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Abstract

Robust and distributionally robust optimization are modeling paradigms for decision-making

under uncertainty where the uncertain parameters are only known to reside in an uncertainty set

or are governed by any probability distribution from within an ambiguity set, respectively, and

a decision is sought that minimizes a cost function under the most adverse outcome of the un-

certainty. In this paper, we develop a rigorous and general theory of robust and distributionally

robust nonlinear optimization using the language of convex analysis. Our framework is based on

a generalized ‘primal-worst-equals-dual-best’ principle that establishes strong duality between

a semi-infinite primal worst and a non-convex dual best formulation, both of which admit finite

convex reformulations. This principle offers an alternative formulation for robust optimization

problems that obviates the need to mobilize the machinery of abstract semi-infinite duality the-

ory to prove strong duality in distributionally robust optimization. We illustrate the modeling

power of our approach through convex reformulations for distributionally robust optimization

problems whose ambiguity sets are defined through general optimal transport distances, which

generalize earlier results for Wasserstein ambiguity sets.

Keywords: (Distributionally) Robust Optimization, Convex Analysis, Optimal Transport.
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1 Introduction

Mathematical optimization problems frequently require decisions to be taken under partial or com-

plete lack of information about key problem parameters: the topology of a truss needs to be designed

before the magnitudes and directions of the external forces acting upon it are known, a portfolio

of financial assets needs to be built without knowledge of the future asset price movements, the

energy production of a power plant needs to be fixed several hours before the demands, outputs

of intermittent generators and plant/line failures are known, and the classifying hyperplane of a

support vector machine needs to be selected under incomplete knowledge of the data generating

distribution. These (and many other) applications have in common that key problem parameters

are not only to be considered random, but they are also governed by probability distributions that

are at least partially unknown.

In the last 25 years, robust and distributionally robust optimization have emerged as promising

techniques to model, analyze and optimize decisions under risk (where some problem parameters

constitute random variables) and ambiguity (where the underlying distributions are only partially

known). Robust optimization assumes that the uncertain problem parameters can take on any value

from within a pre-specified uncertainty set, whereas distributionally robust optimization models the

uncertain parameters as random variables whose underlying probability distribution can be any dis-

tribution from within a pre-specified ambiguity set. In both cases, the decision maker seeks to de-

termine the best decision in view of the worst realization of the uncertainty; this is often depicted as

a game between the decision maker and an adversary nature that is ‘in charge’ of the uncertainty.

The vast majority of research in robust and distributionally robust optimization focuses on

well-structured conic optimization problems such as linear, second-order cone and semi-definite

programs. While the presence of structure simplifies the exposition and ensures computational

tractability, it requires similar arguments to be redeveloped for different problem classes, and it

obfuscates the view on the underlying principles in their full generality. This concern has been

noted by several researchers, and various attempts have been made to extend the theory of robust

and distributionally robust optimization to general convex optimization problems. Since the main

focus of these works is a computational one, however, mathematical subtleties that emerge from

this generalization are often either incorrectly addressed or disregarded altogether.

In this paper, we develop a general theory of robust and distributionally robust optimization
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from first principles, using the language of convex analysis. Section 2 first revisits classical duality

results for convex optimization and derives explicit dual optimization problems involving the con-

jugates of the objective and constraint functions. Our analysis allows the objective and constraint

functions of the primal problem to be arbitrary extended real-valued proper, closed and convex func-

tions. This generality is crucial since we will dualize problems that involve implicit constraints or

conjugates, but it significantly complicates our analysis. We then leverage the results of Section 2 to

build a unified theory of robust (Section 3) and distributionally robust (Sections 4 and 5) optimiza-

tion problems as well as modern data-driven optimization problems (Section 6), where the objective

function, the constraints as well as the uncertainty or ambiguity set are described in terms of generic

convex functions. At the heart of our framework lies a generalized ‘primal-worst-equals-dual-best’

principle that establishes strong duality between a semi-infinite primal worst and a non-convex dual

best formulation, both of which can be reformulated as finite convex optimization problems.

Our key contributions may be summarized as follows.

(i) We propose a unified theory of robust (Section 3) and distributionally robust optimization

with moment-based (Sections 4 and 5) and optimal transport-based (Section 6) ambiguity

sets. In particular, we derive easily verifiable conditions for strong duality in distributionally

robust optimization from first principles of finite-dimensional convex analysis, as opposed to

the abstract moment conditions traditionally required by semi-infinite duality theory.

(ii) Classical texts on robust optimization either study robust programs with linear (or quadratic)

constraint functions and conic inequalities (Ben-Tal et al., 2009; Ben-Tal and Nemirovski,

1998) or they study robust programs with nonlinear (convex-concave) constraint functions

but classical inequalities (Ben-Tal et al., 2005). By catering both for nonlinear functions

and conic inequalities, we significantly enlarge the pool of robust and distributionally robust

programs that admit finite convex reformulations. We also derive convex reformulations of

distributionally robust programs with general optimal transport-based ambiguity sets. The

flexibility to shape the transportation cost function allows modelers to control the likelihood

that the uncertain parameters will fall into particular regions of the sample space.

(iii) We carefully account for subtle technical issues that have often been neglected in the related

literature but are crucial for a rigorous treatment of extended real-valued functions.
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Robust optimization problems are traditionally solved by dualizing the embedded maximization

over all possible uncertainty realizations in the primal worst problem (El Ghaoui and Lebret, 1997;

El Ghaoui et al., 1998; Ben-Tal and Nemirovski, 1998, 1999, 2000, 2002; Bertsimas and Sim, 2004).

If the embedded maximization problems represent linear conic optimization problems, then the

duals can be constructed explicitly in terms of the original problem data (Ben-Tal et al., 2009).

If the embedded maximization problems constitute generic convex optimization problems, on the

other hand, they may not admit explicit duals. Instead, the dual objective function is only implicitly

defined as the infimum of the Lagrangian function with respect to the uncertain parameters. Using

Fenchel duality, Ben-Tal et al. (2015) show that the optimal values of the embedded maximization

problems can be expressed as differences between the support function of the uncertainty set and

the partial conjugates of the constraint (or objective) functions with respect to the uncertain

parameters. Instead of the support function of the uncertainty set, our reformulation explicitly

involves the conjugates of the functions characterizing the uncertainty set and may therefore be

easier to implement and automate. We refer to Ben-Tal et al. (2009), Bertsimas et al. (2011) and

Gabrel et al. (2014) for comprehensive reviews of robust optimization and its manifold applications.

Alternatively, robust optimization problems can be studied from the perspective of the dual

best problem. For bounded uncertainty sets, Beck and Ben-Tal (2009) show that the optimal

value of the primal worst problem coincides with that of the dual best problem if a Slater condi-

tion holds. Gorissen et al. (2014) show how the non-convexities of the dual best problem can be

eliminated in robust optimization problems with linear objective and linear conic constraint func-

tions over uncertainty sets described by general convex functions. This result was later extended

by Gorissen and den Hertog (2015) to general robust convex optimization problems. Our results

extend the works of Beck and Ben-Tal (2009) and Gorissen and den Hertog (2015) to robust opti-

mization problems with unbounded uncertainty sets, which will prove essential when we apply our

results to uncertainty quantification and distributionally robust optimization problems.

Tractable reformulations for distributionally robust optimization problems can be derived in dif-

ferent ways. Ben-Tal and Nemirovski (2000), Bertsimas and Sim (2004), Calafiore and El Ghaoui

(2006), Nemirovski and Shapiro (2006), Chen et al. (2007), Xu et al. (2012) and Bertsimas et al.

(2018) rely on classical probability bounds (such as Hoeffding’s inequality or Bernstein bounds) or

statistical hypothesis tests to derive tractable reformulations. In contrast, El Ghaoui et al. (2003),
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Bertsimas and Popescu (2005), Delage and Ye (2010), Xu and Mannor (2012) andWiesemann et al.

(2014) dualize the uncertainty quantification problem embedded in the distributionally robust op-

timization problem and apply techniques from standard robust optimization to replace the semi-

infinite dual with a finite reformulation. To ensure strong duality between the primal uncertainty

quantification problem and its semi-infinite dual, this literature stream usually relies on results from

semi-infinite duality theory that are very general but can be tedious to verify and that are prone

to misinterpretations (Isii, 1959, 1962; Shapiro, 2001). A popular condition is to check whether the

bounds on the generalized moments imposed by the ambiguity set belong to the interior of some

moment cone generated by all non-negative measures (not only the probability measures) on the

prescribed support set; see, e.g., Shapiro (2001, Propostion 3.4). Despite being convex, this mo-

ment cone usually lacks an explicit description in terms of simple convex constraints. In contrast,

our conditions for strong duality, which are based on our generalized primal-worst-equals-dual-best

principle, are typically easy to verify, both theoretically and algorithmically (e.g., via the solution

of a convex optimization problem).

Using the primal-worst-equals-dual-best principle to construct finite reductions of uncertainty

quantification problems was first proposed for the subclass of chance constrained programs over

restricted classes of ambiguity sets by Hanasusanto et al. (2015, 2017). These papers, however, still

rely on semi-infinite duality theory (and its aforementioned shortcomings) to ensure strong duality.

Han et al. (2015) derive a finite reduction similar to ours by applying the Richter-Rogosinsky

theorem (Shapiro et al., 2009, Theorem 7.37) and a subsequent induction argument directly to

the primal uncertainty quantification problem. Since the focus of that work is on uncertainty

quantification, however, it does not study the dual of the uncertainty quantification problem, which

is essential to obtain tractable reformulations for distributionally robust optimization problems.

Notation. We set R = [−∞,+∞]. The calligraphic letters I, J , K, L and the corresponding

capital Roman letters I, J , K, L are reserved for finite index sets and their respective cardinalities,

i.e., I = {1, . . . , I} etc. The subscript 0 indicates that the index set additionally includes 0, i.e.,

I0 = {0, . . . , I} etc. We use ri(X ) to denote the relative interior of a set X ⊆ Rdx .
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2 Convex Optimization

In this section we adapt existing duality results to generic convex optimization problems with

extended real-valued objective and constraint functions. This flexibility allows us to work with

optimization problems whose objective and constraints involve conjugates. We also discuss regu-

larity conditions under which the primal and the dual problems are solvable. As we will see later

on, solvability is essential for the existence of worst-case scenarios and worst-case distributions in

robust and distributionally robust optimization, respectively. By themselves, the results in this

section are not new, however they are dispersed throughout the literature, and they often miss

subtle but—in view of our applications in later sections—crucial regularity conditions.

Throughout the paper we use the language convex analysis. Thus, we adopt the usual definitions

of the domain dom(f), the epigraph epi(f), the conjugate f∗ and the biconjugate f∗∗ of an extended

real-valued function f : Rdx → R. As usual, we call f proper and closed if its epigraph is a nonempty

closed set that contains no vertical line. In addition, we use δX and δ∗X to denote the indicator

function and the support function of a set X ⊆ Rdx . If f is proper, closed and convex, then we

define its convex perspective f : Rdx × R → R through f(x, t) = tf(x/t) if t > 0; = δ∗dom(f∗)(x)

if t = 0. This definition ensures that f is proper, closed and convex. To avoid clutter, we henceforth

write somewhat informally tf(x/t) instead of f(x, t) even if t = 0. Rigorous definitions of the above

key concepts of convex analysis and a nuanced discussion of the inherent subtleties are provided in

Appendix A in the Electronic Companion. Next, we introduce Slater conditions for both sets and

optimization problems. This distinction will enable us to characterize the uncertainty sets whose

associated robust optimization problems are amenable to finite convex reformulations using the

machinery of strong convex duality.

Definition 1 (Slater Condition for Sets). The vector xS is a Slater point of the set X represented

by X = {x ∈ Rdx | fi(x) ≤ 0 ∀i ∈ I, hj(x) = 0 ∀j ∈ J } if (i) xS ∈ ri(dom(fi)) as well

as xS ∈ ri(dom(hj)) for all i ∈ I and j ∈ J ; (ii) xS ∈ X ; and (iii) fi(x
S) < 0 for all i ∈ I such

that fi is nonlinear. The Slater point xS is strict if fi(x
S) < 0 for all i ∈ I.

Note that the definition of a Slater point depends on the representation of the set X . In fact,

X = {0} has a strict Slater point if represented as X = {x ∈ R | x = 0}, whereas the alternative

representation X = {x ∈ R | x2 ≤ 0} does not admit a Slater point.
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Definition 2 (Slater Condition for Optimization Problems). The vector xS is a Slater point of the

minimization problem inf{f0(x) | x ∈ X}, where X is represented as in Definition 1, if xS is a Slater

point of X and xS ∈ ri(dom(f0)). The Slater point xS is strict if it is a strict Slater point of X .

For a maximization problem, we replace the requirement xS ∈ ri(dom(f0)) in Definition 2 with

xS ∈ ri(dom(−f0)). Consider now a generic nonlinear optimization problem of the following form.

inf f0(x)

s.t. fi(x) ≤ 0 ∀i ∈ I
x free

(P)

Primal Problem

Here, the objective and constraint functions are extended real-valued functions fi : R
dx → R for

i ∈ I0. In the remainder of this section, we assume that problem (P) is convex, that is, we assume

that its objective and constraint functions satisfy the following regularity condition.

(F) The function fi is proper, closed and convex for each i ∈ I0.

We now introduce the problem dual to (P).

sup −f∗0 (w0)−
∑

i∈I

λif
∗
i (wi/λi)

s.t.
∑

i∈I0

wi = 0

wi free, i ∈ I0, λ ≥ 0

(D)

Dual Problem

The dual problem (D) maximizes the (negative) infimal convolution of the conjugate objective

function as well as the perspectives of the conjugate constraint functions.

Theorem 1 (Weak Duality). The infimum of (P) is larger or equal to the supremum of (D).

Theorem 1 implies that (D) is necessarily infeasible whenever (P) is unbounded, and that (P)

is necessarily infeasible whenever (D) is unbounded.

Theorem 2 (Strong Duality). The following statements hold.
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(i) If (P) or (D) admits a Slater point, then the infimum of (P) coincides with the supremum

of (D), and (D) or (P) is solvable, respectively.

(ii) If the feasible region of (P) or (D) is nonempty and bounded, then the infimum of (P)

coincides with the supremum of (D), and (P) or (D) is solvable, respectively.

A discussion of the explicit convex duality theory presented here is provided in Appendix C in

the Electronic Companion.

3 Robust Convex Optimization

Consider now the parametric optimization problem

inf f0(x,z0)

s.t. fi(x,zi) ≤ 0 ∀i ∈ I
x free

(P-S)

Primal Scenario Problem

whose objective and constraint functions fi : Rdx × Rdz → R depend on uncertain parameters

zi, i ∈ I0. As this optimization problem is parameterized by the joint scenario (z0, . . . ,zI) of all

uncertain parameters, we henceforth refer to it as the (primal) scenario problem. In the remainder

of this section, we assume that (P-S) is convex. Even more, we assume that its objective and

constraint functions display a saddle structure in the sense of the following regularity condition.

(RF) The function fi(x,zi) is proper, closed and convex in x for every fixed zi, and −fi(x,zi) is
proper, closed and convex in zi for every fixed x across all i ∈ I0.

Assumption (RF), which is a robust pendant of assumption (F) from Section 2, implies that fi

is real-valued for every i ∈ I0. Indeed, as fi(x,zi) is proper in x for every zi, we have fi(x,zi) > −∞
for every x and zi. Similarly, as −fi(x,zi) is proper in zi for every x, we have fi(x,zi) < +∞ for

every x and zi. In particular, the assumption (RF) thus implies that ri(dom(fi)) = ri(dom(−fi)) =
Rdx×Rdz for all i ∈ I0. As any convex function is continuous on the relative interior of its domain,

this implies that fi(x,zi) is continuous in x for all fixed zi and continuous in zi for all fixed x.

In the remainder of the paper we will sometimes have to evaluate conjugates and perspectives of

a bivariate function fi(x,zi) with respect to only one of its two arguments. Specifically, the partial
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conjugates of fi with respect to its first argument x and with respect to its second argument zi

will henceforth be denoted by f∗1i and f∗2i , respectively. Similarly, the partial perspectives will be

denoted by tfi(x/t,zi) and tfi(x,zi/t), respectively. For details we refer to Definitions A.3 and A.4

in Appendix A in the Electronic Companion.

In analogy to Section 2, we can now construct the problem dual to (P-S).

sup −f∗10 (w0,z0)−
∑

i∈I

λif
∗1
i (wi/λi,zi)

s.t.
∑

i∈I0

wi = 0

wi free, i ∈ I0, λ ≥ 0

(D-S)

Dual Scenario Problem

Since condition (F) from Section 2 is satisfied, Theorem 1 implies that the problems (P-S) and (D-S)

satisfy a weak duality relationship. In addition, strong duality between (P-S) and (D-S) as well as

primal and dual solvability hold under the relevant conditions of Theorem 2.

The scenario problem (P-S) may have different minimizers for different scenarios. Before the un-

certainty is revealed, it is therefore unclear which of these minimizers should be implemented. From

now on we assume that all uncertain parameters zi, i ∈ I0, reside in the nonempty uncertainty set

Z =
{

z ∈ Rdz | cℓ(z) ≤ 0 ∀ℓ ∈ L
}

(1)

described by the constraint functions cℓ : Rdz → R, ℓ ∈ L. In the remainder of this section, we

assume that these constraint functions obey the following regularity condition.

(C) The function cℓ is proper, closed and convex for each ℓ ∈ L.

Assumption (C) immediately implies that the uncertainty set Z is closed.

A popular approach to disambiguate the uncertain convex program (P-S) is to solve its robust

counterpart, which seeks a decision that minimizes the worst-case objective across all z0 ∈ Z and is

feasible for all possible zi ∈ Z, i ∈ I. Formally, the robust counterpart can be expressed as follows.
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inf sup
z0∈Z

f0(x,z0)

s.t. sup
zi∈Z

fi(x,zi) ≤ 0 ∀i ∈ I

x free

(P-W)

Primal Worst Problem

Note that supzi∈Z fi(x,zi) ≤ 0 if and only if fi(x,zi) ≤ 0 for all zi ∈ Z, i ∈ I. As it solves

the uncertain primal problem (P-S) under the most pessimistic uncertainty realizations, the robust

counterpart (P-W) is sometimes referred to as the primal worst problem. Closely related to the

primal worst is the dual best problem, which solves the dual scenario problem (D-S) under the most

optimistic uncertainty realizations.

sup −f∗10 (w0,z0)−
∑

i∈I

λif
∗1
i (wi/λi,zi)

s.t.
∑

i∈I0

wi = 0

wi free, zi ∈ Z, i ∈ I0, λ ≥ 0

(D-B)

Dual Best Problem

Note that in (D-B) the uncertainty realizations zi, i ∈ I0, are decision variables that can be chosen

freely within the uncertainty set Z. As (D-B) accommodates only finitely many decision variables

and constraints, it is at least principally amenable to numerical solution. However, (D-B) is gener-

ically non-convex as it involves partial perspectives of (jointly) convex functions; see Example C.4

in Appendix C in the Electronic Companion.

The primal worst and dual best problems satisfy a weak duality relationship.

Theorem 3 (Weak Duality for (P-W) and (D-B)). The infimum of the primal worst problem (P-W)

is larger or equal to the supremum of the dual best problem (D-B).

As (P-W) involves embedded maximization problems and as (D-B) is generally non-convex,

both problems appear to be difficult to solve. In the following we will demonstrate, however,

that under mild conditions both (P-W) and (D-B) can be reformulated as polynomial-size convex

programs (P-W′) and (D-B′) that are amenable to solution with off-the-shelf solvers. While useful

for computation, these reformulations will also allow us to prove strong duality between (P-W)

10



and (D-B). To this end, we first summarize the relationships among the problems (P-W), (P-W′),

(D-B) and (D-B′) in Figure 1.

inf (P-W) sup (D-B)

inf (P-W′) sup (D-B′)

Theorem 3

Theorem 7

Proposition 4 (ii), (iii)Proposition 4 (i) Proposition 5 (i) Proposition 5 (ii), (iii)

Theorem 6 (ii), (iii)

Theorem 6 (i)

Figure 1. Illustration of the relationships among (P-W), (P-W′), (D-B) and (D-B′).

The optimal values of these problems are non-increasing in the directions of the arcs.

Dashed arcs represent universal inequalities, while solid arcs represent inequalities that

hold under regularity conditions.

We now show that (P-W) can be reduced to the following problem by dualizing the maximization

problems that are embedded in (P-W).

inf (−f0)∗2 (x,y00) +
∑

ℓ∈L

ν0ℓc
∗
ℓ (y0ℓ/ν0ℓ)

s.t. (−fi)∗2 (x,yi0) +
∑

ℓ∈L

νiℓc
∗
ℓ (yiℓ/νiℓ) ≤ 0 ∀i ∈ I

∑

ℓ∈L0

yiℓ = 0 ∀i ∈ I0

x free, yiℓ free, i ∈ I0, ℓ ∈ L0, νiℓ ≥ 0, i ∈ I0, ℓ ∈ L

(P-W′)

Reformulated Primal Worst Problem

Problem (P-W′) is convex since its objective function and its constraints involve infimal con-

volutions of the conjugate objective and constraint functions fi as well as the perspectives of the

conjugate constraint functions cℓ describing the uncertainty set (cf. Proposition C.5).

Proposition 4 (Convex Reformulation of (P-W)). The following statements hold.

(i) The infimum of (P-W) is smaller or equal to that of (P-W′).

(ii) If Z admits a Slater point, then the infima of (P-W) and (P-W′) coincide, and (P-W) is

solvable if and only if (P-W′) is solvable.

(iii) If Z is compact and (P-W) admits a strict Slater point, then the infima of (P-W) and (P-W′)

coincide, and (P-W) is solvable whenever (P-W′) is solvable.
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Note that in Proposition 4 (iii), the solvability of (P-W) does not imply the solvability of (P-W′).

Nevertheless, one can construct a sequence of feasible solutions to (P-W′) from a solution to (P-W)

that asymptotically attain the same optimal value.

Next, we argue that under mild conditions the non-convex dual best problem (D-B) is equivalent

to the following finite convex optimization problem.

sup −f∗10 (w0,z0)−
∑

i∈I

λif
∗1
i (wi/λi,υi/λi)

s.t.
∑

i∈I0

wi = 0

cℓ(z0) ≤ 0 ∀ℓ ∈ L
λicℓ(υi/λi) ≤ 0 ∀i ∈ I, ∀ℓ ∈ L
wi free, i ∈ I0, z0 free, λ ≥ 0, υi free, i ∈ I

(D-B′)

Reformulated Dual Best Problem

Intuitively, one can think of problem (D-B′) as being obtained from (D-B) by multiplying the

inequalities involving zi by λi, i ∈ I and via the variable substitution υi ← λizi. Since the

perspective of a convex function is convex, the resulting model (D-B′) is indeed a convex problem.

The equivalence of (D-B) and (D-B′) was first established for robust linear programs with

compact uncertainty sets (Gorissen et al., 2014, Lemma 1) and then generalized to robust nonlinear

programs with compact uncertainty sets (Gorissen and den Hertog, 2015, Theorem 1). In the

following, we relax the compactness condition and demonstrate that the nonlinear programs (D-B)

and (D-B′) remain equivalent if the uncertainty set admits a Slater point. This alternative result

is useful for the analysis of distributionally robust optimization problems, which can often be

reformulated as robust optimization problems with unbounded uncertainty sets (see Section 4).

Proposition 5 (Convex Reformulation of (D-B)). The following statements hold.

(i) The supremum of (D-B) is smaller or equal to that of (D-B′).

(ii) If (D-B) admits a strict Slater point, then the suprema of (D-B) and (D-B′) coincide,

and (D-B′) is solvable whenever (D-B) is solvable.

(iii) If Z is bounded, then the suprema of (D-B) and (D-B′) coincide, and (D-B′) is solvable if

and only if (D-B) is solvable.
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Note that in Proposition 5 (ii), the solvability of (D-B′) does not imply the solvability of (D-B).

Nevertheless, one can construct a sequence of feasible solutions to (D-B) from a solution to (D-B′)

that asymptotically attain the same optimal value.

Having identified easily verifiable conditions under which (P-W) and (D-B) are equivalent to

their respective convex reformulations (P-W′) and (D-B′), we are now ready to prove that (P-W′)

and (D-B′) are dual to each other and thus enjoy various weak and strong duality relationships.

Theorem 6 (Duality Results for (P-W′) and (D-B′)). The following statements hold.

(i) The infimum of (P-W′) is larger or equal to the supremum of (D-B′).

(ii) If (P-W′) or (D-B′) admits a Slater point, then the infimum of (P-W′) coincides with the

supremum of (D-B′), and (D-B′) or (P-W′) is solvable, respectively.

(iii) If the feasible region of (P-W′) or (D-B′) is nonempty and bounded, then the infimum

of (P-W′) coincides with the supremum of (D-B′), and (P-W′) or (D-B′) is solvable, re-

spectively.

We now demonstrate that the duality gap between (P-W) and (D-B) vanishes provided that

one out of two complementary regularity conditions holds.

Theorem 7 (Strong Duality for (P-W) and (D-B)). The following statements hold.

(i) If (P-W) admits a strict Slater point and Z is bounded, then the infimum of (P-W) coincides

with the supremum of (D-B), and (D-B) is solvable.

(ii) If the feasible region of (P-W) is nonempty and bounded and Z is bounded, then the infimum

of (P-W) coincides with the supremum of (D-B), and (P-W) is solvable.

(iii) If (D-B) admits a strict Slater point, then its supremum coincides with the infimum of (P-W),

and (P-W) is solvable.

Example 1 (Unbounded Uncertainty Sets). In contrast to earlier findings from the literature, our

results in this section (such as Theorem 7 (iii)) do not require the uncertainty set Z to be bounded.

Unbounded uncertainty sets commonly arise when a robust optimization problem involves nonlinear

functions of the primitive uncertainties, such as demands that are modeled as functions of prices,
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the returns of derivative assets (Zymler et al., 2011) or nonlinear decision rules (Georghiou et al.,

2015; Bertsimas et al., 2019), and when these functions are linearized through liftings. While it is

tempting to restrict an unbounded uncertainty set Z to a bounded subset Z ′ = Z ∩ [−B,B]dz and

subsequently apply existing results, this approach is plagued with practical challenges. Indeed, even

in the benign case where Z is a polyhedron, verifying whether all vertices of Z are contained in

Z ′—arguably a necessary but not sufficient condition for the validity of the revised uncertainty set

Z ′—is not possible in polynomial time unless P = NP, see Kleinert et al. (2020, Corollary 1).

4 Uncertainty Quantification and Distributionally Robust Opti-

mization

An uncertainty quantification problem seeks a distribution that maximizes the expected value of a

Borel measurable disutility function g(z̃) over all probability distributions of the random vector z̃

within a given set P. As uncertainty about the distribution of a random object is usually termed

ambiguity, we henceforth refer to P as the ambiguity set.

sup
P∈P

EP [g(z̃)] (P-UQ)

Primal Uncertainty Quantification Problem

To ensure that the expectation in (P-UQ) is defined for all measurable disutility functions, we

set EP [g(z̃)] = −∞ whenever the expectation of the positive and negative parts of g(z̃) are both

infinite. This convention means that infeasibility dominates unboundedness. In the first part

of this section, we assume that the disutility function g : Rdz → R is decision-independent and

representable as a pointwise maximum of I ∈ N component functions gi : R
dz → R for i ∈ I, that

is, g(z) = maxi∈I gi(z), which satisfy the following regularity condition.

(G) The function −gi is proper, closed and convex for each i ∈ I.

Intuitively, the disutility function g is thus a pointwise maximum of finitely many concave

functions. Note that every piecewise affine continuous function can be represented in this way, and

every continuous function on a compact set can be approximated arbitrarily closely by a piecewise
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affine continuous function. In addition, we assume that the ambiguity set P is nonempty and

contains all distributions that satisfy J ∈ N moment conditions. Specifically, we assume that

P = {P ∈P0(S) | EP [h(z̃)] ≤ µ} ,

where S = {z ∈ Rdz | cℓ(z) ≤ 0 ∀ℓ ∈ L} is a nonempty support set of the same type as the

uncertainty set Z studied in Section 3 that satisfies assumption (C), P0(S) represents the family

of all distributions supported on S, µ ∈ RJ is a vector of moment bounds, and the Borel measurable

moment functions hj : R
dz → R, j ∈ J , satisfy the following regularity condition.

(H) The function hj is proper, closed and convex for each j ∈ J .

We set EP [hj(z̃)] =∞ whenever the expectation of the positive and negative parts of hj(z̃) are both

infinite. This follows our convention that infeasibility dominates unboundedness, and it ensures

that distributions under which the positive part of hj has an infinite expectation for some j ∈ J
are excluded from the ambiguity set and therefore infeasible in (P-UQ).

Next, define

S̄i = {z ∈ S | z ∈ dom(hj) ∀j ∈ J , z ∈ dom(−gi)}

for every i ∈ I. Note that S̄i is convex by virtue of assumptions (G) and (H) but may fail to be

closed. For example, if S = R, hj(z) = 0 for all j ∈ J and −gi(z) = 1/z for z > 0; = +∞ for z ≤ 0,

then S̄i = (0,+∞) is open. Throughout this section, we impose the following regularity condition.

(S) The set S̄i is nonempty for every i ∈ I.

Note that any distribution P feasible in (P-UQ) must be supported on S̄ = ∪i∈I S̄i. Indeed, P

must be supported on dom(hj) for every j ∈ J for otherwise P cannot satisfy the moment con-

straint EP [h(z̃)] ≤ µ. Similarly, P must be supported on dom(−g) = ∪i∈Idom(−gi) for otherwise
EP[g(z̃)] = −∞. Thus, we will from now on refer to S̄ as the effective support set. Note that S̄ is

generically non-convex as it constitutes a finite union of convex sets, and it may fail to be closed.

Assumption (S) may be imposed without much loss of generality. To see this, note first that

if S̄i is empty for every i ∈ I, then the effective support set S̄ is empty, and the uncertainty

quantification problem (P-UQ) is infeasible. We may thus assume that S̄ is nonempty. In this case,

if S̄i = ∅ for some i ∈ I, then gi(z) = −∞ for all z ∈ S̄. This observation implies that the optimal

value of (P-UQ) does not change if we remove those components gi from g for which S̄i is empty.
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Note that (P-UQ) constitutes a semi-infinite program with finitely many (moment) constraints

and infinitely many decision variables because it optimizes over all probability distributions sup-

ported on the typically uncountable set S. The semi-infinite maximization problem (P-UQ) admits

a dual semi-infinite minimization problem (D-UQ), which involves only finitely many decision vari-

ables but infinitely many constraints parameterized by the elements of the effective support set S̄.

inf α+ µ⊤β

s.t. sup
z∈S̄

{

g(z) − α− h(z)⊤β
}

≤ 0

α free, β ≥ 0

(D-UQ)

Dual Uncertainty Quantification Problem

We first show that (P-UQ) and (D-UQ) satisfy a weak duality relationship.

Theorem 8 (Weak Duality for (P-UQ) and (D-UQ)). The infimum of (D-UQ) is larger or equal

to the supremum of (P-UQ).

Next, we consider the following restriction of problem (P-UQ).

sup
∑

i∈I

λig(zi)

s.t.
∑

i∈I

λi = 1,
∑

i∈I

λih(zi) ≤ µ

zi ∈ S̄, i ∈ I, λ ≥ 0

(FR)

Finite Reduction Problem

Assumption (G) implies that g(zi) < +∞ for all zi ∈ Rdz , and assumption (H) implies that

hj(zi) > −∞ for all zi ∈ Rdz and j ∈ J . The restriction zi ∈ S̄, which further imposes

that hj(zi) < +∞ and g(zi) > −∞, thus ensures that the products λig(zi) and λih(zi) are

well-defined even if λi = 0. Problem (FR) has intuitive appeal because it evaluates the worst-case

expected disutility across all discrete I-point distributions P ∈ P with discretization points zi

restricted to S̄ and corresponding probabilities λi for i ∈ I. Therefore, we henceforth refer to (FR)

as a finite reduction of (P-UQ). As (FR) constitutes a restriction of (P-UQ), it provides a lower

bound on (P-UQ) and, by virtue of Theorem 8, on (D-UQ).

We now show that (D-UQ) and (FR) are instances of the primal worst and dual best robust

optimization problems (P-W) and (D-B) studied in Section 3, respectively, which we will call

16



ambiguous primal worst, (AP-W), and ambiguous dual best, (AD-B). While (AP-W) and (AD-B)

appear to be difficult to solve, they again admit finite convex reformulations (AP-W′) and (AD-B′)

that are instances of the problems (P-W′) and (D-B′) in Section 3, respectively. We can then

use the results of Section 3 to derive conditions of strong duality between (AP-W) and (AD-B),

which immediately imply equivalence between the uncertainty quantification problems (P-UQ) and

(D-UQ) as well as the finite reduction (FR). These relationships are summarized in Figure 2.

inf (D-UQ) sup (P-UQ) sup (FR)

inf (AP-W) inf (AP-W′) sup (AD-B′) sup (AD-B)

Theorem 8

Proposition 9 Proposition 10

Proposition 4 (ii)

Proposition 4 (i)

Theorem 11 (i), (ii)

Theorem 6 (i)

Proposition 5 (ii)

Proposition 5 (i)

Figure 2. Illustration of the relationships among (P-UQ), (D-UQ), (FR), (AP-W),

(AD-B), (AP-W′) and (AD-B′). The optimal values of these problems are non-increasing

in the directions of the arcs. Dashed arcs represent universal inequalities, while the solid

arcs represent inequalities that hold under regularity conditions.

Although the dual uncertainty quantification problem (D-UQ) appears to be an instance of

the primal worst problem (P-W), the ‘uncertainty set’ S̄ fails to satisfy the assumption (C) from

Section 3 for two reasons. Firstly, S̄ is generally non-convex as it constitutes a union of I convex

sets corresponding to the I concave pieces of the disutility function g. Secondly, the domains of hj

and −g may not be closed, in which case S̄ cannot be represented as an instance of Z that satisfies

assumption (C), which is closed by construction. In addition, the constraint function in (D-UQ)

violates the assumption (RF) since g is not concave in z. Hence, (D-UQ) fails to be an instance

of (P-W). Nevertheless, (D-UQ) admits an equivalent reformulation that is an instance of (P-W).

To see this, we introduce separate augmented support sets U0 = Rdz × RJ × R and

Ui = {(z,u, t) ∈ Rdz × RJ ×R | cℓ(z) ≤ 0 ∀ℓ ∈ L, h(z) ≤ u, gi(z) ≥ t} ∀i ∈ I.
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We can then define the ambiguous primal worst problem as follows.

inf α+ µ⊤β

s.t. sup
(zi,ui,ti)∈Ui

{

ti − α− u⊤
i β
}

≤ 0 ∀i ∈ I

α free, β ≥ 0

(AP-W)

Ambiguous Primal Worst Problem

The ambiguous primal worst problem (AP-W) can indeed be interpreted as an instance of the

primal worst problem (P-W) with the objective function

f0((α,β), (z0,u0, t0)) = α+ µ⊤β + δRJ
+
(β) (2a)

and the constraint functions

fi((α,β), (zi ,ui, ti)) = ti − α− u⊤
i β (2b)

for i ∈ I, where the optimization variables (α,β) correspond to x, and the uncertain parame-

ters (zi,ui, ti) ∈ Ui correspond to zi ∈ Z for every i ∈ I0. Note that the objective function (2a)

of (AP-W) is proper, convex and closed in the decision variables and constant in the uncertain

parameters, while the constraint functions (2b) of (AP-W) are bi-affine in the decision variables

and the uncertain parameters. Thus, problem (AP-W) satisfies assumption1 (RF). In addition,

as the support set S satisfies assumption (C) and as the disutility function gi and the moment

functions hj, j ∈ J , satisfy the assumptions (G) and (H), respectively, the functions defining

the augmented support set Ui all satisfy assumption (C) for every i ∈ I. Although the effective

support set S̄ in (D-UQ) and (P-UQ) fails to satisfy assumption (C), its constituent sets S̄i, which
are nonempty by assumption (S), are the projections of Ui onto Rdz for all i ∈ I:

zi ∈ S̄i ⇐⇒ ∃ui ∈ RJ and ti ∈ R such that (zi,ui, ti) ∈ Ui. (3)

Indeed, zi ∈ S̄i implies that (zi,h(zi), g(zi)) ∈ Ui, and the reverse implication holds since the

condition on the right-hand side implies that hj(zi) < +∞ for all j ∈ J as well as gi(zi) > −∞.

Using the equivalence (3), we can now show that problem (D-UQ) is equivalent to (AP-W).

1Strictly speaking, f0 does not satisfy assumption (RF) because −f0 is not proper in the uncertain parameters

for β 6≥ 0. Since f0 is deterministic, however, maximizing f0 over the uncertain parameters will not yield a pathological

worst-case objective function. The lack of properness of −f0 in this special case is therefore unproblematic. Details

are omitted for brevity.
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Proposition 9 (Equivalence of (D-UQ) and (AP-W)). The infima of (D-UQ) and (AP-W) coin-

cide, and (D-UQ) is solvable if and only if (AP-W) is solvable.

The partial conjugates of the objective and constraint functions (2) with respect to the decision

variables (α,β) are given by

f∗10 ((v0,w0), (z0,u0, t0)) = sup
α,β∈RJ

+

{

v0α+w⊤
0 β − α− µ⊤β

}

=











0 if v0 = 1,w0 ≤ µ

+∞ otherwise

and

f∗1i ((vi,wi), (zi,ui, ti)) = sup
α,β

{

viα+w⊤
i β − ti + α+ u⊤

i β
}

=











−ti if vi = −1,wi = −ui

+∞ otherwise

for every i ∈ I. Substituting these expressions into (D-B) and eliminating the redundant decision

variables vi and wi, i ∈ I0, yields the following optimization problem, which we will henceforth

refer to as the ambiguous dual best problem.

sup
∑

i∈I

λiti

s.t.
∑

i∈I

λi = 1,
∑

i∈I

λiui ≤ µ

(zi,ui, ti) ∈ Ui, i ∈ I, λ ≥ 0

(AD-B)

Ambiguous Dual Best Problem

In the following, we show that (AD-B) is equivalent to (FR).

Proposition 10 (Equivalence of (FR) and (AD-B)). The suprema of (FR) and (AD-B) coincide,

and (FR) is solvable if and only if (AD-B) is solvable.
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In Section 3 we have seen that the seemingly intractable primal worst and dual best optimiza-

tion problems (P-W) and (D-B) admit exact reformulations as the finite convex programs (P-W′)

and (D-B′), respectively. If we interpret (AP-W) as an instance of (P-W) as explained above, then

the corresponding instance of (P-W′) can be constructed as follows. First, we evaluate the partial

conjugates of the objective and constraint functions (2) with respect to the uncertain parameters

and evaluate the conjugates of the constraint functions defining the uncertain sets. Substituting

these (partial and global) conjugates into (P-W′) and eliminating all the redundant variables with

fixed values then yields the following convex program.

inf α+ µ⊤β

s.t. (−gi)∗
(

y
(0)
i

)

+
∑

j∈J

βjh
∗
j

(

y
(1)
ij

βj

)

+
∑

ℓ∈L

νiℓc
∗
ℓ

(

y
(2)
iℓ

νiℓ

)

≤ α ∀i ∈ I

y
(0)
i +

∑

j∈J

y
(1)
ij +

∑

ℓ∈L

y
(2)
iℓ = 0 ∀i ∈ I

α free, β ≥ 0, y
(0)
i ,y

(1)
ij ,y

(2)
iℓ free, νiℓ ≥ 0, i ∈ I, j ∈ J , ℓ ∈ L

(AP-W′)

Reformulated Ambiguous Primal Worst Problem

The derivation of (AP-W′) is tedious but completely mechanical and requires no new ideas.

Details are omitted for brevity. Similarly, substituting the objective and constraint functions (2)

as well as the constraint functions defining Ui into (D-B′) yields the following convex program.

sup
∑

i∈I

τi

s.t.
∑

i∈I

λi = 1,
∑

i∈I

ωi ≤ µ

λicℓ(υi/λi) ≤ 0 ∀i ∈ I, ∀ℓ ∈ L
λih(υi/λi) ≤ ωi, λigi(υi/λi) ≥ τi ∀i ∈ I
τ free, λ ≥ 0, ωi,υi free, i ∈ I

(AD-B′)

Reformulated Ambiguous Dual Best Problem

As (AP-W), (AD-B), (AP-W′) and (AD-B′) represent instances of (P-W), (D-B), (P-W′) and (D-B′),

respectively, all results of Section 3 are applicable and offer conditions under which these problems

share the same optimal values or solvability characteristics.

We now establish minimal conditions for strong duality between the finite convex programs

(AP-W′) and (AD-B′). These conditions will also be sufficient for strong duality between the semi-
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infinite programs (P-UQ) and (D-UQ). We emphasize that our duality results follow from first

principles of convex analysis and do not rely on the elaborate machinery of abstract semi-infinite

duality theory such as Isii (1962), Anderson and Nash (1987) and Shapiro (2001).

Theorem 11 (Strong Duality for (P-UQ) and (D-UQ)). The following statements hold.

(i) If (AD-B′) admits a Slater point with λ > 0, then (AP-W′), (AP-W), (D-UQ), (P-UQ),

(FR), (AD-B) and (AD-B′) all have the same optimal value and (AP-W′) is solvable. Also,

if (α⋆,β⋆, {y(0)⋆i }i, {y(1)⋆ij }ij , {y
(2)⋆
iℓ , ν⋆iℓ}iℓ) solves (AP-W′), then (α⋆,β⋆) solves (D-UQ).

(ii) If (AP-W′) admits a Slater point and S is bounded, then (AP-W′), (AP-W), (D-UQ),

(P-UQ), (FR), (AD-B) and (AD-B′) all have the same optimal value and (AD-B′) is solv-

able. Also, if (τ ⋆,λ⋆, {ω⋆
i ,v

⋆
i }i) solves (AD-B′), then the discrete distribution that assigns

probability λ⋆i to the point v⋆i /λ
⋆
i for every i ∈ I with λ⋆i > 0 solves (P-UQ).

The equivalence of (AP-W′), (AP-W), (D-UQ), (P-UQ), (FR), (AD-B) and (AD-B′) can also

be shown if (AD-B′) admits a Slater point and S is bounded or if (AP-W′) admits a Slater point

and (AD-B′) has a feasible solution with λ > 0. However, these cases are less relevant in practice.

Remark 1 (Relation to Semi-Infinite Duality Theory). Strong duality between the primal and dual

uncertainty quantification problems (P-UQ) and (D-UQ) can also be established by appealing to

the classical duality theory for generalized moment problems. In order to describe the sufficient

condition that is most frequently used, we denote by M+(S̄) the cone of all non-negative Borel

measures supported on S̄ under which the functions g and h are integrable, and we define

C =
{∫

S̄
(1,h(z))λ(dz)

∣

∣

∣ λ ∈ M+(S̄)
}

+
(

{0} × RJ
+

)

,

which constitutes a Minkowski sum of two convex cones and is thus itself a convex cone. By virtue of

Proposition 3.4 by Shapiro (2001), the supremum of (P-UQ) coincides with the infimum of (D-UQ)

if the vector (1,µ) resides in the interior of C. This condition is more general because it extends to

arbitrary measurable functions g and h, but it is not always easy to check. Theorem 11 holds under

more restrictive conditions as it relies on the convexity properties of the functions gi, h and cℓ, but

the existence of a Slater point is usually straightforward to verify by inspection. In addition, Slater

points for the finite convex programs (AP-W′) and (AD-B′) can also be found numerically by solving

suitable auxiliary convex optimization problems. Finally and most importantly, the conditions of
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Theorem 11 not only ensure strong duality between the semi-infinite optimization problems (P-UQ)

and (D-UQ) but also guarantee that these semi-infinite optimization problems are equivalent to

finite convex programs. In contrast, the standard approach to distributionally robust optimization

imposes separate regularity conditions to ensure strong duality between the semi-infinite optimization

problems and to ensure that these problems admit finite convex reformulations.

The following two propositions provide sufficient conditions for the assumptions of Theorem 11

that may be easier to interpret. The first such condition relies on the notion of a Slater distribution.

Definition 3 (Slater Distribution). The distribution PS ∈P0(S̄) is a Slater distribution for the un-

certainty quantification problem (P-UQ) if (i) PS is absolutely continuous on Rdz , (ii) PS
[

z̃ ∈ S̄i
]

>

0 for all i ∈ I, (iii) EPS[hj(z̃)] ≤ µj for all j ∈ J , with the inequality being strict if hj is nonlinear,

and (iv) EPS[cℓ(z̃)] < 0 for all ℓ ∈ L where cℓ is nonlinear.

Proposition 12 (Slater Points for (AD-B′)). If the uncertainty quantification problem (P-UQ)

admits a Slater distribution, then the convex program (AD-B′) admits a Slater point with λ > 0.

Proposition 13 (Slater Points for (AP-W′)). If the semi-infinite program (D-UQ) admits a strict

Slater point and S is bounded, then the convex program (AP-W′) admits a strict Slater point.

Among all sufficient conditions for strong duality between the uncertainty quantification prob-

lems (P-UQ) and (D-UQ), the assumptions of Theorem 11 (i) are—in our experience—most fre-

quently satisfied, but they do not guarantee the solvability of (P-UQ). The following corollary

shows, however, that (P-UQ) can still be solved asymptotically under these assumptions.

Corollary 14 (Approximate Numerical Solution of (P-UQ)). If (AD-B′) admits a Slater point with

λ > 0, then the suprema of (P-UQ) and (AD-B′) coincide, and any ǫ-optimal solution of (AD-B′)

can be used to construct a discrete distribution with I atoms that is 2ǫ-optimal in (P-UQ).

The main results of this section can be directly applied to distributionally robust optimization

problems, in which one seeks a decision x from within a closed feasible region X ⊆ Rdx that

minimizes the worst-case expectation of a decision-dependent disutility function g(x,z) with respect

to all distributions P ∈ P. In this case, the results of this section readily imply that (AP-W′)

remains a finite convex program when x is appended to the list of optimization variables, provided

that X is convex and that the disutility function satisfies g(x,z) = maxi∈I gi(x,z), where gi(x,z) is

proper, convex and closed in x and −gi(x,z) is proper, convex and closed in z for every fixed i ∈ I.
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5 Extensions

The results of Section 4 remain valid if the support set S is representable as a finite union of convex

component sets and if each component set as well as the moment constraints in the ambiguity

set P are defined in terms of conic inequalities. In order to formally describe these generalizations,

we first recall some further concepts and terminology from convex optimization.

Any proper convex cone C ⊆ RdC (cf. Defnition A.5 in Appendix A in the Electric Companion)

induces weak as well as strict generalized inequalities on RdC . Specifically, for any y,y′ ∈ RdC , the

relation y �C y
′ means that y′−y ∈ C, while the relation y ≺C y

′ means that y′−y ∈ int(C). The
reverse inequalities �C and ≻C are defined analogously. In the following we attach to RdC a largest

element +∞C and a smallest element −∞C with respect to the partial ordering �C, that is, we

assume that −∞C �C y �C +∞C for all y ∈ RdC . All dC-dimensional functions considered in the

remainder are valued in RdC = RdC ∪ {−∞C ,+∞C}. The domain of a function f : Rdx → RdC is

defined as dom(f) = {x ∈ Rdx |f(x) ≺C +∞C}, and f is proper if f(x) ≻C −∞C for all x ∈ Rdx

and f(x) ≺ +∞C for at least one x ∈ Rdx .

The definitions of Slater points for optimization problems involving only classical constraints

can now be generalized to optimization problems involving conic constraints by replacing the weak

and strict inequalities of Definition 1 with �Ci and ≺Ci , respectively, where Ci is a proper convex

cone for all i ∈ I (cf. Definition A.6 in Appendix A in the Electric Companion). In analogy to

Definition 2, a vector xS is a (strict) Slater point of a minimization problem if it is a (strict)

Slater point of the problem’s feasible region and resides in the relative interior of the domain of the

problem’s objective function.

Definition 4 (C-Convex Function). If C ⊆ RdC is a proper convex cone, then f : Rdx → RdC

is called C-convex if dom(f) is a convex set and f(θx + (1 − θ)x′) �C θf(x) + (1 − θ)f(x′) for

all x,x′ ∈ dom(f) and θ ∈ [0, 1].

Note that f is C-convex if and only if its C-epigraph epiC(f) = {(x,y) ∈ Rdx×RdC | f(x) �C y}
is convex; see Ben-Tal and Nemirovski (2001, Exercise 3.20). The cone dual to a proper convex

cone C ⊆ RdC is defined as C∗ = {λ ∈ RdC | λ⊤y ≥ 0 ∀y ∈ C}. As it constitutes an intersection

of closed half-spaces whose boundaries contain the origin, C∗ is a closed convex cone. It is further

known that C∗ is proper if and only if C is proper (Ben-Tal and Nemirovski, 2001, Corollary 1.4.1).

23



We also adopt the convention that λ⊤(+∞C) = +∞ and λ⊤(−∞C) = −∞ for all λ ∈ C∗\{0}.

Lemma 15 (Scalarization of C-Convex Functions). If C ⊆ RdC is a proper convex cone, then f :

Rdx → RdC is proper and C-convex if and only if λ⊤f is proper and convex for every λ ∈ C∗\{0}.

Example A.2 in Appendix A in the Electronic Companion describes vector- and matrix-valued

functions that are convex with respect to some proper convex cones but have components that fail

to be convex in the usual sense.

Next, we introduce a generalized notion of lower semicontinuity due to Jeyakumar et al. (2005).

Definition 5 (Star C-Lower Semicontinuity). If C ⊆ RdC is a proper convex cone, then f : Rdx →
RdC is called star C-lower semicontinuous if λ⊤f is lower semicontinuous for every λ ∈ C∗\{0}.

One can prove that if f is star C-lower semicontinuous, then its C-epigraph epiC(f) is closed

(Bot et al., 2009, Proposition 2.2.19). Contrary to standard intuition, however, the converse im-

plication is false in general. Indeed, there exist proper C-convex functions that have a closed

C-epigraph but fail to be star C-lower semicontinuous; see, e.g., Bot et al. (2009, Example 2.2.6).

The following proposition shows that the convex perspectives of proper, closed and convex

functions naturally extend to proper, star C-lower semicontinuous and C-convex functions.

Proposition 16 (C-Convex Perspective). If C ⊆ RdC is a proper convex cone and f : Rdx → RdC

is a proper, star C-lower semicontinuous and C-convex function, then there exists a unique function

f : Rdx×R+ → RdC , which we will call the C-convex perspective of f , with the following properties.

(i) f is proper, star C-lower semicontinuous and C-convex.

(ii) f(x, t) = tf(x/t) for all t > 0 and x ∈ Rdx.

(iii) λ⊤f(x, 0) = δ∗
dom((λ⊤f)∗)

(x) for all x ∈ Rdx and λ ∈ C∗\{0}.

In the following we use tf(x/t) to denote the C-convex perspective f(x, t) of any proper, star

C-lower semicontinuous and C-convex function f for all t ≥ 0.

We now study the following generalization of the uncertainty quantification problem (P-UQ).

sup
P∈Pg

EP [g(z̃)] (P-UQg)

Primal Uncertainty Quantification Problem

24



In contrast to Section 4, however, we now consider a generalized ambiguity set representable as

Pg =
{

P ∈P0({Sk, pk}k)
∣

∣ EP [hj(z̃)] �Hj
µj ∀j ∈ J

}

,

where P0({Sk, pk}k) denotes the set of all probability distributions P supported on S = ∪k∈KSk
such that P[z̃ ∈ Sk] = pk for all k ∈ K. We assume that the probabilities pk are strictly positive for

all k ∈ K and that they sum up to 1. Note that this assumption makes only sense if the different

components Sk = {z ∈ Rdz | cℓk(z) �Cℓk 0 ∀ℓ ∈ Lk}, k ∈ K, of the support set are mutually disjoint.

Here, the sets Cℓk ∈ RdCℓk represent proper convex cones, and the functions cℓk : Rdz → RdCℓk obey

the following regularity condition that generalizes condition (C) from Section 3.

(Cg) The function cℓk is proper, star Cℓk-lower semicontinuous and Cℓk-convex for every ℓ ∈ Lk
and k ∈ K.

We further assume that the disutility function g : Rdz → R satisfies g(z) = maxi∈Ik gik(z) when-

ever z ∈ Sk for some k ∈ K, where the component functions gik : Rdz → R obey the following

regularity condition that is the natural analogue of condition (G) from Section 4.

(Gg) The function −gik is proper, closed and convex for every i ∈ Ik and k ∈ K.

As in Section 4, we set EP [g(z̃)] = −∞ if the expectation of the positive and negative parts

of g(z̃) are both infinite. Finally, we assume that the sets Hj ⊆ R
dHj are proper convex cones, the

vectors µj ∈ R
dHj represent moment bounds, and the moment functions hj : Rdz → R

dHj satisfy

hj(z) = hjk(z) whenever z ∈ Sk for some k ∈ K, where the component functions hjk : Rdz → R
dHj

obey the following regularity condition that generalizes condition (H) from Section 3.

(Hg) The function hjk is proper, star Hj-lower semicontinuous and Hj-convex for every j ∈ J
and k ∈ K.

Some comments about the interpretation of the expectation EP[hj(z̃)] are in order. In analogy to

Section 4, for any fixed λ ∈ H∗
j\{0} we set EP[λ

⊤hj(z̃)] = +∞ whenever the expectation of the

positive and negative parts of λ⊤hj(z̃) are both infinite. We then define EP[hj(z̃)] as +∞Hj
if

there exists λ ∈ H∗
j\{0} with EP[λ

⊤hj(z̃)] = +∞. Similarly, we define EP[hj(z̃)] as −∞Hj
if there

exists λ ∈ H∗
j\{0} with EP[λ

⊤hj(z̃)] = −∞ and if EP[λ
⊤hj(z̃)] < +∞ for every λ ∈ H∗

j\{0}.
Note that we have specified the disutility function g and the moment functions hj, j ∈ J , only on
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the set S = ∪k∈KSk. Specifying these functions beyond S is not necessary, however, because all

distributions in the ambiguity set Pg are supported on S. Next, we define S̄k = ∪i∈IkS̄ik, where

S̄ik = {z ∈ Sk | z ∈ dom(hjk) ∀j ∈ J , z ∈ dom(−gik)}

is convex but not necessarily closed for every i ∈ Ik and k ∈ K, and impose the following condition.

(Sg) The set S̄ik is nonempty for every i ∈ Ik and k ∈ K.

Assumption (Sg) may be imposed without much loss of generality because any distribution P ∈
Pg assigns a strictly positive probability pk to the event z̃ ∈ S̄k and because the conditional

distribution P(·|z̃ ∈ S̄k) must be supported on S̄k. This observation implies that the optimal value

of (P-UQg) does not change if we remove those components gik from g for which S̄ik is empty.

As in Section 4, the uncertainty quantification problem (P-UQg) admits a dual akin to (D-UQ).

inf
∑

k∈K

pkαk +
∑

j∈J

µ⊤
j βj

s.t. sup
zk∈S̄k







g(zk)− αk −
∑

j∈J

hjk(zk)
⊤βj







≤ 0 ∀k ∈ K

α free, βj ∈ H∗
j , j ∈ J

(D-UQg)

Dual Uncertainty Quantification Problem

By using a similar reasoning as in the proof of Theorem 8, it is easy to show that the infimum

of (P-UQg) is always larger or equal to the supremum of (D-UQg). In addition, the uncertainty

quantification problem (P-UQg) admits the following finite reduction akin to (FR).

sup
∑

k∈K

∑

i∈Ik

λikg(zik)

s.t.
∑

i∈Ik

λik = pk ∀k ∈ K
∑

k∈K

∑

i∈Ik

λikhj(zik) �Hj
µj ∀j ∈ J

zik ∈ S̄k, i ∈ Ik, k ∈ K, λk ≥ 0, k ∈ K

(FRg)

Finite Reduction Problem

Note that problem (FRg) provides a lower bound on (P-UQg) because it evaluates the worst-case

expected disutility across all discrete distributions P ∈ P with discretization points zik ∈ S̄k and
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corresponding probabilities λik for i ∈ Ik and k ∈ K. Introducing the augmented support sets

Uik =







(z, {uj}j , t) ∈ Rdz ×
(

×
j∈J

R
dHj

)

× R

∣

∣

∣

∣

∣

cℓk(z) �Cℓk 0 ∀ℓ ∈ Lk,
hjk(z) �Hj

uj ∀j ∈ J , gik(z) ≥ t







for i ∈ Ik and k ∈ K, we can then construct two auxiliary optimization problems (AP-Wg)

and (AD-Bg) equivalent to (D-UQg) and (FRg), respectively, as well as two finite convex pro-

grams (AP-W′
g) and (AD-B′

g). These problems are constructed in the same way as their natural

counterparts from Section 4 with obvious minor modifications. For the sake of brevity, we do not

display the problems (AP-Wg) and (AD-Bg). An explicit representation of (AP-W′
g) is shown below.

inf
∑

k∈K

pkαk + µ
⊤β

s.t. (−gik)∗(y(0)ik ) +
∑

j∈J

(β⊤
j hjk)

∗
(

y
(1)
ijk

)

+
∑

ℓ∈L

(ν⊤iℓkcℓk)
∗
(

y
(2)
iℓk

)

≤ αk ∀i ∈ Ik, ∀k ∈ K

y
(0)
ik +

∑

j∈J

y
(1)
ijk +

∑

ℓ∈L

y
(2)
iℓk = 0 ∀i ∈ Ik, ∀k ∈ K

α free, βj ∈ H∗
j , j ∈ J , y

(0)
ik ,y

(1)
ijk,y

(2)
iℓk free,

νiℓk ∈ C∗ℓk, i ∈ Ik, j ∈ J , ℓ ∈ Lk, k ∈ K

(AP-W′
g)

Reformulated Ambiguous Primal Worst Problem

Similarly, the finite convex program (AD-B′
g) can be represented as follows.

sup
∑

k∈K

∑

i∈Ik

τik

s.t.
∑

i∈Ik

λik = pk ∀k ∈ K,
∑

k∈K

∑

i∈Ik

ωijk �Hj
µj ∀j ∈ J

λikcℓk(vik/λik) �Cℓk 0 ∀i ∈ Ik, ∀ℓ ∈ Lk,∀k ∈ K
λikhjk(vik/λik) �Hj

ωijk ∀i ∈ Ik, ∀j ∈ J , ∀k ∈ K
λikgik(vik/λik) ≥ τik ∀i ∈ Ik, ∀k ∈ K
τk free, λk ≥ 0, ωijk,vik free, i ∈ Ik, j ∈ J , k ∈ K

(AD-B′
g)

Reformulated Ambiguous Dual Best Problem

We are now ready to state a strong duality result akin to Theorem 11.
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Theorem 17 (Strong Duality for (P-UQg) and (D-UQg)). The following statements hold.

(i) If (AD-B′
g) admits a Slater point with λk > 0, k ∈ K, then (AP-W′

g), (D-UQg), (P-UQg),

(FRg) and (AD-B′
g) all have the same optimal value and (AP-W′

g) is solvable. Also, if (α⋆,

{β⋆
j }j , {y

(0)⋆
ik }ik, {y

(1)⋆
ijk }ijk, {y

(2)⋆
iℓk , ν

⋆
iℓk}iℓk) solves (AP-W′

g), then (α⋆, {β⋆
j }j) solves (D-UQg).

(ii) If (AP-W′
g) admits a Slater point and Sk is bounded for every k ∈ K, then (AP-W′

g),

(D-UQg), (P-UQg), (FRg) and (AD-B′
g) all have the same optimal value and (AD-B′

g) is

solvable. Also, if ({τ ⋆
k }k, {λ⋆

k}k, {ω⋆
ijk}ijk, {v⋆ik}ik) solves (AD-B′

g), then the discrete distribu-

tion that assigns probability λ⋆ik to the point v⋆ik/λ
⋆
ik for every i ∈ Ik and k ∈ K with λ⋆ik > 0

solves (P-UQg).

The proof of Theorem 17 parallels that of Theorem 11 and is omitted for the sake of brevity.

The assumptions of Theorem 17 (i) do not guarantee the solvability of (P-UQg). The following

corollary shows, however, that (P-UQg) can still be solved asymptotically under these assumptions.

Corollary 18 (Approximate Numerical Solution of (P-UQg)). If (AD-B′
g) admits a Slater point

with λk > 0 for all k ∈ K, then the suprema of (P-UQg) and (AD-B′
g) coincide, and any ǫ-optimal

solution of (AD-B′
g) can be used to construct a discrete distribution with

∑

k∈K Ik atoms that is

2ǫ-optimal in (P-UQg).

The proof of Corollary 18 is similar to that of Corollary 14 and therefore also omitted. Note

also that Propositions 12 and 13 generalize to the setting of this section in a natural way.

Example C.5 in Appendix C in the Electronic Companion employs the techniques developed

in this section to analyze the spectral properties of random matrices governed by an ambiguous

distribution.

6 Application: Optimal Transport-Based Uncertainty Quantifica-

tion and Distributionally Robust Optimization

We now apply the theory of Section 5 to derive tractable reformulations for uncertainty quantifi-

cation problems whose ambiguity sets are defined in terms of an optimal transport distance.

Definition 6 (Optimal Transport Distance). The optimal transport distance between two probability

distributions P,P′ ∈ P0(R
dz) induced by the transportation cost d : Rdz × Rdz → [0,+∞] is
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given by D(P,P′) = infQ∈Q(P,P′) EQ [d(z̃, z̃′)], where Q(P,P′) denotes the set of all joint probability

distributions or ‘couplings’ Q of z̃ ∈ Rdz and z̃′ ∈ Rdz with marginals P and P′, respectively.

Below we assume that the transportation cost satisfies the following regularity condition.

(D) The transportation cost d(z, ẑ) is proper, closed and convex in z for every fixed ẑ ∈ Rdz .

The optimal transport distance D(P,P′) can be interpreted as the minimum cost of turning

one pile of dirt represented by P into another pile of dirt represented by P′, where the cost of

transporting a unit mass from z to z′ amounts to d(z,z′). Any coupling Q of the distributions P

and P′ can therefore be interpreted as a transportation plan. In the remainder of this section we

study an optimal transport-based uncertainty quantification problem of the form

sup
P∈Bǫ(P̂)

EP[g(z̃)] (OT)

with ambiguity set

Bǫ(P̂) =
{

P ∈P0(S) | D(P, P̂) ≤ ǫ
}

,

which can be viewed as a ball of radius ǫ ≥ 0 around a nominal probability distribution P̂ ∈
P0(S) with respect to the optimal transport distance. We assume that the disutility function is

representable as g(z) = maxi∈I gi(z) for some component functions that satisfy condition (G) from

Section 4 and that the support set is representable as S = {z ∈ Rdz | cℓ(z) ≤ 0 ∀ℓ ∈ L} for some

constraint functions that satisfy condition (C) from Section 3. We further assume that the nominal

distribution is discrete and thus representable as P̂ =
∑

k∈K p̂k δẑk , where δẑk denotes the Dirac

point mass at ẑk ∈ Rdz . Note that the Dirac measure δẑk should not be confused with the indicator

function δ{ẑk} of the singleton set {ẑk}. Without loss of generality, we may finally assume that

the probabilities p̂k, k ∈ K, are strictly positive and that the atoms ẑk ∈ S, k ∈ K, are mutually

different for otherwise some atoms could be omitted or combined. The nominal distribution is often

given by the empirical distribution on a set of training samples ẑk, k ∈ K, drawn independently

from the unknown true distribution of z̃. In this case, we simply set p̂k = 1/K for every k ∈ K.
We now demonstrate that the optimal transport-based uncertainty quantification problem (OT)
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can be addressed with the tools developed in Section 5. To see this, note that

sup
P∈Bǫ(P̂)

EP [g(z̃)] = sup
P∈P0(Rdz )

{

EP [g(z̃)]
∣

∣

∣ inf
Q∈Q(P,P̂)

EQ

[

d(z̃, z̃′)
]

≤ ǫ
}

= sup
P∈P0(Rdz ),Q∈Q(P,P̂)

{

EP [g(z̃)]
∣

∣

∣
EQ

[

d(z̃, z̃′)
]

≤ ǫ
}

,

where the first equality exploits Definition 6, and the second equality follows from Theorem 1.7

by Santambrogio (2015), which applies thanks to condition (D). Indeed, this theorem ensures that

the infimum over Q ∈ Q(P, P̂) is attained, which allows us to remove the infimum operator on the left

hand side of the inequality constraint and to treat the transportation plan Q as a decision variable

of the overall maximization problem. Next, we define conditional support sets Sk = S × {ẑk},
k ∈ K, corresponding to the atoms of the discrete nominal distribution, and in the remainder we

use the following representation of these sets in terms of inequality constraints.

Sk =
{

(z,z′) ∈ Rdz × Rdz
∣

∣

∣ cℓ(z) ≤ 0 ∀ℓ ∈ L, z′ ≤ ẑk, −z′ ≤ −ẑk
}

∀k ∈ K (4)

By the construction of Sk we have Q[(z̃, z̃′) ∈ Sk] = P̂[z̃′ = ẑk] = p̂k for all k ∈ K and Q ∈ Q(P, P̂).
As P is the marginal distribution of z̃ under any transportation plan Q ∈ Q(P, P̂), we can thus

reformulate the problem (OT) without using P as

sup
Q∈P0({Sk ,p̂k}k)

{

EQ [g(z̃)]
∣

∣

∣
EQ

[

d(z̃, z̃′)
]

≤ ǫ
}

,

where P0({Sk, p̂k}k) is defined as in Section 5. To show that this reformulation can be solved with

the tools of Section 5, we then set Ik = {i ∈ I | dom(−gi)∩dom(d(·, ẑk)) 6= ∅} for any k ∈ K and, by

slight abuse of notation, we reinterpret the disutility function as a function g : Rdz ×Rdz → R that

depends on two copies z and z′ of the uncertain problem parameters. Specifically, we assume that

this augmented disutility function satisfies g(z,z′) = maxi∈Ik gi(z) whenever z
′ = ẑk for some k ∈

K. Note that it is not necessary to specify g(z,z′) for other values of z′. We also introduce auxiliary

functions hk : Rdz × Rdz → R defined through hk(z,z
′) = d(z,z′) if z′ = ẑk and hk(z,z

′) = +∞
otherwise, k ∈ K. In addition we introduce h : Rdz ×Rdz → R and assume that h(z,z′) = hk(z,z

′)

whenever z′ = ẑk for some k ∈ K. It is again not necessary to specify h(z,z′) for other values of z′.

Using these conventions, the problem (OT) can thus be reformulated equivalently as

sup
Q∈P0({Sk,p̂k}k)

{

EQ

[

g(z̃, z̃′)
]

∣

∣

∣EQ

[

h(z̃, z̃′)
]

≤ ǫ
}

. (P-UGOT)
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One readily verifies that (P-UGOT) represents an instance of (P-UQg) that satisfies all pertinent

regularity conditions. Indeed, condition (Cg) from Section 5 holds because the functions cℓ, ℓ ∈ L,
appearing in (4) are assumed to satisfy condition (C) from Section 3. Similarly, condition (Gg)

from Section 5 holds because the components gi, i ∈ I, of the disutility function are assumed to

satisfy condition (G) from Section 4. In addition, condition (Hg) from Section 5 holds because the

transportation cost d is assumed to satisfy condition (D), which ensures that hk is proper, convex

and closed for every k ∈ K. In order to validate condition (Sg), we define S̄k = ∪i∈Ik S̄ik, where

S̄ik =
{

(z,z′) ∈ Sk
∣

∣ (z,z′) ∈ dom(hk), z ∈ dom(−gi)
}

for every i ∈ Ik and k ∈ K as in Section 5. By the construction of Ik, the set S̄ik is nonempty for

every i ∈ Ik and k ∈ K, and thus problem (P-UGOT) indeed satisfies condition (Sg).

If we interpret (P-UGOT) as an instance of (P-UQg), then one can show that the corresponding

instance of the dual uncertainty quantification problem (D-UQg) is equivalent to

inf
∑

k∈K

p̂kαk + ǫβ

s.t. sup
(zk ,z

′
k
)∈S̄k

{g(zk)− d(zk, ẑk)β} ≤ αk ∀k ∈ K

α free, β ≥ 0.

(D-UQOT)

This is an immediate consequence of the observation that (zk,z
′
k) ∈ S̄k implies z′k = ẑk and

that h(z, ẑk) = d(zk, ẑk) for every k ∈ K. An elementary calculation further shows that the

corresponding instance of the finite convex program (AP-W′
g) is equivalent to

inf
∑

k∈K

p̂kαk + ǫβ

s.t. (−gi)∗(y(0)ik ) + βd∗1

(

y
(1)
ik

β
, ẑk

)

+
∑

ℓ∈L

νiℓkc
∗
ℓ

(

y
(2)
iℓk

νiℓk

)

≤ αk ∀i ∈ Ik, ∀k ∈ K

y
(0)
ik + y

(1)
ik +

∑

ℓ∈L

y
(2)
iℓk = 0 ∀i ∈ Ik, ∀k ∈ K

αk,y
(0)
ik ,y

(1)
ik ,y

(2)
iℓk free, β ≥ 0, νiℓk ≥ 0 ∀i ∈ Ik, ∀ℓ ∈ L, ∀k ∈ K,

(AP-W′
OT)
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while the corresponding instance of (AD-B′
g) is equivalent to

sup
∑

k∈K

∑

i∈Ik

τik

s.t.
∑

i∈Ik

λik = p̂k ∀k ∈ K
∑

k∈K

∑

i∈Ik

ωik ≤ ǫ

λikcℓ(vik/λik) ≤ 0 ∀i ∈ Ik, ∀ℓ ∈ L, ∀k ∈ K
λikd(vik/λik, ẑk) ≤ ωik ∀i ∈ Ik, ∀k ∈ K
λikgi(vik/λik) ≥ τik ∀i ∈ Ik, ∀k ∈ K
τik free, λik ≥ 0, ωik,vik free ∀i ∈ Ik, ∀k ∈ K.

(AD-B′
OT)

Note that in (AD-B′
OT) we have eliminated the inequality constraints z′ ≤ ẑk and −z′ ≤ −ẑk,

which emerge in the representation (4) of the conditional support set Sk, k ∈ K, and in (AP-W′
OT)

we have eliminated the corresponding dual variables. Theorem 17 (i) guarantees that if (AD-B′
OT)

admits a Slater point with λik > 0 for all i ∈ Ik and k ∈ K, then (P-UGOT), (D-UQOT),

(AP-W′
OT) and (AD-B′

OT) all have the same optimal value as (OT) and (AP-W′
OT) is solvable. Also,

if (α⋆, {y(0)⋆ik ,y
(1)⋆
ik }ik, {y

(2)⋆
iℓk }iℓk, β⋆, {ν⋆iℓk}iℓk) solves (AP-W′

OT), then (α⋆, β⋆) solves (D-UQOT).

Similarly, Theorem 17 (ii) guarantees that if (AP-W′
OT) admits a Slater point and S is bounded,

then (P-UGOT), (D-UQOT), (AP-W
′
OT) and (AD-B′

OT) all have the same optimal value as (OT)

and (AD-B′
OT) is solvable. Also, if ({τ ⋆

k }k, {λ⋆
k}k, {ω⋆

ik}ik, {v⋆ik}ik) solves (AD-B′
OT), then the dis-

crete distribution that assigns probability λ⋆ik to the point v⋆ik/λ
⋆
ik for every i ∈ Ik and k ∈ K with

λ⋆ik > 0 solves (OT). Theorem 17 thus establishes, among other things, different conditions for

strong duality between the semi-infinite programs (OT) and (D-UQOT). Such strong duality re-

sults are at the heart of modern Wasserstein distributionally robust optimization; see Theorem 4.2

of Mohajerin Esfahani and Kuhn (2018) and Theorem 1 of Zhao and Guan (2018) for finite dimen-

sional and Theorem 1 of Gao and Kleywegt (2022) and Theorem 1 of Blanchet and Murthy (2019)

for infinite dimensional uncertainty sets. Theorem 17 provides a new and elementary proof for

strong semi-infinite duality, and it relies only on explicit conditions that are easy to check. Note

that the conditions of Theorem 17 (i) are indeed very weak and are essentially always satisfied if

ǫ > 0. While the uncertainty quantification problem (OT) and its convex reformulation (AD-B′
OT)

may fail to be solvable under these conditions, Corollary 18 shows that near-optimal solutions

to (AD-B′
OT) can systematically be converted to near-optimal solutions to (OT).
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We will argue next that problem (AD-B′
OT) can be further simplified and that it is guaranteed

to be solvable under mild additional conditions that are usually met in practice. To this end, note

first that by eliminating the auxiliary decision variables {τik, ωik}ik and applying the linear variable

substitution vik ← vik + ẑkλik for all i ∈ Ik and k ∈ K, problem (AD-B′
OT) simplifies to

sup
∑

k∈K

∑

i∈Ik

λikgi

(

ẑk +
vik

λik

)

s.t.
∑

i∈Ik

λik = p̂k ∀k ∈ K

λikcℓ

(

ẑk +
vik

λik

)

≤ 0 ∀i ∈ Ik, ∀ℓ ∈ L, ∀k ∈ K
∑

k∈K

∑

i∈Ik

λikd

(

ẑk +
vik

λik
, ẑk

)

≤ ǫ

λik ≥ 0, vik free ∀i ∈ Ik, ∀k ∈ K.

(5)

This reformulation is always solvable under mild assumptions on the transportation costs.

Proposition 19 (Solvability of (5)). Assume that the transportation cost d(z,z′) satisfies the

identity of indiscernibles, that is, d(z,z′) = 0 if and only if z = z′. Then, problem (5) is solvable.

In the following we explain how any maximizer ({λ⋆ik,v⋆ik}ik) of the finite convex program (5)

can be used to construct a distribution P⋆ that is optimal in (OT) (if such a P⋆ exists) or a sequence

of asymptotically optimal distributions {Pn}n∈N (if such a P⋆ does not exist).

Proposition 20. Assume that the conditions of Proposition 19 hold and that (AD-B′
OT) admits a

Slater point with λik > 0 for all i ∈ Ik and k ∈ K. If I∞k = {i ∈ Ik | λ⋆ik = 0, v⋆ik 6= 0} = ∅ for

every k ∈ K, then the discrete distribution

P⋆ =
∑

k∈K

∑

i∈I+
k

λ⋆ikδẑk+v⋆
ik
/λ⋆

ik
(6)

is optimal in (OT), where I+k = {i ∈ Ik | λ⋆ik > 0}. Otherwise, the discrete distributions

Pn =
∑

k∈K

∑

i∈I+
k
∪I∞

k

λik(n)δzik(n) (7)

for n ∈ N are asymptotically optimal in (OT), where

λik(n) =











λ⋆ik

(

1− |I∞
k

|
n

)

if i ∈ I+k
p̂k
n if i ∈ I∞k

and zik(n) =











ẑk +
v⋆
ik

λ⋆
ik

if i ∈ I+k
ẑk + n

v⋆
ik

p̂k
if i ∈ I∞k .
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The distributions Pn in (7) send some atoms with decaying probabilities p̂k/n to infinity along

the vectors v⋆ik, i ∈ I∞k , k ∈ K, which are recession directions of the support set. It is perhaps sur-

prising that all distributions Pn can be constructed from one single optimal solution of problem (5).

Conversely, in order to construct asymptotically optimal probability distributions for generic non-

degenerate uncertainty quantification problems of the form (P-UQ) and (P-UQg), one has to

compute sequences of asymptotically optimal solutions for the finite convex programs (AD-B′)

and (AD-B′
g), respectively, which may not be solvable in general; see Corollaries 14 and 18. Re-

mark C.5 in Appendix C in the Electronic Companion shows that (OT) is guaranteed to be solvable

whenever the transportation cost d(z, ẑk) grows superlinearly in z for every k ∈ K.
If the transportation cost is set to d(z,z′) = ‖z − z′‖p for an arbitrary norm ‖ · ‖ on Rdz

and constant p ∈ [1,+∞), then D(P,P′)1/p reduces to the p-th Wasserstein distance between P

and P′ (Villani, 2008, Definition 6.1). In this case, the ambiguity set Bǫp(P̂) coincides with the p-th

Wasserstein ball of radius ǫ around the nominal distribution P̂. Note also that d(z,z′) = ‖z− z′‖p

obeys assumption (D) and satisfies the identity of indiscernibles. Theorem 17 (i) thus ensures that

if the finite convex program (AD-B′
OT) admits a Slater point with λik > 0 for all i ∈ Ik and k ∈ K,

then the supremum of (OT) coincides with the minimum of the finite convex program (AP-W′
OT).

The transportation cost d(z,z′) = ‖z−z′‖p impacts (AP-W′
OT) only through the partial conjugate

βd∗1

(

y
(1)
ik

β
, ẑk

)

= ẑ⊤k y
(1)
ik + ϕ(q)β

∥

∥

∥

∥

∥

y
(1)
ik

β

∥

∥

∥

∥

∥

q

∗

,

where ‖·‖∗ denotes the norm dual to ‖·‖ on Rdz , q ∈ [1,+∞] is the unique constant with 1
p +

1
q = 1

and ϕ(q) = (q − 1)(q−1)/qq; see Lemma C.9 (ii). If p = 1 and q = +∞, then ϕ(q) ‖·‖q∗ must be

interpreted as the indicator function of the closed unit ball around 0 with respect to ‖ · ‖∗. The min-

imization problem (AP-W′
OT) thus significantly generalizes known convex reformulations of uncer-

tainty quantification problems over 1-Wasserstein balls developed by Mohajerin Esfahani and Kuhn

(2018). By letting p tend to∞ in the finite convex programs (AP-W′
OT) and (5) with transportation

cost d(z,z′) = ‖z − z′‖p, one further recovers convex reformulations of uncertainty quantification

problems over ∞-Wasserstein balls akin to those studied by Bertsimas et al. (2022).

Example C.6 in Appendix C in the Electronic Companion showcases how our general class of

transportation costs allows to incorporate prior structural information into the uncertainty quan-

tification problem (OT).
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Similar to Section 4, the results of this section can be directly applied to distributionally robust

optimization problems over transport-based ambiguity sets, in which one seeks a decision x from

within a closed feasible region X ⊆ Rdx that minimizes the worst-case expectation of a decision-

dependent disutility function g(x,z) with respect to all distributions P ∈ Bǫ(P̂). Indeed, (AP-W
′
OT)

remains a finite convex program when x is appended to the list of decision variables, provided

that X is convex and that the disutility function satisfies g(x,z) = maxi∈I gi(x,z), where gi(x,z)

is proper, convex and closed in x and −gi(x,z) is proper, convex and closed in z for every i ∈ I.
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A. Shapiro, D. Dentcheva, and Andrzej Ruszczyński. Lectures on Stochastic Programming: Modeling and
Theory. SIAM, 2009.

M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958.

C. Villani. Optimal Transport: Old and New. Springer, 2008.

37



W. Wiesemann, D. Kuhn, and M. Sim. Distributionally robust convex optimization. Operations Research,
62(6):1358–1376, 2014.

H. Xu and S. Mannor. Distributionally robust Markov decision processes. Mathematics of Operations
Research, 37(2):288–300, 2012.

H. Xu, C. Caramanis, and S. Mannor. Optimization under probabilistic envelope constraints. Operations
Research, 60(3):682–699, 2012.

C. Zhao and Y. Guan. Data-driven risk-averse stochastic optimization with Wasserstein metric. Operations
Research Letters, 46(2):262–267, 2018.

S. Zymler, B. Rustem, and D. Kuhn. Robust portfolio optimization with derivative insurance guarantees.
European Journal of Operational Research, 210(2):410–424, 2011.

38



A Basic Concepts of Convex Analysis

Throughout the paper we use the following key concepts of convex analysis. The domain of a

function f : Rdx → R is defined as dom(f) = {x ∈ Rdx | f(x) < +∞}. The epigraph of f is defined

as epi(f) = {(x, τ) ∈ Rdx × R | f(x) ≤ τ}. The function f is proper if f(x) > −∞ for all x ∈ Rdx

and f(x) < +∞ for at least one x ∈ Rdx , implying that dom(f) 6= ∅. In addition, f is closed if f

is lower semicontinuous and either f(x) > −∞ for all x ∈ Rdx or f(x) = −∞ for all x ∈ Rdx .

We now define the notions of conjugate functions and perspective functions.

Definition A.1 (Conjugate Function). The conjugate of a function f : Rdx → R is the function

f∗ : Rdx → R defined through f∗(w) = supx
{

x⊤w − f(x)
}

. The conjugate (f∗)∗ of f∗ is called

the biconjugate of f and is abbreviated as f∗∗.

The indicator function δX : Rdx → R of a set X ⊆ Rdx is defined through δX (x) = 0 if x ∈ X
and δX (x) = +∞ if x /∈ X . The support function δ∗X : Rdx → R of a set X ⊆ Rdx is defined through

δ∗X (w) = supx∈X {x⊤w}. Note that the support function of X coincides with the conjugate of the

indicator function of X , which justifies our notation.

Definition A.2 (Perspective Functions). The convex perspective of a proper, closed and convex

function f : Rdx → R is the function f : Rdx × R+ → R defined through f(x, t) = tf(x/t) if

t > 0 and f(x, 0) = δ∗dom(f∗)(x). Similarly, the concave perspective of a function f for which −f
is proper, closed and convex is the function f : Rdx × R+ → R defined through f(x, t) = tf(x/t)

if t > 0 and f(x, 0) = −δ∗dom((−f)∗)(x).

One can show that for t > 0, the epigraph of f(·, t) coincides with the epigraph of f multiplied

by t. Moreover, the epigraph of f coincides with the closure of the cone generated by epi(f)×{1} ⊆
Rdx × R. Finally, our definitions of the convex and concave perspectives satisfy

f(x, 0) = lim inf
(x′,t′)→(x,0)

t′f
(

x′/t′
)

and f(x, 0) = lim sup
(x′,t′)→(x,0)

t′f
(

x′/t′
)

(8)

for convex and concave f , respectively, and x ∈ Rdx (Rockafellar, 1970, p. 67 and Theorem 13.3).

For ease of notation, we henceforth use tf(x/t) to denote both f(x, t) and f(x, t). The correct

interpretation of 0f(x/0) will be clear from the context. Specifically, 0f(x/0) should be interpreted

as f(x, 0) if f is convex and as f(x, 0) if f is concave. This convention is justified in view of (8).
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By construction, the convex perspective of a proper, closed and convex function is guaranteed

to be proper, closed and convex; see Proposition C.2. The next example shows that alternative

constructions of the convex perspective that are sometimes adopted in the literature fail to be closed.

Example A.1 (Perspective Functions). Define f : R→ R through f(x) = δ{x0}(x) for some x0 6= 0,

and note that f is proper, closed and convex. An elementary calculation shows that the convex

perspective of f is given by f(x, t) = δ{tx0}(x) for every x ∈ R and t ≥ 0, which is also proper,

closed and convex. Note, however, that f(x, 0) = δ{0}(x) 6= +∞ = limt↓0 tf(x/t), where the last

equality holds because x0 6= 0. This example shows that if one were to define f(x, 0) = limt↓0 tf(x/t),

as is sometimes done in the literature, then the resulting perspective would fail to be closed. As a

second example, define f : R → R through f(x) = |x|, and note that f is again proper, closed and

convex. The convex perspective of f is given by f(x, t) = |x| for every x ∈ R and t ≥ 0, which is

also proper, closed and convex. This example shows that if one were to define f(x, 0) = δ{0}(x), as

is sometimes done in the literature, then the resulting perspective would fail to be closed.

Throughout the paper we use the following terminology for optimization problems, which is in

line with Rockafellar (1970). Any assignment of real values to the decision variables of an optimiza-

tion problem is a solution. A solution is feasible in an optimization problem if it satisfies all the

constraints and attains an objective value other than +∞ (−∞) in a minimization (maximization)

problem; otherwise, it is infeasible. An optimization problem is feasible if it has at least one feasible

solution. We refer to the feasible region of an optimization problem as the set containing all of

its feasible solutions. A feasible optimization problem is solvable if its optimal value is attained

by a feasible solution, whereas an infeasible optimization problem is solved by any (necessarily

infeasible) solution. Whenever the domain of a variable in an optimization problem is omitted, it

is understood to be the entire space (whose definition will be clear from the context).

In Section 3 we study functions f(x,z) with two arguments, where the first argument x repre-

sents a decision variable, while the second argument z represents an exogenous uncertain parameter.

Below we show how the notions of conjugates and perspectives are extended to such functions.

Definition A.3 (Partial Conjugates). The partial conjugate of a function f : Rdx × Rdz → R

with respect to its first argument is the function f∗1 : Rdx × Rdz → R defined through f∗1(w,z) =

supx∈Rdx

{

w⊤x− f(x,z)
}

. Likewise, the partial conjugate of f with respect to its second argument

is the function f∗2 : Rdx × Rdz → R defined through f∗2(x,y) = supz∈Rdz

{

y⊤z − f(x,z)
}

.
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Definition A.4 (Partial Perspectives). If f : Rdx × Rdz → R is proper, closed and convex in

its first argument, then we define its convex partial perspective f : Rdx × R+ × Rdz → R through

f(x, t,z) = tf(x/t,z) if t > 0 and f(x, 0,z) = δ∗dom(f∗1(·,z))(x). If −f is proper, closed and convex

in its second argument, then we define its concave partial perspective f : Rdx × Rdz × R+ → R

through f(x,z, t) = tf(x,z/t) if t > 0 and f(x,z, 0) = −δ∗dom((−f)∗2(x,·))(z).

For ease of notation, throughout the paper we use tf(x/t,z) and tf(x,z/t) to denote f(x, t,z)

and f(x,z, t), respectively. The correct interpretation will always be clear from the context.

Section 5 makes extensive use of proper convex cones, which we define next.

Definition A.5 (Proper Convex Cone). A convex cone C ⊆ RdC is called proper if it is closed,

solid (i.e., it has nonempty interior) and pointed (i.e., it contains no line).

Section 5 also uses a generalized Slater condition for sets represented by conic inequalities.

Definition A.6 (Slater Condition for Sets). The vector xS is a Slater point of the set X represented

by X = {x ∈ Rdx | fi(x) �Ci 0 ∀i ∈ I, hj(x) = 0 ∀j ∈ J }, where Ci is a proper convex cone

for all i ∈ I, if (i) xS ∈ ri(dom(fi)) and xS ∈ ri(dom(hj)) for all i and j; (ii) xS ∈ X ; and

(iii) fi(x
S) ≺Ci 0 for all i ∈ I with the exception of those for which fi is affine and Ci is the

non-negative orthant. The Slater point xS is strict if fi(x
S) ≺Ci 0 for all i ∈ I.

We close with an example that describes vector- and matrix-valued functions that are convex

with respect to proper convex cones but have components that fail to be convex in the usual sense.

Example A.2 (C-Convex Functions). The set Sn+ of all positive semidefinite matrices represents

a proper convex cone in the space Sn of symmetric n× n-matrices, and its interior is given by the

set Sn++ of positive definite matrices. The matrix inversion F : Sn → Sn∪{+∞Sn+
} defined through

F (X) =







X−1 if X ∈ Sn++

+∞Sn+
otherwise

is an example of an Sn+-convex function. To see this, note that dom(F ) = Sn++ is convex and that

the Sn+-epigraph of F can be represented as

epiSn+(F ) =
{

(X,Y ) ∈ Sn++ × Sn
∣

∣

∣
X−1 �Sn+

Y
}

=







(X,Y ) ∈ Sn++ × Sn

∣

∣

∣

∣

∣

∣





X In

In Y



 �S2n+
0







,
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where In stands for the identity matrix in Sn. The second equality in the above expression follows

from a standard Schur complement argument. Thus, epiSn+(F ) is manifestly convex. Other C-
convex functions can be constructed as follows. If C ⊆ RdC is a proper convex cone, g(x,y) is a

Borel-measurable function that is convex in x for every fixed y ∈ C and µ is a Borel measure on C,
then f(x) =

∫

C y · g(x,y)µ(dy) is C-convex (provided the integral exists) because λ⊤f is convex

for every λ ∈ C∗\{0}. To see this, recall that λ⊤y ≥ 0 for all y ∈ C and that convexity is preserved

by integration against a non-negative weighting function (Boyd and Vandenberghe, 2004, § 3.2.1).

B Proofs

Proof of Theorem 1. If (P) or (D) is infeasible, the statement trivially holds. In the remainder

of the proof, we thus assume that both (P) and (D) are feasible. Set C = ∩i∈I0 dom(fi), which is

nonempty and convex by the feasibility of (P) and assumption (F), respectively. However, C is

not necessarily closed because not every proper, closed and convex function has a closed domain.

Next, define the Lagrangian L : Rdx × RI → R associated with problem (P) through

L (x,λ) =



















f0(x) +
∑

i∈I λifi(x) if x ∈ C, λ ≥ 0,

−∞ if x ∈ C, λ 6≥ 0,

+∞ otherwise.

As the objective and constraint functions of problem (P) are proper and convex by assumption (F),

the Lagrangian L (x,λ) is proper and convex in x for every fixed λ ≥ 0. As C may fail to be closed,

however, L (x,λ) is not necessarily closed in x even if λ ≥ 0. One also easily verifies that −L (x,λ)

is proper, closed and convex in λ for every fixed x ∈ C.
Using the Lagrangian, the primal problem (P) can be expressed as the min-max problem

inf
x∈C

f(x), where f(x) = sup
λ≥0

L (x,λ) =







f0(x) if fi(x) ≤ 0 ∀i ∈ I,
+∞ otherwise.

(9)

Below we will show that the dual problem (D) can be bounded above by the max-min problem

sup
λ≥0

g(λ), where g(λ) = inf
x∈C

L (x,λ). (10)

The statement of the theorem then follows because

inf (P) = inf
x∈C

f(x) = inf
x∈C

sup
λ≥0

L (x,λ) ≥ sup
λ≥0

inf
x∈C

L (x,λ) = sup
λ≥0

g(λ) ≥ sup (D), (11)
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where the first inequality is a direct consequence of the classical min-max inequality. To see that

the second inequality holds, fix any λ ≥ 0 and note that

g(λ) = inf
x











f0(x) +
∑

i∈I:
λi>0

λifi(x) +
∑

i∈I:
λi=0

δdom(fi)(x)











= − sup
x











0⊤x− f0(x)−
∑

i∈I:
λi>0

λifi(x)−
∑

i∈I:
λi=0

δdom(fi)(x)











≥ − inf
{wi}i∈I0











f∗0 (w0) +
∑

i∈I:
λi>0

(λifi)
∗ (wi) +

∑

i∈I:
λi=0

δ∗dom(fi)
(wi)

∣

∣

∣

∑

i∈I0

wi = 0











= − inf
{wi}i∈I0











f∗0 (w0) +
∑

i∈I:
λi>0

λif
∗
i (wi/λi) +

∑

i∈I:
λi=0

δ∗dom(fi)
(wi)

∣

∣

∣

∑

i∈I0

wi = 0











= sup
{wi}i∈I0







−f∗0 (w0)−
∑

i∈I

λif
∗
i (wi/λi)

∣

∣

∣

∑

i∈I0

wi = 0







, (12)

where the first equality expresses g(λ) as the optimal value of an unconstrained minimization

problem, in which any solution x /∈ C adopts an infinite objective value. The objective function of

this minimization problem is proper because C 6= ∅, and it is convex because the functions fi, i ∈ I0,
are all convex. The inequality in the above expression follows from Proposition C.4, which asserts

that the conjugate of a sum of proper convex functions provides a lower bound on the infimal

convolution of the conjugates of these functions. The third equality follows from Theorem 16.1

by Rockafellar (1970), which asserts that the conjugate of a positive multiple of a proper convex

function equals the perspective of the conjugate of this function. The fourth equality holds due to

our definition of the convex perspective and because δ∗dom(fi)
= δ∗dom(f∗∗

i ) by virtue of Theorem 12.2

by Rockafellar (1970). Substituting the lower bound (12) on g(λ) into (10) then shows that the

dual problem (D) is indeed bounded above by (10). This observation completes the proof.

The proof of Theorem 2 relies on the following auxiliary result.

Lemma B.1. The Lagrangian dual of problem (D) is equivalent to problem (P).
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Proof of Lemma B.1. We express (D) as the max-min problem

sup
λ≥0

sup
{wi}i∈I0

inf
x
−f∗0 (w0)−

∑

i∈I

λif
∗
i (wi/λi) +

∑

i∈I0

w⊤
i x, (13)

where the equality constraint involving {wi}i∈I0 is enforced implicitly through the embedded min-

imization over the Lagrange multiplier x. Interchanging the order of the maximization and mini-

mization operators in (13), we obtain the standard Lagrangian dual of the dual problem (D).

inf
x

sup
λ≥0

sup
{wi}i∈I0

−f∗0 (w0)−
∑

i∈I

λif
∗
i (wi/λi) +

∑

i∈I0

w⊤
i x (14)

For any fixed x, the embedded maximization problems in (14) evaluate to f(x) as defined in (9).

Indeed, a direct calculation reveals that

sup
λ≥0

sup
{wi}i∈I0







−f∗0 (w0)−
∑

i∈I

λif
∗
i (wi/λi) +

∑

i∈I0

w⊤
i x







= sup
λ≥0

{

sup
w0

{

w⊤
0 x− f∗0 (w0)

}

+
∑

i∈I:
λi>0

sup
wi

{

w⊤
i x− λif∗i (wi/λi)

}

+
∑

i∈I:
λi=0

sup
wi

{

w⊤
i x− δ∗dom(fi)

({wi}i)
}}

= sup
λ≥0











f0(x) +
∑

i∈I:
λi>0

λifi(x) +
∑

i∈I:
λi=0

δcl(dom(fi))(x)











= f(x).

Here, the first equality follows from a regrouping of terms, the definition of the convex perspective

and Theorem 12.2 by Rockafellar (1970), which applies because fi, i ∈ I0, is proper, closed and

convex by assumption (F). The second equality exploits the fact that each inner maximization

evaluates a conjugate. The explicit expressions for these conjugates follow from Theorems 12.2

and 13.2 and the remarks before Theorem 16.1 in the monograph by Rockafellar (1970), where we

again use the fact that fi, i ∈ I0, is proper, closed and convex. The third equality, finally, follows

from a case distinction. Thus, the Lagrangian dual of (D) is equivalent to (P).

Proof of Theorem 2. In view of assertion (i), assume first that (P) admits a Slater point. In this

case (P) is feasible, and its infimum is strictly smaller than +∞. If the infimum of (P) evaluates to

−∞, then the supremum of (D) also amounts to −∞ by weak duality (see Theorem 1), and (D) is
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solvable because any solution of an infeasible problem is optimal according to our convention. In

the remainder we may thus assume that the infimum of (P) is finite. In this case, we will first show

that both inequalities in (11) collapse to equalities, which implies that the duality gap between (P)

and (D) vanishes. Indeed, the first inequality in (11) becomes tight due to Proposition 5.3.6

by Bertsekas (2009), which applies because (P) has a finite infimum and admits a Slater point

xS ∈
⋂

i∈I0

ri(dom(fi)) = ri
(

⋂

i∈I0

dom(fi)
)

,

where the above equality holds due to Proposition 2.42 by Rockafellar and Wets (2009). The second

inequality in (11) becomes tight due to Proposition C.4 and because the existence of a Slater point

guarantees that ∩i∈I0ri(dom(fi)) 6= ∅. To establish the solvability of (D), note that (10) is solved

by some λ⋆ due to Proposition 5.3.6 by Bertsekas (2009) and that the parametric problem (12) for

λ = λ∗ is solved by some {w⋆
i }i∈I0 due to Proposition C.4 and because ∩i∈I0ri(dom(fi)) 6= ∅. By

construction, (λ⋆, {w⋆
i }i∈I0) thus constitutes an optimal solution for (D).

Assume now that (D) admits a Slater point. Similar arguments as in the previous paragraph

show that strong duality and solvability of (P) trivially hold if the supremum of (D) evaluates to

+∞, and we may thus assume that the supremum of (D) is finite. Strong duality between (P)

and (D) as well as the solvability of (P) then follow from Lemma B.1 and Proposition 5.3.6

by Bertsekas (2009), which applies because (D) has a finite supremum and admits a Slater point

that satisfies all explicit (linear) constraints and resides in the relative interior of the objective

function.

As for assertion (ii), assume first that the feasible region of (P) is nonempty and bounded.

This ensures via assumption (F) that the function f in (9) is proper and has compact sublevel sets.

Strong duality between (P) and (D) as well as solvability of (P) then follow from Lemma B.1 as

well as Proposition 5.5.4 by Bertsekas (2009).

Finally, assume that the feasible region of (D) is nonempty and bounded, which ensures via our

definition of the convex perspective and assumption (F) that the (negative) optimal value function

of the inner minimization problem of (13) in the proof of Lemma B.1, which is given by

− inf
x
−f∗0 (w0)−

∑

i∈I

λif
∗
i (wi/λi)+

∑

i∈I0

w⊤
i x =







f∗0 (w0) +
∑

i∈I λif
∗
i (wi/λi) if

∑

i∈I0
wi = 0,

+∞ otherwise,

is proper and has compact sublevel sets. Strong duality and solvability of (D) thus follow from

Lemma B.1 and Proposition 5.5.4 by Bertsekas (2009).
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Proof of Proposition C.6 We construct a strict Slater point for (D) from (i) a (possibly

infeasible) solution ({w+
i }i,λ+) to (D) that resides in the relative interior of the domain of the

objective function of (D) and (ii) a point ({w−
i }i,λ−) that resides in (but not necessarily in the

relative interior of) the domain of the objective function of (D) and that offsets any infeasibility of

({w+
i }i,λ+).

By assumption (F), the function fi is proper, and by Theorem 12.2 of Rockafellar (1970), its

conjugate f∗i inherits properness from fi for each i ∈ I0. Thus, there exists w+
i ∈ ri(dom(f∗i )) for

every i ∈ I0. Setting λ+ = 1 > 0, it is then easy to verify that ({w+
i }i,λ+) resides within the

relative interior of the domain of the objective function of (D). However, because w =
∑

i∈I w
+
i

may differ from 0, the solution ({w+
i }i,λ+) may nevertheless be infeasible in (D).

To construct the point ({w−
i }i,λ−), we consider the following variant of (P), where we add the

linear term w⊤x to the objective function with the fixed gradient w ∈ Rdx .

inf f0(x) +w
⊤x

s.t. fi(x) ≤ 0 ∀i ∈ I
x free

(Pw)

As the conjugate of the new objective function f0(x)+w
⊤x evaluated at w0 amounts to f∗0 (w0−w),

the variable substitution w0 ← w0 −w allows us to express the problem dual to (Pw) as

sup −f∗0 (w0)−
∑

i∈I

λif
∗
i (wi/λi)

s.t.
∑

i∈I0

wi = −w

wi free ∀i ∈ I0
λ ≥ 0.

(Dw)

By construction, (Pw) and (P) share the same feasible region, which is nonempty and bounded

by assumption, whereas (Dw) and (D) share the same objective function. Similar arguments as in

the proof of Theorem 2 (ii) thus imply that (Pw) and (Dw) share the same (finite) optimal value,

which in turn ensures that problem (Dw) admits a feasible solution ({w−
i }i,λ−). By construction,

this solution resides within the domain of the common objective function of (Dw) and (D) but not

necessarily within its relative interior.
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Next, define (wS
i , λ

S
i ) =

1
2(w

+
i , λ

+
i ) +

1
2(w

−
i , λ

−
i ) for every i ∈ I0. By the line segment principle

of Bertsekas (2009, Proposition 1.3.1), the constructed solution ({wS
i }i,λS) belongs to the relative

interior of the domain of the objective function of (D). In addition, we have

∑

i∈I

wS
i =

1

2

∑

i∈I

w+
i +

1

2

∑

i∈I

w−
i =

1

2
w − 1

2
w = 0

and λS > 0. Therefore, the solution ({wS
i }i,λS) constitutes a strict Slater point for (D).

Proof of Theorem 3. For any fixed zi ∈ Z, i ∈ I0, the problems (P-W) and (D-B) collapse to

instances of (P-S) and (D-S), respectively, and the following inequalities are due to Theorem 1.

inf
x∈X (z1,...,zI)

f0(x,z0) ≥ sup
∑

i∈I0
wi=0

λ≥0

−f∗10 (w0,z0)−
∑

i∈I

λif
∗1
i (wi/λi,zi)

=⇒ sup
{zi}i∈I0

⊆Z
inf

x∈X (z1,...,zI)
f0(x,z0) ≥ sup

{zi}i∈I0
⊆Z

sup
∑

i∈I0
wi=0

λ≥0

−f∗10 (w0,z0)−
∑

i∈I

λif
∗1
i (wi/λi,zi),

where X (z1, . . . ,zI) =
{

x ∈ Rdx | fi(x,zi) ≤ 0 ∀i ∈ I
}

. Note that the right-hand side of the

second inequality is equivalent to (D-B), while left-hand side is upper bounded by (P-W) because

inf
x∈X (z1,...,zI)

sup
{zi}i∈I0

⊆Z
f0(x,z0) ≥ sup

{zi}i∈I0
⊆Z

inf
x∈X (z1,...,zI )

f0(x,z0)

due to the min-max inequality.

Proof of Proposition 4. To show that (P-W′) upper bounds (P-W), we dualize the embed-

ded maximization problems in (P-W) that evaluate the worst-case uncertainty realizations in the

objective and the constraint functions. Specifically, for any fixed i ∈ I0 and x ∈ Rdx , we have

sup
zi∈Z

fi(x,zi) = −



























inf −fi(x,zi)

s.t. cℓ(zi) ≤ 0 ∀ℓ ∈ L

zi free

(15a)

≤ −



















































sup −(−fi)∗2 (x,yi0)−
∑

ℓ∈L

νiℓc
∗
ℓ (yiℓ/νiℓ)

s.t.
∑

ℓ∈L0

yiℓ = 0

yiℓ free ∀ℓ ∈ L0

νiℓ ≥ 0 ∀ℓ ∈ L,

(15b)
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where the inequality follows from Theorem 1, which applies because the assumptions (RF) and (C)

imply that (15a) satisfies assumption (F) from Section 2. Interchanging the minus sign and the

supremum operator in (15b) results in a minimization problem. Substituting the resulting min-

imization problem into (P-W) for every i ∈ I0 and then merging the infimum operators in the

objective and removing the infimum operators in the constraints yields (P-W′), and thus the in-

fimum of (P-W) is indeed smaller or equal to that of (P-W′). Note that if the optimal solution

of (15b) is not attained for some i ∈ I, then removing the infimum operators in the constraints

may lead to a further restriction of the problem and therefore result in a higher optimal value.

As for assertion (ii), assume that Z admits a Slater point zS. As dom(−fi(x, ·)) = Rdx due to

assumption (RF), zS is also a Slater point for the minimization problem in (15a). By Theorem 2 (i),

the duality gap between (15a) and (15b) thus vanishes, and (15b) is solvable. This implies that

the infima of (P-W) and (P-W′) coincide and that any optimizer of (P-W) can be combined with

optimizers of the dual subproblems (15b) for i ∈ I0 to construct an optimizer for (P-W′).

As for assertion (iii), assume finally that Z is compact and that problem (P-W) admits a strict

Slater point xS. In this case, the functions Fi(x) = supzi∈Z fi(x,zi), i ∈ I0, are convex and

continuous in x by virtue of assumption (RF). Indeed, Fi(x) is convex and closed because fi(x,zi)

is convex and closed in x for every fixed zi. Moreover, Fi(x) is finite for every fixed x due to

Weierstrass’ extreme value theorem, which applies because Z is compact and −fi(x,zi) is closed

(and thus lower semicontinuous) in zi. As any convex function is continuous on the relative interior

of its domain, we may thus conclude that each Fi is continuous on Rdx . By forming convex

combinations with the strict Slater point xS, one can now use the continuity and convexity of the

functions Fi, i ∈ I0, to prove that any x feasible in (P-W) can be represented as a limit of strict

Slater points for (P-W). Therefore, (P-W) is equivalent to

inf sup
z0∈Z

f0(x,z0)

s.t. sup
zi∈Z

fi(x,zi) < 0 ∀i ∈ I

x free.

(16)

We can now dualize the embedded maximization problems in (16) as in the proof of assertion (i).

The compactness of Z implies via Theorem 2 (ii) that the duality gap between (15a) and (15b) van-

ishes. The minimization problems resulting from interchanging the minus sign and the supremum

operator in (15b) can then be substituted back into (16), the infimum operators in the objective
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can be merged, and the infimum operators in the constraints can be removed to obtain a variant

of (P-W′) with strict inequalities. Note that because the constraints in (16) are strict, the infimum

operators in the constraints may indeed be removed without restricting the problem even if the

corresponding subproblems are not solvable. Next, we argue that the strict inequalities in the re-

sulting problem can again be relaxed to weak inequalities without changing the problem’s optimal

value. By Remark C.1, this is the case if problem (P-W′) admits a strict Slater point. Such a strict

Slater point can be constructed by combining the strict Slater point xS of (P-W) with strict Slater

points ({ySiℓ , νSiℓ}ℓ) for the dual subproblems, i ∈ I0, which exist thanks to Proposition C.6. Thus,

the infima of (P-W) and (P-W′) are indeed equal.

Finally, to see that the solvability of (P-W′) implies the solvability of (P-W), assume that

(x⋆, {y⋆iℓ, ν⋆iℓ}i,ℓ) solves (P-W′). The above reasoning then implies that the optimal value of (P-W′)

amounts to F0(x
⋆), which in turn shows that x⋆ solves (P-W).

Proof of Proposition 5. As for (i), we prove that any feasible solution to (D-B) corresponds

to a feasible solution to (D-B′) with the same objective value. To this end, select any ({wi,zi}i,λ)
feasible in (D-B) and define υi = λizi for i ∈ I. We show that ({wi}i,z0,λ, {υi}i) is feasible

in (D-B′) and attains the same objective value. Indeed, it is clear that λicℓ(υi/λi) ≤ 0 for all ℓ ∈ L
and i ∈ I with λi > 0. If λi = 0 for some i ∈ I, on the other hand, we have υi = 0 and

0cℓ(0/0) = δ∗dom(c∗
ℓ
)(0) = 0 ∀ℓ ∈ L,

where the first equality follows from the definition of the convex perspective, while the second

equality holds because c∗ℓ inherits properness from cℓ (Rockafellar, 1970, Theorem 12.2) and because

the support function of dom(c∗ℓ ) 6= ∅ vanishes at the origin. All other constraints of (D-B′) are

trivially satisfied. Next, we show that the objective value of ({wi,zi}i,λ) in (D-B) equals that of

({wi}i,z0,λ, {υi}i) in (D-B′). Indeed, it is clear that λif
∗1
i (wi/λi,υi/λi) = λif

∗1
i (wi/λi,zi) for

all i ∈ I with λi > 0. If λi = 0 for some i ∈ I, on the other hand, then υi = 0, and the convex

perspective function 0f∗1i (wi/0,0/0) is defined as the support function of the domain of (f∗1i )∗.
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As (f∗1i )∗ = (−fi)∗2 due to Proposition C.7, we may thus conclude that

0f∗1i (wi/0,0/0) = δ∗dom((−fi)∗2)
(wi,0)

= sup
x

{

w⊤
i x | ∃y ∈ Rdz : (−fi)∗2(x,y) < +∞

}

= δ{0}(wi)

= δ∗dom(fi(·,zi))
(wi) = 0f∗1i (wi/0,zi),

where the third equality follows from Rockafellar (1970, Theorem 12.2), which ensures that for

any x ∈ Rdx the partial conjugate (−fi)∗2(x, ·) of the proper function −fi(x, ·) is also proper.

Thus, for any x ∈ Rdx , there exists y ∈ Rdz with (−fi)∗2(x,y) < +∞, which implies that x

is actually free, and the supremum evaluates to +∞ unless wi = 0. The fourth equality holds

because dom(fi(·,zi)) = Rdx for every zi ∈ Rdz , and the last equality follows from the definition

of the partial convex perspective and from Theorem 12.2 of Rockafellar (1970), which implies that

(f∗1i )∗1(·,zi) = fi(·,zi). In summary, we have shown that the optimal value of (D-B) does not

exceed that of (D-B′), and thus assertion (i) follows.

Assume now that ({wS
i ,z

S
i }i,λS) is a strict Slater point for problem (D-B), which implies that

λS > 0. In that case, ({wS
i }i,zS0 ,λS,

{

υS
i

}

i
) with υS

i = λSi · zSi , i ∈ I, is a strict Slater point for

problem (D-B′). To prove assertion (ii), we show that any feasible solution to (D-B′) corresponds to

a sequence of feasible solutions to (D-B) that asymptotically attain a non-inferior objective value.

This implies that the optimal value of (D-B′) is smaller or equal to that of (D-B), and together

with assertion (i) we can then conclude that the optimal values of (D-B) and (D-B′) coincide. To

this end, select any solution ({wi}i,z0,λ, {υi}i) feasible in (D-B′) and any ǫ > 0. As the feasible

region of (D-B′) is convex and the objective function of (D-B′) is concave, there exists θ ∈ (0, 1)

such that the solution ({wǫ
i}i,zǫ0,λǫ, {υǫ

i}i) defined through

({wǫ
i}i,zǫ0,λǫ, {υǫ

i}i) = θ · ({wi}i,z0,λ, {υi}i) + (1− θ) · ({wS
i }i,zS0 ,λS,

{

υS
i

}

i
) (17)

is feasible in (D-B′) and attains an objective function value that is at least as large as that

of ({wi}i,z0,λ, {υi}i) minus ǫ. Setting zǫi = υǫ
i/λ

ǫ
i for all i ∈ I, which is possible because

λǫ > 0, it is clear that ({wǫ
i ,z

ǫ
i}i,λǫ) is feasible in (D-B) and attains the same objective value

as ({wǫ
i}i,zǫ0,λǫ, {υǫ

i}i) in (D-B′). As ({wi}i,z0,λ, {υi}i) and ǫ > 0 were chosen arbitrarily, the

supremum of (D-B) is thus at least as large as that of (D-B′). Together with assertion (i), we thus
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conclude that the suprema of (D-B) and (D-B′) coincide. Moreover, since our proof of assertion

(i) has shown that any feasible solution to (D-B) corresponds to a feasible solution to (D-B′) with

the same objective value, (D-B′) is solvable whenever (D-B) is solvable.

Assume now that Z is bounded. To prove assertion (iii), we show that any feasible solution

to (D-B′) corresponds to a feasible solution to (D-B) with the same objective value. Together with

assertion (i), this implies that the optimal values of (D-B) and (D-B′) coincide. To this end, select

any solution ({wi}i,z0,λ, {υi}i) feasible in (D-B′), and define zi = υi/λi if λi > 0 and zi = z0 if

λi = 0, i ∈ I. Lemma C.8 (i) implies that if λi = 0, then vi must be a recession direction for the

uncertainty set Z. As Z is nonempty and bounded, this in turn implies that vi = 0. Using the same

reasoning as in the proof of assertion (i), one can thus show that λicℓ(υi/λi) = λicℓ(zi) for all ℓ ∈ L
and i ∈ I and λif

∗1
i (wi/λi,υi/λi) = λif

∗1
i (wi/λi,zi) for all i ∈ I. This implies that ({wi,zi}i,λ)

is feasible in (D-B) and attains the same objective value as ({wi}i,z0,λ, {υi}i) in (D-B′). Note that

our proof of assertion (i) has shown that any feasible solution to (D-B) corresponds to a feasible

solution to (D-B′) with the same objective value, and our proof of assertion (iii) has shown that

any feasible solution to (D-B′) corresponds to a feasible solution to (D-B) with the same objective

value. Since the optimal values of both problems coincide, we can conclude that (D-B) is solvable

if and only if (D-B′) is solvable.

Proof of Theorem 6. We show that (P-W′) and (D-B′) can be viewed as instances of (P)

and (D), respectively. Assertions (i), (ii) and (iii) can then be derived from Theorems 1 and 2.

For ease of exposition, we first rewrite the convex optimization problem (P-W′) more concisely as

inf ϕ0(x, {y0ℓ, ν0ℓ}ℓ)
s.t. ϕi(x, {yiℓ, νiℓ}ℓ) ≤ 0 ∀i ∈ I

ψ+
ik({yiℓk}ℓ) ≤ 0 ∀i ∈ I0, ∀k ∈ K
ψ−
ik({yiℓk}ℓ) ≤ 0 ∀i ∈ I0, ∀k ∈ K
x, yiℓ free ∀i ∈ I0, ∀ℓ ∈ L0
νiℓ free ∀i ∈ I0, ∀ℓ ∈ L,

(18)

where the extended real-valued functions ϕi for i ∈ I0 are defined through

ϕi(x, {yiℓ, νiℓ}ℓ) =











(−fi)∗2 (x,yi0) +
∑

ℓ∈L

νiℓc
∗
ℓ (yiℓ/νiℓ) if νiℓ ≥ 0, ℓ ∈ L,

+∞ otherwise,
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the linear equalities in (P-W′) are split into two sets of linear inequalities defined through

ψ+
ik({yiℓk}ℓ) =

∑

ℓ∈L0

yiℓk and ψ−
ik({yiℓk}ℓ) = −

∑

ℓ∈L0

yiℓk, ∀i ∈ I0, ∀k ∈ K,

and yiℓk is the k-th element of the vector yiℓ for every k ∈ K = {1, . . . ,K}, where K = dz.

Note that (18) can be viewed as an instance of (P). Moreover, one can show that its objective

and constraint functions satisfy assumption (F), that is, one can show that ϕi, ψ
+
i and ψ−

i are

proper, closed and convex for every i ∈ I0. To see this, note first that the partial conjugate (−fi)∗2

is proper, closed and convex by Proposition C.5 and by Theorem 12.2 of Rockafellar (1970), which

apply because fi obeys assumption (RF). Similarly, the convex perspective νiℓc
∗
ℓ (yiℓ/νiℓ) defined

for νiℓ ≥ 0 is proper, closed and convex by Proposition C.2 and by Theorem 12.2 of Rockafellar

(1970), which apply because cℓ obeys assumption (C). Thus, ϕi constitutes a sum of proper, closed

and convex functions with different arguments and is therefore also proper, closed and convex.2

Finally, ψ+
ik and ψ−

ik are linear functions and therefore proper, closed and convex.

If we interpret (18) as an instance of (P), denote the variables conjugate to x and νiℓ by wi and

uiℓ, respectively, and denote the variables conjugate to yiℓ by riℓ, r
+
iℓ and r

−
iℓ , then the corresponding

instance of (D) can be represented as

sup −ϕ∗
0(w0, {r0ℓ, u0ℓ}ℓ)−

∑

i∈I

[

λiϕ
∗
i

(

wi

λi
,
{riℓ}ℓ
λi

,
{uiℓ}ℓ
λi

)

+

∑

k∈K

v+ik(ψ
+
ik)

∗

({r+iℓk}ℓ
v+ik

)

+
∑

k∈K

v−ik(ψ
−
ik)

∗

({r−iℓk}ℓ
v−ik

)

]

s.t.
∑

i∈I0

wi = 0 ∀ℓ ∈ L0

riℓ + r
+
iℓ + r

−
iℓ = 0 ∀i ∈ I0, ∀ℓ ∈ L0

uiℓ = 0 ∀i ∈ I0, ∀ℓ ∈ L
wi, riℓ, r

+
iℓ , r

−
iℓ free ∀i ∈ I0, ∀ℓ ∈ L0

λ, v+i , v
−
i ≥ 0 ∀i ∈ I0,

(19)

where r+iℓk and r−iℓk are the k-th elements of the respective vectors r+iℓ and r−iℓ for every k ∈ K,
and (λ, {v+i ,v−i }i) are the dual variables associated with the three sets of inequalities in (18). Note

that uiℓ is forced to 0 in (19) because its conjugate variable νiℓ only appears in the objective (if

2The fact that the summands do not share common arguments is crucial here. The sum of the two proper, closed

and convex functions δ[0,1](x) and δ[2,3](x) in the common argument x ∈ R, for example, is not proper.
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i = 0) or in the i-th constraint (if i ∈ I) of the primal problem (18). The conjugate of ϕi, i ∈ I0,
can be calculated explicitly as

ϕ∗
i (wi, {riℓ, uiℓ}ℓ) = sup

x,yi0

{

w⊤
i x+ r⊤i0yi0 − (−fi)∗2(x,yi0)

}

+
∑

ℓ∈L

sup
yiℓ

νiℓ>0

{

uiℓνiℓ + r
⊤
iℓyiℓ − νiℓc∗ℓ

(

yiℓ

νiℓ

)}

= f∗1i (wi, ri0) +
∑

ℓ∈L

sup
νiℓ>0

{uiℓνiℓ + νiℓcℓ (riℓ)}

=







f∗1i (wi, ri0) if uiℓ + cℓ (riℓ) ≤ 0 ∀ℓ ∈ L
+∞ otherwise.

Note that we may restrict νiℓ to be strictly positive because the convex perspective of c∗ℓ at νiℓ = 0

is defined as the lower semicontinuous extension of the perspective for νiℓ > 0; see (8). The second

equality then follows from Proposition C.7, which applies because fi satisfies assumption (RF),

and from Theorem 16.1 of Rockafellar (1970), which applies because cℓ satisfies assumption (C).

Similarly, the conjugates of ψ+
ik and ψ−

ik can be expressed as follows.

(ψ+
ik)

∗({r+iℓk}ℓ) =







0 if r+iℓk = 1 ∀ℓ ∈ L0
+∞ otherwise

(ψ−
ik)

∗({r−iℓk}ℓ) =







0 if r−iℓk = −1 ∀ℓ ∈ L0
+∞ otherwise.

Substituting the formulas for ϕ∗
i , (ψ

+
ik)

∗ and (ψ−
ik)

∗ into (19) with z0 = v+0 −v−0 and vi = v
+
i −v−i ,

i ∈ I, and eliminating the variables riℓ, r
+
iℓ , r

−
iℓ and uiℓ, i ∈ I0 and ℓ ∈ L0, finally yields (D-B′).

Proof of Theorem 7. As for assertion (i), assume that (P-W) admits a strict Slater point xS

and that the uncertainty set Z is nonempty (by assumption) and compact (by assumption (C) and

the assertion). Then the infima of (P-W) and (P-W′) coincide due to Proposition 4 (iii). Moreover,

since fi is real-valued, the problem (15b) admits a strict Slater point ({ySiℓ, νSiℓ}ℓ) for fixed xS and

for every i ∈ I0 due to Proposition C.6. We can combine these strict Slater points to a Slater point

for problem (P-W′), and Theorem 6 (ii) implies that (P-W′) and (D-B′) satisfy strong duality,

and (D-B′) is solvable. The claim then follows from Proposition 5 (iii), which ensures that the

suprema of (D-B) and (D-B′) coincide, and that (D-B) is solvable because (D-B′) is solvable.
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As for assertion (ii), assume that the feasible region of (P-W) is nonempty and bounded and

that Z is bounded. Note that problem (P-W) can be represented more concisely as

inf
x
{F0(x) | Fi(x) ≤ 0 ∀i ∈ I} , (20)

where Fi(x) = supzi∈Z fi(x,zi) constitutes a pointwise maximum of convex functions and is there-

fore convex. Moreover, as Z is compact and fi(x,zi) is continuous in zi for every x, Fi(x) is indeed

finite for every x, i.e., dom(Fi) = Rdx . As any finite-valued convex function is continuous, we may

thus conclude that Fi is proper, closed and convex. The problem dual to (20) can be expressed as

max
λ≥0,w







−F ∗
0 (w0)−

∑

i∈I

λiF
∗
i (wi/λi)

∣

∣

∣

∣

∑

i∈I0

wi = 0







. (21)

As the feasible region of (P-W) is nonempty and bounded, Theorem 2 (ii) ensures that strong

duality holds and (P-W) is solvable, while Proposition C.6 implies that (21) admits a strict Slater

point (λS, {wS
i }i). It remains to be shown that (21) is equivalent to the dual best problem (D-B).

To this end, we will show that

λiF
∗
i (wi/λi) = inf

zi∈Z
λif

∗1
i (wi/λi,zi) (22)

for any fixed λi ≥ 0 and wi ∈ Rdx , i ∈ I. Problem (D-B) is then obtained by substituting (22)

into (21), and the assertion follows. To show (22), assume first that λi > 0. We then have that

λiF
∗
i (wi/λi) = λi sup

x

{

x⊤wi/λi − sup
zi∈Z

fi(x,zi)

}

= inf
zi∈Z

λi sup
x

{

x⊤wi/λi − fi(x,zi)
}

= inf
zi∈Z

λif
∗1
i (wi/λi,zi),

where the second equality follows from Sion’s min-max theorem (Sion, 1958), which applies be-

cause Z is compact and fi is a convex-concave saddle function that is continuous in each of its

arguments, while the last equality follows from the definition of the partial conjugate. If λi = 0,

on the other hand, then we have

0F ∗
i (wi/0) = δ∗dom(Fi)

(wi) = δ{0}(wi) = inf
zi∈Z

δ∗dom(fi(·,zi))
(wi) = inf

zi∈Z
0f∗1i (wi/0,zi),

where the first equality follows from the definition of the convex perspective, while the second

equality holds because dom(Fi) = Rdx . Similarly, the third equality holds because dom(fi(·,zi)) =
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Rdx for every zi ∈ Rdz , while the last equality follows from the definition of the partial convex

perspective. Thus, (22) holds for all λ ≥ 0 and wi ∈ Rdx , i ∈ I.
As for assertion (iii), assume that (D-B) admits a strict Slater point ({wS

i ,z
S
i }i,λS). Then the

suprema of (D-B) and (D-B′) coincide due to Proposition 5 (ii). Moreover, it is easy to verify that

({wS
i }i,zS0 ,λS,

{

υS
i

}

i
) is a strict Slater point for (D-B′) where υS

i = zSi ·λSi for i ∈ I. Therefore, the
problems (P-W′) and (D-B′) satisfy strong duality, and (P-W′) is solvable due to Theorem 6 (ii).

Finally, the infima of (P-W) and (P-W′) coincide, and (P-W) is solvable as (P-W′) is solvable due

to Proposition 4 (ii), which applies since any zSi is a Slater point of Z. The claim then follows.

Proof of Theorem 8. The statement trivially holds if either of the problems is infeasible.

In the remainder of the proof we may thus assume that both (P-UQ) and (D-UQ) are feasible.

Choose now an arbitrary P feasible in (P-UQ) and an arbitrary (α,β) feasible in (D-UQ). As P

is feasible in (P-UQ), we have EP [hj(z̃)] < +∞ for every j ∈ J and EP[g(z̃)] > −∞. Thanks to

our conventions for infinite integrals, this ensures that P[z̃ ∈ dom(hj)] = 1 for every j ∈ J and

P[z̃ ∈ dom(−g)] = 1, respectively. This implies that P[z̃ ∈ S̄] = 1. We then have

EP [g(z̃)] ≤ EP

[

α+ h(z̃)⊤β
]

≤ α+ µ⊤β,

where the first inequality follows from the constraints in (D-UQ) and our insight that P[z̃ ∈ S̄] = 1,

and the second inequality follows from the constraints in (P-UQ) and the nonnegativity of β. Thus,

the objective value of (α,β) in (D-UQ) is non-inferior to the objective value of P in (P-UQ). As

the primal and dual feasible solutions P and (α,β) were chosen arbitrarily, we may conclude that

problem (D-UQ) indeed provides an upper bound on (P-UQ).

Proof of Proposition 9. We show that the robust constraint in (D-UQ) has the same feasible

region as the I robust constraints in (AP-W). As g(z) = maxi∈I gi(z), the robust constraint

in (D-UQ) is equivalent to

max
i∈I

sup
zi∈S̄

{

gi(zi)− α− h(zi)⊤β
}

≤ 0 ⇐⇒ max
i∈I

sup
zi∈S̄i

{

gi(zi)− α− h(zi)⊤β
}

≤ 0

⇐⇒ max
i∈I

sup
(zi,ui,ti)∈Ui

{

ti − α− u⊤
i β
}

≤ 0,
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where the first equivalence holds because S̄i ⊆ S̄ and because gi(zi) = −∞ for all z /∈ S̄i. The

second equivalence follows from (3) and the fact that ui = h(zi) and ti = gi(zi) maximize the

inner supremum for any fixed admissible zi, i ∈ I. The last inequality in the above expression is

manifestly equivalent to the I robust constraints in (AP-W).

Proof of Proposition 10. As S̄i represents the projection of Ui onto Rdz , problem (AD-B) is

equivalent to

sup
∑

i∈I

λigi(zi)

s.t.
∑

i∈I

λi = 1

∑

i∈I

λih(zi) ≤ µ

zi ∈ S̄i ∀i ∈ I

λ ≥ 0.

(23)

Indeed, the equivalence between (AD-B) and (23) holds due to (3), which ensures zi ∈ S̄i if and
only if there exist ui ∈ RJ and ti ∈ R with (zi,ui, ti) ∈ Ui, and because for any fixed ({zi}i,λ)
feasible in (23) it is optimal to set ui = h(zi) and ti = gi(zi) for all i ∈ I.

In the remainder of the proof we will show that (23) is equivalent to (FR). As g(zi) ≥ gi(zi)

for all zi ∈ S̄i and as S̄i ⊆ S̄, it is clear that the optimal value of (FR) provides an upper bound

on (23). To prove the converse inequality, select any ({zi}i,λ) feasible in (FR), and define

Ŝi = {z ∈ S̄i | gi(z) ≥ gi′(z) ∀i′ ∈ I : i′ < i, gi(z) > gi′(z) ∀i′ ∈ I : i′ > i}

for all i ∈ I. Note that these sets form a partition of S̄. By construction, we have gi(z) =

g(z) > −∞ for all z ∈ Ŝi. Next, define Ii = {i′ ∈ I | zi′ ∈ Ŝi}, and construct ({z′i}i,λ′) by

setting λ′i =
∑

i′∈Ii
λi′ and z′i = 1

λ′
i

∑

i′∈Ii
λi′zi′ if λ′i > 0. Otherwise, if λ′i = 0, set z′i to an

arbitrary point in S̄i, which is always possible because S̄i is nonempty due to assumption (S).

As both −gi and h are proper, closed and convex thanks to assumptions (G) and (H), Jensen’s

inequality implies that

∑

i′∈Ii

λi′g(zi′) ≤ λ′igi(z
′
i) and λ′ih(z

′
i) ≤

∑

i′∈Ii

λi′h(zi′) ≤ λ′iµ ∀i ∈ I,
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that is, (λ′, {z′i}i) is feasible in (23) and its objective value in (23) is larger or equal to that

of (λ, {zi}i) in (FR). Therefore, the optimal value of (FR) further provides a lower bound on the

optimal value of (23). The above arguments also reveal that one can construct a feasible solution

for (FR) from a feasible solution of (AD-B) and vice versa. Hence, the claim follows.

Proof of Theorem 11. In the absence of any regularity conditions, we have

inf (AP-W′) ≥ inf (AP-W) = inf (D-UQ) ≥ sup (P-UQ) ≥ sup (FR) = sup (AD-B) (24)

where the two equalities follow from Propositions 9 and 10, respectively, while the first inequality

exploits Proposition 4 (i), the second equality follows from the weak duality result established

in Theorem 8, and the second inequality holds trivially because (FR) constitutes a restriction

of (P-UQ). Proposition 5 (i) further implies that sup (AD-B) ≤ sup (AD-B′). The relationships

among the different problems are also summarized in Figure 2. It remains to be shown that either

of the conditions in assertions (i) or (ii) imply the equivalence of (AD-B) and (AD-B′) as well as

strong duality between (AP-W′) and (AD-B′).

As for assertion (i), note first that the Slater point for (AD-B) can be used to construct a

Slater point for (AD-B′) with λ > 0. The suprema of (AD-B) and (AD-B′) then coincide thanks to

Proposition 5 (ii) and Remark C.2. Theorem 6 (ii) further guarantees that the infimum of (AP-W′)

coincides with the supremum of (AD-B′) and that (AP-W′) is solvable. This allows us to conclude

that all problems in (24) have the same optimal value as (AD-B′). As (AD-B) admits a Slater

point, finally, it is clear that the augmented support set Ui admits a Slater point for every i ∈
I, and therefore Propositions 4 (ii) and 9 ensure that if (α⋆,β⋆, {y(0)⋆i }i, {y(1)⋆ij }ij , {y

(2)⋆
iℓ , ν⋆iℓ}iℓ)

solves (AP-W′), then (α⋆,β⋆) solves (D-UQ).

As for assertion (ii), note first that the infimum of (AP-W′) coincides with the supremum

of (AD-B′) and that (AD-B′) is solvable. This is an immediate consequence of Theorem 6 (ii),

which applies because (AP-W′) admits a Slater point. To show that all problems in (24) have the

same optimal value, it thus remains to prove that the suprema of (AD-B) and (AD-B′) coincide.

To this end, fix any optimal solution (τ ⋆,λ⋆, {ω⋆
i ,v

⋆
i }i) of (AD-B′), and assume without loss of

generality that ω⋆
i = λ⋆ih(v

⋆
i /λ

⋆
i ) and τ

⋆
i = λ⋆i gi(v

⋆
i /λ

⋆
i ) for all i ∈ I. We now show that this solution

gives rise to an optimal solution ({z⋆i ,u⋆
i , t

⋆
i }i,λ⋆) of (AD-B) that attains the same optimal value.

To this end, set z⋆i = v⋆i /λ
⋆
i if λ⋆i > 0, and let z⋆i be an arbitrary point in S̄i otherwise, i ∈ I. If
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there is i ∈ I with λ⋆i = 0, then Lemma C.8 (i) implies that v⋆i is a recession direction for S. As S
is nonempty and bounded, this in turn implies that v⋆i = 0. Using the same reasoning as in the

proof of Proposition 5 (i), one can show that λ⋆i cℓ(v
⋆
i /λ

⋆
i ) = λ⋆i cℓ(z

⋆
i ), λ

⋆
ih(v

⋆
i /λ

⋆
i ) = λ⋆ih(z

⋆
i ) and

λ⋆i gi(v
⋆
i /λ

⋆
i ) = λ⋆i gi(z

⋆
i ) for all i ∈ I and ℓ ∈ L. Setting u⋆

i = h(z
⋆
i ) and t

⋆
i = gi(z

⋆
i ) for all i ∈ I, one

readily verifies that ({z⋆i ,u⋆
i , t

⋆
i }i,λ⋆) is feasible in (AD-B). Moreover, since

∑

i∈I τ
⋆
i =

∑

i∈I λ
⋆
i t

⋆
i ,

this solution attains the same objective value as (τ ⋆,λ⋆, {ω⋆
i ,v

⋆
i }i) in (AD-B′). Since (AD-B)

bounds (AD-B′) from below by Proposition 5 (i), ({z⋆i ,u⋆
i , t

⋆
i }i,λ⋆) must be optimal in (AD-B).

The proof of Proposition 10 further implies that ({z⋆i }i,λ⋆) solves (FR), which is a restriction

of (P-UQ). As all problems in (24) share the same optimal value, the discrete distribution that

assigns probability λ⋆i to the point z⋆i = v⋆i /λ
⋆
i for all i ∈ I with λ⋆i > 0 indeed solves (P-UQ).

Proof of Proposition 12. Denote by PS the Slater distribution of (P-UQ) that exists by

assumption. We will first argue that for each i ∈ I there exists a probability λi > 0 and a

probability measure PS
i supported on S̄i such that PS =

∑

i∈I λiP
S
i . To see this, we define for every

index set I ′ ⊆ I the non-negative Borel measure ρI′ obtained by restricting PS to S̄I′ = {z ∈ S̄ |
z ∈ S̄i′ ∀i′ ∈ I ′, z /∈ S̄i′ ∀i′ ∈ I\I ′}, that is, we set ρI′ [B] = PS[z̃ ∈ B ∩ S̄I′ ] for every Borel

set B ⊆ Rdz . By construction, we thus have PS =
∑

I′⊆I ρI′ . Similarly, one readily verifies that
∑

I′⊆I:i∈I′ ρI′ [S̄i] = PS[z̃ ∈ S̄i] > 0, which implies that for all i ∈ I there exists an index set

I ′ ⊆ I with i ∈ I ′ and ρI′ [S̄i] > 0. Next, we define another family of non-negative Borel measures

ρ̂i =
∑

I′⊆I:i∈I′
1

|I′|ρI′ , i ∈ I. Note that ρ̂i is supported on S̄i and satisfies ρ̂i[S̄i] > 0 for all i ∈ I.
In addition, we have PS =

∑

i∈I ρ̂i. Therefore, we can finally define λi = ρ̂i[S̄i] and PS
i = 1

λi
ρ̂i for

all i ∈ I. As desired, this construction ensures that λi > 0 and that the probability measure PS
i

is supported on S̄i such that PS =
∑

i∈I λiP
S
i . Since PS is a probability measure, the last relation

implies that
∑

i∈I λi = 1. It is also clear that PS
i is absolutely continuous on Rdz for every i ∈ I.

Next, define zi = EPS
i
[z̃] for all i ∈ I. As hj is proper, closed and convex, we may then use Jensen’s

inequality to verify that

∑

i∈I

λihj(zi) ≤
∑

i∈I

λiEPS
i
[hj(z̃)] = EPS[hj(z̃)] ≤ µj

for every j ∈ J , where the last inequality is strict whenever hj is nonlinear because PS is a Slater
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distribution. Similarly, as cℓ is proper, closed and convex, Jensen’s inequality implies that

cℓ

(

∑

i∈I

λizi

)

≤
∑

i∈I

λicℓ(zi) ≤
∑

i∈I

λiEPS
i
[cℓ(z̃)] = EPS [cℓ(z̃)] ≤ 0

for every ℓ ∈ L, where the last inequality is strict whenever cℓ is nonlinear. We may thus conclude

that
∑

i∈I λizi is a Slater point for the support set S, which in turn implies via Lemma C.11 that

each zi, i ∈ I, is a Slater point for S provided that zi ∈ ri(S). As PS
i is absolutely continuous on Rdz

and supported on the convex set S̄i, one can indeed prove that its mean zi belongs even to the

interior of S̄i ⊆ S. Otherwise, by the separating hyperplane theorem (Boyd and Vandenberghe,

2004, Section 2.5.1), there exist a ∈ Rdz , a 6= 0, and b ∈ R such that a⊤zi ≥ b and a⊤z ≤ b

for all z ∈ S̄i. These two inequalities imply via Theorem 1.6.6 (b) by Ash and Doléans-Dade

(2000) that PS
i [a

⊤z̃ = b] = 1, which, however, contradicts the absolute continuity of PS
i on Rdz .

We have thus shown that zi belongs to the interior of S̄i and, as a consequence, in particular

to the interior of dom(−gi), the interior of dom(hj) for every j ∈ J and the interior of S. By

Lemma C.11, zi is thus a Slater point for S. As zi ∈ S̄i, we may finally select any ui > h(zi) ∈ RJ

and ti < gi(zi) ∈ R for every i ∈ I. By construction, ({zi,ui, ti}i,λ) constitutes a Slater point

for (AD-B) that satisfies λ > 0. This Slater point for (AD-B) can easily be converted to a Slater

point for (AD-B′) that satisfies λ > 0.

Proof of Proposition 13. Denote by (αS,βS) a strict Slater point of problem (D-UQ), which

exists by assumption. By using similar arguments as in Proposition 9, one can show that (αS,βS)

also constitutes a strict Slater point for (AP-W). If we fix α = αS and β = βS, then the embedded

maximization problem in the i-th constraint of (AP-W) is equivalent to

sup gi(zi)− αS −
∑

j∈J

hj(zi)β
S
j

s.t. cℓ(zi) ≤ 0 ∀ℓ ∈ L

zi free

(25)

because the strict inequality βS > 0 implies that for every fixed zi it is optimal to set ui = h(zi)

and ti = gi(zi). As (α
S,βS) is a strict Slater point for (AP-W), the optimal value of (25) is strictly

smaller than 0. Note also that (25) can be viewed as an instance of the minimization problem (P)

that satisfies assumption (F) because the components gi, i ∈ I, of the disutility function sat-

isfy (G), the moment functions hj , j ∈ J , satisfy (H) and the constraint functions cℓ, ℓ ∈ L, of
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the support set satisfy (C). The corresponding dual minimization problem is given by

inf (−gi)∗
(

y
(0)
i

)

+
∑

j∈J

βSj h
∗
j

(

y
(1)
ij

βSj

)

+
∑

ℓ∈L

νiℓc
∗
ℓ

(

y
(2)
iℓ

νiℓ

)

− αS

s.t. y
(0)
i +

∑

j∈J

y
(1)
ij +

∑

ℓ∈L

y
(2)
iℓ = 0

y
(0)
i ,y

(1)
ij ,y

(2)
iℓ free, νiℓ ≥ 0 ∀j ∈ J , ∀ℓ ∈ L.

(26)

Note that the feasible region of the primal problem (25) coincides with S̄i and is thus nonempty for

every i ∈ I thanks to assumption (S). In addition, it constitutes a subset of S and is thus bounded

by assumption. Theorem 2 (ii) then implies that problems (25) and (26) share the same optimal

value, which is strictly smaller than 0. In addition, Proposition C.6 implies that problem (26)

admits a strict Slater point (y
(0)S
i , {y(1)Sij }j , {y

(2)S
iℓ , νSiℓ}ℓ) for every i ∈ I. As the infimum of (26)

is strictly smaller than 0, we may assume without loss of generality that the objective function

value of this strict Slater point in (26) is strictly negative, too. This is a direct consequence of

Remark C.1. By construction, (αS,βS, {y(0)Si }i, {y(1)Sij }ij , {y
(2)S
iℓ , νSiℓ}iℓ) is thus a strict Slater point

for (AP-W′).

Proof of Corollary 14. Note first that the suprema of (P-UQ) and (AD-B′) coincide by

virtue of Theorem 11 (i), which applies because (AD-B′) admits a Slater point (τS,λS, {ωS
i ,v

S
i }i)

with λS > 0. Next, select any tolerance ǫ > 0 and any ǫ-optimal solution (τ ǫ,λǫ, {ωǫ
i ,v

ǫ
i}i)

of problem (AD-B′). If (AD-B′) is unbounded, then we adopt the standard convention that

(τ ǫ,λǫ, {ωǫ
i ,v

ǫ
i}i) is feasible in (AD-B′) and that its objective function value is larger than or

equal to 1/ǫ. Next, define

(τ θ,λθ, {ωθ
i ,v

θ
i }i) = θ · (τS,λS, {ωS

i ,v
S
i }i) + (1− θ) · (τ ǫ,λǫ, {ωǫ

i ,v
ǫ
i}i)

for any θ ∈ [0, 1], and note that this solution is feasible in (AD-B′) as it constitutes a convex

combination of two feasible solutions. Note also that λθ > 0 whenever θ > 0. As the objective

function of (AD-B′) is linear and thus continuous, there exists θ ∈ (0, 1] such that (τ θ,λθ, {ωθ
i ,v

θ
i }i)

represents a 2ǫ-optimal solution of (AD-B′). Next, fix such a θ, and define P as the discrete

distribution that assigns probability λθi > 0 to υθ
i /λ

θ
i for all i ∈ I. As (τ θ,λθ, {ωθ

i ,v
θ
i }i) is feasible
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in (AD-B′), we can readily verify that P is supported on S and satisfies

EP[h(z̃)] =
∑

i∈I

λθi h(υ
θ
i /λ

θ
i ) ≤

∑

i∈I

ωθ
i ≤ µ,

which implies that P ∈P. Similarly, the objective function value of P in (AD-B′) satisfies

EP[g(z̃)] =
∑

i∈I

λθi g(υ
θ
i /λ

θ
i ) ≥

∑

i∈I

λθi gi(υ
θ
i /λ

θ
i ) ≥

∑

i∈I

τ θi .

The last expression non-inferior to sup (AD-B′)− 2ǫ if the supremum of (AD-B′) is finite and non-

inferior to 1/2ǫ otherwise. As the suprema of (P-UQ) and (AD-B′) match, the above reasoning

implies that P constitutes a 2ǫ-optimal solution of the original uncertainty quantification prob-

lem (P-UQ). As ǫ > 0 was chosen arbitrarily, we can thus construct feasible discrete distributions

with I atoms whose objective function values are arbitrarily close to the supremum of (P-UQ).

Proof of Lemma 15. For every λ ∈ C∗\{0} we have that dom(λ⊤f) = dom(f) and f(x) ≻C

−∞C if and only if λ⊤f(x) > −∞. This implies that f is proper if and only if λ⊤f is proper for

every λ ∈ C∗\{0}. Also, it implies that dom(f) is convex if and only if dom(λ⊤f) is convex for

every λ ∈ C∗\{0}. Next, select any x,x′ ∈ dom(f) and θ ∈ [0, 1]. By the definition of the dual

cone C∗, we then have

θf(x) + (1− θ)f(x′)− f(θx+ (1− θ)x′) ∈ C

⇐⇒ θλ⊤f(x) + (1− θ)λ⊤f(x′)− λ⊤f(θx+ (1− θ)x′) ≥ 0 ∀λ ∈ C∗\{0},

where the reverse implication holds because C is proper and convex, which implies that C∗∗ = C.
Thus, f is C-convex if and only if the scalarized function λ⊤f is convex for every λ ∈ C∗\{0}.

Proof of Proposition 16. Assume first that 0 ∈ dom(f). As f is proper, star C-lower
semicontinuous and C-convex, Lemma 15 implies that λ⊤f is proper, closed and convex for all

λ ∈ C∗\{0}. As 0 ∈ dom(λ⊤f), Corollary 8.5.2 and Theorem 13.3 by Rockafellar (1970) imply

lim
t↓0

tλ⊤f(x/t) = δ∗dom((λ⊤f)∗)(x) (27)

for all λ ∈ C∗\{0}. Note then that the dual cone C∗ inherits properness from C (Ben-Tal and Nemirovski,

2001, Corollary 1.4.1). This means that C∗ is solid and thus contains a basis λ1, . . . ,λdC of RdC .
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Defining the invertible matrix Λ = (λ1, . . . ,λdC )
⊤ ∈ RdC×dC , we conclude from (27) that

lim
t↓0

tΛf(x/t) = b(x), where b(x) =

(

δ∗
dom((λ⊤

1 f)∗)
(x), . . . , δ∗

dom((λ⊤
dC

f)∗)
(x)

)⊤

∈ RdC ,

which ensures that limt↓0 tf(x/t) = Λ−1b(x) exists. We may thus define the function f through

f(x, t) =







tf(x/t) if t > 0,

limt↓0 tf(x/t) if t = 0.

By construction, we have λ⊤f(x, 0) = limt↓0 tλ
⊤f(x/t) = δ∗

dom((λ⊤f)∗)
(x) for every λ ∈ C∗\{0},

and thus f satisfies property (iii). This in turn implies that λ⊤f coincides with the convex

perspective of λ⊤f for every λ ∈ C∗\{0}, which is proper, closed and convex by Proposition C.2.

Hence, f is star C-lower semicontinuous by definition as well as proper and C-convex by Lemma 15.

The function f consequently satisfies property (i). Property (ii) holds by construction.

If 0 /∈ dom(f), then Corollary 8.5.2 by Rockafellar (1970) is no longer applicable. As f is proper

by assumption, however, there exists some point x0 ∈ dom(f). Next, define g : Rdx → RdC through

g(x) = f(x−x0) for all x ∈ Rdx , and note that g is proper, closed and convex and that 0 ∈ dom(g).

By the first part of the proof, we may thus conclude that there exists a function g : Rdx×R+ → RdC

that satisfies properties (i)–(iii). Next, define the function f through f(x, t) = g(x + tx0, t). It

is clear that f inherits perperness, star C-lower semicontinuity and C-convexity from g and thus

satisfies property (i). By construction, we further have for every t > 0 that

f(x, t0) = g(x+ tx0, t) = tg(x/t+ x0) = tf(x/t),

where the second equality holds because g satisfies property (ii), and the third equality follows

from the definition of g. This shows that f satisfies property (ii). Finally, we also have

λ⊤f(x, 0) = λ⊤g(x, 0) = δ∗dom((λ⊤g)∗)(x) = δ∗dom((λ⊤f)∗)(x),

for every λ ∈ C∗\{0}, where the second equality holds because g satisfies property (iii), and the

third equality follows from the observation that (λ⊤g)∗(w) = (λ⊤f)∗(w)−w⊤x0 for all w ∈ Rdx .

This reasoning shows that f also satisfies property (iii). The uniqueness of f is a direct consequence

of property (iii) and the observation that the proper cone C∗ is solid.

Proof of Proposition 19. We first show that the negative objective function of problem (5) is

proper, closed and convex. Indeed, the convex perspective −λikgi(ẑk +vik/λik) defined for λik ≥ 0
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is proper, closed and convex by Proposition C.2 and by Theorem 12.2 of Rockafellar (1970), which

apply because gi obeys assumption (G). Thus, the negative objective function of (5) constitutes a

sum of proper, closed and convex functions with different arguments and is therefore also proper,

closed and convex. As cℓ obeys assumption (C) and d obeys assumption (D), similar arguments

can be used to show that the feasible region of (5) is closed. To prove that the feasible region is

also bounded, note that the first constraint group in (5) forces the non-negative variables {λik}i
to reside within a bounded simplex for every k ∈ K. In addition, by Lemma C.10 there exists a

constant δ > 0 such that d(ẑk + z, ẑk) ≥ δ‖z‖2 − 1 for all z ∈ Rdz and k ∈ K, and thus we have

∑

k∈K

∑

i∈Ik

λikd

(

ẑk +
vik

λik
, ẑk

)

≤ ǫ =⇒
∑

k∈K

∑

i∈Ik

‖vik‖2 ≤
1 + ǫ

δ
,

where we used the elementary identity
∑

k∈K

∑

i∈Ik
λik = 1. Thus, the last constraint group in (5)

forces the variables {vik}ik to reside within a bounded set, as well. In conclusion, we have shown

that the objective function of (5) is upper semicontinuous and that the feasible region is both closed

and bounded and therefore compact. Thus, problem (5) is indeed solvable.

Proof of Proposition 20. Under the assumptions of the proposition, problem (5) is solvable and

has the same optimal value as (OT). Even though (5) is reminiscent of a restriction of (OT) that

evaluates the worst-case expected disutility over all I-point distributions in Bǫ(P̂), the solvability

of (5) does not imply that (OT) admits a maximizer, see, e.g., Mohajerin Esfahani and Kuhn (2018,

Example 2) or Kuhn et al. (2019, Example 4).

By construction, I+k , I0k := {i ∈ Ik | λ⋆ik = 0, v⋆ik = 0} and I∞k form a partition of Ik for every

k ∈ K. Note that if λ⋆ik = 0, then the constraints λikcℓ(ẑk + vik/λik) ≤ 0, ℓ ∈ L, of problem (5)

imply via Lemma C.8 (ii) that v⋆ik is a recession direction of the support set S. In particular, if S
is bounded, this implies that v⋆ik = 0. We may thus conclude that I∞k = ∅ whenever S is bounded.

The converse implication does not hold in general.

Assume first that I∞k = ∅ for every k ∈ K. To see that P⋆ defined in (6) is optimal in (OT),

observe that the constraints of (5) imply that P⋆ ∈ Bǫ(P̂) and that the expected disutility EP⋆[g(z̃)]

is at least as large as the optimal value
∑

k∈K

∑

i∈Ik
λ⋆ikgi(ẑk + v⋆ik/λ

⋆
ik) of (5). However, as the

suprema of (OT) and (5) match, it is clear that P⋆ must be optimal in (OT).

Assume now that I∞k 6= ∅ for some k ∈ K. To see that the discrete distributions defined

in (7) are asymptotically optimal, we first show that Pn ∈ Bǫ(P̂) whenever n ≥ |I∞k | for every
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k ∈ K. Indeed, in this case it is easy to see that λik(n) ≥ 0 for all i ∈ I+k ∪ I∞k and k ∈ K
and that

∑

k∈K

∑

i∈I+
k
∪I∞

k
λik(n) = 1 because

∑

i∈I+
k
λ⋆ik = p̂k for every k ∈ K. In addition, note

that zik(n) ∈ S for every i ∈ I+k ∪ I∞k and k ∈ K thanks to the constraints of problem (5) and

because v⋆ik is a recession direction of S whenever i ∈ I∞k . In summary, these insights imply

that Pn ∈P0(S). Finally, moving mass λik(n) from ẑk to zik(n) for every i ∈ I+k ∪ I∞k and k ∈ K
incurs a total cost of

∑

k∈K

∑

i∈I+
k
∪I∞

k

λik(n)d(zik(n), ẑk)

=
∑

k∈K

∑

i∈I+
k

λ⋆ik

(

1− |I
∞
k |
n

)

d

(

ẑk +
v⋆ik
λ⋆ik

, ẑk

)

+
∑

k∈K

∑

i∈I∞
k

p̂k
n
d

(

ẑk + n
v⋆ik
p̂k
, ẑk

)

≤
∑

k∈K

∑

i∈I+
k

λ⋆ikd

(

ẑk +
v⋆ik
λ⋆ik

, ẑk

)

+
∑

k∈K

∑

i∈I∞
k

lim
n→∞

p̂k
n
d

(

ẑk + n
v⋆ik
p̂k
, ẑk

)

=
∑

k∈K

∑

i∈Ik

λ⋆ikd

(

ẑk +
v⋆ik
λ⋆ik

, ẑk

)

≤ ǫ,

where the first equality follows from the definitions of λik(n) and zik(n), and the first inequality

holds because the transportation cost d(z,z′) is non-negative and convex in z, which implies that

both terms in the second line are non-decreasing in n. The second equality in the above expression

exploits our definition of the convex perspective for λ⋆ik = 0, and the second inequality follows from

the constraints of problem (5). Similarly, by using our conventions for the convex perspective,

one can show that the asymptotic expected disutility limn→∞ EPn [g(z̃)] is at least as large as the

optimal value
∑

k∈K

∑

i∈Ik
λ⋆ikgi(ẑk + v⋆ik/λ

⋆
ik) of (5). However, as the suprema of (OT) and (5)

match, it is clear that the distributions Pn, n ∈ N, must be asymptotically optimal in (OT).

C Auxiliary Results

Proposition C.1 (Properties of Conjugate Functions). The conjugate of a function f is closed

and convex. Moreover, if f is closed and convex, then f∗∗ = f . Finally, a convex function f is

proper if and only if f∗ is proper.

Proof. The conjugate f∗ is a pointwise supremum of affine functions, and hence it is closed and

convex. The other claims follow from Rockafellar (1970, Theorem 12.2).
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Proposition C.2 (Properties of Convex Perspective Functions). If f : Rdx → R is proper, closed

and convex, then its convex perspective is also proper, closed and convex.

Proof. Convexity and properness follow from page 35 of Rockafellar (1970), while closedness follows

from page 67 and Theorem 13.3 of Rockafellar (1970).

Proposition C.3 (Conjugates of Perspective Functions). If f : Rdx → R is proper and convex,

then for any t > 0 we have

h∗(w) =











tf∗(w/t) if h(x) = tf(x),

tf∗(w) if h(x) = tf(x/t).

Proof. The claim follows from Theorem 16.1 of Rockafellar (1970).

Proposition C.4 (Conjugates of Sums). If g1, . . . , gJ : Rdx → R are proper convex functions, then





∑

j∈J

gj





∗

(w) ≤ inf
{wj}j∈J







∑

j∈J

g∗j (wj)
∣

∣

∣

∑

j∈J

wj = w







∀w ∈ Rdx . (28)

If ∩j∈J ri(dom(gj)) 6= ∅, then the inequality is tight, and the minimum is attained for every w.

Proof. For any j ∈ J , we denote by cl(gj) the closure of the function gj , that is, the largest closed

function that resides underneath gj . By the definition of the conjugate we have





∑

j∈J

gj





∗

(w) = sup
x







w⊤x−
∑

j∈J

gj(x)







≤ sup
x







w⊤x−
∑

j∈J

cl(gj)(x)







=





∑

j∈J

cl(gj)





∗

(w) ≤ inf
{wj}j∈J







∑

j∈J

g∗j (wj)
∣

∣

∣

∑

j∈J

wj = w







,

where the first inequality holds because gj(x) ≥ cl(gj)(x) for all x ∈ Rdx , j ∈ J , while the

second inequality follows from Theorem 16.4 of Rockafellar (1970). If ∩j∈J ri(dom(gj)) 6= ∅, then
Theorem 16.4 of Rockafellar (1970) further implies that both inequalities become equalities.

Proposition C.4 asserts that the conjugate of a sum of proper convex functions (the left-hand

side of (28)) provides a lower bound on the infimal convolution of the conjugates of these functions

(the right-hand side of (28)). This lower bound becomes tight if the relative interiors of the domains

of the convex functions have a point in common. Under the same condition one can show that the
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epigraph of the infimal convolution coincides with the Minkowski sum of the epigraphs of the

conjugate functions g∗j , j ∈ J , see, e.g., Rockafellar and Wets (2009, Exercise 1.28 (a)).

Example C.1 (Conjugates of Sums). The inequality in (28) can be strict. To see this, assume that

x ∈ R2 and J = 2, and define g1(x) = δ{1}(x1) and g2(x) = δ{−1}(x1). Note that both g1 and g2

are proper and convex. In fact, they are even closed. As the domains of g1 and g2 have an empty

intersection, we may conclude that (g1 + g2)
∗(w) = −∞ for every w ∈ R2. A direct calculation

shows that g∗1(w) = w1 + δ{0}(w2) and g
∗
2(w) = −w1 + δ{0}(w2), which in turn implies that

inf
{

g∗1(w1) + g∗2(w2)
∣

∣

∣
w1 +w2 = w

}

=







−∞ if w2 = 0,

+∞ otherwise.

Thus, the gap between the left and the right-hand side in (28) amounts to ∞ unless w2 = 0.

Proposition C.5 (Properties of Partial Conjugates). For any function f : Rdx × Rdz → R, the

partial conjugate f∗1 is closed and convex (jointly in both arguments) if −f is closed and convex in

its second argument. Similarly, the partial conjugate f∗2 is closed and convex if −f is closed and

convex in its first argument.

Proof. For any fixed x ∈ Rdx , the functions w⊤x and −f(x,z) are closed and convex in w and z,

respectively. Thus, the partial conjugate f∗1(w,z) = supx∈Rdx

{

w⊤x− f(x,z)
}

is closed and

convex jointly in w and z as a pointwise supremum of closed and convex functions. A similar

argument can be made for the partial conjugate f∗2.

Below we provide an example of two mutually dual convex optimization problems with a strictly

positive duality gap. We also showcase that the presence of a positive duality gap critically depends

on the representation of these problems, that is, simple equivalent reformulations of the primal

(dual) may change the dual (primal) and eliminate the duality gap.

Example C.2 (Representation-Dependence of Duality Results). Consider an instance of prob-

lem (P) adapted from Exercise 5.21 by Boyd and Vandenberghe (2004) with two decision variables

x1 and x2, a convex objective function f0(x) = e−x1 and a single convex constraint function defined

through f1(x) = x21/x2 if x2 ≥ 0 and f1(x) =∞ otherwise. The fraction x21/x2 should be interpreted

as the convex perspective of x21 whenever x2 ≥ 0. Thus, f0 and f1 are both proper and closed. Note
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that this instance of (P) violates both conditions in Theorem 2. Moreover, any feasible solution

satisfies x1 = 0 and thus attains the optimal value 1 of (P). A direct calculation reveals that

f∗0 (w0) =







−w01 log(−w01) + w01 if w01 ≤ 0 and w02 = 0,

+∞ otherwise,

where we use the standard convention that 0 log(0) = 0, and

f∗1 (w1) =







0 if 1
4w

2
11 + w12 ≤ 0,

+∞ otherwise.

The dual problem (D) can therefore be expressed as

sup w01 log(−w01)− w01

s.t. w0 +w1 = 0

w2
11

4λ1
+ w12 ≤ 0, w01 ≤ 0, w02 = 0

w0,w1 free

λ1 ≥ 0.

Note that this instance of (D) violates both conditions in Theorem 2. Any feasible solution satisfies

w0 = w1 = 0 and thus attains the optimal value 0 of (D). We conclude that the duality gap

amounts to 1. Furthermore, Lemma B.1 allows to recover the primal problem (P) by dualizing (D).

However, all of these conclusions break down if we simplify (P) or (D) by eliminating redundant

constraints and variables. For example, as any primal feasible solution satisfies x1 = 0, problem (P)

is equivalent to the linear program inf{1 | x2 ≥ 0}, which admits a Slater point and therefore has

a strong dual that is no longer equivalent to (D). Similarly, as any dual feasible solution satisfies

w0 = w1 = 0, problem (D) is equivalent to the linear program sup{0 | λ1 ≥ 0}, which admits a

Slater point and therefore has a strong dual that is no longer equivalent to (P). Therefore, the dual

of the dual may not be equivalent to the primal if one simplifies the dual problem.

Based on the data of the primal problem (P), it is often difficult to verify whether the dual

problem (D) admits a Slater point. However, a dual Slater point is guaranteed to exist whenever the

primal feasible region is nonempty and bounded. This result plays an important role in Section 3,

where we need to verify that certain dualized embedded optimization problems admit Slater points

in order to invoke strong duality for the outer optimization problems.
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Proposition C.6 (Sufficient Condition for a Dual Slater Point). If the feasible region of (P) is

nonempty and bounded, then (D) admits a strict Slater point.

The next example shows that the reverse implication of Proposition C.6 does not hold in general.

Example C.3 (Unbounded Dual Feasible Region for Primal with a Slater Point). Consider an

instance of problem (P) with I = 3, f0(x) = x, f1(x) = x − 1, f2(x) = 1 − x and f3(x) = −x. It

can be easily verified that (P) admits a Slater point. We can readily verify that the corresponding

dual problem (D) can be expressed as

sup −λ1 + λ2

s.t. w0 + w1 + w2 + w3 = 0, w0 = 1

w1 = λ1, w2 = −λ2, w3 ≤ 0

w0, w1, w2 free, λ ≥ 0.

Clearly, the feasible region of (D) is unbounded.

The following remark is useful in Section 3 when we wish to replace embedded optimization

problems with their duals without changing the feasible region of the outer optimization problem.

Remark C.1 (Strict Inequalities). If (P) admits a strict Slater point xS, then any feasible solu-

tion x of (P) can be expressed as the limit of a sequence of strict Slater points xn = 1
nx

S + (1 −
1
n)x, n ∈ N, and its objective function value satisfies f0(x) = lim infn→∞ f0(xn). Indeed, we have

f0(x) ≤ lim inf
n→∞

f0(xn) ≤ lim inf
n→∞

{

1

n
f0(x

S) +

(

1− 1

n

)

f0(x)

}

= f0(x),

where the two inequalities follow from the closedness and the convexity of f0, respectively. Therefore,

replacing weak inequalities by strict inequalities in (P) does not change the infimum of (P) if (P)

admits a strict Slater point.

Example C.4 (Non-Convexity of Problem (D-B)). Consider an instance of problem (P-W) with

I = dx = dz = 1, Z = R, f0(x, z0) = xz0 and f1(x, z1) =
1
2x

2 + z1. Then, we can readily compute

f∗10 (w0, z0) =











0 if w0 = z0

∞ if w0 6= z0

and f∗11 (w1, z1) =
w2
1

2
− z1,
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which results in the following instance of problem (D-B).

sup − w
2
1

2λ1
+ λ1z1

s.t. w0 + w1 = 0, w0 = z0

w0, w1, z0, z1 free, λ1 ≥ 0

Using the format (w0, w1, z0, z1, λ1) to denote solutions of (D-B), it is easy to verify that both

(1,−1, 1, 2, 12 ) and (0, 0, 0, 0, 0) are feasible in (D-B) with the same objective value 0. Even though

their equally weighted convex combination (12 ,−1
2 ,

1
2 , 1,

1
4) is also feasible, its objective value amounts

to −1
4 <

1
2 · 0 + 1

2 · 0. Therefore, the instance of (D-B) at hand is non-convex.

Proposition C.7 (Conjugates of Partial Conjugates). If f : Rdx × Rdz → R is closed and convex

in its first argument, and −f is closed and convex in its second argument, then (f∗1)∗ = (−f)∗2

and ((−f)∗2)∗ = f∗1.

Proof. The conjugate of f∗1 with respect to both of its arguments is given by

(f∗1)∗(x,y) = sup
w,z

{

x⊤w + y⊤z − f∗1(w,z)
}

= sup
z

{

y⊤z + sup
w

{

x⊤w − f∗1(w,z)
}

}

= sup
z

{

y⊤z + f(x,z)
}

= (−f)∗2(x,y),

where the third equality holds because f is closed and convex in its first argument, which implies

that (f∗1)∗1 = f ; see Proposition C.1. This establishes that (f∗1)∗ = (−f)∗2. Since f∗1 is jointly

closed and convex in both of its arguments due to Proposition C.5, Proposition C.1 further implies

that ((−f)∗2)∗ = (f∗1)∗∗ = f∗1.

Lemma C.8 (Recession Directions). The following statements hold.

(i) A vector v ∈ Rdz is a recession direction for the function cℓ if and only if 0cℓ(v/0) ≤ 0.

(ii) A vector v ∈ Rdz is a recession direction for the set Z if and only if 0cℓ(v/0) ≤ 0 for all ℓ ∈ L.

Proof. The result follows from Theorem 8.6 by Rockafellar (1970). To keep this paper self-contained,

however, we provide an alternative proof using our notation. As for assertion (i), assume first that
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v is a recession direction for cℓ. Thus, for any z ∈ Rdz with cℓ(z) ≤ 0 we have

0 ≥ 1

t
cℓ(z + tv) ∀t > 0 =⇒ 0 ≥ scℓ

(

sz + v

s

)

∀s > 0

=⇒ 0 ≥ lim inf
s↓0

scℓ

(

sz + v

s

)

≥ 0cℓ(v/0).

Assume next that 0cℓ(v/0) ≤ 0, and fix any z ∈ Rdz with cℓ(z) ≤ 0. Thus, we have

cℓ(z + tv) =
(

1
2 · 2 + 1

2 · 0
)

cℓ

( 1
2
·2z+ 1

2
·2tv

1
2
·2+ 1

2
·0

)

∀t > 0

≤ 1
2

[

2cℓ
(

2z
2

)]

+ 1
2

[

0cℓ
(

2tv
0

)]

= cℓ(z) + 0cℓ(tv/0) ≤ 0 ∀t > 0,

where the first equality is trivial because 1
2 · 2 + 1

2 · 0 = 1, and the inequality follows from the

convexity of the convex perspective established in Proposition C.2. The second equality exploits

the properness of c∗l and the positive homogeneity of support functions of nonempty sets. The

last inequality holds because cℓ(z) ≤ 0 by assumption and because 0cℓ(v/0) ≤ 0 implies that

0cℓ(tv/0) ≤ 0. As the above reasoning applies for any t > 0, we conclude that v is indeed a

recession direction for cℓ.

Assertion (ii) follows from assertion (i) and the observation that v is a recession direction for

Z if and only if Z is nonempty and v is a recession direction for every cℓ, ℓ ∈ L.

The following three remarks discuss various generalizations of the main theorems of Section 3.

Remark C.2 (Equivalence of (D-B) and (D-B′) without a Strict Slater Point). Proposition 5 (ii)

remains valid if (D-B) admits a feasible solution ({wi,zi}i,λ) with λ > 0 instead of a strict Slater

point. Indeed, the only property of a strict Slater point needed in the proof is that λ > 0.

Remark C.3 (Strong Duality for (P-W) and (D-B) without a Strict Slater Point). Theorem 7 (iii)

remains valid if (D-B) admits a Slater point ({wi,zi}i,λ) with λ > 0 instead of a strict Slater

point. Similarly as for Proposition 5 (ii), the only property of ({wi,zi}i,λ) required in the proof,

beyond it being a Slater point, is that λ > 0.

Remark C.4 (Heterogeneous Uncertainty Sets). All results of Section 3 extend in a straightforward

manner to situations in which the objective function and the constraints of problem (P-W) are

equipped with individual uncertainty sets Zi, i ∈ I0, all of which satisfy assumption (C).

Example C.5 (Random Matrix Theory). The techniques developed in Section 5 allow us to analyze

the spectral properties of random matrices governed by an ambiguous distribution. For example,
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they enable us to compute the worst-case conditional value-at-risk (CVaR) at level ε ∈ (0, 1) of the

(negative) largest eigenvalue −λmax(Z̃) of a random matrix Z̃ in the proper convex cone S
dZ
+ of

positive semidefinite matrices within RdZ×dZ . We assume that the distribution of Z̃ belongs to

P =

{

P ∈ P0(SdZ+ )

∣

∣

∣

∣

EP[Z̃] �
S
dZ
+

M , EP[Z̃
−1] �

S
dZ
+

M

}

.

Here, Z−1 is a shorthand for the function F (Z) = Z−1 if Z ≻
S
dZ
+

0 and F (Z) = +∞
S
dZ
+

otherwise.

This function is proper, S
dZ
+ -convex and star S

dZ
+ -lower semicontinuous; see also Example A.2

in Appendix A. In addition, λmax(Z) is proper, closed and convex in the usual sense. By using

Jensen’s inequality, one can verify that P is nonempty if and only if the generalized moment bounds

M ,M ∈ S
dZ
+ satisfyM−1 �

S
dZ
+

M . By the definition of the CVaR due to Rockafellar and Uryasev

(2000) and by Sion’s minimax theorem (Sion, 1958), the worst-case CVaR of −λmax(Z̃) satisfies

sup
P∈P

P-CVaRε(−λmax(Z̃)) = inf
x∈R

x+
1

ε
sup
P∈P

EP

[

max{−λmax(Z̃)− x, 0}
]

.

The worst-case expectation in the above expression constitutes an instance of the generalized uncer-

tainty quantification problem (P-UQg) that satisfies the conditions (Cg), (Gg), (Hg) and (Sg). By

Theorem 17, it can be reformulated as a tractable convex minimization problem, and thus the worst-

case CVaR can be computed efficiently. We emphasize that this instance of (P-UQg) is beyond the

reach of existing methods in distributionally robust optimization.

Lemma C.9 (Conjugates of Powers of Norms). Assume that ‖ · ‖ and ‖ · ‖∗ are mutually dual

norms on Rdz and that p, q ∈ [1,+∞] satisfy 1
p + 1

q = 1. Then, the following statements hold.

(i) The conjugate of h(z) = 1
p‖z‖p is given by h∗(y) = 1

q‖y‖
q
∗. Here, we interpret 1

p‖z‖p as the

indicator function of the closed unit ball around 0 with respect to ‖ · ‖ if p = +∞ and 1
q‖y‖

q
∗

as the indicator function of the closed unit ball around 0 with respect to ‖ · ‖∗ if q = +∞.

(ii) The first partial conjugate of d(z,z′) = ‖z − z′‖p is given by d∗1(y,z′) = y⊤z′ + ϕ(q) ‖y‖q∗,
where ϕ(q) = (q − 1)(q−1)/qq. Here, we interpret ‖z − z′‖p as the indicator function of the

closed unit ball around z′ with respect to ‖ · ‖ if p = +∞ and ϕ(q) ‖y‖q∗ as the indicator

function of the closed unit ball around 0 with respect to ‖ · ‖∗ if q = +∞.

Proof. Assume first that p ∈ (1,+∞). For any fixed z,y ∈ Rdz we then have

z⊤y − 1

p
‖z‖p ≤ ‖z‖‖y‖∗ −

1

p
‖z‖p ≤ max

t≥0
t‖y‖∗ −

1

p
tp =

1

q
‖y‖q∗,
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where the first inequality follows from the definition of the dual norm, and the equality holds because

the maximum over t ≥ 0 is attained at t⋆ = ‖y‖q−1
∗ . Both inequalities in the above expression are

tight if we set z to z⋆ = (‖y‖q−1
∗ /‖y‖)y. Indeed, the first inequality is tight because z⋆ is parallel

to y, and the second one is tight because ‖z⋆‖ = t⋆. Therefore, we have

h∗(y) = sup
z

{

z⊤y − 1

p
‖z‖p

}

=
1

q
‖y‖q∗.

Standard limit arguments show the claim for p ∈ {1,+∞}, and thus assertion (i) follows.

Assume now again that p ∈ (1,+∞). By the definition of partial conjugates, we then have

d∗1(y,z′) = sup
z

{

y⊤z − ‖z − z′‖p
}

= y⊤z′ + p sup
z

{

(

y

p

)⊤

z − 1

p
‖z‖p

}

= y⊤z′ +
p

q

∥

∥

∥

∥

y

p

∥

∥

∥

∥

q

∗

= y⊤z′ + ϕ(q) ‖y‖q∗ ,

where the second and the third equality follow from the variable substitution z ← z− z′ and from

assertion (i), respectively, while the last equality follows from elementary algebra. Standard limit

arguments can again be used to prove the claim for p ∈ {1,+∞}, and thus assertion (ii) follows.

Lemma C.10 (Growth of Non-Negative Convex Functions). If f : Rdz → [0,+∞] is closed and

convex with f(z) = 0 if and only if z = 0, then there is δ > 0 with f(z) ≥ δ‖z‖2−1 for all z ∈ Rdz .

Proof. Assume for the sake of argument that there exists no δ > 0 with the advertised properties.

In this case, for every n ∈ N there exists zn ∈ Rdz such that f(zn) <
1
n‖zn‖2 − 1. As the unit

sphere in Rdz is compact, there further exists a subsequence znk
, k ∈ N, and a vector v ∈ Rdz that

satisfies limk→∞ znk
/‖znk

‖2 = v. By construction, we thus have ‖v‖2 = 1 and

f(v) = lim inf
k→∞

f

(

znk

‖znk
‖2

)

≤ lim inf
k→∞

(

1− 1

‖znk
‖2

)

f(0) +
1

‖znk
‖2
f(znk

) = 0,

where the first equality and the inequality follow from the lower semicontinuity and the convexity

of f , respectively, while the second equality holds because f(0) = 0 and because f(znk
)/‖znk

‖2 ≤
1/nk by the construction of znk

. As f is non-negative, the above reasoning implies that f(v) = 0,

which in turn implies that v = 0. However, this conclusion contradicts our earlier observation that

‖v‖2 = 1. Hence, our hypothesis was false, and the claim follows.

Lemma C.11 (Slater Points). Assume that X = {x ∈ Rdx | fi(x) ≤ 0 ∀i ∈ I, hj(x) = 0 ∀j ∈ J }
is a convex set defined in terms of convex inequality constraint functions fi, i ∈ I, and affine equality

constraint functions hj , j ∈ J . If X admits a Slater point, then any x ∈ ri(X ) is a Slater point.
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Proof. Let xS be a Slater point for X , which exists by assumption. Select any x ∈ ri(X ), and
assume that x 6= xS for otherwise the claim is trivial. As both x and xS are elements of the convex

set X , all points of the form θx + (1 − θ)xS for some θ ∈ R belong to the affine hull of X . In

addition, as x ∈ ri(X ), we may thus conclude that there exists ε > 0 such that θx+ (1− θ)xS ∈ X
for all θ ∈ [0, 1 + ε]. Setting θ = 1 + ε, we thus find fi((1 + ε)x− εxS) ≤ 0 and consequently

fi(x) = fi

(

1

1 + ε

(

(1 + ε)x− εxS
)

+
ε

1 + ε
xS

)

≤ 1

1 + ε
fi
(

(1 + ε)x− εxS
)

+
ε

1 + ε
fi
(

xS
)

< 0

for all i ∈ I such that fi is nonlinear, where the first inequality exploits the convexity of fi, and

the second inequality holds because fi(x
S) < 0 by the definition of a Slater point.

By using similar arguments as in the first part of the proof, one can show that there exists ε > 0

such that (1 + ε)x − εxS ∈ dom(fi) for all i ∈ I and (1 + ε)x − εxS ∈ dom(hj) for all j ∈ J . As

xS ∈ ri(dom(fi)) for all i ∈ I and xS ∈ ri(dom(hj) for all j ∈ J by the definition of a Slater point,

the line segment principle by Bertsekas (2009, Proposition 1.3.1) then implies that the point x

on the line segment between xS and θx + (1 − θ)xS belongs to ri(dom(fi)) for all i ∈ I and to

ri(dom(hj) for all j ∈ J . Thus, x is indeed a Slater point.

Remark C.5 (Solvability of (OT) under Superlinear Transportation Costs). Assume as usual that

the finite convex program (AD-B′
OT) admits a Slater point with λik > 0 for all i ∈ Ik and k ∈ K

and that the transportation cost d(z, ẑk) grows superlinearly in z for every k ∈ K. If ({λ⋆ik,v⋆ik}ik)
is a maximizer of (5) and I∞k 6= ∅ for some k ∈ K, then we have

λ⋆ikd

(

ẑk +
v⋆ik
λ⋆ik

, ẑk

)

= 0d

(

ẑk +
v⋆ik
0
, ẑk

)

= lim
λik↓0

λikd

(

ẑk +
v⋆ik
λik

, ẑk

)

= ∞

for every i ∈ I∞k , where the second equality follows from our conventions about perspective func-

tions, while the third equality holds because the transportation cost grows superlinearly in the first

argument. Thus, ({λ⋆ik,v⋆ik}ik) violates the transportation budget constraint, which contradicts our

assumption that it is a maximizer of the feasible problem (5). Hence, I∞k must be empty for ev-

ery k ∈ K, which in turn implies via the above discussion that (OT) is solvable.

Example C.6 (Shaping the Transportation Cost). The transportation cost function d(z,z′) can

be used to incorporate structural distributional information into the uncertainty quantification prob-

lem (OT). For example, if it is known that z̃ is supported on the non-negative orthant Rdz
+ and

is unlikely to have small components, then one can set d(z,z′) =
∑dz

n=1(zn − z′n)2/zn if zn > 0
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for every n = 1, . . . , dz and d(z,z′) = +∞ otherwise. This transportation cost function satisfies

condition (D). In addition, d(z,z′) tends to +∞ as z approaches the boundary of Rdz
+ . Thus, it

is expensive to move probability mass to areas of the support set that are expected to have a low

probability. One can show that the first partial conjugate of this transportation cost function is given

by d∗1(y,z′) =
∑dz

n=1 2z
′
n(1 −

√
1− yn) if yn ≤ 1 for every n = 1, . . . , dz and by d∗1(y,z′) = +∞

otherwise. As another example, if it is known that the atoms of the nominal distribution represent

random samples from the unknown true distribution that are corrupted by isotropic noise with vari-

ance γ2, then one can set the transportation cost to the Huber loss function d(z,z′) = 1
2‖z−z′‖22 if

‖z − z′‖2 ≤ γ and d(z,z′) = γ‖z − z′‖2 − γ2

2 otherwise. This transportation cost function satisfies

condition (D). In addition, it ensures that the cost of moving probability mass over short dis-

tances ≤ γ is small but increases linearly over longer transportation distances. One can show that

the first partial conjugate of this transportation cost function is given by d∗1(y,z′) = y⊤z′+ 1
2‖y‖22 if

‖y‖2 ≤ γ and by d∗1(y,z′) = +∞ otherwise. The results of this section imply that the uncertainty

quantification problem (OT) can be reformulated as a finite convex minimization problem of the

form (AP-W′
OT) or (AD-B′

OT) under either of these transportation cost functions. These reformu-

lations are new and beyond the scope of existing methods of distributionally robust optimization.
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