed. 
The impact of habitat degradation on network generalisability has 
not been considered to date.

Here, we compare the performance of three established archi-
tectures to identify species in camera trap images taken from un-
disturbed and disturbed tropical forests in Borneo. We specifically 
aim to explore the extent to which a network is able to generalise, 
which we achieve by splitting the dataset into an environmental gra-
dient of varying levels of habitat disturbance generated by historical 
logging. Our goals are to (1) assess the performance of established 
architectures and identify the best network for classifying images 
within our dataset; (2) explore the impacts of training dataset con-
figuration on overall performance, specifically restricting the data 
to common species only or increasing the number of images per 
species class included; (3) use the disturbance-level categories at-
tributed to the camera trap locations to investigate the generalis-
ability of the chosen network within our dataset; and (4) compare 
generalisablity performance when images are cropped to bounding 
boxes. The results of this study will inform the robust application of 
automated image classification for monitoring biodiversity in habi-
tats undergoing change.

2  |  MATERIAL S AND METHODS

The dataset comprises camera trap images taken from the Stability 
of Altered Forest Ecosystem (SAFE) Project (Ewers et al.,  2011) 
in Malaysian Borneo, a subset of which form the open access 
BorneoCam dataset. Camera trapping took place between May 
2011 and March 2018, following the sampling procedure laid out 
in Wearn et al. (2013). The data were originally collected under ap-
proval from the Government of Malaysia, with the following permit 
numbers: Economic Planning Unit 40/200/19/2656; Maliau Basin 
Management Committee MBMC/2010/15, and Sabah Biodiversity 
Council JKM/MBS.1000-2/3 (84), JKM/MBS.1000-2/2 JLD.7 (51), 
JKM/MBS.1000-2/2 JLD.5 (142), JKM/MBS.1000-2/2 JLD.4 (192) 
and JKM/MBS.1000-2/2 JLD.3 (125). This dataset makes an ideal 
case study since it represents a realistic ecological dataset, in terms 
of size and in level of imbalance between classes, and it comprises a 
variety of habitat disturbance levels. These images have previously 
been used to inform analyses of mammalian species abundance 
(Wearn et al.,  2017), diversity (Wearn et al.,  2016) and behaviour 
(Davison et al., 2019) across a gradient of land-use comprising un-
logged forest, logged forest and oil palm plantations. Forest quality 
at the locations of individual camera traps has been quantified into 
a five-step disturbance scale: (1) undisturbed forest, (2) disturbed 
forest, (3) heavily disturbed forest, (4) herbaceous scrub and (5) open 
area (Wearn et al., 2017). (Full descriptions of disturbance categories 
are provided in Table S1.)

The total raw data consisted of 753,442 images from 681 camera 
deployments. To construct a dataset of labelled images, untagged 
images were removed, as well as images captured during the setup 
process or a camera malfunction, or containing non-target (reptile or 

invertebrate) or multiple species. Empty images were also removed 
since we were interested in classification of species and so made the 
explicit assumption that the step of separating images into empty 
and non-empty had previously taken place. Camera traps (Reconyx 
HC500) were programmed to take a rapid burst of 10 images, termed 
a capture event. Image labelling for this dataset is at the level of im-
ages, rather than events. All non-empty images from a given event 
were allocated together to either the training or test dataset. A small 
proportion (0.05% of images), where the event grouping was not re-
corded in the metadata, were discarded. This reduced the dataset to 
378,000 images from 640 deployments. Both day and night images 
were included since previous studies have found this had little effect 
on performance (Norouzzadeh et al., 2018; Tabak et al., 2019).

A minimum of 40 images or four capture events, per species class 
was imposed. To include as many species as possible, species that fell 
below this threshold were grouped together with related species, for 
example, Hose's civet Diplogale hosei images were included within 
the banded civet Hemigalus derbyanus class. These group classes 
comprised between 2 and 15 species (detail provided in Table S2). To 
limit imbalance within the dataset, and to reduce computation time 
and resources required, the maximum number of images per class 
was restricted to 5000. We investigated an increased maximum per 
class (Figure 1) and found that it improved Top-1 accuracy while hav-
ing a small impact on mean F1-score, suggesting that it resulted in 
more bias towards common classes. A 90:5:5 split for training, val-
idation and test sets was used following Willi et al.  (2019), and to 
ensure matching distributions across classes within the three sets 
(Table  S4; Figure  S1). This resulted in training, validation and test 
sets consisting of 76,637, 4290 and 4309 images, respectively, each 
containing images from 51 classes. Images were resized to 256 × 256 
pixels before passing to the neural networks. Data augmentation was 
also performed, consisting of random shearing, horizontal flipping, 
cropping and brightness modification (Table S5). This is commonly 
carried out in image classification problems to bolster training data 
and prevent overfitting (Beery et al., 2018; Krizhevsky et al., 2012).

To identify the best network for our dataset, we compared perfor-
mance of three architectures: VGG16 (Simonyan & Zisserman, 2015), 
Inceptionv3 (Szegedy et al., 2016) and ResNet50 (He et al., 2016). 
In each case, the network was pre-trained on ImageNet, which is a 
large database of quality-controlled, human-annotated images, in-
cluding animal classes, and is commonly used to pre-train networks 
for image classification tasks (Deng et al., 2009). Our baseline hy-
perparameter settings were based on those used by Norouzzadeh 
et al.  (2018). All models were trained for 40 epochs—more epochs 
and early stopping were also assessed with small changes in vali-
dation loss as the stopping criteria, but no difference was found in 
resulting models.

As well as optimising hyperparameter settings for our dataset, 
we also investigated the impact of altered dataset configurations. 
We created a second dataset consisting of only the most common 
species by restricting the baseline dataset to classes that had a 
minimum number of 1000 images (rather than 40), which left 21 of 
the original 51 classes. We also created a third dataset in which the 
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cap on the number of images per class was increased from 5000 to 
10,000, which affected 11 of the 51 classes. In each case, perfor-
mance was evaluated on the baseline and common-only test sets.

2.1  |  Generalisability

To form the datasets for comparing performance across individual hab-
itat disturbance levels, we removed all images from locations without 
a disturbance score (26,546 images). We then formed two datasets: 
one following the same procedure as above, where all images from a 
single event were allocated to either the training or test set following 
a 90–10 split (event-level), and one where 10% of the cameras within 
each disturbance level were withheld to form a pool for the test set, 
with the remaining 90% forming the pool of images for the training set 
(camera-level). For the event-level dataset, we imposed a minimum of 
four capture events per class per habitat type, leaving 14 classes. For 
the camera-level dataset, we restricted the data to classes which were 
captured on at least two cameras in all five disturbance levels, leaving 
14 classes. In both cases, we imposed a cap of 5000 images per class. 
Only the best performing network, Inceptionv3, as identified from the 
initial network comparison, was used for the generalisability analysis.

To assess the effect of increasing the number of disturbance levels 
included in the training set on generalisability, we trained the network 
on images from every possible combination of disturbance level. To ne-
gate the impact of varying numbers of images across the disturbance 
level combinations, for each dataset configuration we fixed the total 
number of training images per combination to the smallest individ-
ual disturbance-level training set size, and randomly sampled images 
evenly across the included disturbance levels to meet this, ensuring all 
classes were captured. A test set was similarly formed for each individ-
ual disturbance level, ensuring consistent size and all classes included, 
and used to assess the performance of each combination on images 
from disturbance levels both seen and unseen during training.

2.2  |  Bounding boxes

One suggested method for improving generalisability is to use an 
object detector to locate animals within the image and pass the 
image cropped to the resulting bounding box to the network for 
training (Beery et al., 2018). Here, we passed the images used for 
the disturbance-level combinations datasets through the Microsoft 
‘MegaDetector’ v3 (Beery, Morris, & Yang,  2019). In most cases, 
a single object was identified, and the image was cropped to this 
bounding box and resized to 256 × 256 as above. Where more than 
one object was detected, we used the bounding box with highest 
confidence. In some cases, no object was detected despite being 
manually labelled as containing an animal. This was caused over-
whelmingly by false negatives on the part of the MegaDetector, es-
pecially when animals were entering or exiting the field of view and 
were only partially visible (e.g. only parts of the legs or tail visible). 
These images were excluded from the generalisability analysis to 
create a fair comparison. To replicate performance in a ‘real-world’ 
scenario, however, a comparison of accuracy with and without these 
images included in the test sets is provided in the SI (Figure S7).

The combined disturbance-level datasets were then replicated 
using these bounding boxes in place of the whole images and the 
networks trained. We tested the networks on both the original test 
set for the disturbance level combinations, and the corresponding 
test set with images cropped to bounding boxes, for comparison.

2.3  |  Metrics

Model performance was assessed against a test dataset which con-
tained images distinct from those used to train the classifier. The 
performance metrics used are in line with those used in similar stud-
ies (Beery et al., 2018; Norouzzadeh et al., 2018; Tabak et al., 2019): 
(1) Top-1 and Top-5 accuracy: the proportion of all individual images 

F I G U R E  1  (a) Top-1 accuracy and F1-
score for the Inceptionv3 network trained 
on the baseline dataset (max. 5000 images 
per class, black), common species only 
dataset (white) and increased cap dataset 
(max. 10,000 images per class, grey) when 
tested on common species only (bars) and 
when tested on the baseline test dataset 
(x). Note: It is not possible to calculate 
F1-score for the network trained on the 
common species only and evaluated on 
the full baseline test set due to model 
structure. (b): F1-score per species class 
when evaluated on the baseline test set 
for the network trained on the dataset 
with an increased cap against trained on 
the baseline dataset, with a 1:1 line for 
reference.

(a) (b)
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in the test set that were correctly classified within the top 1 or 5 
predictions, respectively; (2) F1-score: the harmonic mean of preci-
sion and recall, where (a) Precision is the proportion of predictions 
per class that were correct, that is, an indication of how reliable the 
predictions are for a given class; and (b) Recall is the proportion of 
images per class that were correctly identified, that is, how fully de-
tected a given class is; and (3) Top-1 accuracy on an event basis: the 
proportion of capture events that contain at least one correctly clas-
sified image.

All metrics were evaluated for the initial network comparison, 
but generalisability was assessed using F1-score only. Since Top-1 
accuracy is heavily influenced by the most common species, we con-
sider F1-score to be a better metric to assess overall performance on 
an imbalanced dataset.

3  |  RESULTS

3.1  |  Network and dataset comparison

Performance of the three network architectures was comparable 
(Table  1), with the same pattern seen across the four metrics. All 
networks achieve higher Top-5 accuracy (mean 87%) and Top-1 
event accuracy (mean 81%) than Top-1 accuracy on individual images 
(mean 73%). F1-score is consistently lowest (mean 0.62). Following 
optimisation (Figure S3), we chose to proceed with the Inceptionv3 
network on the basis of F1-score.

When evaluated on only the common classes, overall perfor-
mance was comparable for the network trained on only the common 
species and the network trained on all species in the baseline data-
set (Top-1: 76% and F1: 0.76 in both cases; Figure 1a). Overall Top-1 
accuracy and F1-score were improved by increasing the cap on the 
number of images per class in the training data (Top-1: 89%, F1: 0.84; 
Figure 1a). Including the rarer species in the test set, that is, evalu-
ating performance on the full baseline dataset, saw lower scores for 
both networks trained on the baseline dataset and on the increased 
cap dataset (Top-1: 73% and 83%, F1: 0.63 and 0.67, respectively). 
There was a bigger loss of performance in terms of F1-score than 
Top-1 accuracy with the inclusion of the rarer species (Figure 1a), 
reflecting the bias towards common species in the Top-1 accuracy 
metric. Including all of the rarer species' test images in the evaluation 
of the network trained on common species only results in an abso-
lute reduction in Top-1 accuracy of 27% (Figure 1a). Species-level F1-
score and recall tended to increase with a greater number of training 

images available in the baseline dataset (Figure S5). This was again 
demonstrated in the increased cap dataset where all classes that 
benefitted from extra images saw an increase in F1-score, although 
the overall mean was only slightly higher than that trained on the 
baseline dataset (mean F1: 0.67 and 0.63, respectively; Figure 1b). 
This highlights the trade-off with increasing the imbalance within 
the training data, where some of the classes that did not have any 
additional training images saw a decrease in F1-score.

3.2  |  Generalisability

For the dataset split at event-level only, peaks in F1-score occurred 
where the network was trained and tested on images from the same 
habitat disturbance level (mean: 0.76), while performance dropped 
substantially on disturbance levels not present in the training data 
(mean: 0.30; Figure 2a). Although the distribution across classes for 
each disturbance level was roughly even, heavily disturbed forest 
had the greatest number of cameras and images (Figure S2), which 
may have contributed to it achieving the highest F1-score (0.46) on 
an unseen disturbance level.

As the number of disturbance levels included within the train-
ing dataset was increased from one to four, the mean F1-score 
on the unseen habitats also increased (0.32, 0.41, 0.45, 0.49, re-
spectively), that is, the network generalised better (Figure  2b). 
Conversely, F1-score for the disturbance levels seen during 
training tended to decrease (0.77, 0.76, 0.75, 0.74, respectively; 
Figure  2b). Performance on unseen habitats was still relatively 
poor, however, when only one disturbance level was omitted from 
the training dataset (Figure 2b).

Using images cropped to bounding boxes in both the training 
and test sets improved both the overall mean F1-score (0.87) and 
generalisability (mean F1 score on unseen disturbance levels when 
trained on a combination of 1, 2, 3 and 4 disturbance levels, respec-
tively: 0.72, 0.80, 0.81, 0.84; Figure 2c). Training on bounding boxes 
and testing on whole images showed a large drop in performance 
(Figure 2c).

For the dataset split at camera level, and network trained on 
whole images, performance on seen disturbance levels was slightly 
better than on unseen disturbance levels (Figure  2d). As with the 
event-level dataset, an improvement was seen when the number of 
disturbance levels included within the training data was increased 
(mean F1-score on seen disturbance level combinations of one, two, 
three and four levels, respectively: 0.32, 0.40, 0.42, 0.44; unseen: 
0.27, 0.36, 0.41, 0.41, Figure 2d). Performance was best when the 
network was trained on all disturbance levels (mean F1-score: 0.47).

Using bounding boxes on this dataset again improved perfor-
mance, but overall F1-score was lower than that achieved with the 
event-level dataset (mean F1 on all five disturbance levels when 
trained and tested on cropped images: 0.77 versus 0.87, Figure 2e).

In a ‘real-world’ scenario, in which the images containing an 
animal undetected by the MegaDetector are included in the test 
set, we can see that Top-1 accuracy drops by 5% for the network 

TA B L E  1  All metrics for the best configurations of VGG16, 
ResNet50 and Inceptionv3 evaluated on the baseline dataset

Architecture
Top-1 
accuracy

Top-5 
accuracy Top-1/event F1-score

Inceptionv3 72.8% 86.5% 79.8% 0.63

ResNet50 73.5% 88.6% 81.2% 0.62

VGG16 73.2% 87.1% 80.8% 0.61
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(a)
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(d) (e)
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trained on cropped images, since all of these images are deemed 
to be wrongly classified (Figure S7d). For the network trained on 
whole images, performance does decrease, but to a lesser extent 
(1%) since the network has the opportunity to classify these im-
ages (Figure S7c).

4  |  DISCUSSION

This is the first study to assess the application of automated image 
classification methods and, more specifically, the implications of 
poor generalisability of CNNs, when considered across a gradient 
of habitat disturbance in tropical rainforest. Our results highlight 
the ongoing issues with poor generalisability to unseen camera 
locations in camera trap image classification, as well as the additional 
problem of generalisability to changes in background associated 
with varying levels of habitat disturbance within a single camera 
trap dataset (Figure  2). Training across multiple disturbance levels 
improved generalisability, suggesting that these differences can be 
mitigated. Our results demonstrate that an awareness of variation 
in habitat backgrounds is required when planning a camera trap 
survey intended for automated classification, and when training the 
classifier.

We found that in addition to classification accuracy being lower 
at unseen camera locations within a disturbance level, performance 
was worse in unseen disturbance levels. One important implication 
of a lack of generalisability across levels of habitat disturbance, par-
ticularly in the context of increasing levels of habitat change, is that 
classifiers should not be considered ‘static’. If a habitat changes over 
time, naturally or through anthropogenic impacts, new data and ad-
ditional computer power may be needed to ensure derived classifi-
cations and ecological estimates are correct. Alternatively, a dataset 
comprising images from across the range of possible disturbances 
should be sought for training at the outset. Field ecologists wanting 
to use automated classification should therefore consider the gener-
alisability issue when designing future camera trap surveys by strat-
ifying their sites, a priori, by broad background types.

Although we fixed the overall number of training images per 
disturbance-level combination, the number of images per class was 
allowed to vary—by sampling in this way we aimed to replicate the 
abundance distribution of species within each habitat. Our analy-
sis evaluated performance across all possible combinations of dis-
turbance levels, which should mitigate the impacts of particularly 
distinct distributions of species in some disturbance levels. We 

additionally explored how our results changed when we only ap-
plied our classifier to the most abundant species within our study 
(Figure 1a; Figure S6), and found little difference. We also ensured 
that every class included occurred in both training and test sets 
to avoid differences in class distribution. Our results suggest that 
researchers working on smaller camera trap studies might see an 
improvement in classification performance if labelled images from 
other studies from similar habitat were to be added to their train-
ing data. Furthermore, these results support the aggregation of 
images from across studies on platforms such as Wildlife Insights 
(Ahumada et al.,  2020) to enhance available training data and im-
prove classification.

Other researchers have found that a detector–classifier combi-
nation was more generalisable than a classifier alone when applied 
to their dataset (Beery et al., 2018). Our results from the bounding 
box analysis support this, showing that by focussing images on the 
animals present and reducing the amount of background, the net-
work was better able to identify species across all disturbance levels 
(Figure 2c,e). The results also highlight the need to test on bound-
ing boxes rather than the whole image (Figure 2c,e). This is import-
ant from a practical perspective, since all images would need to be 
passed through a detector before being classified, including any new 
test images from ongoing projects; this adds computational time. We 
note, however, that even with images cropped to bounding boxes, 
the impact of background differences across disturbance levels is 
still evident, with mean F1-score on unseen disturbance levels rising 
from 0.62, when a classifier is trained on a single disturbance level, 
to 0.73 for a classifier trained on four levels (Figure 2e).

The use of an object detector highlighted some discrepancy be-
tween the expert labellers and the detector in identifying images as 
being empty. As a result, object detection may miss subjects that 
could have been classified correctly. In our data, the missed de-
tections equated to a 5% reduction in Top-1 accuracy (Figure S7d). 
Although not the focus of this study, a review highlighted that in 
cases where only a very small part of the animal is visible, or the 
animal is mostly obscured by vegetation, a human has been able to 
identify that an animal is present using the visual aid of the whole 
event sequence, whereas a detector, without that context, could 
not. Image metadata have been found to improve both automated 
classification (Terry et al., 2020) and per-species detection perfor-
mance (Beery et al.,  2020) thus could similarly improve detection 
here.

Since classification performance could have a significant im-
pact on the outcomes of ecological studies, the choice of metric 

F I G U R E  2  Network generalisability. (a) Disturbance-level comparison: F1-score per individual disturbance levels. White bars denote 
F1-score for the same disturbance level used in both training and testing. Filled bars denote F1-score for disturbance levels not seen during 
training. Results for the dataset split at event level are shown in black and at camera level in grey. (b and d): Disturbance-level combinations 
for the dataset split at event level (circles) and camera level (diamonds): F1-score for each disturbance level tested following training on a 
combination of disturbance levels. Every combination of disturbance level was included. Disturbance levels seen during training are denoted 
by a white marker, while those unseen are denoted by a black marker. The mean F1-score for each number of combinations is also marked. 
(c and e) disturbance level combinations using bounding boxes: as for (b and d), respectively, but training was performed on images cropped 
to bounding boxes. Black symbols denote testing on images cropped to bounding boxes, while grey represent performance when tested on 
whole images.
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used is important. Our Top-1 accuracy scores (overall: 73%; gener-
alisability analysis: 68%) were slightly lower than one other similar 
sized study (79% on seen locations, Beery et al., 2018), but much 
lower than reported by others (>93.8%, Norouzzadeh et al., 2018, 
98%, Tabak et al., 2019). Part of these differences might be due 
to the difficulty of the classification in different datasets, for ex-
ample caused by the extent of the background noise that needs 
to be overcome to detect animals. Images from dense forest en-
vironments, as used here, might be expected to present a harder 
task than open grassland environments (e.g. Snapshot Serengeti as 
used in Norouzzadeh et al. (2018)). In addition, Top-1 accuracy is 
naturally dominated by the more common species and can there-
fore be a misleading metric. We chose to mostly report results 
as F1-scores here as this combines precision and recall, and can 
more accurately reflect classification performance across classes. 
In practice, Top-5 accuracy can be useful for shortlisting possible 
species for manual classification, and Top-1 event accuracy can 
identify events for manual review, both resulting in time-savings. 
Future work might look into how network performance is assessed 
in the context of the ecological questions we wish to ask with the 
data. In particular, an important extension could explore the im-
pact of biases arising from poor generalisability across disturbance 
levels on resulting ecological studies (e.g. on bias and precision of 
state variable estimates, such as animal density and occupancy, or 
on the statistical power to detect differences between experimen-
tal treatments).

Although the composition of training data was shown to influ-
ence image classification accuracy, including rarer classes did not 
compromise performance on more common classes, which is im-
portant for the continued inclusion of data on rare species to inform 
conservation efforts. The increased performance achieved through 
additional training images supports existing studies that have con-
cluded that, although good results can be achieved on smaller train-
ing datasets, classification accuracy is generally improved by a larger 
training dataset (Willi et al., 2019). Here, we saw increased classifica-
tion performance when the cap on common species was increased, 
which, through the use of the F1-score metric, we can confidently 
say was not driven by a simple numerical increase in correctly iden-
tified common species.

Class imbalance is common within camera trap datasets, and has 
been shown to impair the performance of neural networks (Buda 
et al., 2018). The resulting difficulty in training neural networks on 
rare species is a known problem (Beery, Liu, et al., 2019). In practice, 
if a network is able to satisfactorily classify and remove common 
species such that manual classification is reduced to the rare spe-
cies, this would still result in substantial time savings. For conser-
vation projects, however, where rare species are the main interest, 
we might require better performance, especially in recall (since false 
negatives likely have a higher conservation cost than false posi-
tives). Specifically improving classification on rare species was not 
the focus of this study, but oversampling and weighted loss meth-
ods have been tried elsewhere with some success (Norouzzadeh 
et al., 2018; Terry et al., 2020). Others have tried generating artificial 

images containing the rare species or incorporating images from 
other datasets (Beery, Liu, et al., 2019; Schneider et al., 2018). Future 
work could therefore include applying these methods to this dataset 
and assessing performance.

Despite the inherent difficulties with training on rarer species, 
and the general trend seen for increased F1-score with number of 
training images, we did see instances of high F1-score for relatively 
rare species (Figure S5). There was also variation in performance on 
the most common species. Future work will need to consider the de-
gree of morphological variation within and among species as a pos-
sible contributing factor as to why networks are able to learn some 
species better than others.

5  |  CONCLUSIONS

This study highlights the ongoing issue of poor performance of 
automated species classifiers across unseen locations in camera trap 
studies. Importantly, it also demonstrates that unseen backgrounds 
(here disturbance levels) can further impair classification 
performance. Unseen locations in novel habitat disturbance levels 
had poorer classification performance than those from unseen 
locations in habitat levels seen during training. Generalisability can 
be improved by the use of bounding-box object detection prior 
to species classification, but the use of bounding boxes did not 
completely eliminate the problem. As camera trap datasets become 
more abundant, and the use of machine learning for automated 
classification becomes more commonplace, it will be critically 
important to ensure that estimation of changes in ecosystem 
function and composition are not biased by methodological choices 
in detection and identification of species. This is particularly 
important in the context of current global biodiversity loss, for 
monitoring the impacts of anthropogenic activities on ecosystems 
and mitigating further declines.
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