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A B S T R A C T

An energy formulation employing total potential energy principles is presented to derive a governing equation
for strength predictions of struts made from materials following the Ramberg–Osgood constitutive law such
as stainless steel, cold-formed steel, and aluminium alloys. The formula is generic and applicable to arbitrary
cross-sections and all strut slendernesses for which flexural buckling is critical. Extensive comparisons against
experimental data on square and rectangular hollow section struts as well as finite element simulations
demonstrate the accuracy of the developed formula, while the effect of varying material parameters is examined
through comprehensive parametric studies. Owing to its simplicity and its derivation based on mechanical
principles, arbitrary configurations of material parameters and cross-sections can be analysed, making the
formula suitable for use in design practice, representing effectively a non-iterative alternative to the widely
accepted design load employing the tangent modulus. With the aid of the formula, new column buckling design
provisions are developed, which show excellent agreement with experimental data and meet the reliability
requirements specified within the structural Eurocodes.
1. Introduction

Structural instability plays a pivotal role in the design of struc-
tural members resisting compression [1], where such members may
be referred to as struts or columns. In design practice (e.g. [2,3]), the
strength of struts is typically evaluated against the normalized strut
slenderness, a non-dimensional quantity comprising the ratio of the
squash load to the Euler buckling load, and refers to the maximum
load that the strut can withstand, i.e. the ‘ultimate strength’. Consid-
ering linear elastic, perfectly plastic material behaviour, design curves
derived from mechanical principles are well-established, e.g. the Perry–
Robertson formula, where first yield in a compressed imperfect strut
defines failure [4]. Regions of normalized slendernesses associated with
geometric instability (buckling) and material failure (yielding) are well-
defined for perfect systems, and the combined effects of geometric
imperfections and residual stresses are considered through an imper-
fection factor. Design formulae have been calibrated with reference to
extensive experimental evidence and provide a sound basis for ultimate
strength predictions [5–8].

This is different when structural members exhibit a rounded con-
stitutive response, where widely used materials such as stainless steel,
cold-formed steel and aluminium alloys are frequently modelled us-
ing the well-established Ramberg–Osgood law [9–11]. The Ramberg–
Osgood law provides an empirical, non-invertible, nonlinear strain–
stress relationship. Despite its benefits in representing the constitutive
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behaviour of the aforementioned materials adequately, its specific char-
acter makes any attempt at deriving non-empirical governing equations
for determining the strength of structural members challenging. De-
sign curves and formulae are predominantly developed empirically,
being based on finite element analyses and experimental investiga-
tions [12–14]. The ‘tangent modulus approach’ may be considered
as an exception in this context, which is generally implemented for
obtaining buckling loads as well as describing the post-buckling be-
haviour of struts made from a material with a Ramberg–Osgood-type
nonlinearity [15–18]. The tangent modulus buckling load is also used
in the American design specification for cold-formed stainless steel
structures [3]; however, all works considering this approach require an
iterative solution scheme for which the current work aims to render su-
perfluous, thus providing an alternative to current approaches. In con-
trast, empirical approaches based on numerical studies are present in
the Australian/New Zealand standard for structural stainless steel [19],
where the method developed in [12] is implemented.

The current work addresses the aforementioned issue by deriving
a governing equation to determine the buckling load of struts readily
considering the Ramberg–Osgood nonlinearity. A total potential energy
formulation is employed alongside expressing deformation measures
by associated linear parts by means of an incremental coordinate ap-
proach [20,21]. As a consequence, considering configurations for which
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Fig. 1. Geometric model of the strut; buckling displacement associated with linear and nonlinear material behaviour is illustrated by black and grey respectively, with 𝐸 being
the initial elastic modulus, 𝐸t being the tangent modulus and 𝐴 being the cross-sectional area (arbitrary, so long as flexural buckling is critical); note that presently the weaker
flexural axis is assigned to be the 𝑧-axis.
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flexural buckling is deemed to be the dominant failure mechanism,
the current work presents a formula based on fundamental mechanical
principles suitable for design practice, effectively proposing a non-
iterative alternative to the tangent modulus approach. With the derived
formula, a detailed investigation of the effect of varying material pa-
rameters on the strength predictions is conducted. The work highlights
that design guidelines employing fixed empirical quantities (e.g. Eu-
rocode 3) do not cover the band of strength predictions associated with
changing material parameters for intermediate and small normalized
slendernesses. In contrast, guidelines related to the tangent modulus
approach can tend to overestimate the column strength for large nor-
malized slendernesses. A new design provision is proposed that employs
the derived formula alongside a correction factor yielding excellent
agreement with experimental data for all configurations where flexural
buckling is critical.

In the subsequent exposition, the total potential energy formulation
and the buckling analysis are described in Sections 2 and 3 respec-
tively. A comprehensive parametric study on the strength of struts
with Ramberg–Osgood materials is presented in Section 4. This study
includes extensive comparisons against existing experimental data and
finite element simulations, which are employed to propose a novel
design provision that is assessed using a structural reliability analysis.
Conclusions are drawn in Section 5.

2. Energy formulation

In contrast with total potential energy formulations for studying
the buckling of struts made from a material obeying linear elasticity,
nonlinear material behaviour requires the consideration of axial defor-
mations in the pre-buckling state, i.e. on the non-trivial fundamental
equilibrium path, since the material tangent modulus 𝐸t changes before
the instability is triggered (see Fig. 1).

In the following exposition, energy contributions associated with
stretching and bending deformations are separately derived. Consider
the Ramberg–Osgood law (in one dimension), which is commonly
used to describe the nonlinear constitutive behaviour of stainless steel,
cold-formed steel and aluminium alloys, thus [9,10]:

𝜀 = 𝜎
𝐸

+ 𝛼ro

(

𝜎
𝑓y

)𝑛
, (1)

ith 𝐸 being the initial elastic (Young’s) modulus, 𝛼ro being the 0.2%
ffset strain, 𝑓y being the material 0.2% proof stress, which is taken to
e the equivalent of a yield stress, and 𝑛 being a hardening exponent.
n expression for the strain energy density 𝑈𝜌 = ∫ 𝜎 d𝜀 is readily de-
ived by determining d𝜀 from Eq. (1) and subsequent integration over
, thus:

𝜌 =
1
2
𝜎2

𝐸
+

𝑛𝛼ro
(𝑛 + 1)𝑓 𝑛

y
𝜎𝑛+1. (2)

onsidering that the Ramberg–Osgood law given in Eq. (1) can be
xpressed in terms of linear strain contributions 𝜀L = 𝜎∕𝐸, Eq. (2) can
e rewritten, thus:

𝜌 =
1𝐸𝜀2L +

𝑛𝛼ro
𝑛𝐸

𝑛+1𝜀𝑛+1L (3)
2

2 (𝑛 + 1)𝑓y
here linear strain contributions 𝜀L presently serve as the deformation
measure to express the strain energy; note that even though a linear
strain measure is used, the expression for the energy stored in the
system employing the Ramberg–Osgood law is still exact. Moreover,
it is also noteworthy that for studying the flexural buckling behaviour
of struts, one-dimensional descriptions, as provided in Eqs. (1)–(3), are
sufficient. Two-dimensional deformations, as for instance required for
local buckling responses, can be considered as described in [22].

Expressions for linear strains 𝜀L are obtained by employing geomet-
ric concepts used to model the buckling behaviour of simply-supported
struts. The linear part of the buckling displacement 𝑤L is assumed to
e identical to the lowest linear eigenmode for a simply-supported strut
ade from a linear elastic material, thus:

L = 𝑄1𝐿 sin
(𝜋𝑥
𝐿

)

, (4)

where 𝑄1 is the normalized amplitude of the linear buckling displace-
ment as illustrated in Fig. 1. To visualize the concept of describing
nonlinear deformation by linear quantities, Fig. 1 depicts the actual
buckling displacement in grey corresponding to the overall nonlinear
deformation that, however, is associated with and thus expressed by
means of the linear deformation shown in black. Note that in the
present context, linear and nonlinear strictly refers to the material
behaviour rather than the geometric nonlinearity which is usually
associated with buckling.

For bending deformations, the assumptions as presented in [22] are
employed assuming that both linear and total bending strains follow
Euler–Bernoulli beam relationships, so that plane sections remain plane
and perpendicular to the neutral axis of bending (cf. [22]). Thus, linear
bending strains are given by the well-known relationship for small
curvatures:

𝜀bL = −𝑦
𝜕2𝑤L

𝜕𝑥2
. (5)

The linear in-plane shortening of the strut 𝑢L is expressed by
(cf. [21]):

𝑢L = 𝑄2𝐿 − 1
2 ∫𝐿

(

𝜕𝑤L
𝜕𝑥

)2
d𝑥, (6)

where 𝑄2𝐿 is the total linear end-shortening of the strut (with 𝑄2 itself
representing the corresponding linear strain measure, see Fig. 1) and
the second term represents inextensional shortening due to the buck-
ling displacement [21,23]. Note that Eq. (6) employs the assumption
that strains along the neutral axis are constant which represents an
accurate approximation for strut buckling problems without excessively
large post-buckling deflections, thus effectively providing an averaged
in-plane strain in the form of 𝜀0L = 𝑢L∕𝐿 [21].

Stretching and bending energy contributions are obtained by insert-
ing linear in-plane/membrane strains (𝜀0L) and linear bending strains
(𝜀bL) respectively into Eq. (3) and integrating over the volume of the
strut. An analytical expression can be obtained for both energy contri-
butions. The stretching energy (𝑈 ) of a strut with the cross-sectional
s
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area 𝐴 obeying the Ramberg–Osgood law is given thus:

s = 𝐸𝐴𝐿

(

𝑄2 −
𝜋2𝑄2

1
4

)2
⎡

⎢

⎢

⎣

1
2
+ 𝑐1

(

𝑄2 −
𝜋2𝑄2

1
4

)𝑛−1
⎤

⎥

⎥

⎦

, (7)

here:

1 =
𝑛𝛼ro𝐸𝑛

(𝑛 + 1)𝑓 𝑛
y
, (8)

nd the bending energy (𝑈b) is given thus:

b =
𝜋4𝐸𝐼𝑧𝑧
4𝐿

𝑄2
1 + 𝑐0

𝑐1𝜋2𝑛+3∕2𝐸𝐼∗𝑧𝑧
𝐿𝑛 𝑄𝑛+1

1 , (9)

with 𝐼𝑧𝑧 = ∫𝐴 𝑦2 d𝐴, 𝐼∗𝑧𝑧 = ∫𝐴 𝑦𝑛+1 d𝐴 and 𝑐0 = 𝛤
[

1+ 𝑛
2

]

∕𝛤
[

3+𝑛
2

]

. The
Gamma-function 𝛤 [𝑛] is used to provide a general solution for inte-
grating expressions such as [sin(𝑚𝑥)]𝑛+1 with an arbitrary hardening
parameter 𝑛 with 𝑛 ≥ 1. Note that for specific 𝑛, the integral can also
be evaluated using integration by parts.

The potential of the applied force 𝑃 is given by

𝛷 = −𝑃𝛥, (10)

where:

𝛥 =
[

𝑄2 + 𝛼ro

(

𝐸
𝑓y

)𝑛
𝑄𝑛

2

]

𝐿 =
[

𝑄2 +
( 𝑛 + 1

𝑛

)

𝑐1𝑄
𝑛
2

]

𝐿, (11)

which comprises both linear and nonlinear parts of the total end-
shortening of the strut. With Eqs. (7)–(11), the total potential energy
of the strut can be obtained, thus:

𝑉 = 𝑈s + 𝑈b +𝛷. (12)

Note that the total potential energy is expressed in terms of the gen-
eralized coordinates 𝑄1 and 𝑄2, i.e. 𝑉 = 𝑉 (𝑄1, 𝑄2, 𝑃 ), which represent
linear parts of respective deformations such as buckling displacement
and end-shortening.

3. Buckling analysis

To derive the buckling load of struts made from materials obey-
ing a Ramberg–Osgood type nonlinearity, an incremental coordinate
approach is employed (cf. [21]), making use of the coordinate trans-
formation:

𝑄1 = 𝑞1 and 𝑄2 =
𝑃
𝐸𝐴

+ 𝑞2, (13)

here 𝑞2 represents an increment in linear axial strain relative to the
inear axial compressive strain 𝑃∕(𝐸𝐴) and 𝑞1 is introduced for notation
onsistency. With the change in coordinates, deformation states rela-
ive to the non-trivial fundamental path are considered instead of the
nloaded configuration. Note also that despite the fundamental path
eing nonlinear, its linear part is expressed by 𝑃∕(𝐸𝐴), which represents
he linear end-shortening of the strut prior to buckling.

Employing the change in coordinates enables a straightforward
erivation of the buckling load since the fundamental path of the
onlinear strut is now characterized by 𝑞1 and 𝑞2 being zero; of course
his characterization is strictly correct for a perfect strut. It should be
tressed that 𝑞1 and 𝑞2 still represent linear contributions to buckling
isplacement and end-shortening respectively. Substituting Eq. (13)
nto Eq. (12), using the dimensionless parameter 𝑝, defined as 𝑃∕(𝐸𝐴),
ives an updated total potential energy, i.e. 𝑉 = 𝑉 (𝑞1, 𝑞2, 𝑝), thus:

=𝐸𝐴𝐿

(

𝑝 + 𝑞2 −
𝜋2𝑞21
4

)2
⎡

⎢

⎢

⎣

1
2
+ 𝑐1

(

𝑝 + 𝑞2 −
𝜋2𝑞21
4

)𝑛−1
⎤

⎥

⎥

⎦

+
𝜋4𝐸𝐼𝑦𝑦
4𝐿

𝑞21 + 𝑐0
𝑐1𝜋2𝑛+3∕2𝐸𝐼∗𝑧𝑧

𝐿𝑛 𝑞𝑛+11

− 𝐸𝐴𝐿𝑝
[

𝑝 + 𝑞2 +
( 𝑛 + 1) 𝑐1

(

𝑝 + 𝑞2
)𝑛
]

.

(14)
3

𝑛

The buckling loads of Ramberg–Osgood struts can now be directly
determined implementing the criticality condition at the fundamental
(nonlinear) path described by 𝑞1 = 𝑞2 = 0, where stability is lost when-
ever the Hessian of 𝑉 , i.e. 𝑉𝑖𝑗 ≡ 𝜕2𝑉∕𝜕𝑞𝑖𝜕𝑞𝑗 , becomes singular [20], thus:

det

(

𝑉 C
𝑖𝑗
|

|

|

𝑞1=0
𝑞2=0

)

= 𝑉 C
11𝑉

C
22 = 0. (15)

In Eq. (15), coefficients 𝑉 C
12 = 𝑉 C

21 vanish on the fundamental path and
terms (∙)C refer to the evaluation at the critical state where 𝑞1 = 𝑞2 = 0.
Note that subscript numerals refer to partial derivatives with respect
to the generalized coordinates 𝑞1 and 𝑞2. The condition 𝑉 C

11 = 0 gives
the buckling load for Ramberg–Osgood material struts. Note that the
condition 𝑉 C

22 = 0, which could have potentially provided an additional
buckling load, turns out to be irrelevant in evaluating the buckling
behaviour. After some algebraic manipulation the condition 𝑉 C

11 = 0
can be written in the following form:

𝑉 C
11 ≡

𝜕2𝑉
𝜕𝑞21

|

|

|

|

|

|

C

= 𝑓 (𝑝) = 𝑝𝑛 + 𝐶1𝑝 + 𝐶2 = 0,

with: 𝐶1 =
1

(𝑛 + 1)𝑐1
, 𝐶2 = −

𝑐2
𝑐1

, 𝑐2 =
𝜋2𝐼𝑧𝑧

(𝑛 + 1)𝐴𝐿2
,

(16)

here 𝑐1 was provided in Eq. (8). The expression presented in Eq. (16)
s the governing equation for the global flexural buckling load of
amberg–Osgood struts, with its solution providing the buckling load
C:

(𝑝) = 0 ⟹ 𝑝C = 𝑝C(𝐸, 𝑛, 𝑓y , 𝜆), with 𝑃C = 𝑝C𝐸𝐴, (17)

here the strut slenderness 𝜆 = 𝐿∕𝑟𝑧𝑧 (𝑟𝑧𝑧 is the radius of gyration
bout the weaker flexural axis of the cross-section of the strut, defined
hus: 𝑟2𝑧𝑧 = 𝐼𝑧𝑧∕𝐴) can be introduced by replacing the length of the strut

with 𝐿 = 𝜆
√

𝐼𝑧𝑧∕𝐴 (or its corresponding buckling effective length 𝐿e
for boundary conditions other than simply-supported), providing an
expression depending on the material parameters (𝐸, 𝑛, 𝑓y) and the
slenderness only. Analytical (closed-form) solutions can be obtained
for 𝑛 = 3, which converts Eq. (17) into a cubic polynomial equation
(see Appendix); however, for 𝑛 > 3 (𝑛 being the hardening param-
eter) solutions are readily obtained by simple numerical methods or
built-in root evaluations in algebraic manipulation software tools or
spreadsheet software.

Since the current work focuses on determining the critical buckling
load, the effect of elastic unloading (with the elastic modulus 𝐸)
once buckling occurs does not need to be incorporated within the
energy formulation (for instance, as in the Shanley model [24,25]). The
solution obtained from Eq. (17) – as will be demonstrated in Section 4
– is equivalent to the tangent modulus load and thus corresponds to
the lowest possible bifurcation load. It should be stressed that for
evaluating flexural buckling, the analytical expressions provided in
Eqs. (16) and (17) are entirely generic and thus applicable to any
cross-sections with arbitrary material parameters. Imperfections are
not considered within the present energy formulation. Corresponding
reductions in ultimate strength are considered in the development of
the design model in Section 4.5 by introducing a correction factor.

4. Results

In the current section, predictions of the buckling load using the
solution to Eq. (17) are compared against results obtained by finite
element simulations first. Subsequently, a detailed comparison against
experimental results and Eurocode 3 (EC3) predictions is provided,
followed by a direct comparison against predictions using the tangent
modulus load. Results from a parametric study of varying material
parameters are provided. At the end of the section, a novel design
provision is presented and a reliability analysis is performed.
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4.1. Comparison against finite element simulations

Finite element (FE) simulations were conducted within the com-
mercial software ABAQUS [26], where nonlinear analyses of imper-
fect struts were executed. Since it is the motivation of this com-
parison to verify the newly developed buckling load formula (see
Eqs. (16) and (17)), imperfections were introduced as perturbations
of eigenforms from corresponding linear buckling analyses (LBA) with
their magnitude being set to be as small as possible to limit their
effects on the critical load, typically ranging between 𝐿∕10000 and
∕20000.1 The built-in material option ‘‘Deformation plasticity’’ repre-

enting Ramberg–Osgood-like behaviour as implemented in the energy
ormulation (see Section 2) was selected in the FE analyses. In the
omparison with the FE analyses, material parameters representing an
luminium alloy have been used with the initial Young’s modulus and
he yield strength being 𝐸 = 70GPa and 𝑓y = 220MPa respectively. The
ardening exponent 𝑛 was considered to vary over a considerably large
ange, as indicated in Fig. 2, which is deemed to cover a majority of
ypical materials.

The results presented throughout the work are provided in terms
f the normalized slenderness 𝜆̄ =

√

𝑃y∕𝑃E as defined in Eurocode 3,
ith 𝑃y = 𝐴𝑓y being the squash load and 𝐴 being the area of the

ross-section (or an effective area 𝐴 = 𝐴eff for class 4 cross-sections,
ee [2,27]) and 𝑃E is the Euler (buckling) load of a strut made from
linear elastic material. The analyses employing the proposed formula

see Eq. (16)) are independent of cross-section geometry so long as flex-
ral buckling is critical. Therefore, in the comparative study against FE
imulations, a simple solid 1 mm × 1 mm square cross-section is chosen
here lengths are varied to represent all normalized slendernesses of

nterest.
Fig. 2 shows the buckling curves in terms of the strength reduction

actor 𝜒 = 𝑃u∕𝑃y against normalized slenderness 𝜆̄ for hardening parame-
ters 𝑛 = {3, 7, 11, 15, 19}, where for the current model the ultimate load
u is considered to be equal to the critical buckling load 𝑃C. Results
re provided for normalized slendernesses ranging from 0.2 to 3.0 with
he lower bound corresponding to the buckling load being equal to the
quash load, thus: 𝜒 = 1. Corresponding results from FE analyses are
isualized using symbols ◦, □, ⋄, ▿ and ▵, respectively. The buckling
urve associated with Euler buckling, i.e. buckling loads of a strut made
rom a linear elastic material, is also provided in Fig. 2 through a
ashed line. As can be seen in Fig. 2, results obtained for the current
odel and FE analyses practically coincide verifying the proposed

nergy formulation, where negligible deviations are attributed to the
mall perturbations in the FE analyses.

The effect of material nonlinearity is clearly highlighted in Fig. 2.
ll curves essentially follow the behaviour of linear elasticity for nor-
alized slenderness larger than 𝜆̄ = 2.5. For 𝜆̄ < 2.5, with the increasing
ardening parameter 𝑛, the buckling curves follow the linear elastic
urve up to smaller normalized slenderness values. Whereas for 𝑛 = 3
he curves already deviate for 𝜆̄ < 2.5, this measure decreases to ap-
roximately 1.6 for 𝑛 = 7 and appears to converge to a normalized
lenderness of approximately 1.2 for very high values of 𝑛 (e.g. see the
urves for 𝑛 = 15 and 𝑛 = 19 in Fig. 2). Note that this effect relates to

the tangent stiffness remaining closer to the initial (linear) stiffness for
larger ranges of applied stress with increasing 𝑛.

A second phenomenon is highlighted in Fig. 2 which occurs par-
ticularly for 𝑛 > 3. Considering the response for smaller 𝜆̄, unlike the
qualitative behaviour that appears to be similar between the linear

1 Note that buckling loads of nonlinear materials cannot be obtained
hrough performing LBA in FE simulations. An alternative method to the
ne used would be to introduce an initial step preloading the column before
unning a buckling analysis. However, this requires an iterative procedure to
ind adequate preloads which was deemed to make an efficient implementation
4

ore cumbersome.
Fig. 2. Strength reduction factor 𝜒 vs. normalized slenderness 𝜆̄ for various hardening
parameters 𝑛 with 𝐸 = 70 GPa and 𝑓y = 220 MPa; 𝜒 = 1 is denoted as the ‘squash’
strength.

elastic case and 𝑛 = 3, the curves for 𝑛 > 3 show a characteristic change
where once the curves deviate from the linear elastic response, larger
𝑛 values cause decreasing slopes resulting in the curves intersecting
each other at 𝜆̄ ≈ 0.55. As a consequence, larger hardening parameters
𝑛 result in buckling loads reaching the corresponding squash load at
smaller 𝜆̄ values; thus 𝜒 = 1 is reached for 𝑛 = 3 at 𝜆̄ ≈ 0.6, but for larger

values corresponding normalized slendernesses appear to converge
owards 0.25.

.2. Comparison against experiments and Eurocode 3

With the energy formulation having been verified by FE modelling,
omparisons against experimental data published in the literature and
esign codes are provided next. Results from experiments for the ul-
imate strength of square (SHS) and rectangular (RHS) hollow section
truts documented in the literature [13,28,29] are considered. The stud-
es cover different types or grades of stainless steel (e.g. ferritic, lean
uplex) and cross-section properties. Information about the material
arameters and geometry provided in the respective works are consid-
red for the corresponding load predictions alongside the calculation of
he normalized slenderness. The results of all tests and corresponding
redictions of the current model are presented in Fig. 3 in terms
f the strength reduction factor 𝜒 versus the normalized slenderness
̄. Experimental data are visualized by symbols ▵, ◦, and □, from
efs. [13,28,29] respectively, where corresponding model predictions
re provided by filled symbols. The results are summarized in Table 1
longside the respective material and geometric parameters.

In addition to the comparison between experiments and model
redictions, Fig. 3 also shows the design curves from Eurocode 3 Part
.4 (solid line) [2], with parameters 𝛼 and 𝜆̄0 set as 0.49 and 0.40
espectively (as recommended for cold-formed stainless steels), and
s an example, a curve corresponding to the SEI/ASCE-8 standard
dotted line) with 𝑛 = 8.6 (as considered in [29]; normally single points
ould be required for the respective material parameters) to highlight
general observation to be discussed subsequently. The Euler buckling

urve (dashed line; for linear elastic behaviour) is also provided in
ig. 3 for reference.

Fig. 3 indicates good agreement between the model, experiments
nd design predictions for normalized slendernesses between 0.4 and
.0. For 𝜆̄ > 1.0, a larger (relative) scatter between the model pre-
ictions, experiments and design predictions is observed, where the
ehaviour of the model appears to be in agreement with the SEI/ASCE-
design code indicated by the dotted line in Fig. 3. For 𝜆̄ > 1.5,
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Fig. 3. Comparison against experimental data from Table 1; strength reduction factor 𝜒 vs. normalized slenderness 𝜆̄ for stainless steel with material and geometric parameters
taken from experiments. For individual comparisons, the reader is advised to compare the open and filled symbols at identical 𝜆̄ values.
Table 1
Comparisons of model (mod) results against experimental (exp) data and Eurocode (EC3).
Refs. Material parameters Dimensions (mm) Results

𝐸 𝑓y 𝑛 Length Height Width 𝜆̄ 𝑃C
mod 𝑃u,exp 𝑃u,exp∕𝑃Cmod

𝜒EC3∕𝜒mod
(GPa) (MPa) (kN) (kN)

[13] 198.00 683 7

310.0 50.0 30.0 0.49 240.7 259.2 1.08 0.98
660.0 50.1 30.1 1.03 168.0 154.2 0.92 0.83
1010.0 50.5 30.2 1.55 99.9 85.4 0.85 0.76
1310.0 50.1 30.2 2.03 59.5 55.3 0.93 0.81
1660.0 50.4 30.1 2.60 36.8 36.2 0.98 0.85

[13] 198.00 635 6

310.0 50.3 49.7 0.29 346.6 355.3 1.03 0.84
660.0 50.1 49.6 0.61 257.8 302.1 1.17 0.98
1010.0 50.3 49.8 0.93 204.1 242.8 1.19 0.90
1310.0 50.2 50.0 1.21 166.2 146.1 0.88 0.81
1660.0 50.3 50.0 1.53 119.5 103.9 0.87 0.77

[13] 194.00 613 8

310.0 70.4 50.5 0.26 391.3 373.1 0.95 0.83
660.0 70.7 51.0 0.55 314.0 352.8 1.12 0.93
1010.0 70.5 50.7 0.85 265.7 270.7 1.02 0.85
1310.0 70.4 50.7 1.10 219.7 211.2 0.96 0.76
1660.0 70.5 50.8 1.39 163.6 148.3 0.91 0.73

[13] 194.00 610 5
1010.0 50.5 50.5 0.77 122.3 120.8 0.99 0.78
1310.0 50.5 50.4 1.00 97.1 92.3 0.95 0.76
1660.0 50.8 50.7 1.26 73.8 65.4 0.89 0.75

[28] 197.2 657 4.7 1199.5 79.6 79.5 0.73 597.7 672.5 1.13 0.98
1999.0 79.6 79.5 1.22 399.6 361.9 0.91 0.86

[28] 206.4 711 5.0

799.0 60.0 60.0 0.68 445.7 445.9 1.00 0.99
1199.0 60.0 60.0 1.03 334.4 326.9 0.98 0.90
1599.0 59.6 60.0 1.36 249.9 231.7 0.93 0.82
1999.0 60.0 60.0 1.70 177.2 162.3 0.92 0.80

[28] 204.00 607 4.6
797.2 39.5 79.4 0.99 365.3 366.6 1.00 1.00
1199.0 40.0 79.2 1.46 245.7 237.4 0.97 0.85
1600.0 39.0 79.2 1.99 148.7 160.4 1.08 0.83

[29] 211.15 404 5.8

1100.0 120.0 79.9 0.31 458.0 463 1.01 0.82
1600.0 120.0 79.9 0.45 386.2 382 0.99 0.92
2100.0 120.0 79.8 0.59 338.8 391 1.15 0.93
2600.0 119.7 79.8 0.73 298.0 308 1.03 0.92

[29] 216 423 10.2

1100.0 120.0 79.9 0.31 446.0 463 1.04 0.88
1600.0 120.0 79.9 0.46 400.8 382 0.95 0.92
2100.0 120.0 79.8 0.60 369.2 391 1.06 0.89
2600.0 119.7 79.8 0.74 338.3 308 0.91 0.84

[29] 211.25 404 6.3
1600.0 80.1 80.0 0.71 259.6 273 1.05 1.04
2100.0 80.0 79.8 0.93 223.7 222 0.99 0.96
2600.0 80.1 79.8 1.15 191.3 164 0.86 0.86

[29] 215.13 483 6.3

1100.0 60.4 60.4 0.78 229.7 214 0.93 1.00
1600.0 60.6 60.5 1.03 191.8 166 0.87 0.89
2100.0 60.5 60.4 1.36 149.0 116 0.78 0.79
2600.0 60.6 60.6 1.68 109.1 82 0.75 0.78
5
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Table 2
Mean and coefficient of variation (COV) comparing model (mod) results against
experiments (exp) and the Eurocode 3 (EC3).

Normalized exp/mod EC3/mod exp/EC3

slenderness 𝜆̄ Mean COV Mean COV Mean COV

All 0.975 0.101 0.867 0.092 1.128 0.087
𝜆̄ ≤ 1 1.033 0.075 0.910 0.082 1.139 0.088
𝜆̄ > 1 0.906 0.082 0.814 0.059 1.115 0.086

the model predictions slowly converge onto the Euler buckling curve
(approximately at a normalized slenderness of 1.6), where experimental
results and the Eurocode show slightly smaller loads.

The direct numerical comparisons between the results obtained by
the model (‘mod’), experiments (‘exp’) and Eurocode 3 (‘EC3’) are
provided in Table 1, with the corresponding mean and the coefficient of
variation (COV) given in Table 2. Following the general observations
made by analysing Fig. 3, three slenderness ranges are considered in
Table 2: predictions for all 𝜆̄, 𝜆̄ ≤ 1 and 𝜆̄ > 1.

In Table 2, the good agreement between experimental results and
model predictions is underlined by the mean and the COV being 0.975
and 0.101 for all 𝜆̄ respectively. Excellent results are highlighted for
𝜆̄ ≤ 1 with the mean and the COV being 1.033 and 0.075, respectively.
As observed by analysing Fig. 3, slightly larger deviations are present
for the mean and the COV for 𝜆̄ > 1 (0.906 and 0.082, respectively).

4.3. Comparison with tangent modulus load

The energy formulation provided in Section 2 presents an alter-
native, non-iterative, method to determine the buckling strength of
columns corresponding to the tangent modulus buckling load, i.e. the
lowest possible bifurcation load of struts undergoing nonlinear (plas-
tic) deformation. Fig. 4 demonstrates that predictions of the current
model coincide with tangent modulus buckling loads. Therefore, two
strength curves corresponding to hardening parameters 𝑛 = {3, 9} with
an elastic modulus of 𝐸 = 210GPa and a proof stress of 𝑓y = 450MPa
are compared against tangent modulus load predictions following the
SEI/ASCE-8 standard (iterative method) [3], indicated by circle sym-
bols ‘◦’ in Fig. 4. All tangent modulus buckling load predictions coincide
with the results of the current model confirming their equivalence.

4.4. Parametric study

Since the experimental results presented in Fig. 3 correspond to a
wide range of material types or grades, a parametric study is performed
employing the energy formulation presented in Section 2, which is
ideally suited to investigate the effect of changing material parame-
ters on the column strength directly. First, the effect of changing the
hardening parameter 𝑛 is studied in Fig. 5, where experimental data
and the Eurocode 3 design curve are also provided. Fig. 5 shows
that changing the hardening parameter particularly affects the column
strength for smaller 𝜆̄ values. Increasing 𝑛 values increase the column
strengths for intermediate slendernesses, i.e. 𝜆̄ = [0.7, 1.8], and reduce
the column strengths for 𝜆̄ < 0.7.

Changing the proof stress 𝑓y also alters the behaviour of the struts
significantly. As illustrated in Fig. 6 for hardening parameters 𝑛 = 5
and 𝑛 = 7, different proof stresses generate a band in strength pre-
dictions starting at the normalized slenderness (towards smaller 𝜆̄)
where the response begins to deviate from the Euler load predictions
in the range 𝜆̄ ≈ [1.5, 1.7]. In Fig. 6, proof stresses in the range of
𝑓y = [235MPa, 960MPa] are considered, deemed to cover a wide range
of characteristic material grades used in structural members made from
stainless steel.

As indicated by the width of the bands in strength predictions
6

(represented by the gap between the black and magenta lines in Fig. 6),
Fig. 4. Comparison with tangent modulus load (𝐸 = 210 GPa, 𝑓y = 450 MPa).

Fig. 5. Effect of varying the hardening parameter 𝑛; comparison against experimental
data and EC3 design curve; strength reduction factor 𝜒 vs. normalized slenderness 𝜆̄;
stainless steel properties used (𝐸 = 210 GPa, 𝑓y = 450 MPa).

increasing proof stresses cause varying increases in strength for differ-
ent 𝜆̄ values. The size of such bands is also affected by the hardening
parameter 𝑛. This can be illustrated by comparing strength predictions
in two ways: first, 𝜆̄ values corresponding to a strength reduction factor
of 𝜒 = 1, i.e. 𝜆̄m0 ≡ 𝜆̄(𝜒 = 1), are evaluated for the largest and lowest
proof stress considered (superscript ‘‘m’’ is used to provide a distinction
from the measure 𝜆̄0 used in the Eurocode design curves, see [2]);
second, 𝜒 values are evaluated for fixed 𝜆̄ values.

In Fig. 6(a), for 𝑛 = 5 and 𝑓y = (235MPa, 960MPa), the normal-
ized slendernesses corresponding to 𝜒 = 1 are 𝜆̄m0 = (0.32, 0.56) which
hanges for 𝑛 = 7 (Fig. 6(b)) to 𝜆̄m = (0.27, 0.49), indicating the narrow-

ing of the aforementioned band in strength predictions which proceeds
with increasing 𝑛 values. Considering strength predictions for fixed
𝜆̄, for 𝑛 = 5 and 𝑓y = 960MPa at 𝜆̄ = 𝜆̄m0 = 0.56, a strength of 𝜒 = 1 is
reached, whereas for 𝑓y = 235MPa the strength reduces to 𝜒 = 0.77
for 𝜆̄ = 0.56. For 𝑛 = 7, a strength of 𝜒 = 1 is reached at 𝜆̄ = 𝜆̄m0 = 0.49
or 𝑓y = 960MPa, whereas for 𝑓y = 235MPa the strength decreases to
= 0.83 for 𝜆̄ = 0.49.
To highlight the effect of changing the hardening parameter 𝑛 and

the proof stress 𝑓y, Fig. 7 presents strength predictions for configura-
tions that may be regarded as upper and lower bounds for structural
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Fig. 6. Effect of varying proof stress 𝑓y for (a) 𝑛 = 5 and (b) 𝑛 = 7; comparison against experimental data and design curve; strength reduction factor 𝜒 vs. normalized slenderness
𝜆̄; stainless steel (𝐸 = 210 GPa).
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Fig. 7. Comparison of lower and upper bounds for 𝑛 and 𝑓y .

embers made from stainless steel. Therefore, Fig. 7 also serves to
isualize the significant deviations between strength predictions of such
ases and thus provides an argument towards the need for design
ecommendations that consider variations in material parameters.

For normalized slendernesses 𝜆̄ associated with strength predictions
≤ 1, a comparison between 𝑛 = 3 and 𝑛 = 11 for 𝑓y = 235MPa shows

hat strength predictions may deviate by up to 36% (at 𝜆̄ ≈ 1.15) but
oincide at other values of normalized slenderness (𝜆̄ ≈ 0.49). This
hanges for 𝑓y = 960MPa, where the maximum deviation decreases to
1% (at 𝜆̄ ≈ 1.18) with coinciding predictions at 𝜆̄ ≈ 0.78. As performed
hile analysing Fig. 6, ranges of normalized slendernesses associated
ith 𝜒 = 1, i.e. 𝜆̄m0 , can be evaluated for highlighting the effect of

hanging material parameters. Fig. 7 shows that 𝜆̄m0 values may range
rom 0.22 up to 0.66, where these minimum and maximum values
re associated with large hardening parameters in conjunction with
ow proof stresses and small hardening parameters with large proof
tresses respectively; these may therefore be regarded as lower and
7

pper bounds respectively. c
4.5. New design provision proposal

The results presented in Sections 4.2 to 4.4 demonstrate that the
developed buckling load formula provides accurate strength predictions
corresponding to the tangent modulus load. The results also indicate
that design formulae should consider varying material parameters for
predicting the column strength. Based on the comparison against exper-
imental data presented in Section 4.2, a new design recommendation
is formulated next.

Excellent agreement of the currently presented model with exper-
imental data has been documented for 𝜆̄ ≤ 1 in Tables 1 and 2. On
the other hand, the model overestimates the column strength for 𝜆̄ > 1
while exhibiting a small COV. It should be noted that, in its current
form, the model does not consider geometric imperfections and residual
stresses. The results documented in Section 4.2 indicate that such
effects become significant with larger 𝜆̄, particularly for 𝜆̄ > 1. Without
altering the derivation of the buckling load formula, cf. Eqs. (16) and
17), the effect of lowering the column strength due to geometric
mperfections can be included a posteriori in the model by introducing
correction factor 𝛽 that decreases the roundness (nonlinearity) of the

tress–strain behaviour and thus serves to make the structural response
f the column smoother, as expected when geometric imperfections
ould be present. Hence, the correction factor 𝛽 is assigned to the hard-
ning exponent 𝑛, altering the buckling load formula to the following:

(𝑝) = 𝑝𝛽𝑛 + 𝐶1𝑝 + 𝐶2 = 0, with: 𝐶1 =
1

(𝛽𝑛 + 1)𝑐1
, 𝐶2 = −

𝑐2
𝑐1

,

𝑐2 =
𝜋2𝐼𝑧𝑧

(𝛽𝑛 + 1)𝐴𝐿2
,

𝑐1 =
𝛽𝑛𝛼ro𝐸𝛽𝑛

(𝛽𝑛 + 1)𝑓 𝛽𝑛
y

.

(18)

he concept of introducing such a correction factor has been demon-
trated in [30], where hot-rolled and welded structural members were
onsidered.

The upper bound of 𝛽 is 1, giving the original model formulation.
he lower bound of 𝛽 is to a certain extent arbitrary; however, values
hat make the material response linear, i.e. 𝛽𝑛 = 1, represent a reason-
ble lower bound. In addition to the assessment that the correction
actor appears to be mainly required for larger normalized slender-
esses, some physical insights must be considered when introducing a

orrection factor by means of lowering the hardening exponent, thus:
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Fig. 8. Analysis of the correction factor 𝛽; (a) ratio of the strength reduction factor 𝜒exp∕𝜒mod
against normalized slenderness 𝜆̄, (b) proposed function for 𝛽(𝜆̄).
t

• Owing to the nonlinearity of the material behaviour, strength
curves associated with different hardening parameters intersect
each other at intermediate normalized slendernesses; for instance,
in the range between 0.6 and 0.7 for the material parameters con-
sidered in the comparison against experimental data (cf. Fig. 5).
Thus, for normalized slendernesses smaller than the value associ-
ated with the intersection of the strength curves, the correction
factor increases the buckling load. For larger 𝜆̄ values, the correc-
tion factor 𝛽 represents the strength reduction effect of geometric
imperfections. As a consequence, the correction factor should
only be applied to configurations associated with normalized
slendernesses larger than the value corresponding to the intersec-
tion point of respective strength curves with different hardening
exponents. This normalized slenderness limit is critical for the im-
plementation of the correction factor and is subsequently referred
to as the transition slenderness 𝜆̄t .

• Despite the aforementioned categorization of where the correc-
tion factor should be applied in terms of the normalized slen-
derness, a representation of the correction factor by means of a
continuous function is required. This accounts for the gradually
increasing effect of imperfections on the ultimate strength as well
as considering that the transition slenderness 𝜆̄t does not repre-
sent a fixed quantity but rather changes within a certain region
of normalized slendernesses depending on the given material
parameters.

The aforementioned points are visualized in Fig. 8. The effect of
the correction factor on the strength predictions is studied in Fig. 8(a)
for 𝛽 values in the range of 0.4–1.0 by means of the ratio of strength
reduction factors (𝜒) between the experiments (exp) and the model
(mod). The proposed continuous representation of the correction factor
is provided in Fig. 8(b).

In Fig. 8(a), for the experimental data considered, the transition
slenderness 𝜆̄t is approximately 0.7 (dotted vertical line in Fig. 8(a)).
All configurations associated with 𝜆̄ < 𝜆̄t exhibit the aforementioned
increase in buckling load when applying the correction factor (lowering
the strength reduction ratio). For 𝜆̄ ≥ 𝜆̄t , the intended effect of lowering
the buckling load (increasing the strength reduction ratio) is obtained.
It should also be noted that the effect of the correction factor in the
vicinity of 𝜆̄t is small since the corresponding strength curves are close
to each other for such 𝜆̄ values. Moreover, minor deviations in strength
predictions are present for 𝛽 values up to 0.8, whereas significant
effects occur for 𝛽 values smaller than 0.8; see the ‘+’ and ‘▵’ symbols
8

in Fig. 8(a).
The continuous function for the correction factor 𝛽(𝜆̄) shown in
Fig. 8(b) aims at providing a generally applicable form. Therefore,
a generic 𝜆̄t value must be determined. This can be achieved by
identifying an upper bound of such a transition slenderness, since for
all 𝜆̄ < 𝜆̄t the model formulation with the ‘original’ hardening param-
eter (𝛽 = 1) gives excellent results. Fig. 7, showing ‘extreme’ cases
of material parameters deemed to relate to stainless steel, visualizes
how the upper bound of 𝜆̄t can be determined. Considering a constant
Young’s modulus 𝐸, the intersection point of the strength curves shifts
towards larger normalized slendernesses with increasing proof stresses.
For 𝑓y = 960MPa, the transition slenderness is 0.8. In general, this shift
depends on the ratio of proof stress to Young’s modulus, i.e. 𝛥 = 𝑓y∕𝐸,
where increasing 𝛥 values increase the value of 𝜆̄t .2 A parametric study
on the effect of 𝛥 on 𝜆̄t has been performed also considering changing
pairs of hardening parameters. As a result, an upper bound of 𝜆̄t = 0.9
has been determined that holds for all types/grades of aluminium
alloys and stainless steels used in structural engineering, where ratios of
𝛥 ≤ 0.01 have been considered alongside associated ranges of hardening
exponents.

Considering the distinct regions identified, marked by the newly
introduced transition slenderness 𝜆̄t , the correction factor 𝛽 is expressed
as follows:

𝛽 = 𝑎1 tanh
[

𝑎0(𝜆̄t − 𝜆̄)
]

+ 𝑎2, with: 𝑎0 = 5, 𝑎1 = 0.275, 𝑎2 = 0.725, (19)

with 𝜆̄t = 0.9, which is plotted in Fig. 8(b). The constants 𝑎1 and 𝑎2
ensure that the limits of the tanh-function are unity and the minimal
correction factor employed (𝛽min = 0.45). Moreover, the values of 𝑎1, 𝑎2
and 𝑎3 have been selected to provide the best agreement possible with
experimental data in terms of the mean and COV while maintaining
generally safe predictions. Note that by describing the correction factor
by means of a continuous function, normalized slendernesses smaller
than the general value of 𝜆̄t but within its vicinity are assigned a
correction factor smaller than 1.0. As aforementioned, the associated
effect on the strength predictions is negligible and, thus, does not
restrict the applicability of the proposed function.

2 The pair of distinct hardening parameters considered also affects the
ransition slenderness 𝜆̄t . However, this becomes relevant for determining an

upper bound of 𝜆̄t only if both considered hardening exponents are small
but cause a qualitative change in the behaviour of the associated strength
curves, for instance when considering 𝑛 = {3, 5}. This effect is considered in

̄
determining the upper bound of 𝜆t .
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Fig. 9. Design provision: (a) design model predictions, (b) Eurocode predictions.
In summary, the following design proposition is made. The column
trength of structural members made from materials following the
amberg–Osgood constitutive law for which flexural buckling is critical
an be accurately predicted solving Eq. (18) with the implementation
f the correction factor expressed in Eq. (19), thus:

q. (18): 𝑓 (𝑝) = 0 ⟹ 𝑝C with 𝛽 = 𝛽(𝜆̄) in the form of Eq. (19). (20)

q. (20) constitutes the governing equation of the proposed design
odel (des).

The results of the design model are provided in terms of strength
atio (𝜒exp∕𝜒des ) against normalized slenderness (𝜆̄) in Fig. 9(a). Cor-
esponding results comparing the Eurocode 3 predictions against the
xperimental data are shown in Fig. 9(b). The design model exhibits
mean and COV of 1.056 and 0.078 respectively, with Eurocode 3

redictions having a mean and COV of 1.128 and 0.087, respectively.

.6. Reliability analysis

The reliability analysis, in the form of a First Order Reliability
ethod, follows the guidelines provided in the Eurocode [31] alongside

nformation provided in [32] to determine the partial safety factor 𝛾M1.
he partial safety factor is employed to guarantee that the probability
f the resistance of a structural member being below its design resis-
ance does not exceed a certain threshold. Considering the reliability
lass RC2 (see [31]), this probability is approximately 0.001 [32].
he recommended partial safety factor for stability design in EC3-Part
.4 is 𝛾M1 = 1.1 [2]. Subsequently, the terminology of the Eurocode is
dopted, thus a strength value obtained from the proposed model and
xperiments are denoted by 𝑟t and 𝑟e, respectively. Note that single data
oints are denoted with a superscript 𝑖.

To obtain the coefficient of variation of the model errors (𝑉𝛿), first,
he least-squares best fit to the data, denoted by the parameter 𝑏, is

determined, thus:

𝑏 =
∑𝑛

𝑖=1 𝑟
𝑖
t𝑟
𝑖
e

∑𝑛
𝑖=1

(

𝑟𝑖e
)2

. (21)

Fig. 10(a) shows the data points {𝑟𝑖
t
, 𝑟𝑖

e
} for all 𝑛 experiments considered

(𝑖 = {1, 2,… , 𝑛}) alongside the corresponding reference line for 𝑟𝑖
t
= 𝑟𝑖

e
.

The 𝑏-factor is applied to the predictions of the model for all data points
resulting in the scatter diagram shown in Fig. 10(b).

With the 𝑏-factor, the relative error 𝛿𝑖 of the model predictions for
each data point is determined, i.e. 𝛿𝑖 = 𝑟𝑖e∕

(

𝑏 𝑟𝑖t
). Next, the logarithm of

the error terms, i.e. 𝛥𝑖 = log
(

𝛿𝑖
)

, is calculated followed by determining
9

Fig. 10. Scatter diagrams comparing theoretical (𝑟t ) and experimental (𝑟e) strength
predictions; (a) without and (b) with the 𝑏-factor.
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Table 3
Mean and coefficient of variation (COV) of basic variables 𝑋𝑗 taken from [32,33].

Mean COV

𝑓y 𝑓y,m = 1.1𝑓y,n for duplex 0.030
𝑓y,m = 1.2𝑓y,n for ferritic 0.045

𝐸 𝐸m = 𝐸n 0.030
𝐴 𝐴m = 𝐴n 0.030

the respective mean, i.e. 𝛥 =
(
∑𝑛

𝑖=1 𝛥
𝑖) ∕𝑛. The variance of 𝛥𝑖, denoted

by 𝑠2𝛥, being the estimated value of the variance of the logarithmic error
𝜎2𝛥, is determined by

𝑠2𝛥 = 1
𝑛 − 1

𝑛
∑

𝑖=1

(

𝛥𝑖 − 𝛥
)2. (22)

ith 𝑠2𝛥 determined, the coefficient of variation of the error terms 𝛿𝑖 is
alculated by

𝛿 =
√

exp
(

𝑠2𝛥
)

− 1, (23)

roviding a measure for the variability of the proposed design model
redictions. A value of 𝑉𝛿 = 0.076 has been determined.

The variability of the basic variables entering the resistance function
proposed design model) is determined next. The basic variables are the
roof stress 𝑓y, the Young’s modulus 𝐸 and the cross-sectional area 𝐴,
hich are denoted by 𝑋𝑗 . The corresponding coefficient of variation 𝑉rt

s calculated by

𝑖
rt
2 = 1

𝑟𝑖t (𝑋m)2

𝑘
∑

𝑗=1

(

𝜕𝑟𝑖t
𝜕𝑋𝑗

𝜎𝑗

)2

, (24)

here 𝑋m is the array of the mean values of the basic variables and 𝜎𝑗
s the standard deviation of the 𝑗th basic variable [32,33]. The mean
alues and coefficients of variation (COV) of the basic variables are
rovided in Table 3, where a subscript ‘n’ refers to the nominal values.
he partial derivatives in Eq. (24) are determined numerically. Note
hat 𝑉rt is calculated for each data point. To provide a general estimate,
mean of 𝑉rt = 0.029 has been determined. With Eq. (24), the resultant
f the coefficients of variation 𝑉r can be determined for each data point
y
𝑖
r
2 = 𝑉 𝑖

rt
2 + 𝑉 2

𝛿 , (25)

nd taking the square root, where 𝑉𝛿 has been determined using
q. (23) and remains unchanged. A mean of 𝑉r = 0.082 has been de-
ermined.

In the final step, the design resistance 𝑟d is calculated for each data
oint, thus:
𝑖
d = 𝑏 𝑟𝑖t (𝑋m) exp(−𝑘d,∞𝛼𝑖rt𝑄

𝑖
rt − 𝑘d,n𝛼

𝑖
𝛿𝑄

𝑖
𝛿 − 0.5𝑄𝑖2), (26)

with 𝑘d,∞ = 𝑘d,n = 3.04 since a sufficiently large number of data points
are considered [31,32]. The remaining parameters are given by

𝑄𝑖
rt =

√

log
(

𝑉 𝑖
rt
2 + 1

)

, 𝑄𝑖
rt =

√

log
(

𝑉 𝑖
𝛿
2 + 1

)

,

𝑖
rt =

√

log
(

𝑉 𝑖
r
2 + 1

)

,

𝛼𝑖rt = 𝑄𝑖
rt∕𝑄𝑖, 𝛼𝑖𝛿 = 𝑄𝑖

𝛿∕𝑄𝑖.

(27)

Note that 𝑟𝑖t (Xm) are the strength predictions obtained by the proposed
model considering the measured basic variables in the respective exper-
imental studies [13,28,29]. With Eq. (26), the required partial safety
factor 𝛾∗M1 can be calculated for each data point, thus:

∗𝑖
M1 =

𝑟𝑖n
𝑟𝑖d
, (28)

here 𝑟𝑖n (or sometimes referred to as characteristic resistance 𝑟𝑖k) is
he nominal resistance using the nominal values for the basic variables
10
in the proposed resistance function (cf. Table 3). Determining the
least-square best fit gives the partial safety factor of the novel design
provision. A value of 𝛾∗M1 = 1.10 has been determined that matches the
current recommended partial resistance factor stated in the Eurocode.

It should be noted that the proposed design provision and thus
the resistance function evaluated employs a function for the correction
factor that is deemed to be generally applicable to Ramberg–Osgood
materials (cf. Eq. (19) and Fig. 9(a)), where further reductions of the
partial safety factor may be achievable by optimizing the correction
factor function for material types and grades, if deemed necessary.

5. Conclusions

With the aid of a novel simplified energy formulation employing the
total potential energy principle, a governing equation for struts made
from materials obeying the Ramberg–Osgood law (e.g. stainless steel,
cold-formed steel, aluminium alloys) with arbitrary cross-sections and
for any slendernesses for which flexural buckling is critical is derived.
The formula solely depends on the material parameters Young’s mod-
ulus 𝐸, hardening exponent 𝑛 and proof stress 𝑓y, alongside the strut
slenderness 𝜆. Buckling loads may be readily obtained by simple numer-
ical solution methods, built-in root evaluation functions in algebraic
manipulation software or spreadsheet software, where a closed-form
solution exists for 𝑛 = 3 (see Appendix). The model represents a
non-iterative alternative to the design load employing the tangent
modulus approach. Finite element simulations and comparisons with
experimental data verify the proposed model.

The model facilitates direct and comprehensive parametric studies
on the effect of material and geometric parameters on the compressive
strength of struts. The study demonstrates that strength predictions
alter significantly (quantitatively and qualitatively) with changing ma-
terial parameters such as the hardening exponent and the proof stress.
This highlights that either material parameters should enter design
recommendations directly or the effect of changing parameters should
be considered (for instance for specific material grades/types).

A design model is developed that incorporates a correction factor in
the form of lowering the hardening exponent – considered to represent
the effect of imperfections – within the energy formulation. Owing to
the comprehensive parametric study performed, a physically sound im-
plementation of the correction factor by means of a continuous function
of the normalized slenderness is proposed. Therefore, the parameter
‘transition slenderness’ is introduced; the transition marks the minimum
normalized slenderness from where the correction factor accounts for
the effect of imperfections on the structural responses. The introduc-
tion of the proposed correction factor effectively resolves the inherent
weakness of the tangent modulus design load, i.e. overestimating the
column strength for larger normalized slendernesses.

The design model provides excellent agreement with experimental
data. This is underlined by evaluating the ratio of strength reduction
factors between experiments and the design model where a mean and
coefficient of variation (COV) of 1.056 and 0.078 is obtained, respec-
tively. The results represent an improvement in relation to predictions
from the Eurocode 3 (mean: 1.128, COV: 0.087). Moreover, reliability
requirements specified in the structural Eurocodes are met by the novel
design model.
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𝑝

Appendix. Closed-form solution for 𝒏 = 𝟑

The governing equation in Eq. (16) can be solved in closed-form
for a hardening exponent of 𝑛 = 3. Inserting 𝑛 = 3 in Eq. (16) gives the
following solution for the non-dimensional buckling load 𝑝c, thus:

C =

(

√

3
(

27𝐶2
2 + 4𝐶3

1
)

− 9𝐶2

)1∕3

21∕3 32∕3
−

(

2
3

)1∕3
𝐶1

(

√

3
(

27𝐶2
2 + 4𝐶3

1
)

− 9𝐶2

)1∕3

(A.1)

with the buckling load being simply 𝑃C = 𝑝C𝐸𝐴, where the coefficients
𝐶1 and 𝐶2 are provided in Eq. (16).
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